

Programming
PC Connectivity
Applications
for Symbian OS
Smartphone Synchronization and Connectivity
for Enterprise and Application Developers

By

Ian McDowall

Reviewed by

Day Barr, Emlyn Howell, Helena Bryant, Paul Newby,
Rob Falla, Simon Didcote, Tony Naggs, Zoë Martin

Symbian Press

Managing editor

Phil Northam

Project editor

Freddie Gjertsen

Programming
PC Connectivity
Applications
for Symbian OS

TITLES PUBLISHED BY SYMBIAN PRESS

• Programming PC Connectivity Applications for Symbian OS
Ian McDowall
0470 090537 477pp 2004 Paperback

• Symbian OS Explained
Jo Stichbury
0470 021306 416pp 2004 Paperback

• Symbian OS C++ for Mobile Phones, Volume 2
Richard Harrison
0470 871083 448pp 2004 Paperback

• Programming Java 2 Micro Edition on Symbian OS
Martin de Jode
0470 092238 498pp 2004 Paperback

• Symbian OS C++ for Mobile Phones, Volume 1
Richard Harrison
0470 856114 826pp 2003 Paperback

• Programming for the Series 60 Platform and Symbian OS
Digia, Inc.
0470 849487 550pp 2002 Paperback

• Symbian OS Communications Programming
Michael J Jipping
0470 844302 418pp 2002 Paperback

• Wireless Java for Symbian Devices
Jonathan Allin
0471 486841 512pp 2001 Paperback

Programming
PC Connectivity
Applications
for Symbian OS
Smartphone Synchronization and Connectivity
for Enterprise and Application Developers

By

Ian McDowall

Reviewed by

Day Barr, Emlyn Howell, Helena Bryant, Paul Newby,
Rob Falla, Simon Didcote, Tony Naggs, Zoë Martin

Symbian Press

Managing editor

Phil Northam

Project editor

Freddie Gjertsen

Copyright 2005 by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system for exclusive use by
the purchaser of the publication. Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario,
Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

McDowall, Ian.
Programming PC connectivity applications for Symbian OS : smartphone
synchronization and connectivity for enterprise and application developers
/ by lan McDowall.

p. cm.
Includes bibliographical references and index.
ISBN 0-470-09053-7 (pbk. : alk. paper)
1. Cellular telephone systems – Computer programs. 2. Operating systems
(Computers) 3. Computer input-output equipment. I. Title.
TK6570.M6M38 2004
005.26′8 – dc22

2004017257

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-09053-7

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

Contents

Author Biography ix

Author’s Acknowledgments xi

Symbian Press Acknowledgments xiii

1 Introduction 1
1.1 What is PC Connectivity and Why is This Book Different

from Other Symbian OS Books ? 2
1.2 What This Book Will Tell You (and What It Will Not) 3
1.3 How This Book is Structured 4
1.4 Conventions Used in This Book 5
1.5 Developer Resources 5

2 A History of Symbian OS and PC Connectivity 7
2.1 A History of Symbian OS 7
2.2 PC Connectivity Using PLP 8
2.3 PC Connectivity Using TCP/IP 8
2.4 PC Connectivity Using OBEX 10

3 An Architectural Overview of PC Connectivity 11
3.1 The Bearers, TCP/IP and PPP 11
3.2 A Client-Server Model of PC Connectivity 12

4 The Symbian Connect Object Model 15
4.1 Overview 15
4.2 Functionality in SCOM and in PC Suites 15
4.3 SCOM and BAL 16
4.4 COM Programming and Language Choice 17
4.5 Error Handling 18

vi CONTENTS

4.6 SCOM Class Reference 18
4.7 BAL Class Reference 33
4.8 Using SCOM in C++ and Visual Basic 37

5 An Example PC Connect Application – a File
Browser 39
5.1 Overview 39
5.2 Connecting to a Phone or Emulator 39
5.3 Accessing SCOM and Connecting to a Device 48
5.4 Handling Differences Between Devices 52
5.5 Copying Files – Asynchronous Actions 53
5.6 Navigating the Filing System 58
5.7 A File Browser Application 60
5.8 Simple Actions on Files and Directories 66
5.9 Error Handling and Disconnection 77
5.10 Visual C++ Code for Application and Device

Management 78
5.11 Visual C++ Code for Drive and Directory Navigation 86
5.12 Visual C++ Code for Synchronous and Asynchronous

Operations 87

6 Programming for Symbian OS 89
6.1 Building a Project 90
6.2 Using the Emulator 96
6.3 Types and Naming Conventions 100
6.4 Error Handling 102
6.5 Descriptors 106
6.6 Arrays 108
6.7 Processes and Threads 109
6.8 Active Objects 110
6.9 Backwards Compatibility and Programming for Multiple

Phone Types 113

7 Developing Custom Servers 117
7.1 Overview of Custom Servers 117
7.2 Limitations of Custom Servers 118
7.3 Custom Servers API 119
7.4 Protocol Conventions 123
7.5 Creating Your First Custom Server 124
7.6 Installing a Custom Server 129
7.7 Starting a Custom Server from SCOM 130
7.8 Communicating with a Custom Server 132
7.9 Asynchronous Communication 133
7.10 Debugging a Custom Server 136

CONTENTS vii

8 Developing Socket Servers 137
8.1 Overview of Connectivity Socket Servers 137
8.2 An Introduction to the Server Socket Classes 138
8.3 Using the Service Broker API 141
8.4 Server Socket Classes 142
8.5 Developing an Echo Socket Server 151
8.6 Installing and Registering a Server Socket Service 161
8.7 Starting a Socket Service from SCOM 163
8.8 Communicating with a Socket Service 164
8.9 Asynchronous Communication 165
8.10 Debugging a Socket Service 165

9 Introducing SMS and Messaging Classes 167
9.1 The Message Server and MTMs 167
9.2 The Structure of Messages 170
9.3 Message Server Events and Sessions 173
9.4 SMS Specific Variations 174
9.5 Common Messaging Classes 175
9.6 SMS Specific Classes 187

10 Developing an SMS Management Connectivity
Service 191
10.1 SMS Management Protocol 191
10.2 Packing and Unpacking Data 200
10.3 Obtaining Access to the Message Server

and the SMS MTM 204
10.4 Listing SMS Messages and Returning Their Contents 206
10.5 Deleting and Creating SMS Messages 209
10.6 Handling Message Server Events 213
10.7 Putting the Messaging Code in a Connectivity Plug-in 215
10.8 A Command-line SMS Application 219

11 Using the Contacts Model 227
11.1 Databases and Models 227
11.2 The Contacts Model 228
11.3 Views 230
11.4 Contacts Observers 230
11.5 Synchronization and Performance Issues 231
11.6 Contacts Model API 231
11.7 A Contacts Connectivity Service 256

12 Using the Agenda Model 283
12.1 The Various Agenda Models 283

viii CONTENTS

12.2 Types of Agenda Entries 284
12.3 Repeating Entries 285
12.4 Alarms 285
12.5 List and Filter Classes 286
12.6 Agenda Model API 286
12.7 An Agenda Connectivity Service 325

13 Developing a Specialized Connectivity GUI
Application 347
13.1 What is Special About a GUI Application? 347
13.2 Managing Connections to Phones 347
13.3 Starting a PC Connectivity Service 351
13.4 Communicating and Managing Delays 351
13.5 A GUI SMS Application 358
13.6 A Contacts GUI Application 367
13.7 An Agenda GUI Application 384
13.8 Conclusion and Ideas for Further Development 396

14 Starting General Socket Servers 397
14.1 Communicating with a Socket Server 398
14.2 Starting a Server 400

15 Connectivity Dos and Don’ts 403
15.1 Protocol Design 403
15.2 Robustness and Defensive Design 406
15.3 Device and Service Management 407
15.4 General Development and Debugging Skills 410

Appendix 1 Developer Resources 413

Appendix 2 Specifications of Symbian OS Phones 421

Index 441

Author Biography

Ian joined Symbian in 2000 and is currently a technology architect
responsible for connectivity. He has previously filled roles ranging from
developer through project manager to technical manager by way of
quality manager and process consultant (including presentation at inter-
national conferences).

He has an MA in Computer Sciences from Cambridge University and
an MBA from Warwick University. As a software engineer for over twenty
years he has been with a number of software companies and has worked
on more than fifteen operating systems, developing software ranging from
enterprise systems to embedded software. He is married to Lorraine and
they have two children, Ross and Kelly, and a number of pets.

Author’s Acknowledgments

I would like to thank the members of the PC Connectivity team and others
in Symbian’s Software Engineering Department who have made this book
possible. In the PC Connectivity team Day Barr, Simon Didcote and Paul
Newby have provided essential information and suggestions, and in other
teams Emlyn Howell, Tony Naggs and David Cunardo have provided
invaluable advice on the best use of Symbian’s Messaging, Contacts and
Agenda APIs.

I would like to thank Zoë Martin, Colin Turfus and Ian Weston for their
support in promoting the wider use of PC Connectivity software.

The other reviewers have also been both diligent and construc-
tive – Helena Bryant and Rob Falla (who also suggested the original
idea for this book).

I must thank Freddie Gjertsen and Phil Northam of Symbian Press for
promoting the concept of this book inside and outside Symbian and for
their patient checking and support.

I would also like to thank all the engineers in Symbian and elsewhere
who have made Symbian’s PC Connectivity software what it is today.

Finally, I would like to thank my family who have put up with my
work on this book for more than a year.

Symbian Press Acknowledgments

Symbian Press would like to thank Ian for his perseverance in adversity.
And all those who reviewed the book, mentioned or otherwise. And those
who worked ‘behind the scenes’ to allow this book to be realized. And,
of course, the BA cabin-crew for always looking after the Symbian Press
‘frequent flyer’ so splendidly. And the wonderful Loza, Symbian Press
Officer extraordinaire.

Cover concept by Jonathan Tastard.

1
Introduction

Welcome to this book on programming PC Connectivity applications for
Symbian OS. PC Connectivity applications based on standard services
and APIs can be created purely by programming on the PC, but more
specialized applications involve programming on the Symbian OS smart-
phone as well as on the PC. This book will help you to create both types
of application.

If you have created an application for Symbian OS, have you consid-
ered how to improve its usability by integrating it with a PC? Maybe your
application could support a user interface on the PC when the Symbian
OS smartphone is connected, or maybe your application could store or
archive data on the PC.

If you have created an application for Windows PCs, have you con-
sidered how to improve your application by integrating it with Symbian
OS smartphones? This has been considered difficult and expensive but,
with the information in this book, it can be straightforward. You may be
surprised at the quality of integration you can achieve just by creating
PC software – for example, you could manage media files such as image,
audio and video files just by using the APIs described in Chapters 4
and 5. If your application is more specialized then a small amount of
Symbian OS programming may give you a unique service that increases
its attractiveness (and therefore its sales).

All the examples in this book are of stand-alone PC Connectivity appli-
cations, but this is by no means the only way to create PC Connectivity
applications. We will create a file browser that will provide a convenient
user interface to the filing system on Symbian OS smartphones; we will
create an application to read SMS messages on the smartphone and to
send such messages by means of the smartphone; we will create appli-
cations to directly read and modify the Contacts and Agenda data on
the smartphone.

These applications are potentially useful (I certainly use them exten-
sively in favor of the other ways of accessing Contacts, Agenda and SMS

2 INTRODUCTION

messages) but they are just examples of what can be done and I have
deliberately kept them simple. If you want to create a fully-featured,
integrated and commercialized version of these applications then I wish
you good luck. However, I feel that the largest potential value of PC
Connectivity applications lies in integration with other applications.

If you are an Enterprise or corporate developer this book is also
aimed at you. Symbian OS provides a selection of methods to connect a
smartphone to a server of which PC Connectivity is one of the cheapest
and fastest.

1.1 What is PC Connectivity and Why is This Book
Different from Other Symbian OS Books ?

A PC Connectivity application is an application with one part on the
Symbian OS smartphone and one part on the PC. Usually, the software
on the smartphone (commonly referred to as a server or service) will not
have a user interface.

Most books on Symbian OS programming are concerned with devel-
oping applications with user interfaces (although some also cover server
design). This book contains no information on user interface program-
ming on Symbian OS, but it does provide specialist information on how
to create services using the PC Connectivity plug-in and server APIs. As
most PC Connectivity services are interfaces to existing servers on the
smartphone, this book does not go into detail about server design.

The most obvious PC Connectivity software that most users will see is
the PC suite that is supplied with their Symbian OS smartphone. Typical
functions supported by such a PC suite include:

• synchronization with a Personal Information Manager (PIM) such as
Microsoft Outlook or Lotus Notes

• backup and restore of data

• the ability to install software on the smartphone remotely from the PC.

Some manufacturers add extra features such as a configuration appli-
cation or an interface to an MP3 player.

Some other books on Symbian OS programming touch on PC Connec-
tivity, but they only describe the standard functions and do not provide
information on how to create new PC Connectivity applications.

This book is aimed at software engineers creating additional appli-
cations or integrating other applications; it is not aimed at smartphone
manufacturers (who have their own support channels). This book does
not, therefore, cover the standard functions listed above, as I do not
expect third-party developers to create alternative PC suites.

WHAT THIS BOOK WILL TELL YOU 3

1.2 What This Book Will Tell You (and What It Will Not)

This book covers PC Connectivity for a wide range of Symbian OS
smartphones but, unfortunately, not all. The reasons for the variations
in PC Connectivity framework are discussed in Chapter 2. In summary,
this book covers all Symbian OS smartphones that I know of based on
Symbian OS v6.1 and Symbian OS v7.0 and some smartphones based
on Symbian OS v7.0s. It will also apply to a large extent to smartphones
based on Symbian OS v8.0 and later that include Symbian’s TCP/IP PC
Connectivity framework.

Because this book is aimed at PC Connectivity developers, it has less
space for general-purpose Symbian OS programming than some other
(commonly much larger) books. Chapter 6 explains the basics of Symbian
OS programming and the later chapters cover PC Connectivity and some
other APIs in detail. The developer resources that are available will
provide more detail on the other APIs in Symbian OS. However, if you
want to go further into Symbian OS programming then you may benefit
from another book that concentrates on Symbian OS programming, such
as other books published by Symbian Press.

For the Symbian OS programming I have used C++. This is the language
used to develop Symbian OS and the language in which all the APIs are
provided. Symbian uses C++ in ways that are slightly different from how
the language is used with other operating systems, but a good grasp
of object-oriented programming will be essential for any Symbian OS
development.

It is certainly possible to program for Symbian OS using Java. Java is
well supported by Symbian OS and is the most appropriate language for a
range of purposes, but there is no PC Connectivity API for Java. However,
Chapter 14 does show a way in which Java services might be accessed
using a PC Connectivity framework.

For programming on the PC I have used C# as I think it is the best
current language for development in Microsoft Windows. However, it is
possible to use any Microsoft-supported development language as the PC
Connectivity framework uses COM. The examples in this book would
be easily understood by any Microsoft Visual C++ programmer and, I
believe, also by Visual Basic programmers.

Because space in this book is limited, I have not provided any tuition
in using C++ or C#. Many good books and online resources on both
languages are available.

I have not included extensive information on using some of the
programming tools such as Integrated Development Environments (in
particular the debuggers). This is because I assume that the reader will
already know how to use these tools.

This book is aimed at integrating Symbian OS smartphones with
PCs running Microsoft Windows (multiple versions). What about other

4 INTRODUCTION

operating systems such as Linux or Mac OS? Theoretically, there is no
reason why PC Connectivity applications could not be created on these
operating systems, but Symbian does not publish the protocols required
and so the possibility remains more theoretical than practical. I have
created some experimental PC Connectivity software on Linux using Perl,
but that used undocumented protocols, required manual configuration
and would not work on all bearers.

1.3 How This Book is Structured

This book is structured so as to be read from the start to the end, but it
can also be used as a reference book and be dipped into.

Chapter 2 describes the history of Symbian OS in general and of
Symbian OS PC Connectivity in particular. You do not need to read this
to use the rest of the book, but it is only a short chapter and does provide
some context if you want to understand how Symbian OS evolved to its
current state.

Chapter 3 describes the architecture of Symbian OS PC Connectivity
and is a basis for understanding later chapters.

Chapters 4 and 5 describe the APIs provided on the PC for Symbian
OS PC Connectivity and show how to use these in creating a file browser
without writing any new code on the Symbian OS smartphone.

Chapter 6 leads into the development of software on the Symbian OS
smartphone. It contains a compressed tutorial on developing for Symbian
C++ but it ignores aspects that will not be used in developing for PC
Connectivity.

Chapters 7 and 8 describe how to create PC Connectivity services
using specialized APIs. Chapter 7 covers custom servers which are used
in Symbian OS v6.1 to Symbian OS v7.0s, while Chapter 8 covers the
socket server APIs introduced in Symbian OS v8.0. In order to illustrate
the APIs we will see how to create very simple PC Connectivity plug-ins.

Chapters 9, 10, 11 and 12 cover specific APIs and show how to create
PC Connectivity services using them. These chapters cover SMS messag-
ing, the Contacts Model and the Agenda Model and show how to create
PC Connectivity plug-ins to expose these APIs to the PC.

Chapter 13 builds on the previous chapters and shows how to create
an application on the PC that communicates with the services created in
the previous chapters to present a GUI on the PC that integrates with the
Symbian OS smartphone.

Chapter 14 is a slight diversion that discusses how to manage services
that were not originally design for PC Connectivity with minimal changes.

Chapter 15 finishes the book with a selection of advice on design-
ing and developing PC Connectivity applications based on Symbian’s
experience over a number of years.

DEVELOPER RESOURCES 5

1.4 Conventions Used in This Book

This book has very little in the way of conventions that are not obvi-
ous. Example code is presented in a fixed-width font and is normally
highlighted:

void CSomeClass::someMethod()
{
someOtherMethod();
}

The same convention is used for Symbian OS C++ as for C# or C++
for the PC. It should always be clear which is meant by the context.

In order to avoid pages of uninteresting code listings, this book shows
only the example code that I believe is relevant to the text. Because
Symbian OS is less commonly understood and because the code is more
compact, this book normally shows more complete listings of Symbian
OS C++. In a few cases I show an early version of a method and then
return to it later to add more code. In these cases the unchanged code is
not highlighted so that the new code can be clearly seen.

Where this book describes C# GUI code I have omitted all of the code
that is created by wizards.

Where classes or members are referred to in the text of the book, they
are normally shown in a fixed-width font to highlight them.

1.5 Developer Resources

In order to develop for Symbian OS in general and for PC Connectivity in
particular, you will need compilers and other development resources.

For PC development you will need standard Microsoft development
tools and developer resources: see www.msdn.microsoft.com.

For Symbian OS development the tools and resources are more spe-
cialized and are not all provided directly by Symbian. The best starting
point for resources and partners is www.symbian.com/developer which
has links to partner websites and also those resources that Symbian does
not provide.

Previously Symbian has not released software development kits (SDKs)
directly to developers. Instead the smartphone manufacturers have cre-
ated software development kits for their phones and released those. With
the creation of platforms that span multiple phones there are now software
development kits for those platforms. In a new departure, the CD that
accompanies this book includes an SDK for Symbian OS v7.0s based on
the TechView test user interface.

6 INTRODUCTION

At the time of writing, Nokia provides a range of developer re-
sources via its Nokia forum www.forum nokia.com and www.series60.
com, Sony Ericsson provides SDKs and Symbian OS documentation
and tools via http://developer.sonyericsson.com, and Sendo provides
information via www.sendo.com/dev.

Another site that is worth a look is www.newlc.com which is an
independent developer site. This has links to partners as well as tutorials
and other resources.

The link between the Microsoft development tools and the tools for
development on the Symbian OS smartphones is the PC Connectivity
framework on the PC. This requires an SDK that is available directly from
Symbian at www.symbian.com/developer/downloads/tools.html. As this
SDK is quite small we have not included it on the CD that accompanies
this book; you can pick up the latest version in a few minutes from the
Symbian website.

2
A History of Symbian OS and PC

Connectivity

2.1 A History of Symbian OS

Symbian was formed in 1998 as an unprecedented joint venture between
the largest players in the mobile telephone industry. From its inception,
Symbian has been dedicated to making Symbian OS available to any
smartphone manufacturer – it is not restricted to the original investors.
Since 1998 the number of licensees, that is smartphone manufacturers
who have licensed Symbian OS, has grown. The number of smartphone
models based on Symbian OS has grown at an increasing rate and so
have the numbers of actual Symbian OS smartphones shipped.

Over the last few years smartphones have become more advanced,
and the spread of advanced messaging and multimedia features requires
more advanced operating systems than the earlier, native, mobile phone
operating systems, while increasing computing power has made the
hardware required more affordable.

Symbian OS is not a complete and fully defined (and therefore limited)
system – instead it allows smartphone manufacturers to develop user
interfaces according to their own views and allows them to add extra
hardware features such as cameras and FM radios. Current user interfaces
include screens of differing sizes but all in color and include a variety
of input devices such as touchscreens, jog dials, softkeys, joysticks and
built-in or attachable keyboards. Symbian does not take a view on which
user interface is best but allows smartphone manufacturers to innovate
and compete.

One possible source of confusion is the name EPOC. This is the original
name for Symbian OS when it was created by Psion. ER5 stands for EPOC
Release 5 which was the first real version of Symbian OS. The name
EPOC still appears in some documentation, either as an anachronism or
as a reference to the underlying kernel.

Symbian OS is not static but has developed through multiple versions
from ER5, Symbian OS v6.0, Symbian OS v6.1, Symbian OS v7.0,

8 A HISTORY OF SYMBIAN OS AND PC CONNECTIVITY

Symbian OS v7.0s and Symbian OS v8.0, with further versions under
development. Each version builds on the previous versions and as much
consistency as possible is maintained, allowing for the new features in
each version.

The variety of possibilities that come with Symbian OS can be bewil-
dering and manufacturers have developed platforms that include a user
interface, a selection of applications and hardware interface layers that
can be used to develop multiple models of smartphones. This reduces
the development cost and time for new smartphones and allows devel-
opers to create applications that can be deployed on a wide range of
smartphones.

2.2 PC Connectivity Using PLP

In the first versions of Symbian OS (ER5) PC Connectivity was provided by
a component called PLP, which stands for Psion Link Protocol. PLP was
originally designed for RS232 serial connections and was later extended
to support infrared. It used proprietary software both on the PDA or
smartphone and on the PC, and it used limited-sized buffers.

Using PLP, Symbian and smartphone manufacturers were able to
provide the same headline functionality that is part of PC suites in
later versions: access to the filing system, backup and restore, PIM
synchronization and remote software install.

From the start, PLP supported plug-ins on the smartphone to make the
PC Connectivity extensible. These plug-ins were called ’custom servers’.
Each function required was implemented by a plug-in (some with sup-
porting libraries). Because of the use of plug-ins, the PC Connectivity
framework allowed extra features to be added and smartphone manufac-
turers were able to extend their PC suites. For this reason, the PC suite for
the Nokia 9210 supports plug-ins within the PC software.

2.3 PC Connectivity Using TCP/IP

PLP was used in Symbian OS v6.0, but during the implementation of
Symbian OS v6.1 Symbian switched to a TCP/IP based PC Connectivity
framework. The switch coincided with the introduction of Bluetooth as
a bearer.

Symbian did not develop the TCP/IP based bearer but instead licensed
a product named m-Router from Intuwave. m-Router has components
on the smartphone and on the PC. The PC components provide a PPP
implementation that is lacking from Microsoft Windows.

m-Router supports TCP/IP connections that can be used for any pur-
pose, but it also supports its own framework for loading services. In order

PC CONNECTIVITY USING TCP/IP 9

to make use of existing components, m-Router is able to load custom
servers (by means of a plug-in named ectcpadapter that we will
encounter again in Chapter 7).

The use of TCP/IP connections rather than PLP allowed a number
of underlying technical improvements, but the same functions were
supported by the PC suites; the change was one of extended bear-
ers and underlying technical improvements rather than extra headline
functions.

The first product to use the m-Router based PC Connectivity was the
Nokia 7650; its PC suite was a development of that from the 9210.
Through Symbian OS v6.1, Symbian OS v7.0 and Symbian OS v7.0s, the
PC Connectivity framework was improved in terms of performance and
robustness but was not significantly extended. This is not to say that all
the PC suites looked the same – the PC suites provided by Sony Ericsson
with the P800 and P900 Symbian OS v7.0 smartphones are significantly
different from those provided by Nokia. Other smartphone manufacturers
have also tried different approaches to make their smartphones more
attractive.

With the earliest Symbian OS smartphones, manufacturers were con-
cerned with supplying an attractive and robust PC suite for each product,
with a certain amount of innovation. When manufacturers released their
second or third Symbian OS smartphones, they began to consider the
value of standardization and moved towards developing PC suites to
support a range of their smartphones rather than providing a different PC
suite with each model of smartphone.

During 2002, Symbian introduced alternative PC software based
around SCOM (Symbian Connect Object Model). SCOM was intended to
require less resources when running than the previous PC software and
was designed to provide standardized functionality across as many types
of Symbian OS smartphone as possible. Subsequently, another layer of
software called BAL (Bearer Abstraction Layer) was added to provide a
standardized way of accessing connected phones and services. SCOM
and BAL did not introduce any changes to any software on the smart-
phone – they used the existing protocols rather than adding new ones.

Since its creation, SCOM and BAL have been maintained to support as
many Symbian OS smartphones as possible. At the time of writing, SCOM
and BAL work with all the Symbian OS smartphones that use m-Router
and the TCP/IP based services. It is impossible to guarantee this in the
future as smartphone manufacturers continue to improve their products
and some manufacturers will regard innovation as more important (that
is, more attractive to consumers) than standardization. In some cases this
will mean that individual models of Symbian OS smartphone will work
well with SCOM, but will also have additional services, whereas in other
cases the services may be so changed that SCOM and BAL may not work
with them.

10 A HISTORY OF SYMBIAN OS AND PC CONNECTIVITY

2.4 PC Connectivity Using OBEX

In the previous section I mentioned smartphone manufacturers seeking
to standardize their PC suites. It is worth bearing in mind that all
manufacturers of Symbian OS smartphones also make other mobile
phones and smartphones, so there is an attraction to creating a PC suite
that supports both Symbian OS smartphones and other, non-Symbian OS,
smartphones.

However, most non-Symbian OS smartphones do not use TCP/IP to
connect to Windows PCs. Instead, they use OBEX, which is well suited
to exchanging small objects such as contact details and SMS messages
and also supports larger objects such as file transfer.

Symbian OS includes some support for OBEX, but smartphone manu-
facturers have extended this and added services. This means that there is
not currently a standard Symbian-supported PC Connectivity framework
using OBEX, and for any development with such PC suites the developer
will require support from the smartphone manufacturer.

3
An Architectural Overview of PC

Connectivity

Most books on programming Symbian OS include a description of the
architecture. This chapter describes the architecture of Symbian OS PC
Connectivity without going into as much detail on the other Symbian
OS internals.

Figure 3.1 is a deliberately simplistic view of PC Connectivity, but it
shows the important features – a connection between the PC and the
Symbian OS smartphone, a client application on the PC, and a server or
service on the smartphone.

Symbian OS
smartphone

PC

Connectivity
Service

Client
Application

Connection (TCP/IP)

Figure 3.1 PC Connectivity

3.1 The Bearers, TCP/IP and PPP

All the PC Connectivity examples in this book run on Symbian OS
smartphones that use a TCP/IP connection as described in the previous
chapter. The TCP/IP connection between the relevant client and service
runs over a PPP link that can be carried over RS232-serial, infrared,
Bluetooth and USB. The use of PPP and TCP/IP to abstract the physical

12 AN ARCHITECTURAL OVERVIEW OF PC CONNECTIVITY

bearers means that the rest of the PC Connectivity software (on both the
PC and the smartphone) does not need to have any awareness of the
actual bearer in use.

Although Microsoft Windows uses PPP to connect user PCs to servers, it
does not include a PPP implementation that will natively run over infrared,
Bluetooth and USB as well as RS-232 serial. That is why Symbian PC
Connectivity uses m-Router to provide a PPP implementation.

The good news is that all the difficult problems (and handling the
various Microsoft and third-party communications stacks can cause a
range of problems) are hidden from the developer who is creating new
PC Connectivity services.

3.2 A Client-Server Model of PC Connectivity

Given a TCP/IP connection, we need two more components – the soft-
ware to run at each end of the connection. With a PC Connectivity
application, one of the software components runs on the Symbian OS
smartphone and the other runs on the PC.

The normal way of describing these components is to call the software
running on the smartphone a service or a server and to call the software
running on the PC a client. These names match the behavior of most PC
Connectivity applications. It is possible to reverse these roles and have
a client on the smartphone using a service on the PC, but this is less
common and there is less support for it.

It is worth bearing in mind that this client-server model of PC Con-
nectivity hides additional levels of complexity. Symbian OS uses the
client-server model extensively as an internal pattern – servers are used
to control access to shared resources throughout Symbian OS. Therefore,
a PC Connectivity server or service running on the smartphone is almost
certainly a client of one or more other servers on the smartphone.

In Chapters 4 and 5 we will use services that access the filing system
on the smartphone; these use PC Connectivity services that make use
of the Symbian OS file server. In Chapters 9–12 we will create further
PC Connectivity services that make use of the Message server and the
Contacts and Agenda servers.

Symbian OS provides a number of PC Connectivity services as standard
in order to provide the functions expected from a PC suite. It is possible
to access these directly from the PC, but this is not recommended for
two reasons.

Firstly, Symbian has not published documentation for the protocols,
and Symbian and the smartphone manufacturers have made improve-
ments and alterations across the different versions of Symbian OS and
even between different smartphone models based on one version of
Symbian OS. Therefore, although it has been done, reverse engineering

A CLIENT-SERVER MODEL OF PC CONNECTIVITY 13

the protocols is difficult and prone to unpredictable differences between
smartphone models.

Secondly, Symbian provides a layer of middleware (called SCOM)
described in Chapter 4 and used in Chapter 5 to access the standard
services. SCOM has the task of handling protocol differences and also
exposes an API that is much easier to use than driving the proto-
cols directly.

If you want to create a new PC Connectivity service (as we will in later
chapters) then you have a series of challenges:

1. You need to create the software on the Symbian OS smartphone to
actually provide the service.

2. You need to create the software on the PC to use the service.

3. You need a way of starting the service on the smartphone when
required (you do not want to have the service running when it is
not required).

4. You need a way of establishing a connection between the PC software
and the service.

Challenges 3 and 4 are addressed by the Symbian OS PC Connectivity
framework. In Symbian OS v6.1 to Symbian OS v7.0s you can create the
service on the smartphone as a custom server as described in Chapter 7.
The PC Connectivity framework then provides methods to load the server
and connect to it. In Symbian OS v8.0 onwards the custom server APIs
are replaced by socket server APIs described in Chapter 8. In both of
these cases I will show the commands required to use your services.

As an alternative, it is possible to create your service as a standard
TCP/IP socket server that knows nothing about PC Connectivity. In this
case the challenge is to start the service and connect to it, and this is
covered in Chapter 14.

4
The Symbian Connect Object Model

4.1 Overview

SCOM (the Symbian Connect Object Model – pronounced ‘escom’) is
a reusable software component that allows developers to more easily
produce applications that incorporate connectivity with Symbian OS
smartphones. While SCOM does this by abstracting core connectivity
features, it also provides the ability for developers to access other services
on the phone which may be developed either by themselves or by a
third party. SCOM is an out-of-process COM server that supports multiple
clients. SCOM is not an application that can be directly used by an
end-user. Instead, some form of application must be created that uses
SCOM in a way that is helpful to the end-user. This chapter describes the
functionality provided by SCOM that can be used by an application.

4.2 Functionality in SCOM and in PC Suites

SCOM does not provide all the functions that a user might expect. It
provides functionality to manage device connections and services, and
it provides simple access to some core services that Symbian considers
should be common to all Symbian OS smartphones.

SCOM was originally created with the needs of smartphone manufac-
turers in mind. These Symbian licensees have to provide a PC suite to
accompany their smartphones. Typically, the suites include the following
functionality:

• backup – copying files that include data, settings and installed appli-
cations from the smartphone to the PC

• restore – restoring the files that include data, settings and installed
applications back to the smartphone to restore it to a previous state

• installation of new software (Symbian OS applications or Java appli-
cations) on the smartphone

16 THE SYMBIAN CONNECT OBJECT MODEL

• synchronization with PIMs on the PC to keep contacts and calendar
data up to date

• some form of image or sound file management that requires the ability
to copy files to and from the smartphone.

Often, Symbian OS smartphone manufacturers will provide additional
functionality in order to give their smartphones a competitive advantage,
but Symbian cannot predict this functionality and so SCOM cannot
directly support it (although it does provide the means to access any
additional services by means of stream interfaces).

SCOM provides the following functionality directly:

• backup and restore

• file management

• software install.

PIM synchronization is not directly provided by SCOM. It, instead,
allows specialized synchronization software access to services on the
Symbian OS smartphone.

It is possible for any developer with sufficient skill and resources to
create a complete PC suite based on SCOM, but Symbian does not regard
that as sensible. You should assume that the smartphone manufacturers
or specialist partners will create their own PC suites and that it will not be
sensible to compete directly with them. Instead, developers should focus
their attentions on creating applications that complement the PC suites
provided with the smartphones. Therefore, this book shows how to carry
out functions useful to third-party developers and does not attempt to
show how to create a full PC suite. The backup and restore and software
installation functionality are omitted from this chapter, and the protocols
used for them and for PIM synchronization are not covered.

The main areas of functionality covered by this book are:

• managing connections to devices and starting and using services on
Symbian OS smartphones

• file management functions on Symbian OS smartphones.

4.3 SCOM and BAL

SCOM is the higher-level API provided to manipulate devices and their
filing systems. BAL (the Bearer Abstraction Layer) is a slightly lower-level
API that manages device connection and disconnection and services on
the device. SCOM uses BAL to provide its own API (take a look at the

COM PROGRAMMING AND LANGUAGE CHOICE 17

respective device properties and the mapping will become apparent). It is
possible to use SCOM without making direct use of BAL – indeed, this is
how SCOM was originally intended to be used. However, the BAL service
API is slightly more efficient, in terms of performance, than that of SCOM
and so the developer may choose to use BAL for some operations. In later
chapters we will start up services on the phone, using SCOM and BAL,
which are then accessed by means of Windows sockets in various guises.

Figure 4.1 gives a simplified view of the components that a PC Connect
application interacts with.

PC Connect
Application

SCOM

PC BAL

Winsock

m-Router

Symbian
Connect RFS

Other Named
Services

ESOCK

m-Router

PC Phone

Figure 4.1 SCOM and BAL

4.4 COM Programming and Language Choice

SCOM and BAL are built as COM servers because this provides the
simplest way to access their functionality. It also allows SCOM and BAL
to be used from any COM-compatible language and so makes them
available to the widest possible set of developers. On a PC this means
that just about any development language can access SCOM and BAL.

This book does not attempt to provide an introduction to COM – the
bookstores have shelves of books on COM (and all its variants) and
it would be wasteful to reproduce their contents here. This book does
include specific guidance on using SCOM and BAL in several languages,

18 THE SYMBIAN CONNECT OBJECT MODEL

so you will be able to use SCOM and BAL even if you have never
used COM.

Similarly, this book is not intended as a tutorial in C#, C++ or Visual
Basic because there are even more books on these subjects than on COM.
The examples in the subsequent chapters are mostly written in C# and
the logic should be apparent to any developer, although the way COM
is used in different languages means that the actual class and method
names will vary slightly. Sufficient examples are provided in Visual C++
and in VB to get developers started in those languages; standard IDE
tools will then allow you to obtain the detail that you need on class and
method names.

4.5 Error Handling

All the methods provided by SCOM and BAL can fail with bad HRESULTs
and developers should check the return values. In C# these errors are
thrown as exceptions that must be caught.

SCOM provides rich error information to clients by means of IError-
Info, but these error descriptions are not localized. Therefore, they must
not be displayed to the user – they are intended just as debugging aids.

4.6 SCOM Class Reference

This section lists the classes that make up SCOM and BAL that are
intended for use by third-party developers and describes the API for these
classes. It omits some classes and APIs that are intended only for use by
smartphone manufacturers (these can be accessed using the type libraries,
but I suggest that you ignore them).

You will see that some of the class names are of the form
<name><number>, for example ISCDevice2. These are classes that
have been extended. SCOM developers follow the rules for COM
development and so, once the interface to a class has been defined
and published, they will not change it. However, there have been cases
where additional functionality has been desirable and so classes have
been extended by defining a new class that replaces the old one. In such
cases you should normally use the ’latest’ class to have access to the most
functionality.

All the classes and types listed are part of the SymbianConnect
namespace. The types of members and arguments are given in C# termi-
nology; it should be straightforward to convert these to the appropriate
types for C++ or VB. In any case, the type libraries will provide information
on the types in a language-specific form.

Figure 4.2 is a simplified view of the major SCOM classes and interfaces
that you will use.

SCOM CLASS REFERENCE 19

Application

ISCDevice2

ISCDeviceStorage

ISCDeviceStorageDrive2

ISCDeviceStorageDirectory

ISCDeviceStorageFile

Figure 4.2 SCOM Classes

4.6.1 SCOM Application, Connection and Device Classes

These classes handle an SCOM application (which provides access to
connected devices and provides a basis for event handlers) and con-
nected devices.

Class SymbianConnect.Application – This class implements ISCApplication and
ISCEvents and provides access to connected devices and to SCOM events.

Member Variables

ISCDeviceCollection ConnectedDevices
This read-only member provides access to the set of currently connected devices. See also
DeviceConnected and DeviceDisconnected events.

Event Handlers (part of ISCEvents interface – described in Section 4.6.3)

20 THE SYMBIAN CONNECT OBJECT MODEL

DeviceConnected
This event handler is called when a new device is connected. See
ISCEvents DeviceConnectedEventHandler.

DeviceDisconnected
This event handler is called when a device is disconnected. See
ISCEvents DeviceDisconnectedEventHandler.

DeviceCopyStorageFileProgress
This event handler is called to report progress during a file copy operation. See
ISCEvents DeviceCopyStorageFileProgressEventHandler.

DeviceCopyStorageFileError
This event handler is called when an error occurs during a file copy operation. See
ISCEvents DeviceCopyStorageFileErrorEventHandler.

DeviceCopyStorageFileExistingFileFound
This event handler is called when a file copy operation encounters an existing file with the
same name as the target. See
ISCEvents DeviceCopyStorageFileExistingFileFoundEventHandler.

DeviceCopyStorageFileComplete
This event handler is called when a file copy operation is complete. See
ISCEvents DeviceCopyStorageFileCompleteEventHandler.

Class ISCDevice2 – This interface provides access to the properties of a connected device
and its storage.

Member Variables

string ConnectionBearer
This read-only member provides a string that describes the transport used to connect the
device.

string Manufacturer
This read-only member provides the name of the manufacturer of the device.

string Model
This read-only member provides the name of the model of the device. This should be used in
conjunction with the manufacturer.

string Id
This read-only member provides a unique identifier for the device. It is guaranteed to be
different from any other device and can be used to identify it. Commonly, it is the IMEI
number of the smartphone.

SCOM CLASS REFERENCE 21

ISCDeviceStorageDriveCollection StorageDrives
This read-only member provides the set of drives owned by the device. This member is the
root for navigation of the filing system on the device.

ISCDeviceStorage Storage [string]
This read-only member is used to directly access a directory or file on the device. It is
possible to access any file or directory on the device by navigating through the directory tree,
but this can be tedious. Instead, this member is used with the full path of the file or directory
required (directories should be terminated with a trailing backslash, \) and returns an object
that can be cast to an ISCDeviceStorageDirectory or ISCDeviceStorageFile.

bool IsActive [string]
This read-only member is obsolete and should not be used. It is used by some legacy
synchronization software.

Member Methods

void SynchroniseDateTime ()
This method synchronizes the device date and time with that of the PC. It is commonly used
as a part of synchronization and backup operations.

ISCSequentialStream OpenDeviceService (string aServiceName)
This method attempts to open a service on the device by name and returns a stream that can
be used to communicate with the service. This is how SCOM provides access to lower-level
or third-party services on the smartphone.

aServiceName – the name of the service to be started on the device.
returns – a stream object if successful or null if unsuccessful.

SCAsyncStreamSink OpenAsyncDeviceService(string aServicename)
This method attempts to open a service on the device by name and returns a stream that can
be used to communicate with the service asynchronously. This is how SCOM provides
asynchronous access to lower-level or third-party services on the smartphone.

aServiceName – the name of the service to be started on the device.
returns – an asynchronous stream object if successful or null if unsuccessful.

void SetActive(string)
This method sets a device as the active device. This concept is used only by some legacy
synchronization software and should not be used elsewhere.

Class ISCDeviceCollection

This class is a collection of ISCDevice objects. It can be accessed by standard iterators.
Note that its first index is 1, not 0.

22 THE SYMBIAN CONNECT OBJECT MODEL

4.6.2 SCOM Storage Classes

Enumerated Type ScStorageType

• scDrive

• scDirectory

• scFile

Class ISCDeviceStorage – This interface is the base for drives, directories and files.

Member Variables

ScStorageType Type
This read-only property gives the type of the device storage object.

string Path
This read-only property gives the path of the device storage object.
Note that paths always start with a drive letter and a colon, directory paths always terminate
with a backslash (\), and file paths never terminate with a backslash.

Flag Type ScDriveAttributes

Not all of these attributes may be applicable to a smartphone.

• scDriveAttLocal = 0×01
• scDriveAttROM = 0×02
• scDriveAttRedirected = 0×04
• scDriveAttSubsted = 0×08
• scDriveAttInternal = 0×10
• scDriveAttRemovable = 0×20
• scDriveAttRemote = 0×40

• scDriveAttTransaction = 0×80

Enumerated Type ScDriveBatteryState

• scBatteryGood

SCOM CLASS REFERENCE 23

• scBatteryLow

• scBatteryNotSupported

Flag Type ScMediaAttributes

• scMediaAttVariableSize = 0×01
• scMediaAttDualDensity = 0×02
• scMediaAttFormattable = 0×04
• scMediaAttWriteProtected = 0×08
• scMediaAttLockable = 0×10
• scMediaAttLocked = 0×20
• scMediaAttHasPassword = 0×40

Enumerated Type ScMediaType

• scMediaCdRom

• scMediaFlash

• scMediaFloppy

• scMediaHardDisk

• scMediaNotPresent

• scMediaRam

• scMediaRemote

• scMediaRom

• scMediaUnknown

Class ISCDeviceStorageDrive2 – This interface provides access to the properties of a
drive and access to the directories on the drive.

Member Variables

int Attributes
This read-only property is a combination of zero or more ScDriveAttributes flags.
This property does not always provide meaningful values, so test it with specific devices.

24 THE SYMBIAN CONNECT OBJECT MODEL

ScDriveBatteryState BatteryState
This read-only property indicates whether or not the drive supports a battery and, if so, its
state. This property does not always provide meaningful values, so test it with specific devices.

int Capacity High
This read-only property is the high 32-bits of the drive capacity in bytes. Because of COM
automation compatibility, this is returned as a signed value and must be cast to an unsigned
value before combining it with the other half of the value.

int CapacityLow
This read-only property is the low 32-bits of the drive capacity in bytes. Because of COM
automation compatibility, this is returned as a signed value and must be cast to an unsigned
value before combining it with the other half of the value.

int FreeSpace High
This read-only property is the high 32-bits of the drive free-space in bytes. Because of COM
automation compatibility, this is returned as a signed value and must be cast to an unsigned
value before combining it with the other half of the value.

int FreeSpaceLow
This read-only property is the low 32-bits of the drive free-space in bytes. Because of COM
automation compatibility, this is returned as a signed value and must be cast to an unsigned
value before combining it with the other half of the value.

long MediaAttributes
This read-only property is a combination of zero or more ScMediaAttributes flags.
This property does not always provide meaningful values, so test it with specific devices.

ScMediaType MediaType
This read-only property gives the type of media mounted on the drive.
This property does not always provide meaningful values, so test it with specific devices.

string Path
This read-only property gives the path of the device storage object.

ISCDeviceStorageDirectory RootDirectory
This read-only property gives the directory at the root of the drive.

ScStorageType Type
This read-only property gives the type of the device storage object.

int UniqueId
This read-only property gives the unique identifier for the drive. This is meaningful only for
some types of removable drive and it changes after formatting with some devices.

string VolumeLabel
This writable property gives the volume label of the drive. Setting this property will set the
volume label of the drive.

SCOM CLASS REFERENCE 25

Member Methods

int Format ()
This asynchronous method initiates a format operation on the drive. The return value is the
request ID that will be returned by event handlers. Please note that SCOM may not be able to
format the c: drive because it may contain files which are necessary to maintain the
connection. It is probably unwise to try to format the c: drive anyway, because it contains
essential data.

void Refresh ()
SCOM caches information about drives, directories and files to provide fast access to that
information, as it would be slow to retrieve that information on demand whenever required.
This method refreshes that stored information about a drive. It is likely to be most useful if the
drive is a removable drive such as an MMC card.

Class ISCDeviceStorageDriveCollection

This class is a collection of ISCDeviceStorageDrive objects. It can be accessed by
standard iterators.
Note that its first index is 1, not 0.

Class ISCDeviceStorageDirectory – This interface provides access to the properties of
a directory and the child directories and files that it owns, and supports a range of operations
on the directory.

Member Variables

ScStorageType Type
This read-only property gives the type of the device storage object.

string Path
This read-only property gives the path of the device storage object.

ISCDeviceStorage Parent
This read-only property gives the parent of the device storage object. This will be an
ISCDeviceStorageDirectory for all directories except root directories for which it will
be an ISCDeviceStorageDrive.

ISCDeviceStorageDirectoryCollection ChildDirectories
This read-only property gives the collection of child directories.

ISCDeviceStorageFileCollection ChildFiles
This read-only property gives the collection of files in the directory.

26 THE SYMBIAN CONNECT OBJECT MODEL

Member Methods

int CopyFileFromPC (string aFileToCopy)
This asynchronous method copies a file from the PC to the device.

aFileToCopy – the name of the file on the PC to copy to the directory.
returns – the request ID for the file copy operation. This will be returned by subsequent file

copy events.

void Rename (string aNewName)
This method attempts to rename the directory.

aNewName – the new name for the directory. This can be either a fully qualified directory
name on the same drive ending with a backslash or an unqualified valid directory name
in the same parent directory.

void Delete ()
This method attempts to delete the directory. If the directory is not empty it can still be
deleted – in fact SCOM will recursively delete all child directories and files and then delete
the empty directory. This method should be used with care.

Class ISCDeviceStorageDirectoryCollection

This class is a collection of ISCDeviceStorageDirectory objects. It can be accessed by
standard iterators.
Note that its first index is 1, not 0.

Class ISCDeviceStorageFile – This interface provides access to the properties of a file
and supports a range of operations on the file.

Member Variables

ScStorageType Type
This read-only property gives the type of the device storage object.

string Path
This read-only property gives the path of the device storage object.

ISCDeviceStorage Parent
This read-only property gives the parent of the device storage object. This will be an
ISCDeviceStorageDirectory for all files.

string FileName
This read-only property is the name of the file. Although it is read-only as a property, it can be
altered using the Rename() method.

int Size
This read-only property is the size of the file.

SCOM CLASS REFERENCE 27

DateTime LastModified
This read-only property is the date and time at which the file was last modified.

int Attributes
This writable property is the attributes of the file. It has the standard Win32 meaning (see the
System.IO.FileAttributes type), although not all the Win32 attribute bits are
meaningful for files on a Symbian OS phone.

string MIMEType
This read-only property is the MIME type of the file. This is not reliable and should not be
used.

Member Methods

int CopyToPC (string aToPath)
This asynchronous method copies a file from the PC to the device.

aToPath – the name of the directory on the PC to which the file will be copied.
returns – the request ID for the file copy operation. This will be returned by subsequent file

copy events.

void Rename (string aNewName)
This method attempts to rename the file (a read-only file can be renamed).

aNewName – the new name for the file. This can be either a fully qualified file name on the
same drive or an unqualified valid file name in the same parent directory.

void Delete ()
This method attempts to delete the file (a read-only file cannot be deleted).

Class ISCDeviceStorageFileCollection

This class is a collection of ISCDeviceStorageFile objects. It can be accessed by
standard iterators.
Note that its first index is 1, not 0.

4.6.3 SCOM Device Connection and Storage Event Handling
All these events are associated with aSymbianConnect.Application
object. Each event is associated with a delegate, an event handler type
and a member variable of SymbianConnect.Application.

Device connection and disconnection events can occur at any time,
but file copy and format events occur only in response to an asynchronous
method call (ISCDeviceStorageFile.CopyToPC or ISCDeviceS-
torageDirectory.CopyFromPC for file copying events, or ISCDe-
viceStorageDrive2.Format for format events), and the Request
ID returned with the event will match that returned by the asyn-
chronous method.

28 THE SYMBIAN CONNECT OBJECT MODEL

4.6.3.1 Device Connection and Disconnection Events

Event DeviceConnected

Event Handler ISCEvents DeviceConnectedEventHandler

Application Member Variable DeviceConnected

Delegate
void OnDeviceConnected (ISCDevice aNewDevice)

aNewDevice – reference to newly connected device.

Event DeviceDisconnected

Event Handler ISCEvents DeviceDisconnectedEventHandler

Application Member Variable DeviceDisconnected

Delegate
void OnDeviceDisconnected (string aDeviceId)

aDeviceId – device ID of disconnected device (cannot provide ISCDevice reference
because it has been removed).

4.6.3.2 File Copy Events

Event DeviceCopyStorageFileProgress

Event Handler ISCEvents DeviceCopyStorageFileProgress
EventHandler

Application Member Variable DeviceCopyStorageFileProgress

Delegate
void OnDeviceCopyStorageFileProgress (int aRequestId, string aFrom,
string aTo, int aPercentComplete, out bool aCancel)

aRequestId – request ID for the file copy operation.
aFrom – name of the source file.
aTo – name of the destination file.
aPercentComplete – percentage complete (may include values of 0 or 100).
aCancel – allows the copy operation to be canceled if set to true.

SCOM CLASS REFERENCE 29

Enumerated Type ScErrorDescription

• scUnexpectedError

• scInvalidPCArchivePath

• scBackupServiceOpenFail

• scCloseDeviceAppsFail

• scBackupVersionCheckFail

• scAnalyseDifferencesFail

• scDeviceDisconnected

• scPathNotFound

• scFileAlreadyExists

• scDiskFull

• scRebootingPhoneNotFound

Event DeviceCopyStorageFileError

Event Handler ISCEvents DeviceCopyStorageFileError

EventHandler

Application Member Variable DeviceCopyStorageFileError

Delegate
void OnDeviceCopyStorageFileError (int aRequestId,
ScErrorDescription aErrorDesc, int aErrorCode, bool aCanContinue,
out bool aContinue)

aRequestId – request ID for the file copy operation.
aErrorDesc – description (in enumerated form) of the error. Note that this enumerated

type may be extended in the future and so an application should respond gracefully to
unrecognized values.

aErrorCode – further error code. This is an HRESULT code from whichever function
caused the error.

aCanContinue – set to true if the copy operation can continue.
aContinue – allows the copy operation to continue if set to true.

Enumerated Type ScOverwrite

• scOverwriteNo

• scOverwriteNoAll

30 THE SYMBIAN CONNECT OBJECT MODEL

• scOverwriteYes

• scOverwriteYesAll

Event DeviceCopyStorageFileExistingFileFound

Event Handler ISCEvents DeviceCopyStorageFileExisting
FileFoundEventHandler

Application Member Variable DeviceCopyStorageFileExistingFileFound

Delegate
void OnDeviceCopyStorageFileExistingFileFound (int aRequestId,
string aFileName, DateTime aTargetDate, int aTargetFileSize,
DateTime aSourceDate, int aSourceFileSize, out ScOverwrite
aOverwrite, out bool aCancel)

aRequestId – request ID for the file copy operation.
aFileName – name of the file being copied.
aTargetDate – date and time associated with the target file.
aTargetFileSize – size of the target file.
aSourceDate – date and time associated with the source file.
aSourceFileSize – size of the source file.
aOverwrite – set to control whether the file should be overwritten or not.
aCancel – allows the copy operation to be canceled if set to true.

Event DeviceCopyStorageFileComplete

Event Handler ISCEvents DeviceCopyStorageFileComplete
EventHandler

Application Member Variable DeviceCopyStorageFileComplete

Delegate
void OnDeviceCopyStorageFileComplete
(int aRequestId, int aCompletionCode)

aRequestId – request ID for the file copy operation.
aCompletionCode – completion code for the file copy operation. This will be an
HRESULT of S OK for success or a failure code for a failed attempt. The best information
about a failure can be derived from the error event handler.

4.6.3.3 Format Storage Events

Enumerated Type ScFormatStorageProgress

• scFormatStorageFormatting

SCOM CLASS REFERENCE 31

Event DeviceFormatStorageDriveProgress

Event Handler ISCEvents DeviceFormatStorageDriveProgress
EventHandler

Application Member Variable DeviceFormatStorageDriveProgress

Delegate
void DeviceFormatStorageDriveProgress (int aRequestId,
ScFormatStorageProgress aProgress, string aAdditionalInformation,
int aPercentComplete)

aRequestId – request ID for the format operation.
aProgress – progress indicator.
aAdditionalInformation – the drive being formatted (e.g. "d:").
aPercentComplete – format percentage complete (may include values of 0 or 100).

Event DeviceFormatStorageDriveError

Event Handler ISCEvents DeviceFormatStorageDriveError
EventHandler

Application Member Variable DeviceFormatStorageDriveError

Delegate
void DeviceFormatStorageDriveError (int aRequestId,
ScErrorDescription aErrorDescription, int aErrorCode)

aRequestId – request ID for the format operation.
aErrorDesc – description (in enumerated form) of the error.
aErrorCode – further error code. This is an HRESULT code from whichever

function caused the error.
N.B. There is no option to deliberately cancel a format operation.

Event DeviceFormatStorageDriveComplete

Event Handler ISCEvents DeviceFormatStorageDriveComplete
EventHandler

Application Member Variable DeviceFormatStorageDriveComplete

Delegate
void DeviceFormatStorageDriveComplete (int aRequestId, int
aCompletionCode)

aRequestId – request ID for the format operation.
aCompletionCode – completion code for the format operation. This will be an
HRESULT of S OK for success or a failure code for a failed attempt. The best information
about a failure can be derived from the error event handler.

32 THE SYMBIAN CONNECT OBJECT MODEL

4.6.4 SCOM Services and Streams

Class ISCSequentialStream – This interface supports synchronously reading data from
and writing data to a service running on the Symbian OS phone. It can be obtained using the
ISCDevice2.OpenDeviceService method. This interface also supports the standard
ISequentialStream interface which is not automation compatible but is easier to use
from C++.

Member Methods

int Read (int aBytesToRead, ref object aBuffer)
This method attempts to read data from an active sequential stream. It will block until there is
data to read or until the read times out.

aBytesToRead – the number of bytes expected.
aBuffer – an object that boxes an array of type byte[] to receive the data.
returns – the number of bytes read.

int Write (object aBuffer)
This method attempts to write data to an active sequential stream. It will normally return
immediately but the data may be buffered.

aBuffer – an object that boxes an array of type byte[] containing the data to write. The
size of the array controls how much data is written.

returns – the number of bytes written.

Class SCAsyncStreamSink – This interface supports asynchronously reading data from
and writing data to a service running on the Symbian OS phone. It can be obtained using the
ISCDevice2.OpenAsyncDeviceService method.

Member Methods

void Read (int aBytesToRead)
This method initiates a read operation on the active service. When the read has completed,
the OnRead event will be triggered.

aBytesToRead – maximum number of bytes to read from the service.

void Write (object aBuffer)
This method initiates a write operation on the active service. When the write has completed,
the OnWrite event will be triggered.

aBuffer – an object that boxes an array of type byte[] to be written. The size of the array
controls how much data is written.

Event Handlers

ISCSequentialStreamSink OnReadEventHandler OnRead
This event is triggered when a read operation has completed. See
ISCSequentialStreamSink OnReadEventHandler.

BAL CLASS REFERENCE 33

ISCSequentialStreamSink OnWriteEventHandler OnWrite
This event is triggered when a write operation has completed. See
ISCSequentialStreamSink OnWriteEventHandler.

Event OnRead

Event Handler ISCSequentialStreamSink OnReadEventHandler

Delegate
void OnRead (object aBuffer, int aError)
This event is triggered when an asynchronous read operation has completed.

aBuffer – an object that boxes an array of type byte[] containing the data read.
aError – an error code for the read operation. This is a standard HRESULT and zero

indicates success.

Event OnWrite

Event Handler ISCSequentialStreamSink OnWriteEventHandler

Delegate
void OnWrite (int aError)
This event is triggered when an asynchronous write operation has completed.

aError – an error code for the write operation. This is a standard HRESULT and zero
indicates success.

4.7 BAL Class Reference
4.7.1 BAL Applications and Devices

These classes provide access to connected devices and to device con-
nection and disconnection events. Although SCOM uses BAL, there is
no direct access from SCOM to the BAL classes. If you wish to use both
SCOM and BAL (probably to start services through BAL for performance
reasons rather than via SCOM) then you will need to implement a frame-
work to manage BAL devices in parallel to that managing SCOM devices.
It is quite possible to use SCOM without ever directly using BAL.

Class BALApplication – This class provides access to connected devices and to BAL
events.

Member Variables

ISCBALDeviceCollection ConnectedDevices
This read-only member provides access to the set of currently connected devices. See also the
DeviceListChanged event.

34 THE SYMBIAN CONNECT OBJECT MODEL

Event Handlers

DeviceListChanged
This event handler is called when a device is connected or disconnected. See
ISCBALEvents OnDeviceListChangedEventHandler.

Event DeviceListChanged

Event Handler ISCBALEvents OnDeviceListChangedEvent-
Handler

Application Member Variable DeviceListChanged

Delegate
void DeviceListChanged()
This event handler is called whenever a device is connected or disconnected.
It is not provided with any information about which device(s) may have connected or
disconnected – the event handler must use the BALApplication.ConnectedDevices
member that will have been updated.

Class ISCBALDevice – This interface provides access to the properties of a connected
device and allows services to be started on it.

Member Variables

string ConnectionBearer
This read-only member provides a string that describes the transport used to connect the
device.

string Manufacturer
This read-only member provides the name of the manufacturer of the device.

string Model
This read-only member provides the name of the model of the device. This should be used in
conjunction with the manufacturer.

string Id
This read-only member provides a unique identifier for the device. It is guaranteed to be
different from any other device and can be used to identify it. Commonly, it is the IMEI
number of the smartphone.

bool Active
This writable property sets the device as active – this is an obsolete concept that should not
be used.

ISCBALDeviceServiceCollection Services
This writable property contains the set of services running on the device.

BAL CLASS REFERENCE 35

Class ISCBALDeviceCollection

This class is a collection of ISCBALDevice objects. It can be accessed by standard iterators.
Note that its first index is 1, not 0.

4.7.2 BAL Services and Streams
The behavior of services varies slightly with versions of Symbian OS.
Before Symbian OS v8.0 the set of services returned by the ISCBALDe-
vice.Services member is the set of pipe processors configured on
the smartphone. The only one of these that is likely to be useful is ectc-
padapter (see Chapter 8), which can be accessed without explicitly
being started (calling Start() on them will not cause any errors – it is
just unnecessary). From Symbian OS v8.0 the set of services is the set that
can potentially be started using the Start() method.

An ISCBALSequentialStream object can be obtained using the
Services member of an ISCBALDevice. The object can be used to
read from and write to the device service synchronously, or it can be cast
to an ISCSequentialStreamAsync object.

Class ISCBALDeviceServiceCollection

This class is a collection of ISCBALDeviceService objects. It can be accessed using
standard iterators to find out which services are available. It can also be accessed by service
name – this will return a service which can be Start() ed.
Note that its first index is 1, not 0.

Class ISCBALDeviceService – This interface provides access to the properties of a
service that can be Start() ed.

Member Variables

string Name
This read-only property is the name of the service.

int Version
This signed 32-bit integer is the version number of the service; the meaning of this depends
on the definition of the protocol defined for the service. Note that version numbers are
sometimes not well maintained for pre-v8.0 Symbian OS smartphones, so this value may not
be reliable – check with specific devices.

string IPAddress
This string is the IP address that can be used to communicate with the service using sockets
directly. Note that this may not be the IP address that you expect – the connectivity transport
may implement some form of address translation. The only guarantee is that connecting to the
provided IP address and port number will connect to the service.

36 THE SYMBIAN CONNECT OBJECT MODEL

ushort Port
This unsigned 16-bit integer is the TCP port number that can be used to communicate with
the service using sockets directly. Note that this may not be the same as the port number that
the service is using on the device, owing to address translation by the connectivity transport.

Member Methods

void StartService ()
For devices from Symbian OS v8.0 onwards, this method starts the service. Once this method
has been called, the IP address and port number can be obtained to access the service. On
pre-Symbian OS v8.0 devices it has no effect.

ISCBALSequentialStream StartServiceOnStream ()
This starts the service and returns a sequential stream that allows direct Read() and
Write() operations. This is likely to be the best way of accessing a service unless you have a
specific need to access sockets directly. An asynchronous stream can be obtained by casting
the result.

Class ISCBALSequentialStream – This interface supports reading data from and writing
data to a service running on a Symbian OS phone.

Member Methods

int Read (int aBytesToRead, ref object aBuffer)
This method attempts to read data from an active sequential stream. It will block until there is
data to read or until the read times out.

aBytesToRead – the number of bytes expected.
aBuffer – an object that boxes an array of type byte[] to receive the data.
returns – the number of bytes read.

int Write (object aBuffer)
This method attempts to write data to an active sequential stream. It will normally return
immediately, but the data may be buffered before being sent.

aBuffer – an object that boxes an array of type byte[] containing the data to write. The
size of the array controls how much data is written.

returns – the number of bytes written.

Class BALApplicationAsyncStream – This interface supports reading data from and
writing data to a service running on a Symbian OS phone.

Member Methods

void Read (int aBytesToRead)
This method initiates a read operation on the active service. When the read has completed,
the OnRead event will be triggered.

aBytesToRead – maximum number of bytes to read from the service.

USING SCOM IN C++ AND VISUAL BASIC 37

void Write (object aBuffer)
This method initiates a write operation on the active service. When the write has completed,
the OnWrite event will be triggered.

aBuffer – an object that boxes an array of type byte[] to be written. The size of the array
controls how much data is written.

Event Handlers

ISCBALSequentialStreamSink OnReadEventHandler OnRead
This event is triggered when a read operation has completed. See
ISCBALSequentialStreamSink OnReadEventHandler.

ISCBALSequentialStreamSink OnWriteEventHandler OnWrite
This event is triggered when a write operation has completed. See
ISCBALSequentialStreamSink OnWriteEventHandler.

Event OnRead

Event Handler ISCBALSequentialStreamSink OnReadEvent-
Handler

Delegate
void OnRead (object aBuffer, int aError)
This event is triggered when an asynchronous read operation has completed.

aBuffer – an object that boxes an array of type byte[] containing the data read.
aError – an error code for the read operation. This is a standard HRESULT and zero

indicates success.

Event OnWrite

Event Handler ISCBALSequentialStreamSink OnWriteEvent-
Handler

Delegate
void OnWrite (int aError)
This event is triggered when an asynchronous write operation has completed.

aError – an error code for the write operation. This is a standard HRESULT and zero
indicates success.

4.8 Using SCOM in C++ and Visual Basic

The class and member names listed above are correct for C++ and Visual
Basic and the types map to corresponding C++ or Visual Basic types

38 THE SYMBIAN CONNECT OBJECT MODEL

(int variables in the above list are equivalent to Long for Visual Basic
and string variables are BSTR variables that are translated to LPCTSTR
for C++).

In Visual Basic the SymbianConnect.Application event handlers
are automatically registered if they are created with a name that includes
the name of the SymbianConnect.Applicationobject and the name
of the event member variable listed above (and if you declare the object
with the keywords with events). For example, if the SymbianCon-
nect.Application object is named SCApp then the device-connected
event handler will have the form:

Private Sub SCApp_DeviceConnected(ByVal Device As
SymbianConnect.ISCDevice)
...

End Sub

In C++ the obtaining of a SymbianConnect.Application object
and the registration of event handlers are more complex, owing to the way
COM is used. Examples that cover these areas are provided in Chapter 5.

5
An Example PC Connect

Application – a File Browser

5.1 Overview

In this chapter, we are going to use the classes provided by SCOM to
create a series of examples and then put them together into a very simple
file browser application. I have chosen a file browser because it includes
the functionality that many PC-only Connect applications are likely to
require. With the information in this chapter you should be able to
develop more specialized file management applications (such as image
management applications or jukebox applications). The advantage of
focusing on file management is that SCOM provides all the functions we
need and so we do not have to write any new code to run on the phone.
Later chapters will cover developing more specialized applications that
include both PC-side and device-side code.

The major part of this chapter is based on using C# because I regard
it as the development language of choice for modern PC development. I
have a lot of experience using C++, but I find it much easier to develop
COM and GUI applications using C# nowadays. However, C++ is still a
powerful language and is still widely used, so I have included a section
that describes more briefly how to use SCOM in Visual C++.

I have assumed that the reader has at least a basic familiarity with C# (or
VC++ for the later sections) and COM, although even a complete novice to
COM will be able to use SCOM and create a working Connect application.

5.2 Connecting to a Phone or Emulator

In order to test our connected applications, we will need to connect either
to a Symbian OS phone or to the emulator. This is mostly straightforward,
but I have included a step-by-step guide here just in case (after all, if you
cannot get a connection then your development will not get very far).

In principle, obtaining a connection works in a similar way for all
transports – you enable the connection on the PC, physically arrange the

40 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

connection and initiate the connection from the phone or emulator. There
are variations depending on the transport. In all cases all three parts must
be in place to make a connection.

There are two versions of m-Router in circulation: version 2 with
simple configuration support and version 3 with a more helpful set of
wizards to set up the connections. The instructions in this section apply
to version 2, because that version requires more support.

Enabling a connection from the PC requires you to bring up the
mRouterConfig application. Take a look at the task bar on your PC and
you should see an icon that displays the tooltip ‘mRouter’ if you hover
the cursor over it. This will normally have the m-Router icon displayed,
although Symbian OS smartphone manufacturers may be able to change
the icon. If you right-click on the mRouterConfig icon you get a short
menu with a single choice labeled ‘Properties’. Select this to bring up the
dialog that allows you to select the ports on which you want m-Router to
search for devices. If you see a menu with two entries – ‘Change Device’
and ‘Properties’ – then this means that you have an alternative application
installed that was designed for an earlier PC suite. Don’t worry, it will
work just as well and you can select the ‘Properties’ entry to obtain the
same dialog – just ignore the ‘Change Device’ entry.

If you have several PC suites installed then you may have two or even
three icons in your system bar that allow m-Router to be configured. This
is probably caused by using earlier PC suites, but you have no need to
worry; all the icons and applications work on the same data and you can
use any of them to configure your connection.

The list of ports that you see will depend on the physical configuration
of your PC. Commonly, you will see one or two labeled ‘Cable’ for
RS-232 serial ports. If you have a PC with built-in infrared functionality or
an external infrared pod then you should see one port labeled ‘Infrared’.
If you have Bluetooth installed then you should see a number of ports
labeled ‘Bluetooth’. You will not see any ports labeled ‘USB’ until a
phone tries to make a USB connection; this is described in more detail in
the section on USB below.

Each port has a check-box. If this is checked then m-Router will try
to connect over the port; if it is unchecked then m-Router will ignore
the port. Normally, you will check the box(es) that correspond to the
port(s) that you want to use.

There is a corresponding application on the phone that is used to
configure and initiate a connection or to start and stop listeners. The
exact form of the phone application depends on the phone, reference
board or emulator. For development purposes on a reference board
or emulator a single application (mRouterRefUI for Symbian OS v6.1,
v7.0 and v7.0s, ConnectUI for Symbian OS v8.0) is used to control all
transports. This application can be started from the Extras bar (on the
emulator there is a screen shortcut; with a reference board look on the

CONNECTING TO A PHONE OR EMULATOR 41

Tools menu) or by navigating directly to the application. To navigate
to the application, use the Ctrl-Q key to get to the z: drive and then
navigate to the System\Apps directory where you will see a directory for
the application; enter it and select the .app file to start the application.
Once the application is started, you can use the Configure menu (use
F1 on an emulator or the menu key on a reference board) to select the
transport and port number you want, or to start or stop a listener, and
then select ‘Connect’ on the File menu to initiate a connection. An active
connection can be broken by selecting ‘Disconnect’ from the File menu
or by stopping a listener from the ‘Configure’ menu.

Real Symbian OS smartphones do not necessarily have a single appli-
cation to control all types of connection. On some phones, for example
the Sony Ericsson P800, the connection is configured and managed using
the control panel application. On other phones, for example Series 60
phones, there are separate applications for each type of connection – an
infrared connection is initiated from the infrared application within the
Connectivity folder, for example.

When you make a connection, there is some visual feedback. On
the PC, the system tray icon changes and the port description in the
mRouterConfig changes. It will go from a stable disconnected state
to a moving state (with the description ‘Connecting’) while trying to
connect, and then to a stable connected state when the connection
is established – you will soon recognize the sequence. On most real
smartphones, there is no visual feedback from the connection process,
but on a reference board or on the emulator, the application that controls
the connection displays the state. This should change from ‘Disconnected’
through ‘Connecting’ to ‘Connected’.

Normally, when you make a connection between the PC and the
phone, the connection allows SCOM to access the phone. However,
on rare occasions you will appear to get a connection from m-Router
but SCOM will not recognize that a device is connected. This can
be caused by a configuration problem on the phone, normally on a
reference board or on the emulator; you should not get this problem
on a real smartphone. If you do get this problem then check for a file
called mrouterservices.ini in the z:\System\Data directory (on
phones before Symbian OS v8.0). If it is not present then it will need to be
replaced, for which you may need to unpack a fresh copy of the emulator.

More specific details of how to use the different transports are
included below.

5.2.1 Connecting over RS-232 Serial
The ability to connect over a serial cable was present in the earliest Psion
PDAs, but most modern phones do not include an RS-232 serial port.
However, an RS-232 serial connection is worth covering as it works well
with the emulator and also with reference boards.

42 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

If you are connecting a PC to a reference board then a standard
serial cable should be used. If you connecting to the emulator then a
null-modem cable must be used (because the PC serial port behaves
differently from that of a reference board). If you have the wrong type of
cable then, however hard you try, you won’t get a connection.

As well as having the correct type of cable, you need to ensure that
the serial ports are not in use by other applications. On the PC you
should be aware of what other software you have installed that might be
configured to use the serial ports. You need to disable or reconfigure any
other software so that the required ports are free.

Ensuring that the emulator or reference board has a serial port free is
more complicated. Configuration files control the allocation of ports. On
the emulator, these can be set using a text editor before the emulator is
started, but for a reference board they need to be set before a ROM image
is built.

The relevant configuration files can normally be found in the
z:\System\Data directory and common candidates to take over serial
ports are infrared and Bluetooth. Open the files irda.esk and bt.esk
and look for a reference to a port number. Bear in mind that Symbian OS
numbers serial ports from zero upwards, not from COM1 upwards. If you
are using a reference board that has a built-in infrared capability then the
irda.esk file is likely to be correctly set up and should be left alone.
However, Bluetooth is commonly provided for development boards and
for the emulator by an external Bluetooth pod that is connected via a
serial cable (or a null-modem cable) and so the Bluetooth configuration
may be set up to take over the port number that you want. If this is the
case then you can find a line in the bt.esk file of the form:

port =0

and change the port number to another one (–1 works well, as does a
higher number such as 10). Be aware that in editing these configuration
files you may disable features and so it is always advisable to keep backup
copies of any files that you alter and to exercise caution.

If you are using the emulator then infrared will often be configured
to use a serial port, the expectation being that you will plug a serial
infrared pod into the serial port. Therefore, check the port number in
the irda.esk file and, if necessary, disable it as described above
for Bluetooth.

Once you have freed up the required ports, plug in the correct type
of cable, check the m-Router check box on the PC, select the relevant
port on the emulator or reference board, and select ‘Connect’ from the
File menu from the application on the emulator or reference board. The
connection should then be made.

Once the connection has been made, you can break the connection
by unplugging the cable, by unchecking the box associated with the port

CONNECTING TO A PHONE OR EMULATOR 43

for m-Router or by selecting ‘Disconnect’ from the File menu on the
emulator or reference board.

When using the emulator with an RS-232 serial connection there is a
catch that should be highlighted. The emulator is designed to take over as
many serial ports on the PC as it can when it starts up. This is a positive
design decision, but it has a drawback: it can grab RS-232 serial ports
that you want to use with m-Router from the PC. The way to sidestep the
problem is for m-Router on the PC to take control of the ports before you
run the emulator. In order to run an emulator on the same PC as your
Connect applications, the sequence of actions is important:

1. Bring up mRouterConfig and select one serial port, for example
COM2.

2. Start the emulator. It will not be able to access COM2 because
m-Router has already reserved it.

You can then plug a null-modem cable between COM1 and COM2
and make your connection as normal. It does not matter whether the
cable is plugged in before the emulator is started or afterwards. If you
plug a null-modem cable between COM1 and COM2 and select both
ports in mRouterConfig then m-Router will try to talk to itself, with
confusing results.

You can see that it is necessary to have two COM ports on a PC if you
want to run an emulator and run Connect applications and connect using
serial communications. If your PC has only one COM port (increasingly
common nowadays) then you have a problem. There are a number of
possible solutions:

• Use two PCs and run the emulator on one and the PC applications on
the other.

• Use a specialized emulator bearer for m-Router that is provided with
some SDKs.

• Use a third-party application to mimic multiple looped-back COM
ports.

• If your PC has one COM port and an infrared port then you can plug
an external infrared pod into the serial port for use by the emulator.
This is described below.

5.2.2 Connecting over Infrared

Connecting over infrared follows a similar pattern to connecting over
RS-232. First ensure that the infrared ports are available. On the PC, if
you are using a built-in infrared port then there will be no need for extra

44 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

drivers, but you will need to configure it to be available for connecting
to the phone. Select Control Panel – > Wireless Link and disable Image
Transfer. If you are using an external infrared pod then you may need
drivers (depending on the version of Windows that you are using) and
you will need to set up the pod and select the port (serial or USB) that it
is using. Again, you will need to disable Image Transfer.

If you are using a real phone then the infrared port will automatically
be correctly configured and you should not need to take any further steps
to configure it (in fact, you won’t be able to, as all the configurations
are normally held in ROM). If you are using a reference board then the
infrared port is normally configured as part of any normal ROM image. It is
possible to misconfigure it, but you would have to make an effort to do so.

One possible problem with using an infrared port on a reference
board or emulator is that it may be configured as a connection to a
mobile phone. Consider the needs of most developers working with
Symbian OS: they write applications for smartphones, but the reference
boards and emulators often do not include telephony hardware. For
some applications this does not matter too much, but for other types of
application it can be a serious problem (consider trying to develop an
SMS or MMS application without access to telephony hardware). To help
these developers, some SDKs have a configuration that allows a mobile
phone (not normally a smartphone) to be connected via infrared. This is
a very helpful configuration for these telephony applications, but it can
be a real obstacle for Connectivity applications. If a reference board or
emulator is set up in this way then when you try to make an m-Router
connection over infrared an error will be generated on the device – it may
mention etel which is the telephony engine – or you may just be unable
to make a connection. If you have this configuration then you cannot use
m-Router over infrared.

There are three ways to solve this problem. The first way is to change
the configuration to free up the infrared port. However, this is contained
in the communications database (known as CommDB) which is regarded
as a dangerous thing to meddle with. The tools to set it and change it are
different in different versions of Symbian OS and it is very easy to damage
the configuration by mistake (the CommDB is regarded as worth avoiding
by most Symbian developers unless they are experts in its use). The second
way is to obtain an application that can disable the telephony engine’s
use of the infrared port. More details of the configurations and solutions
for specific SDKs can be found on the website that is associated with this
book. The third way is a bit crude, but can be effective. Symbian OS uses
a number of components that are referred to as ‘watchers’ or ‘listeners’.
These are responsible for monitoring some communications channels
and responding when traffic is detected. These cover areas such as an
infrared link to a phone, incoming faxes and incoming SMS messages.
If you delete or rename the watchers then they cannot hog the infrared

CONNECTING TO A PHONE OR EMULATOR 45

link (but other functions will not work, which is why this is a crude
solution). The watchers can normally be found in a standard directory,
z:\System\Libs\Watchers, and the directory can be simply renamed
on the emulator or omitted from a ROM if you are building ROMs.

If you want to use infrared with an emulator then you will need
an external serial infrared pod. Plug it into one of the serial ports and
do not install any PC drivers – the infrared pod will not be used by
Windows but by Symbian OS running in the emulator. Ensure that no
other PC application is using the serial port. It is then necessary to
configure Symbian OS to recognize that an infrared pod is available
on that port. The emulator maps specific directories on the PC to the
logical drives it uses. To edit the infrared configuration you need to
go to the z:\System\Data directory. This can be found under either
\epoc32\wins (for an emulator built for Microsoft Visual C++) or
\epoc32\winscw (for an emulator built for Metrowerks CodeWarrior).

Within the irda.esk file, look for a line that sets the port number,
and set the port to match the serial port into which you have plugged the
infrared pod. Remember that Symbian OS numbers serial ports from 0,
so the PC COM1 port is serial port 0 to Symbian OS, and the PC COM2
port is serial port 1 to Symbian OS.

Once you have configured the port to be used for infrared, ensure that
you leave the infrared pod plugged in. Specifically, the emulator checks
hardware when it starts, so if you do not have the pod plugged in when
the emulator starts it may not be recognized.

Once you have configured the infrared port, the sequence for connec-
tion is the same as for RS-232 serial. Check the mRouterConfig check
box for infrared, position the phone or ports so that the infrared ports
line up and then initiate the connection from the phone, reference board
or emulator.

Once you have made a connection, it can be broken by unchecking the
check box for m-Router, by moving the PC or phone so the line-of-sight
is broken, or by terminating the connection from the device.

If you have a PC with a single serial port and a built-in infrared port
(such as most laptops) then you can make a useful connection with the
emulator by plugging an external infrared pod into the serial port (and
by configuring it as described above) for use by the emulator. Select
‘Infrared’ for m-Router and line up the external infrared pod with the
built-in infrared Port and then make the connection. This is slower than
making a loopback connection using a null-modem cable, but can get
you going when you do not have two COM ports on your PC.

5.2.3 Connecting over USB

In many ways, USB is the easiest and fastest form of connection to
use but it does have some drawbacks. There are no issues with port

46 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

configurations, but it does require special drivers and is not supported by
the emulator or by some phones.

On the PC you will need to install USB drivers for the Symbian
OS smartphone. The drivers contain knowledge about the smartphone
manufacturer and model, so you will need to install the PC suite that
accompanies the smartphone in order to get the drivers installed. Symbian
does not provide alternative drivers for real smartphones, but if you
have a reference board that supports USB then suitable drivers can
be obtained.

When using a reference board that supports USB, use the Configure
menu to start the USB listener and then plug a USB cable into the
reference board and the PC. If the drivers have been correctly installed
on the PC, m-Router will automatically create an enabled entry for a USB
port and connect to it. The entry for the USB port does not exist until the
USB cable is plugged in and the USB listener started. Once there is an
active connection over USB, you can uncheck the port in mRouterConfig
if you want to. The connection can be broken either by unchecking the
port in mRouterConfig, or by unplugging the USB cable, or by stopping
the USB listener.

When using USB to communicate to a smartphone, the USB cable will
normally link to a cradle for the phone, and the phone will come with
USB drivers.

The emulator does not support USB, so developers who want to make
specific use of USB need to use a specialized reference board. Fortunately
for PC Connectivity developers, if your application works over RS-232,
infrared or Bluetooth it will also work over USB.

5.2.4 Connecting over Bluetooth

Bluetooth is faster than a serial or infrared connection and more con-
venient in that you do not need to maintain line-of-sight, but it can be
slightly tricky to set up.

On the PC, you will need to install a supported Bluetooth card or
dongle. At the time of writing a number of Bluetooth dongles and stacks
are supported. Over time, extra support may be added (and support for
old stacks may be withdrawn) so it is impossible to give a definitive list
in this book.

If you are using a real Symbian OS phone then either it will support
Bluetooth (at the time of writing all Symbian OS smartphones created
since Symbian OS v6.1 have included Bluetooth, but it has to be disabled
for some regions because of local laws) or it will not. If you are using
a reference board or emulator then you will need to use an external
Bluetooth pod. These external Bluetooth pods are specialized pieces
of development kit (they are larger and more expensive than normal
Bluetooth dongles) and so come with their own instructions. In order to

CONNECTING TO A PHONE OR EMULATOR 47

use one of these pods, you will need to set the bt.esk file to indicate
the correct port.

Once you have a Bluetooth-enabled PC and phone, you connect by
following a sequence:

1. Pair the PC and the smartphone. The pairing can be initiated either
from the PC or from the device. This is a standard action when using
Bluetooth: on one device search for other Bluetooth devices, select
the one you want (assuming that you have set up names so you can
recognize the one you want), and opt to pair. You will probably have
to enter a pass code on both devices to make the connection. You
can choose to allow automatic pairing in the future; this is normally
helpful during development.

2. Check the relevant port number in mRouterConfig. Commonly, a
Bluetooth dongle will provide more than one port and it is not clear
in advance which one will be used. One way to select the correct
port is to attempt to check all of them, make a connection and then
uncheck the other ones.

3. If you are using a reference board or the emulator, use the Configure
menu to start the Bluetooth listener.

4. On the PC, select the paired smartphone and attempt to open a
Bluetooth serial port. The exact means of doing this will depend on
the Bluetooth software provided with the dongle. Try selecting the
device and right-clicking on the mouse.

5. If the opening of the serial port works then there may be a misleading
error message. Because of an internal limitation of the serial com-
munications software in some versions of Symbian OS, the port may
have to be dropped and then reopened from the device. This leads
the PC to report that the remote device has closed the connection.
However, take a look at the m-Router status and you should see
a successful connection. This behavior may be corrected in later
versions of Symbian OS.

6. Once you have a connection, you may want to uncheck the other
Bluetooth serial ports.

Successfully setting up a Bluetooth connection can be difficult for techni-
cally aware people (probably because of the misleading error message),
let alone for normal consumers. There are plans to provide a more friendly
user interface on the PC to make it easier (look out for m-Router 3).

Once you have a Bluetooth connection, you can break it by turning
off Bluetooth on either the PC or the smartphone or by unchecking the
mRouterConfig check box.

48 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

5.2.5 Connecting Using the Emulator Bearer

As well as the ‘real’ bearers described above, m-Router supports an
emulator bearer. As the name suggests, this works only with the emulator.
It is a plug-in that is not always supplied, but it is very useful if available. If
it is available then it will be apparent as a bearer choice in the Configure
menu and it avoids the need for a loopback cable.

5.3 Accessing SCOM and Connecting to a Device

SCOM is delivered as an automation-compatible out-of-process COM
server. Any COM-aware language may use it, using either early or late
binding. This section discusses how to use the SCOM type library and
access SCOM from C#.

In order for C# to access SCOM, we need to import the type library.
This is a standard technique for using COM in C# – SCOM requires
nothing unusual. Obtain a command line prompt in the same directory
as the SCOM COM server (c:\Program Files\Symbian\Shared
\SymbianConnectRunTime) and type the commands:

tlbimp SymbianConnectRuntime.exe
tlbimp SCBAL.exe

These commands will generate two assemblies that C# can make use
of – SymbianConnect.dll and SymbianConnectBAL.dll. These
two files need to be referenced from your project (or from the com-
mand line using the/reference option if you try building the examples
from the command line). Once we have been through these stages,
our classes can make use of any of the SCOM classes simply by
referencing them. The root (or route) to access SCOM is the Symbian-
Connect.Application class which provides access to the connected
devices and the event handlers:

SymbianConnect.Application mySCOMApp = new SymbianConnect.Application();

At this point we could use the ConnectedDevices member to
examine a currently connected phone. However, this would be slightly
premature. We need to bear in mind that SCOM supports multiple con-
nected phones and that phones can be connected or disconnected at any
time. If we could rely on a single device being connected at all times then
we could obtain the phone details from SCOM and just use them. Instead,
we have to maintain a set of connected phones which may contain zero,
one or more phones and we have to select a device for any operation.

ACCESSING SCOM AND CONNECTING TO A DEVICE 49

In order to manage these devices, we will create some new classes:
ConnectedPhone to contain the information that we want about each
connected phone, and an ArrayList to manage the set of con-
nected phones.

We store a reference to the SCOM device – ISCDevice2 – and the
phone identification properties. We use the device identifier (normally the
phone IMEI number) to provide a unique identifier for the phone, because
we might have more than one phone of the same type connected. We store
the device name (on which more anon) as the name chosen by the user
for the phone. We also store the device manufacturer and model number
in order to decide what operations we can carry out (again, this will be
expanded later in this chapter). None of these properties can be changed
by the application so we only need to store them and provide accessor func-
tions. We override the ToString() method for when the phone objects
are placed in a list. This gives us an initial class declaration as follows:

public class ConnectedPhone
{
// Private members for the device and related information
private ISCDevice2 myDevice;
private string myPhoneId;
private string myPhoneManufacturer;
private string myPhoneModel;
private string myPhoneName;

...
public string Id
{

get
{return myPhoneId;}

}

public string Manufacturer
{

get
{return myPhoneManufacturer;}

}

public string Model
{

get
{return myPhoneModel;}

}

public string Name
{

get
{return myPhoneName;}

}

public override string ToString()
{

return myPhoneName;
}
...

50 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

The constructor is able to set all the member variables from the
ISCDevice2 provided. The device ID, manufacturer and model are
simply attributes of the phone that can be retrieved.

The device name is slightly more complex – you can choose any
convention that you please, although it may be helpful to follow that
used by other applications (so as to share a name). When a phone is first
connected to the PC, it is referred to by the name of the manufacturer and
the model, for example ‘My Nokia 6600’ for a Nokia phone. The user
can, however, set their own name for the phone and this is then stored in
the registry, indexed by the phone’s device ID (IMEI number). If this name
has been set then our application should attempt to use it, so that the
user is presented with the familiar name. In this application we will not
provide code to edit the name, although it would be straightforward to do
so. If the user has not set the device name then we will use the standard
format based on the manufacturer. Note that, because the device name
is stored in the PC registry, not on the phone, if the phone is connected
to another PC, the name will not be carried over.

public ConnectedPhone(ISCDevice2 device)
{
// Device identification strings are retrieved from the device
myDevice = device;
myPhoneId = myDevice.Id;
myPhoneManufacturer = myDevice.Manufacturer;
myPhoneModel = myDevice.Model;

// The user-specified device name is stored in the registry
string nameKeyName =

@"SOFTWARE\Symbian\Symbian Connect QI\Devices\" + myPhoneId;
Microsoft.Win32.RegistryKey aKey =

Microsoft.Win32.Registry.CurrentUser.OpenSubKey(nameKeyName);
if(aKey != null)
{

myPhoneName = aKey.GetValue("Name").ToString();
aKey.Close();

}
else
{

myPhoneName = "My "+ myPhoneManufacturer + " " + myPhoneModel;
}

}

Now that we know what to do with a device reference, we need to fill
in the code to obtain and manage them. We could set up a dictionary
based on the device ID, but that is probably overkill. We are unlikely
to have more than a handful of phones connected at one time (actually,
we are unlikely to have more than one phone connected outside an
IS department), so a simple ArrayList that we can step through will
be adequate.

The actual work of creating ConnectedPhone objects, adding them
to the array on creation and removing them from the array on destruction

ACCESSING SCOM AND CONNECTING TO A DEVICE 51

is contained in the AddPhone and RemovePhonemethods. These can be
called from within the class as required. In this case, we call AddPhone
on construction, based on the currently connected devices.

private System.Collections.ArrayList phoneArray;

public void AddPhone(ISCDevice2 device)
{
lock(phoneArray)
{

bool alreadyPresent = false;
foreach(ConnectedPhone phone in phoneArray)
{
if(phone.Id == device.Id)
{

alreadyPresent = true;
}

}
if(!alreadyPresent)
{
phoneArray.Add(new ConnectedPhone(device));

}
}

}

public void RemovePhone(string deviceId)
{
lock(phoneArray)
{

// Search for the phone by ID
for(int i = 0 ; i < phoneArray.Count ; i++)
{
if(((ConnectedPhone)(phoneArray[i])).Id == deviceId)
{

phoneArray.Remove(i);
break;

}
}

}
}

public SCOMApp()
{
// Get access to SCOM via the Application member
mySCOMApp = new SymbianConnect.Application();
phoneArray = new System.Collections.ArrayList();
foreach(ISCDevice2 device in mySCOMApp.ConnectedDevices)
{

AddPhone(device);
}

}

Note that in a real example the RemovePhone method will need to
become more elaborate to handle termination of any pending operations
as we progress through implementing the application.

52 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

Now that we have the array of connected devices, we need to set
up event handlers so we can take the appropriate action when devices
are connected or disconnected. SCOM uses a number of event handlers.
We will be implementing the event handlers for device connection
and disconnection here, but other event handlers are used for progress
and error events for asynchronous functions; some of these will be
considered later.

Because SCOM is primarily a COM server and was not originally
written for C#, its event handlers do not conform to the common C#
event handler prototype (two arguments, one object and one EventArgs).
Instead, SCOM event handlers have prototypes that depend on their
function. Otherwise, they work as expected. In this case, we make use of
the AddPhone and RemovePhone methods that we defined previously:

public void OnDeviceConnected(ISCDevice2 newDevice)
{
AddPhone(newDevice);

}
public void OnDeviceDisconnected(string deviceId)
{
RemovePhone(deviceId);

}

...
// Add event handlers in constructor
mySCOMApp.DeviceConnected +=
new ISCEvents_DeviceConnectedEventHandler(OnDeviceConnected);

mySCOMApp.DeviceDisconnected +=
new ISCEvents_DeviceDisconnectedEventHandler(OnDeviceDisconnected);

By putting all these parts together, we have the pieces for a simple com-
mand line application that reports on connected devices and responds to
connection and disconnection events.

5.4 Handling Differences Between Devices

The File Browser application that we will be building up during this
chapter will be a general-purpose application that can work well with
any Symbian OS phone that is compatible with SCOM. However, more
specialized applications may not be so general. For example, if you
are developing an image management application or a jukebox appli-
cation then you will need to know where the relevant media files are
stored on each phone. Unfortunately, different licensees choose to store
files in different locations. For example, on a Nokia 7650 images are
stored in the c:\Nokia\Images directory, and saved sound files (at
least certain formats) are stored in the c:\Nokia\Sounds\Digital

COPYING FILES – ASYNCHRONOUS ACTIONS 53

directory. On a Nokia 6600 (at least on a pre-production prototype)
c:\Nokia\Images and c:\Nokia\Sounds\Digital are still used,
but we now have a c:\Nokia\Videos directory and comparable
directories on the e: drive. On the Sony Ericsson P800 we have the
directory c:\Documents\Media files with sub-directories audio, image
and video, which in turn have sub-directories that the user creates and a
corresponding d:\Media files directory.

If your application assumes a fixed set of directories then it may be
right for one Symbian OS smartphone, but it has a good chance of being
wrong for another manufacturer’s smartphone, or even for another model
by the same manufacturer. The same logic applies to other properties of
the phone. For example, different phones support different media formats
and settings.

To make allowances for different licensees’ choices of directory struc-
tures and properties, your application needs to embody knowledge of
these directories. The ISCDevice2 class provides methods to access the
device manufacturer and model, and then the application will require
some form of table indexed by these properties.

However, the set of Symbian OS smartphones that your customers can
buy will grow with time and, sooner or later, your application will be
faced with a phone of a type that it does not recognize. In this situation,
you have the following choices:

1. Use some default set of directories or properties in the hope that the
new device will fit.

2. Use a default set based on the manufacturer, if you have encountered
phones from that manufacturer before.

3. Refuse to work with that phone because it is unsafe to do so.

4. Implement some form of active querying to discover the properties
of the device.

You should be very careful if you choose option 1 or option 2 – consider
what might happen if you select the wrong directories. If the worst that
can happen is that you copy files to the wrong place then you may feel
safe, but you could fill up the drive on the phone without the user being
able to see why. If the consequences could be more serious then you
must be more careful.

5.5 Copying Files – Asynchronous Actions

Once we have selected a smartphone, we can start to carry out actions
with it. In Section 5.6 we will cover navigating around the directories
on the smartphone (which is best carried out using a graphical user

54 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

interface). This section introduces copying files between the PC and the
smartphone. This is likely to be one of the actions that any real application
wants to carry out and it introduces asynchronous actions and associated
event handlers.

Because we are largely ignoring navigation of the phone filing system
here, we will simply try to copy a file to the root directory of thec: drive on
the phone. You will see that this is about as simple as it gets with SCOM.

We are using the classes defined above to manage the devices, and
we will use a simple assumption that the first connected smartphone
is the current smartphone. I will not show the code to manage the
current smartphone in this way as it is not terribly interesting; the full
source can be found on www.symbian.com/books. A later section of
this chapter – based around a GUI application – has more useful code
for managing a selected smartphone. The following code gets the set of
drives associated with that smartphone:

public class ConnectedPhone
{
private ISCDeviceStorageDriveCollection myDrives;

...
public ISCDeviceStorageDriveCollection Drives
{

get
{return myDrives;}

}
...
}

SCOMApp theApp = new SCOMApp();
ISCDeviceStorageDriveCollection drives =
theApp.GetCurrentPhone.Drives;

We can then iterate through the drives to find the c: drive. This is
simple and should work on any Symbian OS smartphone. By convention,
the ROM is mapped to the z: drive, and the c: drive is a writable drive.
There may or may not be additional drives which can be removable
media. In a real application, we would either give the user the choice
of drive or incorporate our knowledge of the actual smartphone. In this
application, we can fix the choice to a c: drive without too many worries.
Once we find the c: drive we can then copy a file from the PC to the root of
the c: drive. The example shows that the ISCDeviceStorageDrive2
class has a RootDirectory member that gives access to the root of the
drive. Normally, we would use the child directories and files present in
this directory to carry out some useful action, but in this case we will just
copy a file:

public static void CopyFileToPhone(ISCDeviceStorageDrive2 drive,
string fileName)

COPYING FILES – ASYNCHRONOUS ACTIONS 55

{
int requestId = drive.RootDirectory.CopyFileFromPC(fileName);

}

...

foreach(ISCDeviceStorageDrive2 drive in drives)
{
if(drive.Path == "C:")
{

CopyFileToPhone(drive, @"c:\config.sys");
break;

}
}

As you can see, we have chosen a file that should always be present
on a PC but that has no particular relevance to a phone. The actual call
to CopyFileFromPC returns immediately, regardless of the size of the
file being copied. It would have been possible to make the call fully
synchronous and delay returning until the copy was complete, but that
would have a number of drawbacks:

• The copy operation could take a long time, depending on the size
of the file and the speed of the transport in use, and the calling
application would not be able to respond in the meantime.

• Although the call could return a success or failure result, it would be
difficult to handle some events, such as what to do if a file already
exists with the same name.

• It would not be possible to provide the user with any measure of
progress during the copy, which would be unfriendly.

Therefore, the copy operation is asynchronous and we use a number
of event handlers to manage progress, errors and success or failure. There
are four event handlers associated with a file copy operation:

• Copy progress – this provides a percentage complete figure and is
intended to allow you to provide a progress dialog so the user
has visual feedback. The progress event also allows the copy to be
canceled if the user gets bored because it is talking too long.

• Copy complete – this confirms that the copy operation is completed.
The operation may have been completed because it was canceled
by the user or was aborted because of some error, or it may have
completed successfully.

• Existing file found – this event occurs when an existing file is found
with the same name. It provides the size and date of the two files and

56 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

requires instruction on whether or not to overwrite the existing file
and whether or not to cancel the copy operation.

• Copy error – this provides information when some other error occurs.

In this example we just output the results to the console and allow the
operation to continue. In a real application, the existing file found event
either could cause a dialog to be raised to give the choice to the user or
could use fixed logic to decide whether or not to overwrite the existing
file. In a real application, the error event would cause an informative
dialog to be raised for the user, while the progress event would normally
drive a progress dialog that would include a cancel button. Whatever
the success of the copy operation, the copy complete event lets us close
down dialogs and acknowledge that the copy is complete.

public void OnDeviceCopyStorageFileProgress(int requestId,
string from,
string to,
int percentComplete,
out bool cancel)

{
System.Console.WriteLine("Progress reqId={0} from={1} to={2} "+

" percent={3}",
requestId, from, to, percentComplete);

cancel = false;
}

public void OnDeviceCopyStorageFileError(int requestId,
ScErrorDescription errorDesc,
int errorCode,
bool canContinue,
out bool aContinue)

{
System.Console.WriteLine("Error reqId={0} eDesc={1} eCode={2} "+

" canContinue={3}",
requestId, errorDesc.ToString(),
errorCode, canContinue);

aContinue = canContinue;
}

public void OnDeviceCopyStorageFileExistingFileFound(
int requestId,
string fileName,
System.DateTime targetDate,
int targetFileSize,
System.DateTime sourceDate,
int sourceFileSize,
out ScOverwrite overwrite,
out bool cancel)

{
System.Console.WriteLine("Existing file found requestId={0} "+

" fileName={1} targetDate={2} "+
" targetFileSize={3} sourceDate={4} "+
" sourceFileSize={5}",

COPYING FILES – ASYNCHRONOUS ACTIONS 57

requestId, fileName, targetDate,
targetFileSize,
sourceDate, sourceFileSize);

overwrite = ScOverwrite.scOverwriteNo;
cancel = false;

}

public void OnDeviceCopyStorageFileComplete(int requestId,
int completionCode)

{
System.Console.WriteLine("Copy complete requestId={0} "+

" completionCode={1}",
requestId, completionCode);

}

...
// Install file copy event handlers
mySCOMApp.DeviceCopyStorageFileProgress +=

new ISCEvents_DeviceCopyStorageFileProgressEventHandler(
OnDeviceCopyStorageFileProgress);

mySCOMApp.DeviceCopyStorageFileError +=
new ISCEvents_DeviceCopyStorageFileErrorEventHandler(
OnDeviceCopyStorageFileError);

mySCOMApp.DeviceCopyStorageFileExistingFileFound +=
new ISCEvents_DeviceCopyStorageFileExistingFileFoundEventHandler(
OnDeviceCopyStorageFileExistingFileFound);

mySCOMApp.DeviceCopyStorageFileComplete +=
new ISCEvents_DeviceCopyStorageFileCompleteEventHandler(
OnDeviceCopyStorageFileComplete);

Bear in mind that a single SCOM application may be managing multiple
connected smartphones and may be running multiple asynchronous
operations at the same time. Therefore, the application might receive
notification of events that correspond to one of several current operations.
If these events were indistinguishable then this would make it impossible
to provide accurate progress reporting or to handle events correctly.
Therefore, the copy operation call returns a request identifier and each
event handler includes the RequestId as an argument. This means
that we can associate events with the copy operation that they relate
to. If your application is intended to have only one copy operation
active at a time then you might think that you could ignore these
RequestIds, but you should consider carefully whether it really will
be impossible to generate multiple simultaneous operations – normally
it is better to assume that you will have multiple operations and design
accordingly.

At this point it is worthwhile to build and run an application to
see the event handlers go off. If you run the application more than
once, you can see the file exists event. You could change the behavior
to handle an existing file, and you could change the drive to try to
copy to the z: drive (this should fail, but it will trigger the error event
handler).

58 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

5.6 Navigating the Filing System

The simplest way of navigating the filing system is to navigate the set
of device, directory and file collections that are included in the SCOM
classes. These are described in the context of their classes in Chapter 4;
this section will focus on these classes and members.

The Application.ConnectedDevices member is a collection of
ISCDevice2 objects that provides access to all currently connected
Symbian OS smartphones. Remember that this collection can change
as smartphones are connected or disconnected, and you should register
for device connected and device disconnected events to keep track of
connected smartphones.

The ISCDevice2.StorageDrives member is a collection of
ISCDeviceStorageDrive2 objects that provides access to all drives
that exist on a device. Commonly a device will have a z: drive (the
ROM) and a c: drive (the writable drive) and may have additional drives.
The ISCDeviceStorageDrive2.Pathmember provides the name of
the drive, which can help you to avoid attempting to write to the ROM
drive.

The ISCDeviceStorageDrive2.RootDirectory member is the
root directory for the drive.

The ISCDeviceStorageDirectory.Parent member is a refer-
ence to the parent object (either another directory or the drive) of a direc-
tory. The ISCDeviceStorageDirectory.ChildDirectories
member is a collection of sub-directories within a directory; the col-
lection may, of course, be empty. By repeated or recursive use of the
ChildDirectories and Parent members, it is possible to navigate
around the directory tree on a drive. The name of a directory can be
found from the ISCDeviceStorageDirectory.Path member, but
this includes the whole path of the directory from the drive onwards. If
you need to separate out just the name of the directory then you will
need to take a copy of the path string and manipulate it with reference to
the backslash characters.

The ISCDeviceStorageDirectory.ChildFiles member is a
collection of ISCDeviceStorageFile objects that contains references
to all the files that are stored directly in that directory. Note that to get at
the drives at the root of a drive you need to use the root directory.

The ISCDeviceStorageFile.Parentmember is a reference to the
directory in which the file resides. The ISCDeviceStorageFile.Path
member is the name of the full file path, while ISCDeviceStor-
ageFile.FileName is just the name of the file without that of the
owning directory (it would have been nice to have something similar
for directories).

The Parent member of any class refers to an ISCDeviceStor-
age object rather than to an ISCDeviceStorageDirectory object,

NAVIGATING THE FILING SYSTEM 59

because the root directory on a drive will not be owned by another
directory. As the ISCDeviceStorage class has Type and Path mem-
bers, it is always possible to navigate usefully and to output the name of
a parent, whatever it is.

In order to illustrate the use of some of these members, and some
other effects, we can look at another example program. This is based on
the connection example but uses very simple code to recurse through all
directories on all drives and list the files and directory details. Because
this is a command line application rather than a GUI application, it
mindlessly recurses through the whole device.

public static void ListDirectory(ISCDeviceStorageDirectory directory)
{
System.Console.WriteLine("{0} is a directory", directory.Path);

// List files first
foreach(ISCDeviceStorageFile aFile in directory.ChildFiles)
{

System.Console.WriteLine("{0} / {1} is of size {2} "+
" last modified {3} and attributes {4:X}",
aFile.Path, aFile.FileName, aFile.Size,
aFile.LastModified, aFile.Attributes);

}

// Recurse through child directories
foreach(ISCDeviceStorageDirectory childDirectory in

directory.ChildDirectories)
{

ListDirectory(childDirectory);
}

}

public static void Main()
{
SCOMApp theApp = new SCOMApp();
System.Console.WriteLine("Press return when a device is"+

" connected");
string text = System.Console.ReadLine();
System.Console.WriteLine("{0}", System.DateTime.Now);

ISCDeviceStorageDriveCollection drives =
theApp.GetCurrentPhone.Drives;

foreach(ISCDeviceStorageDrive2 drive in drives)
{

ulong capacity = (((ulong)drive.CapacityHigh)<<32) |
((ulong)drive.CapacityLow);

ulong freeSpace = (((ulong)drive.FreeSpaceHigh)<<32) |
((ulong)drive.FreeSpaceLow);

System.Console.WriteLine("Drive {0} has {1} free of {2}",
drive.Path, freeSpace, capacity);

ISCDeviceStorageDirectory rootDirectory = drive.RootDirectory;
ListDirectory(rootDirectory);

}
System.Console.WriteLine("{0}", System.DateTime.Now);

}

60 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

Note the casting and shifting to get the drive capacity and free space.
These values are stored as 64-bit values in Symbian OS. This may seem
excessive at the moment, but multi-gigabyte drives are already under
development. Because of the limitations of COM, the two halves of each
value are returned as signed 32-bit values, so you need to cast them to
unsigned before combining them.

This can take some time (I just ran it on a Nokia 7650 and the output
amounts to over 1,700 lines). If you have a real Symbian OS smartphone
to hand then I recommend trying it out.

One of the effects that should become apparent is the speed (or
otherwise) of the operations. Each time SCOM needs to obtain some
information from the phone it has to send a command and receive the
answer. SCOM hides the gory details from you, the developer, but it
cannot always hide the time taken. Internally, SCOM implements some
caching of information, but the information has to be retrieved once in
order to be cached.

The example above also includes details on the time taken for the
whole operation. Try running the application with an infrared connection
and then with a Bluetooth connection and you will see the difference that
the transport speed makes. Even with a fast transport, it makes sense to
design your program to not ask for information unless it needs it. Often
SCOM’s caching will give you the best performance possible with the
transport, but you will still need to consider hourglass icons and good
design. We will touch on this when allowing our file browser to navigate
through directories.

5.7 A File Browser Application

The previous examples have shown how to access and manage the
currently connected devices, how to carry out some basic navigation
of the directory tree and how to copy files. As a programmer with a
Unix background I am quite comfortable with the idea of writing small
command-line applications to manage my phone, but most consumers
are not. Therefore, we will create a basic graphical program to view and
manage the files on a Symbian OS smartphone. This application could
easily be tailored for specific types of file.

We start with a form that is the main dialog of the application. I have
included fields for device information, a large tree view to display the
phone directories and files, and buttons for the supported operations.

5.7.1 Smartphone Connection, Disconnection and Management

We can use the CConnectedPhone class from the command-line appli-
cations we developed earlier in the chapter. We will need a new SCOM

A FILE BROWSER APPLICATION 61

Figure 5.1 Symbian Phone File Browser form

application class. In this case, I have chosen to create a new class just
for that purpose. This class needs quite close links to the form class
to be able to pass events through. It would be possible to make the
EFBForm handle the SCOM application directly, but I regard that as
poor design – separating the management of the SCOM application from
the form makes it clearer. Later in this chapter I will link the form more
directly to SCOM functions that I am comfortable with, but in those cases
the separation would require more complexity than is justified.

We know that we will need to handle events caused by smartphones
being connected or disconnected (and later on, we will also need to
handle file copy events). Therefore, we can define an interface that
includes the events and make EFBForm implement it. In this way we
have a chance of reusing the SCOMApp class at a later date.

/// <summary>
/// SCOMForm contains the interface methods required for event
/// handling, so a form can interact with an SCOMApp.
/// </summary>
public interface SCOMForm
{
// Called when phones are connected or disconnected
void UpdatePhoneList();

}

62 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

In this case, we just expose a single method – UpdatePhoneList() –
that can be called whenever a phone connects or disconnects (later, we
will add more methods to handle file copying events). This will cause
the phone list to be refreshed. We don’t directly refresh the phone list
within the event handler. The event handler is being called indirectly
from SCOM, and I have seen some problems caused by carrying out
too much work in an event handler. There should not be any problem,
because internally SCOM spawns off a new thread for each call to an
event handler (before it did this, one badly behaved event handler could
block the whole of SCOM), but in practice SCOM appears to work better if
you are careful about how much work is carried out in its event handlers.
Therefore, we will just set a private flag to indicate that the phone list
needs to be updated and use the OnPaint event handler to do the work:

/// <summary>
/// Update display of list of connected phones.
/// </summary>
public void UpdatePhoneList()
{
// This method can be called from an event when a phone connects
// or disconnects.
// Don’t rewrite the file tree view here as we don’t
// want to do too much in an event so just prime it.
pendingPhoneViewUpdate = true;
Invalidate();

}

/// <summary>
/// Some operations (normally triggered by events) cannot be
/// carried out directly. They are achieved by setting flags and
/// causing a repaint.
/// The use of OnPaint is a bit crude but it is an easy event to
/// trigger.
/// </summary>
protected override void OnPaint(

System.Windows.Forms.PaintEventArgs e)
{
// If we have a pending update to the phone list then do it
if(pendingPhoneViewUpdate)
{

ResetPhoneList();
pendingPhoneViewUpdate = false;

}
base.OnPaint(e);

}

Once we have a set of connected smartphones, we can list them and
show some of the phone properties.

/// <summary>
/// Called when a phone is connected or disconnected
/// </summary>
private void ResetPhoneList()

A FILE BROWSER APPLICATION 63

{
bool wasCurrentPhone = false;
bool currentPhonePresent = false;
if(!initializing)
{

wasCurrentPhone = (currentPhoneId != "");
updatingPhoneList = true; // Prevent selection events
PhoneListBox.BeginUpdate();
PhoneListBox.Items.Clear();
foreach(ConnectedPhone phone in mySCOMApp.phoneArray)
{
PhoneListBox.Items.Add(phone);
if(phone.Id == currentPhoneId)
{

currentPhonePresent = true;
PhoneListBox.SelectedIndex = PhoneListBox.Items.Count-1;

}
}
if(PhoneListBox.Items.Count > 0)
{
isEmptyPhoneList = false;
if(!currentPhonePresent)
{

PhoneListBox.SelectedIndex = 0;
currentPhone = (ConnectedPhone)mySCOMApp.phoneArray[0];
currenthoneId = currentPhone.Id;
ManufacturerTextBox.Text = currentPhone.Manufacturer;
ModelTextBox.Text = currentPhone.Model;
InitializePhoneTreeView();

}
}
else
{
isEmptyPhoneList = true;
currentPhone = null;
currentPhoneId = "";
ManufacturerTextBox.Text = "";
ModelTextBox.Text = "";
FileTreeView.Nodes.Clear();
DisableButtons();

}
PhoneListBox.EndUpdate();

}
updatingPhoneList = false;

// If we have lost the current phone then we
// may have to cancel operations
if(wasCurrentPhone && !currentPhonePresent)
{

if(progressForm != null)
{
progressForm.Close();

}
}

}

Once we have a selected smartphone, we can display the directories
and files in the tree view. We can get the list of drives on the phone and

64 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

then add nodes for them. With each tree view node, we store an object
that contains the type of the SCOM storage object and a handle for it.
This allows us to use the tree view node directly to carry out operations.

/// <summary>
/// Contains information about the phone directory or file that is
/// related to a node
/// </summary>
public class PhoneViewNode
{
public enum NodeType
{

Directory,
File

}

private bool myAlreadyExpanded;
private string myNodeName;
private NodeType myNodeType;
private object myStorage;

public PhoneViewNode(string aNodeName, NodeType aNodeType,
object aStorage)

{
myNodeName = aNodeName;
myAlreadyExpanded = false;
myNodeType = aNodeType;
myStorage = aStorage;

}

/// <summary>
/// Name of associated node
/// </summary>
public string NodeName
{

get
{return myNodeName;}

}

/// <summary>
/// File or Directory object
/// </summary>
public object Storage
{

get
{return myStorage;}

}

/// <summary>
/// Is the Node a directory or a file?
/// </summary>
public NodeType NodeStorageType
{

get
{return myNodeType;}

}

A FILE BROWSER APPLICATION 65

/// <summary>
/// Has the list of child objects already been expanded?
/// </summary>
public bool AlreadyExpanded
{

get
{return myAlreadyExpanded;}
set
{myAlreadyExpanded = value;}

}
}

We could choose to traverse the whole directory and file tree of each
drive and fully populate the tree view, but that would take too long.
Remember how long it took a command line application to traverse the
whole of a device filing system? Bear in mind that the user won’t visit
most of the directories, so traversing them all will be wasted time.

Instead, we will populate the tree view on a ‘Just in Time’ basis. When
the user tries to expand a directory then we will hastily fill in the details.

/// <summary>
/// Add children before expansion of a node in the tree view
/// </summary>
private void FileTreeView_DoubleClick(object sender,

System.EventArgs e)
{
lock(FileTreeView)
{

FileTreeView.BeginUpdate();
TreeNode tn = FileTreeView.SelectedNode;
PhoneViewNode nodeInfo = (PhoneViewNode)tn.Tag;
if((nodeInfo.NodeStorageType == PhoneViewNode.NodeType.Directory)

&& !nodeInfo.AlreadyExpanded)
{
// Clear any contents
tn.Nodes.Clear();
// Get a storage object from this
try
{

ISCDeviceStorageDirectory myDir =
(ISCDeviceStorageDirectory)nodeInfo.Storage;

if(myDir != null)
{
Cursor.Current = Cursors.WaitCursor;
// List directories before files
foreach(ISCDeviceStorageDirectory dir in

myDir.ChildDirectories)
{

// Just take the last part of the name
string dirName =
dir.Path.Substring(dir.Parent.Path.Length);

TreeNode dirNode = new TreeNode(dirName);
dirNode.Tag = (object)
(new PhoneViewNode(dirName,

PhoneViewNode.NodeType.Directory,

66 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

(object)dir));
tn.Nodes.Add(dirNode);

}
foreach(ISCDeviceStorageFile file in myDir.ChildFiles)
{

TreeNode fileNode = new TreeNode(file.FileName);
fileNode.Tag = (object)
(new PhoneViewNode(file.FileName,

PhoneViewNode.NodeType.File,
(object)file));

tn.Nodes.Add(fileNode);
}
nodeInfo.AlreadyExpanded = true; // don’t try this again
Cursor.Current = Cursors.Arrow;

}
}
catch
{ // Do nothing but we cannot add any nodes
}
tn.Expand();

}
FileTreeView.EndUpdate();

}
}

Note that I have not been able to use the handy ‘+’ icon for directory
expansion. This is a nice feature, but it has one big drawback for this use.
In order for the tree view control to display the ‘+’ correctly, the directory
node list needs to be populated as soon as it is displayed. Therefore, we
need to fill the node tree one level ahead of the user. If we did not do this,
directories that have been visited and that contain child directories or files
would have ‘+’ icons, while directories that either are empty or have not
been visited would lack the ‘+’ icon. This would be confusing for the user.

Therefore, we use the double-click event to fill in the node lists before
expansion. We take basic precautions to fill in the data only once.

5.8 Simple Actions on Files and Directories

Navigating around the filing system on the smartphone is a nice trick, but
it will soon get boring. To make a useful application, we want to carry
out some operations on the files and directories. Because this is a simple
application, I have chosen to use straightforward buttons to carry out
operations and display properties. If you feel more ambitious, you could
display file properties within the tree view and you could implement a
context menu and hang the operations off the right mouse button.

The operations that we will implement in this application are as follows:

• display file properties

• rename a file or directory

SIMPLE ACTIONS ON FILES AND DIRECTORIES 67

• copy a file from the PC to a directory

• copy a file from the smartphone to the PC

• create a new directory

• delete a file or directory.

You can see that not all of these operations apply to both files and
directories. Therefore, we want to enable the buttons based on what type
of entry is selected. We disable the buttons when the tree view is first pop-
ulated and then selectively enable or disable when entries are selected.

/// <summary>
/// Disables button as if no selection
/// </summary>
private void DisableButtons()
{
CopyFromButton.Enabled = false;
CopyToButton.Enabled = false;
PropertiesButton.Enabled = false;
DeleteButton.Enabled = false;
RenameButton.Enabled = false;
CreateDirButton.Enabled = false;

}
/// <summary>
/// When a node is selected, enable or disable buttons selectively
/// </summary>
private void FileTreeView_AfterSelect(object sender,

System.Windows.Forms.TreeViewEventArgs e)
{
// Enable or disable buttons based on the currently selected node
if(!updatingPhoneList)
{

lock(FileTreeView)
{
PhoneViewNode selectedNode = null;
if(FileTreeView.SelectedNode != null)
{

object myTag = FileTreeView.SelectedNode.Tag;
if(myTag != null)
{
selectedNode = (PhoneViewNode)myTag;

}
}
DisableButtons();
if((selectedNode != null) &&

(selectedNode.NodeStorageType ==
PhoneViewNode.NodeType.Directory))

{
CopyFromButton.Enabled = true;
DeleteButton.Enabled = true;
RenameButton.Enabled = true;
CreateDirButton.Enabled = true;

}
else if((selectedNode != null) &&

(selectedNode.NodeStorageType ==
PhoneViewNode.NodeType.File))

68 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

{
CopyToButton.Enabled = true;
PropertiesButton.Enabled = true;
DeleteButton.Enabled = true;
RenameButton.Enabled = true;

}
}

}
}

The simplest operations are deletion and renaming, so we will cover
those first. Deletion could be very simple, but we will add the precaution
of asking the user for confirmation. This can be annoying to the user if
taken too far but is probably wise in this case. We also delete the node
entry from the tree view.

/// <summary>
/// Event for delete button - delete file or directory
/// </summary>
private void DeleteButton_Click(object sender, System.EventArgs e)
{
if (MessageBox.Show ("Are you sure you want to delete " +

FileTreeView.SelectedNode.FullPath,
"Confirm Delete",
MessageBoxButtons.YesNo,
MessageBoxIcon.Question,
MessageBoxDefaultButton.Button2)

== DialogResult.Yes)
{

Cursor.Current = Cursors.WaitCursor;
FileTreeView.BeginUpdate();

PhoneViewNode myNode =
(PhoneViewNode)FileTreeView.SelectedNode.Tag;

// Use a try loop because we may cause an exception
// (like trying to affect ROM)
try
{
if(myNode.NodeStorageType == PhoneViewNode.NodeType.File)
{

ISCDeviceStorageFile myFile =
(ISCDeviceStorageFile)myNode.Storage;

myFile.Delete();
}
else // directory
{

ISCDeviceStorageDirectory myDir =
(ISCDeviceStorageDirectory)myNode.Storage;

myDir.Delete();
}
FileTreeView.SelectedNode.Parent.Nodes.Remove(

FileTreeView.SelectedNode);
}
catch(Exception ex)
{
MessageBox.Show("Unable to delete due to unexpected error"+

SIMPLE ACTIONS ON FILES AND DIRECTORIES 69

ex.ToString(), "Unexpected Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

FileTreeView.EndUpdate();
Cursor.Current = Cursors.Arrow;

}
}

Renaming is also straightforward: we put up a dialog to ask for the
new name and then call Rename(). Note that directory names have to
end in a backslash (\) – this is just a convention within SCOM. Note also
that we amend the node entry to make the rename effect visible in the
tree view.

/// <summary>
/// Event for rename button - rename file or directory
/// </summary>
private void RenameButton_Click(object sender, System.EventArgs e)
{
PhoneViewNode vNode = (PhoneViewNode)FileTreeView.SelectedNode.Tag;
string currentName;
if(vNode.NodeStorageType == PhoneViewNode.NodeType.File)
{

ISCDeviceStorageFile myFile =
(ISCDeviceStorageFile)(vNode.Storage);

currentName = myFile.FileName;
}
else // directory
{

ISCDeviceStorageDirectory myDir =
(ISCDeviceStorageDirectory)(vNode.Storage);

currentName = myDir.Path.Substring(myDir.Parent.Path.Length);
// Trim trailing slash
currentName = currentName.Substring(0,currentName.Length-1);

}
renameForm = new RenameForm();
renameForm.NameTextBox.Text = currentName;
if(renameForm.ShowDialog() == DialogResult.OK)
{

try
{
Cursor.Current = Cursors.WaitCursor;
if(vNode.NodeStorageType == PhoneViewNode.NodeType.File)
{

ISCDeviceStorageFile myFile =
(ISCDeviceStorageFile)(vNode.Storage);

myFile.Rename(renameForm.NameTextBox.Text);
FileTreeView.SelectedNode.Text = renameForm.NameTextBox.Text;

}
else // directory
{

ISCDeviceStorageDirectory myDir =
(ISCDeviceStorageDirectory)(vNode.Storage);

string newName = renameForm.NameTextBox.Text;
if(!newName.EndsWith(@"\"))

70 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

{
newName += @"\";

}
myDir.Rename(FileTreeView.SelectedNode.Parent.FullPath +

newName);
FileTreeView.SelectedNode.Text = newName;

}
}
catch(Exception ex)
{
MessageBox.Show("Unable to rename file or directory due to" +

" unexpected error " + ex.ToString(),
"Unexpected Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
Cursor.Current = Cursors.Arrow;
renameForm = null;

}
}

The renaming or deleting operation may take some time, so we will
change the cursor to an hourglass to give the user a cue that a delay
is expected, but these functions are synchronous so we don’t need any
progress tracking.

Creating a directory is comparable, but we need to add a node for
the new directory. We use the Storage member to get a handle for the
newly created directory.

/// <summary>
/// Event for Create a directory button
/// </summary>
private void CreateDirButton_Click(object sender, System.EventArgs e)
{
PhoneViewNode vNode = (PhoneViewNode)FileTreeView.SelectedNode.Tag;
if(vNode.NodeStorageType == PhoneViewNode.NodeType.Directory)
{

ISCDeviceStorageDirectory myDir =
(ISCDeviceStorageDirectory)(vNode.Storage);

createDirForm = new CreateDirForm();
createDirForm.NameTextBox.Text = "";
if(createDirForm.ShowDialog() == DialogResult.OK)
{
try
{

Cursor.Current = Cursors.WaitCursor;
string newDirName = createDirForm.NameTextBox.Text+ @"\";
myDir.CreateDirectory(newDirName);
// Now add the new directory to the view
TreeNode dirNode = new TreeNode(newDirName);
string fullPath =
FileTreeView.SelectedNode.FullPath+newDirName;

ISCDeviceStorageDirectory dir = (ISCDeviceStorageDirectory)
currentPhone.device.get_Storage(fullPath);

if(dir != null)
{

SIMPLE ACTIONS ON FILES AND DIRECTORIES 71

dirNode.Tag = (object)
(new PhoneViewNode(newDirName,

PhoneViewNode.NodeType.Directory,
(object)dir));

FileTreeView.SelectedNode.Nodes.Add(dirNode);
}

}
catch(Exception ex)
{

MessageBox.Show("Unable to create new directory due to " +
" unexpected error "+ex.ToString(),
"Unexpected Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
Cursor.Current = Cursors.Arrow;
createDirForm = null;

}
}

}

Displaying file properties is the reverse in one sense – we get the
information from SCOM and then put up the dialog.

/// <summary>
/// Event for properties button - publish file properties
/// </summary>
private void PropertiesButton_Click(object sender,

System.EventArgs e)
{
PhoneViewNode vNode = (PhoneViewNode)FileTreeView.SelectedNode.Tag;
try
{

ISCDeviceStorageFile myFile =
(ISCDeviceStorageFile)(vNode.Storage);

MessageBox.Show ("File " +FileTreeView.SelectedNode.FullPath +
"\nFile size " + myFile.Size +
"\nLast modified date " + myFile.LastModified,
"File Properties",
MessageBoxButtons.OK, MessageBoxIcon.Information);

}
catch // probably means the phone has disconnected
{
}

}

The copying functions are both asynchronous and so we need a slightly
more complex framework, though not much more complex. In each case,
we will need to put up a dialog to ask the user which file on the PC should
be copied or which directory on the PC is to receive the file from the
phone. In an early version of this application I used the common dialogs
for opening and saving files, but they had excess baggage that didn’t fit
well with their usage here, so I replaced them with simple dialogs that
display a tree view of the PC filing system and allow the user to select a

72 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

file or a directory. I don’t include the code here because it is purely C#
Win32 code; it can be found with the complete source code for the book.

Once we have the name of the desired file or target directory, we can
call the relevant copy function. However, file copying is an asynchronous
task and so we will get progress and completion events (at least). There-
fore, before we try the copy, we will need to set up the event handlers.
We extend the interface we used before:

public interface SCOMForm
{
// Called when phones are connected or disconnected
void UpdatePhoneList();

// Called when there is progress during a file copy
void FileCopyProgress(int aRequestId, int aPercentComplete);
// Called when a copy attempts to overwrite a file
void FileCopyExistingFileFound(int aRequestId, string aFileName,

System.DateTime aTargetDate, int aTargetFileSize,
System.DateTime aSourceDate, int aSourceFileSize,
out ScOverwrite aOverwrite, out bool aCancel);

// Called when a file copy is complete
void FileCopyComplete(int aRequestId, int aCompletionCode);
// Called when an error occurs during a copy
void FileCopyError(int aRequestId, ScErrorDescription aErrorDesc,

int aErrorCode, bool aCanContinue, out bool aContinue);

// Called from a progress form to cancel an operation
void CancelOperation();
// Called to ascertain whether a copy operation is canceled
bool IsOperationCanceled();

}

We could just put up an hourglass during the copy, but that would be
a waste – the progress event handler provides a measure of progress and
we can use that to keep the user informed when we are copying a large
file. It also gives us a means of canceling the copy operation if desired.
Therefore, we will have a progress dialog that includes a progress bar and
a cancel button.

Within the copy function, we cannot complete the copy operation
because of its asynchronous nature.

/// <summary>
/// Event for Copy From button - copy a file from the PC to a
/// directory
/// </summary>
private void CopyFromButton_Click(object sender, System.EventArgs e)
{
ChooseFileForm ff = new ChooseFileForm(true);
ff.SetTitle("Choose File");
if((ff.ShowDialog()== DialogResult.OK) && (ff.ChosenName != ""))
{

string newFileName = ff.ChosenName;
progressForm = new ProgressForm(this);
progressForm.Caption.Text = "Copying " + newFileName +

SIMPLE ACTIONS ON FILES AND DIRECTORIES 73

" to " + FileTreeView.SelectedNode.FullPath;
progressForm.ProgressBar.Value = 0;

PhoneViewNode selectedNode =
(PhoneViewNode)FileTreeView.SelectedNode.Tag;

try
{
ISCDeviceStorageDirectory myDir =

(ISCDeviceStorageDirectory)(selectedNode.Storage);
cancelOperation = false;
doingCopyFromPC = true;
int startPos = newFileName.LastIndexOf(@"\")+1;
newCopyFileName = newFileName.Substring(startPos);

int requestId = myDir.CopyFileFromPC(newFileName);
progressForm.ShowDialog();

}
catch // probably means the phone has disconnected
{
}

}
}

/// <summary>
/// Event for Copy To button - copy a file to the PC
/// </summary>
private void CopyToButton_Click(object sender, System.EventArgs e)
{
PhoneViewNode selectedNode =

(PhoneViewNode)FileTreeView.SelectedNode.Tag;
ISCDeviceStorageFile myFile =

(ISCDeviceStorageFile)(selectedNode.Storage);
ChooseFileForm ff = new ChooseFileForm(false);
ff.SetTitle("Choose Target Directory");
if((ff.ShowDialog()== DialogResult.OK) && (ff.ChosenName != ""))
{

string newPath = ff.ChosenName;
progressForm = new ProgressForm(this);
progressForm.Caption.Text = "Copying " +
FileTreeView.SelectedNode.FullPath + " to " + newPath;

progressForm.ProgressBar.Value = 0;

cancelOperation = false;
doingCopyFromPC = false;
newCopyFileName = "";
try
{
int requestId = myFile.CopyToPC(newPath);
progressForm.ShowDialog();

}
catch // probably means the phone has disconnected
{
}

}
}

The SCOMApp class has very simple event handlers that just pass the
events through to the supplied SCOMForm:

74 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

public void OnDeviceCopyStorageFileProgress(int aRequestId,
string aFrom, string aTo, int aPercentComplete, out bool aCancel)

{
mySCOMForm.FileCopyProgress(aRequestId, aPercentComplete);
aCancel = mySCOMForm.IsOperationCanceled();

}

Then we can do a simple update in the EFBForm class:

/// <summary>
/// Progress event for asynchronous file copy
/// </summary>
public void FileCopyProgress(int aRequestId, int aPercentComplete)
{
if(progressForm != null)
{

progressForm.ProgressBar.Value = aPercentComplete;
}

}

The progress form also has code to handle the user canceling the
operation. In this case all we do is remember that the operation is canceled
for the next opportunity. At the time of writing, SCOM does not allow pre-
emptive canceling of a copy operation. The IsOperationCanceled()
method is used by the SCOMApp class.

/// <summary>
/// Button click event called when cancel is selected from the
/// progress form.
/// The cancel is stored for the next opportunity.
/// </summary>
public void CancelOperation()
{
cancelOperation = true;

}

/// <summary>
/// Return whether an asynchronous operation is to be canceled
/// </summary>
public bool IsOperationCanceled()
{
return cancelOperation;

}

Of course, the progress event handler is not the only event handler
associated with file copying. As with the progress event, we have very
simple event handlers in SCOMApp to pass events through:

public void OnDeviceCopyStorageFileComplete(int aRequestId,
int aCompletionCode)

{

SIMPLE ACTIONS ON FILES AND DIRECTORIES 75

mySCOMForm.FileCopyComplete(aRequestId, aCompletionCode);
}

public void OnDeviceCopyStorageFileError(int aRequestId,
ScErrorDescription aErrorDesc,
int aErrorCode, bool aCanContinue, out bool aContinue)

{
mySCOMForm.FileCopyError(aRequestId, aErrorDesc, aErrorCode,

aCanContinue, out aContinue);
}

public void OnDeviceCopyStorageFileExistingFileFound(int aRequestId,
string aFileName,
System.DateTime aTargetDate, int aTargetFileSize,
System.DateTime aSourceDate, int aSourceFileSize,
out ScOverwrite aOverwrite, out bool aCancel)

{
mySCOMForm.FileCopyExistingFileFound(aRequestId, aFileName,

aTargetDate, aTargetFileSize,
aSourceDate, aSourceFileSize,
out aOverwrite, out aCancel);

}

At the least, we will need a file copy complete event which we can use
to close the progress dialog. This also completes the file copy operation
by creating the new entry for the tree view. As with other events from
SCOM, we route this through the OnPaint method.

/// <summary>
/// File copy complete event for asynchronous file copy
/// </summary>
public void FileCopyComplete(int aRequestId, int aCompletionCode)
{
if((aCompletionCode == 0) && doingCopyFromPC)
{

// We will need to update the file tree view for the new file
pendingFileAddition = true;
Invalidate();

}
if(progressForm != null)
{
// Complete and clear the progress form
progressForm.ProgressBar.Value = 100;
progressForm.DialogResult = DialogResult.OK;
progressForm.Close();
}

}

/// <summary>
/// Some operations (normally triggered by events) cannot be
/// carried out directly. They are achieved by setting flags and
/// causing a repaint.
/// The use of OnPaint is a bit crude but it is an easy event to
/// trigger.
/// </summary>
protected override void OnPaint(

76 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

System.Windows.Forms.PaintEventArgs e)
{
// If we have a pending update to the phone list then do it
if(pendingPhoneViewUpdate)
{

ResetPhoneList();
pendingPhoneViewUpdate = false;

}
else if(pendingFileAddition)
{

UpdateForCopiedFile();
pendingFileAddition = false;

}
base.OnPaint(e);
}

/// <summary>
/// Update the tree view for a copied file.
/// This is called after a file copy completes successfully.
/// This code cannot be run directly from the copy complete event
/// as that is in a different thread and has access problems.
/// </summary>
private void UpdateForCopiedFile()
{
lock(FileTreeView)
{

doingCopyFromPC = false;
PhoneListBox.BeginUpdate();
// Make a new entry for the directory we are copying to
TreeNode fileNode = new TreeNode(newCopyFileName);
try
{
string fullPath =

FileTreeView.SelectedNode.FullPath+newCopyFileName;
ISCDeviceStorageFile file =
(ISCDeviceStorageFile)currentPhone.device.get_Storage(fullPath);
if(file != null)
{

fileNode.Tag = (object)(new PhoneViewNode(newCopyFileName,
PhoneViewNode.NodeType.File, (object)file));

FileTreeView.SelectedNode.Nodes.Add(fileNode);
}

}
catch // probably means the phone disconnected
{
}
doingCopyFromPC = false;
newCopyFileName = "";
PhoneListBox.EndUpdate();
Invalidate();

}
}

We also have a dialog for attempts to overwrite an existing file and to
report errors. The error handler could be elaborate, but in this example I
have left it basic.

ERROR HANDLING AND DISCONNECTION 77

/// <summary>
/// File already exists event for asynchronous file copy
/// </summary>
public void FileCopyExistingFileFound(int aRequestId,
string aFileName,
System.DateTime aTargetDate, int aTargetFileSize,
System.DateTime aSourceDate, int aSourceFileSize,
out ScOverwrite aOverwrite, out bool aCancel)

{
if (MessageBox.Show("File " + aFileName +

" already exists. Do you want to overwrite it?",
"Confirm Overwrite",
MessageBoxButtons.YesNo, MessageBoxIcon.Question,
MessageBoxDefaultButton.Button2)
== DialogResult.Yes)

{
aOverwrite = ScOverwrite.scOverwriteYes;
aCancel = false;

}
else
{

aOverwrite = ScOverwrite.scOverwriteNo;
aCancel = true;

}
}

/// <summary>
/// File copy error event for asynchronous file copy
/// </summary>
public void FileCopyError(int aRequestId,
ScErrorDescription aErrorDesc, int aErrorCode,
bool aCanContinue, out bool aContinue)

{
aContinue = false;
if(aCanContinue)
{

if (MessageBox.Show("Error " + aErrorDesc.ToString() +
" - do you want to continue?",
"Copy Error", MessageBoxButtons.YesNo, MessageBoxIcon.Error,
MessageBoxDefaultButton.Button2)
== DialogResult.Yes)

{
aContinue = true;

}
}
else
{

MessageBox.Show("Error " + aErrorDesc.ToString(), "Copy Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}
}

5.9 Error Handling and Disconnection
Often the most difficult part of an application is handling errors: that cer-
tainly can be true of Connectivity applications. There are many possible

78 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

sources of error. Some are predictable – you could try to alter a ROM
drive or to set an invalid name – while others are less predictable. The
most common is disconnecting the smartphone – the user can disconnect
it at any time.

In the case of the example file browser that we are developing, the
design limits the damage to some degree. If any file operation is underway
then the relevant dialog is modal so we cannot have more than one active
at a time. If any of the synchronous actions are underway (delete,
rename, properties display or directory creation) when the smartphone
disconnects then an exception will be generated. If a file copy operation
is underway then it will asynchronously complete with a failure error
code. If the application was expanding directory contents then again an
exception results.

It can be seen that the key is writing the code with failure in mind;
if you write a long sequence of actions then be aware that any of the
actions may fail and you may need to unwind. You should plan to test
your application by disconnecting the smartphone at all possible points,
but a complex sequence will make it almost impossible to ensure that
you have tested every case.

Even though the file browser application is simple enough to make
disconnection relatively painless, we still have to take some actions. We
will need to update our internal records and any graphical display; this is
done by the event handlers and the ResetPhoneList method that we
saw earlier.

5.10 Visual C++ Code for Application and Device
Management

This chapter (and later ones) pays most attention to C# as the programming
language of choice. However, it is quite possible to develop an application
using SCOM in Visual C++ or Managed C++. SCOM is implemented in
Visual C++ and existing PC suites have been implemented in Visual
C++. This is partly because the developers are used to Visual C++ and
partly because it eases the deployment on to earlier versions of Microsoft
Windows. This section shows how to use SCOM in Visual C++. It is
less extensive than the C# example but should let a C++ programmer
get up and running. Some of the details that were included in the C#
examples will be omitted from this section; use this section just to get
the C++ framework in place and then refer to the C# examples for the
functional details.

As with the description of using C#, most of the learning curve is
associated with using COM. I will not provide a full tutorial on using
COM or on C++ because there are ample books on the subjects. However,
this section should provide enough for most developers.

VISUAL C++ CODE FOR APPLICATION AND DEVICE MANAGEMENT 79

To begin with, we are going to use the #import directive to create
the SCOM wrapper classes in C++. This is not the only possible method;
the choice of which tool to use is up to the developer. It is also possible
to have the ClassWizard generate these wrapper classes. However, the
#import directive offers the advantage to C++ clients of providing access
to the vTable side of the interface, rather than via IDispatch::Invoke.

To make the SCOM libraries available to the entire project, the type
library is imported in the precompiled header file, StdAfx.h. The
following lines should be added to the file StdAfx.h:

#import "SymbianConnectRuntime.exe" named_guids no_namespace
#import "SCBAL.exe" named_guids no_namespace

Here, we instruct VC++ to import the type library contained in
SCOM’s executables, assuming that the files SymbianConnect-
Runtime.exe and SCBAL.exe are registered and are available in the
system include path or the current directory. The options named_guids
and no_namespace instruct #import to include true C++ GUIDs, rather
than make use of the __uuidof operator, and to import the classes into
the global namespace. It should be noted that classes imported without
the raw_interfaces_only option throw errors on failure, rather than
returning the error. The error checking code has been left out of some
examples for clarity.

The #import directive will produce the files SymbianConnect-
Runtime.tlh, SymbianConnectRuntime.tli, SCBAL.tlh and
SCBAL.tli that contain the generated smart pointer classes. There
will be one smart pointer class per interface defined by SCOM, with
the extension ‘Ptr’ to its name. For example, the ISCApplication
interface exposed by SCOM will be accessed via the smart pointer
ISCApplicationPtr, which is defined by #import.

Once SCOM is available for use, we can obtain a connection to its
top-level interface, ISCApplication. It is usual for the connection to
the ISCApplication interface to exist for the lifetime of the program,
and to be created by a globally available class. For example, in a
Document/View application the connection can be obtained when the
document is created; in a standard MFC application, the connection may
be created when the window is created.

Once a suitable class is identified, we add a data member to it for
SCOM’s application interface:

ISCApplicationPtr m_spApplication;

Since the m_spApplication member above is a smart pointer, it will
be automatically Release() d when the document object is destroyed.
Then, in a suitable place, we can use the CreateInstance method to
connect to the ISCApplication.

80 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

BOOL CImageBrowserDoc::Initialize()
{
// Create instance of the SCOM application object
HRESULT hr = m_spApplication.CreateInstance(CLSID_Application);
if (FAILED(hr))
{

TRACE0("Failed to create Symbian connect application object\n");
return FALSE;

}
...

Once we have access to SCOM methods, we can gain access to
connected phones. In essence, this is straightforward, but we have the
complications explained above in the C# example:

• Smartphones can be connected or disconnected while the application
is active.

• More than one smartphone can be connected at a time.

In order to manage these phones, we will create a new class,
CConnectedPhone, to contain the information that we want about
each connected phone.

During the creation of a real application, we would add attributes to the
CConnectedPhone class, but initially we can set it up with a minimum
of data. We will store a reference to the SCOM device ISCDevice2Ptr
and the device identification properties. We use the device identifier
(normally the phone IMEI number) to provide a unique identifier for the
phone, because we might have more than one phone of the same type
connected. We store the device name as the name chosen by the user
for the smartphone, and we store the device manufacturer and model
number in order to decide what operations we can carry out. None of
these properties can be changed by the application, so we only need to
store them and provide accessor functions. This gives us an initial class
declaration as follows:

class CConnectedPhone
{
public:
CConnectedPhone(ISCDevice2Ptr aspDevice);
∼CConnectedPhone();

ISCDevicePtr GetDevicePtr();
CString GetDeviceId();
CString GetDeviceName();
CString GetDeviceManufacturer();
CString GetDeviceModel();

private:
ISCDevice2Ptr m_devicePtr; // Pointer to SCOM device object
CString m_deviceId; // ID of device
CString m_deviceName; // Name of the device

VISUAL C++ CODE FOR APPLICATION AND DEVICE MANAGEMENT 81

CString m_deviceManufacturer; // Manufacturer of the device
CString m_deviceModel; // Model number of the device

};

The constructor is able to set all the member variables from the
ISCDevice2Ptr provided. The device ID, manufacturer and model are
simply attributes of the phone that can be retrieved.

The device name is slightly more complex. You can choose any
convention that you please, but it may be helpful to follow that used
by other applications (so as to share a name). When a phone is first
connected to the PC, it is referred to by the name of the manufacturer, for
example ‘My Nokia device’ for a Nokia phone. However, the user can
set their own name for the phone and this is then stored in the registry,
indexed by the phone’s device ID (IMEI number). If this name has been set
then our application should attempt to use it, so that the user is presented
with the familiar name. In this example, we will not provide code to edit
the name, but it would be straightforward to do so. If the user has not
set the device name then we will use the standard format based on the
manufacturer. Note that, because the device name is stored in the PC
registry, not on the phone, if the phone is connected to another PC, the
name will not be carried over.

CConnectedPhone::CConnectedPhone(ISCDevice2Ptr aspDevice)
{
// Cache the device pointer
m_devicePtr = aspDevice;

// The device ID, manufacturer and model are returned from SCOM
m_deviceId = LPCTSTR(m_devicePtr->Id);
m_deviceManufacturer = LPCTSTR(m_devicePtr->Manufacturer);
m_deviceModel = LPCTSTR(m_devicePtr->Model);

// The device name is for the convenience of the user.
// It may have been stored in the registry or may be generated.
CString subKey =

"Software\\Symbian\\Symbian Connect QI\\Devices\\");
subKey += m_deviceId;

HKEY hKey;
bool nameFound = false;

if(ERROR_SUCCESS == ::RegOpenKey(HKEY_CURRENT_USER, subKey,
&hKey))

{
//device is in registry - attempt to retrieve name
//first check type and size
CString valueName = "Name";
DWORD type;
DWORD size;
long errorCode = ::RegQueryValueEx(hKey, (LPCTSTR) valueName,

NULL, &type, NULL, &size);
if(ERROR_SUCCESS == errorCode && REG_SZ == type)

82 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

{
//now retrieve it
TCHAR * pData = m_deviceName.GetBufferSetLength (size);
errorCode = ::RegQueryValueEx (hKey, (LPCTSTR) valueName,

NULL, NULL, (BYTE *) pData,
&size);

m_deviceName.ReleaseBuffer();
}

if(ERROR_SUCCESS == errorCode)
{
nameFound = true;

}
}

if(!nameFound) //generate one from the device name
{

m_deviceName.Format("%s %s", m_deviceManufacturer,
m_deviceModel);

}
}

At this point we have the code that we require to cache useful
information about the phone when it is connected. The accessors are
straightforward and will not be listed here.

Now that we know what to do with a smartphone reference, we need
to fill in some form of collection to manage one or more smartphones.
Because the device ID is unique, we will set up a map with that as the
index field. We need methods to populate the phone map when the
application runs initially and then to handle events when devices are
connected or disconnected. This gives us a class declaration as follows:

typedef std::map<CString,CConnectedPhone*> ConnectedPhoneMap;

class CConnectedPhoneMap
{
public:
CConnectedPhoneMap();
∼CConnectedPhoneMap();

void InitializePhones(ISCDeviceCollectionPtr deviceCollection);
void AddPhone(ISCDevice2Ptr aspDevice);
void RemovePhone(CString deviceId);

CConnectedPhone* GetPhoneById(CString deviceId);

private:
ConnectedPhoneMap m_phoneMap; // Map of currently connected phones

};

The m_phoneMap member is straightforward map – refer to the STL
for details. The InitializePhones method is called from the class
which provides the collection of devices from an attribute of the ISCAp-
plication class as follows:

VISUAL C++ CODE FOR APPLICATION AND DEVICE MANAGEMENT 83

// Fragment of code from CSCOMDoc::Initialize
ISCDeviceCollectionPtr spConnectedDevices =
m_spApplication->ConnectedDevices;

if(spConnectedDevices->Count) //we have connected devices
{
m_phoneMap.InitializePhones(spConnectedDevices);

}
...

void CConnectedPhoneMap::InitializePhones(
ISCDeviceCollectionPtr deviceCollection)

{
// Create a map based on which devices are currently populated
long deviceNumber = deviceCollection->Count;
while(deviceNumber)
{

ISCDevice2Ptr spDevice = deviceCollection->Item[deviceNumber];
AddPhone(spDevice);
--deviceNumber;

}
}

The actual work of creating CConnectedPhone objects, adding them
to the map on creation, and deleting them and removing them from the
map on destruction, is contained in the AddPhone and RemovePhone
methods which can be called from outside the class as required:

void CConnectedPhoneMap::AddPhone(ISCDevice2Ptr aspDevice)
{
CConnectedPhone *phone = new CConnectedPhone(aspDevice);
if(phone)
{

CString deviceId = LPCTSTR(aspDevice->Id);
m_phoneMap[deviceId] = phone;

}
}

void CConnectedPhoneMap::RemovePhone(CString deviceId)
{
ConnectedPhoneMap::iterator ixPtr = m_phoneMap.find(deviceId);
if(ixPtr != m_phoneMap.end())
{

m_phoneMap.erase(ixPtr);
}

}

Note that the RemovePhone method will need to become more
elaborate to handle termination of any pending operations in a real
application.

As well as maintaining our map of connected phones, we will record
the currently selected phone. This concept is not necessary for all appli-
cations, but it is useful for most. We could present the user with a list-box

84 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

of devices and let them select one to operate on. We choose to record the
current phone by maintaining a device ID within our controlling class:

CString m_currentPhoneId; //Current phone

and we will provide an accessor and a method to set the current phone
by ID:

CString GetCurrentPhoneId() const {return m_currentPhoneId;}

void CImageBrowserDoc::SetCurrentPhone(CString deviceId)
{
m_currentPhoneId = deviceId;

}

When the application starts up, if any smartphones are connected
then we will set the first smartphone in the map to be the connected
smartphone. This is not entirely satisfactory, as the devices will be ordered
by device ID, which is not terribly meaningful to the user, but the user
will be able to change the current phone easily enough.

The call to CConnectedPhoneMap::InitializePhonesprovides
us with an initial set of connected phones (which may be empty), but we
need to register for events on device connection and disconnection and
then handle them.

In order to receive events from SCOM, we need to use COM Con-
nection Points. A special dispatch interface, ISCEvents, is defined by
SCOM that can be used to receive notifications when events occur. To
use this, several steps need to be taken. First we must provide a COM
object that implements the dispatch interface, ISCEvents. There are
several ways of doing this but we will use MFC, create a class derived
from CCmdTarget (either directly or indirectly such as CDocument) and
use this class’s dispatch map.

The following line is added to the class constructor:

EnableAutomation();

Next, method declarations are added to the class declaration:

void DeviceConnected (IDispatch* apDispatch);
void DeviceDisconnected (LPCTSTR apDeviceId);

and the method bodies are filled in:

void CExampleSCOMDoc::DeviceConnected (IDispatch* apDispatch)

VISUAL C++ CODE FOR APPLICATION AND DEVICE MANAGEMENT 85

{
ISCDevicePtr spDevice (apDispatch);
AddDevice(spDevice);

}

void CExampleSCOMDoc::DeviceDisconnected (LPCTSTR apDeviceId)
{
_ASSERTE (apDeviceId);

RemoveDevice(apDeviceId);
}

In fact, in a real application we would need to update any smartphone
list and possibly change the currently selected smartphone.

The exact syntax for these event handlers can be found by using a tool
such as OleView to examine the SCOM type library.

Having defined the event handlers, we need to include them in MFC’s
dispatch map. In the class header file we declare the dispatch and
interface maps:

DECLARE_DISPATCH_MAP()
DECLARE_INTERFACE_MAP()

and in its source file we wire in the dispatch and interface maps:

BEGIN_DISPATCH_MAP(CExampleSCOMDoc, CDocument)
//{{AFX_DISPATCH_MAP(CExampleSCOMDoc)
DISP_FUNCTION_ID(CExampleSCOMDoc, "DeviceConnected", 1, DeviceConnected,

VT_EMPTY, VTS_DISPATCH)
DISP_FUNCTION_ID(CExampleSCOMDoc, "DeviceDisconnected", 2,

DeviceDisconnected, VT_EMPTY, VTS_BSTR)
... Additional event handlers

//}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

BEGIN_INTERFACE_MAP(CExampleSCOMDoc, CDocument)
INTERFACE_PART(CExampleSCOMDoc, DIID_ISCEvents, Dispatch)

END_INTERFACE_MAP()

The syntax used by MFC for dispatch maps can be confusing (and I
am not convinced that the use of ‘helpful’ macros to hide details from the
developer makes it any easier), but these constructs do not change, so you
can probably copy and paste them from an example in the SCOM SDK.

Finally, with the dispatch interface implemented, we can advise the
SCOM application object of our sink interface. Normally, this is done
immediately after the ISCApplication connection has been made:

LPUNKNOWN pUnkSink = GetDispatch(FALSE);
AfxConnectionAdvise(m_spApplication, DIID_ISCEvents,

pUnkSink, FALSE, &m_dwCookie);

86 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

m_dwCookie is a DWORD data member that belongs to the class. When
we have finished handling events (normally on destruction of the con-
trolling class), we must call AfxConnectionUnadvise and pass in the
cookie again.

In order to use AFX we need to add the following line to the applica-
tion’s stdafx.h file:

#include <afxctl.h>

At this point we can access connected smartphones. The next stage is
to navigate through the smartphone filing system.

5.11 Visual C++ Code for Drive and Directory Navigation

Just as in the C# examples, we use the StorageDrives member
of a device to access the drives on the phone and then we use the
RootDirectory, ChildDirectories and ChildFiles members
to navigate around the drives, as the following, deliberately incomplete,
example shows:

CConnectedPhone *currentPhone = GetPhoneById(GetCurrentPhoneId());
ISCDeviceStorageDriveCollectionPtr spDrives;
spDrives = currentPhone->GetDevicePtr()->StorageDrives;
int numDrives = spDrives->Count;
// Do something with each drive based on its path
for(int idx = 1; idx <= numDrives ; idx++)
{
ISCDeviceStorageDrive2 *spDrive = spDrives->Item[idx];
CString driveName = LPCTSTR(spDrive->Path);
ISCDeviceStorageDirectory* spRootDir = spDrive->RootDirectory;
...

}

RecurseDirectory(ISCDeviceStorageDirectory *apDirectory)
{
ISCDeviceStorageFileCollectionPtr spFiles;
spFiles = apDirectory->ChildFiles;
int numFiles = spFiles->Count;
for(int fidx = 1 ; fidx <= numFiles ; fidx++)
{

ISCDeviceStorageFile *spFile = spFiles[fidx];
CString filePath = LPCTSTR(spFile->Path);
...

}

ISCDeviceStorageDirectoryCollectionPtr spDirs;
spDirs = apDirectory->ChildDirectories;

int numDirs = spDirs->Count;
for(int didx = 1 ; didx <= numDirs ; didx++)
{

VISUAL C++ CODE FOR SYNCHRONOUS AND ASYNCHRONOUS OPS 87

ISCDeviceStorageDirectory *spDir = spDirs[didx];
CString dirPath = LPCTSTR(spDir->Path);
...
RecurseDirectory(spDir);

}
}

Extensions of this code will allow us to populate a tree or list view
with directories and files, for example. As a shorthand for direct access,
we can use the ISCDevice::GetStorage() method to obtain a
generic storage object which we can then query for either a directory or
file interface.

CConnectedPhone *currentPhone = GetPhoneById(GetCurrentDeviceId());
ISCDeviceStoragePtr spDeviceStorage;
spDeviceStorage =
currentPhone->GetDevicePtr()->GetStorage(_bstr_t("C:\\");

ISDeviceStorageDirectoryPtr spDir;
HRESULT hRes = spDeviceStorage.QueryInterface(
IID_ISCDeviceStorageDirectory, &spDir);

if(SUCCEEDED(hRes))
{
...

}

5.12 Visual C++ Code for Synchronous and Asynchronous
Operations

If we want to copy files or format drives on the phone then we will need
to set up event handlers for the file copy and format events. This is done
in the same way that we set up the device connected and disconnected
event handlers.

First we extend the dispatch map:

BEGIN_DISPATCH_MAP(CExampleSCOMDoc, CDocument)
//{{AFX_DISPATCH_MAP(CExampleSCOMDoc)
DISP_FUNCTION_ID(CExampleSCOMDoc, "DeviceConnected", 1, DeviceConnected,

VT_EMPTY, VTS_DISPATCH)
DISP_FUNCTION_ID(CExampleSCOMDoc, "DeviceDisconnected", 2,

DeviceDisconnected, VT_EMPTY, VTS_BSTR)

DISP_FUNCTION_ID(CExampleSCOMDoc, "DeviceFormatStorageDriveProgress",10,
DeviceFormatStorageDriveProgress, VT_EMPTY, VTS_I4 VTS_BSTR VTS_I4)
DISP_FUNCTION_ID(CExampleSCOMDoc, "DeviceFormatStorageDriveError", 11,

DeviceFormatStorageDriveError, VT_EMPTY, VTS_I4 VTS_I4 VTS_I4)
DISP_FUNCTION_ID(CExampleSCOMDoc, "DeviceFormatStorageDriveComplete",

12, DeviceFormatStorageDriveComplete, VT_EMPTY, VTS_I4 VTS_BSTR VTS_I4)
DISP_FUNCTION_ID(CExampleSCOMDoc, "DeviceCopyStorageFileProgress", 13,

DeviceCopyStorageFileProgress, VT_EMPTY, VTS_I4 VTS_BSTR VTS_BSTR VTS_I4
VTS_BOOL)
DISP_FUNCTION_ID(CExampleSCOMDoc, "DeviceCopyStorageFileError", 14,

DeviceCopyStorageFileError, VT_EMPTY, VTS_I4 VTS_BSTR VTS_I4 VTS_BOOL

88 AN EXAMPLE PC CONNECT APPLICATION – A FILE BROWSER

VTS_PBOOL)
DISP_FUNCTION_ID(CExampleSCOMDoc,

"DeviceCopyStorageFileExistingFileFound", 15,
DeviceCopyStorageFileExistingFileFound, VT_EMPTY, VTS_I4 VTS_BSTR VTS_DATE
VTS_I4 VTS_DATE VTS_I4 VTS_PI4 VTS_PBOOL)
DISP_FUNCTION_ID(CExampleSCOMDoc, "DeviceCopyStorageFileComplete", 16,

DeviceCopyStorageFileComplete, VT_EMPTY, VTS_I4 VTS_I4)

//}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

and we add declarations for the event handlers:

void DeviceCopyStorageFileProgress(long aRequestId, LPCTSTR aFrom,
LPCTSTR aTo, long aPercentComplete, BOOL * apCancel);

void DeviceCopyStorageFileError(long aRequestId,
ScErrorDescription aErrorMessage, long aErrorCode,
VARIANT_BOOL aCanContinue, VARIANT_BOOL * apContinue);

void DeviceCopyStorageFileExistingFileFound(long aRequestId,
LPCTSTR aFileName,
DATE aTargetFileDateTime, long aTargetFileSizeBytes,
DATE aSourceFileDateTime, longG aSourceFileSizeBytes,
ScOverwrite* apOverwriteFile, VARIANT_BOOL * apCancel);

void DeviceCopyStorageFileComplete(long aRequestId,
long aCompletionCode);

void DeviceFormatStorageDriveProgress(long aRequestId,
LPCTSTR apInformation, long aPercentageComplete);

void DeviceFormatStorageDriveError(long aRequestId,
ScErrorDescription aErrorMessage, long aErrorCode);

void DeviceFormatStorageDriveComplete(long aRequestId,
LPCTSTR apInformation, long aCompletionCode);

Finally, we would define the event handlers themselves. In a real applica-
tion they will need to update progress dialogs or raise informative dialogs.

Having defined the event handlers, copying files involves just calling
either the CopyToPC()method on an ISCDeviceStorageFileobject
or the CopyFromPC()method on an ISCDeviceStorageDirectory
object.

The synchronous methods, such as Delete() and Rename(), require
no special techniques to invoke.

6
Programming for Symbian OS

The possibilities of PC Connectivity applications are far from exhausted
by the creation of applications written solely in PC-side code. SCOM
provides easy access to file management methods, but we can create
additional services by writing servers on a Symbian OS smartphone.
Doing this requires the ability to program for Symbian OS.

Programming for Symbian OS is potentially a huge subject. There are a
number of books, some produced by Symbian Press and some by external
companies with extensive experience of programming for Symbian OS.
Each of these books makes its own assumption about the type of software
that the reader wants to create. The most common assumption is that
the reader wants to create user interface applications, because these are
the most commonly written programs outside Symbian and the smart-
phone manufacturers. However, Symbian OS PC Connectivity services
do not require a user interface – the user interface is normally located
on the PC, and so this book covers Symbian OS programming without
regard to the phone user interface. This has the added advantage of
making the examples applicable to more models of phones – user inter-
face applications are more restricted because of user interface variations
between phones.

This chapter is necessarily a summary; it contains enough information
to cover the services described in later chapters, but neglects some areas
that a more advanced developer might want to know about.

This chapter assumes that the reader knows about C++. It is pos-
sible to develop for Symbian OS using other languages (such as Java,
OPL and even Visual Basic), but it is difficult to create PC Connec-
tivity services in these languages, and C++ is the ‘native’ language
for Symbian OS. Symbian OS uses a high proportion of the C++ lan-
guage and so a Symbian OS developer needs to be comfortable with
Object Oriented principles and how those principles are implemented
in C++.

90 PROGRAMMING FOR SYMBIAN OS

6.1 Building a Project

The first stage is to create a project so we can build our software. There are
existing build mechanisms for Microsoft Windows development tools and
for other environments. However, when building software for Symbian
OS we want to be able to build for the emulator as well as for the target
(ARM) hardware. The emulator is an environment that runs on a PC that
makes development and debugging easier, and we will cover it in more
detail below. For now, we need to be able to build with two (or more)
development environments and so Symbian has developed build tools
that allow us to do this from a common starting point.

6.1.1 .mmp and bld.inf Files
Each executable that we build is specified in a .mmp file. The name
comes from a tool, makmake, which has been replaced by friendlier
tools. The .mmp file lists the name and type of the executable that we
are building, sets up some of the environment (notably the directories to
be searched for source and include files) and lists the source files and
libraries to be linked.

We can directly build the executable for any of the desired target
environments via the .mmp file, or we can generate project files for
our desired IDE (Metrowerks CodeWarrior) so we can build directly in
the IDE.

Here is an example .mmp file – in fact it is the one we will use for our
first PC Connectivity plug-in in Chapter 7.

TARGET echocs.cs
TARGETTYPE DLL
TARGETPATH \SYSTEM\LIBS
UID 0x10003D52 0x101FEAFD //KCustomServerRemoteServerUnicodeUid

SOURCEPATH .
SOURCE echocssvr.cpp
SOURCE echocssess.cpp

USERINCLUDE .
SYSTEMINCLUDE \epoc32\include
LIBRARY euser.lib
LIBRARY ectcpadapter.lib

DEFFILE .\echocs.def

• The TARGET line specifies the name of the executable. Most executa-
bles will be either .exe or .dll files, but some types of plug-in have
specific file extensions.

• The TARGETTYPE line specifies that the executable is a DLL. This one
is a plug-in, but a stand-alone executable could be a .exe.

BUILDING A PROJECT 91

• The TARGETPATH line is optional. It specifies where the target will
be placed. This has no effect on ARM builds, because a separate
mechanism is used to locate executables, but it is relevant for emulator
builds. Some plug-ins have fixed locations.

• The UID line specifies the type of the executable. The first value
(0×10003D52) specifies that this is a specific type of PC Connectivity
plug-in, and the second value (0×101FEAFD) differentiates between
executables of the same type.

• The SOURCEPATH line specifies where source files are located relative
to the .mmp file. In this case they are located in the same directory (‘.’
means the current directory). Some developers use multiple source
directories and this line supports that.

• The SOURCE line lists the source files to be built. In this case there are
two. It is possible to list more than one source file per line, but I find
one per line convenient for change tracking.

• The USERINCLUDE line specifies where local include files are located.
Again, this example just refers to the current directory, but a value such
as ..\inc would refer to a directory named inc at the same level.

• The SYSTEMINCLUDE line specifies where system include files are
located. The conventional location for this is \epoc32\include.

• The LIBRARY line specifies libraries to be linked to the executable.
As with SOURCE lines, it is possible to specify multiple libraries on
one line.

• The DEFFILE line specifies a .def file to be used. This is not relevant
to .exe files but it specifies the ordinals for a DLL.

Having created your .mmp file, you still cannot build directly from it.
First, you need to create a component definition file. This is always called
bld.inf and lists the .mmp files to be built.

Here is the bld.inf file that accompanies the .mmp file shown above.

PRJ_MMPFILES
echocs.mmp

The bld.inf file consists of sections introduced by lines of fixed text.
The PRJ_MMPFILES line introduces a section that lists .mmp files, one
per line. In this case we will build just the one executable, but we could
build any number.

The bld.inf format supports a range of sections that are useful in
more advanced situations. For example, the EXPORT line introduces a list
of files to be copied to the\epoc32\include directory. This is vital for

92 PROGRAMMING FOR SYMBIAN OS

system components that want to publish their public header files, but is
not necessary for an executable that is not intended to be linked against
by any other component. Similarly, it is possible to specify exactly which
targets the executable is to be built for. Omitting this will allow the
executable to be built for all supported targets.

6.1.2 Build Commands

Given a directory with the bld.inf and the echocs.mmp file, the
command

bldmake bldfiles

reads the files and creates a command file abld.bat that can be used to
actually build the executable. If you look inside abld.bat (do not edit
it), you will see that it just calls a Perl script and passes on arguments.
The command

abld build winscw udeb

will build the executable for the emulator. In fact abld supports several
commands, and these commands have options. Full information on the
build tools can be found in the SDK, but abld help gives a quick list of
the commands. For now, we will just touch on two of the commands. The
abld build command allows the platform (or target) to be specified
and allows a build (udeb for debug, or urel for release) to be specified.
If the build is not specified then both debug and release builds are built.
If the platform is not specified then all supported platforms will be built.

For emulator use we will normally use the udeb build. In the above
example, winscw specifies the CodeWarrior emulator platform while
wins specifies the older Microsoft Visual Studio emulator platform.
arm4, thumb and armi are alternative ARM builds and you need to find
out which build a specific Symbian OS smartphone expects.

Although we normally use the debug build for the emulators, we may
use both debug and release builds for ARM platforms. Obviously, the
release build should be used for final software, but the debug build can
be used to enable logging.

The other command that we will use is

abld makefile

to create a project file for the CodeWarrior IDE. The project file can
be found in the \epoc32\build directory. This allows you to create
a project and then use the IDE for normal editing and building. Bear

BUILDING A PROJECT 93

in mind that you must not add files to the project or remove files from it
in the IDE; if you do then the .mmp file will not be correct. Instead, you
must exit from the IDE, edit the .mmp file and run bldmake again. This
process is slightly more involved than always working directly in the IDE,
but it does maintain both the emulator and ARM builds together.

6.1.3 Common Directories
When we have built our component or generated the project file, we need
to know where to find it. Symbian OS uses a standard set of directories
and you will very quickly find your way around them. The SDK that
you install will include directions on setting up a development drive
(the original Symbian OS building tools were intended to be used with
a separate mapped drive for each development environment, but more
recent tools support a more flexible approach). On that development
drive you will find a directory named epoc32. The key directories are
located under this point.

• The BUILD directory contains projects created by the abld make-
file command.

• The include directory is where Symbian OS header files are located.

• The release directory is where all binaries for Symbian OS are
located. This directory has sub-directories for each target, for example
winscw and armi. Within each target directory are urel and udeb
directories for release and debug builds respectively.

• The gcc and tools directories contain standard tools for building
and similar tasks. Your path will normally need to be set up to include
these directories.

• The data and winscw directories contain data files for specific
targets.

You need to know a little more about the layout of the release,
data and winscw directories in order to fully use them. When you build
your component, the binaries will automatically be placed in the correct
directories. When Symbian or a smartphone manufacturer builds a ROM
image they use a file (called a .oby file) to control the copying of files
that include binaries, resource files and other data files to an image that
can then be used to create the ROM. The .oby file does away with
the need for all the files to start in the correct directories, but often the
directories are maintained for reasons of clarity. As a developer, you will
not be creating ROM images and so you will not need all the files that
make up a ROM. However, when you build executables for installation
on a real phone, they will be located in the relevant epoc32\release
directory.

94 PROGRAMMING FOR SYMBIAN OS

A real Symbian OS smartphone will have two or more physical drives.
It will always have at least a ROM drive, which is conventionally the z:
drive, and a writable drive, often the c: drive. More and more modern
smartphones have additional drives. These may be removable media such
as MMC cards or Memory Sticks, and some phones have a RAM drive.

In contrast, the emulator normally has access to only one physi-
cal drive – that of the PC on which it is running. In order to emu-
late the Symbian OS smartphone, the emulator maps certain direc-
tories to the z: and c: drives. In fact, you can configure addi-
tional mapped drives if you need to. The z: drive is mapped to the
epoc32\release sub-directory that you run the emulator from; com-
monly the epoc32\release\winscw\udeb directory and executables
that you build for the emulator will be placed here or in a relevant
sub-directory. The c: drive is mapped to epoc32\winscw\c and you
can directly place files here or copy files from here.

6.1.4 More on UIDs

The example .mmp file listed above included a UID for the component.
This number is not just one that I chose at random. To apply for a
UID, email uid@symbiandevnet.com and ask for a range of numbers,
typically up to 10. You can use values in the range 0×01000000 to
0×0fffffff for testing, but you must not use these values for any
software that you release.

6.1.5 .def Files and Freezing

If you build a DLL then it exposes (or exports) a number of methods
that can be called from other executables. Methods are exported only
when necessary and this can be a very good way of helping to maintain
backwards compatibility. You can just declare and define your methods
and leave it up to the compiler and linker to order and declare your
exported methods. However, if you subsequently create a new version of
the DLL and add a new exported method or change or delete an existing
one, then the order and type of the exported methods will change. This
means that any other component linked against the DLL will need to
be recompiled.

If, for example, if you remove an exported method then any other
component that uses will definitely need to be changed. However, if
you leave existing methods unchanged and just add one or more new
methods, then it should be possible to add these in such a way as to
allow other components to use the original methods without having to be
recompiled. For an isolated developer or development team, maintenance
of backwards compatibility may be irrelevant, but for Symbian and the
smartphone manufacturers it can have a huge effect on the integration

BUILDING A PROJECT 95

costs of developing a smartphone. It also allows application developers
to sell their applications for more than one model of smartphone.

One of the requisites to maintaining backwards compatibility is the
ability to control the exported methods from a DLL (there are other
requirements in terms of managing the details of changes). Therefore the
.mmp file specifies a .def file that states the ordinal for each exported
method. The .def file for the example built above is very simple:

EXPORTS
EchoCSServerNewL @ 1 NONAME

This component exports only one method. Because this is a PC
Connectivity plug-in, it is not intended to export an API to other com-
ponents – more normal DLLs may export a large number of methods.
However, the DLL has to export at least one method in order to be used.
In this case the NewL() method is exported to allow an instance of the
server to be created. This is standard for this type of PC Connectivity
plug-in and all components of this type must export exactly the same type
of method (the class name built into the mangled name will be different,
of course).

The good news is that you do not have to create this file manually.
The command abld freeze will generate a .def file for you based
on your binaries. Creating the .def file is referred to as ‘freezing’ the
exports, because it defines them; the .def file is then maintained under
source control along with the rest of your source and project files. Until
you have frozen the exports in this way, you will get warnings when
you build.

6.1.6 Making Installer (.sis) Files

Having built your executable, you will need to get it on to the Symbian OS
smartphone. With the emulator, this is not a problem as the executable
will be placed in the correct location; however, this does not work with
a real smartphone. Simply copying files into the right locations is not
practical for most users and, in any case, you may want to deliver an
application via a range of connections, including over the air. Therefore,
Symbian OS supports a software installer. The engine for this runs on
the phone and supports an application with a user interface. The same
engine can also be driven from the PC; in this case the user interface
runs remotely, but the underlying behavior is common. Regardless of
the location of the user interface, the install file format is the same. The
generated install file is referred to as a .sis file, and the file that is used
to generate the .sis file is a .pkg (or package) file.

Here is a .pkg file for an echo custom server plug-in (this is the
example that we will build in Chapter 7).

96 PROGRAMMING FOR SYMBIAN OS

; SIS package file for Echo Custom Server
;
; Language – only English but no included text anyway
&EN

; Caption, UID and version
#{"Echo Custom Server"},(0x101FEAFD),0,0,0

; Files to install
"\epoc32\release\thumb\urel\echocs.cs" -
"!:\System\Libs\echocs.cs"

This particular package file is aimed at the Nokia 6600 and so uses
a thumb build. If you write a custom server that is source compatible
with multiple phones, then you must expect to build it multiple times and
potentially create a package for each target phone (in practice, you may
find that a single package may be compatible with a family of phones).

The .sis file can be generated with the command

makesis echocs.pkg echocs.sis

This command omits a certificate for the .sis file and so a user
who tries to install this will receive warnings of unsigned software.
Creating a certificate uses the makekeys command – type the command
without any arguments to obtain a list of options – but creation of a
trusted certificate, as opposed to a self-signed one, requires a key signing
authority. Symbian runs a signing program for which you can obtain
details from the Symbian developer network. Once you have a signed
certificate file, you can add a reference to it into the .pkg file.

Once you have the .sis file, it can be installed directly from the
PC or copied to the phone and then installed using the built-in applica-
tion manager.

It is also possible to use the same install application to install Java
applications and MIDlets, but this book will not cover creating services
in Java.

6.2 Using the Emulator

6.2.1 What is the Emulator?
Earlier sections have mentioned the emulator. This section provides
some more detail on its use. Developing for embedded hardware is more
difficult than developing for hardware such as a PC: the emulator provides
a stepping stone. The emulator is, as its name suggests, an emulation of
Symbian OS on a Windows PC. This allows software to be developed
and tested on the emulator before deployment on the target hardware.

USING THE EMULATOR 97

The emulator does not emulate the actual target hardware, so it needs
software built specially for it – you cannot take an executable built for
ARM and run it in the emulator. We saw the command

abld build winscw udeb

in an earlier section being used to build a component for the Metrowerks
CodeWarrior emulator.

The emulator is easier to use than the real Symbian OS smartphone for
development reasons, because it has a simpler deployment cycle – you
can just build and run a component directly for the emulator, whereas
for a real smartphone you need to build the component, deploy it on
the smartphone and then run it. Also, any log or data files are directly
accessible when using the emulator, but have to be copied off a real
smartphone. The final real gain is that it is possible to use the debugger that
comes with Metrowerks CodeWarrior or one of the other development
environments, which can drastically reduce development times, though
unfortunately this may not always be possible with PC Connectivity
because of interaction between the debugger and the connections used.

However, in some aspects that can make a real difference, the emulator
is not the same as the target hardware. The most obvious difference is
that the emulator will not have access to the same hardware as a
real smartphone. The emulator will not directly be able to use telephony
hardware or infrared or Bluetooth hardware. In some cases, there are ways
to work round these limitations, but they require specialized hardware
(in the case of Bluetooth) or specialized configurations (to use separate
telephony hardware). Therefore, some types of testing will inevitably
require use of the real smartphone. For these reasons, some versions of
the emulator do not include the software for PC Connectivity.

A less obvious difference is that the emulator is not a perfect emulation
of Symbian OS. Currently available versions of the emulator run all the
Symbian OS processes in a single process on the PC. This allows some
behavior on the emulator (such as accessing memory owned by another
process) that does not work on target hardware, and there can be other
effects. For these reasons, it is wise not to rely on the emulator too much;
by all means use it, but test your software on a real smartphone at regular
intervals to avoid surprises.

6.2.2 Starting the Emulator

The emulator is started by calling a program called epoc.exe from
the relevant directory. To start the debug version of the CodeWarrior
emulator, you cd to the epoc32\release\winscw\udeb directory
and invoke epoc.exe.

98 PROGRAMMING FOR SYMBIAN OS

The emulator can take a few seconds to start up – effectively it is
booting Symbian OS. When it has started, you will see a window
containing a view of a Symbian OS smartphone. The actual graphics (the
fascia) is a bitmap, and the size and other details of the screen can be
configured. Figure 6.1 is a screen shot of the TechView emulator.

Figure 6.1 The TechView emulator

This emulator is based loosely on the old Psion Series 5 PDAs but is
used for testing purposes. Nokia provides a Series 60 emulator and UIQ
provides a UIQ emulator. The Series 60 emulator has the screen form
factor of Series 60 smartphones as shown in Figure 6.2. The UIQ emulator
has the screen form factor of UIQ smartphones as shown in Figure 6.3.

As you can see, the screen dimensions, icons and controls are different
on all of these emulators. If you are creating a GUI application then these
differences are crucial to good application design, but for servers without
a user interface they are irrelevant.

You can change the configuration of your emulator, if desired, by
changing the epoc32\data\epoc.ini file. This makes it possible
to map extra drives or perform other simple emulator customizations
if necessary.

The emulator also provides a console mode. In this mode no Symbian
OS GUI is provided. A command-line based console runs instead, which
is useful for automated testing purposes.

6.2.3 Driving the Emulator

The emulator provides a simulation of the screen of a Symbian OS
smartphone and some simulation of input methods. The actual input
methods supported by real Symbian OS smartphones vary and include

USING THE EMULATOR 99

Figure 6.2 Series 60 emulator screen form factor

touch-sensitive screens, jog-dials, joysticks and a range of telephone
keypad and other keys. If you are developing a GUI application then the
input mechanisms are of critical importance, but PC Connectivity services
normally do not expose a UI on the smartphone, so you need to know
how to use the emulator only to run applications that you need. That is
why this book contains almost no information on Symbian OS GUIs.

100 PROGRAMMING FOR SYMBIAN OS

Figure 6.3 UIQ emulator screen form factor

You can use the Windows PC mouse to select screen areas or keys
on the emulator, which is sufficient for most purposes. For some UIs, the
F1 key is the menu key and will bring up the application menu. Once
opened, use arrow keys to navigate around the menu.

6.3 Types and Naming Conventions

Symbian OS C++ has some naming conventions that you need to know
in order to use it safely. At a minimum, you need to know what the

TYPES AND NAMING CONVENTIONS 101

conventions tell you about system classes, but you would be well advised
to follow the same conventions for your own code; your developers
can just learn the conventions and follow them regardless of the source
of classes.

The Symbian OS class naming conventions are based on the types of
resources the classes own and how they should be destroyed. We will
consider T-classes, C-classes and R-classes.

6.3.1 T-classes

T-classes are the simplest type of class; they do not own any separate
data and do not need a destructor.

Examples of T-classes are the ‘basic’ types such as Tint and enumer-
ated types (the enumerated class will be a T-class but the actual values
conventionally all begin with E). More complex classes can be T-classes
as long as they do not need a destructor. Although T-classes may not own
external data, they may own pointers as long as they do not own the data
pointed to.

Alongside T-classes for the basic types, constants conventionally begin
with a K. The most common constant that you may see is KErrNone,
which indicates success. The other common error values can be found
in e32std.h.

6.3.2 C-classes

The next type of class is C-classes. These are the most common type
of class. They all derive from CBase (either directly or indirectly) and
they need a destructor. Because they have a destructor, they can own
all manner of external data. One important feature of Symbian OS
programming is the cleanup stack. This is covered in some detail in the
next section, but for now it is sufficient to say that C-classes can be pushed
on to the cleanup stack but must have a virtual destructor so that, when
they are deleted as a CBase*, their destructors are called properly.

When a C-class is created, its contents are zeroed, so there is no need
to set all the members if zero is an acceptable value.

6.3.3 R-classes

R-classes are classes that own resources. In a way, C-classes that have
pointers to other objects on the heap that they own can be said to own
resources, but the resources owned by R-classes are normally owned
remotely. An example of an R-class is RFile which is a reference to a
file. The file is not an object that is directly owned by the class. Instead,
the RFile object owns a reference to the file that is maintained by the
file server. References to objects owned by other servers are common

102 PROGRAMMING FOR SYMBIAN OS

examples of R-classes. The contents of an R-class will be zeroed on
creation and the object is attached to their resources by a method such as
Open() or Create(); these may fail (if the server cannot be reached,
for example), so do remember to check the return value.

In contrast to C-classes, R-classes do not derive from CBase and do
not have a destructor. Instead, they have a method named Close() or
something similar that must be called to free up the resources. The actual
R-class will typically be small and resemble a T-class more than a C-class.

It is common to have R-classes as member variables of C-classes;
the C-class destructor must call the Close() method of the R-class.
However, remember that an R-class may fail to connect to its resource
owner, and this must be taken account of in the C-class constructor.

6.3.4 M-classes

The final type of class to be covered here is M-classes. M-classes are
interfaces (using the Java jargon) – that is, they are abstract classes that
are used for multiple inheritance. The Symbian OS term for these is Mixin
classes (hence the M). In later chapters we will encounter a number of
Mixin classes, commonly for observer classes.

6.4 Error Handling

Error handling is a critical issue for Symbian OS programming. This is
not because Symbian OS is more prone to errors than other embedded
operating systems, but because Symbian takes robustness seriously.

There are a range of possible causes of error: running out of memory
is the most obvious, but communications errors and other external events
can occur. Programming properly for robustness is considerably harder
than just programming for when everything goes according to plan,
but Symbian OS provides some help in the form of Leaves and the
cleanup stack.

6.4.1 Leaves and Traps

Leaving code is a form of exception handling. The User::Leave()
method is equivalent to throwing an exception, and catching is achieved
as part of a TRAP or TRAPD macro. The User::Leave() method
takes one integer argument, which is the error code (this should not
be KErrNone). If User::Leave() is called, control is immediately
returned to the innermost TRAP. By convention, any method that can
leave has a name that ends in L – this alerts developers who use the
method to the possibility of a leave. Obviously, if a method does not
itself call User::Leave() but calls other methods that can leave, then

ERROR HANDLING 103

it is itself a leaving function. There are a few exceptions to the naming
convention – either because a meaningful method name ends with L but
does not leave, or because a developer has neglected to put L on the end
of a leaving function – but it is generally observed and you should follow
it as well.

An alternative to leaving is to return an error value. Many methods
in Symbian OS return a TInt error code rather than leaving. In general,
a leave should be considered exceptional; if a method can commonly
return an error then it should probably return an error code rather than
leaving. Leaving code should normally be used where an error will cause
control to unwind up a number of levels rather than just one. One reason
for not using error codes everywhere is that setting up a TRAP macro
and calling Leave has an overhead: it is slower than just returning an
error code.

This is a fragment of code from a Connect plug-in from Chapter 10:

TRAPD(retVal, DoServiceL(aCmd, msgId));
if(retVal != KErrNone)
{
WriteErrorL(retVal, msgId);
}

The TRAPD statement declares the variable retVal and then calls
DoServiceL(). In this case DoServiceL() must be a method of type
void. If DoServiceL() does not leave (which will be the normal case)
then retVal will be set to KErrNone. If DoServiceL() does leave
then retVal will be set to the leave code, which can then be handled. In
this case, any error code will cause an error code to be returned, but other
code might need to take different actions depending on the specific code.

6.4.2 The Cleanup Stack
At this point, the alert reader will be wondering what happens to any
objects allocated on the heap when User::Leave() is called. Variables
declared on the stack will be removed when the stack pointer is reset,
but any objects left on the heap will constitute a memory leak and this is
not acceptable.

To get around the problems of memory leaks in leaving situations,
Symbian OS provides the cleanup stack. The cleanup stack is a stack of
pointers (and some other information). When an object is created on the
heap, a pointer to it can be pushed on to the stack. Whenever a TRAP
macro is used, a marker is placed on the cleanup stack, and if a leave
takes place then any objects left on the stack since the TRAP macro will
automatically be deleted.

The theory is simple, but there are implications that need to be under-
stood. Pointers to heap objects can be pushed on to the cleanup stack

104 PROGRAMMING FOR SYMBIAN OS

but pointers to objects on the stack cannot. This means that an object on
the stack will not get deleted during a leave, so you should place only
T-class objects on the stack, not C-class objects.

The cleanup stack is a true stack – you push pointers on to the stack
and pop them off. Therefore, it is not possible to pop an object off the
stack unless it is the top object on the stack, since the sequence of pops
must be the exact reverse of the sequence of pushes.

As one of the common causes of leaving is running out of memory,
Symbian OS has evolved a pattern for construction of complex objects
referred to as two-phase construction. In the first phase, an object is
allocated on the heap, but the constructor must not leave itself and must
not call any leaving functions. Once the object has been constructed, it
can be pushed on to the cleanup stack and a second-phase constructor,
normally called ConstructL(), can be called to set up the rest of the
data. Often this behavior is wrapped up in a static method that will
allocate and construct an object.

CRAgnCSServer* CRAgnCSServer::NewL(MCustomServerManager &aManager)
{
CRAgnCSServer* ecs = new (ELeave) CRAgnCSServer;
CleanupStack::PushL(ecs);
ecs->ConstructL(aManager);
CleanupStack::Pop(ecs);
return ecs;
}

This example allocates a new object of type CRAgnCSServer on the
heap and then pushes it on to the cleanup stack. Once it is safely on the
cleanup stack, the ConstructL() method can be called. If this leaves
then there will not be a memory leak, because the object will be deleted
by means of the cleanup stack.

Note that the destructor for the class has to handle being called partway
through the ConstructL() method in case of leaves. Therefore, it
should not make any assumptions about the state of any of its members.

The CleanupStack::Pop() method can be called with no argu-
ment, in which case it just pops the top item off the cleanup stack. It
can also be called with an integer argument, in which case it pops the
specified number of items off the cleanup stack. However, it can also
be called with a pointer as an argument. In release builds, this works in
the same way as CleanupStack::Pop() with no arguments – it just
pops the top item off the stack. In debug builds, it checks that the pointer
matches the top item before popping it. If it does not, then it raises a
panic (more on panics below). This means that any mismatched pushes
and pops will be flagged at an early stage during development, which is
why I recommend using this version of Pop().

The example code above is about as simple as the use of the cleanup
stack gets; the pop is very close to the push and it is clear what is going

ERROR HANDLING 105

on. Other patterns of use may have the Pop() further away from the
PushL() and these can be trickier to develop.

It can be seen that PushL() is a leaving function (shown by ending
in L). This is because it allocates memory to push the pointer on to the
stack. What happens if the PushL() fails to allocate memory to push
the pointer? That will itself cause a leave, so what happens to the pointer
that we were trying to push? The answer is that the cleanup stack always
maintains a spare entry at the end of the stack. The PushL() method
pushes the pointer on to the stack and then tries to allocate the spare. If
the allocation fails then at least the pointer has been pushed on and will
be dealt with.

Having said that leaving functions end with L, one of the exceptions
is functions that end in LC. The NewL() method shown above pushes
the object under construction on to the cleanup stack and then pops it
off before returning it. This leaves the cleanup stack in the same state
that it found it. However, often the code calling NewL() to create an
object wants to push the object on to the cleanup stack itself as part of
its own logic. In this case, NewL() will push the object on to the stack
and then pop it off again, and then the calling code will push it on again.
Obviously, this is wasteful, so often classes have an alternative NewLC()
method alongside the NewL() method. This creates the object but leaves
it on the cleanup stack. In this case, NewLC() is a leaving method and
the naming convention is extended to support LC as well as L.

Previously, we met three types of class: T-classes, C-classes and R-
classes. The cleanup stack handles C-classes that are derived from CBase
by calling their destructor when they are destroyed. This is why you must
have a virtual destructor for any C-class, to allow the base destructor to
access derived class destructors. It is also possible to push a pointer to a
T-class on to the cleanup stack. Take a look in the SDK at the different
overloaded versions of CleanupStack::PushL() and you will find
a version that takes a TAny* pointer. However, if a T-class object is
destroyed by the cleanup stack then its memory is simply freed – because
it does not derive from CBase, there is no destructor that can be called.

Actually, the cleanup stack allows you to define the behavior required
when an object is destroyed by explicit use of TCleanupItem. This will
allow you to call CleanupClosePushL() to push a reference to an
R-class object on to the stack. If the stack wants to delete the object, it
will first call Close() on it.

Just as NewLC() was introduced to support a common situation,
where a developer wants to create an object and leave it on the cleanup
stack, sometimes a developer wants to leave an object on the stack
until it is finished with and then pop it off and delete it. This can
be done as a sequence, but Symbian OS provides a simpler method:
CleanupStack::PopAndDestroy() pops an object off the stack and
deletes it in one operation.

106 PROGRAMMING FOR SYMBIAN OS

The cleanup stack methods are all static (that is, you do not need to
provide a reference to a cleanup stack object), which avoids the need to
pass a cleanup stack around your code. However, you do still need to
create a cleanup stack at some point. If you are writing code that is a
plug-in then the calling code will have created a cleanup stack, so you
can just assume that one exists.

6.4.3 Panics

All the preceding discussion is about handling foreseeable runtime errors.
Unfortunately, the same techniques do not work for programming errors.
The key intention in such cases is to detect the error during development
and debugging and, if absolutely necessary, to terminate a program neatly
if the error occurs in a release environment.

Symbian OS provides a User::Panic() method that can be called.
It takes a panic string of up to 16 characters and a panic code. If you
call User::Panic(), your thread (actually your process) gets terminated
and a message is provided. In a debugging environment, Symbian OS will
provide you with as much information as it can; in a release environment,
the information will be limited to the text and code that you provided.
In a release environment, the end-user will be the person who sees the
panic and may (you hope) report the error with the provided information.

The standard way of using panics is by means of asserts. Symbian OS
provides the __ASSERT_DEBUG and __ASSERT_ALWAYS macros. They
follow the same pattern of including a condition and an expression. The
condition is evaluated and, if it is false, the expression is evaluated, which
normally means calling User::Panic().

There is a real difference of opinion about putting asserts into release
code, but it is definitely good practice to use as many checks as possible
in your debug code.

6.5 Descriptors

Descriptors are one of the unique aspects of Symbian OS and cause some
confusion. In theory they are straightforward, but some developers have
trouble working out which particular class to use for a specific purpose.

Descriptors were developed to address one of the common causes of
errors with arrays in general and with C-style strings in particular. If you
have a string (or an array) that is accessed by index, it is quite easy for a
programming error to cause the index to go out of range. This can cause
subtle and unpleasant defects and can be very difficult to trace.

Therefore, descriptors encapsulate both data and meta-data. They
include (or refer to) an array of characters or other data along with the
maximum size of the array and the current number of elements in the

DESCRIPTORS 107

array. Any attempt to access elements beyond current limits or to extend
the array beyond its maximum size will result in an error.

As mentioned above, Symbian OS does not provide just one class
for descriptors, but a range of classes. These all have more or less
subtly different uses and it is necessary to understand them to work with
Symbian OS.

The first distinction is between narrow and Unicode characters. Histor-
ically, Symbian OS was created for narrow, 8-bit character sets and was
then successfully converted to support 16-bit Unicode characters. Sym-
bian OS uses Unicode throughout in order to support a global range of
locales and so in most cases you will use Unicode characters. However,
there are some instances where true 8-bit data is used and so Symbian
OS supports both. The descriptor class names incorporate the length of
character used, so we have TDesC8 and TDesC16 classes. However, we
mostly use Unicode and so TDesC is equivalent to TDesC16. If you want
to use 8-bit characters you must do so explicitly.

The descriptor classes and their derivation are shown in Figure 6.4.

TDesC

TDes

TPtrC TPtrTBufC TBuf

TBufCBase

HBufC

Figure 6.4 The descriptor classes

TDesC is an abstract base class for non-modifiable descriptors. It
supports a range of methods that access but do not modify the contained
data. Therefore, it has a length for the data but not a maximum length.
The methods include a number of searching and comparison methods,
and methods to provide the length of the data and to provide a pointer
to the data. If you are using a Unicode descriptor then the length is the
number of characters, not the number of bytes. TDesC also provides
Alloc() methods to create an HBufC initialized from the descriptor.
TDes is an abstract base class for modifiable descriptors. It adds a

maximum length and methods to modify the data. Data can be appended
to the descriptor or inserted into it (as long as the maximum length is not
exceeded) and there are a range of textual methods to alter the data in
the descriptor.

The pointer classes, TPtrC and TPtr, contain a pointer to data, a
length and (in the case of TPtr) a maximum length. These classes do not
actually own the data pointed to. They are often used as a convenient

108 PROGRAMMING FOR SYMBIAN OS

way to access data stored in another descriptor. They do not add any
new methods to access or manipulate the data in the descriptor – these
are provided by TDesC or TDes.

The TBuf and TBufC buffer descriptor classes contain their data as
part of themselves and so they can be created on the stack. Because
of the way they are declared, their maximum size has to be fixed at
compile time.

The final type of descriptor is HBufC. An HBufC is also a buffer
descriptor and contains its data within itself. However, it is allocated
on the heap and so its size does not have to be fixed at compile time.
This also means that you always refer to an HBufC* and never create
an HBufC directly on the stack. Note that HBufC is a non-modifiable
descriptor (hence the name ends in a C) and so you need to create a TPtr
to point to its data in order to do anything useful with it.

One of the common uses of strings is to define literal strings. Symbian
OS provides __LIT macros for this purpose. As with descriptors, there
are 8-bit and 16-bit versions. If you omit a size, you will get a 16-bit
version. The line

__LIT(KSomeText,"This is a test string");

declares a const, static TLitC variable called KSomeText of the correct
length and sets its contents equal to the string provided. This constant can
then be used wherever a reference to a TDesC is required.

While we are on the subject of text, it is worth mentioning briefly
the CRichText class. This class allows you to build up a complex text
object that includes embedded formatting. You will encounter it as the
body type of message objects and it is ideal for HTML-type emails. We
will not use any of its formatting properties in this book; if you want more
information then refer to the SDK.

6.6 Arrays

Symbian OS does not support the Standard Template Library (STL) but has
a number of container classes. One common need is for extensible arrays,
and Symbian OS contains the useful classes RArray<class T> to hold
fixed-size objects and RPointerArray<class T> to hold pointers to
objects. There are other classes CArray... , but the RArray classes
should be used in preference for efficiency reasons.

Full details of these classes can be found in the SDK, but they support
appending, insertion and deletion of elements as well as direct access
by index.
RArray classes do not own remote resources in the same way that

typical R-classes do, but they do own a number of buffers on the local

PROCESSES AND THREADS 109

heap, and the Close() or Reset() method must be called before the
array is destroyed.
RArray classes also support sorting of their elements if you provide a

comparison function.

6.7 Processes and Threads

Processes and threads are common to most operating systems and Sym-
bian OS is no exception. Processes run in their own address space and
are protected from each other. When a process is running, its memory
is mapped so that local addresses map to global addresses. It is possi-
ble to communicate between processes, but this is relatively complex
and relatively slow. Switching between processes requires the kernel to
remap the memory for the new process. Therefore, passing a message
from one process to another and receiving a reply requires two remapping
operations as well as any other processing.

Threads run within one process and share the same memory. Switching
between threads does not require memory to be remapped and so is faster,
but because the threads share the same memory space they can affect
each other directly. This can cause obscure defects and requires specific
programming techniques to manage.

Symbian OS provides preemptive multitasking between threads. When-
ever the kernel chooses to switch, it runs the highest-priority available
thread (many threads may be suspended waiting for events) and manages
CPU time between threads of the same priority.

6.7.1 Clients and Servers

One of the features of Symbian OS is the number of servers included.
Symbian OS uses servers to manage scarce or shared resources. This
includes fundamental resources, such as the filing system and the graph-
ical display, as well more specialized ones, such as the Message system
and communications peripherals.

In this book we will not create any full-blown servers ourselves;
instead we will create a range of clients. However, we will still benefit
from understanding how Symbian OS manages servers and clients.

Each server runs as a separate process and runs in its own address
space. Although it is possible to create a server with clients in the same
process, this is not common, and the clients are usually running in
separate processes; therefore any communication between server and
clients involves a context switch (or normally two). In addition, the raw
APIs provided by Symbian OS for client-server communication are geared
up to transfer small amounts of data. Therefore, frequent client-server
communication or transfer of large amounts of data can be prohibitive.

110 PROGRAMMING FOR SYMBIAN OS

There are techniques for easing client-server communications and
these normally involve good design of the client API. Most servers
provide such an API that is called from the client process and runs in that
process. It is responsible for taking a meaningful API and packaging it up
into raw client-server communication.

6.8 Active Objects

While concepts such as processes, threads and preemptive multitasking
are common to many operating systems, Symbian OS includes another
concept that is less common – cooperative multitasking. Preemptive
multitasking may involve context switches and so has a cost, but Sym-
bian OS is very heavily built on event handling, whether the events are
user-generated or from external sources, such as incoming messages or
data. Often, we do not need to respond to such an event immediately (at
a lower level, interrupts do need to be serviced within a very short space
of time, but further processing can often be delayed), and an approach
that allows less preemption is likely to be more efficient.

Therefore, Symbian OS includes the concepts of an active scheduler
and active objects. Each event handling thread has a single active sched-
uler. The active scheduler then manages a number of active objects and
decides which one to run next. Active objects may not have any events
pending, in which case they will not be considered for scheduling. Active
objects may be assigned a relative priority if they are more or less urgent.

Because each active scheduler runs within a thread, the kernel will
allocate CPU time between threads and thus between active schedulers.

6.8.1 CActive and RunL()

The key parts of the CActive class are as follows:

class CActive : public CBase
{

public:
enum TPriority
{
EPriorityIdle=-100,
EPriorityLow=-20,
EPriorityStandard=0,
EPriorityUserInput=10,
EPriorityHigh=20,
};

public:
IMPORT_C ∼CActive();
IMPORT_C void Cancel();
IMPORT_C void Deque();
IMPORT_C void SetPriority(TInt aPriority);
inline TBool IsActive() const;

ACTIVE OBJECTS 111

inline TBool IsAdded() const;
inline TInt Priority() const;

protected:
IMPORT_C CActive(TInt aPriority);
IMPORT_C void SetActive();

// Pure virtual
virtual void DoCancel() =0;
virtual void RunL() =0;
IMPORT_C virtual TInt RunError(TInt aError);

public:
TRequestStatus iStatus;

private:
...
};

Any active object must derive from CActive and must provide
implementations of the RunL() and DoCancel() methods.

In explaining how to use active objects, I will work in reverse order. I
will start with the RunL() method, which is the whole point of the active
object, and then explain how to create and activate an active object.
Finally, I will explain error handling and canceling of pending requests.

If an active object is successfully created and activated then the
active scheduler will call the RunL() method. As you can see from the
class declaration above, RunL() has no arguments. This should not be
surprising if you consider that the active scheduler has to be generic
and cannot include any knowledge of our specific implementation. The
active scheduler does provide us with some information about the event
that caused RunL() to be called, in that it puts a completion code in the
iStatus member. In general, if you create an active object that can be
used for more than one type of event, you will need to include additional
member variables that hold some form of state, so you can work out in
RunL() what the active object was supposed to be doing. One common
pattern is to have a state or operation variable that is set when an event
is queued, and then RunL() switches on the state or operation.

As the name indicates, RunL() is a leaving function and runs
under a TRAP harness within the active scheduler. If it leaves then
the RunError() method is called from the same object.

In order to run an active object, it must first be added to the active
scheduler. In many cases the active scheduler will already exist, as it
will be part of a framework. All the examples of PC Connectivity in
later chapters have active schedulers already instantiated, but if one does
not exist then it can be created by instantiating a CActiveSched-
uler object (or a derived object) and then calling CActiveSched-
uler::Install() to make it the current active scheduler.

Once you have an active scheduler, an instance of an active object
can be added to it by calling CActiveScheduler::Add(). This is
a static method, so you do not need a reference to the current active
scheduler. Adding an active object to the active scheduler does not make

112 PROGRAMMING FOR SYMBIAN OS

it a candidate for running – two more steps are necessary. Once an active
object has been added to the active scheduler, it can be removed using
CActive::Deque().

First, an asynchronous operation must be triggered with the iStatus
member of the active object. The way this is done depends on the event
concerned, but any method that takes a TRequestStatus& aStatus
argument is automatically an asynchronous method that will return
immediately and call the active object whose iStatus member has
been specified at a later time.

Second, the SetActive()method of the active object must be called.
Once this has been called, the active object’s RunL() method will be
called when the relevant event takes place.

Note that an active object can only be associated with one event at a
time – it has only one iStatus member. If you need to wait on multiple
events simultaneously then you will need multiple active objects. The
CActive::IsActive() method provides a way of checking whether
or not the active object is already active, that is, waiting for an event.

Within the PC Connectivity plug-ins that we will create in later
chapters, the CActive class is hidden behind other derived classes.
Typically, we will have a method such as ReadComplete(), Write-
Complete() or ExecuteLD() called to carry out some action. Most of
the time, we do not need to be aware that we have been called from an
active object’s RunL(), but there are times when it will be relevant.

Many active objects have one-shot behavior. In these examples, the
RunL() is called, carries out some action and returns, and the active
object is inactive until it is triggered again by some external code.
However, there are other possible patterns; an active object can reactivate
itself or it can implement a long-running action in smaller chunks.

An active object might choose to reactivate itself to carry out an action
on a more or less regular basis, for example. In this case, the RunL()
method would carry out whatever action was required and then associate
itself with an event and call SetActive(). This will relinquish control,
but keep the active object active. If you use this pattern then consider
how the active object will ever become inactive. Presumably there will
be some condition under which it will not reactivate itself, or it will wait
to be externally canceled.

The other pattern involves taking an algorithm that could be imple-
mented in one sequence and breaking it up into smaller sections. This
makes the algorithm and code more complex: the active object will
require some form of state variable to store the progress, and the RunL()
method will need to switch on the state. The advantage of such a design
is that any other active objects in the same thread will get an opportunity
to run, if they have a higher priority. This allows the long-running task
to be carried out as a background task without making the whole thread
unresponsive.

COMPATIBILITY AND PROGRAMMING FOR MULTIPLE PHONE TYPES 113

6.8.2 Canceling and Error Handling

In the previous section we mentioned that RunL() can leave. If an active
object has a RunL() method that can leave then it must implement its
own version of RunError() to handle the error. If an active object
RunL() leaves then the active scheduler will call the RunError()
routine of the same active object with the leaving code as the argument.

If the RunError() handles the error then it can return KErrNone.
If it returns any other error then the CActiveScheduler::Error()
method is called. The default implementation of this just panics, so if
you expect your active objects to leave with unhandled errors then you
should create your own active scheduler and override Error().

Canceling an active object may be required for a number of reasons.
Within the active object class, you must implement a derived DoCan-
cel() method to cancel whatever request is pending. This means that
the DoCancel() method must know which request might be pending if
the active object supports more than one. DoCancel() is called from
CActive::Cancel(), which checks that the active object is active; if
it is then it calls DoActive() and then marks the object’s request as
complete (a cancel is thus really a request for early completion). If a
request is canceled, the RunL() will not be called.

6.8.3 Active Scheduler Anti-Patterns

If you have had to create an active scheduler then the CActiveSched-
uler::Install()method will also start it. It is possible to create what
are called nested schedulers or inner schedulers, but these are strongly
deprecated. An active scheduler can be started and stopped using the
Start() and Stop() methods, and it is possible to start an additional
level of active scheduler and wait for it to complete. This is used to
transform an asynchronous method into a synchronous one by waiting
for it to complete.

Although there are apparent attractions to doing this, experience
has shown that inner schedulers cause very obscure defects and more
problems than they solve (in the case of premature termination, for
example). Therefore, you should not use inner schedulers; instead use an
alternative design that is not subject to the same problems.

6.9 Backwards Compatibility and Programming for
Multiple Phone Types

When you develop a component for a Symbian OS smartphone, you
may hope that it will work with all Symbian OS phones, but you may
be disappointed. There are two reasons for differences: there are multiple

114 PROGRAMMING FOR SYMBIAN OS

versions of Symbian OS, and smartphone manufacturers can make their
own changes.

Symbian OS does not stand still, and newer versions have more
features added to keep up with market needs. However, existing APIs
are not changed unnecessarily. Therefore, if you are using an API in one
version of Symbian OS, there is a good chance that it will be unchanged
and usable in a later version – but this is not guaranteed. You should
always test your software anew on each version or on each smartphone
that you want to target.

The other reason for variation is the differences imposed by smart-
phone manufacturers. Although they build smartphones on a common
base (Symbian OS) they each want to make better products than their
competitors and so they may introduce new features which are not
present in Symbian OS. Even if the features are introduced by more than
one manufacturer, they are unlikely to create exactly the same API. This
can be seen with the early camera-phones. The cameras were intended
to provide competitive advantage and so they were not developed jointly
with other manufacturers. Therefore, their APIs were incompatible.

Even where features are common to Symbian OS smartphones from a
range of manufacturers, there may be variations. For example, file loca-
tions are often not mandated by Symbian OS and so manufacturers follow
their own opinions. This leads to different phones having their agenda
file or their camera images, for example, stored in different locations.

If you are writing a software component for exactly one model of
Symbian OS smartphone then you just need to develop and test your
software on that smartphone and not worry about other models. However,
if you want to make the best use of your investment then you may want
your software to be usable on as wide a range of phones as possible. In
such a case, you need to be aware of the types of difference that may
affect you and how to minimize their impact.

Because Symbian has created several versions of Symbian OS and the
smartphone manufacturers have used them and wanted to reuse existing
software, Symbian has evolved a relatively sophisticated view of the
different types of compatibility.

At the most basic level, you may need to rebuild your software
for different versions of Symbian OS or different makes or models of
smartphone. Under some circumstances it may be possible to use an
executable for one version of Symbian OS on a smartphone with a
different version, but do not assume this.

The most likely level of compatibility is the level where you rebuild
your software and it works. This can be true if all the APIs that you use are
common and unchanged. The example PC Connectivity plug-ins created
in later chapters all worked under both Symbian OS v7.0 and v7.0s. They
should also work under Symbian OS v6.1 and possibly v8.0, but I have
not tested these cases.

COMPATIBILITY AND PROGRAMMING FOR MULTIPLE PHONE TYPES 115

However, even though the executables were compatible with a range
of Symbian OS v7.0 and v7.0s smartphones, I found that different manu-
facturers had located the agenda file in different locations. If I had made
an assumption that the agenda file was always in the same place, my
tests would work correctly on one smartphone but then fail on another.
In fact, I built error checking into the code to make sure that I received
a meaningful error in such cases. In order to handle the agenda file
location, I could have built logic into the executable to work out the
correct location. Instead, I deferred the problem to the PC software and
just had the PC Connectivity plug-in accept the agenda file location as
part of the protocol.

If you do need to make changes between versions of Symbian OS or
between smartphones from different manufacturers then try to maintain
protocol compatibility. If you were creating a GUI application then this
might not be a relevant concept, but for PC Connectivity it is very
important. If you maintain protocol compatibility then you can develop
your PC software to interact with a wide range of smartphones, even if
they have differences internally.

When you have written your software, you should try to test it on as
many different smartphones as possible. If there are differences that you
were unaware of, you want to be the one to find them – not your users.

7
Developing Custom Servers

7.1 Overview of Custom Servers

One of the common patterns that you will encounter in Symbian OS
is that of plug-ins. Because Symbian OS is a platform as opposed to
a one-off product, Symbian has to consider extensibility. If you were
creating a closed phone that would have only a fixed set of features
then you would probably fix them in libraries and avoid any need for
expansion. However, Symbian does not know in advance what features
each licensee wants to include on a phone or what features might be
added after the phone is shipped.

Therefore, quite a few servers in Symbian OS provide their functionality
by combining a central server, which exposes a common interface, with
plug-in DLLs that can be loaded dynamically and provide support for
specific features, protocols or media. In the PC arena, plug-ins have
rightly become popular for supporting media formats: audio players may
include plug-ins for MP3 or Ogg formats, and browsers support plug-ins
to decode video and other media formats. In Symbian OS, media plug-ins
are certainly used, but other servers also benefit from the concept. The
Message Server uses Message Type Module (MTM) plug-ins (which we
will meet in the next chapter) and the PC Connectivity subsystem uses
plug-ins to provide connectivity services.

These were originally used in the days of PLP and have been carried
forward with some modifications to allow custom servers designed for use
with PLP to be used in later versions of Symbian OS with little modifica-
tion. This results in APIs which are not necessarily ideal (and have some
strong signs of their history – you will encounter some serious software
archaeology), but remain usable. An alternative type of connectivity plug-
in is a pipe processor. These have some advantages in design terms, but
are more difficult to add to a phone unless you are creating the ROM for it.
The custom servers are loaded by a process called ectcpadapter. This
is itself a pipe processor invoked via m-Router and driven by commands
sent from the PC.

118 DEVELOPING CUSTOM SERVERS

The term ‘custom server’ is a poor choice of name, as Symbian OS is
full of servers and ‘custom’ does not add much. However, as connectivity
plug-ins can be used to provide a wide range of services, it might be
difficult to find a better name (although ‘connectivity server’ springs to
mind as a slight improvement). However, as with many software names,
it is best just to accept it and not worry too much.

A custom server is a DLL which has an API that allows messages to
be received from the PC and is able to pass responses back to the PC.
The interfaces provided by Symbian OS are all concerned with loading
the custom server and with communications. In order for a custom server
to be useful, it must implement some actual functionality; exactly what
is implemented is not constrained by the custom server interfaces – they
are generic.

As well as providing interfaces that support receiving and sending of
messages, the custom server infrastructure allows custom servers to be
loaded by name at runtime based on commands from the PC. This means
that it is not necessary for all the custom servers that are installed on the
device to be loaded at the same time, with obvious savings in memory
usage. Actually, the choice of which custom servers are loaded is made
by the PC, so a PC suite could choose to load all custom servers. This
would consume more memory on the device than loading the custom
servers on demand but would produce a more rapid response when a
specific custom server is required.

7.2 Limitations of Custom Servers

Some developers who have worked on or with custom servers have
considered that they have undue limitations or drawbacks, one of which
is that data is transferred between the smartphone and the PC in chunks
of a fixed size. In fact, this is a reasonable restriction for embedded
software. If a protocol allows indefinitely large packets then there is a
risk of running out of memory (this has been seen in some components).
Therefore, accepting that the protocol has a maximum packet size and
planning for it is just good design.

One specific attempt to address some of the limitations of custom
servers was the creation of gencserv, which is a custom server that
itself loads plug-ins. gencserv was probably created to future-proof
connectivity plug-ins by separating them from PLP. gencserv handles
buffering and concatenation of large amounts of data and allows the
creation of plug-ins that are one step further away from PLP or ectc-
padapter. However, I find the custom server API pretty straightforward
once it is stripped down to its basics, so I have not covered gencserv
here. I hope that when you see the echo custom server you will feel the
same way.

CUSTOM SERVERS API 119

7.3 Custom Servers API

Custom servers are loaded by ectcpadapter (the commands are
covered later) and then they receive and send data based on a sim-
ple API.

A custom server must implement classes that derive from two base
classes (it may well have additional classes, but these are minimal).
One class represents the custom server as a whole and the other rep-
resents a session. A single loaded custom server may support multiple
sessions. This means that the sessions are responsible for most of the
‘real’ work.

A class derived from CCustomServer must be created that imple-
ments at least the NewInfoL() method to return information about the
server, and the NewSessionL () method to generate a new custom
server session.

A class derived from CCustomServerSession must be created that
implements at least the AllocL () method to allocate a buffer for
reading, and the ReadCompleteL () method to be called when a buffer
has been received.

In addition to the two classes, the custom server must implement
a standard E32Dll routine that does not have to do anything, and a
single exported function, the first ordinal, that returns a pointer to a
CCustomServer derived object.

We can see here the declaration for the CCustomServer class in full.

class CCustomServer : public CActive
{

friend class CCustomServerSession;

public:
IMPORT_C static void Delete(CCustomServer *aServ);

inline TInt SessionCount() const;
inline MCustomServerManager& Manager() const;
inline void SetLib(const RLibrary &aLib);
inline void DeferredDelete();
inline TCustomServerServInfo& Info() const;
inline RLibrary& Library() const;
IMPORT_C virtual TCustomServerErrorResult Error(TInt aStatus,

TInt aRemErrorEvent);
virtual CCustomServerSession *NewSessionL

(MCustomServerWriter *aCSWriter, TVersion aVersion)=0;

protected:
IMPORT_C void ConstructL(MCustomServerManager &aManager);
IMPORT_C CCustomServer();
IMPORT_C ∼CCustomServer();

IMPORT_C virtual void RunL();
IMPORT_C virtual void DoCancel();

120 DEVELOPING CUSTOM SERVERS

virtual TCustomServerServInfo *NewInfoL()=0;

private:
void ClearAllSessions();
void DoStartL();

public:
TDblQueLink iDblLink;

private:
TDblQue<CCustomServerSession> iSessionList;
TInt iSessionCount;
TCustomServerServInfo *iInfo;
MCustomServerManager *iManager;
CCustomServerDeleter *iDeleter;
RLibrary iLib;

protected:
TDblQueIter<CCustomServerSession> iSessionIter;
};

However, quite a few of the methods and members are not use-
ful – they are historical leftovers or are exposed parts of the base class
that are best ignored. For example, there is little that you can do with the
MCustomServerManager, and the internals of the CCustomServer
class are concealed within ectcpadapter, so there is insufficient infor-
mation safely to override the RunL() method. The useful methods are
covered below.

Class CCustomServer

Methods

TCustomServerServInfo* NewInfoL ()
This pure virtual function is called when the custom server is instantiated and is used to return
an object that contains information on the server priority, maximum buffer size, etc. The
TCustomServerServInfo type is covered below.

CCustomServerSession* NewSessionL
(MCustomServerWriter *aCSWriter, TVersion aVersion)

This pure virtual function is called to create a new CCustomServerSession derived object
that does the actual work of the custom server.
aCSWriter – a pointer to an MCustomServerWriter derived object that will be passed

on to the custom server session.
aVersion – the version of the custom server expected. This should be compared with the

actual version of the custom server. If it is different then the routine should leave with
error KErrNotSupported.

The NewInfoL() method returns a TCustomServInfo structure
that contains priority and other information. The declaration for the class
is as follows:

CUSTOM SERVERS API 121

class TCustomServerServInfo
{

public:
TInt iDeleterPriority;
TInt iReaderPriority;
TInt iServerPriority;
TInt iWriterPriority;
TInt iMaxSessions;
TInt iMaxPduSize;
TPtrC8 iServerName;
};

You can set the priorities to default values (all the Symbian standard
custom servers use the default values, so that should be good enough for
you as well), so you only need to attend to the maximum number of ses-
sions, maximum PDU (Protocol Data Unit) size and server name. You can
see how these are set in the example later in this chapter – but don’t expect
any surprises. The maximum PDU size should be chosen as a reasonable
compromise unless you have specific needs: the PDUs should be large
enough to allow most of your commands and replies to be passed in one
unit, but they should not be so large as to impose an unreasonable burden
on the Symbian OS mobile phone or so large as to reduce the responsive-
ness of commands. In future examples we will find cases where we may
have an indeterminate amount of data to transfer (such as the content of
all SMS messages or all contacts on the mobile phone) and we cannot
make the PDU large enough for this, so we choose an arbitrary size.

Here is the declaration for the CCustomServerSession class in full.

class CCustomServerSession : public CActive
{

friend class CCustomServer;

public:
IMPORT_C ∼CCustomServerSession();
IMPORT_C virtual void Free(TDes8 *aPdu);
virtual TDes8* AllocL(TInt aLen)=0;

protected:
IMPORT_C void ConstructL(MCustomServerWriter *aCSWriter,

CCustomServer& aServ);
IMPORT_C CCustomServerSession();
IMPORT_C virtual void WriteCompleteL(TDes8 *aPdu);
IMPORT_C virtual TCustomServerErrorResult Error(TInt aStatus,

TInt aRemErrorEvent);

inline CCustomServer &Server() const;
IMPORT_C virtual void RunL();
virtual void DoCancel();

inline void Write(TDes8 *aDes);
inline TBool IsWriting() const;

public:
virtual void ReadCompleteL(TDes8 *aPdu)=0;

122 DEVELOPING CUSTOM SERVERS

private:

enum {ECSIdle, ECSReading, ECSWriting} iMode;
MCustomServerWriter *iCSWriter;
CCustomServer *iServer;
TDblQueLink iDblLink;
};

Again, many of the methods are not useful. Here is information on the
useful ones.

Class CCustomServerSession

Methods

TDes8* AllocL (TInt aLen)
This pure virtual method is called to allocate a buffer for reading into. The buffer will be freed
when the session is destroyed.
aLen – the length of the buffer required. The maximum length that will be asked for has

been set at the CCustomServer level.

void ConstructL(CCustomServer& aServ,
MCustomServerWriter *aCSWriter)

This method must be defined in order to call ConstructL() on the base class.
aServ – a pointer to the owning CCustomServer object. Not necessary but it might be

useful for data that is shared between sessions (if any).
aCSWriter – this is required to pass to the base class constructor.

TCustomServerErrorResult Error(TInt aStatus, TInt aErrorEvent)
This function is called to notify the session that an error has occurred. Little information is
available on the meanings of the arguments, so there is little value in overriding it.

void Free(TDes8 *aPdu)
This virtual function is called to free the buffer allocated with AllocL().
aPdu – the buffer to be freed.

void ReadCompleteL (TDes8 *aPdu)
This pure virtual function is called when a complete buffer has been received. This is where
most of the processing within the custom server will take place.
aPdu – the incoming protocol data unit.

void Write (TDes8 *aDes)
This function writes the data referred to by the descriptor to the PC.
aDes – the outgoing protocol data unit.

void WriteCompleteL (TDes8* aPdu)
This virtual function is called when a write operation is completed. It is not necessary to
override it, but you should do so if you want to take action when the write action is complete.
aPdu – the outgoing protocol data unit.

PROTOCOL CONVENTIONS 123

You can see that the ReadCompleteL, Write and WriteComple-
teL methods manage receiving from the PC and sending data back to
it. Internally, the data will be sent over a TCP/IP connection, but the
details of this are hidden by these methods. Also hidden is a certain
amount of buffering that goes on. This is dictated by the protocol used to
communicate with custom servers.

7.4 Protocol Conventions

If you have any familiarity with communications protocols then you will
know that they vary considerably and their design is based on the actual
data to be transmitted. If the data is of a fixed size then the packets can
also be fixed in their format and size. However, if the data is variable in
size or content then a more complex protocol is necessary that allows the
packets to completely define their contents. If the size variability is such
that a single packet may not contain it, additional protocol elements are
required to indicate continuation or termination packets.

The protocol used to communicate with custom servers has to support
a totally extensible set of protocols built on top of it. By that I mean
that the custom server infrastructure has no way of knowing what new
custom servers will be written in the future. Therefore, it cannot really
use fixed-sized packets (it could do so but this would probably be very
wasteful). However, the protocol does not explicitly support messages
that span more than one packet. If your protocol requires this then you
need to build those features into your own protocol.

This will become clearer if you consider a ‘stack’ of protocols (a very
common concept):

Application Protocol

Custom Server Protocol

TCP/IP

Here we have an underlying use of TCP/IP (which itself builds on lower
layers that we do not need to consider here) on which the custom server
protocol is built that allows packets to be transferred and that allows
both sides to know when a packet is complete. On top of that lies the
application protocol which is specific to the custom server. All custom
servers use the same common protocol to receive and send packets, but
they have different application protocols (actually, they may have some
common elements such as command identifiers, but that is just because
they are solving common problems).

124 DEVELOPING CUSTOM SERVERS

The custom server protocol is solely concerned with reliably delivering
packets of generic data and with indicating when a packet is complete.
Therefore, the protocol simply relies on the first four bytes of a packet
indicating the size of the packet (least significant byte first) and the rest of
the packet being undifferentiated data.

Sz Sz Sz D[0] . . . D[n]

However, the custom server infrastructure uses the packet length to
ensure that the packet is complete and then strips it off before delivering
it to the custom server. When you construct a packet on the PC, you
must use the first four bytes to define the length of the rest of the data.
However, the data that is received by the custom server is in the form
of a descriptor, so the descriptor itself encapsulates information on the
length of the data, and the four-byte length is not included in the data. In
mirror fashion, when the custom server writes data back to the PC, it uses
a descriptor whose length is set, so there is no need to explicitly include
the length again. The custom server infrastructure constructs the packet
to be received by the PC and puts the data length in the first four bytes.

Thus the PC always sees packets of the four-byte length form followed
by data, while custom servers always see descriptors. We will see how
this works in the example later in this chapter.

The use of descriptors in the custom server means that the length and
the data are always consistent (the data may be garbage, but it will be of the
chosen length and can be transmitted). However, because the PC software
does not use descriptors, it is up to the developer to ensure that the data
supplied matches the length. If you set a length and then send less data
than the length promised, the custom server infrastructure will assume
that the packet is incomplete and will buffer the data waiting for the rest
of the promised data. If you set a length and then send more data than the
length promised, the excess data is regarded as the start of the next packet.

If you try to send a data packet that is larger than the maximum
PDU size that the custom server has set, it is not handled well; you will
probably just lose the connection, so it is up to you to ensure that your
packets conform to the protocol that you have designed.

7.5 Creating Your First Custom Server

Having presented the interfaces and discussed the protocols, we can now
create our first custom server. For demonstration purposes we will build
one that is about as simple as possible. We will create a custom server
that just echoes data back to the PC. In later chapters we will see how to
achieve more complex functionality, but for now we will introduce the
custom server interface without any other code obscuring it.

CREATING YOUR FIRST CUSTOM SERVER 125

For a non-trivial custom server, one of the first design tasks would be
to define and document the protocol to be used. In this case, there really
is no application protocol: whatever data is received in the packet is sent
straight back.

This means that the echo custom server is effectively synchronous.
We will see that the ReadCompleteL() method includes the code to
respond. For many custom servers this will be the case, but some will
trigger events that complete asynchronously and so need to respond in a
different way.

Before we actually start writing code, we will need to include header
files that declare the custom server classes that we will derive from:

#include <customserver.h>

Unfortunately, at least one SDK for Symbian phones misses out
these header files. This is probably just an oversight. In this case,
customserver.h also includes customservershared.h and cus-
tomserver.inl. These three header files are in some SDKs and can be
found on the website associated with this book, so that you can build your
own custom servers. At the time of writing, these header files have not
changed for any of the versions of Symbian OS for which they are valid, so
you can just copy these three files into the \epoc32\include directory
of your development drive and use them. If you do already have versions
of these files then you should stick with those supplied with the SDK.

Diving straight in, here is the code for the echo custom server class
CEchoCSServer constructor, etc.:

CEchoCSServer* CEchoCSServer::NewL(MCustomServerManager &aManager)
{
CEchoCSServer* ecs = new (ELeave) CEchoCSServer;
CleanupStack::PushL(ecs);
ecs->ConstructL(aManager);
CleanupStack::Pop(ecs);
return ecs;
}

CEchoCSServer::CEchoCSServer()
{
}

CEchoCSServer::∼CEchoCSServer()
{
}

This leaves us with two pure virtual functions to implement. The
NewSessionL method is pretty standard:

CCustomServerSession* CEchoCSServer::NewSessionL
- e(MCustomServerWriter *aCSWriter, TVersion aVersion)

126 DEVELOPING CUSTOM SERVERS

{
// Check version
if((aVersion.iMajor != KEchoCSMajorVersion) ||

(aVersion.iMinor != KEchoCSMajorVersion))
{
User::Leave(KErrNotSupported);
}

CEchoCSSession* ecss = new (ELeave) CEchoCSSession;
CleanupStack::PushL(ecss);
ecss->ConstructL(*this, aCSWriter);
CleanupStack::Pop(ecss);
return ecss;
}

One point to note is that the provided version is checked against
the expected version and any mismatch causes the attempt to create
a session to be aborted. Another approach would be to create the
session anyway and pass in the requested version, but this requires the
session code to handle the mismatch – the behavior above is simple
and safe.

The NewInfoL() method here has a standard implementation that
uses standard priorities and sets the maximum PDU size using a constant
that is shared with the session class. It is very unlikely that we will need
to set the priorities to any values except the standard ones.

TCustomServerServInfo* CEchoCSServer::NewInfoL()
{
TCustomServerServInfo *info = new (ELeave) TCustomServerServInfo;

info->iServerPriority = ECustomServerConnectPriority;
info->iReaderPriority = ECustomServerReadPriority;
info->iWriterPriority = ECustomServerWritePriority;
info->iDeleterPriority = ECustomServerLibDeleterPriority;
info->iMaxSessions = 1;
info->iServerName.Set(KEchoCSSvrNameDS);
info->iMaxPduSize = KMaxEchoCSPduSize;

return info;
}

In addition to the class methods, we need two extra routines. We need
the first because the custom server is a DLL:

GLDEF_C TInt E32Dll(TDllReason /* aReason */)
//
// DLL entry point
//
{
return KErrNone;
}

CREATING YOUR FIRST CUSTOM SERVER 127

and the other is the sole exported function:

extern "C"
{
EXPORT_C CCustomServer* EchoCSServerNewL

(MCustomServerManager &aManager, const TDesC& /* aName */)
{
return CEchoCSServer::NewL(aManager);
}

}

This is the function that will be called by ectcpadapter. The TDesC
argument is the name of the custom server. This is unlikely to be of much
to you unless you want to have one DLL used under multiple names.

Any custom server class is likely to look very like this – there is little
more to it than providing the configuration information and allowing a ses-
sion to be created. The useful implementation details are included in the
session class. This class also has a certain amount of ‘boiler plate’ code:

CEchoCSSession::CEchoCSSession()
: iReadPtr(iBuffer, KMaxEchoCSPduSize)
{
}

void CEchoCSSession::ConstructL(CCustomServer& aServ,
MCustomServerWriter *aCSWriter)

{
CCustomServerSession::ConstructL(aCSWriter, aServ);
}

CEchoCSSession::∼CEchoCSSession()
{
}

You will see that the ConstructL method calls the base class
ConstructL method. In this case there is no other local second-stage
construction to carry out, but a more complex custom server might well
require more here.

The next issue to address is the allocation of read/write buffers. In
this case we can simply have a fixed-size buffer that is a member of the
session class and can be used for reading.

private:
// Buffer used for reading
TPtr8 iReadPtr;
TUint8 iBuffer [KMaxEchoCSPduSize];

Then the iReadPtr member can be initialized in the constructor and
made available via the AllocL()method.

128 DEVELOPING CUSTOM SERVERS

TDes8* CEchoCSSession::AllocL(TInt /*aLen*/)
{
return &iReadPtr;
}

Obviously, we could implement more complex behavior here but, as
we are only ever going to use the buffer for one purpose at a time with
this custom server, this is quite sufficient.

At this point we have a custom server session that can be created and
can allocate a buffer. All that remains is to do something with the data!

void CEchoCSSession::ReadCompleteL(TDes8 *aPdu)
{
Write(aPdu);
}

As warned, this is about as simple as it gets. When a complete message
is received, it is echoed back to the PC. In any real implementation,
we would expect some real processing to happen before a response is
returned. Note that the length of the data being sent is encapsulated in
the descriptor and so does not need to be set in any other way.

At this point we can build the custom server. We will need a .mmp
file, but for such a simple custom server there is not much to it:

TARGET echocs.cs
TARGETTYPE DLL
TARGETPATH \SYSTEM\LIBS
UID 0x10003D52 0x101FEAFD //KCustomServerRemoteServerUnicodeUid
SOURCEPATH .
SOURCE echocssvr.cpp
SOURCE echocssess.cpp

USERINCLUDE .
SYSTEMINCLUDE \epoc32\include
LIBRARY euser.lib ectcpadapter.lib

DEFFILE .\echocs.def

There are some points to note here.

• The custom server is named echocs.cs. The .cs file extension is
conventional for custom servers and differentiates them from other
plug-ins.

• The target path is \system\libs. This is compulsory. If a custom
server is not in this directory then it cannot be loaded.

• The two UIDs identify the custom server to Symbian OS. The first
value, 0×10003D52, is compulsory for all custom servers and iden-
tifies them as custom servers, while the second value must be unique.

INSTALLING A CUSTOM SERVER 129

Chapter 6 on developing for Symbian OS includes instructions on
obtaining your own UIDs. In this case I have used one of a batch
allocated for the writing of this book; please do not use any of these
UIDs for your own production software.

• The ectcpadapter.lib includes the custom server libraries and
must be linked against.

• A .def file must be defined as in Chapter 6.

Because the custom server is a DLL, it must have its exports properly
defined and they must match what ectcpadapter expects. A custom
server DLL exports only one function – the server NewL() function – so
you can create the .def file manually rather than generating the .def
file from the code by freezing. The .def file for the echo custom server
is as follows:

EXPORTS
EchoCSServerNewL @ 1 NONAME

Once you have sorted out building the custom server, just type the
bldmake and abld commands and you should get echocs.cs built
successfully.

7.6 Installing a Custom Server

Although the echo custom server has now been built successfully, you
still need to carry out some more steps to get any response from it. First
we will install it, and in the subsequent sections we will actually load it
and communicate with it.

In order for a custom server to be loadable by ectcpadapter, it must
be located in the \system\libs directory. The custom servers that are
shipped with a Symbian OS phone are located on the z:\system\libs
directory on the ROM, but that is no good to somebody develop-
ing add-ons. Luckily, it is also possible to load a custom server from
c:\system\libs as well.

If you are running the emulator then building it will automatically
put the binary in the right directory on the notional z: drive. If you are
building a ROM for a reference board then you can add your binary to
the ROM yourself. If you want to try your custom server out on a real
Symbian OS phone then you have two ways to get it onto the device:

1. Use a file browser to copy the custom server directly. This is the
easiest method for Connectivity developers.

2. Create a .sis installer file and then use the application installer.

130 DEVELOPING CUSTOM SERVERS

The file browser option is quick and easy, and if you are writing
Connectivity software then you have an advantage in that you may well
already have a file browser available. However, you cannot expect an
end-user to copy the binary manually. Using the file browser is perfectly
fine during development, but eventually you will need to create a proper
installer as described in Chapter 6.

7.7 Starting a Custom Server from SCOM

Once you have your custom server on the smartphone, you need to get
ectcpadapter to load it. This is not difficult. You need to open a stream
to communicate with ectcpadapter (which is always started when a
connection is active) and send a command in the right format. The format
is as follows:

Session Request Message

Op Op Op Op N[0] . . . N[31] Maj Min Bld Bld

Length: 40 bytes
Data Format:

• Op (4 bytes) – Operation Code. 0×00000000 (Start Session) is the
only supported value

• N (32 characters) – Custom Server Name. The name of the custom
server as an ASCII string (not Unicode) without the file extension and
with the remainder of the string padded with zeros

• Maj (1 byte) – Major Version Number

• Min (1 byte) – Minor Version Number

• Bld (2 bytes) – Build Number

In response to this message, ectcpadapter will return a response
message.

Session Response Message

Length: 4 bytes
Data Format:

• Result (4 bytes) – 0×00000000 indicates success, otherwise one of
the error codes

STARTING A CUSTOM SERVER FROM SCOM 131

If an error is returned then it will be one of the standard Symbian OS
error codes – have a look in e32std.h. It is not possible to predict all
the possible error codes, but two common ones are KErrNotFound (−1)
if the custom server cannot be found, and KErrNotSupported (−5)
returned by some custom servers if the version number is wrong.

Please note that there is no length field at the start of the mes-
sage, because it is a fixed-length message and is not actually from a
custom server.

If the session request is successful then the requested custom server will
have been loaded and all subsequent data transfer on the socket/stream
will be to the new instance of the custom server.

The custom server name is not case sensitive and omits the .cs file
extension, so the extension is compulsory as you cannot load a binary
with any other extension.

Given a connection to a Symbian OS smartphone, the following code
will load our echo custom server:

// Read 32-bit integer LSB first
public int ReadInt32(ref byte[] aBuffer, int aStartPos)
{
int retVal = aBuffer[aStartPos] | aBuffer[aStartPos+1]<<8 ;
retval = retval | aBuffer[aStartPos+2]<<16 | aBuffer[aStartPos+3]<<24;
return retVal;

}

...
try
{
ISCBALDeviceService service = mDevice.Services["ectcpadapter"];
System.Console.WriteLine("Ectcpadapter found - version {0} Address {1}

Port {2}", service.Version, service.IPAddress, service.Port);
ISCBALSequentialStream myStream = service.StartServiceOnStream();

byte[] message = new byte[40]; // Zeroed by default
message[4] = (byte)'E';
message[5] = (byte)'C';
message[6] = (byte)'H';
message[7] = (byte)'O';
message[8] = (byte)'C';
message[9] = (byte)'S';
// Operation and version left at zero
int retval = myStream.Write(message);

byte[] response = new byte[40];
object oResponse = response;
retval = myStream.Read(4, out oResponse);
response = (byte[])oResponse;
int responseCode = ReadInt32(ref response, 0);
System.Console.WriteLine("session response {0} with {1} bytes read",

responseCode, retval);
}
catch
{
}

132 DEVELOPING CUSTOM SERVERS

Try changing the name of the server or setting an invalid version to get
one of the error codes.

There is no specific command to unload a custom server. It should be
unloaded when the connection is broken, that is, when you destroy the
stream used to communicate with it. It will certainly be unloaded when
the connection between the PC and the phone is broken. If you use a lot
of resources in your custom server and you want to ensure that they are
freed up, you should add a command to your own protocol to free them
rather than rely on unloading the custom server.

7.8 Communicating with a Custom Server

Once we have the custom server loaded, we can communicate with it.
We will see in later chapters, in particular Chapters 10 to 13, that one of
the major aspects of Connectivity programming at the lower level is con-
cerned with putting data into packets to send to the phone and extracting
data from packets received from the phone. We will develop some simple
routines both on the PC and on the phone to handle the packing and
unpacking, but this chapter will include only a minimum of data handling
and I will concentrate on showing the other aspects of the communication.

As the echocs custom server just echoes data, we will simply allow
the user to enter any text desired, send it to the custom server and then
read it back.

To write the data to the phone, we receive text from the console, we
write the length of the data, and then we write the data (remember that
earlier I explained the protocol with the data length followed by the data).

// Write 32-bit integer LSB first
public void WriteInt32(int aValue, ref byte[] aBuffer, int aStartPos)
{
aBuffer[aStartPos] = (byte) (aValue & 0x000000ff);
aBuffer[aStartPos+1] = (byte)((aValue & 0x0000ff00)>>8);
aBuffer[aStartPos+2] = (byte)((aValue & 0x00ff0000)>>16);
aBuffer[aStartPos+3] = (byte)((aValue & 0xff000000)>>24);

}

...
// establish connection to echocs
...
System.Console.WriteLine("Enter text to be echoed");
string text = System.Console.ReadLine();

// Write message length
int textLen = text.Length;
message = new byte[4];
WriteInt32(textLen, ref message, 0);
myStream.Write(message);

// Write the data

ASYNCHRONOUS COMMUNICATION 133

message = new byte[textLen];
for(int i = 0 ; i < textLen ; i++)
{message[i] = (byte)text[i];}

myStream.Write(message);

As you can see, the Write() method in C# uses the fact that the
boxed arrays know how long they are. Please note that the message is not
sent (at least it is not received by the custom server) until it is complete,
based on the four-byte length. This means that you can write the message
in a number of sections, as above, or put together a single buffer and
send that.

To read the data, we use the Read() method. We start by reading
the four-byte message length and then we read the actual data. If your
protocol is such that your packets are supposed to be of a fixed size then
you might think that you could read the whole message in one operation,
but I suggest that you stick with reading it in two stages.

retval = myStream.Read(message);(4, out oResponse);
int msgLen = 0;
if(retval == 4)
{

byte[] buff = (byte[])oResponse;
msgLen = ReadInt32(ref buff, 0);
System.Console.WriteLine("Message length is {0}", msgLen);

}
else
{

System.Console.WriteLine("Failed to read message length");
}
if(msgLen > 0)
{
retval = myStream.Read(msgLen, out oResponse);
if(retval == msgLen)
{

byte[] buff = (byte[])oResponse;
for(int i = 0 ; i < msgLen ; i++)
{System.Console.WriteLine("byte {0} = {1}", i, buff[i]);}

}
else
{

System.Console.WriteLine("Tried to read {0} but only read {1}",
msgLen, retval);

}
}

7.9 Asynchronous Communication

In this example, we have a very simple control flow: we carry out a
synchronous read directly after the synchronous write operation. This
will work if the custom server responds promptly and there are not too

134 DEVELOPING CUSTOM SERVERS

many other operations taking up bandwidth to slow things down. In
reality this approach may work satisfactorily for small operations, but
some operations will take longer and we will need to allow for this. For
these we will want to work asynchronously.

We can get an asynchronous stream simply by casting and then we
associate event handlers with the stream. Handling writing of data is
straightforward, so we will deal with it first. The Write() method is
similar to that for synchronous streams except that it does not return
the number of bytes written. The OnWrite() event handler is invoked
when the bytes have been fed across the connection (actually, it is not
really possible to know when they have reached the other end because
of buffering at various stages). You could ignore the OnWrite() event
handler and just pump data in with the Write() method. The value
of the OnWrite() event handler becomes apparent when you want
to transfer a large amount of data in multiple buffers. Then you can
Write() the first bufferful and wait for the OnWrite() event before
writing the next buffer. Other alternatives include just writing all of the
buffers in turn with no delay (but the data will just get buffered up and
you have a very real risk of either losing data or absorbing dangerous
amounts of memory), or synchronously writing the data and waiting
for a response message (which will work and is simple to program,
but hogs the thread and makes it difficult to handle cancelation or
other interruptions). The asynchronous Write() method is the most
efficient solution.

Having made the case for a sophisticated use of asynchronous
Write() operations, we are writing only one buffer but in two stages
(length first and then data) in this example, so we will not really make
use of the possibilities.

void OnWrite(int aError)
{

System.Console.WriteLine("OnWrite {0} error code", aError);
}

...
private SymbianConnectBAL.BALApplicationAsyncStream mAStream;
...
// Now create an asynchronous stream from the synchronous one
mAStream = (BALApplicationAsyncStream)myStream;
mAStream.OnWrite += new ISCBALSequentialStreamSink_OnWriteEventHandler
(OnWrite);

System.Console.WriteLine("Enter text to be echoed");
string text=System.Console.ReadLine();
int textLen=text.Length;

message = new byte[4];
WriteInt32(textLen, ref message, 0); // Write message length
mAStream.Write(message);

ASYNCHRONOUS COMMUNICATION 135

message = new byte[textLen];
for(int i = 0 ; i < textLen ; i++)
{message[i] = (byte)text[i];}
mAStream.Write(message);

Having not really made use of the asynchronous possibilities when
writing, we will try harder while reading. The actual API is straightforward,
but effective use requires some planning. The Read() method returns
immediately, but the data read (if any!) is not available until it appears in
the event handler, so the handling of the data has to be included in the
data handler. This means that we cannot have the simple sequential pro-
gramming that we used with synchronous reads and writes, but this is part
of the price we pay for the increased sophistication. This is also a pattern
that is encountered in Symbian OS (in the custom servers, for example).

As with the synchronous Read() method, we need to set how many
bytes we want to read. If we were using fixed-size buffers then we could
set the whole read going in one operation, but it is more likely (and safer)
that we will do it in two stages: we will read the length of the data first
and then the rest of the data based on that length. In this case we just
print out the received data to the console, but later chapters will cover
more interesting tasks.

private bool mReadingLength;
...
mAStream.OnRead += new ISCBALSequentialStreamSink_OnReadEventHandler
(OnRead);

...
// Try to read the length of data to come.
// The actual data will be received by the OnRead event handler
mReadingLength = true;
mAStream.Read(4);
...

public void OnRead(object aBuffer, int aError)
{
System.Console.WriteLine("OnRead error {0} reading length {1}",

aError, mReadingLength);
byte[] buff = (byte[])aBuffer;
System.Console.WriteLine("Buffer length {0}", buff.Length);
if(mReadingLength && buff.Length >= 4)
{ // We have just read the length of the buffer

int msgLen = ReadInt32(ref buff, 0);
System.Console.WriteLine("Message length is {0}", msgLen);
// Trigger the read of the rest of the buffer
if(msgLen > 0)
{
mReadingLength = false;
mAStream.Read(msgLen);

}
}

136 DEVELOPING CUSTOM SERVERS

else if(!mReadingLength && buff.Length > 0)
{ // We have just read the body of the message

for(int i = 0 ; i < buff.Length ; i++)
{System.Console.WriteLine("byte {0} = {1}", i, buff[i]);}

}
}

7.10 Debugging a Custom Server

In this chapter we have constructed a custom server and driven it
from the PC. This is all quite easy when it works, but obviously not
all development is flawless and sometimes we will have to debug our
software. Unfortunately, there are some obstacles in the way to easy
debugging of Connectivity software.

The first catch is that stopping on a breakpoint when using the debugger
in the emulator stops all the processes in the emulator. This includes
the keep-alives associated with the connection and so the connection
between the PC and the phone is often dropped (some bearers allow
for this – try it and see). This renders the debugger almost useless for
Connectivity software, unless you are prepared to run to a breakpoint,
stop and examine variables and then restart the whole process.

The second catch is that at least one SDK available actually omits the
applications necessary to make a connection with the emulator at all.
I assume that the people who put together the SDK didn’t think it was
possible to get an infrared or Bluetooth connection with the emulator and
so did not try.

Either or both of these problems mean that you may well find yourself
debugging using more primitive techniques than you might choose.
However, it is still possible to debug Connectivity software.

The technique that I have used in writing this book is to use log files.
I include some very simple logging functions in the custom server and
call them when I want to know which methods are being called or what
data is being passed around. The disadvantage of this approach is that
I need to rebuild the custom server whenever I want to add or change
the logging. This gives me a cycle of rebuild – copy cs to phone – run
software – copy log file from phone – analyze log file – rebuild.

Some more sophisticated parts of Symbian OS include logging that
is triggered by the existence of a specifically named directory. This is
an elegant solution that allows logging to be switched on for selected
components, but we will not need to use it as we are not creating
components that will be used by other parts of the system.

One drawback that I have found is that errors in a custom server have a
very good chance of crashing ectcpadapter. After all, custom servers
are plug-ins and ectcpadapter does not appear to be very robust at
handling error conditions.

8
Developing Socket Servers

8.1 Overview of Connectivity Socket Servers

Connectivity Socket Servers, sometimes referred to as Named Servers
or Named Services (because they are accessed by name and because
they provide a service to client software running on the PC), are used to
provide PC Connectivity services from Symbian OS v8.0 onwards. They
replace pipe processors and custom servers and try to make best use of
the IP connection between the PC and the Symbian OS phone.

Connectivity Socket Servers use BSD-style sockets to run a TCP/IP
connection directly rather than using a totally proprietary communication
protocol. This is only sensible, as TCP/IP connections provide most of
the functionality that they require and modern software development
emphasizes standards and reuse wherever possible. The Connectivity
Socket Servers do have some specialized, proprietary, aspects associated
with service startup, but a developer familiar with sockets programming
will have no problem creating Connectivity Socket Servers.

In essence, a Connectivity Socket Server is a Symbian OS server that
listens on a TCP/IP socket and, when a connection is established by
a client, responds to commands received from that client. The same
description could apply to any server that uses TCP/IP, but there is a small
specialization associated with starting a server.

Consider a file access server. If the server was listening on the Symbian
OS phone on a fixed, known, socket number then a client running on the
PC could connect to the server and start sending commands. However, if
the server is started at boot time then it will constantly take up resources
(RAM for sure, and probably a file server connection in this case) and
it will be used for only a small fraction of the time. For some system
services this is acceptable, but it would be wasteful and should be avoided
if possible. Alternatively, the server could be manually started by the user,
but that is inconvenient and would strike any user as clumsy. Therefore,
we want a way to start the server on demand, so that it is running when
the PC wants it, but not otherwise.

138 DEVELOPING SOCKET SERVERS

We also have an issue with using a fixed port number. The PC client
needs to know which port number to connect on in order to access a
server. A simple approach would be to use a fixed port number for each
server, but this has some drawbacks. One is that it is frowned upon in the
Internet community to use fixed port numbers unless they are registered
(actually, any PC Connectivity services running on a Symbian OS phone
may be specialized, and clashes with other services might not matter in
practice). The other drawback is that it introduces a risk for third-party
developers. Any third-party PC Connectivity developer has to create their
server without knowing which other servers are under development.
Therefore, there is a risk of two developers independently choosing the
same port numbers (given the range of port numbers, the risk is small, but
definitely non-zero).

The sockets library supports opening a random port number for listen-
ing, but the server then needs some way to communicate the port number
to the PC client. In Symbian OS v8.0 the problems of starting a server
and communicating a port number are solved by using a Service Broker.
This is a server that listens on a fixed socket (with the port number set
by the IANA) and supports commands that will start a server by name
and then return the port number on which it is listening. In this way,
the Service Broker needs to be active whenever the PC is connected and
needs to have a fixed port number, but the same is not true of any other
Connectivity Socket Server. Later in this chapter we will see how a socket
server can register its name with the Service Broker and provide its port
number, and how the PC client can use the Service Broker to make a
connection to a Connectivity Socket Server.

It is possible to create a Connectivity Socket Server just by using
the standard sockets API and the Service Broker, but some additional
classes are provided that handle some of the tasks common to many
Connectivity Socket Servers. Bearing in mind that these classes have been
debugged and are already present on the Symbian OS phone, using them
is likely to reduce your debugging time and reduce the ROM footprint of
your service.

One side effect of using standard sockets is that a socket server could
be accessed over a data connection other than from the PC (known as
OTA or Over The Air). This has interesting possibilities (as well as raising
some possible security issues), but, at the time of writing, there is no
support for starting services in this way.

8.2 An Introduction to the Server Socket Classes

The major generic tasks that any Connectivity Socket Server will have are:

• open a socket for listening and inform the Service Broker of the
port number

AN INTRODUCTION TO THE SERVER SOCKET CLASSES 139

• wait on a socket for a connection from the PC and create a new
connection on request

• when a message is received on a connection, decode it to decide
what the command is, act on it and compose a response to send back
to the PC.

In order to combine the generic behavior with specialized behavior, a
set of base classes are used that encapsulate the standard functionality,
along with a factory pattern and specialized classes to encapsulate
nonstandard functionality.

8.2.1 The Server and Client Classes

The CServerSocket class is used to set up the listening socket and
interact with the Service Broker. When a client connects to the listening
socket, a CClientSocket-derived object is created and assigned to
the connection. CClientSocket uses the CMessageclass to send and
receive data over the connection. The client socket stays connected until
either the remote client disconnects or a write or read error occurs.

When designing a socket server, starting up can be delegated to the
Service Broker, but the developer needs to consider closing the server.
The Service Broker and the server socket classes make no rules about
when a server should terminate. The server should not keep running
indefinitely, otherwise it will absorb resources when the mobile phone is
not connected to a PC, which would be wasteful.

The most common approach to closedown is to exit when the connec-
tion between the mobile phone and the PC is broken. This event can be
detected using the MServerSocketObserverclass. Other alternatives
include defining a special command that allows the PC client to tell the
server to close down, and terminating when all connections are dropped
by the PC. Which one you choose depends on the protocol that you
design and how you expect to use the server.

8.2.2 The Factory Class

The factory class (derived from MFactory) has the following three tasks.

• To create client socket objects derived from the CClientSocket
class that can handle an incoming connection. Normally, devel-
opers do not need to worry about providing a client socket – they
can just use CClientSocket, and MFactory by default returns
an instance of CClientSocket. However, developers can extend
CClientSocket for various reasons, such as to store session-based
information.

140 DEVELOPING SOCKET SERVERS

• To create message classes. These classes are used to receive and send
data on the socket. Messages are composed of a fixed-size header and
a variable-length data trailer. Developers need to provide their own
header class but can use CMessage for other purposes.

• To create command classes. These classes are used to handle mes-
sages received on the socket. The API is defined in MCommand.
CCommand partially implements this API by providing some utility
functions for sending errors and responses back to the remote client.
When a message is received by CClientSocket, the factory is
required to create a new command. The factory is passed a refer-
ence to CClientSocket and to the incoming message. The factory
may therefore create different types of commands depending on the
incoming messages. Typically, the factory has a table or a switch
statement mapping message IDs to different command classes.

8.2.3 Command Classes
The key method in MCommand is ExecuteLD(). When a message is
received on the socket and the factory has created a command that can han-
dle the message, CClientSocket calls MCommand::ExecuteLD().

Commands automatically take ownership of the incoming message and
must destroy it when they no longer require it. The CClientSocket
registers and retains ownership of MCommand objects (to allow for
persistent commands, as we will see below), so when commands
have finished executing they must unregister themselves by calling
CClientSocket::RemoveCommand () and then delete themselves.
The CCommand class does this in the destructor, so developers need to
be aware of this only if they are overriding the MCommand class directly.

Commands can send response messages back to the remote client
by calling CClientSocket::SendResponse () using an MMessage.
Commands are responsible for managing the memory for the MMessage
and typically reuse the incoming message. Only one message at a time
can be sent via a CClientSocket. Messages are sent asynchronously,
and when a message has been sent MCommand::SendCompleteL()
is called to signal to the command that the message has been sent.
Typically commands decide to delete themselves when their reply
message has been completely sent. This is what is implemented in
CCommand::SendCompleteL(). Developers need to override this if
they intend to implement a different behavior.

As well as commands that send a reply and then unregister and delete
themselves, it is possible to implement persistent commands, that is,
commands that receive more than one incoming message and send zero
or more reply messages. This sort of command might be used when it
requires data that is too big for one message – the first message would set
up the command and then the command persists and receives subsequent

USING THE SERVICE BROKER API 141

messages until it has received all the data it requires, at which point it
unregisters and deletes itself.

To support persistent commands, CClientSocket maintains a list
of commands. When a new message is received, CClientSocket
asks existing commands (in the order in which they were added) if
they are interested in taking ownership of a new message by call-
ing MCommand::NewMessageReceivedL(). Commands return true
to NewMessageReceivedL() if they are interested in the new mes-
sage (passed as a parameter in NewMessageReceivedL()). If no
existing messages want the message or if there are no existing com-
mands, CClientSocket asks the factory for a new command. The
default CCommand::NewMessageReceivedL() always returns false,
so persistent commands need to override this. Persistent commands
that take ownership of a message have ExecuteLD() called as for
new commands.

As a CClientSocket is destroyed when the socket is disconnected,
it deletes the registered commands, so it is important that commands
unregister themselves before deleting themselves.

8.3 Using the Service Broker API

This section covers the API exposed by the RServiceBrokerClient
class. In addition, the Service Broker uses service registration files that are
described in Section 8.6.

The RServiceBrokerClient class is part of the conn namespace.

Class RServiceBrokerClient – public RSessionBase
Defined in connect\servicebrokerclient.h

This class is the client interface of the Service Broker. It allows named services to connect to
the Service Broker and register the port on which they are listening. Note that if a server uses
the CServerSocket classes then it does not need to use the RServiceBrokerClient
class directly.

Member Methods

RServiceBrokerClient()
The constructor takes no arguments.

TInt Connect ()
This method connects the client session to the Service Broker server.

returns – KErrNone or a standard error code.

void Disconnect ()
This method disconnects the client session when it is no longer needed.

142 DEVELOPING SOCKET SERVERS

TInt RegisterPort (const TDesC& aServiceName, TUint aPortNumber)
Informs the Service Broker that the named service is listening on the specified port.
aServiceName – the name of the service (must match the name used for registration).
aPortNumber – the port number on which the service is listening.
returns – KErrNone or a standard error code.

TInt FailedToStart (const TDesC& aServiceName, TUint aErrorCode)
This method informs the Service Broker that the service failed to start. The error code will be
returned to the client that tried to start the service.
aServiceName – the name of the service (must match the name used for registration).
aErrorCode – the error code to be passed back to the client.
returns – KErrNone on success, or a system-wide error code otherwise.

8.4 Server Socket Classes

The server socket classes are part of the conn namespace.

Class MServerSocketObserver
Defined in connect\tserverinfo.h

This mixin defines an observer for the server socket that gets notified if the socket is stopped
due to an error.

Member Methods

virtual void ServerSocketStoppedDueToErr (TInt aErr) = 0
This pure virtual method is called when the server socket is stopping due to an error and can
be used for cleanup tasks.
aErr – a system-wide error code for the error that is causing the server socket to stop.

Class MFactory
Defined in connect\mfactory.h

This mixin defines the methods that must be implemented by a message and command
factory. The class derived from MFactory controls which classes derived from
CClientSocket and MMessage will be created.

Member Methods

virtual CClientSocket* NewClientL (CServerSocket* aServerSocket)
This method returns a new instance of the CClientSocket-derived class associated with
this command factory class.
aServerSocket – the base CClientSocket.
returns – an instance of a CClientSocket-derived class.

SERVER SOCKET CLASSES 143

virtual MCommand* NewCommandL (MMessage* aMessage,
CClientSocket* aSocket) = 0

This method returns a new command based on a received message.
aMessage – the received message that is assumed to include a command code.
aSocket – the socket on which the message was received.
returns – a new MCommand-derived object.

virtual MMessage* NewMessageL () = 0
This method returns a new instance of the MMessage-derived class associated with this
command factory class.

Class TServerInfo
Defined in connect\tserverinfo.h

This class stores information regarding a server socket.

Constructor

TServerInfo(MFactory* aFactory, TUint16 aPortNumber,
TUint16 aMaxConnectionQueue, const TDesC& aServiceName,
MServerSocketObserver* aObserver)

aFactory – pointer to a command factory for the server socket.
aPortNumber – the TCP port number to be used for listening. If this is set to 0 then a

dynamic port is used.
aMaxConnectionQueue – the maximum number of pending connection requests. This is

passed on to the listening socket.
aServiceName – the name of the service.
aObserver – pointer to an object derived from an MSocketServerObserver that will

be informed if the socket is closed due to an error.

Member Variables

MFactory* iFactory
A concrete instance of a command factory.

TUint16 iPortNumber
The server port number.

TUint16 iMaxConnectionQueue
The maximum number of outstanding connection requests.

TPtrC iServiceName
The service name.

MServerSocketObserver* iObserver
The observer of the server socket.

144 DEVELOPING SOCKET SERVERS

Class CServerSocket
Defined in connect\cserversocket.h

The CServerSocket class handles connection requests and generates CClientSocket
objects that use CMessage classes to send and receive data. CServerSocket hides a
CServerSocketImpl class that is an Active Object that waits for connection attempts and
processes them.

Static Methods

static CServerSocket* NewL(const TServerInfo& aInfo)
Creates a new CServerSocket object using information from the supplied TServerInfo
object.
aInfo – a TServerInfo object defining the desired port number, command

factory, service name, etc.
returns – a new CServerSocket object.

Class CclientSocket
Defined in cclientsocket.h

This class handles the creation of new commands based on received data. For normal,
nonpersistent, commands it is not much used directly. If developing an unusual command, it
provides direct access to the socket and the sending/receiving states (by means of methods
not documented here).

Static Methods

static CClientSocket* NewL(CServerSocket* aServerSocket,
MFactory* aFactory)

This method creates a new CClientSocket instance and will be called by the socket server.
aServerSocket – a CServerSocket instance.
aFactory – an instance of a concrete command factory.

Member Methods

void RemoveCommand (MCommand* aCommand)
This method unregisters the command from the list owned by the CClientSocket. It should
be called in the command destructor.
aCommand – the command to be unregistered (normally the command being destroyed).

Protected Member Methods

virtual void ConstructL(CServerSocket* aServerSocket,
MFactory* aFactory)

SERVER SOCKET CLASSES 145

Second-stage constructor for use by derived classes.
aServerSocket – a CServerSocket instance.
aFactory – an instance of a concrete command factory.

Enumerated Type Serialise::TEndian – This encapsulates whether messages are to be
treated as Most Significant Byte (MSB) first or Least Significant Byte (LSB) first.
Defined in connect\serialise.h

• EBig – Big Endian – MSB first.
• ELittle – Little Endian – LSB first.

Module Serialise
This module consists of static methods to serialize variables into a buffer and to deserialize
them out of a buffer. The methods can handle a range of data types and are intended to be
used to unpack messages and pack responses.
Defined in connect\serialise.h

Module Methods

void Serialise (const TAny* aType, TInt aSize, TDes8& aBuffer,
const TEndian& aEndian)

This method appends a variable to a buffer.
aType – the variable to be copied.
aSize – the size of the variable in bytes.
aBuffer – the buffer to which the data is to be appended.
aEndian – whether the data is stored MSB first or LSB first.

void DeserialiseL(TAny* aType, TInt aSize, TDes8& aBuffer,
const TEndian& aEndian)

This method copies data from a buffer into a variable.
aType – the variable to receive the value.
aSize – the size of the variable in bytes.
aBuffer – the buffer from which the data is to be removed. The data is removed from the

beginning of the buffer.
aEndian – whether the data is stored MSB first or LSB first.

void Serialise(const TDesC& aString, TDes8& aBuffer,
const TEndian& aEndian)

This method appends a descriptor to a buffer.
aString – the descriptor to be appended.
aBuffer – the buffer to which the data is to be appended.
aEndian – whether the data is stored MSB first or LSB first.

146 DEVELOPING SOCKET SERVERS

void DeserialiseL(TDes& aString, TDes8& aBuffer,
const TEndian& aEndian)

This method copies data from a buffer into a descriptor.
aString – the descriptor to receive the value.
aBuffer – the buffer from which the data is to be removed. The data is removed from the

beginning of the buffer.
aEndian – whether the data is stored MSB first or LSB first.

Class MMessage
Defined in connect\mmessage.h

This mixin defines the interface that must be implemented by concrete message classes. Such
classes receive message header and data from the client socket. If the CMessage class can be
used then it is not necessary to use MMessage directly.

Member Methods

virtual TDes8& Data () = 0
This method returns a pointer to the data that has been received or must be sent next. This
might point to the header or to the body, depending on the receiving state.

virtual void Receive () = 0
This method initiates or resumes a receive operation.

virtual void ReceiveCompleteL () = 0
This method is called when a previous receive has completed. The state machine should be
progressed in this function.

virtual TBool IsReceiveComplete () const = 0
This method returns True if the whole receive operation (header and body) has completed.

virtual void Send () = 0
This method initiates or resumes a send operation (header and body).

virtual void SendCompleteL () = 0
This method is called when a partial send has completed.

virtual TBool IsSendComplete () const = 0
This method returns True if the whole send operation (header and body) has completed.

virtual void Reset() = 0
This method resets an ongoing send or receive operation. Cancels any data content in the
message body.

SERVER SOCKET CLASSES 147

Class MHeader
Defined in connect\mheader.h

This mixin represents a message header. It allows clients to use CMessage instead of
reimplementing the MMessage interface. A message header is normally concerned with
unpacking data from part of the message into header variables and then packing up again for
a response.

Member Methods

virtual const TDes8& ReadPtr () const = 0
This method returns the pointer for reading data from the socket. The buffer returned can be
partially filled. The message class will try to read starting at the current length of this buffer up
to its maximum length.

virtual TBool ReadL (TUint aReadBytes) = 0
The header is notified when the read operation completes. The number of bytes that have
been received is passed as a parameter. The header can do any unpacking of data here.
aReadBytes – the number of bytes received on the socket.
returns – ETrue if all the header data has been received, EFalse otherwise.

virtual void PrepareToWrite() = 0
This method is called to prepare the header for sending, that is, data should be packed if
necessary.

virtual const TDes8& WritePtr () const = 0
The pointer for writing data to the socket. Data will be written up to the current length of this
buffer.

virtual void SetBodyLength (TInt aLength) = 0
This method sets the length of the message body. It is called by CMessage immediately
before calling PrepareToWrite().
aLength – the length of the body.

virtual TInt BodyLength() const = 0
This method returns the current length of the message body.

virtual TInt MaxBodyLength() const = 0
This methods returns the maximum allowed length of the message body.

Class CMessage – public CBase , public MMessage
Defined in connect\cmessage.h

This class is a base implementation of a message derived from MMessage. It uses MHeader
to encapsulate the message header.

148 DEVELOPING SOCKET SERVERS

Static Methods

static CMessage* NewL(MHeader* aHeader, const TEndian& aEndian,
CMessage* aMessage = NULL)

This method returns a new CMessage object with the supplied header and message (if any)
and with the ‘endianness’ of the data.
aHeader – the message header to use. The CMessage takes ownership of it.
aEndian – how to treat data in the message.
aMessage – this argument is no longer used (it has not been removed for reasons of

backwards compatibility).

Protected Construction Methods

CMessage(const TEndian& aEndian)
Constructor for the CMessage class.
aEndian – how to treat data in the message.

virtual void ConstructL(CMessage* aMessage, MHeader* aHeader)
Second-stage constructor.
aMessage – this argument is no longer used (it has not been removed for reasons of binary

compatibility).
aHeader – the message header to use.

Public Member Methods

inline MHeader*& Header ()
inline const MHeader* const& Header() const
This method provides access to the message header.

Protected Member Methods

inline TState& State ()
inline const TState& State() const
This method provides access to the current state of the message.

inline HBufC8*& DataBuf ()
inline const HBufC8* const& DataBuf() const
This method provides a pointer to the message data.

inline TPtr8& DataPtr ()
inline const TPtr8& DataPtr() const
This method provides direct access to the message data.

inline const TEndian& Endian () const
This method returns whether the message data is Big-Endian or Little-Endian.

SERVER SOCKET CLASSES 149

Public Data Manipulation Methods

virtual void Reset ()
This method resets an ongoing send or receive operation. It cancels any data content in the
message body.

virtual TDes8& Data ()
This method from MMessage provides direct access to the message data. It is probably better
to use other methods to extract or add data.

inline TUint Length ()
This method returns the length of the message data.

template<class T> inline void Append (const T& aData)
This method appends data to the data trailer.
aData – the data to be appended to the trailer.

template<class T> inline void ExtractL (T& aData)
This method extracts data from the data trailer.
aData – the data extracted from the trailer.

template<class T> inline void PeekL (T& aData) const
This method peeks at data from the data trailer, that is, it returns the data but does not move
the current data position, so the data can be read again.
aData – the data peeked at from the data trailer.

HBufC* ExtractLC ()
HBufC* ExtractL ()
These methods extract an HBufC with a 16-bit length prefix. The caller takes ownership of the
returned HBufC.

HBufC* ExtractWithRawLenPrefixLC ()
This method returns an HBufC containing Unicode data. The data is prefixed with a 16-bit
length (in bytes, not in Unicode characters). The caller takes ownership of the returned
HBufC.

HBufC8* ExtractDataL ()
This method extracts all the data from the message and returns it in one buffer. The caller
takes ownership of the HBufC.

TPtrC8 ExtractRawDataL ()
This method zeroes the data buffer and returns a pointer to it, so data can be added to the
buffer.

Class MCommand

Defined in connect\mcommand.h

150 DEVELOPING SOCKET SERVERS

This mixin defines the methods which a concrete command class must implement. It is
created with a message, and the command is then responsible for the memory of this
message. A pointer to the client socket is also passed as a parameter in the constructor. It can
process more than one message.

Member Methods

virtual void ExecuteLD () = 0
Executes the command, called by the client socket when the command has been created, or
after a persistent command has captured a message.

virtual void SendErrorMessage (TUint aErrorCode) = 0
This method sends an error message to the remote client.
aErrorCode – the error code to send to the remote client.

virtual TBool NewMessageReceived (MMessage* aMessage) = 0
This method is called by the client socket when a receive operation has completed. It gives
persistent commands the opportunity of taking ownership of extra messages in addition to the
one that created the command in the first place. The command implementing this method
can take ownership of the pointer parameter, in which case ETrue should be returned.
Alternatively, it may ignore the message (default behavior for all commands), in which case
EFalse should be returned.
aMessage – the received message containing the data received.
returns – ETrue if the command has taken ownership of the message, EFalse otherwise.

virtual void SendCompleteL () = 0
This method is called when a send operation has completed. No error is reported by the send
operation, because it is always assumed to succeed. Should it fail, the socket is closed and
therefore SocketClosing() is called. Commands don’t need to take any action on write
failure – they simply cease to exist.

virtual void SocketClosing () = 0
This method is called when the socket is closing.

virtual void TakeOwnershipOfMessage (MMessage* aMessage) = 0
This method is called by CClientSocket after a new command has been created. The new
command takes ownership of the message data.

Class CCommand – public CBase, public MCommand
Defined in connect\ccommand.h

This base class implements the interface specified in MCommand. Commands are created
based on the message identifier using the command factory. It is created with a message,
which is passed as a pointer, and the command is then responsible for the memory of this
message. A pointer to the client socket is also passed as a parameter in the constructor.
Persistent commands can process more than one message by registering with the client socket.

DEVELOPING AN ECHO SOCKET SERVER 151

Constructor

CCommand(CClientSocket* aSocket)
aSocket – the owning client socket.

Protected Member Methods

virtual void SendResponse ()
This method sends the header followed by the rest of the message. It is the normal means of
sending a response to the client.

virtual void SendCompleteL()
This method is called when a send operation has completed. No error is reported by the send
operation, because it is always assumed to succeed. Should it fail, the socket is closed and
therefore SocketClosing() is called. Observers don’t need to take any action on write
failure – they simply cease to exist.

TBool NewMessageReceived (MMessage* aMessage)
This method is called by the client socket when a new message is received to allow a
persistent command to take ownership. The default version returns EFalse. This should be
overridden only by those commands that receive the client request in more than one message.
aMessage – this argument is not used.
returns – ETrue if the command has taken ownership of the message, EFalse otherwise.

virtual void SocketClosing ()
This method is called when the socket is closing.

void TakeOwnershipOfMessage (MMessage* aMessage)
This method is called when the command is created to take ownership of the message.

inline CClientSocket* Socket () const
This method returns a reference to the owning CClientSocket.

inline CMessage*& Message ()
inline const CMessage* const & Message() const
These methods provide access to the CMessage owned by the CCommand.

8.5 Developing an Echo Socket Server

In this section we will create an echo socket server that will accept a
single type of command with accompanying data and return the same
data as the response. We will build it from the bottom up by creating
the command classes, then the factory, and finally the socket client
and server.

This is the first place in this book where we will meet EKA2. The Sym-
bian OS kernel developed in ER5 is designed for embedded devices – it
is not a ‘hard’ real-time kernel. This means that it is not possible to

152 DEVELOPING SOCKET SERVERS

guarantee a response time. As smartphones incorporate multimedia and
other increasingly demanding functions there is more need for such
a kernel. From Symbian OS v8.0 onwards Symbian supports such a
kernel – the name EKA2 stands for EPOC Kernel Architecture 2 – as an
alternative to the existing kernel. The smartphone manufacturers choose
which kernel to use and, at the time of writing, have not released details
of which kernel will be used on their smartphones.

Apart from the internal changes, EKA2 has changes to the thread and
process model, and the detailed APIs are slightly different in these areas.
In this chapter the difference lies in the ‘boiler-plate’ used to create an
E32Main().

8.5.1 Command Classes
To deal with the incoming commands, we need classes for the echo
command itself and for our header. We will also add a base class for
commands. In this case the base command class is not strictly necessary
for such a simple server, but it is useful when we have more commands,
and we will include some code to handle unrecognized messages.

When we define the header class, we define at least part of our protocol,
because the header class is responsible for unpacking and packing the
message header. In this case we will use some fairly common parts.
We will have a four-byte command identifier, a four-byte transaction
identifier (so we can tell which command a response is linked to) and a
four-byte length for the data trailer. In fact, we could use two-byte values
for all practical purposes.

In this example, I will use the conn namespace explicitly.
This is the class declaration for our header class, with the members

derived from MHeader and then our specific members.

class CHeader : public CBase, public conn::MHeader
{
public:
/** The length of the message header */
enum { KHeaderLength = 12 };

/** The maximum length of the message data. */
enum { KMaxMessageLength = 0xFFFF };

public: //From MHeader
const TDes8& ReadPtr() const;
TBool ReadL(TUint aReadBytes);
void PrepareToWrite();
const TDes8& WritePtr() const;
void Reset();

inline void SetBodyLength(TInt aLength);
inline TInt BodyLength() const;
inline TInt MaxBodyLength() const;

DEVELOPING AN ECHO SOCKET SERVER 153

private:
TUint32 iMessageId; // Message ID
TUint32 iTransactionId; // Transaction ID
TUint32 iLength; // Length of data trailer
TBuf8<KHeaderLength> iData; // Buffer for header data

public:
inline TUint32& Id();
inline const TUint32& Id() const;

inline TUint32& TransactionId();
inline const TUint32& TransactionId() const;

};

// INLINE IMPLEMENTATION
void CHeader::SetBodyLength(TInt aLength)
{iLength = STATIC_CAST(TUint32, aLength);}

TInt CHeader::BodyLength() const
{return iLength;}

TInt CHeader::MaxBodyLength() const
{return KMaxMessageLength;}

TUint32& CHeader::Id()
{return iMessageId;}

const TUint32& CHeader::Id() const
{return iMessageId;}

TUint32& CHeader::TransactionId()
{return iTransactionId;}

const TUint32& CHeader::TransactionId() const
{return iTransactionId;}

Then the methods derived from MHeader are straightforward. For
reading and writing we provide access to the iData member.

const TDes8& CHeader::ReadPtr() const
{
return iData;
}

const TDes8& CHeader::WritePtr() const
{
return iData;
}

void CHeader::Reset()
{
iData.SetLength(0);
iLength = 0;
}

When our header data has been received, we need to unpack it. We
use methods from the Serialise module and set up our data members.

154 DEVELOPING SOCKET SERVERS

TBool CHeader::ReadL(TUint aReadBytes)
{
iData.SetLength(aReadBytes + iData.Length());
if (iData.Length() == KHeaderLength)

{
conn::UnpackL(iLength, iData, conn::ELittle);
conn::UnpackL(iMessageId, iData, conn::ELittle);
conn::UnpackL(iTransactionId, iData, conn::ELittle);

return ETrue;
}

return EFalse;
}

We will use the same header for sending a response, so we need a
corresponding method to put the data members back into the header part
of a message.

void CHeader::PrepareToWrite()
{
iData.Zero();

conn::Pack(iLength, iData, conn::ELittle);
conn::Pack(iMessageId, iData, conn::ELittle);
conn::Pack(iTransactionId, iData, conn::ELittle);
}

Once we have our header class, we can define our base command.
This has two purposes:

1. It provides implementations of methods that will be common to all
commands, such as sending an error response.

2. It can be used by the factory class as a default command if it cannot
recognize a received message. For this purpose, the ExecuteLD()
method returns an error message to the client.

class CBaseCommand : public conn::CCommand
{
// Construction methods required for factory
public:
static conn::CCommand* NewL(conn::CClientSocket* aSocket);
CBaseCommand(conn::CClientSocket* aSocket);

// From MCommand
public:
virtual void ExecuteLD();

protected:
virtual void SendErrorMessage(TUint aErrorCode);

// Default routine to send a response

DEVELOPING AN ECHO SOCKET SERVER 155

protected:
virtual void SendMessage(TUint32 aMessageId, TUint32 aTransactionId);

// Client socket and access
private:
conn::CClientSocket *iCs;

protected:
inline conn::CClientSocket *Cs() {return iCs;}

};

The construction is straightforward and just saves the client socket. We
do not have any second-stage construction in this case.

conn::CCommand* CBaseCommand::NewL(conn::CClientSocket* aSocket)
{
__ASSERT_DEBUG(aSocket, Panic(KNullPointer));
return new (ELeave) CBaseCommand(aSocket);
}

CBaseCommand::CBaseCommand(conn::CClientSocket* aSocket):
conn::CCommand(aSocket)
{
iCs = aSocket;
}

The SendMessage()method sets the message identifier and transac-
tion identifier in the header and then uses the base CCommand to actually
send the response.

void CBaseCommand::SendMessage(TUint32 aMessageId, TUint32 aTransactionId)
{
CHeader* hdr = STATIC_CAST(CHeader*, Message()->Header());
__ASSERT_DEBUG(hdr, Panic(KNullPointer));
hdr->Id() = aMessageId;
hdr->TransactionId() = aTransactionId;
CCommand::SendResponse();
}

Given the SendMessage() method, the SendError() method just
uses it with an error message identifier. The actual error code is set as the
message body.

void CBaseCommand::SendErrorMessage(TUint aErrorCode)
{
CHeader* hdr = STATIC_CAST(CHeader*, Message()->Header());
__ASSERT_DEBUG(hdr, Panic(KNullPointer));

Message()->Reset();
TInt32 error32 = aErrorCode;
Message()->Append(error32);

SendMessage(EREchoCmdError, hdr->TransactionId());
}

156 DEVELOPING SOCKET SERVERS

As mentioned above, the ExecuteLD() method will be called only
if a message is received that is not recognized.

void CBaseCommand::ExecuteLD()
{
SendErrorMessage(KErrNotSupported);
}

Given the base command, the echo command is very simple (that was
the whole idea of the base command class).

class CEchoCommand : public CBaseCommand
{
public:
static conn::CCommand* NewL(conn::CClientSocket* aSocket);
virtual void ExecuteLD();

private:
CEchoCommand(conn::CClientSocket* aSocket);

};

Again, the construction is straightforward.

conn::CCommand* CEchoCommand::NewL(conn::CClientSocket* aSocket)
{
return new (ELeave) CEchoCommand(aSocket);
}

CEchoCommand::CEchoCommand(conn::CClientSocket* aSocket):
CBaseCommand(aSocket)
{
}

In the ExecuteLD() method we carry out the actual work of the
command. Typically, this will involve reading data from the message
body, doing some action and then sending a response. With this echo
command, we will read text from the incoming message and then write
it back into the message and send a response. (We could have left the
message alone and sent it back, but I wanted to show the methods used
to read and write data.)

void CEchoCommand::ExecuteLD()
{
CHeader* header = STATIC_CAST(CHeader*,Message()->Header());

TUint32 messageId = header->Id();
TUint32 transactionId = header->TransactionId();

HBufC8* text = Message()->ExtractDataL();

DEVELOPING AN ECHO SOCKET SERVER 157

Message()->Reset();
Message()->Append(text->Length());
for (TInt i=0;i<text->Length();i++)

{
Message()->Append(text->Ptr()[i]);
}

delete text;

SendMessage(messageId, transactionId);
}

In a real implementation we would add further command classes, one
for each possible command.

8.5.2 The Factory Class
The simpler tasks of the factory class are to create a new derived client
socket and message objects on demand, but the more complex one is to
create specific commands based on the message. Theoretically, you can
do this in any way you please, but there is a standard way that works
well and that you can copy. This involves defining a class that associates
a message identifier with a method to create a new command.

typedef conn::CCommand* (*CreateFcn)(conn::CClientSocket*);

class TCreator
{
public:
TCreator(CreateFcn aFcnL, TUint16 aId):

iFcnL(aFcnL), iId(aId) { }

public:
CreateFcn iFcnL;
TUint32 iId;

};

This class will then be used to create an array of TCreator objects.
This leads on to the declaration of our factory class:

class TFactory : public conn::MFactory
{
// From MFactory
public:
conn::MMessage* NewMessageL();
conn::MCommand* NewCommandL(conn::MMessage* aMessage,

conn::CClientSocket* aSocket);

// Set of command creator objects
private:
static const TCreator iCreators[];
static const TUint iNumCreators;

};

158 DEVELOPING SOCKET SERVERS

In the factory class definition, we need to define our array of command
creators. This does not need to be ordered in any way.

const TCreator TFactory::iCreators[] =
{
TCreator(CEchoCommand::NewL,EREchoCmdEcho),
...
};

const TUint TFactory::iNumCreators =
sizeof(TFactory::iCreators)/sizeof(TCreator);

This means that to add a new command we define the new command
class and add a row to the array of command creators.

Given the array of command creators, the NewCommandL() method
simply iterates through the array looking for a matching command iden-
tifier. If one is found then the command creator is used to obtain a
command. If no match is found then we return a base command that
we expect to return an error response (or just to leave when executed).
By using the array of command creators, this code can just be reused
unchanged for a new server.

conn::MCommand* TFactory::NewCommandL(conn::MMessage* aMessage,

conn::CClientSocket* aSocket)
{
__ASSERT_DEBUG(aMessage,Panic(KErrArgument));

conn::CMessage* msg = STATIC_CAST(conn::CMessage*, aMessage);
__ASSERT_DEBUG(msg, Panic(KNullPointer));

CHeader* hdr = STATIC_CAST(CHeader*, msg->Header());
__ASSERT_DEBUG(hdr, Panic(KNullPointer));

for (TUint i = 0; i < iNumCreators; i++)
{
if (hdr->Id() == iCreators[i].iId)
{
return iCreators[i].iFcnL(aSocket);
}

}

return new (ELeave) CBaseCommand(aSocket);
}

The last part of the factory is responsible for returning a new derived
message object.

conn::MMessage* TFactory::NewMessageL()
{
CHeader* hdr = new (ELeave) CHeader();

DEVELOPING AN ECHO SOCKET SERVER 159

CleanupStack::PushL(hdr);

conn::CMessage* msg = conn::CMessage::NewL(hdr, conn::EBig);
CleanupStack::Pop(); //hdr

return msg;
}

8.5.3 The Socket Client and Server Classes
In this case we do not have any need to create a derived client socket
class. We will create a simple echo server socket class. This has to address
several needs:

• It derives from MServerSocketObserver to be notified when the
server socket stops.

• It owns a CServerSocket and a factory object.

• It provides a singleton reference to itself to allow global access. For
the echo server we don’t need this, but it can be useful when the
server controls global resources.

• Otherwise, it is a standard server.

class CEchoServer : public CBase, public conn::MServerSocketObserver
{
public:
static CEchoServer* NewLC();
static void StartL();

∼CEchoServer();

// From MServerSocketObserver
void ServerSocketStoppedDueToErr(TInt aError);

// Singleton to provide global access to the server
static CEchoServer*& EchoServer();

private:
CEchoServer();
void ConstructL();

private:
conn::CServerSocket* iServerSocket;
TFactory iFactory;

};

The singleton is straightforward:

CEchoServer*& CEchoServer::EchoServer()
{

160 DEVELOPING SOCKET SERVERS

static CEchoServer* _pThis = NULL;
return _pThis;
}

The creation and startup code is standard two-stage construction that
creates and starts a CServerSocket object and runs it as an Active
Object. We will need to create a TServerInfo object to configure the
server socket. In this case we will set the port number to 0 to get a
random, dynamically generated port number rather than a fixed number.

const TUint16 KEchoPortNumber = 0;
const TUint16 KServerQueueLength = 5;
_LIT(KEchoServerName, "com.symbian.echo");

CEchoServer* CEchoServer::NewLC()
{
CEchoServer* self = new(ELeave) CEchoServer();
CleanupStack::PushL(self);
self->ConstructL();
return self;
}

CEchoServer::CEchoServer()
{
}

void CEchoServer::ConstructL()
{
conn::TServerInfo serverInfo(&iFactory, KEchoPortNumber,

KServerQueueLength, KEchoServerName, this);

iServerSocket = conn::CServerSocket::NewL(serverInfo);
iServerSocket->StartL();

}

void CEchoServer::StartL()
{
CActiveScheduler* scheduler = new(ELeave)CActiveScheduler();
CleanupStack::PushL(scheduler);
CActiveScheduler::Install(scheduler);
EchoServer() = CEchoServer::NewLC();
scheduler->Start();
CleanupStack::PopAndDestroy(EchoServer());
CleanupStack::PopAndDestroy(scheduler);
}

CEchoServer::∼CEchoServer()
{
delete iServerSocket;
}

In this case, if the socket server stops due to an error then we don’t
have anything to do except stop the Active Scheduler. This is normally
called when the connection is dropped.

INSTALLING AND REGISTERING A SERVER SOCKET SERVICE 161

void CEchoServer::ServerSocketStoppedDueToErr(TInt aError)
{
CActiveScheduler::Stop();
}

The final piece in the jigsaw is to set up the executable startup. The
code for a Symbian OS EKA1 smartphone is:

TInt E32Dll(TDllReason)
{
return KErrNone;
}

TInt E32Main()
{
__UHEAP_MARK;
CTrapCleanup* cleanupStack = CTrapCleanup::New();
TRAPD(error, CEchoServer::StartL());
delete cleanupStack;
__UHEAP_MARKEND;
return 0;
}

while the code for an EKA2 smartphone is:

GLDEF_C TInt E32Main()
{
__UHEAP_MARK;
CTrapCleanup* cleanupStack = CTrapCleanup::New();
TRAPD(error, CEchoServer::StartL());
delete cleanupStack;
__UHEAP_MARKEND;
return 0;
}

We can now build the echo socket server and try to run it.

8.6 Installing and Registering a Server Socket Service

Having built our echo socket server, it still needs to be installed
and registered.

In order for a socket server to be started by the Service Broker, it must
be located in the \system\programs directory and must be registered.
The Connectivity socket servers that are shipped with a Symbian OS
phone are located on the z:\system\programs directory on the ROM,
so extra servers need to go in the c:\system\programs directory.

As with the custom server, building a socket server for the emulator
will automatically put it in the right place on the mapped ROM drive. For

162 DEVELOPING SOCKET SERVERS

a real device or a reference board, we can either copy the binary into
place or create a .sis installer file.

As well as placing the server in the right location, we need to create
a service registration file for the Service Broker. This provides a name
and version for the service and associates the name with the server
executable. The service file is an XML file and has a very simple structure.
One or more service files will exist in ROM on the mobile phone, but
it is possible to create additional service files and place them on the c:
drive. In fact, it is essential to create additional service files if we want to
use additional services.

Here is a service file that will register our echo server.

<?xml version="1.0" encoding="UTF-16" standalone="yes"?>
<service_registration>
<service name="com.symbian.echo" exepath="echoss" version="1.0 0"

processname="echoss" />
</service_registration>

The service name attribute is the name that will be published on the
PC. You can use any name you like, but Symbian recommends the use
of a reverse domain name convention (also seen in naming Java classes)
to guarantee that your name is unique and will not clash with another
server from another developer.

The exepath attribute is the name of the executable as fixed in your
mmp file, but without the .exe or .dll extension.

The version attribute is a version string that will be provided to the PC
as part of the information about the service. This can be used to detect
different versions of the server and potentially enables the PC client to
handle different versions by making allowances for the differences.

The process name attribute is used in EKA1 implementations to set the
name of the loaded DLL.

You should note that building the server will not copy the service
registration file into the right place; you need to place that manually if
you are using the emulator. Service Broker registration files go into the
System\Data\ServiceBroker directory, on either the z: drive or the
c: drive.

The use of makesis was covered in Chapter 6, but here is a package
file that will install the echo server socket with no certificate (you would
provide a real certificate in practice). This is echoss.pkg.

; SIS package file for Echo Socket Server
;
; Language - only English but no included text anyway
&EN

; Caption, UID and version
#{"Echo Socket Server"},(0x101FEAFD),0,0,0

STARTING A SOCKET SERVICE FROM SCOM 163

; Files to install
"\epoc32\release\arm4\urel\echoss.exe" -
"!:\System\Programs\echoss.exe"

"echoservice.xml" -
"!:\System\Data\ServiceBroker\echoservice.xml"

This package file is aimed at a reference board and so uses an ARM4
build. If you write a socket server that is source compatible with multiple
phones then you must expect to build it multiple times and potentially
create a package for each target phone (in practice, you may find that a
single package may be compatible with a family of phones).

The .sis file can be generated with the command

makesis echoss.pkg echoss.sis

Once you have the .sis file, it can be installed directly from the PC
or copied to the phone and then installed using the built-in application
manager. In this case, I put the file in the c:\System\Install directory
and was able to install it and then communicate with it.

8.7 Starting a Socket Service from SCOM

Once you have your socket server on the mobile phone, starting it is
easier than with a custom server. On connection, SCOM (or BAL to be
more precise) queries the Service Broker for the list of registered services.
This means that the service can be accessed just by using the name to
index the service collection.

Given a connection to a Symbian OS smartphone, the following code
will load our echo custom server (it is much shorter than the equivalent
code to load a custom server):

try
{
SymbianConnectBAL.ISCBALDeviceServiceCollection serviceCol =

mDevice.Services;
SymbianConnectBAL.ISCBALDeviceService service =

serviceCol["com.symbian.echoss"];
SymbianConnectBAL.ISCBALSequentialStream myStream =

service.StartServiceOnStream();
}
catch
{
}

It is possible to open more than one stream to a server. This is most
likely to be useful if the server may be used by multiple clients (such as

164 DEVELOPING SOCKET SERVERS

the remote file server) and should be taken into account in the design of
the server. When you close the stream, that particular connection will be
destroyed, but any other connections will not be affected.

8.8 Communicating with a Socket Service

Once we have the socket server loaded and a connection established,
we can communicate with it. As the echoss server just echoes data, we
will simply allow the user to enter any text desired, pack it in a message
with a valid header, send it to the server and then read it back.

To write the data to the phone, we receive text from the console, write
the length of the data, and then write the data (remember that I explained
the protocol with the data length followed by the data above).

// Establish connection to echoss

System.Console.WriteLine("Enter text to be echoed");
string text = System.Console.ReadLine();
int textLen = text.Length;

byte[] message = new byte[12];
int msgId = 0; // Message / command ID
int transId = 1; // Transaction ID
WriteInt32(textLen, ref message, 0); // Write message length
WriteInt32(msgId, ref message, 4); // message ID = echo
WriteInt32(transId,ref message, 8); // transaction ID
myStream.Write(message);

message = new byte[textLen];
or(int i = 0 ; i < textLen ; i++)
{message[i] = (byte)text[i];}
myStream.Write(message);

In this case, I have used literals for the message identifier and trans-
action identifier. In any real case we would not do this. We would have
defined constants for the message identifiers and would probably have
an incrementing transaction identifier (for debugging purposes).

To read the response, we use the Read() method and start by reading
the 12-byte message header, including the message length, and then the
actual data.

object oResponse;
int retval = myStream.Read(12, out oResponse);
int msgLen = 0;
if(retval == 12)
{
byte[] buff = (byte[])oResponse;
msgLen = ReadInt32(ref buff, 0);
msgId = ReadInt32(ref buff, 4);

DEBUGGING A SOCKET SERVICE 165

transId = ReadInt32(ref buff, 8);
System.Console.WriteLine("Message command {0} transaction {1}

length is {2}", msgId, transId, msgLen);
}
else // Didn’t get the header correctly
{
System.Console.WriteLine("Failed to read message length");

}

if(msgLen > 0)
{
retval = myStream.Read(msgLen, out oResponse);
if(retval == msgLen)
{

byte[] buff = (byte[])oResponse;
for(int i = 0 ; i < msgLen ; i++)
{System.Console.WriteLine("byte {0} = {1}", i, buff[i]);}

}
else
{

System.Console.WriteLine("Tried to read {0} but only read {1}",
msgLen, retval);

}
}

8.9 Asynchronous Communication

As with communicating with a custom server, we will probably want to
communicate asynchronously for performance reasons. This works in just
the same way using an OnRead() event.

8.10 Debugging a Socket Service

It is slightly easier to debug a socket server than it is to debug a custom
server, because it is a separate process that can be debugged in its own
right. The emulator bearer has a deliberately long timeout, so it is possible
to run a socket server in the debugger and not lose the connection.

To debug a socket server using the Metrowerks IDE, load the socket
server and run the debugger. This will start the debugger and the socket
server will connect to the Service Broker (starting it in the process) and
register itself before you connect the emulated mobile phone to the PC.
This is not the usual sequence that you will find on a real mobile phone,
where you will not get the socket server started until after a connection
is made.

This has one drawback if you are not aware of the consequences. When
you run the Connect UI application in the emulator to get the connection,
it causes the MServerSocketObserver::ServerSocketStopped

166 DEVELOPING SOCKET SERVERS

DueToErrmethod to be called as part of a reset operation. Remember that
for anormal implementation this will cause the server to exit. Ifwe leave this
in place for debugging purposes then we will connect the PC to the emula-
tor and the socket server will immediately exit! To get around this problem,
we want to either disable the MServerSocketObserver::Server-
SocketStoppedDueToErr or, better still, make it use conditional com-
pilation so that it is disabled only in a debug mode.

Once you have surmounted these hurdles, you can debug a socket
server like any other Symbian OS process.

9
Introducing SMS and Messaging Classes

In this chapter, we are going to cover the Symbian OS Messaging
subsystem in general and SMS in particular.

Messaging is one of the most important features of Symbian OS phones.
It provides a good example of creating a Connectivity application that
involves programming on the phone as well as on the PC. A bonus is
that having an SMS management application is downright useful – I use
the example I have built here to save me keying in messages using the
numeric keypad.

The features that we are going to cover include:

• retrieving messages from the phone for display

• sending messages via the phone

• deleting messages on the phone

• picking up incoming messages to keep the list of displayed messages
up to date.

This chapter will not be an exhaustive description of the Messaging
APIs. Instead, it is intended to provide a general context and enough
detail to write the SMS Management application.

The Message Server is a prime example of a system server in Symbian
OS. It controls access to a system resource – the message store – and it
supports plug-ins (called MTMs – Message Type Modules) for the specific
types of messages. It also accepts requests from multiple clients; these
requests can be synchronous or asynchronous.

Messages are stored as files in a dedicated directory and are accessed
by means of Messaging APIs.

9.1 The Message Server and MTMs

The Message Server by itself cannot send or receive any messages, as it
does not contain the message-type-specific knowledge required. Instead,

168 INTRODUCING SMS AND MESSAGING CLASSES

the Message Server uses MTMs that encapsulate the message-type-specific
knowledge. MTMs have been created by Symbian and by phone manu-
facturers for a range of message types, including:

• email (IMAP, SMTP and POP3)

• fax

• SMS

• BIO messages (smart messages used for configuration and other pur-
poses)

• infrared and Bluetooth OBEX messages

• MMS.

Over time, it has proved straightforward to add new MTMs for new
message types – the architecture has proved its worth.

The MTMs are responsible for creating and sending messages, for
receiving messages and for some aspects of displaying messages. Actually,
some types of messages are received by means of watchers (SMS is one
of these message types), but the general picture holds true.

Although I refer to an MTM, developers should be aware that, in fact,
an MTM comprises a number of parts:

• a server-side MTM is a plug-in derived from the CBaseServerMtm
class that is loaded directly by the Message Server and is responsible
for the actual message transport, such as sending and receiving,
if applicable

• a client-side MTM is derived from the CBaseMtm class and provides
an API for messaging clients, such as the Messaging Application, that
are specific to the message type

• a user interface MTM is derived from the CBaseMtmUi class and
provides an API for use by a messaging application that has a user
interface, making it easier to create a generic messaging application
that can manage different types of message

• a user interface data MTM is derived from the CBaseMtmUiData
class and encapsulates user interface data for the MTM such as icons
for the Messaging Application.

These parts and their relationship are shown in Figure 9.1.
Only developers creating a new MTM or working on the Message

Server need to care about server-side MTMs. The user interface and user
interface data MTMs are used by GUI applications. As we are creating a
non-GUI application, we will use only the client-side MTM. We are not
creating a new MTM, so we do not need to go further into the structure of

THE MESSAGE SERVER AND MTMS 169

User Interface
MTM

User Interface
Application

User Interface
Application

User Interface
Data MTM

Client MTM

Server MTMMessage Server

Figure 9.1 Message Type Module (MTM) general structure

MTMs. All we need to know is that we will use the SMS MTM for some
of our tasks.

Although we are going to use only the SMS MTM, some applications
need to use multiple MTMs and may need to use MTMs that their
developers had not foreseen. Therefore the Message Server includes a
registry of the available MTMs which can be used to iterate through the
loaded MTMs. The MTM registry is responsible for loading MTMs on
demand and for unloading them when they are no longer needed. We do
not need to use these features.

One aspect to be aware of is that it is necessary to use a mixture of
generic and specific APIs. It is hardly surprising that the Message Server
does not provide APIs sufficient to manage all types of messages, and the
MTMs do not provide full APIs of their own. This makes the learning curve
for Messaging programming slightly steeper than might be expected.

Another aspect that affects the programmer starting to use the Messag-
ing subsystem is that the Messaging APIs are powerful and sophisticated.
They have been designed for functionality rather than ease of use, and
they support a range of ways of working. For example, there are many
asynchronous methods as well as the synchronous methods we will use.
The asynchronous methods are very useful if you are writing a user inter-
face: a synchronous method might leave the user interface unresponsive,
so the asynchronous methods support a better user experience. However,
the asynchronous methods are slightly more complex to program and we
do not need them – we will make asynchronous calls from the PC, so we
can handle synchronous behavior on the device.

There is one part of the Messaging subsystem that is generic and has
been designed with ease of use in mind, and that is the Send-As API.
This is intended for use by a wide range of applications to send data via
a range of MTMs. However, the Send-As API does not cover retrieval of
messages or other operations (nor does it fully send the message), so we
will not use it.

170 INTRODUCING SMS AND MESSAGING CLASSES

9.2 The Structure of Messages

Although the Symbian OS Messaging subsystem supports a range of
messages, all the messages share some common structures:

• a header that may include a subject and timestamp and from and
to addresses

• a message body (normally Rich Text)

• zero or more attached files.

Not all types of message can have all these parts. For example, SMS
and fax messages cannot have attachments, and MMS messages do not
strictly have a body. Even when the parts are supported, they may be
optional (for example, attachments are optional for email messages).

9.2.1 Headers and Bodies
All messages have some form of header data. This is most obvious for
message types such as email and MMS, but even message types such as
SMS and fax have information that is logically stored in a header, because
it is meta-data as opposed to the actual content of the message. Header
data includes:

• a message subject (actually an SMS message does not have a separate
subject as such, but Symbian OS treats the start of the message text as
a subject for compatibility with other message types)

• a ‘from’ address of some form

• one or more destination addresses

• a timestamp.

A header may include other data depending on the message type, such
as encoding and character set or delivery priority.

In addition to the header, most messages have a body, which is
stored in a CRichText object. Rich text is sufficiently versatile for most
purposes, although it is excessive for an SMS. Exactly how the body text is
encoded for sending or decoded when received depends on the message
type and is the responsibility of the server-side MTM. For example, a fax
message has its body rendered to a graphical form as it is sent.

The generic classes TMsvEntry and CMsvEntry expose structures
that encapsulate much of the message structure. TMsvEntry contains
information common to all message types that can be displayed in a
message list in a Messaging Application. CMsvEntry provides access to
the body text and message-type-specific headers and attachments. They

THE STRUCTURE OF MESSAGES 171

are supplemented by MTM classes that provide message-type-specific
information and functions.

9.2.2 The Message Store and Caching of Data
Messages are persistent in Symbian OS. The user expects their SMS or
email messages to be preserved, not simply displayed or sent and then
discarded. Therefore, the Message Server manages the Message Store
where all messages are stored. As this is a system resource that is used by
multiple clients, the Message Server is responsible for controlling access
and maintaining its integrity.

Regardless of the format used, all data can be stored in files, so the
Message Store is a directory that contains sub-directories and files – the
files are the message entries. You can see the Message Store by looking
at the /System/Mail directory (by default on the c: drive, though it
can also be created on another drive with more space). You will quickly
see that the directory and file names are not meant for the casual reader.
In fact, the Message Store is an indexed collection of files designed for
rapid access. You should not directly alter the Message Store unless
you know what you are doing, as you will almost certainly corrupt one
or more messages or even the whole store. However, it can be useful
for debugging purposes to take a complete copy of the Message Store,
particularly with the emulator.

The data in message headers and bodies is accessed by means of APIs
that expose the structure of the message. However, internally message
headers and bodies are contained in stores in the files of the message
entries. A store is a file containing one or more streams that are written
to or read from by some software. Because the format and contents
vary between message types, the MTMs are responsible for writing the
messages into stores and for reading them out again. Unless you are
implementing an MTM, you will not directly access the store for a
message entry.

When required, the store for a message entry is available by means of
the CMsvEntry::ReadStoreL() and CMsvEntry::EditStoreL()
methods. The body text can then be extracted using the CMsvS-
tore::RestoreBodyTextL() method and stored using the CMsv-
Store::StoreBodyTextL() method.

The data contained in TMsvEntry and CMsvEntry objects is not
written to the Message Store whenever changes are made. This would
be inefficient, particularly if a number of changes are being made to
an object. Instead, these objects act as a local cache and the developer
is responsible for writing the changes to the Message Store (normally
when all changes have been made). For SMS messages, the CSm-
sClientMtm::LoadMessageL() method reads message data from
the Message Store into objects, and the CSmsClientMtm::Save-
MessageL() method writes changes back to the Message Store.

172 INTRODUCING SMS AND MESSAGING CLASSES

9.2.3 Attachments
Some types of messages can have attachments. These are just files; the
messaging system has no interest in the content or format of these files,
but it has to know that they exist or it cannot send them with the message.

For each attachment the Message Server creates a separate directory
in the Message Store and a message entry (actually, this is not true for
at least some MMS MTMs which are optimized to store multiple, small,
attachments and which store them all in a single directory). The Message
Server is considered the owner of the entry and the directory, but the
client application is expected to copy the attached files directly into the
directories. This exposure of the Message Store makes some operations
very efficient – for example, the attachments of a received message can
be accessed directly for reading purposes.

The message entries for attachments are created with the CBaseM-
tm::CreateAttachmentL() method and are children of the mes-
sage entry.

Due to filing system overheads, the creation of a separate directory
and message entry file for each attachment can be inefficient in terms of
storage space if messages have many small attachments (such as MMS
messages), so some MMS MTMs may have an alternative implementation
which is more efficient.

9.2.4 Indices and Navigating
Although message data is heavily dependent on the type of the message,
navigation around the Message Store is a generic requirement and so the
TMsvEntry and CMsvEntry classes provide generic ways of navigating
around the message store. A TMsvEntry object contains some standard
pieces of information about a message, but it also contains the index
identifier for the entry. Many of the MTM methods apply to a current
context, that is, a currently selected message entry that corresponds to a
TMsvEntryobject and aCMsvEntryobject, and obviously all non-static
TMsvEntry and CMsvEntrymethods apply to specific message entries.

Not all entries in the Message Store are messages. Message folders,
such as the Inbox, Outbox, Drafts folder and Sent Messages folder, are also
entries, as are attachments. In these cases they are entries that have child
entries (the messages themselves). Message services are also entries, but
we do not need to examine them in this chapter. Some entries have other
entries as children (folder entries have message entries as children, and
message entries may have attachments as children), and the Message Store
can be navigated either as a tree of entries or directly to a desired entry.

The index identifier in each TMsvEntry object is a unique identifier
that identifies each entry. There are some standard identifiers that are
defined by constants. These are defined in msvids.h and include:

• KMsvNullIndexEntryId for a null, unused, entry

MESSAGE SERVER EVENTS AND SESSIONS 173

• KMsvGlobalInBoxIndexEntryId for the Inbox folder

• KMsvGlobalOutBoxIndexEntryId for the Outbox folder

• KMsvDraftEntryId for the Drafts folder

• KMsvSentEntryId for the Sent Messages folder.

Given these folder index values, it is possible to access all their child
entries and so access all the messages in a selected folder. It is also
possible to receive an entry identifier in isolation, for example as part
of an event, and then navigate to the entry by means of CMsvEntry or
MTM methods.

GivenaCMsvEntryobjectwithchildren, theCMsvEntry::Count()
method provides the number of children, while the CMsvEntry::[]
operator, CMsvEntry::Children(), CMsvEntry::Children-
WithMtmL(), CMsvEntry::ChildrenwithTypeL(), and CMsvEn-
try::ChildDataL() or CMsvEntry::ChildEntryL() methods
provide access to the children or a selection of them.

The CMsvEntry::SetEntryL() method allows navigation directly
to an entry given its index identifier (for example, if the index identifier
has been provided as part of an event). Similarly, the CMsvSes-
sion::GetEntry() and CMsvSession::GetEntryL() methods
allow access to a TMsvEntry or CMsvEntry object given an index
identifier.

New message entries can be created as children of the currently
selected entry by means of the CMsvEntry::CreateL() method or
MTM-specific methods. Deletion of message entries has to be carried out
by means of the parent using the CMsvEntry::DeleteL() method.

9.3 Message Server Events and Sessions

The Message Server makes extensive use of asynchronous methods and is
also designed to receive asynchronous external events, such as receiving
some types of message. The most common types of messaging application
require to be informed of these events. For example, the Messaging
Application requires its display to be kept up-to-date when messages
come in or are sent.

It would be possible for messaging clients to keep up to date by polling
the Message Server on a regular basis, but this would be inefficient and
would not guarantee a prompt response. Instead, the Message Server
uses an observer pattern, whereby a client implements a class that
implements an MMsvSessionObserver mixin and registers with the
Message Server. Then, whenever an event occurs, the Message Server
informs all registered observers. This is a common pattern within Symbian
OS, and other servers use observers.

174 INTRODUCING SMS AND MESSAGING CLASSES

Like any other Symbian OS server, the Message Server is accessed by
clients by means of a session, using the CMsvSession class. An object
of this class is then passed to any other messaging method that requires
access to the Message Server.

In fact, because the MMsvSessionObserver events include error
events that all messaging clients need to know about, it is necessary to
create an observer in order to get a CMsvSession object.

9.4 SMS Specific Variations

SMS messages have some differences in comparison with some other
message types.

• Destination and From addresses are telephone numbers, which may
be associated with contact names. These are stored in CSmsNumber
objects that are owned by a CSmsHeader object. Note that incoming
messages do not have recipients set (presumably the phone was the
recipient), but outgoing and sent messages do have recipients.

• The message subject is taken as being the first 32 characters of
the message.

• SMS messages cannot have any attachments.

• SMS messages have a limited length (e.g. 160 7-bit characters, some
of which are used by the message header), but longer messages can
be constructed by means of concatenation. This means that multiple
messages are sent and are reassembled when they are received. Not all
phones are capable of handling concatenated SMS messages, but the
Symbian OS SMS MTM and SMS stack handle this, so an application
developer can largely ignore the length of an SMS message (except
for billing purposes!).

• SMS messages are sent to an SMS Service Center for forwarding to
their final destination. This is equivalent to an email server. However,
the user must have already configured their SMS, so an application
developer is unlikely to need to touch it. To actually send a message,
it is copied to the SMS Service Index entry. This can theoretically
be done synchronously, but in this case the call will block until the
message is sent, which may take some time. For this reason it is
normal to copy the message asynchronously.

• SMS messages are received by ‘push’ rather than ‘pull’. This means that
the SMS Service Center sends the SMS message directly to the Symbian
OS phone, where a watcher (just an active object in the watcher thread
that monitors some incoming communications channel and acts on
received data) intercepts it and places it in the Message Store. This
contrasts with the ‘pull’ method whereby the Server MTM requests

COMMON MESSAGING CLASSES 175

the message (for example, POP3 email works in this way and the
Symbian OS smartphone requests messages from the email server).

• The SMS Client-side MTM class CSmsClientMtm uses the CBase-
Mtm::SetCurrentEntryL()andCBaseMtm::SwitchCurrent-
EntryL() methods to set the current context and then provides
LoadMessageL() and SaveMessageL() methods to load or save
a message. It also provides SmsHeader() methods to enable direct
access to the SMS message header.

9.5 Common Messaging Classes
Not all members and methods are described in this section: only those
that are relevant to the work in this book are covered. If you want
complete information then refer to the SDK or the relevant header files.

One aspect that I do not cover in this chapter is asynchronous opera-
tions. The Messaging subsystem has some sophisticated APIs to support
asynchronous operations, but I have opted to use the simpler synchronous
methods. Actually, I have to use one asynchronous operation to send an
SMS message, because there are no synchronous methods available.

More detailed information on the Messaging APIs, including the extra
methods for the classes covered here and the classes that are not covered
here, can be found in SDKs.

9.5.1 Generic Messaging Classes

Class TMsvId
Defined in msvstd.h

This type is a 32-bit integer that identifies a Message Server entry uniquely. See also
msvids.h for standard ‘well-known’ identifiers such as
KMsvGlobalInBoxIndexEntryId.

Class TMsvEntry
Defined in msvstd.h

This type holds index entry values. It is a local cache – changes to it are not written into the
index until the CMsvEntry::ChangeL() method is called.

Member Variables

TUid iType
Set to KUidMsvMessageEntry for message entries.

TUid iMtm
Set to KUidMsgTypeSMS.

176 INTRODUCING SMS AND MESSAGING CLASSES

TTime iDate
The date and time when the message was originally created.

TInt32 iSize
The size in bytes of the message.

TPtrC iDescription
This member usually stores the message subject. For SMS messages this is the first 32
characters of the message.

TPtrC iDetails
This member usually stores the recipient or sender address. For SMS messages this is the full
telephone address of the first recipient or the sender.

TMsvId iServiceId
This is the index identifier for the service associated with the entry. For SMS messages this will
be set to the local SMS service.

Constructors

TMsvEntry()
Initializes the new object to null values: 0 for integer values, KMsvNullIndexEntryId for
IDs, and KUidMsvNullEntry for UIDs.

TMsvEntry(const TMsvEntry& aEntry)
Creates a simple copy of the entry, so the TPtrC members iDescription and iDetails
will point to the same descriptor data in the original and new objects.
aEntry – the TMsvEntry to be copied.

Read-only Accessors

TMsvId Id()
This read-only method returns the TMsvId of the entry.

TMsvId Parent()
This read-only method returns the TMsvId of the parent entry.

Receiving and Sending State Members
While an SMS is being received, its message entry in the Inbox is set to
InPreparation() ==ETrue, Complete() ==EFalse and Visible() ==EFalse.
The message will be marked as complete, visible and not in preparation only when the entire
SMS message (including all concatenated) has been received.

inline TBool Complete() const
This method returns the complete flag for the entry.

inline void SetComplete(TBool aComplete)
This method sets the complete flag for the entry.
aComplete – the flag value to be set.

COMMON MESSAGING CLASSES 177

inline TBool Visible() const
This method returns the visible flag for the entry.

inline void SetVisible(TBool aVisible)
This method sets the visible flag for the entry.
aVisible – the flag value to be set.

inline TBool InPreparation() const
This method returns the in preparation flag for the entry.

inline void SetInPreparation(TBool aInPreparation)
This method sets the in preparation flag for the entry.
aInPreparation – the flag value to be set.

inline TUint SendingState() const
This method returns the sending state for the entry.

inline void SetSendingState(TUint aSendingState)
This method sets the sending state for the entry.
aSendingState – the flag value to be set.

Unread Members

inline TBool Unread() const
This method returns the value of the unread flag for the entry. This is set to ETrue when the
message is received and should be set to EFalse when the message has been read.

inline void SetUnread(TBool aUnread)
This method sets the unread flag for the entry.
aUnread – the flag value to be set.

Class CMsvEntry – public CBase, public MMsvSessionObserver,
public MMsvStoreObserver
Defined in msvapi.h

Accesses and acts upon a particular Message Server entry. The current entry that a
CMsvEntry object relates to is referred to as its context.
It may be helpful to consider CMsvEntry functions in two broad groups. The first provides a
means to access the various types of storage associated with an entry. The second provides a
means to discover and access other entries that the entry owns (its children).
A CMsvEntry object is relatively expensive in RAM usage, as it caches its children, updating
them as necessary when notified of changes. Such objects should therefore be created
sparingly.

178 INTRODUCING SMS AND MESSAGING CLASSES

Construction

static CMsvEntry* NewL(CMsvSession& aMsvSession, TMsvId aMsvId,
const TMsvSelectionOrdering& aOrdering)
This method obtains access to an existing entry. To create a new entry, use the CreateL()
method.
aMsvSession – the message server session to be used.
aMsvId – the ID for the desired entry.
aOrdering – the initial sort order for the children of the entry. It can be changed

subsequently by using the SetSortTypeL() method.

Index Entry Access

void SetEntryL(TMsvId aId)
Sets the context to the specified message entry ID. This message entry may be a message,
service entry, attachment or folder.
aId – the ID for the new context.

void ChangeL(const TMsvEntry& aEntry)
Sets the context’s index entry to the specified values.
aEntry – the new context values.

Current Entry Member Methods

TMsvId EntryId() const
This method returns the identifier of the context.

const TMsvEntry& Entry() const
This method returns the index entry for the context.

Store Access

TBool HasStoreL() const
This method returns ETrue if the entry has a store, EFalse if not.

CMsvStore* ReadStoreL()
This method returns a reference to the store for the entry in read-only mode (can be shared). If
the store is in exclusive use by another client, the function leaves with KErrAccessDenied.
The store must be deleted when finished with.

CMsvStore* EditStoreL()
This method returns a reference to the store in exclusive mode. If the store is in use by another
client, the function leaves with KErrAccessDenied. If the entry does not have a store then
it is created. The store must be deleted when finished with.

COMMON MESSAGING CLASSES 179

Child Entry Access Member Methods

const TMsvSelectionOrdering& SortType() const
This method returns the current sort order type of the list of children.

void SetSortTypeL(const TMsvSelectionOrdering& aOrdering)
Sets the sort order type of the list of children.
aOrdering – the new sort order type.

TInt Count() const
This method returns the number of child entries.

const TMsvEntry& operator[](TInt aIndex) const
This method returns the index entry for a child entry. The array of child entries is a zero-based
array.

CMsvEntrySelection* ChildrenL() const
This method returns a selection including the index identifiers of all the children of the
CMsvEntry. If it has no children then an empty list is returned. The caller is responsible for
deleting the returned selection.

CMsvEntrySelection* ChildrenWithMtmL(TUid aMtm) const
This method returns a selection including the index identifiers of all the children of the
CMsvEntry that have a specific MTM type set. If it has no such children then an empty list is
returned. The caller is responsible for deleting the returned selection.
aMtm – the UID of the desired MTM.

CMsvEntrySelection* ChildrenWithTypeL(TUid aEntryType) const
This method returns a selection including the index identifiers of all the children of the
CMsvEntry that are of the specified type. If it has no such children then an empty list is
returned. The caller is responsible for deleting the returned selection.
aEntryType – the desired entry type.

const TMsvEntry& ChildDataL(TMsvId aMsvId) const
This method returns the index entry of the child with the specified index identifier.
aMsvId – the index identifier of the desired child entry.
returns – the index entry of the specified child entry.

CMsvEntry* ChildEntryL(TMsvId, aMsvId) const
This method returns a CMsvEntry object for the specified child entry. The caller must delete
the CMsvEntry object when it is no longer required.
aMsvId – the index identifier of the desired entry.
returns – a new CMsvEntry object for the specified entry.

180 INTRODUCING SMS AND MESSAGING CLASSES

Child Entry Manipulation Member Methods

void CreateL(TMsvEntry& aEntry)
This method creates a new child entry owned by the current context.
aEntry – the index entry value for the new entry.

void MoveL(TMsvId aMsvId, TMsvId aTargetId)
This synchronous method moves the specified child entry to be a child of the target entry.
There is also an asynchronous version that takes a TRequestStatus argument and returns a
CMsvOperation.
aMsvId – the ID of the child entry to be moved.
aTargetId – the new parent for the child entry.

CMsvOperation* CopyL(TMsvId aMsvId, TMsvId aTargetId,
TRequestStatus& aStatus)

This asynchronous method copies the specified child entry to be a child of the target entry.
All stores and descendants are also copied. This method can be used to send an SMS message
by copying the message to the SMS Service Index entry.
aMsvid – the ID of the child entry to be moved.
aTargetId – the parent for the new entry.
aStatus – the request status to be completed when the copy is complete.
returns – an MsvOperation for the copy. This can be used to get progress information or

to cancel the operation.

void DeleteL(TMsvId aId)
Deletes the specified child entry.
aId – the ID of the child entry to be deleted.

Class CMsvStore
Defined in msvstore.h

A CMsvStore object encapsulates a store used for message entry data. Often their access will
be hidden by MTM functions but they can be used for access to SMS body text. The store for a
CMsvEntry can be accessed by means of the EditStoreL() or ReadStoreL() method.

Member Methods

void RestoreBodyTextL(CRichText& aRichTextBody) const
This method reads the body text from the store into the rich text object.
aRichTextBody – the rich text object to receive the body text.

void StoreBodyTextL(const CRichText& aRichTextBody)
This method stores the rich text in the store and commits the change so the store can be
deleted.
aRichTextBody – the rich text object that contains the body text to write.

COMMON MESSAGING CLASSES 181

Enumerated Type TMsvSessionEvent
This type indicates the type of event reported to an MMsvSessionObserver. The meanings
of the other arguments to HandleSessionEventL depend on the type of event.

• EMsvEntriesCreated – One or more entries have been created.
aArg1 is a CMsvEntrySelection of the new entries.
aArg2 is the TMsvId of the parent entry.
• EMsvEntriesChanged – One or more index entries have been changed.
aArg1 is a CMsvEntrySelection of the index entries.
aArg2 is the TMsvId of the parent entry.
• EMsvEntriesDeleted – One or more entries have been deleted.
aArg1 is a CMsvEntrySelection containing the IDs of the deleted entries.
aArg2 is the TMsvId of the parent entry.
• EMsvEntriesMoved – One or more entries have been moved.
aArg1 is a CMsvEntrySelection containing the IDs of the moved entries.
aArg2 is the TMsvId of the new parent.
aArg3 is the TMsvId of the old parent entry.
• EMsvMtmGroupInstalled – A new MTM has been installed.
aArg2 points to a TUid for the new MTM.
• EMsvMtmGroupDeInstalled – A MTM has been uninstalled.
aArg2 points to a TUid of the removed MTM.
• EMsvGeneralError – This code is not currently in use.
• EMsvCloseSession – The client should immediately close the session with the Message

Server.
• EMsvServerReady – Received after a client has used CMsvSession::OpenAsyncL()

to create a session. The session can now be used.
• EMsvServerFailedToStart – Received after a client has used
CMsvSession::OpenAsyncL() to create a session. The server could not be started.
aArg1 points to the error code.
• EMsvCorruptedIndexRebuilt – The Message Server index had been corrupted and had

to be rebuilt. All local entries are recovered, but all remote entries have been lost.
• EMsvServerTerminated – The Message Server has been terminated. All clients must

close their sessions immediately.
• EMsvMediaChanged – The Message Server has automatically changed the index location

to use the internal disk.
aArg1 is a TDriveNumber value that identifies the drive used by the Message Server to
hold the index prior to the change.
aArg2 is also a TDriveNumber value; it identifies the new drive that the Message Server is
using. CMsvEntry contexts either refresh themselves or mark themselves invalid.
• EMsvMediaUnavailable – The media (disk) containing the Message Server index has

been removed. Future requests may fail with KMsvMediaUnavailable. An
EMsvMediaChanged event may be received in the future, as the Message Server switches
back to the internal drive.
aArg1 is a TDriveNumber value that identifies the drive that is no longer available.
• EMsvMediaAvailable – The disk containing the Message Store is available again. The

Message Server can now operate as normal. No client action is necessary.
aArg1 is a TDriveNumber value that identifies the drive that is being used.

182 INTRODUCING SMS AND MESSAGING CLASSES

• EMsvMediaIncorrect – An incorrect disk is inserted. Some requests may fail with
KMsvMediaIncorrect. Clients may get an MsvMediaChanged event in the future telling
them that the Message Server has switched back to the internal drive.
aArg1 is a TDriveNumber value that identifies the drive in which the incorrect disk has
been inserted.
• EMsvCorruptedIndexRebuilding – The Message Server has started to rebuild its index

after it has been corrupted.

Class MMsvSessionObserver
Defined in msvapi.h

Provides the interface for notification of events from a Message Server session. The types of
event are given in the enumeration TMsvSessionEvent. Clients must provide an object
that implements the interface, and set it to be notified through
CMsvSession::OpenSyncL() or CMsvSession::OpenASyncL().

Member Methods

virtual void HandleSessionEventL(TMsvSessionEvent aEvent,
TAny* aArg1, TAny* aArg2,
TAny* aArg3) = 0;

This method is called by the Message Server when an event occurs.
aEvent – the type of event that has occurred.
aArg1, aArg2 and aArg3 – the meanings of the TAny* arguments depend on the

aEvent value.

Class CMsvSession
Defined in msvapi.h

Represents a channel of communication between a client thread (Client-side MTM, User
Interface MTM, or message client application) and the Message Server thread.
A message client application must use OpenSyncL() or OpenASyncL() to create a session
object, before it can instantiate any MTM or CMsvEntry object. Only a single session should
be created within a thread.
To close a session, delete all objects relying on that session, and then the session object itself.

Static Methods

static CMsvSession* OpenSyncL(MMsvSessionObserver& aObserver)
This method creates a new session that can subsequently be used for other Messaging APIs.
aObserver – a reference to an object that implements the MMsvSessionObserver

mixin (interface). The object will be notified of message events.

COMMON MESSAGING CLASSES 183

Utility Methods

inline CMsvEntry* GetEntryL(TMsvId aEntId)
This method returns a new CMsvEntry corresponding to the supplied index identifier. The
client is responsible for deleting the CMsvEntry after use.
aEntId – the index identifier of the desired entry.
returns – a new CMsvEntry object.

inline TInt GetEntry(TMsvId aId, TMsvId& aService, TMsvEntry&
aEntry)
This method returns the TMsvEntry for an index identifier along with the index identifier of
the owning service.
aId – the index identifier of the desired entry.
aService – on return this is the index identifier of the owning service.
aEntry – on return this is the index entry.
returns – KErrNone or a system-wide error code.

Enumerated Type TMsvSorting
This type defines the sort order options for a TMsvSelectionOrdering object. Options are
set through TMsvSelectionOrdering::SetSorting().
Defined in msvstd.h

• EMsvSortByNone – don’t sort
• EMsvSortByDate – sort by date (earliest to latest)
• EMsvSortByDateReverse – sort by date (latest to earliest)
• EMsvSortBySize – sort by size (smallest to largest)
• EMsvSortBySizeReverse – sort by size (largest to smallest)
• EMsvSortByDetails – sort by message details (‘From’ address) (A to Z collated)
• EMsvSortByDetailsReverse – sort by message details (‘From’ address) (Z to A collated)
• EMsvSortByDescription – sort by description (A to Z collated)
• EMsvSortByDescriptionReverse – sort by description (Z to A collated)
• EMsvSortById – sort by message ID (lowest to highest)
• EMsvSortByIdReverse – sort by message ID (highest to lowest)

Enumerated Type TMsvGrouping
This type defines the grouping options for a TMsvEntrySelection object. These values are
bitmasks that can be combined and set through the TMsvEntrySelection constructor.
Defined in msvstd.h

• KMsvNoGrouping = 0 – no grouping
• KMsvGroupByType = 0×2 – group by type (Folder, Message or Attachment)
• KMsvGroupByStandardFolders = 0×6 – group standard folders first (must have sorting

by type set as well)
• KMsvGroupByPriority = 0×8 – group by priority (High, Medium or Low)
• KMsvGroupByMtm = 0×10 – group by MTM ID value in increasing UID value

184 INTRODUCING SMS AND MESSAGING CLASSES

Class TMsvSelectionOrdering
Defined in msvstd.h

This type encapsulates the sorting and grouping type for a CMsvEntrySelection. The
grouping and sorting values can be set either on construction or subsequently. When a
selection is accessed, grouping is applied and then sorting is applied within the groups.

Constructors

TMsvSelectionOrdering()
The default constructor sets no grouping, and sorting is set to EMsvSortByNone.

TMsvSelectionOrdering(TInt aGroupingKey, TMsvSorting aSorting,
TBool aShowInvisible)
This constructor allows the sorting and grouping values to be initialized.
aGroupingKey – the grouping value to be set.
aSorting – the sorting value to be set within groups.
aShowInvisible – whether or not to show invisible entries (defaults to EFalse).

Member Methods

TMsvSorting Sorting() const
This method returns the current sorting value within groups.

void SetSorting(TMsvSorting aSortType)
This method sets the current sorting value within groups.

TBool GroupingOn() const
This method returns ETrue if any grouping option is set.

TBool GroupByType() const
This method returns ETrue if group-by-type is set.

void SetGroupByType(TBool aFlag)
This method sets group-by-type.
aFlag – ETrue if group-by-type is to be set.

TBool GroupStandardFolders()
This method returns ETrue if group-by-standard-folders is to be set.

void SetGroupStandardFolders(TBool aFlag)
This method sets group-by-standard-folders.
aFlag – ETrue if group-by-standard-folders is to be set.

TBool GroupByPriority() const
This method returns ETrue if group-by-priority is set.

COMMON MESSAGING CLASSES 185

void SetGroupByPriority(TBool aFlag)
This method sets group-by-priority.
aFlag – ETrue if group-by-priority is to be set.

TBool GroupByMtm(TBool aFlag)
This method returns ETrue if group-by-MTM is set.

void SetGroupByMtm(TBool aFlag)
This method sets group-by-MTM.
aFlag – ETrue if group-by-MTM is to be set.

inline TBool ShowInvisibleEntries() const
This method returns ETrue if invisible entries are to be included in a selection.

void SetShowInvisibleEntries(TBool aFlag)
This method sets whether invisible entries are to be included in a selection.
aFlag – ETrue if invisible entries are to be included in a selection.

Class CMsvEntrySelection
Defined in msvstd.h

This class is an array of TMsvId which is used to pass a selection of entries. An object of this
type can be generated or returned with an event. The array base class
CArrayFixFlat<TMsvId> provides methods to access the members of the array.

Member Methods

TInt Find(TMsvId aId) const
This method finds an entry by entry ID. If the entry is present in the array then the index of the
entry is returned. If the entry is not present then the method returns KErrNotFound.
aId – the index identifier of the desired entry.

9.5.2 Generic MTM Classes

Class CClientMtmRegistry
Defined in mtclreg.h

This class provides access to the registry that holds details of all client-side MTMs currently
available on the phone. This class is used to obtain access to a specific client-side MTM.

186 INTRODUCING SMS AND MESSAGING CLASSES

Constructor

static CClientMtmRegistry* NewL(CMsvSession& aMsvSession,
TTimeIntervalMicroSeconds32 aTimeoutMicroSeconds32)
This method returns a new CClientMtmRegistry object.
aMsvSession – reference to an MsvSession for this thread.
aTimeoutMicroSeconds – time to wait before unloading MTMs in microseconds

(defaults to 30 seconds).

Member Methods

CBaseMtm* NewMtmL(TUid aMtmTypeUid)
This method returns a pointer to an object derived from a CBaseMtm.
aMtmTypeUid – the UID of the desired MTM.

Class CBaseMtm
Defined in mtclbase.h

This class provides methods for accessing and manipulating a Message Server entry; it also
provides access to server MTM functionality through the InvokeAsync function. There are
other classes specific to SMS messages.

Context Methods
Context functions: the SetCurrentEntryL() and SwitchCurrentEntryL() functions
change the context – the entry on which later actions are performed. After creating a new
Client-side MTM object, a message client application should set an initial context before
using other functions.
Note that any changes made to an existing context are not automatically saved. The message
client application should ensure this itself by calling SaveMessageL().
No message data for the new context is retrieved from the Message Server. To retrieve entry
data, call LoadMessageL() (a pure virtual function in this class – for SMS messages it is
implemented in the CSmsClientMtm class) after setting the context. Calling Body()
immediately after setting the context returns an empty CRichText object, because the private
cache of context body text that the base class maintains is reinitialized to an empty value.

void SetCurrentEntryL(CMsvEntry* aEntry)
This method sets the context to the specified entry.
aEntry – the context on which subsequent actions will be performed.

void SwitchCurrentEntryL(TMsvId aId)
This method sets the context to the entry with the specified ID.
aId – the ID of the context on which subsequent actions will be performed.

CMsvEntry& Entry() const
This method returns a CMsvEntry for the current context.

SMS SPECIFIC CLASSES 187

TBool HasContext() const
This method returns ETrue if the object has a current context.

Body Text Methods
The base class maintains a private CRichText object cache to store the body text for the
current context. This can be accessed for reading and writing by message client applications
through Body(). Loading and saving the body text are achieved by methods in the derived
class.

CRichText& Body()
const CRichText& Body() const
This method returns the body text of the context (which must be set to a message entry).

Address Methods
There are methods in the specific MTM classes to handle addresses, but there are also generic
address handling methods that can be used.

virtual void AddAddresseeL(const TDesC& aRealAddress)
This method adds a new message recipient using the supplied address. The address is not
validated by this routine.
aRealAddress – the address (syntax depends on message type).

virtual void AddAddresseeL(const TDesC& aRealAddress, const TDesC&
aAlias)
This method adds a new message recipient with an address and an alias. The address is not
validated by this routine.
aRealAddress – the address (syntax depends on message type).
aAlias – an alias for the address (meaning depends on message type).

virtual void RemoveAddressee(TInt aIndex)
This method removes an address from the current address list. The address is specified by a
zero-based index into the address list. If the index is not known, applications can use
AddresseeList() to retrieve the entire list to find the item.
aIndex – the index of the address to be deleted.

inline const CDesCArray& AddresseeList() const
This method returns a list of addresses stored with the message.

9.6 SMS Specific Classes

As well as the generic messaging classes, there are a range of classes that
are specific to SMS messages. It should be noted that there are a range of
types of SMS messages, but only the APIs relating to ‘conventional’ SMS
messages are covered in this section.

188 INTRODUCING SMS AND MESSAGING CLASSES

Class CSmsClientMtm
Defined in smsclnt.h

This class is the Client-side SMS MTM and provides a range of methods specific to SMS
messages. A copy of an instantiation of this class can be obtained from the MTM registry by
using the MTM UID KUidMsgTypeSMS.
There are methods to create reply or forward messages, but they are not described in this
section. There are methods to add or remove recipients, but this is just as easily done by
means of the header.

Store and Restore Methods
The changes that a message client application makes to a message context through
Client-side MTM functions, such as altering the body text obtained through Body(), are, for
efficiency, cached in memory by the Client-side MTM. The message store and restore
functions are concerned with transferring data between that cache and committed storage.

void SaveMessageL()
This method commits cached changes to the storage controlled by the Message Server. It can
be called only on message contexts. It should be called to preserve changes when the context
is changed, or when the Client-side MTM object is deleted or before sending a message.
The function panics for non-message contexts.

void LoadMessageL()
This method loads the cache with the message data for the current context. It can be called
only on message contexts. It is typically used after the context has been set with
SetCurrentEntryL() or SwitchCurrentEntryL().
The function should panic for non-message contexts.

Member Methods

inline TInt ServiceId() const
This method returns the ID of the current SMS service.

CSmsHeader& SmsHeader()
const CSmsHeader& SmsHeader() const
This method returns the header of the SMS message.

inline CSmsSettings& ServiceSettings()
inline const CSmsSettings& ServiceSettings() const
These methods provide access to the SMS MTM’s service settings.

void CreateMessageL(TMsvId aServiceId)
This method creates a new outgoing SMS message as a child of the current context. The
context is set to the newly created message.
aServiceId – the ID of the service to own the message (see the ServiceId method).

SMS SPECIFIC CLASSES 189

Class CSmsSettings – public CSmsMessageSettings
Defined in smutset.h

An SMS service entry stores an object of this type in its message store. These settings define
the default settings for standard SMS messages. They also provide some global settings.
This object provides the default Service Center address which is required for new messages.

Member Methods

inline TInt NumSCAddresses() const
This method provides the number of Service Center addresses stored.

inline CSmsNumber& SCAddress(TInt aIndex) const
This method provides access to all stored SMS Service Center addresses.
aIndex – which Service Center address to return.
returns – CSmsNumber of the selected Service Center.

TInt DefaultSC() const
This method returns the index of the default Service Center address. It can be used in a call to
SCAddress() to return the address of the default Service Center.

Class CSmsHeader
Defined in smuthdr.h

This class encapsulates the header for an SMS message. It includes data relating to all the
different types of SMS message. It is useful to access the From address and the recipients (for
outgoing messages). It also provides methods to access the lower-level information relating to
an SMS message, but there are more convenient methods to access the body text, such as
using the methods in CBaseMtm.

Construction Methods

static CSmsHeader* NewL(CSmsPDU::TSmsPDUType aType,
CEditableText& aText)
This method creates a new CSmsHeader object.
aType – the type of the SMS (ESmsSubmit for a conventional SMS message).
aText – the message text for the message.

Member Methods

const CArrayPtrFlat<CSmsNumber>& Recipients() const
CArrayPtrFlat<CSmsNumber>& Recipients()
This method returns the list of message recipients.

void SetFromAddressL(const TDesC& aAddress)
This method sets the From address (phone number) for the SMS message.
aAddress – the new From address.

190 INTRODUCING SMS AND MESSAGING CLASSES

TPtrC FromAddress() const
This method provides non-modifiable access to the From address (phone number) of the SMS
message.

void RestoreL(CMsvStore& aStore)
This method restores the object from the Message store, but it may be ignored if the
CSmsClientMtm::RestoreMessageL() method is used.
aStore – the store to be read from.

void StoreL(CMsvStore& aStore) const
This method writes the object to the Message store.
aStore – the store to be written to.

void SetSmsSettingsL(const CSmsMessageSettings& aSettings)
This method sets the SMS Message Settings for the message.
aSettings – the SMS Message Settings to use.

inline void SetServiceCenterAddressL(const TDesC& aAddress)
This method sets the SMS Service Center address for the message.
aAddress – the address of the Service Center.

Class CSmsNumber
Defined in smutset.h

This class stores the name and number for an SMS recipient.

Construction Methods

static CSmsNumber* NewL()
This method creates a new, empty CSmsNumber object.

Member Methods

TPtrC Address() const
This method returns a non-modifiable reference to the address (phone number) currently
stored.

void SetAddressL(const TDesC& aAddress)
This method sets the address (phone number).
aAddress – the new address to use.

TPtrC Name() const
This method returns a non-modifiable reference to the name currently stored.

void SetNameL(const TDesC& aName)
This method sets the name.
aName – the new name to use.

10
Developing an SMS Management

Connectivity Service

In this chapter we will work through the code for a custom server and a
socket server to manage SMS messages. This requires code to interact with
the messaging system and code to pack and unpack the data exchanged
between the Symbian OS smartphone and the PC. We will also work
briefly through a command-line C# application that can be used to drive
the servers.

We will aim to make our implementation as common as possible on
different versions of Symbian OS. The custom server or socket server may
need to be rebuilt for specific versions of the OS, but at least we can keep
the maintenance burden as low as possible. At the same time, we will
make sure that by using the same protocol we can keep the PC software as
common as possible. Our aim is to hide any differences between devices
from the user and again to keep maintenance as simple as possible.

The command-line C# application is good for debugging purposes but
is not intended for real use, so we will work through a GUI application in
Chapter 13. Once we have the command-line application working, the
GUI aspects can easily be handled in isolation.

While I was writing this chapter, it became clear that using the term
‘message’ for the SMS messages that we are considering as well as for the
messages exchanged between the Symbian OS smartphone and the PC
caused some confusion. Therefore, I have used the term PDU (Protocol
Data Unit) for the messages between the smartphone and the PC and
reserved the term message for the SMS messages.

10.1 SMS Management Protocol

In this section I describe the protocol that we are going to use between
the Symbian OS smartphone and the PC. It is important to document
the protocol for maintenance reasons – if you do not document it then
nobody knows whether any deviations are correct or incorrect. Having

192 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

said that, the protocol may undergo some prototyping and evolution
before it settles down.

You can use any protocol that you wish, but I will set out some factors
that I think make a better protocol, which you may ignore.

We will build our protocol mostly around a command–response
sequence (the exception is event handling that will be covered at the
end). The PC will send a command and the Symbian OS smartphone will
carry out some action and send a response. I prefer a protocol to have as
little state built in as possible. This makes it easier to implement the code
to handle commands or responses, and it also eases debugging based
on PDU logs. For the same reason we will include a PDU identifier in
commands that will be echoed in the responses.

This means that for the simplest commands we have the follow-
ing fields:

• the PDU length

• the command opcode

• the transaction identifier.

For more complex commands we will add some more fields. Responses
have the same structure, with a response code rather than a command
opcode. The transaction identifier is the echo of the PDU identifier of the
command that prompted the response.

The fundamental starting point for our protocol is to consider the
operations that we want to perform:

• display all SMS messages from the Symbian OS mobile phone

• send an SMS message via the Symbian OS mobile phone

• delete SMS messages on the Symbian OS mobile phone so as to
manage the Message Store

• be informed of events so we can display new incoming and other
changed messages.

We have not included any reply or forward functions (these can be
implemented on the PC if required) and we have not made any provision
for creating a draft SMS message and then amending it later.

Given this set of requirements, we can list the command opcodes and
the response codes. The following is an extract from the Connectivity
plug-in code on the Symbian OS smartphone:

enum TRSmsCmdCode
{
ERSmsCmdNone = 0, // Reserved for internal usage

SMS MANAGEMENT PROTOCOL 193

ERSmsCmdQueryVersion = 1, // Query version
ERSmsCmdVersionReply = 2, // Version reply

ERSmsCmdGetAllSms = 10, // Get messages in Inbox or folder
ERSmsCmdGetMoreSms = 11, // Get remaining messages from Inbox or folder
ERSmsCmdGetSmsById = 12, // Get one message by identifier
ERSmsCmdReceiveSms = 13, // Receive one or more SMS
ERSmsCmdReceiveNoMoreSms = 14, // Got no more messages

ERSmsCmdReturnEvents = 20, // Return message events
ERSmsCmdMsvEvent = 21, // Message created etc. event

ERSmsCmdSendSms = 30, // Send a message
ERSmsCmdSentSms = 31, // Message has been sent

ERSmsCmdDeleteSms = 40, // Delete a message
ERSmsCmdDeletedSms = 41, // Message has been deleted

ERSmsCmdError = 50 // An error has occurred
};

As you can see, we have some ‘boiler-plate’ codes – the no-op and
the version query code. We have also included an error response ERSm-
sCmdError, as it is possible that any command may prompt an error.

The SMS-related commands are as follows:

• ERSmsCmdGetAllSms – get all SMS messages in a folder

• ERSmsCmdGetMoreSms – get any unfetched SMS messages

• ERSmsCmdGetSmsById – get one SMS by index identifier

• ERSmsCmdSendSms – create and send an SMS

• ERSmsCmdDeleteSms – delete an SMS

We have provided a command to get all the SMS messages from any
folder, but we have also allowed for the fact that we may not be able to get
all the SMS messages that we want in one response. When programming
for an embedded device such as a smartphone, we can never assume
that we can have an arbitrarily large buffer for a PDU. Any protocol that
ignores the question of maximum PDU size is a good way to crash the
smartphone. We assume later that the data for any single SMS can be
fitted in a PDU. This is probably safe, given the limited size of an SMS,
although if we concatenated sufficient messages together we could break
any limit. If we were dealing with email messages with attachments then
we would not be able to make this assumption and we would have to
handle breaking messages across PDUs.

The delete and send SMS commands are clearly useful, and the com-
mand to fetch one SMS by itself will be useful when we handle events.
When a new SMS arrives, we do not want to have to fetch all the other
messages at the same time.

194 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

The response codes are also fairly obvious. I have chosen to define
a response code for no more messages, but we could have sent just an
empty set of messages.

The reason for the event command and response will become clear
later, but, for now, note that the ERSmsCmdReturnEvents command
puts a stream or session into an event handling mode.

Note that the actual values used for the command opcodes and
response codes are arbitrary. We could have spread the values out or
reserved one bit for responses, but these values are good enough for now.

As well as defining opcodes, etc., we need to define the maximum
packet size. Normally, we would set this as big as we can afford, but for
this example we will set it smaller so that we can test fetching more SMS
messages than will fit into one packet.

Some of the commands (ERSmsCmdNone, ERSmsCmdQueryVer-
sion, ERSmsCmdGetMoreSms and ERSmsCmdReturnEvents) need
no further arguments, but the others need one or more additional argu-
ments. The ERSmsCmdFetch, ERSmsCmdGetSmsById and ERSms-
DeleteSms commands each need a single identifier.

The ERSmsCmdSendSms command is the one command that requires
a lot of data. We will pack all the data required to create and send the
SMS into one command. We could implement some form of storage of
draft messages and then edit them, but we might as well implement that
on the PC side if we need it.

The response PDUs follow a similar pattern. The ERSmsCmdEr-
ror PDU has a four-byte error number (a standard Symbian OS error
code). The ERSmsCmdSentSms and ERSmsCmdDeletedSms PDUs
include a single four-byte message index identifier – the newly sent
message or the newly deleted message respectively. The ERSmsCm-
dReceiveNoMoreSms PDU needs no extra data – it just signifies that
all messages from the last specified get request have been returned.
The ERSmsCmdVersionReply PDU includes standard version and
build data. The ERSmsCmdMsvEvent PDU includes a series of sets
of event data. These include the event type and the relevant message
index identifiers. The ERSmsCmdReceiveInitialSms and ERSmsCm-
dReceiveMoreSms messages are the complex PDUs, as they include
one or more SMS messages with all details.

Query Version Command

Field Type Meaning

Opcode Int32 ERSmsCmdQueryVersion (=1)

Transaction ID Int32 PDU transaction identifier

SMS MANAGEMENT PROTOCOL 195

Version Reply

Field Type Meaning

Opcode Int32 ERSmsCmdVersionReply (=2)

Transaction ID Int32 PDU transaction identifier

Major Version Int32 Major version number

Minor Version Int32 Minor version number

Build Number Int32 Build number

Fetch SMS from Folder

Field Type Meaning

Opcode Int32 ERSmsCmdGetAllSms (=10)

Transaction ID Int32 PDU transaction identifier

Folder ID Int32 Index identifier of the folder required

Fetch More SMS

Field Type Meaning

Opcode Int32 ERSmsCmdGetMoreSms (=11)

Transaction ID Int32 PDU transaction identifier

Fetch SMS by Identifier

Field Type Meaning

Opcode Int32 ERSmsCmdGetSmsById (=12)

Transaction ID Int32 PDU transaction identifier

Message ID Int32 Index identifier of the message required

196 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

Receive SMS
This PDU contains data from one or more messages. The message data is repeated for
each new message until a message identifier of zero indicates the end of the data.

Field Type Meaning

Opcode Int32 ERSmsCmdReceiveSms (=13)

Transaction ID Int32 PDU transaction identifier

. . .

Message ID Int32 If the message index identifier is zero then this is the
last message in the buffer and there is no more
message data

Parent ID Int32 Index identifier of the parent folder

Date and Time
Stamp

7-byte time
value

Date and time stamp of the message

Description
Length

Int16 Length in ASCII characters of message description

Message
Description

Unicode
data

Message description – up to the first 32 characters of
the body text

Detail Length Int16 Length in characters of message detail

Message Detail Unicode
data

Message detail – first recipient address

From Address
Length

Int16 Length in characters of From address

From Address Unicode
data

Address of the message sender

Number of
Recipients

Int16 Number of recipients for the message. The next four
fields are included once for each recipient

SMS MANAGEMENT PROTOCOL 197

. . .

Name Length Int16 Length in characters of recipient name

Recipient
Name

Unicode
data

Recipient name

Address Length Int16 Length in characters of recipient address

Recipient
Address

Unicode
data

Recipient address (i.e. mobile phone number)

. . .

Body Length Int16 Length in characters of body text

Body Text ASCII data Body text of the message

Receive No More SMS
This reply is sent when the client requests SMS messages and none are to be returned.

Field Type Meaning

Opcode Int32 ERSmsCmdReceiveNoMoreSms (=14)

Transaction ID Int32 PDU transaction identifier

Send SMS

Field Type Meaning

Opcode Int32 ERSmsCmdSendSms (=30)

Transaction ID Int32 PDU transaction identifier

Body Length Int16 Length in characters of body text

Body Text ASCII data Body text (length set in previous field)

Address Count Int16 Number of sending addresses (the next two fields are
repeated this number of times)

198 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

. . .

Address Length Int16 Length of address text

Address Text Unicode
data

Address text (length set in previous field)

Sent SMS Reply

Field Type Meaning

Opcode Int32 ERSmsCmdSentSms (=31)

Transaction ID Int32 PDU transaction identifier

Message ID Int32 Message index identifier for the newly created and
sent SMS

Delete SMS by Identifier

Field Type Meaning

Opcode Int32 ERSmsCmdDeleteSms (=40)

Transaction ID Int32 PDU transaction identifier

Message ID Int32 Index identifier of the message to be deleted

Deleted SMS Reply

Field Type Meaning

Opcode Int32 ERSmsCmdDeletedSms (=41)

Transaction ID Int32 PDU transaction identifier

Message ID Int32 Message index identifier for the deleted SMS

Enable Event Reporting

Field Type Meaning

Opcode Int32 ERSmsCmdReturnEvents (=20)

Transaction ID Int32 PDU transaction identifier

SMS MANAGEMENT PROTOCOL 199

Message Event Reply
This message contains details of one or more events. When an event type of −1 is
returned, it indicates the last event in the message. Events of type EMsvEntriesMoved
have an additional two index identifiers. Each event has a list of one or more message
identifiers terminated with a zero index identifier. Therefore, a Message Event Reply
contains nested lists of message identifiers within a list of events.

Field Type Meaning

Opcode Int32 ERSmsCmdMsvEvent (=21)

Transaction ID Int32 PDU transaction identifier

. . .

Event Type Int32 EMsvEntriesCreated (=0),
EMsvEntriesChanged (=1),
EMsvEntriesDeleted (=2)

Message ID Int32 Message index identifier (this field may be repeated)

Null Message
ID

Int32 Terminating message index identifier (=0)

. . .

Event Type Int32 EMsvEntriesMoved (=3)

Message ID Int32 Message index identifier (this field may be repeated)

Null Message
ID

Int32 Terminating message index identifier (=0)

Old Parent ID Int32 Index identifier for the message original parent

New Parent ID Int32 Index identifier for the message new parent

Error Reply

Field Type Meaning

Opcode Int32 ERSmsCmdError (=50)

Transaction ID Int32 PDU transaction identifier

Error Code Int32 Symbian OS error code

200 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

10.2 Packing and Unpacking Data

One of the standard types of functionality that we will need is to be able to
unpack data from a buffer and pack fresh data into it as a response. This is
common to all connectivity services. In fact, there are classes to manage
this packing and unpacking (not surprisingly, given the prevalence of
the need). The class developed for custom servers is TRemsvr and the
Serialise module is provided with Socket Servers. However, we want
to create a class that can be used with as wide a range as possible of
Symbian OS smartphones. Therefore, we create our own class that we
can use with any version of Symbian OS.

This code is not particularly clever, but it does not need to be – it just
needs to be easy to use and reliable. We use descriptors and we check
for running out of data at every point. This catches buffer overruns and
some forms of data corruption. This makes it easier to use these methods.
The alternative would be to check the length of remaining data whenever
we are about to unpack some more. This would make for clumsier and
less readable code, so delegating the checks to the unpacking class is the
better alternative.

To begin with, we want methods to unpack 32-bit integers. For most
purposes, we will just read the integer and delete it from the buffer, but
sometimes we will want to read the integer nondestructively. Originally, I
implemented these methods by using values from the front of a descriptor
and then deleting them. However, the deletion involves copying the rest
of the buffer over the deleted entries. If we have a large buffer containing
many values then we may be copying the data literally thousands of times,
which is inefficient. To avoid this, we define a simple class to contain
a reference to the descriptor and a current read position variable. This
allows us to step through the buffer simply by incrementing the position.

class TConnBuff
{
public:
TConnBuff(TDes8& aBuffer);

TDes8& mBuffer; // Buffer to read from
TInt mReadPos; // Position to read from next

};

TConnBuff::TConnBuff(TDes8& aBuffer): mBuffer(aBuffer)
{
}

// Read a 4-byte integer from the start of a buffer
TInt32 CConnPack::PeekInt32L(TConnBuff& aBuffer)
{
if((aBuffer.mReadPos + 4) > aBuffer.mBuffer.Length())

{
User::Leave(KErrArgument);

PACKING AND UNPACKING DATA 201

}
TInt32 ret = (((TInt32)aBuffer.mBuffer[aBuffer.mReadPos+3])<<24)|

(((TInt32)aBuffer.mBuffer[aBuffer.mReadPos+2])<<16)|
(((TInt32)aBuffer.mBuffer[aBuffer.mReadPos+1])<<8)|
((TInt32)aBuffer.mBuffer[aBuffer.mReadPos]);

return ret;
}

// Read a 4-byte integer from the start of a buffer and remove it
TInt32 CConnPack::ReadInt32L(TConnBuff& aBuffer)
{
TInt32 ret = PeekInt32L(aBuffer);
aBuffer.mReadPos += 4;
return ret;
}

The counter of these methods is to append a 32-bit integer to a buffer.
As appending does not require copying, we can simply use the raw
descriptor. This is slightly inconsistent, as we are using one type for
reading and another for writing, but I prefer that to using an unnecessary
level of indirection.

// Append a 4-byte buffer to the end of a buffer
void CConnPack::WriteInt32L(TInt32 aValue, TDes8 &aBuffer)
{
if(aBuffer.Length() + 4 > aBuffer.MaxLength())

{
User::Leave(KErrArgument);
}

aBuffer.Append((TUint8)(aValue&0x000000FF));
aBuffer.Append((TUint8)((aValue&0x0000FF00)>>8));
aBuffer.Append((TUint8)((aValue&0x00FF0000)>>16));
aBuffer.Append((TUint8)((aValue&0xFF000000)>>24));
}

We can set up similar routines for 16-bit and 8-bit integers as well.
I will not include the code here, but it is available with the rest of the
source code for this book.

The other data type that we want to read is a buffer of text. Because we
are dealing with SMS data, we can be content with ASCII data coming in;
however, as Symbian OS deals with Unicode text, we need to expand it
as we unpack it.

// Read ASCII data. The length is the first 2 bytes and then each
// character comes in as a single 8-bit value. We expand it to a
// Unicode value for compatibility reasons.
TInt CConnPack::ReadASCIIDataL(TDes& aOutBuffer,
TConnBuff& aSourceBuffer)
{
TUint16 len = ReadUint16L(aSourceBuffer);
if(((aSourceBuffer.mReadPos + len) > aSourceBuffer.mBuffer.Length())

|| (len > aOutBuffer.MaxLength()))

202 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

{
User::Leave(KErrArgument);
}

aOutBuffer.Zero();
for(TInt i = 0 ; i < len ; i++)

{
aOutBuffer.Append((TChar)aSourceBuffer.mBuffer[aSourceBuffer.
mReadPos+i]);

}
aSourceBuffer.mReadPos += len;
return len;
}

The method to pack ASCII data works the same way, but in reverse:

// Take a buffer of Unicode data and write the length as a 2-byte value,
// then append the data but shrinking each character to a 1-byte value.
void CConnPack::WriteASCIIDataL(TDesC &aSourceBuffer, TDes8 &aOutBuffer)
{
TUint16 len = (TInt16)aSourceBuffer.Length();
if((aOutBuffer.Length()+len+4 > aOutBuffer.MaxLength()))

{
User::Leave(KErrArgument);
}

WriteUint16L(len, aOutBuffer);
for(TInt i = 0 ; i < len ; i++)

{
aOutBuffer.Append((TChar)aSourceBuffer[i]);
}

}

We will have Unicode versions of these methods when we want data
that really can be Unicode, which is more normal, and these will be used
in later chapters.

As SMS messages have date and time stamps, we need to be able to
read and write these. In Symbian OS, as in most other operating systems,
a date and time are stored as an offset in some fractions of a second
since a logical start time. The basic type in Symbian OS is a TTime.
The offset is stored as an eight-byte integer and we could access it and
read and write it as two 32-bit integers. However, Windows does not
use quite the same system, although conversions are possible. For the
sake of my own understanding, and to ease debugging, I have chosen
to break up a TTime into its component parts (ignoring any values
smaller than a second) and send those across. On the PC side the same
process is possible in reverse. One complication that is not relevant in
this chapter, but will affect us in later chapters, is that Symbian OS allows
a TTime to be a null value and that is treated separately (it means that
a time is not set). We want to preserve this ability and so we treat a
null TTime as one with all values set to zero, which would otherwise
be illegal.

PACKING AND UNPACKING DATA 203

TTime CConnPack::ReadTTimeL(TConnBuff& aBuffer)
{
TInt tempYear = ReadInt16L(aBuffer);
TInt tempMonth = ReadInt8L(aBuffer);
TInt tempDay = ReadInt8L(aBuffer);
TInt tempHour = ReadInt8L(aBuffer);
TInt tempMinute = ReadInt8L(aBuffer);
TInt tempSecond = ReadInt8L(aBuffer);

if((tempYear==0) && (tempMonth==0) && (tempDay==0) &&
(tempHour==0) && (tempMinute==0) && (tempSecond==0))
{
return(Time::NullTTime());
}

else
{
TDateTime dt;
dt.Set(tempYear, (TMonth)tempMonth, tempDay,

tempHour, tempMinute, tempSecond, 0);
TTime tt(dt);
return tt;
}

}

void CConnPack::WriteTTimeL(const TTime &aTT, TDes8 &aBuffer)
{
if(aTT == Time::NullTTime())

{
WriteInt16L(0, aBuffer);//year
WriteInt8L(0, aBuffer);//month
WriteInt8L(0, aBuffer);//day
WriteInt8L(0, aBuffer);//hour
WriteInt8L(0, aBuffer);//minute
WriteInt8L(0, aBuffer);//second
}

else
{
WriteInt16L((TInt16)aTT.DateTime().Year(), aBuffer);
WriteInt8L((TInt8)aTT.DateTime().Month(), aBuffer);
WriteInt8L((TInt8)aTT.DateTime().Day(), aBuffer);
WriteInt8L((TInt8)aTT.DateTime().Hour(), aBuffer);
WriteInt8L((TInt8)aTT.DateTime().Minute(), aBuffer);
WriteInt8L((TInt8)aTT.DateTime().Second(), aBuffer);
}

}

The final method we will provide here is to simply append one buffer of
undifferentiated data to another. We will use this when we have created
a temporary buffer and want to add it to the output buffer.

// Append one buffer of 1-byte data to another
void CConnPack::WriteBufferL(TDesC8 &aSourceBuffer, TDes8 &aOutBuffer)
{
TInt len = aSourceBuffer.Length();
if((len < 0) || (aOutBuffer.Length()+len+4 > aOutBuffer.MaxLength()))

{
User::Leave(KErrArgument);

204 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

}
WriteInt32L(len, aOutBuffer);
aOutBuffer.Append(aSourceBuffer);
}

10.3 Obtaining Access to the Message Server
and the SMS MTM

In order to write any messaging code, we will need to get a session with
the Message Server. Like most good servers, the Message Server provides
a good client API. The only requirement to obtain a Message Server
session is an implementation of the MMsvSessionObservermixin that
includes a HandleSessionEventL()method. As a minimum, we can
address just those error events that mean we would lose access to the
Message Server.

class CRSmsCSServer : public CCustomServer, public MMsvSessionObserver
{
. . .

// From MMsvSessionObserver
virtual void HandleSessionEventL(TMsvSessionEvent, TAny*, TAny*, TAny*);

void CRSmsCSServer::HandleSessionEventL(TMsvSessionEvent aEvent,
TAny *arg1, TAny *arg2, TAny *arg3)

{
// Handle global events
switch(aEvent)

{
//Close session in case of error
case EMsvGeneralError:
case EMsvCloseSession:
case EMsvServerFailedToStart:
case EMsvServerTerminated:
User::Leave(KErrGeneral);
break;

default: // Do nothing
break;

}
}

In Section 10.6, we will add to this implementation code to handle
other types of event. In this case we choose to have the Handle-
SessionEventL() method at the server level because we are going
to have two communication sessions and we need only one Message
Server session.

The other preparatory work we will do is set up some member variables
that we will require later on. These are:

OBTAINING ACCESS TO THE MESSAGE SERVER AND THE SMS MTM 205

• a reference to an SMS client MTM

• a Rich Text object that we will use for body text

• a ‘Waiter’ object that we will need in order to manage asynchronous
Message Server operations.

We create these in a class CRSmsMsg that we will be able to use
in both types of PC Connectivity server. This class will use standard
two-phase construction.

class CRSmsMsg : public CBase
{
public:
static CRSmsMsg *NewL(CMsvSession *aMsvSession);
CRSmsMsg();
void ConstructL(CMsvSession *aMsvSession);
virtual ∼CRSmsMsg();

private:

CMsvSession* iMsvSession; // Message Server Session
CClientMtmRegistry* iMtmRegistry;
CSmsClientMtm* iSmsMtm;
CParaFormatLayer* iParaFormatLayer;
CCharFormatLayer* iCharFormatLayer;
CRichText* iRichText;
CMsvOperationWait* iWaiter;

};

The SMS Client MTM reference is accessed by means of the MTM
registry using a fixed UID. Creating a Rich Text object requires some
intermediate objects that we don’t really care about, so we just view this
code as ‘boiler-plate’.

void CRSmsMsg::ConstructL(CMsvSession *aMsvSession)
{
iMsvSession = aMsvSession;

iMtmRegistry = CClientMtmRegistry::NewL(*iMsvSession);
iSmsMtm = static_cast<CSmsClientMtm*>(iMtmRegistry->

NewMtmL(KUidMsgTypeSMS));

iParaFormatLayer = CParaFormatLayer::NewL();
TCharFormat format(_L("Arial"),150);
format.iFontPresentation.iTextColor=KRgbWhite;
format.iFontPresentation.iHighlightColor=KRgbBlack;
format.iFontPresentation.iHighlightStyle=

TFontPresentation ::EFontHighlightRounded;
TCharFormatMask mask;
mask.SetAttrib(EAttColor);
mask.SetAttrib(EAttFontHighlightColor);
mask.SetAttrib(EAttFontHighlightStyle);
iCharFormatLayer = CCharFormatLayer::NewL(format,mask);

206 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

iRichText = CRichText::NewL(iParaFormatLayer, iCharFormatLayer,
CEditableText::ESegmentedStorage, 2048);

iWaiter = CMsvOperationWait::NewLC();
CleanupStack::Pop(); // iWaiter
}

10.4 Listing SMS Messages and Returning Their Contents
The first function that we will implement is retrieving details of one or
more SMS messages. We want to be able to retrieve the contents of a
message folder, such as the Inbox or the Sent Messages folder. We also
want to be able to retrieve a single message, since we will need this
when we handle events to retrieve individual incoming messages without
needing to retrieve a whole folder.

We start with a routine to write the details we want based on a
TMsvEntry object. We pass in the buffer in which to write the data.

void CRSmsMsg::GetOneSmsL(TMsvEntry aEntry, TDes8 &aBuffer)
{
// Check that the entry is an SMS message
if((aEntry.iType == KUidMsvMessageEntry) &&

(aEntry.iMtm == KUidMsgTypeSMS))
{
CConnPack::WriteInt32L(aEntry.Id(), aBuffer);
CConnPack::WriteInt32L(aEntry.Parent(), aBuffer);

// The message timestamp can be sent as two x 32-bits
TInt64 msgTime = aEntry.iDate.Int64();
CConnPack::WriteInt32L(msgTime.High(), aBuffer);
CConnPack::WriteInt32L(msgTime.Low(), aBuffer);

// Retrieve the message description and details
// directly from the TMsvEntry
TPtrC msgDesc = aEntry.iDescription;
CConnPack::WriteASCIIDataL(msgDesc, aBuffer);
TPtrC msgDetails = aEntry.iDetails;
CConnPack::WriteASCIIDataL(msgDetails, aBuffer);

// We want to access some fields using the SMS-specific
// APIs so we set the Client SMS MTM context
iSmsMtm->SwitchCurrentEntryL(aEntry.Id());
iSmsMtm->LoadMessageL();

// Write the From address using the SMS header
TPtrC tempPtrC;
tempPtrC.Set(iSmsMtm->SmsHeader().FromAddress());
CConnPack::WriteASCIIDataL(tempPtrC, aBuffer);

// Write the recipients - start with the number of
// recipients and then write the name and number for each
TInt numRecipients = iSmsMtm->SmsHeader().Recipients().Count();

LISTING SMS MESSAGES AND RETURNING THEIR CONTENTS 207

CConnPack::WriteInt32L(numRecipients, aBuffer);
for (TInt ii = 0; ii < numRecipients; ii++)
{
tempPtrC.Set(iSmsMtm->SmsHeader().Recipients().At(ii)->Name());
CConnPack::WriteASCIIDataL(tempPtrC, aBuffer);
tempPtrC.Set(iSmsMtm->SmsHeader().Recipients().At(ii)->Address());
CConnPack::WriteASCIIDataL(tempPtrC, aBuffer);
}

// The body text is accessible via the SMS MTM.
// We do not know how big it might be so we allocate
// a buffer especially
TInt bodyLen = iSmsMtm->Body().DocumentLength();
HBufC* body = HBufC::NewLC(bodyLen);
TPtr tempPtr(body->Des());
iSmsMtm->Body().Extract(tempPtr);
CConnPack::WriteASCIIDataL(tempPtr, aBuffer);
CleanupStack::PopAndDestroy(body);
}

}

Given this, handling the command to retrieve one SMS message just
requires us to unpack the message index identifier and use it to generate
a TMsvEntry to pass to our GetOneSmsL() method. We will create a
response PDU that is suitable for one or many message details, so we will
append a null message identifier to signify the end of the response.

void CRSmsMsg::GetSmsByIdL(TInt aMsgId, TDes8 &aBuffer)
{
TMsvEntry msgEntry;
TMsvId owningServiceId;
User::LeaveIfError(iMsvSession->GetEntry(aMsgId, owningServiceId,

msgEntry));

GetOneSmsL(msgEntry, aBuffer);

// Send the complete PDU with a terminating null ID
CConnPack::WriteInt32L(KNullUidValue, aBuffer);
}

Handling the request to retrieve all messages in a folder has two extra
complications:

1. We need to retrieve the set of message index identifiers rather than
just one message.

2. Because we do not know how many messages we may retrieve or
how long they are, we cannot guarantee that they will all fit in
one response.

The first requirement is dealt with by using the ChildrenWith-
TypeL() method of the folder index entry to access a CMsvEntrySe-
lection.

208 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

The second requirement is addressed by writing the details of each
individual message into a temporary buffer and then appending it to our
main buffer, if it will fit. Because we cannot tell how large the message
data will be until after we have retrieved it, we have to potentially retrieve
it and then throw it away. To allow for folders with many messages,
we keep the set of message index identifiers as a member variable and
we have another request to retrieve more messages. This means that the
client can keep asking for messages until no more are returned. This code
is more complicated than just hoping that all the messages will fit into
one buffer, but it is more reliable.

Because we support two commands with similar behavior – fetch all
messages in a folder and fetch more messages after filling an initial
response – we can put the logic for retrieving SMS messages in one
routine and use the other just to initialize the set of message identifiers.

// Fetch all SMS messages from Inbox or other folder and return them
void CRSmsMsg::GetAllSmsL(TInt aBoxId, TDes8 &aBuffer,
TDes8 &aTempBuffer)
{
// Get access to the selected folder with default grouping
// and sorting
TMsvSelectionOrdering order(KMsvNoGrouping, EMsvSortByNone, ETrue);
if(iBoxEntry != NULL)

{delete iBoxEntry;}
iBoxEntry = CMsvEntry::NewL(*iMsvSession, aBoxId, order);

// get the list of message entries in the folder
if(iSelectedMessages != NULL)

{delete iSelectedMessages;}
iSelectedMessages = iBoxEntry->ChildrenWithTypeL(KUidMsvMessageEntry);

// Traverse the messages
iNextSmsToSend = 0;
GetMoreSmsL(aBuffer, aTempBuffer);
}

// Fetch remaining Sms messages from Inbox or other folder
// and return them
void CRSmsMsg::GetMoreSmsL(TDes8 &aBuffer, TDes8 &aTempBuffer)
{
// Set up for saying that there are no more messages
TBool gotMessages = EFalse;

// If there are pending messages then send them, otherwise, say
// there are no more
TInt msgCount = iSelectedMessages->Count();
// Traverse the messages
while(iNextSmsToSend < msgCount)

{
gotMessages = ETrue;
// Get the message details in a temporary buffer
TMsvEntry msgEntry;
TMsvId owningServiceId;
User::LeaveIfError(iMsvSession->GetEntry((*iSelectedMessages)

DELETING AND CREATING SMS MESSAGES 209

[iNextSmsToSend], owningServiceId, msgEntry));
aTempBuffer.Zero();
GetOneSmsL(msgEntry, aTempBuffer);

// The entry may not have been useful so check that data has been
// added
if(aTempBuffer.Length() > 0)
{
// If the message will fit then append it, otherwise break out
if(aTempBuffer.Length()+aBuffer.Length()+4 < aBuffer.MaxLength())

{
CConnPack::WriteBufferL(aTempBuffer, aBuffer);
iNextSmsToSend ++;
}

else
{ // Run out of room - leave it till next message
break;
}

}
else
{ // Not an SMS so skip it
iNextSmsToSend ++;
}

} // endwhile

if(gotMessages)
{
// Send the complete message with a terminating null message ID
CConnPack::WriteInt32L(KNullUidValue, aBuffer);
}

}

10.5 Deleting and Creating SMS Messages
The previous sections show how to read SMS messages. In this section
we will show how to delete a message and how to create and send one.

Deleting a message is relatively straightforward, as long as the devel-
oper is aware that it has to be done with the context of the CMsvEntry
set to the parent of the entry to be deleted.

void CRSmsMsg::DeleteSmsL(TInt aDeleteId, TDes8 &aBuffer)
{
CMsvEntry* entry = CMsvEntry::NewL(*iMsvSession, KMsvRootIndexEntryId,

TMsvSelectionOrdering());
CleanupStack::PushL(entry);
entry->SetEntryL(aDeleteId);
// Check that it is an SMS message
if((entry->Entry().iType == KUidMsvMessageEntry) &&

(entry->Entry().iMtm == KUidMsgTypeSMS))
{
TInt parentId = entry->Entry().Parent();
entry->SetEntryL(parentId);
entry->DeleteL(aDeleteId);
CleanupStack::PopAndDestroy(entry);

210 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

CConnPack::WriteInt32L(aDeleteId, aBuffer);
}

else
{
// Don’t need to pop entry as the leave will take care of it
User::Leave(KErrArgument);
}

}

Creating a message is more complex, but it will enable us to send
messages from the PC. This is the function that I find most useful, as it
allows me to use the PC keyboard to compose the message – for some
reason my SMS messages have grown more verbose since I developed
this software!

Because this code is relatively complex, it deserves more explanation
than the earlier routines, so I will go through it in sections. To begin with,
we create the message entry. As for deletion, creation is done by means
of the parent. In this case the parent is the Outbox. Once we have the
empty message, we will set the body text from the incoming data. We
can then set the message description – for an SMS message this is the first
32 characters of the body text.

TInt CRSmsMsg::SendSmsL(TConnBuff &aBuffer)
{
iSmsMtm->SwitchCurrentEntryL(KMsvGlobalOutBoxIndexEntryId);
iSmsMtm->CreateMessageL(iSmsMtm->ServiceId());
TMsvEntry newEntry = iSmsMtm->Entry().Entry();

TInt bodyLen = CConnPack::PeekUint16L(aBuffer);
HBufC* bodyBuff = HBufC::NewLC(bodyLen);
TPtr tempPtr(bodyBuff->Des());
CConnPack::ReadASCIIDataL(tempPtr, aBuffer);
CRichText& mtmBody = iSmsMtm->Body();
mtmBody.Reset();
mtmBody.InsertL(0,tempPtr);

// Set the description from the first 32 chars of the body
TBuf<KMaxDescriptionLength> description;
if (bodyLen > 32)

bodyLen = 32;
tempPtr.SetLength(bodyLen);
description.Copy(tempPtr);
newEntry.iDescription.Set(description);
CleanupStack::PopAndDestroy(bodyBuff);

The other information that we supply from the PC is the phone number
to which the message is addressed. We could use the Recipients
member of the CSmsHeader class as we did when reading an SMS
message, but, in fact, we can use the simpler API from the CBaseMtm

DELETING AND CREATING SMS MESSAGES 211

class. In SMS messages, the first recipient address is also regarded as the
message detail.

// Read and set addressees
TInt addressCount = CConnPack::ReadUint16L(aBuffer);
for(TInt i = 0 ; i <addressCount ; i++)
{
TInt addressLen = CConnPack::PeekUint16L(aBuffer);
HBufC* addressBuff = HBufC::NewLC(addressLen);
TPtr addTempPtr(addressBuff->Des());
CConnPack::ReadUNCDataL(addTempPtr, aBuffer);
iSmsMtm->AddAddresseeL(addTempPtr);
// Set detail as first recipient address
if(i==0)

{
TBuf<KMaxDetailLength> detail;
if(addressLen > KMaxDetailLength)
{
addTempPtr.SetLength(KMaxDetailLength);
}

detail.Copy(addTempPtr);
newEntry.iDetails.Set(detail);
}

CleanupStack::PopAndDestroy(addressBuff);
}

The final part of creating the draft message is to set the SMS Service
Center and the SMS service settings. These can just be set to the default
values currently set in the SMS MTM, but they must be set. We also
set some of the attributes of the TMsvEntry – the message timestamp
and others.

iSmsMtm->SmsHeader().SetSmsSettingsL(iSmsMtm->ServiceSettings());
TInt defaultIndex = iSmsMtm->ServiceSettings().DefaultSC();
iSmsMtm->SmsHeader().SetServiceCenterAddressL(
iSmsMtm->ServiceSettings().SCAddress(defaultIndex).Address());

newEntry.iDate.HomeTime();
newEntry.SetInPreparation(EFalse);
newEntry.SetSendingState(KMsvSendStateScheduled);
newEntry.SetScheduled(ETrue);
newEntry.SetVisible(ETrue);

// Save changes
iSmsMtm->Entry().ChangeL(newEntry);
iSmsMtm->SaveMessageL();

At this stage the message exists as a draft message and the next stage is
to actually send it. Exactly how a message is sent depends on the MTM,
but for an SMS message it needs to be copied to the SMS Service Center.
The Message Server provides synchronous and asynchronous methods
to copy messages. In most cases the asynchronous method is preferable,
because it allows an application to remain responsive, and in this case

212 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

the synchronous method simply does not work (because the developers
did not see any value in a synchronous version).

This causes us a problem. In the cases of a custom server or a
socket server, the command is handled in a synchronous manner – we
are expected to finish processing and return. In fact, it is possible to
extend the socket server methods to allow for asynchronous behavior,
but ectcpadapter is not so flexible. This means that we have two
choices: use an inner scheduler or trigger an Active Object with no way
of obtaining the result.

An inner scheduler is the term used for the practice of incrementing
the level of the current Active Scheduler. Unless you are familiar with
the extensive use of Active Objects in Symbian OS, that explanation may
not leave you any the wiser. Essentially, it is a technique for running an
asynchronous action in a synchronous way. In this case we could use it
to wait for the asynchronous send operation to complete and then return
the result to the PC client. However, inner schedulers are tricky and can
cause some very complicated defects unless you know what you are
doing. In this case, I have chosen to avoid inner schedulers and trigger
another Active Object.

Active Objects were briefly described in Chapter 6 and we are going
to create one that does nothing except delete itself.

class CMsgWait: public CActive
{

public:
static CMsgWait* NewLC(TInt aPriority=EPriorityStandard);
∼CMsgWait();
void Start();

protected:
CMsgWait(TInt aPriority);
void RunL();
void DoCancel();

};

This class has the standard CActive methods plus a Start() and
NewLC() methods. The Start() method just activates the object and
the RunL() deletes itself.

void CMsgWait::Start()
{
iStatus = KRequestPending;
SetActive();
}

void CMsgWait::RunL()
{
delete this;
}

HANDLING MESSAGE SERVER EVENTS 213

We can then use this class to asynchronously send the SMS message.
When the sending completes, the CMsgWait object will be notified, but
it will not care. This means that we cannot tell whether or not the send
was successful, but we can use the event handler for this purpose.

// Send the actual message
CMsvEntry* parentEntry = CMsvEntry::NewL(*iMsvSession,
newEntry.Parent(), TMsvSelectionOrdering());

CleanupStack::PushL(parentEntry);

CMsgWait* waiter = CMsgWait::NewLC();
waiter->Start();
parentEntry->CopyL(newEntry.Id(), iSmsMtm->ServiceId(),
waiter->iStatus);

CleanupStack::Pop(waiter); // It will destroy itself
CleanupStack::PopAndDestroy(parentEntry);

return(newEntry.Id());
}

10.6 Handling Message Server Events

The final part of our messaging code is to handle events. The primary aim
here is to pick up incoming messages without having to poll the mobile
phone regularly. In fact, the Message Server provides us with events
whenever a new message is created or a message is changed or deleted.
Each time the event handler is called, we get a number of events reported.

The messaging part of the code is relatively straightforward. If we have
a new, changed or moved message, we verify that it is an SMS message
before informing the PC of the details. If it is a deleted message then
we cannot check the details, because the message no longer exists. We
assume that the PC client will be able to handle being told about the
deletion of a message that it does not have.

Because we receive events for all types of entry in the Message Store,
we have to allow for the fact that we may ignore all the events and not
report any. This might be the case if they concern email or MMS message,
for example. Therefore, we may need to discard the partial PDU.

void CRSmsMsg::GetMsvEventL
(MMsvSessionObserver::TMsvSessionEvent aEvent,
TAny *arg1, TAny *arg2, TAny *arg3, TDes8 &aBuffer)
{
// Preserve the initial length
TInt startLength = aBuffer.Length();
CConnPack::WriteInt32L(aEvent, aBuffer);

CMsvEntrySelection* eventEntrySelection = (CMsvEntrySelection*)arg1;

214 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

TInt msgCount = eventEntrySelection->Count();

TBool gotData = EFalse; // goes true if we have an SMS message
for (TInt jj = 0; jj < msgCount; jj++)

{
TMsvId id = eventEntrySelection->At(jj);
// For deletion - don’t check type, for others do
if(aEvent == MMsvSessionObserver::EMsvEntriesDeleted)
{
CConnPack::WriteInt32L(id, aBuffer);
gotData = ETrue;
}

else
{
TMsvEntry msgEntry;
TMsvId owningServiceId;
User::LeaveIfError(iMsvSession->GetEntry(id, owningServiceId,

msgEntry));
// Check that it is an SMS message
if((msgEntry.iType == KUidMsvMessageEntry) &&

(msgEntry.iMtm == KUidMsgTypeSMS))
{
CConnPack::WriteInt32L(id, aBuffer);
gotData = ETrue;
}

}// endif
}// endfor

if(gotData)
{
// Write terminating null ID
CConnPack::WriteInt32L(0, aBuffer);

// If a moved event then we have extra data in arg2 and arg3
if(aEvent == MMsvSessionObserver::EMsvEntriesMoved)
{
CConnPack::WriteInt32L(*(TInt32*)arg2, aBuffer);
CConnPack::WriteInt32L(*(TInt32*)arg3, aBuffer);
}

}
else

{
// No real data (messages were not SMS messages) so reset back
// the offset
TInt newLength = aBuffer.Length()-startLength;
aBuffer.Delete(startLength-1,newLength);
}

One point to note is that we might be tempted to get all the message
data in this routine, but this would be a mistake. As a rule, we should
not do too much work in any event handler, so I do not want to do
anything more than unpack the event details. Also, experience shows that
we may get several events for the same message in quick succession. If
we get message data for each event then we will be sending the same
data repeatedly. Instead, we just send the raw event details, and the PC

PUTTING THE MESSAGING CODE IN A CONNECTIVITY PLUG-IN 215

client will be responsible for filtering out repeated events and retrieving
the data only once.

10.7 Putting the Messaging Code in a Connectivity Plug-in

The previous sections have shown the messaging code. We also need the
code in the custom server or socket server to invoke these methods.

Most of the commands are straightforward. We need to identify the
incoming command, call a messaging method and return a response. For
a socket server the factory does this, but for a custom server we build our
own code – this is a standard pattern.

void CRSmsCSSession::ReadCompleteL(TDes8* /*aPdu*/)
{
TRSmsCmdCode aCmd = (TRSmsCmdCode)CConnPack::ReadInt32L(iReadPtr);
TInt msgId = CConnPack::ReadInt32L(iReadPtr);

TRAPD(retVal, DoServiceL(aCmd, msgId));
if(retVal != KErrNone)

{
WriteErrorL(retVal, msgId);
}

}

void CRSmsCSSession::DoServiceL(TRSmsCmdCode aCmd, TInt aMsgId)
{
switch(aCmd)

{
case ERSmsCmdQueryVersion:
QueryVersionL(aMsgId);
break;

case ERSmsCmdGetAllSms:
GetAllSmsL(aMsgId);
break;

case ERSmsCmdGetMoreSms :
GetMoreSmsL(aMsgId);
break;

case ERSmsCmdGetSmsById:
GetSmsByIdL(aMsgId);
break;

case ERSmsCmdDeleteSms:
DeleteSmsL(aMsgId);
break;

case ERSmsCmdSendSms:
SendSmsL(aMsgId);
break;

default:
break; //Do Nothing

}
return;
}

We call the service routine via a TRAP so we can catch errors and
return an error PDU to the PC client.

216 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

Then the individual service routines here call one of the messaging
routines and return the response. They are all quite similar, so I will just
show one here.

void CRSmsCSSession::GetSmsByIdL(TInt aMsgId)
{
TInt msgId = CConnPack::ReadInt32L(iReadPtr);

// Start a PDU with a response
iWritePtr.Zero();
CConnPack::WriteInt32L(ERSmsCmdReceiveInitialSms, iWritePtr);
CConnPack::WriteInt32L(aMsgId, iWritePtr);

iMsgUtil->GetSmsByIdL(msgId, iWritePtr);

Write(&iWritePtr);
}

The one aspect missing from this PC Connectivity plug-in is the
handling of Message Server events. The connection (for the custom
server and the socket server) cannot be used for reading and writing
simultaneously. Therefore, we will need a second connection just for
the events. In fact, we could avoid this by caching event details and
requesting them on a regular basis, but that would impose a delay on
receiving incoming messages. Therefore, we have defined the command
to put a connection into event reporting mode.

We are supposed to have only one Message Server session per thread,
and both the connections will share the same thread (certainly in the
case of a custom server). Therefore, we have made the CMsvSession
owned by the top-level server. When an event handling command
comes in, the server is informed that this session is to be used for event
reporting. Subsequently, when an event occurs, it is redirected to the
relevant session.

void CRSmsCSServer::SetEventSession(CRSmsCSSession* aEventSession)
{
iEventSession = aEventSession;
}

. . .

void CRSmsCSSession::DoServiceL(TRSmsCmdCode aCmd, TInt aMsgId)
{
switch(aCmd)

{
case ERSmsCmdQueryVersion:
QueryVersionL(aMsgId);
break;

case ERSmsCmdGetAllSms:
GetAllSmsL(aMsgId);
break;

case ERSmsCmdGetMoreSms :

PUTTING THE MESSAGING CODE IN A CONNECTIVITY PLUG-IN 217

GetMoreSmsL(aMsgId);
break;

case ERSmsCmdGetSmsById:
GetSmsByIdL(aMsgId);
break;

case ERSmsCmdDeleteSms:
DeleteSmsL(aMsgId);
break;

case ERSmsCmdSendSms:
SendSmsL(aMsgId);
break;

// This session is now supposed to return events
case ERSmsCmdReturnEvents:
iEventMsgId = aMsgId;
iPendingEventWrite = EFalse;
iRSmsCSServer->SetEventSession(this);
break;

default:
break; //Do Nothing

}
return;
}

. . .

void CRSmsCSServer::HandleSessionEventL(TMsvSessionEvent aEvent,
TAny *arg1, TAny *arg2, TAny *arg3)

{
// Handle global events
switch(aEvent)

{
//Close session in case of error
case EMsvGeneralError:
case EMsvCloseSession:
case EMsvServerFailedToStart:
case EMsvServerTerminated:
User::Leave(KErrGeneral);
break;

default: // Do Nothing
break;

}

if(iEventSession)
{
TRAPD(retVal, iEventSession->WriteMsvEventL(aEvent, arg1, arg2,
arg3));

if(retVal != KErrNone)
{
iEventSession->WriteErrorL(retVal, 0);
}

}
}

The next complication we encounter is that we may get one event
from the Message Server, report it to the PC client and then get another
event before we have finished writing the first message. We cannot write
again until the first write is complete. Therefore, we need to keep track
with a flag of whether or not we have a write operation pending. If we do

218 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

not have a pending write then we just send the PDU straight to the PC. If
we do have a pending write then we can only append the event details to
a buffer and wait for the last write to complete – remember that we may
have more than one event while we have a pending write. This is a good
example of real asynchronous event handling, but we are fortunate that
the buffering solution is adequate.

void CRSmsCSSession::WriteMsvEventL
(MMsvSessionObserver::TMsvSessionEvent aEvent,
TAny *arg1, TAny *arg2, TAny *arg3)
{
// We may get one event before the previous one has been fully
// written out. Therefore, we check for this. If there is no pending
// write then we write directly to the standard buffer.
// If there is a pending write, we append to the temporary buffer.
// If there is data in the temporary buffer when we get WriteComplete
// then it will be flushed.
if(!iPendingEventWrite)

{
iWritePtr.Zero();
CConnPack::WriteInt32L(ERSmsCmdMsvEvent, iWritePtr);
CConnPack::WriteInt32L(iEventMsgId, iWritePtr);
iMsgUtil->GetMsvEventL(aEvent, arg1, arg2, arg3, iWritePtr);

// The PDU may be empty if there were no SMS-related events
if(iWritePtr.Length() > 8)
{
CConnPack::WriteInt32L(KNoMoreEvents, iWritePtr);
Write(&iWritePtr);

// Set up for pending event writes
iPendingEventWrite = ETrue;
iTempBuffer.Zero();
CConnPack::WriteInt32L(ERSmsCmdMsvEvent, iTempBuffer);
CConnPack::WriteInt32L(iEventMsgId, iTempBuffer);
}

} // endif
else // Got pending write

{
iMsgUtil->GetMsvEventL(aEvent, arg1, arg2, arg3, iTempBuffer);
}

}

Finally, when a write operation completes, we need to check for data
waiting to be sent to the PC.

void CRSmsCSSession::WriteCompleteL(TDes8* /*aPdu*/)
{
// If we have a pending event write, it is now safe to write it out.
if(iPendingEventWrite && (iTempBuffer.Length() > 8))

{
CConnPack::WriteInt32L(KNoMoreEvents, iTempBuffer);
iPendingEventWrite = EFalse;
Write(&iTempBuffer);
}

}

A COMMAND-LINE SMS APPLICATION 219

10.8 A Command-line SMS Application

Having created the SMS software on the Symbian OS smartphone, we
need to create a client to communicate with it. For real usage we will
want a graphical program, but for development and debugging purposes
a command-line application is adequate. For one thing, we can just
debug one software component at a time and then, when the software
on the mobile phone is working, we can more easily develop the GUI
application.

Initially, we will need methods to pack and unpack text data. We saw
how to read and write integers in Chapter 7, and textual data is handled
similarly. Reading data is done simply by extracting data from an array of
bytes, but for writing we will now append to an expandable ArrayList
and then convert it into an array of bytes when necessary. We do this
because in some later routines we will find it difficult to predict the size
of our data in advance.

public void ReadASCIIData(ref byte[] aBuff, ref int aStartPos,
out StringBuilder aString)

{
int dataLength = ReadInt32(ref aBuff, ref aStartPos);
aString = new System.Text.StringBuilder();
aString.Length = dataLength;
for(int j = 0 ; j < dataLength ; j++)
{

char myChar = (char)aBuff[aStartPos];
aStartPos++;
aString[j] = myChar;

}
}

public static void WriteInt32(int aValue, ref ArrayList aBuffer)
{
aBuffer.Add((byte) (aValue & 0x000000ff));
aBuffer.Add((byte)((aValue & 0x0000ff00)>>8));
aBuffer.Add((byte)((aValue & 0x00ff0000)>>16));
aBuffer.Add((byte)((aValue & 0xff000000)>>24));

}

public static void WriteUint16(ushort aValue, ref ArrayList aBuffer)
{
aBuffer.Add((byte) (aValue & 0x00ff));
aBuffer.Add((byte)((aValue & 0xff00)>>8));

}

public static void WriteASCIIData(string aString,
ref ArrayList aBuff)

{
ushort dataLength = (ushort)aString.Length;
WriteUint16(dataLength, ref aBuff);
for(int j = 0 ; j < dataLength ; j++)
{

aBuff.Add((byte)aString[j]);

220 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

}
}

public static byte[] AsByteArr(ref ArrayList aBuffer)
{
int len = aBuffer.Count;
byte[] ret = new byte[len];
for(int i = 0 ; i < len ; ++i)
{

ret[i] = (byte)aBuffer[i];
}
return ret;

}

These text-handling routines assume ASCII data in the buffer. Unicode
data is handled in the same way.

In order to read or write date and time values, we use the C# DateTime
type and handle null values explicitly.

public static void ReadDateTime(ref byte[] aBuffer, ref int aStartPos,
out bool aNullTime, out System.DateTime aDateTime)

{
short year = ReadInt16(ref aBuffer, ref aStartPos);
short month = ReadInt8(ref aBuffer, ref aStartPos);
short day = ReadInt8(ref aBuffer, ref aStartPos);
short hour = ReadInt8(ref aBuffer, ref aStartPos);
short minute = ReadInt8(ref aBuffer, ref aStartPos);
short second = ReadInt8(ref aBuffer, ref aStartPos);

if((year==0) && (month==0) && (day==0) &&
(hour==0) && (minute==0) && (second==0))

{
aNullTime = true;
aDateTime = System.DateTime.Now;

}
else
{

aNullTime = false;
aDateTime = new System.DateTime(year, month+1, day+1, hour,
minute, second);

}
}

public static void WriteDateTime(bool aNullTime,
System.DateTime aDateTime, ref ArrayList aBuffer)

{
if(aNullTime)
{

WriteInt16(0, ref aBuffer);
WriteInt8(0, ref aBuffer);
WriteInt8(0, ref aBuffer);
WriteInt8(0, ref aBuffer);
WriteInt8(0, ref aBuffer);
WriteInt8(0, ref aBuffer);

}
else

A COMMAND-LINE SMS APPLICATION 221

{
WriteInt16((short)aDateTime.Year, ref aBuffer);
WriteInt8((short)(aDateTime.Month-1), ref aBuffer);
WriteInt8((short)(aDateTime.Day-1), ref aBuffer);
WriteInt8((short)aDateTime.Hour, ref aBuffer);
WriteInt8((short)aDateTime.Minute, ref aBuffer);
WriteInt8((short)aDateTime.Second, ref aBuffer);

}
}

Loading the custom server or socket server is done in the same way as
for the echo plug-ins described in Chapters 7 and 8.

Creating the command PDUs is simply a matter of packing the argu-
ments into a buffer and sending the buffer. The following example would
create a command to request the contents of the Inbox.

ArrayList message = new ArrayList();
WriteInt32(ERSmsCmdGetAllSms, ref message);
WriteInt32(mNextPDUId, ref message);
WriteInt32(KMsvGlobalInBoxIndexEntryId, ref message);
mNextPDUId++;
mAStream.Write(ConnPack.AsByteArr(ref message));
mReadingLength = true;
mAStream.Read(4);

As we see, once the PDU is sent we start a read operation to obtain
the reply PDU.

As discussed, we need to open a second connection for event handling.
As soon as we open the stream, we send a command to enable event
reporting on it and then initiate a read and wait for events to pop up.
Clearly, this behavior would not be possible without asynchronous reads.
In this example, we are using the custom server – hence the use of
ectcpadapter.

private void EnableEvents()
{
// Create a second stream for event handling
SymbianConnectBAL.ISCBALDeviceService service =

mDevice.Services["ectcpadapter"];
// Load RSmsCS
byte[] message = new byte[40];
message[4] = (byte)'R';
message[5] = (byte)'S';
message[6] = (byte)'M';
message[7] = (byte)'S';
message[8] = (byte)'C';
message[9] = (byte)'S';

SymbianConnectBAL.ISCBALSequentialStream myStream2 =
service.StartServiceOnStream();

int retval = myStream2.Write(message);

222 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

byte[] response = new byte[40];
object oResponse = response;
retval = myStream2.Read(4, out oResponse);
response = (byte[])oResponse;
int readPos = 0;
int responseCode = ReadInt32(ref response, ref readPos);
if(responseCode != 0)
{ System.Console.WriteLine("Response code when starting event

session {0}", responseCode);
}

// Now create an asynchronous stream from the synchronous one
mEventStream = (SymbianConnectBAL.BALApplicationAsyncStream)myStream2;
mEventStream.OnRead += new

ISCBALSequentialStreamSink_OnReadEventHandler(OnEventRead);
mEventStream.OnWrite += new

ISCBALSequentialStreamSink_OnWriteEventHandler(OnWrite);

// Send a command to activate event reception
ArrayList eMessage = new ArrayList();
ConnPack.WriteInt32(8, ref eMessage);
ConnPack.WriteInt32(ERSmsCmdReturnEvents, ref eMessage);
ConnPack.WriteInt32(mNextMessageId, ref eMessage);
mAStream.Write(ConnPack.AsByteArr(ref eMessage));
mEventReadingLength = true;
mEventStream.Read(4);
mNextMessageId ++;

}

Handling a reply is slightly more complex than sending PDUs. When-
ever we expect a reply, we may get an error reply. When we are
expecting a set of SMS message data, we may get a PDU that indicates
that there are no messages to be returned. Therefore, our design may
well be based around a single method to read and parse any reply PDUs.
This also reduces the amount of state that we need to build into our
application.

The following example just prints out the data to the console. In a
production version we would update displays of messages. We would
also build in more checks for corrupted messages.

private void ServiceRead(int aOpCode, int aMessageId, ref byte[] aBuff,
ref int aReadPos)

{
System.Console.WriteLine("Read Op code {0} Message Id {1}", aOpCode,

aMessageId);
switch(aOpCode)
{
case(ERSmsCmdVersionReply):

int majorVersion = ReadInt32(ref aBuff, ref aReadPos);
int minorVersion = ReadInt32(ref aBuff, ref aReadPos);
int buildVersion = ReadInt32(ref aBuff, ref aReadPos);
System.Console.WriteLine("Reported version {0}:{1}:{2}",

majorVersion, minorVersion, buildVersion);
break;

A COMMAND-LINE SMS APPLICATION 223

case(ERSmsCmdReceiveSms):
bool carryOn = true;
while(carryOn)
{
carryOn = ReadSms(ref aBuff, ref aReadPos);

}
break;

case(ERSmsCmdReceiveNoMoreSms):
System.Console.WriteLine("No more messages to retrieve");
break;

case(ERSmsCmdMsvEvent):
int eventType = ReadInt32(ref aBuff, ref aReadPos);
while(eventType != KNoMoreEvents)
{
switch(eventType)

{
case(EMsvEntriesCreated):
System.Console.WriteLine("Entries created event");
break;

case(EMsvEntriesChanged):
System.Console.WriteLine("Entries changed event");
break;

case(EMsvEntriesDeleted):
System.Console.WriteLine("Entries deleted event");
break;

case(EMsvEntriesMoved):
System.Console.WriteLine("Entries moved event");
break;

default:
System.Console.WriteLine("Unrecognized event type {0}",

eventType);
break;

}
int eventId = ReadInt32(ref aBuff, ref aReadPos);
while(eventId != 0)
{

System.Console.WriteLine("Id {0}", eventId);
eventId = ReadInt32(ref aBuff, ref aReadPos);

}
// If a move event then we have two more IDs
if(eventType == EMsvEntriesMoved)
{

int oldParentId = ReadInt32(ref aBuff, ref aReadPos);
int newParentId = ReadInt32(ref aBuff, ref aReadPos);
System.Console.WriteLine("Moved from {0} to {1}",

oldParentId, newParentId);
}
// Read the next event
eventType = ReadInt32(ref aBuff, ref aReadPos);

}
// Re-initiate reading
mEventReadingLength = true;
mEventStream.Read(4);
break;

case(ERSmsCmdSentSms):
int sentSmsId = ReadInt32(ref aBuff, ref aReadPos);
System.Console.WriteLine("Sms {0} sent", sentSmsId);
break;

224 DEVELOPING AN SMS MANAGEMENT CONNECTIVITY SERVICE

case(ERSmsCmdDeletedSms):
int delSmsId = ReadInt32(ref aBuff, ref aReadPos);
System.Console.WriteLine("Sms {0} deleted", delSmsId);
break;

case(ERSmsCmdError):
int errno = ReadInt32(ref aBuff, ref aReadPos);
System.Console.WriteLine("Error {0}", errno);
break;

default:
System.Console.WriteLine("Unexpected op-Code {0} buffer length {1}",

aOpCode, aBuff.Length);
break;

}
}

public bool ReadSms(ref byte[] aBuff, ref int buffOffset)
{
int smsId = ConnPack.ReadInt32(ref aBuff, ref buffOffset);
bool retVal = true;
if(smsId != 0)
{

int parentId = ConnPack.ReadInt32(ref aBuff, ref buffOffset);
// Read the date-time
System.DateTime msgDate;
bool nullDate;
ConnPack.ReadDateTime(ref aBuff, ref buffOffset, out nullDate,

out msgDate);

System.Text.StringBuilder description;
ConnPack.ReadUNCData(ref aBuff, ref buffOffset, out description);
System.Text.StringBuilder detail;
ConnPack.ReadUNCData(ref aBuff, ref buffOffset, out detail);
System.Text.StringBuilder fromAddress;
ConnPack.ReadUNCData(ref aBuff, ref buffOffset, out fromAddress);

System.Console.WriteLine("Sms Id {0} parent {1} from {2} date {3}",
smsId, parentId, fromAddress, msgDate);

int recipientCount = ConnPack.ReadUint16(ref aBuff, ref buffOffset);
for(int i = 0 ; i < recipientCount ; i++)
{
System.Text.StringBuilder recName;
ConnPack.ReadUNCData(ref aBuff, ref buffOffset, out recName);
System.Text.StringBuilder recAddress;
ConnPack.ReadUNCData(ref aBuff, ref buffOffset, out recAddress);

System.Console.WriteLine("Recipient {0}:{1}", recName,
recAddress);

} //endfor

System.Text.StringBuilder bodyText;
ConnPack.ReadASCIIData(ref aBuff, ref buffOffset, out bodyText);
System.Console.WriteLine("{0}\n", bodyText);

}

A COMMAND-LINE SMS APPLICATION 225

else
{

System.Console.WriteLine("End of received sms");
retVal = false;

}
return retVal;

}

It will be clear from some details of this code that this was intended to
work with the custom server. In fact, most of the protocol and code can
be common with an application intended to talk to a socket server. In
Chapters 11 and 12 we will develop code to interact with the Contacts
and Agenda models and then we will present a simple GUI application
to use these servers.

11
Using the Contacts Model

In this chapter we are going to cover the Symbian OS Contacts Model. This
is the first example of a specific API that is relevant to synchronization or
Enterprise operations. In this chapter we address the use of the Contacts
Model for a normal user and we also include optimizations for large
Contacts databases.

For the handling of SMS messages, Chapter 9 included the description
and the API, and Chapter 10 included the code (or most of it) for a
PC Connectivity service. In this chapter and the next, we combine the
description, the API and example code. We can build on the basic code
on the PC, included in Chapter 10, to drive the service, but we will not
repeat that code in this chapter.

Contacts information is one of the key parts of a Personal Information
Manager (PIM) and is vital to most users. The PC suites shipped with
Symbian OS smartphones normally include software to synchronize the
smartphone with a PIM running on the PC, such as Outlook. For many
users this is the most important part of a PC suite.

However, not all PIMs are supported by all synchronization software,
and some users may not want the master copy of their data to be maintained
on the PC. Therefore, an alternative approach is to maintain the master
version of contacts data on the phone and make sure that it gets backed up.

The Contacts Model is not difficult to access. This chapter shows the
APIs used and includes example software to create a Connectivity plug-
in to allow direct manipulation of Contacts data on the mobile phone
from the PC.

11.1 Databases and Models

Symbian OS includes an SQL-based database management system. SQL
databases are used for a number of purposes. The Symbian OS DBMS is
impressive for a mobile phone, but it is not as powerful as those designed
to run on PCs and servers with many times the memory and CPU power.

In some cases, a database is hidden behind a specialized API. This is
true of the Contacts database, which is hidden behind a Contacts Model

228 USING THE CONTACTS MODEL

API. It is still possible to access the database directly, but this is not wise
and is not necessary. The Contacts Model API provides all the functions
that are required and includes a range of checking and utility features.
Therefore, this chapter will describe the Contacts Model API without
regard to database concepts.

11.2 The Contacts Model

The Contacts Model is structured around a Contact Database that includes
a number of Contact Items. Each Contact Item contains a number of fields.

A Contact Item can represent more than just a single address card.
Contact Items can represent:

• an address card

• the address card of the mobile phone owner

• a group of cards

• a card template used to create new cards.

Although address cards are the most common type of item, the others
are also meaningful and we will use them in this chapter.

Contact Items use a common base class, CContactItem, and derived
classes for the specialized types. Similarly, fields have a base type,
CContactFieldStorage, for the storage type and derived classes for
the specific types (Figure 11.1).

CContactItem

CContactItemPlusGroup

CContactCard

CContactCardTemplate

CContactGroup

CContactItemField

CContentType

CContactFieldStorage

CContactTextField CContactDateField CContactStoreField

Figure 11.1 Contacts Model

An address card is the most common type of contact item. The name
derives from the use of physical business cards, and the term has proved

THE CONTACTS MODEL 229

useful for electronic purposes – synchronization uses the term vCard for
a standard way of storing contact information.

An address card is represented by a CContactCard object but
requires very little additional functionality – most of its behavior is con-
tained in the CContactItem class. A CContactCard has a unique
identifier and a set of fields that contain the actual card data. It can
belong to zero or more groups of cards. A CContactCard can be found
either directly by means of its identifier or by filters or searches.

The address card that belongs to the mobile phone owner is a standard
card in most ways. It is identified separately because it can be used to
identify the phone. It can be beamed to another phone and it could be used
for an information screen. Therefore, the CContactOwnCard class is
derived from CContactCard rather than directly from CContactItem.

Because the set of fields that an address card owns can be relatively
complex and can be extended, it is necessary to have some method of
setting the fields that a newly created card is given. This is done using
templates. A CContactCardTemplate object contains details of fields
and can be used when creating a new CContactCard.

Going beyond address cards, the CContactGroup class represents
a group of address cards (actually, a group can be a member of other
groups as well). A group has a label and a list of the CContactItems
that it contains. Note that a group does not own the CContactItems
that it contains – a CContactItem can be a member of more than one
group. It may help to regard a CContactGroup as a club – a person
can be a member of any number of clubs from zero upwards. However,
as one group can be a member of another group, the analogy is limited.
What use is made of groups depends on applications.

The fields owned by a CContactCard are more complex than might
first be expected. Each field has a label, a type and a value, and attributes
that may indicate a hidden or read-only field. The field type is also a
complex construct and goes beyond the storage type (text, date/time or
binary) of the field. Various applications need to extract specific data from
an address card, such as first and last names, mobile phone number, email
address or fax number. It would be possible to have the CContactCard
defined with a fixed set of fields, which would make this form of access
simple. However, this would make it inconvenient to add new fields and
so would tend to limit the future use of the Contact Model. Therefore,
these types of field are given an identifier (stored in cntdef.h) and each
field is associated with one or more of these field type identifiers. This
means that an application does not access the first name field but instead
accesses the field that has the first name field type identifier (if any). Some
of the field type identifiers may be associated with more than one field
in a contact. Going beyond the applications on the Symbian OS mobile
phone, various PIMs have their own field definitions and so additional
field type identifiers have been created for synchronization/mapping

230 USING THE CONTACTS MODEL

purposes. A field type can have a mapping identifier set if the other
field types are not sufficient to identify it uniquely. Two field types are
considered to be equal if they have the same set of field type identifiers
and the same mapping identifier, if any. When comparing two fields, we
must compare the complete set of field type identifiers, not just a subset.

11.3 Views

The Contact Database can be very large and complex in some cases. As
described above, it includes different types of objects; it is possible to add
new fields for specialized purposes, and it is possible to include a large
amount of data. Therefore, we rarely want to access every single record
in the database. We normally want a subset of some form.

We can reduce the set of fields that each item presents to us and the
number of items that we see by using a View (note the unsurprising use of
database terminology). A view contains a set of field types; only Contact
Items that have one or more of those field types will be accessed, and then
only those fields that have one or more of those field types will be made
visible. In addition, views can be sorted without having to sort the whole
of the Contact Database. This means that a view is almost certainly the
best way to access a large set of Contact items. When we need to access
the whole of a Contact item, we can do so without the view interfering.

The fields included in the view and the sort order are set when a view is
constructed. If you need to change them then you need to recreate the view.
When a view is created, the Contact Model has to carry out a range of tasks
(notably sorting the contents of the view) and this is done asynchronously.
Therefore, in order to use a view, you need to implement a view observer
and note when the view is ready for use, otherwise a panic will ensue.

In this chapter, I have used just the local contact view, but there
are other types of views that can be shared between clients or that
support filtering.

11.4 Contacts Observers

As with other parts of Symbian OS, the Contact Model supports observers.
By registering an observer, a process can be informed when data is added,
deleted or changed, among other events.

When we were developing Messaging software we were concerned
with learning when messages arrived. This is less of an issue for our use of
the Contact Model. If the user is accessing the Contact Model by means
of the PC then it is very unlikely that new entries will be spontaneously
created or existing ones changed or deleted. Therefore, we will make no
use of a general Contact Model observer.

CONTACTS MODEL API 231

However, we need a view observer, whether we like it or not. Creating
a view requires some measure of filtering and sorting, and in Symbian OS
this is carried out asynchronously. Therefore, when we create a view we
need to specify a view observer in order to be informed when the view is
ready for use.

11.5 Synchronization and Performance Issues

The methods used in this chapter are aimed at small numbers of changes,
for example reading, editing or deleting one Contact card at a time. This is
aimed at running a GUI on the PC with operations directly driven by the
user. However, if you are editing or deleting many Contact items at a time
then there are some patterns which can be useful. If you access Contact
items in order of their identifier then performance will be improved.

Bulk deletion of Contact items should use the CContact-
Database::DeleteContactsL() method which takes an array of
identifiers (in which case the order of identifiers in the array does
not matter).

11.6 Contacts Model API

As with other APIs covered in this book, we will not cover all aspects
of the Contact Model. It is fully documented in Symbian OS SDKs, but
the sheer volume of information can make it more difficult to get started
than you might expect. In particular, this chapter will not cover classes
and methods concerned with specialized database manipulation (such
as rollbacks and recovery), synchronization, field views and specialized
phone number handling.

11.6.1 Contact Database

Class CContactDatabase
Defined in cntdb.h

CContactDatabase provides access to a Contact Database and its members. It is the
starting point for access to the Contact Model.

Creation Methods

static CContactDatabase* OpenL(TThreadAccess
aAccess =ESingleThread)

static CContactDatabase* OpenL(const TDesC& aFileName,
TThreadAccess aAccess =ESingleThread)

232 USING THE CONTACTS MODEL

These methods open access to an existing Contact Database. A new database can be created
using the CreateL() methods. The method that does not specify a file name opens the
default Contact Database.
aFileName – the name of the database to be opened if the default database is not wanted.
aAccess – determines whether the database should be opened for single or multi-thread

access. The default ESingleThread setting is probably correct unless the database is to
be used by a multi-threaded application.

returns – a pointer to a CContactDatabase object.

Sorting and Searching Methods

CContactIdArray* FindLC(const TDesC& aText,
const CContactItemFieldDef *aFieldDef)

This method searches for a text string in a defined set of fields in all contacts in the database.
aText – the text to search for.
aFieldDef – the set of fields to search.
returns – array of contact identifiers for contact items that contain the search string. The

caller takes ownership of the array.

void SortL(CArrayFix<TSortPref>* aSortOrder)
This method sorts the database. After the method returns, the contact item identifiers can be
accessed using the SortedItemsL() method. Usually, it will be better to use a view rather
than sort the whole database.
aSortOrder – array of sort preferences. The database is sorted by the first sort preference.

Any identical matches are then sorted by the next sort preference and so on. If the array is
of zero length then the database is not sorted.

const CContactIdArray* SortedItemsL()
This method returns an array of contact items sorted by SortL(). The caller does not take
ownership of the array. The array remains valid only until the database is changed or until the
database’s Active Object runs. If the caller wants the array after this then they need to take a
copy of the array.

void SetDbViewContactType(const TUid aUid)
This method sets the type of contact items to be included in sorted views of the database. This
value is initialized to KUidContactItem when the database is opened. This means that all
CContactItem -derived types (cards, nonsystem templates, groups, own cards) are included
in database views.
aUid – specifies a contact type which should be one of the following: KUidContactCard

(contact cards), KUidContactGroup (contact item groups), KUidContactOwnCard
(own cards), KUidContactCardTemplate (templates which are not system templates,
i.e. which have been added to the database), or KUidContactItem (all of the above).

Contact Item Methods

CContactItem* ReadMinimalContactL(TContactItemId aContactId)
CContactItem* ReadMinimalContactLC(TContactItemId aContactId)

CONTACTS MODEL API 233

These methods provide read-only access to a contact item accessed by contact item identifier.
They are faster than the ReadContactL() methods because they do not read template and
group information.
aContactId – the contact item identifier.
returns – a CContactItem. the caller takes ownership of the item.

CContactItem* ReadContactL(TContactItemId aContactId)
CContactItem* ReadContactLC(TContactItemId aContactId)
These methods provide read-only access to a contact item accessed by contact item identifier.
aContactId – the contact item identifier.
returns – a CContactItem. The caller takes ownership of the item.

CContactItem* ReadContactL(TContactItemId aContactId,const
CContactItemViewDef& aViewDef)
CContactItem* ReadContactLC(TContactItemId aContactId,const
CContactItemViewDef& aViewDef)
These methods provide read-only access to selected fields of a contact item accessed by
contact item identifier.
aContactId – the contact item identifier.
aViewDef – the contact item fields to be included in the item.
returns – a CContactItem. The caller takes ownership of the item.

CContactItem* OpenContactL(TContactItemId aContactId)
CContactItem* OpenContactLX(TContactItemId aContactId)
These methods open a contact for editing. The item remains open until CommitContactL()
or CloseContactL() is called. The LX version of the method leaves the lock record on the
cleanup stack.
aContactId – the contact item identifier.
returns – a CContactItem. The caller takes ownership of the item.

CContactItem* OpenContactL(TContactItemId aContactId,const
CContactItemViewDef& aViewDef)
CContactItem* OpenContactLX(TContactItemId aContactId,const
CContactItemViewDef& aViewDef)
These methods open a contact for editing while accessing only selected fields. Care is
necessary because when the contact is committed any fields not loaded by the field view will
be deleted from the item. The item remains open until CommitContactL() or
CloseContactL() is called. The LX version of the method leaves the lock record on the
cleanup stack.
aContactId – the contact item identifier.
returns – a CContactItem. The caller takes ownership of the item.

void CloseContactL(TContactItemId aContactId)
This method closes a contact item without committing any changes. Closing a contact that is
not open or does not exist does not cause an error.
aContactId – the item identifier of the contact to be closed.

234 USING THE CONTACTS MODEL

void CommitContactL(const CContactItem& aContact)
This method overwrites a locked contact item opened for editing.
aContact – the contact to be committed.

void DeleteContactL(TContactItemId aContactId)
void DeleteContactsL(const CContactIdArray& aContactIds)
These methods delete one contact or a set of contacts. DeleteContactsL() should not be
used for single contacts and is most efficient for 16 contacts or more. Contacts may be deleted
in a different order from the array of IDs.
aContactId or aContactIds – the contact item identifier(s) to be deleted.

Generic Contact Card Methods

TInt CountL()
This method returns the number of items in the database, excluding system templates and
deleted items.

TContactItemId AddNewContactL(CContactItem& aContact)
This method adds a new contact item to the database.
aContact – the contact item to be added.

Group Methods

inline TInt GroupCount() const
This method returns the number of contact group items in the database.

CContactItem* CreateContactGroupL(TBool aInTransaction =EFalse)
CContactItem* CreateContactGroupLC(TBool aInTransaction =EFalse)
CContactItem* CreateContactGroupL(const TDesC& aGroupLabel,

TBool aInTransaction =EFalse)
CContactItem* CreateContactGroupLC(const TDesC& aGroupLabel,

TBool aInTransaction =EFalse)
These methods create a new, empty contact group and add it to the database. If the group
label is not specified then a default label ‘Group Label’ is used.
aGroupLabel – the label to be used for the group.
aInTransaction – this argument should be ignored.
returns – a new contact group item. The caller takes ownership of the item.

CContactIdArray* GetGroupIdListL() const
This method returns an array containing the identifiers of all group items in the database. The
caller takes ownership of the array. If there are no groups in the database then a NULL pointer
is returned rather than a zero-length array.

void AddContactToGroupL(TContactItemId aItemId,
TContactItemId aGroupId)

void AddContactToGroupL(CContactItem& aItem, CContactItem& aGroup)
void AddContactToGroupL(TContactItemId aItemId,

TContactItemId aGroupId,TBool aInTransaction)

CONTACTS MODEL API 235

These methods add a contact item to a group.
aItem or aItemId – the contact item to be added to the group.
aGroup or aGroupId – the group to receive the item.
aInTransaction – this argument should be ignored.

void RemoveContactFromGroupL(CContactItem& aItem,
CContactItem& aGroup)

void RemoveContactFromGroupL(TContactItemId aItemId,
TContactItemId aGroupId)

These methods remove a contact item from a group.
aItem or aItemId – the contact item to be removed from the group.
aGroup or aGroupId – the group to lose the item.

Own Card Methods

CContactItem* CreateOwnCardLC()
CContactItem* CreateOwnCardL()
These methods create a new contact card and make it the own card.

TContactItemId OwnCardId() const
This method returns the identifier of the own card – returns KNullContactId if no own
card has been set.

void SetOwnCardL(const CContactItem& aContact)
This method sets a contact item which already exists to be the own card. The item can be of
any contact item type.
aContact – the contact item to be set as the own card.

Template Methods

inline TInt TemplateCount() const
This method returns the number of template items, not including the system template, in the
database.

CContactIdArray* GetCardTemplateIdListL() const
This method returns an array containing the identifiers of all template items (except for the
system template) in the database. The caller takes ownership of the array. If there are no
nonsystem templates in the database then a NULL pointer is returned rather than
a zero-length array.

CContactItem* CreateContactCardTemplateL(const TDesC&
aTemplateLabel,TBool aInTransaction =EFalse)
CContactItem* CreateContactCardTemplateLC(const TDesC&
aTemplateLabel,TBool aInTransaction =EFalse)
CContactItem* CreateContactCardTemplateL(const CContactItem*
aTemplate, const TDesC& aTemplateLabel,TBool aInTransaction
=EFalse)
CContactItem* CreateContactCardTemplateLC(const CContactItem*
aTemplate, const TDesC& aTemplateLabel,TBool aInTransaction
=EFalse)

236 USING THE CONTACTS MODEL

These methods create a new template. If the template is created based on an existing contact
item then the fields are based on that. Otherwise the fields are based on the system template.
The fields are always empty.
aTemplate – a contact item on which to base the fields.
aTemplateLabel – the label for the template.
aInTransaction – this argument should be ignored.

Class TSortPref
Defined in cntdb.h

This class specifies a field to sort the Contact Database by.

Constructors

inline TSortPref()
inline TSortPref(TFieldType aFieldType,TOrder aOrder=EAsc)
The default constructor has the order initialized to EAsc and the field type to KNullUid.
aFieldType – the field type for sorting.
aOrder – specifies whether the sort is to be ascending or descending.

Member Variables

TOrder iOrder – specifies whether the sort is to be ascending (EAsc) or descending
(EDesc).

TFieldType iFieldType – the first field matching this type will be sorted on.

11.6.2 Contact Item Classes

Class CContactItem
Defined in cntitem.h

The abstract base class for contact cards, templates and groups. All contact items are
identified by a contact identifier (TContactItemId), have a last modified date/time, and
own one or more fields (the field set). Contact items also have an access count and attributes
(e.g. hidden). Note that fields in a contact item also have attributes. Attribute values specified
in the contact item override those in the contained fields. The access count is a record of the
number of objects referencing a contact item. A contact item cannot be fully deleted until its
access count is zero.

CONTACTS MODEL API 237

Attribute Methods

virtual TUid Type() const
This virtual method returns the type of the contact item. This can be one of the following:

• KUidContactCard for a contact card
• KUidContactGroup for a contact group
• KUidContactTemplate for the system template
• KUidContactCardTemplate for a template
• KUidContactOwnCard for the own card

TContactItemId Id() const
This method returns the contact item identifier.

TTime LastModified() const
This method returns the date/time when the contact item was last modified.

void SetLastModified(const TTime& aLastModified)
This method sets the date/time when the contact item was last modified.

TBool IsHidden()
This method returns the item’s hidden attribute. Hidden means that the item is not displayed if
the view definition excludes hidden fields.

void SetHidden(TBool aHidden)
This method sets the item’s hidden attribute. Hidden means that the item is not displayed if
the view definition excludes hidden fields.
aHidden – ETrue if the item is to be hidden.

inline TBool IsDeletable()
This method tests whether the contact item is deletable. This is true if the contact item’s
access count is zero.

TBool IsDeleted() const
This method returns the deleted attribute. If the attribute is set, this means that an attempt has
been made to delete the contact item, but because the item’s access count is greater than
zero, its data persists and the item is just marked as deleted.

void SetDeleted(TBool aDeleted)
Sets the value of the contact item’s deleted attribute. If the attribute is set, this means that an
attempt has been made to delete the contact item, but because the item’s access count is
greater than zero, its data persists and the item is just marked as deleted.
aDeleted – ETrue if the item is set as deleted.

238 USING THE CONTACTS MODEL

TContactItemId TemplateRefId() const
This method returns the ID of the template on which this item is based or KNullContactId
if the item is not based on a template.

void SetTemplateRefId(TContactItemId aUid)
This method sets the template on which this contact item is based.
aUid – the identifier of the template.

inline TInt AccessCount() const
This method returns the item’s current access count.

Field Methods

CContactItemFieldSet& CardFields() const
This method returns a reference to the item’s field set.

void AddFieldL(CContactItemField& aField)
This method appends a new field to the end of the item’s set of fields. The item takes
ownership of the field.
aField – the field to be added to the field set.

void InsertFieldL(CContactItemField& aField,TInt aFieldPos)
This method inserts a new field into the item’s set of fields at the specified position.
aField – the field to be inserted.
aFieldPos – the position at which to insert the field. A value of zero inserts the field at

the start of the set. A value equal to or greater than the number of fields causes the field
to be appended to the set.

void RemoveField(TInt aFieldPos)
This method removes a field from the item’s set. This method generates a panic if the indexed
field does not exist.
aFieldPos – the position in the field set of the field to be deleted.

void UpdateFieldSet(CContactItemFieldSet* aNewFieldSet)
This method replaces the item’s complete set of fields with a new set.
aNewFieldSet – the new set of fields for the item.

Class CContactItemPlusGroup – public CContactItem
Defined in cntitem.h

This is the abstract base class for CContactGroup, CContactCard and
CContactOwnCard.
The purpose of this class is to avoid duplication of group functionality in its derived classes.

CONTACTS MODEL API 239

Public Methods

const CContactIdArray* GroupsJoined() const
This method returns a pointer to an array containing the identifiers of the groups of which the
item is a member. The method returns NULL if the item does not belong to any groups.

CContactIdArray* GroupsJoinedLC() const
This method returns an array containing the identifiers of the groups of which the item is a
member. The method returns an empty array if the item does not belong to any groups. The
caller takes ownership of the array.

Class CContactCard – public CContactItemPlusGroup
Defined in cntitem.h

This class is a concrete implementation of CContactItemPlusGroup that represents a
contact card. Apart from implementing virtual functions, it only adds creation methods.

Public Methods

static CContactCard* NewL()
static CContactCard* NewLC()
These methods create a new contact card using the system template.

static CContactCard* NewL(const CContactItem *aTemplate)
static CContactCard* NewLC(const CContactItem *aTemplate)
These methods create a new contact card based on a template.
aTemplate – the template to be used to create the contact card.

Class CContactOwnCard – public CContactItemPlusGroup
Defined in cntitem.h

This class is a concrete implementation of CContactItemPlusGroup that represents a
contact card which contains information about the device’s owner. Apart from implementing
virtual functions, it only adds creation methods.

Public Methods

static CContactOwnCard * NewL()
static CContactOwnCard * NewLC()
These methods create a new contact card using the system template.

240 USING THE CONTACTS MODEL

static CContactOwnCard * NewL(const CContactItem *aTemplate)
static CContactOwnCard * NewLC(const CContactItem *aTemplate)
These methods create a new contact card based on a template.
aTemplate – the template to be used to create the contact card.

Class CContactCardTemplate – public CContactItem
Defined in cntitem.h

This class is a concrete implementation of CContactItem that represents a contact card
template. In addition to implementing virtual functions, it implements methods to manage the
template label.

Public Methods

TPtrC GetTemplateLabelL()
This method returns the label for a contact card template.

void SetTemplateLabelL(const TDesC& aLabel)
This method sets the label for a contact card template. The label is initialized when the
template is created. The template label is stored in a text field in the template. This field has a
unique content type mapping of KUidContactFieldTemplateLabel. By default, this
field is the first field in the field set; it must not be moved from this position.

Class CContactGroup – public CContactItemPlusGroup
Defined in cntitem.h

This class is a concrete implementation of CContactItemPlusGroup that represents a
contact card group. In addition to implementing virtual functions, it implements methods to
manage the group label and access the list of included contact items.

Public Methods

static CContactGroup* NewL()
static CContactGroup* NewLC()
These methods create a new contact group.

Contained Items Methods

const CContactIdArray* ItemsContained() const
This method returns a constant list of the items contained by the group.

CONTACTS MODEL API 241

CContactIdArray* ItemsContainedLC() const
This method returns a list of the items contained by the group and leaves it on the cleanup
stack.

TBool ContainsItem(TContactItemId aContactId)
This method checks whether a contact item is contained in the group.
aContactId – the contact item identifier to check.
returns – ETrue if the item is contained in the group.

Group Label Methods

TBool HasItemLabelField()
This method tests whether the group has a label field (of type
KUidContactFieldTemplateLabel).

TPtrC GetGroupLabelL()
This method returns the group label (if any).

void SetGroupLabelL(const TDesC& aLabel)
This method sets the group label.
aLabel – the new group label to set.

Class CContactIdArray – public CBase
Defined in cntdef.h

This class is an array of contact item IDs (TContactItemIds). It owns a
CArrayFixFlat<TContactItemId>. It is commonly returned by various methods.

Creation Methods

static CContactIdArray* NewL()
static CContactIdArray* NewLC()
These methods create a new empty array.

static CContactIdArray* NewL(const CContactIdArray* aArray)
static CContactIdArray* NewLC(const CContactIdArray* aArray)
These methods create a new array by copying an existing one.

Array Methods

inline TInt Count() const
This method returns the number of elements in the array.

inline const TContactItemId& operator[](TInt aIndex) const
inline TContactItemId& operator[](TInt aIndex)

242 USING THE CONTACTS MODEL

These operators allow indexed access to array elements.
aIndex – the array index.

TInt Find(TContactItemId aId) const
This method searches for a specific contact identifier in the array.
aId – the contact identifier to search for.
returns – the index of the contact if it is found, or KErrNotFound if not found.

inline void Reset()
This method removes all contact identifiers from the array.

void AddL(TContactItemId aId)
This method appends a contact identifier to the array.
aId – the contact identifier to be added.

inline void InsertL(TInt aIndex,TContactItemId aId)
This method inserts a contact identifier at a specific point in the array. If the index is not valid
then a panic occurs.
aIndex – the position at which the identifier should be inserted.
aId – the contact identifier to be inserted.

void MoveL(TInt aOldIndex,TInt aNewIndex)
This method moves an identifier from one location in the array to another. If either index is
invalid then a panic occurs.
aOldIndex – the old position.
aNewIndex – the new position.

inline void Remove(TInt aIndex)
inline void Remove(TInt aIndex,TInt aCount)
These methods remove either a single entry or a block of entries. If the index or number of
entries is invalid then the method panics.
aIndex – the index (or starting index) to delete.
aCount – the number of entries to delete.

void ReverseOrder()
This method reverses the contents of the array.

11.6.3 Contact Field Classes

Class CContactItemField – public CBase
From cntfield.h

This class represents a field in a contact item. Each field has a content type, attributes, a label
and field data. Most of the attributes are specialized or are accessed by other routes and so
are not covered here.

CONTACTS MODEL API 243

Creation Methods

static CContactItemField* NewLC()
This method creates a new field. Its storage type and field type are unset.

static CContactItemField* NewL(TStorageType aType)
static CContactItemField* NewLC(TStorageType aType)
These methods create a new field and set the storage type.
aType – the storage type for the new field.

static CContactItemField* NewL(TStorageType aType,
TFieldType aFieldType)

static CContactItemField* NewLC(TStorageType aType,
TFieldType aFieldType)

These methods create a new field and set the storage type and field type.
aType – the storage type for the new field.
aFieldType – the field type for the new field.

static CContactItemField* NewL(TStorageType aType,
const CContentType &aContentType)

static CContactItemField* NewLC(TStorageType aType,
const CContentType &aContentType)

These methods create a new field and set the storage type and content type.
aType – the storage type for the new field.
aContentType – the content type for the new field.

static CContactItemField* NewL(const CContactItemField
&aField)

static CContactItemField* NewLC(const CContactItemField
&aField)

These methods create a new field based on an existing one. All details are copied from the
existing field.
aField – the contact field on which to base the new one.

Attribute Methods

TInt Id() const
This method returns the field’s identifier.

inline TBool IsReadOnly() const
This method returns ETrue if the field is read-only.

inline TBool UserAddedField() const
This method returns ETrue if the field has the user-added attribute set.

244 USING THE CONTACTS MODEL

Field Type Methods

const CContentType &ContentType() const
This method returns the content type of the field.

void AddFieldTypeL(TFieldType aFieldType)
This method appends a field type to the field’s set.
aFieldType – the field type to be added.

void RemoveFieldType(TFieldType aFieldType)
This method removes a field type from the field’s set.
aFieldType – the field type to be removed.

Storage Methods

TStorageType StorageType() const
This method returns the field’s storage type. The caller should use this method to determine
the type of the field’s storage before accessing it using one of the type-specific methods.

CContactTextField * TextStorage() const
This method returns a pointer to the field’s storage as a CContactTextField*. If the field
storage type is not KStorageTypeText, this function raises a panic.

CContactDateField * DateTimeStorage() const
This method returns a pointer to the field’s storage as a CContactDateField*. If the field
storage type is not KStorageTypeDateTime, this function raises a panic.

CContactStoreField * StoreStorage() const
This method returns a pointer to the field’s storage as a CContactStoreField*. This
indicates field data stored in a descriptor or descriptor array. If the field storage type is not
KStorageTypeStore, this function raises a panic.

void ResetStore()
This method resets the field storage. The field’s store is deleted, then reallocated.

Label Methods

TPtrC Label() const
This method returns the field label. If no label is set then its length is zero.

TBool LabelUnspecified() const
This method returns ETrue if the label has been specified either in a template or directly.

CONTACTS MODEL API 245

void SetLabelL(const TDesC& aLabel)
This method sets the field label. The new label is set using TDesC::AllocL to copy the
value from the supplied descriptor and so can leave.
aLabel – the new label for the field.

void SetLabel(HBufC* aLabel)
This method sets the field label. The field takes ownership of the HBufC and so the method
cannot leave.
aLabel – the new label for the field.

static TBool IsValidLabel(const TDesC& aLabel,TInt& aInvalidPos)
This method tests whether a field label is valid. The label is invalid if it contains any of the
following characters:
[] (left or right square bracket)
= (equals sign)
. (dot)
: (colon)
, (comma)
aLabel – the label text to be checked.
aInvalidPos – the position in the label that contains the first invalid character (if any).
returns – ETrue if the label contains any invalid characters.

Class CContentType – public CBase
From cntfield.h

The CContentType class represents the content type for a contact item field. It is a set of
field types, as each field can represent or be mapped to more than one field type.
CContentType owns an array of TUid values for the field types. The UIDs are defined in
cntdef.h. Each field is uniquely identified by the combination of UIDs contained in the
content type. In addition to the field types, it is possible for a field to have an extra UID,
which is the vCard mapping that identifies the vCard property to which the field maps.

Creation Methods

static CContentType* NewL()
This method creates a default content type. It has no field types and the mapping is set to
KNullUid.

static CContentType* NewL(TFieldType aFieldType,
TUid aMapping=KNullUid)

246 USING THE CONTACTS MODEL

This method creates a new content type with an initial field type and, optionally, a mapping.
aFieldType – the initial field type for the new CContentType.
aMapping – the field mapping.

static CContentType* NewL(const CContentType &aContentType)
This method creates a new CContentType as a copy of an existing one.
aContentType – the existing value to copy.

Field Type Methods

TInt FieldTypeCount() const
This method returns the number of field types owned by the CContentType.

TFieldType FieldType(TInt aIndex) const
This method returns the indexed field type.
aIndex – the position of the field type required. If this index is negative or greater than or

equal to the number of field types then the method raises a panic.

TBool ContainsFieldType(TFieldType aFieldType) const
This method returns ETrue if the CContentType owns the specified field type, either as a
field type or as the mapping.
aFieldType – the field type being checked for.

TBool operator ==(const CContentType &aType) const
This operator allows two CContentType objects to be compared. The two are considered to
be equal if they have the same mapping and the same set of field types, although they do not
need to be in the same order.

void AddFieldTypeL(TFieldType aFieldType)
This method appends a field type to the set of field types owned by the CContentType.
aFieldType – the field type to be added.

void RemoveFieldType(TFieldType aFieldType)
This method removes a field type from the set owned by the CContentType.
aFieldType – the field type to be removed.

Mapping Methods

TUid Mapping() const
This method returns the vCard mapping for the CContentType.

void SetMapping(TUid aMapping)
This method sets the vCard mapping for the CContentType.
aMapping – the vCard mapping to be set.

CONTACTS MODEL API 247

typedef TUid TFieldType

TFieldType is a UID which identifies a contact item field’s type. The possible values are
defined as UIDs in cntdef.h.

Class CContactItemFieldDef – public CArrayFixFlat<TUid>
Defined in cntfield.h

This class represents an array of field types. It is used to specify a subset of fields when
searching. CContactItemFieldDef is derived from CArrayFixFlat<TUid> and adds
no methods apart from a constructor.

Constructor

inline CContactItemFieldDef() : CArrayFixFlat<TUid>(8)
This constructor creates the CContactItemFieldDef object, with an array granularity of 8.

Class TStorageType
Defined in cntdef.h

This class is a TUInt that represents the storage type of a field. The allowed values are
defined in cntdef.hrh:
• KStorageTypeText (used by CContactTextFields)
• KStorageTypeStore (used by CContactStoreFields)
• KStorageTypeContactItemId (used by CContactAgentFields)
• KStorageTypeDateTime (used by CContactDateFields)

Note that numeric fields are not supported. Numbers (e.g. telephone numbers) are stored in
the database using text fields.

Class CContactFieldStorage
Defined in cntfldst.h

This abstract class is the base class for the different types of field classes.

Member Methods

virtual TBool IsFull() const=0
This method returns ETrue if the field contains some data, EFalse otherwise.

248 USING THE CONTACTS MODEL

Class CContactTextField – public CContactFieldStorage
Defined in cntfldst.h

This class provides access to a text storage field. It can be accessed by using the
TextStorage() method of CContactItem.

Public Methods

TPtrC Text() const
This method returns a pointer to a copy of the text stored in the field.

TPtrC StandardTextLC()
This method takes a copy of the text stored in the field and converts it from Symbian editable
text into standard text.

void SetTextL(const TDesC& aText)
This method creates a new descriptor (freeing any previously stored text) and copies the
supplied text into it.
aText – the text to be copied into the field.

void SetText(HBufC *aHbuf)
This method takes ownership of the supplied descriptor as the contents of the text field.
aHbuf – the descriptor to replace any existing text.

void SetTextArray(MDesCArray* anArray)
This method sets the text which is stored in the field from a descriptor array. Each descriptor
in the array is appended to the text field storage. They are separated by paragraph delimiters
(CEditableText::EParagraphDelimiter). Any existing text is replaced.
anArray – an array of pointers to descriptors to use to set the field text.

void SetStandardTextL(const TDesC& aText)
This method converts a text string from plain text into Symbian editable text, and sets this as
the text which is stored in the field.
aText – the text to store in the field.

void SetStandardTextArray(MDesCArray* anArray)
This method converts an array of text strings from plain text into Symbian editable text,
appends them to a single descriptor, separating them with a new line character, and sets this
as the text which is stored in the field. Any existing field text is replaced.
anArray – an array of pointers to descriptors to use to set the field text.

CONTACTS MODEL API 249

Class CContactDateField – public CContactFieldStorage
Defined in cntfldst.h

This class provides access to a date storage field. It can be accessed by using the
DateTimeStorage() method of CContactItem.

Public Methods

TTime Time() const
This method returns the date/time value from the field.

void SetTime(TTime aTime)
This method sets the date/time stored in the field from a TTime value.
aTime – the new date/time value for the field.

void SetTime(TDateTime aDateTime)
This method sets the date/time stored in the field from a TDateTime value.
aDateTime – the new date/time value for the field.

Class CContactStoreField – public CContactFieldStorage
Defined in cntfldst.h

This class provides access to a binary data storage field. It can be accessed by using the
StoreStorage() method of CContactItem.

Public Methods

void SetThingL(const TDesC8& aDes)
This method sets the store field contents.
aDes – the data to be stored.

HBufC8* Thing() const
This method returns a pointer to the binary data stored in the field.

11.6.4 Contact Views

Class CContactItemViewDef
Defined in cntdb.h

This class defines a view definition. A view definition can be used when reading or opening a
contact item. A view definition includes a set of field types, a use flag that indicates whether
the specified field types are to be included in or excluded from contact items, and a mode
that indicates whether fields with the hidden attribute should be included or excluded.

250 USING THE CONTACTS MODEL

Creation Methods

static CContactItemViewDef* NewL(TUse aUse, TMode aMode)
static CContactItemViewDef* NewLC(TUse aUse, TMode aMode)
These methods create a new view definition with the specified use and mode.
aUse – the value of the use attribute.
aMode – the value of the mode attribute.

Field Type Methods

inline TInt Count() const
This method returns the number of field types in the view definition.

inline TUid operator[](TInt aIndex) const
This method accesses the specified field from the view definition.
aIndex – the array index for the required field type. If this value is negative or greater than

or equal to the number of entries then this method will cause a panic.

TInt Find(TFieldType aFieldType) const
This method searches the set of field types for one that matches the specified field type.
aFieldType – the field type being searched for.
returns – the index of the field type if found, otherwise KErrNotFound.

TInt Find(const CContentType &aContentType) const
This method searches the set of field types for any field type that matches the content type.
aContentType – the content type containing the set of field types being searched for.
returns – the index of the first matching field type if found, otherwise KErrNotFound.

TBool MatchesAll() const
This method tests whether the view definition contains a field type with the value
KUidContactFieldMatchAll. If this is the case, all fields in the contact item are
retrieved, regardless of the other field types specified in the view definition.

inline void Reset()
This method deletes all field types from the view definition’s set of field types.

void AddL(TFieldType aFieldType)
This method appends a field type to the view definition’s set of field types.
aFieldType – the new field type to be added to the set.

CONTACTS MODEL API 251

void Remove(TFieldType aFieldType)
void Remove(TInt aIndex)
These methods delete an entry from the set of field types, either by index position or by field
type. If the specified entry is not present in the set of field types then these methods cause a
panic.
aFieldType – the field type to be removed from the set.
aIndex – the position of the field type to be removed from the set.

Use and Mode Methods

inline TUse Use() const
This method returns the view definition’s use attribute. This will be either EIncludeFields
(where fields in the view are included) or EMaskFields (where fields in the view are
excluded).

inline void SetUse(TUse aUse)
This method sets the view definition’s use attribute.
aUse – the use attribute to set.

inline TMode Mode() const
This method returns the view definition’s mode. This will be either
EIncludeHiddenFields (in which case hidden fields will be included in the view) or
EMaskHiddenFields (in which case hidden fields will be excluded).

inline void SetMode(TMode aMode)
This method sets the view definition’s mode attribute.
aMode – the mode attribute to set.

Matching Methods

TBool Contains(const CContactItem& aItem)
This method tests whether a contact item will be included in the view, i.e. whether any of its
fields match those in the view definition (taking account of the use and mode attributes).
aItem – the contact item to be tested.
returns – ETrue if the contact item would be included in the view.

Class RContactViewSortOrder
Defined in cntviewbase.h

This class specifies the sort order for a contact view. It is implemented as an array of
TFieldType UIDs, which define the fields whose contents are used to sort on, and their
order.

252 USING THE CONTACTS MODEL

Creation and Destruction Methods

RContactViewSortOrder()
This is the default constructor that creates an empty sort order.

void CopyL(const RContactViewSortOrder& aSortOrder)
This method discards any existing field type data and replaces it with that from the specified
sort order.
aSortOrder – the sort order whose field types are to be used.

void Close()
This method closes the sort order and frees up all space allocated to it.

Field Type Methods

inline TInt Count() const
This method returns the number of field types used by the sort order.

inline void AppendL(TFieldType aField)
This method appends a field type to the set owned by the sort order.
aField – the field type to be appended.

inline TFieldType operator[](TInt aIndex) const
This method returns the field type at the specified index.
aIndex – the desired index.

Enumerated Type TContactViewPreferences
This is used to specify the types of contact item that should be sorted and included in the
view, and the behavior for items that cannot be sorted because they do not have content in
any of the fields specified in the view’s sort order.
The default behavior is to include contact cards only and to sort contact cards without
content in any of the sort order fields using the first available field containing any text.

• EContactsOnly (= 0×00000000) – Only contact cards (of type KUidContactCard
or KUidContactOwnCard) are included in the view. This is the default.

• EGroupsOnly (= 0×00000001) – Only contact groups (of type KUidContactGroup)
are included in the view.

• EContactAndGroups (= 0×00000002) – Contact groups and contact cards (of type
KUidContactGroup, KUidContactCard or KUidContactOwnCard) are included in
the view.

• EIgnoreUnSorted (= 0×00000004) – Excludes contact items from the view which
don’t have content in any of the fields specified in the sort order.

CONTACTS MODEL API 253

• EUnSortedAtBeginning (= 0×00000008) – Includes contacts in the view which
don’t have content in any of the fields specified in the sort order. These contacts are
placed in an unsorted contact list which is located before the sorted list.

• EUnSortedAtEnd (= 0×00000010) – Includes contacts in the view which don’t have
content in any of the fields specified in the sort order. These contacts are placed in an
unsorted contact list which is located after the sorted list.

• ESingleWhiteSpaceIsEmptyField (= 0×00000020) – Fields containing a single
white space only are treated as empty, and therefore unsortable.

• EICCEntriesOnly (= 0×00000040) – Only ICC entries (of type
KUidContactICCEntry) are included in the view.

• EICCEntriesAndContacts (= 0×00000080) – Only contact cards and ICC entries
(of type KUidContactCard, KUidContactOwnCard or KUidContactICCEntry) are
included in the view.

Enumerated Type TContactViewEvent::TEventType
This is used to specify the type of event to a view observer. Some of these event types cannot
apply to a local view. Some of the event types indicate that further information is available in
the relevant TContactViewEvent object.

• EUnavailable – The observed view’s state has changed from EReady to either
ENotReady or EInitializing, so is not available for use.

• EReady – The observed view’s state has changed from ENotReady or EInitializing
to EReady so is available for use.

• ESortOrderChanged – The observed view’s sort order has changed, so observer views
need to update themselves.

• ESortError – An error occurred when sorting the observed view or when appending an
observer to its observer array. The error code is provided in iInt.

• EServerError – An error occurred in the contacts server. The error code is provided in
iInt.

• EIndexingError – An error occurred when setting the range for a
CContactSubView. The error code is provided in iInt.

• EItemAdded – An item has been added to the observed view. The identifier of the added
item is provided in iContactId, and the index into the underlying view of the added
item is provided in iInt.

• EItemRemoved – An item has been removed from the observed view. The identifier of
the removed item is provided in iContactId, and the index into the underlying view of
the item is provided in iInt.

• EGroupChanged – A change has occurred in a contact group, for instance a contact
item has been moved into or out of the group. The identifier of the group affected is
provided in iContactId.

254 USING THE CONTACTS MODEL

Class TContactViewEvent

This class contains information on a contact view event. It is passed to a contact view
observer – see MContactViewObserver::HandleContactViewEvent().

Member Variables

TEventType iEventType – the type of event.

TInt iInt – the error code (where relevant) or the index of the contact item added to or
removed from the underlying view.

TContactItemId iContactId – the identifier of the contact item or group that has been
added to or removed from the view.

Class MContactViewObserver
Defined in cntviewbase.h

This mixin has a single method that is called when events occur on a contact view.

virtual void HandleContactViewEvent(const CContactViewBase&
aView, const TContactViewEvent& aEvent) = 0

This method is called when an event occurs on the view that is being observed.
aView – the view on which the event has occurred (the observer could be observing

multiple views).
aEvent – the event that has occurred.

Class CContactViewBase
Defined in cntviewbase.h

This class is the base class for contact views. It includes the Close() method that must be
used before a view is deleted.

Member Methods

TBool Close(const MContactViewObserver& aObserver)
This method removes an observer from the view’s set of observers. Any outstanding
notifications for the observer are first canceled.
aObserver – the observer to be removed.
returns – ETrue if the view’s set of observers is now empty, EFalse if the observer is not in

the view’s set of observers or if the set is not empty.

CONTACTS MODEL API 255

Class CContactLocalView – public CContactViewBase , public
MContactDbObserver
Defined in cntviewbase.h

This class holds a view for one client. The data associated with a local view is allocated
within the client’s memory space; CContactRemoteView should be used in preference if
the view is likely to be shared between multiple clients. It is kept up to date by receiving
change events from the underlying CContactDatabase object which it observes. The view
preferences and sort order are specified on construction.

Construction Method

static CContactLocalView* NewL(MContactViewObserver&
aObserver,

const CContactDatabase& aDb,
const RContactViewSortOrder& aSortOrder,
TContactViewPreferences aContactTypes)

This method creates a view on a contact database. The view is created asynchronously and is
not ready until the observer has reported.
aObserver – an observer that receives notifications when this view is ready for use and

when changes take place in it. The observer receives a
TContactViewEvent::EReady event when the view is ready. An attempt to use the
view before this notification causes a panic.

aDb – the underlying database that contains the contact items. The view observes the
database, so that it handles change events sent from the database.

aSortOrder – specifies the fields to use to sort the items in the view.
aContactTypes – specifies which types of contact items should be included in the view

and the behavior for items that do not have content in any of the fields specified in the
sort order.

Properties Methods

const RContactViewSortOrder& SortOrder() const
const RContactViewSortOrder& SortOrderL() const
These methods provide access to the view’s sort order, as set during construction. Contrary to
the name, SortOrderL() cannot leave.

TContactViewPreferences ContactViewPreferences()
This method returns the contact view preferences as set during construction.

Contact Item Access Methods

TInt CountL() const
This method returns the number of contact items in the view.

256 USING THE CONTACTS MODEL

TContactItemId AtL(TInt aIndex) const
This method returns the identifier of the contact item at the specified position in the view’s
array of contact items.
aIndex – the desired position.

const CViewContact& ContactAtL(TInt aIndex) const
This method returns data on the contact item at the specified position in the view’s array of
contact items.
aIndex – the desired position.

TInt FindL(TContactItemId aId) const
This method searches for the contact item with the specified identifier in the view’s array of
contact items.
aId – the identifier of the desired contact item.
returns – the index of the contact item in the view’s array of contact items, or

KErrNotFound.

11.7 A Contacts Connectivity Service

We now need to plan the functions that we want our Contacts connectivity
service to support. We are not trying to compete directly with PIM
synchronization software; what we aim to do is to provide a window on
the Contacts data from the PC.

This code builds on custom servers or socket servers and the routines
to pack or unpack data used in previous chapters. This code includes
some quite sophisticated possibilities, even though we actually only use
a subset of these when we build a GUI PC application.

11.7.1 Protocol Description

Some of the functions that we are going to require are relatively obvious.
We will want to fetch all contacts from the mobile phone for display on
the PC, we will want to edit or delete existing contacts and to create new
contacts, and we will want to manage groups. In addition, there are some
functions that we will find valuable that were not obvious at first. You can
try to brainstorm these functions, but I have found that prototyping works
well. When I started to create the software presented later in this chapter,
I had not thought of some of these functions, but they soon made their
value clear. Therefore, we need to be open to changes, but remember to
document them!

The extra features were mostly optimizations to avoid having to copy
all the contacts data to the PC in order to be able to display it. If the
user has a relatively small address book then this may be viable, but

A CONTACTS CONNECTIVITY SERVICE 257

a corporate user may have several hundred addresses or even more. If
our application spends several minutes transferring contacts whenever it
starts up then it will not be well received. If we consider that we could
transfer only a subset of contacts data (first and last name, for example)
initially and then retrieve full information when required, we can see that
the ability to filter the fields returned will be useful. We can then also add
access to the search functions. If we were going to transfer all the data to
the PC then the search could be more effectively carried out on the PC.

I have chosen not to edit or create new templates, but simply to use
the system template. Similarly, I have not created new fields. If you are
creating a specialized application then you can add these features.

This then allows us to propose a set of commands for our protocol and
a set of responses. The following defines the message operation codes.

enum TRCntCmdCode
{
ERCntCmdNone = 100, // Reserved for internal usage
ERCntCmdQueryVersion = 101, // Query version
ERCntCmdVersionReply = 102, // Version reply
ERCntCmdOpenDatabase = 103, // Open Contacts Database
ERCntCmdOpenDatabaseReply = 104, // Open database reply

ERCntCmdFetchAllContacts = 111, // Request for all contacts
ERCntCmdFindContacts = 112, // Request to find contacts
ERCntCmdFetchMoreContacts = 113, // Request for more contacts
ERCntCmdContactsReply = 114, // Reply containing contacts
ERCntCmdFetchContactsCount = 115, // How many contacts in the db
ERCntCmdContactsCountReply = 116, // Reply containing number of

// contacts
ERCntCmdFetchContactSet = 117, // fetch a set of contacts by ID

ERCntCmdFetchAllGroups = 121, // Request for all groups
ERCntCmdFetchMoreGroups = 122, // Request for more groups
ERCntCmdGroupsReply = 123, // Reply containing groups
ERCntCmdFetchContactsInGroup = 124, // Fetch list of contacts

// in a group
ERCntCmdContactsInGroupReply = 125, // Reply containing contacts

// in a group

ERCntCmdDeleteContact = 131, // Delete a contact
ERCntCmdDeleteGroup = 132, // Delete a group
ERCntCmdDeleteReply = 133, // Reply after deletion

ERCntCmdFetchTemplateFieldInfo = 140, // Fetch default template data
ERCntCmdTemplateFieldInfoReply = 141, // Data on default template

// fields
ERCntCmdFetchOwnCardId = 142, // Fetch the ID of the owners card
ERCntCmdOwnCardIdReply = 143, // Reply with the own card ID
ERCntCmdSetOwnCardId = 144, // Set ID of own card
ERCntCmdSetOwnCardIdReply = 145, // Reply to set own card ID

ERCntCmdCreateContact = 150, // Create a new contact card
ERCntCmdCreateContactReply = 151, // Reply after contact creation
ERCntCmdCreateGroup = 152, // Create a new contact group

258 USING THE CONTACTS MODEL

ERCntCmdCreateGroupReply = 153, // Reply after group creation

ERCntCmdEditContact = 160, // Edit a contact card data
ERCntCmdEditContactReply = 161, // Reply after editing a contact card
ERCntCmdEditGroup = 162, // Edit a contact group
ERCntCmdEditGroupReply = 163, // Reply after editing a group
ERCntCmdEditContactInGroup = 164, // Add to or delete a card

// from a group
ERCntCmdEditContactInGroupReply = 165, // Reply after editing a card

// in a group

ERCntCmdError = 170 // An error has occurred
};

As with the SMS service, some of the commands require no specific
parameters. Requesting all contacts or groups, or remaining contacts or
groups, are complete commands without any further information.

Other commands require a single identifier (a 32-bit integer) or a set of
identifiers. Deleting a contact or group, or requesting data on a contact
or set of contacts or a group, requires just a sequence of 32-bit identifiers.
Where we allow a set of values, we will normally use −1 as a terminating
‘magic number’.

Creating a view requires resources, so we will not support commands
to make frequent changes. Instead, we provide a command to open the
Contact Database and create a view at the same time. If we want to
change the view then we will need to close the connection and reopen
the database. The command to open the Contact Database includes a list
of field types to be used to set up the view; these field types will control
the sorting order of the view.

The other commands that require additional data are those to create or
edit a contact (this needs to include the field data) or group (this needs to
include the group label). For contact creation and editing, we support a
sequence of field identifiers followed by text data. I have avoided fields
with other types of data, both for the sake of simplicity (specialized types
need specialized handling) and because I believe that text data covers 99%
of normal usage. However, if you want to handle binary store fields, such as
those that store photographs, then you would need to extend the protocol.

The responses follow a similar pattern. Some of the responses need no
data beyond their reply code. The delete or edit responses fall into this
category. Other responses include one or more 32-bit identifiers, such as
the reply that lists the contacts in a group. The more complex responses
include those that list groups (an identifier and a label) and contacts (an
identifier and a sequence of fields). Each field definition includes the field
identifier, the field types, the storage type (even though we support only
text in this case I made some allowance for expansion) and the actual
field data.

A CONTACTS CONNECTIVITY SERVICE 259

Whenever we retrieve field data we provide a flag to select whether
we return all fields and label data or just a subset. This allows us to
retrieve bulk data rapidly or the whole of a smaller number of Contact
items.

Field types are handled as a sequence of field type identifiers terminated
with a −1 value and then a single mapping identifier.

Query Version Command

Field Type Meaning

Opcode Int32 ERCntCmdQueryVersion (=101)

Transaction ID Int32 PDU transaction identifier

Version Reply

Field Type Meaning

Opcode Int32 ERCntCmdVersionReply (=102)

Transaction ID Int32 PDU transaction identifier

Major Version Int32 Major version number

Minor Version Int32 Minor version number

Build Number Int32 Build number

Open Database Command

Field Type Meaning

Opcode Int32 ERCntCmdOpenDatabase (=103)

Transaction ID Int32 PDU transaction identifier

Field Type ID
This field may be
repeated

Int32 Field type identifier

. . .

Terminator Int32 Terminating value (=-1)

260 USING THE CONTACTS MODEL

Open Database Reply

Field Type Meaning

Opcode Int32 ERCntCmdOpenDatabaseReply (=104)

Transaction ID Int32 PDU transaction identifier

Fetch All Contacts Command

Field Type Meaning

Opcode Int32 ERCntCmdFetchAllContacts (=111)

Transaction ID Int32 PDU transaction identifier

Fetch all fields flag Int8 If non-zero then return all fields and labels

Fetch More Contacts Command

Field Type Meaning

Opcode Int32 ERCntCmdFetchMoreContacts (=113)

Transaction ID Int32 PDU transaction identifier

Fetch all fields flag Int8 If non-zero then return all fields and labels

Find Contacts Command

Field Type Meaning

Opcode Int32 ERCntCmdFindContacts (=112)

Transaction ID Int32 PDU transaction identifier

Search String Length Int16 Length in characters of search string

Search String Unicode
data

Search string

Fetch all fields flag Int8 If non-zero then return all fields and labels

A CONTACTS CONNECTIVITY SERVICE 261

Fetch Contacts Set Command

Field Type Meaning

Opcode Int32 ERCntCmdFetchContactSet (=117)

Transaction ID Int32 PDU transaction identifier

Fetch all fields flag Int8 If non-zero then return all fields and labels

Contact Identifier
This field may be
repeated

Int32 Index identifier of a required Contact Card

. . .

Terminator Int32 Terminating value (=-1)

Contacts Reply
This message contains information about zero or more contact cards and has three
degrees of nesting. The data for contact cards is repeated until it is terminated by data
with a contact card identifier of −1. The data for each contact card contains data on
zero or more fields. The data for fields is repeated until it is terminated by data with
a field identifier of −1. Each field has one or more field types which are terminated
by a field type of −1. The actual data for a field may be text or date/time data and is
indicated by a field storage type.

Field Type Meaning

Opcode Int32 ERCntCmdContactsReply (=114)

Transaction ID Int32 PDU transaction identifier

. . .

Contact Card ID Int32 The Contact Card Identifier

Field ID Int32 Field identifier

Field Type Int32 Field type identifier

262 USING THE CONTACTS MODEL

. . .

Terminating Field Type Int32 Terminating field type of −1

Mapping ID Int32 Mapping identifier for the field

. . .

Field Storage Type Int32 KStorageTypeText for a text field

Label Length Int16 The number of characters in the label (may be zero
if labels are not being returned)

Label Text Unicode
data

Label Text

Text Length Int16 The number of characters in the field text

Field Text Unicode
data

Field Text

. . .

Terminating Field ID Int32 Terminating field identifier of −1

. . .

Terminating Card ID Int32 Identifier of −1 to indicate no more card data

Fetch Contacts Count Command

Field Type Meaning

Opcode Int32 ERCntCmdFetchContactsCount (=115)

Transaction ID Int32 PDU transaction identifier

Contacts Count Reply

Field Type Meaning

Opcode Int32 ERCntCmdContactsCountReply (=116)

Transaction ID Int32 PDU transaction identifier

Contacts Count Int32 Count of Contact Cards in the database

A CONTACTS CONNECTIVITY SERVICE 263

Fetch All Groups Command

Field Type Meaning

Opcode Int32 ERCntCmdFetchAllGroups (=121)

Transaction ID Int32 PDU transaction identifier

Fetch More Groups Command

Field Type Meaning

Opcode Int32 ERCntCmdFetchMoreGroups (=122)

Transaction ID Int32 PDU transaction identifier

Groups Reply
This reply includes zero or more groups. Each group has its identifier and its label. The
list of contacts in the group is not included in the reply. The list of groups is terminated
by a group identifier of −1.

Field Type Meaning

Opcode Int32 ERCntCmdGroupsReply (=123)

Transaction ID Int32 PDU transaction identifier

. . .

Group ID Int32 Group identifier

Label Length Int16 Number of characters in the group label

Label Text Unicode
data

Group label text

. . .

Terminating Group ID Int32 −1 indicating no more groups

264 USING THE CONTACTS MODEL

Fetch Contacts in Group Command

Field Type Meaning

Opcode Int32 ERCntCmdFetchContactsInGroup (=124)

Transaction ID Int32 PDU transaction identifier

Group ID Int32 Group identifier

Fetch Contacts in Group Reply
This reply includes a list of Contact Items (not necessarily Contact Cards) in a group.
the list of contact items is terminated by a value of −1.

Field Type Meaning

Opcode Int32 ERCntCmdContactsInGroupReply (=125)

Transaction ID Int32 PDU transaction identifier

Group ID Int32 Identifier of the group concerned

. . .

Contact ID Int32 Identifier of a contact item in the group

. . .

Terminating ID Int32 −1 indicating no more contact items in the group

Delete Contact Command

Field Type Meaning

Opcode Int32 ERCntCmdDeleteContact (=131)

Transaction ID Int32 PDU transaction identifier

Contact ID Int32 Identifier of the contact to delete

A CONTACTS CONNECTIVITY SERVICE 265

Delete Group Command

Field Type Meaning

Opcode Int32 ERCntCmdDeleteGroup (=132)

Transaction ID Int32 PDU transaction identifier

Group ID Int32 Identifier of the group to delete

Delete Reply

Field Type Meaning

Opcode Int32 ERCntCmdDeleteReply (=133)

Transaction ID Int32 PDU transaction identifier

Fetch Template Field Info Command

Field Type Meaning

Opcode Int32 ERCntCmdFetchTemplateFieldInfo (=140)

Transaction ID Int32 PDU transaction identifier

Template Field Info Reply
This command contains the field information for the system template. Zero or more
fields are listed and the list is terminated with a field identifier of −1. For each field the
field types are listed and the list of field types is terminated with a value of −1. The list
of field types is followed by the label text for that field.

Field Type Meaning

Opcode Int32 ERCntCmdTemplateFieldInfoReply (=141)

Transaction ID Int32 PDU transaction identifier

Field ID Int32 Field identifier

. . .

Field Type Int32 Field Type

266 USING THE CONTACTS MODEL

. . .

Terminating Field Type Int32 −1 indicating no more field types

Mapping ID Int32 Mapping identifier for the field

Label Length Int16 Number of characters in the field label

Label Text Unicode
data

Field label text

. . .

Terminating Field
ID

Int32 −1 to indicate no more fields

Fetch Own Card ID Command

Field Type Meaning

Opcode Int32 ERCntCmdFetchOwncardId (=142)

Transaction ID Int32 PDU transaction identifier

Own Card ID Reply

Field Type Meaning

Opcode Int32 ERCntCmdOwnCardIdReply (=143)

Transaction ID Int32 PDU transaction identifier

Own Card ID Int32 Identifier of Own card

Set Own Card ID Command

Field Type Meaning

Opcode Int32 ERCntCmdSetOwnCardIdReply (=144)

Transaction ID Int32 PDU transaction identifier

Own Card ID Int32 Identifier of Own card

A CONTACTS CONNECTIVITY SERVICE 267

Set Own Card ID Reply

Field Type Meaning

Opcode Int32 ERCntSetCmdOwnCardIdReply (=145)

Transaction ID Int32 PDU transaction identifier

Create Contact Command
This command contains a list of field types and text sets. Because each field is identified
uniquely only by the full set of field types and the mapping, each field includes all of
this data. The list is terminated by an initial field type of −1.

Field Type Meaning

Opcode Int32 ERCntCmdCreateContact (=150)

Transaction ID Int32 PDU transaction identifier

. . .

Field Type Int32 Field type to have text set

. . .

Terminating Field Type Int32 −1 indicating no more field types for this field

Mapping ID Int32 Mapping identifier for the field

Field Text Length Int16 Length in characters of field text

Field Text Unicode
data

Text to set for field

. . .

Terminating Field Type Int32 −1 indicating no more fields

Create Contact Reply

Field Type Meaning

Opcode Int32 ERCntCreateContactReply (=151)

Transaction ID Int32 PDU transaction identifier

Contact ID Int32 Identifier of newly created contact

268 USING THE CONTACTS MODEL

Create Group Command
This command includes a list of contact items to include in the group. The list is
terminated by a contact item identifier of −1.

Field Type Meaning

Opcode Int32 ERCntCreateGroup (=152)

Transaction ID Int32 PDU transaction identifier

Label Length Int16 Length in characters of label text

Label Text Unicode
data

Text to set for label

. . .

Contact ID Int32 Contact ID to include in the group

. . .

Terminating Contact ID Int32 −1 indicating no more contact items

Create Group Reply

Field Type Meaning

Opcode Int32 ERCntCreateGroupReply (=153)

Transaction ID Int32 PDU transaction identifier

Group ID Int32 Identifier of newly created group

Edit Contact Command
This command contains a list of field type and text pairs. Because each field is identified
uniquely only by the full set of field types and the mapping, each field includes all of
this data. The list is terminated by an initial field type of −1.

Field Type Meaning

Opcode Int32 ERCntCmdEditContact (=160)

Transaction ID Int32 PDU transaction identifier

Contact ID Int32 Identifier of contact to edit

A CONTACTS CONNECTIVITY SERVICE 269

. . .

Field Type Int32 Field type to have text set

. . .

Terminating Field Type Int32 −1 indicating no more field types for this field

Mapping ID Int32 Mapping identifier for the field

Field Text Length Int16 Length in characters of field text

Field Text Unicode
data

Text to set for field

. . .

Terminating Field Type Int32 −1 indicating no more fields

Edit Contact Reply

Field Type Meaning

Opcode Int32 ERCntEditContactReply (=161)

Transaction ID Int32 PDU transaction identifier

Edit Group Command

Field Type Meaning

Opcode Int32 ERCntEditGroup (=162)

Transaction ID Int32 PDU transaction identifier

Group ID Int32 Identifier of group to edit

Label Length Int16 Length in characters of label text

Label Text Unicode
data

Text to set for label

270 USING THE CONTACTS MODEL

Edit Group Reply

Field Type Meaning

Opcode Int32 ERCntEditGroupReply (=163)

Transaction ID Int32 PDU transaction identifier

Edit Contact in Group Command
This command has a list of contact items to be included in or removed from a group.
The list is terminated by a value of −1.

Field Type Meaning

Opcode Int32 ERCntEditContactInGroup (=164)

Transaction ID Int32 PDU transaction identifier

Add Flag Int32 If zero the contacts are removed, otherwise they are
added

Group ID Int32 Identifier of group to edit

. . .

Contact ID Int32 Contact ID to include in or remove from the group

. . .

Terminating Contact ID Int32 −1 indicating no more contact items

Edit Contact in Group Reply

Field Type Meaning

Opcode Int32 ERCntEditContactInGroupReply (=165)

Transaction ID Int32 PDU transaction identifier

A CONTACTS CONNECTIVITY SERVICE 271

Error Reply

Field Type Meaning

Opcode Int32 ERCntCmdError (=170)

Transaction ID Int32 PDU transaction identifier

Error Code Int32 Symbian OS error code

11.7.2 Opening the Contacts Database

The code to open the Contacts database is very simple, but we will also
read a sequence of field types to create a view through which we will
access the Contact Model. We will also use the same set of fields when
we are asked for only a subset of fields.

void CRCntUtil::ConstructL(TConnBuff& aBuffer)
{
iCdb = CContactDatabase::OpenL();

. . .

iViewObs = new(ELeave) CRCntViewObs();

// Set up a view definition
// Start by reading field types - we will also
// use them for return fields
TInt fieldId = CConnPack::ReadInt32L(aBuffer);
TFieldType fieldType;
while(fieldId >= 0)

{
fieldType.iUid = fieldId;
iSortOrder.AppendL(fieldType);
fieldId = CConnPack::ReadInt32L(aBuffer);
}

iView = CContactLocalView::NewL(*iViewObs, *iCdb, iSortOrder,
(TContactViewPreferences)(EContactsOnly | EUnSortedAtEnd));

. . .
}

11.7.3 Retrieving Contact Card Data

The first function we will implement is to retrieve data from Contact
cards. If we want to only return a subset of fields then we use the stored
list of field types.

Here is a basic pair of methods to return a card’s identifier and all text
fields; other types of fields we ignore. Time fields would be simple to
return, and if we wanted to return store-based fields then we could simply
embed the data with a preceding length. For each field we return the
field identifier, field types, mapping, label and content. One optimization

272 USING THE CONTACTS MODEL

here is that we will not return text fields that are empty or contain only a
single space (because I found a lot of those).

If we are trying to save space by returning only some fields then we
check for fields containing one of the field types that we set in the view
sort order (this was a choice – we could have used a separate set of field
types). For convenience, we return field labels only if we are returning
all fields.

Note that we use the ReadMinimalContact() method to read a
Contact card here, since it is the most efficient method and we do not
need the additional data that it does not supply.

void CRCntUtil::GetOneCardL(TContactItemId aItemId,
TBool aFetchAllFields, TDes8 &aTempBuffer)

{
CContactItem* cItem = iCdb->ReadMinimalContactL(aItemId);
CleanupStack::PushL(cItem);
if(cItem->Type() != KUidContactCard)
{
CleanupStack::PopAndDestroy(cItem);
return;
}

CConnPack::WriteInt32L(cItem->Id(), aTempBuffer);

CContactItemFieldSet& cardFields = cItem->CardFields();
for(TInt fi = 0 ; fi < cardFields.Count() ; ++fi)
{

TBool returnField = EFalse;
if(aFetchAllFields)
{
returnField = ETrue;
}

else
{
for(TInt ti = 0 ; ti < iSortOrder.Count() ; ++ti)

{
if(cardFields[fi].ContentType().

ContainsFieldType(iSortOrder[ti]))
{
returnField = ETrue;
break;
}

}//endfor
}//endif

if(!returnField)
{
continue;
}

switch(cardFields[fi].StorageType())
{
case(KStorageTypeText):
{
TPtrC text = cardFields[fi].TextStorage()->Text();
if((text.Length() > 1) || (text[0] != ' '))

A CONTACTS CONNECTIVITY SERVICE 273

{
GetFieldInfo(cardFields[fi], aFetchAllFields, aTempBuffer);
CConnPack::WriteUNCDataL(text, aTempBuffer);
}

}
break;

default:
// Unknown type or one that we choose not to handle
break;

}//endswitch
}//endfor

CConnPack::WriteInt32L(-1, aTempBuffer); // terminating field ID

CleanupStack::PopAndDestroy(cItem);
}

void CRCntUtil::GetFieldInfo(CContactItemField &aField,
TBool aFetchAllFields, TDes8 &aTempBuffer)

{
CConnPack::WriteInt32L(aField.Id(), aTempBuffer);

TInt fieldTypeCount = aField.ContentType().FieldTypeCount();
for(TInt fi = 0 ; fi < fieldTypeCount ; ++fi)

{
TInt typeUid = aField.ContentType().FieldType(fi).iUid;
CConnPack::WriteInt32L(typeUid, aTempBuffer);
}

CConnPack::WriteInt32L(-1, aTempBuffer);
// Append the content type mapping
CConnPack::WriteInt32L(aField.ContentType().Mapping().iUid,

aTempBuffer);

TStorageType fieldStorageType = aField.StorageType();
CConnPack::WriteInt32L(fieldStorageType, aTempBuffer);
if(aFetchAllFields)

{
TPtrC label = aField.Label();
CConnPack::WriteUNCDataL(label, aTempBuffer);
}

else
{
CConnPack::WriteInt16L(0, aTempBuffer); // Zero length text
}

}

Having routines to return data for one card at a time, we can then
provide the routines to return all cards or a subset. We may have more
data than will fit in one buffer, so we need a separate command to retrieve
remaining data and we use a temporary buffer (because we cannot predict
in advance how large data for one Contact card will be). Because we
have several methods of returning Contacts (all cards, find cards and a
specific set), we use a common member array of card identifiers. Some
methods allow require us to add elements to this array individually, but
the FindLC method returns us a whole new array.

274 USING THE CONTACTS MODEL

void CRCntUtil::GetAllCardsL(TDes8 &aBuffer, TBool aFetchAllFields,
TDes8 &aTempBuffer)

{
iCardIdArray->Reset();

// Populate the card ID array from the view.
// We could use the view directly but it might change between calls
// from the client and, this way, we can use the same array for being
// set up in other routines
// Bear in mind that the view may not be ready, so check
if(iViewObs->IsReady())
{

TInt count = iView->CountL();
for(TInt i = 0 ; i < count ; ++i)
{
iCardIdArray->AddL(iView->AtL(i));
}

}

iArrayIndex = 0;
GetMoreCardsL(aBuffer, aFetchAllFields, aTempBuffer);
}

void CRCntUtil::FindCardsL(TDes &aFindText, TBool aFetchAllFields,
TDes8 &aBuffer, TDes8 &aTempBuffer)

{
if(iCardIdArray != NULL)

{
delete iCardIdArray;
iCardIdArray = NULL;
}

iCardIdArray = iCdb->FindLC(aFindText, iSearchFieldDef);
CleanupStack::Pop(iCardIdArray); // member variable

iArrayIndex = 0;
GetMoreCardsL(aBuffer, aFetchAllFields, aTempBuffer);

if(iArrayIndex == iCardIdArray->Count())
{iCardIdArray->Reset();}

}

void CRCntUtil::GetCardSetL(TConnBuff &aBuffer)
{
iCardIdArray->Reset();

TInt cardId = CConnPack::ReadInt32L(aBuffer);
while(cardId >= 0)

{
iCardIdArray->AddL(cardId);
cardId = CConnPack::ReadInt32L(aBuffer);
}

iArrayIndex = 0;
}

void CRCntUtil::GetMoreCardsL(TDes8 &aBuffer, TBool aFetchAllFields,
TDes8 &aTempBuffer)

A CONTACTS CONNECTIVITY SERVICE 275

{
TInt cardCount = iCardIdArray->Count();

// Go through the set of cards until we finish or run out
// of buffer space. We may come around again if we run out
// of buffer space
while(iArrayIndex < cardCount)

{
TContactItemId cItemId = (*iCardIdArray)[iArrayIndex];
aTempBuffer.Zero();
GetOneCardL(cItemId, aFetchAllFields, aTempBuffer);
if(aTempBuffer.Length() > 0)
{
// If the message will fit then append it, otherwise break out
// Need to leave room for a terminating null-id as well
if(aTempBuffer.Length()+aBuffer.Length()+4 < aBuffer.MaxLength())

{
CConnPack::WriteBufferL(aTempBuffer, aBuffer);

++iArrayIndex;
}

else
{
break;
}

}
else
{
++iArrayIndex;
}//endif

}//endwhile
CConnPack::WriteInt32L(-1, aBuffer);
}

11.7.4 Accessing the System Template
It is possible to use templates in a sophisticated way, with different
templates for different purposes. However, most of the time this is
unlikely to be necessary. Therefore, we will content ourselves with
obtaining information about the system template. It is likely that most
Contact cards will have been created based on the system template, so
we can store its labels once and use them for all cards (thus, we can avoid
retrieving the labels for each field of each card).

void CRCntUtil::GetTemplateInfoL(TDes8 &aBuffer)
{
CContactItemFieldSet &cardFields = iTemplate->CardFields();
TInt fieldCount = cardFields.Count();
for(TInt j = 0 ; j < fieldCount ; ++j)

{
CConnPack::WriteInt32L(cardFields[j].Id() , aBuffer);
TInt fieldTypeCount = cardFields[j].ContentType().FieldTypeCount();
for(TInt fi = 0 ; fi < fieldTypeCount ; ++fi)
{
CConnPack::WriteInt32L(cardFields[j].ContentType().

276 USING THE CONTACTS MODEL

FieldType(fi).iUid , aBuffer);
}

CConnPack::WriteInt32L(-1, aBuffer);
// Append the content type mapping
CConnPack::WriteInt32L(cardFields[j].ContentType().Mapping().iUid,

aBuffer);
TPtrC label = cardFields[j].Label();
CConnPack::WriteUNCDataL(label , aBuffer);
}

CConnPack::WriteInt32L(-1, aBuffer);
}

11.7.5 Getting and Setting Own Card
The own card is a useful concept as a means of identifying a phone and
for ease of transferring to another phone. The own card is just another
Contact card and the methods to set and retrieve it are straightforward:

void CRCntUtil::FetchOwnCardIdL(TDes8 &aBuffer)
{
TInt ownCardId = iCdb->OwnCardId();
CConnPack::WriteInt32L(ownCardId, aBuffer);
}

void CRCntUtil::SetOwnCardIdL(TDes8 &aBuffer)
{
TInt ownCardId = CConnPack::ReadInt32L(aBuffer);

CContactItem *item = iCdb->ReadContactLC(ownCardId);
iCdb->SetOwnCardL(*item);
CleanupStack::PopAndDestroy(item);
}

11.7.6 Deleting, Adding and Editing Cards
Deleting a Contact card is straightforward, given the card’s identifier:

void CRCntUtil::DeleteCardL(TInt aCardId)
{
iCdb->DeleteContactL(aCardId);
}

Creating a new Contact card or editing an existing one requires a means
of setting or resetting the field data; this means that the majority of the code
is common but the edited card needs to have the changes committed:

TInt CRCntUtil::AddNewContactL(TDes8 &aBuffer)
{
CContactCard *newCard = CContactCard::NewLC(iTemplate);

DoEditsL(newCard, aBuffer);

A CONTACTS CONNECTIVITY SERVICE 277

TContactItemId newId = iCdb->AddNewContactL(*newCard);
CleanupStack::PopAndDestroy(newCard);
return newId;
}

void CRCntUtil::EditCardL(TDes8 &aBuffer)
{
// Find the selected card
TInt cardId = CConnPack::ReadInt32L(aBuffer);
CContactItem* editCard = (CContactCard*)iCdb->OpenContactL(cardId);
CleanupStack::PushL(editCard);

DoEditsL(editCard, aBuffer);

// Commit changes
iCdb->CommitContactL(*editCard);
CleanupStack::PopAndDestroy(editCard);
}

The actual setting or changing of the field data involves reading a set
of field types and a mapping from the message to uniquely identify a
field and then setting or changing its text data. If we wanted to extend
this to support other storage types then all we would need to do would
be to extend this routine. Finding the correct field to change is slightly
complex. It is possible for more than one field to share one or more field
types – it is only the combination that is supposed to be unique. We can
search in the set of fields for a field that contains a single field type, but it
may not match the complete set of field types, in which case we need to
search for other matching fields.

void CRCntUtil::DoEditsL(CContactItem* aCard, TDes8 &aBuffer)
{
CContactItemFieldSet &cardFields = aCard->CardFields();
TInt fieldsCount = cardFields.Count();

// For each set of field types set the text.
// Each set of types is terminated by -1 and is followed by the
// mapping value (or -1 if unset). If the first fields type value
// is -1 then we have reached the end of the fields.
TUid fieldType;
fieldType.iUid = CConnPack::ReadInt32L(aBuffer);
while(fieldType.iUid >= 0)

{
// Make a CContentType and set the field types and the mapping
CContentType *editContent = CContentType::NewL(fieldType);
CleanupStack::PushL(editContent);
while(fieldType.iUid >= 0)
{
fieldType.iUid = CConnPack::ReadInt32L(aBuffer);
if(fieldType.iUid >= 0)

{
editContent->AddFieldTypeL(fieldType);
}

}

278 USING THE CONTACTS MODEL

TUid mapping;
mapping.iUid = CConnPack::ReadInt32L(aBuffer);
editContent->SetMapping(mapping);

TInt fieldLength = CConnPack::PeekInt16L(aBuffer);
HBufC* fieldBuff = HBufC::NewLC(fieldLength);
TPtr tempPtr(fieldBuff->Des());
CConnPack::ReadUNCDataL(tempPtr, aBuffer);

// Find the field that matches all the field types
// Find the one that matches the first field type and then check all
TBool foundField = false;
TInt fieldIndex = cardFields.Find(editContent->FieldType(0));
while((fieldIndex >= 0) && (fieldIndex < fieldsCount) && !foundField)
{
if(cardFields[fieldIndex].ContentType() == *editContent)

{
foundField = true;
}

else
{
fieldIndex++;
if(fieldIndex < fieldsCount)
{
fieldIndex = cardFields.FindNext(editContent->FieldType(0),

fieldIndex);
}

}
}//endwhile searching for a matching field

if(foundField &&
(cardFields[fieldIndex].StorageType() == KStorageTypeText))

{
// The field takes ownership of the buffer
CleanupStack::Pop(fieldBuff);
cardFields[fieldIndex].TextStorage()->SetText(fieldBuff);
}

else
{
CleanupStack::PopAndDestroy(fieldBuff);
}

CleanupStack::PopAndDestroy(editContent);
fieldType.iUid = CConnPack::ReadInt32L(aBuffer);
}// endwhile

}

11.7.7 Retrieving Groups and Contents of Groups
Groups are relatively simple. When retrieving all groups, we will just
return the group identifier and group label. We will also provide a
separate method to return the list of contacts in a group.

void CRCntUtil::GetAllGroupsL(TDes8 &aBuffer)
{
if(iGroupIdArray)

{
delete iGroupIdArray;

A CONTACTS CONNECTIVITY SERVICE 279

iGroupIdArray = NULL;
}

iGroupArrayIndex = 0;
iGroupIdArray = iCdb->GetGroupIdListL();
GetMoreGroupsL(aBuffer);
}

void CRCntUtil::GetMoreGroupsL(TDes8 &aBuffer)
{
TBool gotRoom = ETrue;
while((iGroupIdArray != NULL) &&

(iGroupArrayIndex < iGroupIdArray->Count()) &&
gotRoom)

{
TInt groupId = (*iGroupIdArray)[iGroupArrayIndex];
CContactItem* cItem = iCdb->ReadContactL(groupId);
CleanupStack::PushL(cItem);
if(cItem->Type() == KUidContactGroup)
{
CContactGroup *group = (CContactGroup*)cItem;
TPtrC label = group->GetGroupLabelL();

// Check for length for group ID and label plus terminator
if(aBuffer.MaxLength() - aBuffer.Length() >= 8 + label.Length())

{
CConnPack::WriteInt32L(groupId, aBuffer);
CConnPack::WriteUNCDataL(label, aBuffer);
++iGroupArrayIndex;
}

else
{
gotRoom = EFalse;
}

}
CleanupStack::PopAndDestroy(cItem);

}// endwhile
CConnPack::WriteInt32L(-1, aBuffer);
if((iGroupIdArray != NULL) && (iGroupArrayIndex ==

iGroupIdArray->Count()))
{
delete iGroupIdArray;
iGroupIdArray = NULL;
iGroupArrayIndex = 0;
}

}

void CRCntUtil::GetCardsInGroupL(TInt aGroupId, TDes8 &aBuffer)
{
CContactItem* cItem = iCdb->ReadContactL(groupId);
CleanupStack::PushL(cItem);
if(cItem->Type() == KUidContactGroup)

{
CContactGroup *group = (CContactGroup*)cItem;

CConnPack::WriteInt32L(aGroupId, aBuffer);

TInt itemsCount = group->ItemsContained()->Count();

280 USING THE CONTACTS MODEL

for(TInt ii = 0 ; ii < itemsCount ; ++ii)
{
CConnPack::WriteInt32L((*(group->ItemsContained()))[ii], aBuffer);
}

}// endif a group CConnPack::WriteInt32L(-1, aBuffer);
CConnPack::WriteInt32L(-1, aBuffer);
CleanupStack::PopAndDestroy(cItem);
}

11.7.8 Deleting, Adding and Editing Groups
Just as with Contact cards, deleting a group is straightforward:

void CRCntUtil::DeleteGroupL(TInt aGroupId)
{
iCdb->DeleteContactL(aGroupId);
}

Editing a group label is also straightforward:

void CRCntUtil::EditGroupL(TDes8 &aBuffer)
{
TInt groupId = CConnPack::ReadInt32L(aBuffer);
TInt labelLength = CConnPack::PeekInt16L(aBuffer);
HBufC* labelBuff = HBufC::NewLC(labelLength);
TPtr tempPtr(labelBuff->Des());
CConnPack::ReadUNCDataL(tempPtr, aBuffer);

CContactGroup *group = (CContactGroup*)iCdb->OpenContactL(groupId);
CleanupStack::PushL(group);

group->SetGroupLabelL(labelBuff->Des());
iCdb->CommitContactL(*group);

CleanupStack::PopAndDestroy(group);
CleanupStack::PopAndDestroy(labelBuff);
}

Editing the contents of a group is a matter of adding contact items to a
group or removing them from it:

void CRCntUtil::EditCardInGroupL(TDes8 & aBuffer)
{
TInt addFlag = CConnPack::ReadInt32L(aBuffer);
TInt groupId = CConnPack::ReadInt32L(aBuffer);

TInt cardId = CConnPack::ReadInt32L(aBuffer);
while(cardId != -1)

{
if(addFlag)
{iCdb->AddContactToGroupL(cardId, groupId);}

else

A CONTACTS CONNECTIVITY SERVICE 281

{iCdb->RemoveContactFromGroupL(cardId, groupId);}
cardId = CConnPack::ReadInt32L(aBuffer);
}

}

If we create a new group then we really want to set the label and the
contained contact items in one operation; we do not really want to
require two commands – one to create an empty group and another to
populate it:

TInt CRCntUtil::AddNewGroupL(TDes8 &aBuffer)
{
TInt labelLength = CConnPack::PeekInt32L(aBuffer);
HBufC* labelBuff = HBufC::NewLC(labelLength);
TPtr tempPtr(labelBuff->Des());
CConnPack::ReadUNCDataL(tempPtr, aBuffer);

CContactGroup* newGroup =
(CContactGroup*)iCdb->CreateContactGroupLC(labelBuff->Des());

TContactItemId groupId = newGroup->Id();

CleanupStack::PopAndDestroy(newGroup);
CleanupStack::PopAndDestroy(labelBuff);

TInt cardId = CConnPack::ReadInt32L(aBuffer);
while(cardId != -1)

{
iCdb->AddContactToGroupL(cardId, groupId);
cardId = CConnPack::ReadInt32L(aBuffer);
}

return groupId;
}

11.7.9 Calling the Contacts Connectivity Service

While developing this service, I created a command-line application to
load it and call it, but there would not be much to learn by including the
source in the text here. Instead, we will see how to create a more useful
GUI application in Chapter 13.

12
Using the Agenda Model

In this chapter we are going to cover the Symbian OS Agenda Model.
Alongside Contacts, the Agenda Model is key to most users, as it represents
the user’s diary or agenda and lets the user maintain appointments, events
and anniversaries and to set alarms. As in the previous chapter, we are
not going to see how to create synchronization software, but how to use
the Agenda Model directly.

12.1 The Various Agenda Models

Just as with the Contacts model, the Agenda Model is built on top of a
database. However, there is not just one Agenda Model but three:

• The entry model (CAgnEntryModel) is the base model and provides
access to an Agenda database. This model is not intended for user
interface applications, but for more ‘batch’ oriented tasks. Repeating
entries (of which more below) are represented by a single entry
object.

• The indexed model (CAgnIndexedModel) extends the entry model.
It includes indices of the data in the database which support filtering
and so it is easier to access a subset of the data than when using the
entry model.

• The instance model (CAgnModel) extends the indexed model and
provides a separate object for each instance of a repeating entry. This
makes it suitable for use by a user interface (which is more concerned
with showing all instances for a specific date than with repeating
patterns).

The terms entry and instance used here are defined in the next section.
The Agenda Models support observers to allow an application to be

informed when entries are added, altered or deleted. The Agenda Models
support filtering to allow access to a subset of entries. The Agenda Models

284 USING THE AGENDA MODEL

support progress monitoring on long-running operations. The only such
operation that we will be concerned with is opening a database with the
indexed model.

Alongside the Agenda Models, the Alarm Server keeps track of all
pending alarms and notifies the user when any alarms are due. We will
not deal with the Alarm Server directly, but we will see how to manipulate
alarmed entries.

12.2 Types of Agenda Entries

The Agenda database (Figure 12.1) contains a number of types of entry:

• appointments (CAgnAppt)

• to-dos (CAgnTodo)

• events (CAgnEvent)

• anniversaries (CAgnAnniv).

CAgnAppt CAgnEvent CAgnTodo

CAgnAnniv

CAgnEntry

CAgnBasicEntry

Figure 12.1 The Agenda database

ALARMS 285

An appointment has a start date and time, an end date and time, and
a range of properties. A to-do entry is a task and has a due date and
priority, among other attributes. An event is like an appointment but lasts
for one or more whole days. An anniversary is an event that repeats on
an annual basis.

12.3 Repeating Entries

One of the features supported by the Agenda Model is repeating entries.
An appointment or event may be a one-off, but it may also be a repeating
entry – a weekly meeting, a monthly event, etc. The Agenda Model allows
such an entry to be defined and the repetition configured. This is very
efficient for storage and also allows a change to be applied to all instances
of an appointment or event, but it is not ideal for displaying a day at a
time or for changing one instance of a series.

Therefore, the Agenda Model differentiates between entries and
instances. For a repeating entry, the entry defines the whole series,
whereas an instance applies to only one date. When using the entry
model or the indexed model, we are only presented with entries; if
we want to access instances then we need to use the instance model,
which is why it is aimed at user interfaces. In the instance model each
repeating entry is converted into an instance for each date that applies.
Non-repeating entries are also converted into instances, though only one
instance each, of course.

Because an instance is an entry on a date, an instance identifier contains
an entry identifier and a date. This is worth remembering because most
identifiers in Symbian OS are simply four-byte integers.

One point to bear in mind is that the data of a repeating entry must
be consistent across the whole of the series. Therefore, changing instance
data will mean either altering all instances to have the same data or
splitting the series into more than one series. If the data is changed for
one instance only or if one instance is deleted, then the series is split to
leave a separate series before the changed/deleted entry and a separate
series after the change. If an instance is changed along with all entries
before or after, the series is split into two. The Agenda Model will take
care of this for us, but it means that changing or deleting an instance may
affect instances for other dates. This is reflected in the return codes for
some operations.

12.4 Alarms

One of the useful features of Agenda entries is that they can have alarms
associated with them. A user may want an alarm to go off in advance of

286 USING THE AGENDA MODEL

an appointment, so the time for an alarm is defined in terms of a number
of days in advance, and a time in terms of a number of minutes after
midnight.

12.5 List and Filter Classes

The Agenda Model includes a number of specialized list classes to
manage lists of various objects, and filters to control which types of
entries or instances should be included in the lists.

12.6 Agenda Model API

As with other APIs covered in this book, we will not cover all aspects of the
Agenda Model. It is fully documented in Symbian OS SDKs, though the
sheer volume of information (particularly for the three different Agenda
Models) can make it more difficult to get started than you might expect.

12.6.1 The Agenda Server and Models

Class RAgendaServ
Defined in agclient.h

RAgendaServ provides access to the Agenda Server and is used to set up the Agenda Model.
Most server methods are not used directly; one of the Agenda Models is used instead. One
RAgendaServ object can be used to access only one Agenda database at a time.

Creation Method

static RAgendaServ* NewL()
This method creates a new RAgendaServ object. It must be connected to the Agenda Server
using the Connect() method.

Member Methods

TInt Connect()
This method connects to the Agenda Server.

returns – an error code, or KErrNone for success.

void Close()
This method severs the connection to the Agenda Server and should be called before the
RAgendaServ object is deleted.

AGENDA MODEL API 287

Class CAgnEntryModel
Defined in agmmodel.h

The CAgnEntryModel model is the base Agenda Model and provides access only to the
direct entries in an Agenda database.

Creation Methods

static CAgnEntryModel* NewL(
MAgnModelStateCallBack* aStateCallBack=NULL)

This method creates a new CAgnEntryModel object, optionally with a state callback
observer. If one of the other models is used then this method will not be used.
aStateCallBack – a pointer to a state callback observer, if required.
returns – a CAgnEntryModel object.

void OpenL(const TDesC& aFileName,
TTimeIntervalMinutes aDefaultEventDisplayTime = 0,
TTimeIntervalMinutes aDefaultAnnivDisplayTime = 0,
TTimeIntervalMinutes aDefaultDayNoteDisplayTime = 0)

This method opens an Agenda database file in the model. Note that there is no default
Agenda database – the name must be specified. If using one of the other models, this method
will not be used.
The three TTimeIntervalMinutes arguments specify the default display times for the
different entry types. The display time values are numbers of minutes from midnight –
between zero and 1439 inclusive. These values can be changed using one of the model’s
SetDefaultXxxDisplayTime() functions. The parameters specifying the default display
times have default values of zero.

Entry Operations

TAgnEntryId AddEntryL(CAgnEntry* aEntry,
TAgnEntryId aTodoPositionReferenceId = AgnModel::NullId())

This method adds a new entry to the database. If the entry is a to-do entry then the entry must
specify the to-do list to which it will be added and the position within the list must be
specified in the call.
aEntry – a pointer to the entry to be added.
aToDoPositionReferenceId – if the new entry is a to-do, this argument is used to

specify the position in the to-do list at which aEntry is added. aEntry is inserted at the
position immediately before the entry with the identifier specified. If this identifier is null
(the default), aEntry is added at the end of the to-do list. The value is ignored if the
entry is not a to-do.

returns – the entry identifier for the newly added entry.

void DeleteEntryL(CAgnEntry* aEntry)
This method deletes the entry from the database.
aEntry – the entry to be deleted.

288 USING THE AGENDA MODEL

virtual void DeleteEntryL(TAgnEntryId aEntryId)
This method deletes the entry from the database.
aEntryId – the entry to be deleted.

void UpdateEntryL(CAgnEntry* aEntry,
TAgnEntryId aTodoPositionReferenceId = AgnModel::NullId())

This method updates an entry in the database.
aEntry – pointer to an entry with the details to be updated.
aTodoPositionReferenceId – if the entry is a to-do, and the to-do is being moved

from one to-do list to another, this specifies the position in the to-do list at which
aEntryis added. aEntry is inserted at the position immediately before the entry with
the identifier specified. If this identifier is null (the default), aEntry is appended to the
to-do list. The value is ignored if the entry is not a to-do, or if it is not being moved to
another to-do list.

CAgnEntry* FetchEntryL(TAgnEntryId aId) const
This method retrieves an entry based on its entry identifier. Note that, if an instance is
required rather than an entry, the CAgnModel::FetchEntryL() method should be used.
aId – the identifier of the entry to be retrieved.
returns – a pointer to entry data. The caller takes ownership of the object.

To-do Operations

TInt TodoListCount() const
This method returns the number of to-do lists in the database.

inline const CAgnTodoListList* PeekAtTodoListList() const
This method returns a read-only list of to-do list identifiers.

CAgnTodoList* FetchTodoListL(TAgnTodoListId aTodoListId) const
This method fetches a to-do list based on its identifier.
aTodoListId – the identifier of the to-do list.
returns – a pointer to the list. The caller takes ownership of the object.

virtual TAgnTodoListId AddTodoListL(CAgnTodoList* aTodoList,
TInt aPosition=EAddTodoListAtEnd)

This method adds a new to-do list to the database. If the position is not specified, the to-do list
is added at the end of the list of to-do lists. Specifying a position of zero indicates it is the first
to-do list. If the position specified is equal to the number of to-do lists in the model, the new
to-do list is added at the end. If the position specified is greater than the number of to-do lists
in the model, or is negative, the function raises a panic.
aTodoList – a pointer to the to-do list data to be added.
aPosition – position within the model’s list of to-do lists at which to insert the to-do list.

virtual void DeleteTodoListL(TAgnTodoListId aTodoListId)
virtual void UpdateTodoListL(CAgnTodoList* aTodoList)
These methods delete a to-do list from the database. The to-do list can be specified either by
its identifier or by providing a pointer to its data.
aTodoListId – the identifier of the to-do list to be deleted.
aTodoList – a pointer to the data of the to-do list to be deleted.

AGENDA MODEL API 289

void ChangeTodoListOrderL(TInt aOldPosition,TInt aNewPosition)
Changes the position of a to-do list in the model’s list of to-do lists. The two positions
specified are indexes into the model’s list of to-do lists, so should be specified as relative to
zero, i.e. zero indicates the first position in the list. Specify EAddTodoListAtEnd to indicate
the position at the end of the list. Both positions must be valid, or a panic is raised.
aOldPosition – the position of the to-do list to be moved.
aNewPosition – the position to which the to-do list is to be moved.

void ChangeTodoOrderL(TAgnTodoListId aTodoListId,
TAgnEntryId aTodoId,
TAgnEntryId aTodoPositionReferenceId= AgnModel::NullId())

void ChangeTodoOrderL(CAgnTodoList* aTodoList,
TAgnEntryId aTodoId,
TAgnEntryId aTodoPositionReferenceId= AgnModel::NullId())

These methods move the to-do entry with the entry identifier aTodoId to the position
immediately before the position occupied by aTodoPositionReferenceId. The to-do list
affected is identified by aTodoListId or aTodoList. If aTodoPositionReferenceId
is null (the default), or if it cannot be found in the list, then the to-do entry is moved to the end
of the list.
Note that a to-do instance list (CAgnTodoInstanceList) should be used to determine the
position to which to move the to-do entry. This is because the user sees the order of the to-do
entries as they appear in a to-do instance list. A to-do list (CAgnTodoList), on the other
hand, may contain to-do entries which are not visible to the user (for instance if they are
crossed out, and crossed out entries are not being displayed).
aTodoListId – identifies the to-do list to which aTodoId belongs.
aTodoList – pointer to the to-do list to which aTodoId belongs.
aTodoId – identifies the to-do entry to move.
aTodoPosotionReferenceId – specifies a position in the to-do list. The entry identified

by aTodoId is moved to the position immediately before this. If this is null (the default)
then aTodoId is moved to the end of the list.

Miscellaneous Methods

inline const CParaFormatLayer* ParaFormatLayer() const
This method returns a pointer to the paragraph format layer used by the model’s entries.

inline const CCharFormatLayer* CharFormatLayer() const
This method returns a pointer to the character format layer used by the model’s entries.

Class MAgnProgressCallBack
Defined in cagmcallb.h

This mixin provides information about the progress of prolonged Agenda Model operations,
and about how the operation terminated.
As the model carries out the operation it calls Progress() with aPercentageCompleted
set to the amount of the operation that has been carried out so far. Note that when the
operation is complete, Progress() is not called with aPercentageCompleted set to

290 USING THE AGENDA MODEL

100. Instead the Completed() method is called. Note also that if the operation completes
quickly, for instance when opening a small file, then Progress() will probably not be
called. If, on return, aError is anything other than KErrNone then something went wrong
during the operation.

Member Methods

virtual void Progress(TInt aPercentageCompleted) = 0
This method is called by the agenda model during prolonged operations such as opening an
indexed database, to indicate how much of the operation has been completed. Note that this
function is not called when the operation is complete, with aPercentageCompleted set to
100; instead the Completed() method is called. The frequency with which this function is
called is indicated by a callback frequency parameter.

virtual void Completed(TInt aError = KErrNone) = 0
This method is called when the function completes.
aError – indicates how the function completed: KErrNone if successful, otherwise one of

the system error codes.

enum TOpenCallBackFrequency

• EOpenCallBackHigh = 1 – high callback frequency
• EOpenCallBackMedium = 2 – medium callback frequency
• EOpenCallBackLow = 4 – low callback frequency

Class CAgnIndexedModel – public CAgnEntryModel
Defined in agmmodel.h

The indexed model (CAgnIndexedModel) is opened as an intermediate stage in opening the
instance model (CAgnModel). It can also be used in its own right for greater efficiency by
applications which have no user interface and which need to access only a subset of the data
in the file.
When an indexed model is opened, it builds indices of the data in an Agenda file, which
allows the information to be filtered before entries are read. As well as being used as an
intermediate stage for the instance model, it supports merging and tidying, but these methods
are not described here.

Creation and Connection Methods

static CAgnIndexedModel* NewL(MAgnModelStateCallBack*
aStateCallBack)

This method creates an indexed model. It creates a new CAgnIndexedModel object,
optionally with a state callback observer.
aStateCallBack – a pointer to a state callback observer, if required.
returns – a CAgnIndexedModel object.

AGENDA MODEL API 291

TBool OpenL(const TDesC& aFileName,
TTimeIntervalMinutes aDefaultEventDisplayTime,
TTimeIntervalMinutes aDefaultAnnivDisplayTime,
TTimeIntervalMinutes aDefaultDayNoteDisplayTime,
MAgnProgressCallBack* aProgressCallBack,
TBool aOpenSynchronously = EFalse,
TOpenCallBackFrequency aCallBackFrequency = EOpenCallBackMedium)

void OpenL(const TDesC& aFileName,
TTimeIntervalMinutes aDefaultEventDisplayTime,
TTimeIntervalMinutes aDefaultAnnivDisplayTime,
TTimeIntervalMinutes aDefaultDayNoteDisplayTime)

These methods open a named Agenda file using the Agenda Server. The three
TTimeIntervalMinutes arguments specify the default display times for the different entry
types. The display time values are numbers of minutes from midnight – between zero and
1439 inclusive.
One version of this method supplies a progress observer. This version returns true or false
depending on whether or not an active object was scheduled to build the indices.
aFileName – the name of the Agenda Database file to open.
aDefaultEventDisplayTime – the default display time for events.
aDefaultAnnivDisplayTime – the default display time for anniversaries.
aDefaultDayNoteDisplayTime – the default display time for day notes.
aProgressCallBack – a pointer to a progress callback observer.
aOpenSynchronously – set to ETrue if the database is to be opened synchronously.
aCallBackFrequency – the desired callback frequency.
returns – the version with a progress callback returns ETrue if indices are built

asynchronously.

Entry methods

TInt EntryCount() const
This method returns the number of entries in the database.

enum TAgnWhichInstances
This enum specifies which instances of an entry are affected by an update or delete operation.
If an update or delete operation does not affect all instances then the entry will be split into
two.

• ECurrentInstance – only the current instance
• EAllInstances – all instances
• ECurrentAndFutureInstances – the current and all future instances
• ECurrentAndPastInstances – the current and all past instances

enum TAgnFilter::Ttype

• EAgnFilter – default filter type
• EDayFilter – indicates the filter is a TAgnDayFilter

292 USING THE AGENDA MODEL

• ESymbolFilter – indicates the filter is a TAgnSymbolFilter
• EFindFilter – indicates the filter is a TAgnsrvFindFilter
• ETidyFilter – indicates the filter is a TAgnsrvTidyFilter

Class TagnFilter

This class identifies which entry types should be involved when searching or populating an
instance list. It is usually used in combination with a date or date range.

Constructor

TAgnFilter()

Filter Setting Methods

virtual TBool IsValid(const CAgnSortEntry* aElement) const
This method returns whether the type of the specified entry is included in or excluded from
the filter.
aElement – the element to be checked.
returns – ETrue if the entry is included in the filter.

void SetIncludeTimedAppts(TBool aIncludeTimedAppts)
This method sets the filter to include or exclude timed appointments.
aIncludeTimedAppts – ETrue if timed appointments are to be included.

inline TBool AreTimedApptsIncluded() const
This method returns ETrue if timed appointments are included in the filter.

void SetIncludeUnTimedAppts(TBool aIncludeUntimedAppts)
This method sets the filter to include or exclude untimed appointments (i.e. day notes).
aIncludeTimedAppts – ETrue if untimed appointments are to be included.

inline TBool AreUnTimedApptsIncluded() const
This method returns ETrue if untimed appointments are included in the filter.

void SetIncludeEvents(TBool aIncludeEvents)
This method sets the filter to include or exclude events.
aIncludeEvents – ETrue if events are to be included.

inline TBool AreEventsIncluded() const
This method returns ETrue if events are included in the filter.

void SetIncludeAnnivs(TBool aIncludeAnnivs)
This method sets the filter to include or exclude anniversaries.
aIncludeAnnivs – ETrue if anniversaries are to be included.

inline TBool AreAnnivsIncluded() const
This method returns ETrue if anniversaries are included in the filter.

AGENDA MODEL API 293

void SetIncludeTodos(TBool aIncludeTodos)
This method sets the filter to include or exclude to-do list entries.
aIncludeTodos – ETrue if to-do list entries are to be included.

inline TBool AreTodosIncluded() const
This method returns ETrue if to-do list entries are included in the filter.

void SetIncludeRpts(TBool aIncludeRpts)
This method sets the filter to include or exclude repeated entries.
aIncludeRpts – ETrue if repeated entries are to be included.

inline TBool AreRptsIncluded() const
This method returns ETrue if repeating entries are included in the filter.

void SetIncludeNonRpts(TBool aIncludeNonRpts)
This method sets the filter to include or exclude non-repeated entries.
aIncludeNonRpts – ETrue if non-repeated entries are to be included.

inline TBool AreNonRptsIncluded() const
This method returns ETrue if non-repeated entries are included in the filter.

void SetIncludeRptsNextInstanceOnly(
TBool aIncludeRptsNextInstanceOnly)

This method sets the filter to include/exclude the next instance only of repeated entries.
aIncludeRptsNextInstanceOnly – ETrue if the next instance only of repeated

entries are to be included.

inline TBool RptNextInstanceOnly() const
This method returns ETrue if the next instance only of repeated entries are included in the
filter.

void SetIncludeCrossedOut(TBool aIncludeCrossedOut)
This method sets the filter to include or exclude crossed out entries.
aIncludeCrossedOut – ETrue if crossed out entries are to be included.

inline TBool AreCrossedOutIncluded() const
This method returns ETrue if crossed out entries are included in the filter.

void SetIncludeAlarmedOnly(TBool aIncludeAlarmedOnly)
This method sets the filter to include, or not, only alarmed entries.
aIncludeAlarmedOnly – ETrue if only alarmed entries are to be included.

inline TBool AreAlarmedOnlyIncluded() const
This method returns ETrue if only alarmed entries are included in the filter.

void SetIncludeCrossedOutOnly(TBool aIncludeCrossedOutOnly)
This method sets the filter to include, or not, only crossed out entries.
aIncludeCrossedOutOnly – ETrue if only crossed out entries are to be included.

inline TBool AreCrossedOutOnlyIncluded() const
This method returns ETrue if only crossed out entries are included in the filter.

294 USING THE AGENDA MODEL

Class CAgnModel – public CAgnIndexedModel
Defined in agmmodel.h

The instance agenda model is used by applications which have a user interface. In the entry
model, a repeating entry is represented as a single entry with a set of repeat details. However,
for a user interface, a repeating entry needs to be presented to the user as multiple instances,
one on each date on which a repeat occurs.
An application with a user interface should generally deal with instances, not entries. It
should never call UpdateEntryL() or DeleteEntryL() and will very rarely (if at all) call
FetchEntryL(). Instead, it should use the instance model and call UpdateInstanceL(),
DeleteInstanceL() or FetchInstanceL().
An exception to this is when a new entry is added to the database model. Because it does not
have an instance date at this point, the function is called AddEntryL().

Creation Methods

static CAgnModel* NewL(MAgnModelStateCallBack* aStateCallBack)
This method creates an instance model. It creates a new CAgnModel object, optionally with
a state callback observer.
aStateCallBack – a pointer to a state callback observer, if required.
returns – a CAgnModel object.

Entry and Instance Methods

CAgnEntry* FetchInstanceL(const TAgnInstanceId& aInstanceId) const
CAgnEntry* FetchInstanceLC(const TAgnInstanceId& aInstanceId) const
These methods fetch an instance of an entry from the database.
aInstanceId – the instance identifier of the instance to be retrieved.
returns – the specified instance.

TAgnEntryId AddEntryL(CAgnEntry* aEntry,
TAgnEntryId aTodoPositionReferenceId = AgnModel::NullId())

This method adds an entry to the database. If the entry is a to-do list entry then it must include
the identifier of the to-do list to which it belongs.
aEntry – the entry data to be added to the database.
aTodoPositionReferenceId – If the new entry is a to-do, this argument is used to

specify the position in the to-do list at which aEntry is added. aEntry is inserted at the
position immediately before the entry with the identifier specified. If this identifier is null
(the default), aEntry is added at the end of the to-do list. The value is ignored if the
entry is not a to-do.

TAgnEntryId UpdateInstanceL(CAgnEntry* aInstance,
TAgnWhichInstances aWhichInstances=EAllInstances,
TAgnEntryId aTodoPositionReferenceId = AgnModel::NullId())

This method updates the data for an instance in the database.
aInstance – the entry data to be updated.
aWhichInstances – which instances of a repeating entry are to be updated.
aTodoPositionReferenceId – if aInstance is a to-do which is being moved from

AGENDA MODEL API 295

one to-do list to another, then this specifies its position in the new list. aInstance is inserted
at the position immediately before the entry with the identifier specified. If this identifier is
NULL (the default), aInstance is appended to the to-do list. The value is ignored if
aInstance is not a to-do, or if it is not being moved to another to-do list.

returns – the new entry identifier of aInstance if it was changed during the update.
Otherwise, a null entry identifier.

TAgnEntryId DeleteInstanceL(CAgnEntry* aInstance,
TAgnWhichInstances aWhichInstances=EAllInstances)

TAgnEntryId DeleteInstanceL(const TAgnInstanceId& aInstanceId,
TAgnWhichInstances aWhichInstances=EAllInstances)

These methods delete an instance from the database.
aInstance – the instance to be deleted.
aInstanceId – the identifier of the instance to be deleted.
aWhichInstances – which instances of a repeating entry are to be deleted.
returns – the new entry identifier of aInstance if it was changed during the delete.

Otherwise, a null entry identifier.

To-do List Methods

virtual TAgnTodoListId AddTodoListL(CAgnTodoList* aTodoList,
TInt aPosition=EAddTodoListAtEnd)

This method adds a to-do list to the database and sets the position of the new list in the
database’s list of to-do lists.
aTodoList – the to-do list to be added.
aPosition – position within the database’s list of to-do lists at which to insert the to-do

list.

virtual void DeleteTodoListL(CAgnTodoList* aTodoList)
virtual void DeleteTodoListL(TAgnTodoListId aTodoListId)
These methods delete a to-do list.
aTodoList – the to-do list to be deleted.
aTodoListId – the identifier of the to-do list to be deleted.

virtual void UpdateTodoListL(CAgnTodoList* aTodoList)
This method updates a to-do list in the database.
aTodoList – the to-do list to be updated.

Populating Methods
These methods fill lists of instances. The contained instance identifiers can then be used to
fetch the instance data.

void PopulateDayInstanceListL(CAgnDayList<TAgnInstanceId>* aList,
const TAgnFilter& aFilter,
const TTime& aTodaysDate) const

Populates a list with instance IDs for a particular day. The entry types of interest may be
specified using a filter. Instances which start on the previous day may be included in the day
list if they span midnight.
If the date specified in the day list is invalid, i.e. outside the model’s valid range, the function
returns with an empty list.

296 USING THE AGENDA MODEL

Notes
Instances are sorted by display time. Instances with equal display times are sorted in the
following order:
1. To-do entries. Multiple to-do entries with the same display time are ordered by due date,

priority then start date.
2. Anniversaries.
3. Day notes.
4. Appointments. Appointments are ordered by start time, then end time.
Finally, if two instances are still the same, then crossed out ones appear after uncrossed
out ones.
aList – an empty list. Should specify a valid date. On return, contains a list of instance IDs

and start and end dates/times for instances which occur on the specified date.
aFilter – filters the entry types of interest.
aTodaysDate – today’s date as a TTime. Should be specified to include undated to-do

entries in the list.

void PopulateDayDateTimeInstanceListL(
CAgnDayDateTimeInstanceList* aList,
const TAgnFilter& aFilter,
const TTime& aTodaysDate) const

Populates a list with instance IDs for a particular day.
The list also includes the start and end date/time for each instance. The entry types of interest
may be specified using a filter.
Instances which start on the previous day may be included in the day list if they span
midnight.
If the date specified in the day list is invalid, i.e. outside the model’s valid range, the function
returns with an empty list.
The instances are sorted using the same criteria as for PopulateDayInstanceListL().
aList – an empty list. Should specify a valid date. On return, contains a list of instance IDs

and start and end dates/times for instances which occur on the specified date.
aFilter – filters the entry types of interest.
aTodaysDate – today’s date as a TTime. Should be specified to include undated to-do

entries in the list.

void PopulateMonthInstanceListL(CAgnMonthInstanceList* aList,
const TAgnFilter& aFilter,
const TTime& aTodaysDate) const

Populates a list with instance IDs for a particular month. The entry types of interest may be
specified using a filter.
If the year specified in the month list is invalid, i.e. outside the model’s valid range, the
function returns with an empty list.
The instances are sorted in chronological order.
aList – an empty list. Should specify a valid month and year. On return, contains a list of

instance IDs for instances which occur in the specified month.
aFilter – filters the entry types of interest.
aTodaysDate – today’s date as a TTime. Should be specified to include undated to-do

entries in the list.

AGENDA MODEL API 297

void PopulateTodoInstanceListL(CAgnTodoInstanceList* aList,
const TTime& aTodaysDate) const

Populates a list with instance IDs for a given to-do list.
The to-do list of interest is identified by a to-do list identifier specified in aList. If aList
does not specify a to-do list identifier, the function returns with an empty list.
The sort order and whether or not crossed out entries should be included in the list are both
specified in the to-do list identified in aList.
aList – a to-do instance list. Specifies a to-do list identifier. On return, contains a sorted

list of to-do instance IDs that match the filter criteria specified in the to-do list. It therefore
holds the to-dos that are to be displayed from a particular to-do list at any given time.

aTodaysDate – today’s date as a TTime. Should be specified to include undated to-do
entries in the list.

Find methods

void FindNextInstanceL(
CAgnDayList<TAgnInstanceId>* aMatchedInstanceList,
const TDesC& aSearchText,
const TTime& aStartDate,
const TTime& aEndDate,
const TAgnFilter& aFilter,
const TTime& aToday) const

Populates a day list with instance IDs for instances whose rich text matches a search string. A
match is made if the instance’s rich text is an exact match for the search string, or is a subset
of it.
After a match is made, other instances on that day are searched. When there are no more
instances on that day to search, the function returns.
Only dates within the date range specified are searched, and the entry types to be used in the
search are specified using a filter.
aMatchedInstanceList – pointer to a day list. On return, contains the IDs for all

instances matching the search string for a single day. If no matching instances were
found, the list returns empty.

aSearchText – the search string. Has a maximum of 32 characters.
aStartDate – the date at which to begin the search.
aEndDate – the date at which to end the search.
aFilter – filters the entry types of interest.
aToday – today’s date as a TTime. Used to identify whether or not undated to-dos should

be included.

void FindPreviousInstanceL(
CAgnDayList<TAgnInstanceId>* aMatchedInstanceList,
const TDesC& aSearchText,
const TTime& aStartDate,
const TTime& aEndDate,
const TAgnFilter& aFilter,
const TTime& aToday) const

Populates a day list with instance IDs for instances whose rich text matches a search string. A
match is made if the instance’s rich text is an exact match for the search string, or is a subset
of it.

298 USING THE AGENDA MODEL

After a match is made, other instances on that day are searched. When there are no more
instances on that day to search, the function returns.
Only dates within the date range specified are searched, and the entry types to be used in the
search are specified using a filter.
The search starts at the start date and works backwards, so the start date should be after the
end date.
aMatchedInstanceList – pointer to a day list. On return contains the IDs for all

instances matching the search string for a single day. If no matching instances were
found, the list returns empty.

aSearchText – the search string. Has a maximum of 32 characters.
aStartDate – the date at which to begin the search.
aEndDate – the date at which to end the search.
aFilter – filters the entry types of interest.
aToday – today’s date as a TTime. Used to identify whether or not undated to-dos should

be included.

12.6.2 Repeat APIs

Class TAgnRpt
Defined in agmrptd.h

This abstract base class for the Agenda Model repeat types stores the repeat details common
to all Agenda Model repeat types. The common repeat details are the start and end dates of
the repeat, the interval between repeats, and two flags which indicate whether views should
display the next repeat only, and whether it should repeat forever.
An instance of a TAgnRpt -derived class is owned by a repeat definition (CAgnRptDef),
which also contains the repeat exceptions list. It is set using CAgnRptDef::SetDaily(),
SetWeekly(), etc.

Member Methods

void SetStartDate(const TTime& aStartdate)
inline void SetStartDate(TAgnDate aStartdate)
These methods set the start date for the repeat.
aStartDate – the start date to set.

TTime StartDate() const
inline TAgnDate StartDateAsAgnDate() const
These methods return the repeat start date.

void SetEndDate(const TTime& aEndDate)
inline void SetEndDate(TAgnDate aEndDate)
These methods set the repeat end date.
aEndDate – the end date to set.

AGENDA MODEL API 299

TTime EndDate() const
inline TAgnDate EndDateAsAgnDate() const
These methods return the repeat end date.

inline void SetInterval(TUint aInterval)
This method sets the repeat interval.

inline TInt Interval() const
This method returns the repeat interval.

inline void SetDisplayNextOnly(TBool aDisplayNextOnly)
This method sets whether or not the repeated entry should display only the next entry.
aDisplayNextOnly – ETrue if only the next entry should be displayed.

inline TBool DisplayNextOnly() const
This method returns ETrue if only the next entry is set to be displayed.

void SetRepeatForever(TBool aRepeatForever)
This method sets whether the entry should repeat forever.
aRepeatForever – ETrue if the entry should repeat forever.

inline TBool RepeatForever() const
This method returns ETrue if the entry should repeat forever.

void ClearAll()
This method clears all the repeat details. The start and end dates are set to NULL values and
the repeat interval to zero. The display next only and repeat forever flags are set to EFalse.

virtual TUint InstanceCount() const
This method returns the number of instances generated by the repeat algorithm.

virtual TTime FindRptEndDate(TUint aCount) const
This method calculates the repeat end date from the number of instances.

Class TAgnDailyRpt – public TAgnRpt
Defined in agmrptd.h

This class stores daily repeat details. It stores the number of days between repeats. The repeat
details are used by the CAgnRptDef class, which also stores a list of any exceptions to the
repeat.

Constructors

TAgnDailyRpt()
TAgnDailyRpt(const TAgnRpt& aRpt)
TAgnDailyRpt(const TAgnDailyRpt& aRpt)
The constructors can take an existing repeat definition.
aRpt – an existing repeat definition to copy.

300 USING THE AGENDA MODEL

Class TAgnWeeklyRpt – public TAgnRpt
Defined in agmrptd.h

This class stores weekly repeat details. In addition to the common repeat information
inherited from TAgnRpt, this class stores the days in the week on which the repeat occurs
(using a set of flags), and the day which is the start of the week. The repeat details are used by
the CAgnRptDef class, which also stores a list of any exceptions to the repeat.

Constructors

TAgnWeeklyRpt()
TAgnWeeklyRpt(const TAgnRpt& aRpt)
TAgnWeeklyRpt(const TAgnWeeklyRpt& aRpt)
The constructors can take an existing repeat definition.
aRpt – an existing repeat definition to copy.

Member Methods

void SetDay(TDay aDay)
This method adds a day to the repeat. More than one day can be set.
aDay – the day to be set.

void UnsetDay(TDay aDay)
This method unsets a day from the repeat.
aDay – the day to be unset.

inline void ClearDays()
This method unsets all days from the repeat.

TBool IsDaySet(TDay aDay) const
This method returns ETrue if a specific day is set in the repeat.
aDay – the day being enquired about.

TDay FirstDayOfWeek() const
This method returns which day is being used as the first day of the week. This is set during
construction from the operating system’s locale settings.

TUint NumDaysSet() const
This method returns the number of days which are set in the repeat.

Class TAgnMonthlyRpt – public TAgnRpt
Defined in agmrptd.h

This abstract base class is used by the monthly repeat types AgnMonthlyByDaysRpt and
TAgnMonthlyByDatesRpt.

AGENDA MODEL API 301

Class TAgnMonthlyByDaysRpt – public TAgnMonthlyRpt
Defined in agmrptd.h

This class stores the days in a month on which a repeat can occur, for instance Tuesday in the
first week, Sunday in the last week.

Constructors

TAgnMonthlyByDaysRpt()
TAgnMonthlyByDaysRpt(const TAgnRpt& aRpt)
TAgnMonthlyByDaysRpt(const TAgnMonthlyByDaysRpt& aRpt)
The constructors can take an existing repeat definition.
aRpt – an existing repeat definition to copy.

Member Methods

void SetDay(TDay aDay, TWeekInMonth aWeek)
This method sets a repeat for a day in a week in the month.
aDay – the day of the week to be set.
aWeek – the week in which the day lies.

void ClearAllDays()
This method clears all days set in the repeat.

void ClearWeek(TWeekInMonth aWeek)
This method clears all days in a specific week in the month.
aWeek – the week to clear.

void UnsetDay(TDay aDay,TWeekInMonth aWeek)
This method unsets a repeat for a day in a week in the month.
aDay – the day of the week to be unset.
aWeek – the week in which the day lies.

TInt NumDaysSet() const
This method returns the number of days set in the repeat.

TBool IsDaySet(TDay aDay, TWeekInMonth aWeek) const
This method checks whether a specific day in a week is set.
aDay – the day of the week to be checked.
aWeek – the week in which the day lies.
returns – ETrue if the day is set.

TBool EventOnDate (const TTime& aTime) const
This method checks whether a specific date has a repeat set.
aTime – the date to check.
returns – ETrue if the date is set in the repeat.

302 USING THE AGENDA MODEL

Class TAgnMonthlyByDatesRpt – public TAgnMonthlyRpt
Defined in agmrptd.h

This class stores the dates in a month on which a repeat can occur.

Constructors

TAgnMonthlyByDatesRpt()
TAgnMonthlyByDatesRpt(const TAgnRpt& aRpt)
TAgnMonthlyByDatesRpt(const TAgnMonthlyByDatesRpt& aRpt)
The constructors can take an existing repeat definition.
aRpt – an existing repeat definition to copy.

Member Methods

void SetDate(TUint aDateInMonth)
This method sets a specific date in a month.
aDateInMonth – the date to be set.

void UnsetDate(TUint aDateInMonth)
This method unsets a specific date in a month.
aDateInMonth – the date to be unset.

inline void ClearAllDates()
This method unsets all dates for the repeat.

TInt NumDatesSet() const
This method returns the number of dates set in the repeat.

TBool IsDateSet(TUint aDateInMonth) const
This method checks whether a date is set.
aDateInMonth – the date to check.
returns – ETrue if the date is set.

Class TAgnYearlyByDateRpt – public TAgnRpt
Defined in agmrptd.h

This class is a yearly by date repeat, for example 3rd October each year. The base TAgnRpt
class includes sufficient data to fully define it.

Constructors

TAgnYearlyByDateRpt()
TAgnYearlyByDateRpt(const TAgnRpt& aRpt)
TAgnYearlyByDateRpt(const TAgnYearlyByDteRpt& aRpt);
The constructors can take an existing repeat definition.
aRpt – an existing repeat definition to copy.

AGENDA MODEL API 303

Class TAgnYearlyByDayRpt – public TAgnRpt
Defined in agmrptd.h

This class is a yearly by day repeat. In addition to a start date, this class stores the day in the
week and the week in the month on which the repeat should occur, e.g. Wednesday of the
third week of November every year.

Constructors

TAgnYearlyByDayRpt()
TAgnYearlyByDayRpt(const TAgnRpt& aRpt)
TAgnYearlyByDayRpt(const TAgnYearlyByDayRpt& aRpt)
The constructors can take an existing repeat definition.
aRpt – an existing repeat definition to copy.

Member Methods

void SetStartDay(TDay aDay, TWeekInMonth aWeek,
TMonth aMonth, TInt aYear)

This method sets the start day.
aDay – the day of the week to be set.
aWeek – the week of the month in which the day lies.
aMonth – the month in which the day lies.
aYear – the year on which the repeat starts.

void GetStartDay(TDay& aDay, TWeekInMonth& aWeek,
TMonth& aMonth, TInt& aYear) const

This method returns the start day.
aDay – the day of the week set.
aWeek – the week of the month in which the day lies.
aMonth – the month in which the day lies.
aYear – the year on which the repeat starts.

enum CAgnRptDef::TType

• EDaily – repeat every x days
• EWeekly – repeat every x weeks on days to be set
• EMonthlyByDates – repeat every x months on dates to be set
• EMonthlyByDays – repeat every x months on specific days of specific weeks
• EYearlyByDate – repeat every x years on a date to be set
• EYearlyByDay – repeat every x years on a specific day of a specific week of a month

Class CAgnRptDef – public CBase
Defined in agmrptd.h

This class stores a repeat definition, including exceptions, which is owned by an agenda entry.
The repeat definition has a type (daily, weekly, etc.) and stores a set of repeat details (e.g. start

304 USING THE AGENDA MODEL

and end date, interval between repeats). The repeat details are stored using an instance of a
TAgnRpt -derived class. They are set using SetDaily(), SetWeekly(), etc. These
functions also set the type.
The class may optionally store an exception list, which is a list of the dates on which the
repeat should not occur.
Note that when the repeat definition is set, the entry’s start date (or due date for a to-do entry)
may be changed to the repeat definition’s start date.

Construction Method

static CAgnRptDef* NewL()
This method creates a new repeat definition.

Repeat Type Methods

inline TType Type() const
This method returns the repeat type of the repeat.

void SetDaily(const TAgnDailyRpt& aRpt)
This method sets the repeat type to be daily and sets the repeat details.
aRpt – the details to be set.

TAgnDailyRpt Daily() const
If the repeat definition is of type EDaily, then this method returns the repeat details.
Otherwise, it returns the repeat details as a daily repeat.

void SetWeekly(const TAgnWeeklyRpt& aRpt)
This method sets the repeat type to be weekly and sets the repeat details.
aRpt – the details to be set.

TAgnWeeklyRpt Weekly() const
If the repeat definition is of type EWeekly, then this method returns the repeat details.
Otherwise, it returns the repeat details as a weekly repeat.

void SetMonthlyByDates(const TAgnMonthlyByDatesRpt& aRpt)
This method sets the repeat type to be monthly by dates and sets the repeat details.
aRpt – the details to be set.

TAgnMonthlyByDaysRpt MonthlyByDays() const
If the repeat definition is of type EMonthlyByDays, then this method returns the repeat
details. Otherwise, it returns the repeat details as a monthly repeat by days.

void SetMonthlyByDays(const TAgnMonthlyByDaysRpt& aRpt)
This method sets the repeat type to be monthly by days and sets the repeat details.
aRpt – the details to be set.

TAgnMonthlyByDatesRpt MonthlyByDates() const
If the repeat definition is of type EMonthlyByDates, then this method returns the repeat
details. Otherwise, it returns the repeat details as a monthly repeat by dates.

AGENDA MODEL API 305

void SetYearlyByDate(const TAgnYearlyByDateRpt& aRpt)
This method sets the repeat type to be yearly by date and sets the repeat details.
aRpt – the details to be set.

TAgnYearlyByDateRpt YearlyByDate() const
If the repeat definition is of type EYearlyByDate, then this method returns the repeat
details. Otherwise, it returns the repeat details as a yearly repeat by date.

void SetYearlyByDay(const TAgnYearlyByDayRpt& aRpt)
This method sets the repeat type to be yearly by day and sets the repeat details.
aRpt – the details to be set.

TAgnYearlyByDayRpt YearlyByDay() const
If the repeat definition is of type EYearlyByDay, then this method returns the repeat details.
Otherwise, it returns the repeat details as a yearly repeat by day.

Repeat Data Methods

inline const TAgnRpt* RptDef() const
This method provides direct access to the repeat definition.

void SetStartDate(const TTime& aStartdate)
inline void SetStartDate(TAgnDate aStartdate)
These methods set the start date for the repeat.
aStartDate – the start date to set.

TTime StartDate() const
inline TAgnDate StartDateAsAgnDate() const
These methods return the repeat start date.

void SetEndDate(const TTime& aEndDate)
inline void SetEndDate(TAgnDate aEndDate)
These methods set the repeat end date.
aEndDate – the end date to set.

TTime EndDate() const
inline TAgnDate EndDateAsAgnDate() const
These methods return the repeat end date.

inline void SetInterval(TUint aInterval)
This method sets the repeat interval.

inline TInt Interval() const
This method returns the repeat interval.

inline void SetDisplayNextOnly(TBool aDisplayNextOnly)
This method sets whether or not the repeated entry should display only the next entry.
aDisplayNextOnly – ETrue if only the next entry should be displayed.

306 USING THE AGENDA MODEL

inline TBool DisplayNextOnly() const
This method returns ETrue if only the next entry is set to be displayed.

void SetRepeatForever(TBool aRepeatForever)
This method sets whether the entry should repeat forever.
aRepeatForever – ETrue if the entry should repeat forever.

inline TBool RepeatForever() const
This method returns ETrue if the entry should repeat forever.

TUint InstanceCount() const
This method returns the number of instances generated by the repeat algorithm.

TTime FindRptEndDate(TUint aCount) const
This method calculates the repeat end date from the number of instances.

Class TAgnException
Defined in agmexcpt.h

This class stores the date of an exception to a repeating entry. Exceptions can be added,
removed, pruned and searched for using functions defined in class CAgnBasicEntry; the
methods in the CAgnRptDef class should not be used directly.

Constructors

TAgnException()
TAgnException(TAgnDate aDate)
The default constructor creates an exception with a null date.
aDate – the date to be set for the exception.

Member Methods

inline void SetDate(TAgnDate aDate)
This method sets the date for an exception.
aDate – the date to be set.

inline TAgnDate Date() const
This method returns the date set for the exception.

12.6.3 Agenda Model Entries and Instances

Class TAgnId
Defined in agmids.h

The base class for Agenda entry and to-do list identifier types. Internally, the identifier is
stored as a 32-bit unsigned integer. Although it is not an abstract type, it is not normally used
directly.

AGENDA MODEL API 307

ID Methods

inline void SetId(TAgnId aId)
This method sets the ID.
aId – the identifier value to set.

inline TAgnId Id() const
This method returns the identifier.

void SetNullId()
This method sets the identifier to a null identifier value.

TBool IsNullId() const
This method returns ETrue if the identifier is set to a null value.

Class TAgnEntryId – public TAgnId
Defined in agmids.h

Uniquely identifies an Agenda entry in the database. It is assigned when the entry is added to
the file, but can change if the entry is updated. Instances are uniquely identified by instance
IDs (TAgnInstanceId) which consist of an entry identifier and a date.

Constructors

TAgnEntryId()
This default constructor sets the ID to a null value.

TAgnEntryId(TAgnId aId)
This constructor sets the ID.
aId – the identifier value to be used.

typedef TUint16 TAgnDate

An agenda model date. This is a number of days from the agenda model’s minimum valid
date (1 January 1980). It is used by the TAgnDateTime class, which represents both a date
and a time in the Agenda Model, and by the TAgnInstanceId.

Class TAgnInstanceId – public TAgnEntryId
Defined in agmids.h

This class identifies an instance of an entry in the database using an entry identifier
(TAgnEntryId) and an agenda date (TAgnDate).

Constructors

TAgnInstanceId()
This constructor sets the ID and date to null values.

308 USING THE AGENDA MODEL

TAgnInstanceId(TAgnEntryId aId,
AgnDate aDate =AgnDateTime::NullDate())

This constructor sets the ID and date to provided values.
aId – the identifier value to be set.
aDate – the date value to be set.

TAgnInstanceId(TAgnEntryId aId,TTime aDate)
This constructor sets the ID and date to provided values.
aId – the identifier value to be set.
aDate – the date value to be set.

Member Methods

void SetNullInstanceId()
This method sets the ID to a null value.

inline TBool IsNullInstanceId() const
This method returns ETrue if the ID is a null value.

inline void SetDate(TAgnDate aDate)
This method sets the date for the instance.
aDate – the date value to be set.

inline TAgnDate Date() const
This method returns the date for the instance.

inline void SetIdAndDate(TAgnEntryId aId,TAgnDate aDate)
This method sets both the ID and date.
aId – the identifier value to be set.
aDate – the date value to be set.

Class TAgnTodoListId – public TAgnId
Defined in agmids.h

Unique identifier for a to-do list. The identifier is assigned to the to-do list when the list is
added to the database, but it can change if the list is updated.

Constructors

TAgnTodoListId()
This default constructor sets a null ID value.

TAgnTodoListId(TAgnId aId)
This constructor sets an ID value.
aId – the ID value to be set.

AGENDA MODEL API 309

enum TAgnStatus

• EAccepted – the entry has been accepted
• ENeedsAction – the entry needs action
• ESent – the entry has been sent
• ETentative – the entry is tentative
• EConfirmed – the entry has been confirmed
• EDeclined – the entry has been declined
• ECompleted – the entry has been completed
• EDelegated – the entry has been delegated

Class CAgnBasicEntry
Defined in agmbasic.h

Abstract base class for agenda entry types.
This class provides an interface to the alarm and repeat information and to the entry’s
attributes, for instance whether it is tentative or crossed out. The repeat information includes a
list of repeat exceptions, which are dates that are excluded from an entry’s normal repeat
dates. For instance, if an entry is to repeat on the 4th of every month, but not on the 4th
January, then the 4th January is an exception. All exceptions for a repeat are stored in an
exception list, which is part of the entry’s repeat details. Entries also have a last changed
date/time, which is used for synchronization, and is updated each time the entry is changed.

Alarm Methods

void SetHasAlarm(TBool aHasAlarm)
This method sets the entry’s alarm property.
aHasAlarm – ETrue if the entry is to have an alarm.

TBool HasAlarm() const
This method returns ETrue if the entry has an alarm set.

void SetAlarm(TTimeIntervalDays aDaysWarning,
TTimeIntervalMinutes aTime)

This method set the alarm’s due date/time. Two intervals may be set: the time interval in days
between the entry’s start date and the date on which the alarm will sound; and the time of day
(as an interval in minutes from midnight) the alarm is set to sound.
Note that to-dos have their alarm warning period set relative to their due date by default. The
period may also be set relative to the start date of the to-do, if this is required.
CAgnTodo::SetAlarmFromStartDate should be called after calling this function.
aDaysWarning – the time interval in days between the entry’s start date (for appointments,

events and anniversaries) and the date on which the alarm will sound.
aTime – the time of day, as an interval in minutes from midnight, at which the alarm will

sound.

TTime AlarmInstanceDateTime() const
This method returns the due date/time of the alarm for the current instance if the entry is
repeating, or just its normal due date/time if it is non-repeating.

310 USING THE AGENDA MODEL

TTimeIntervalDays AlarmDaysWarning() const
This method returns the number of days’ warning for the entry. It returns zero if the entry is
not alarmed.

TTimeIntervalMinutes AlarmTime() const
This method returns the time of the alarm as a time interval in minutes from midnight. This
time applies to all instances of the alarm if it is repeating, because they all occur at the same
time on different dates.

Attribute Methods

void SetIsCrossedOut(TBool aIsCrosedOut)
This method sets the crossed-out attribute for the entry. Note that if the entry is a to-do list
entry then call CAgnTodo::CrossOut/UnCrossOut instead.
aIsCrossedOut – ETrue if the entry is to be crossed out.

inline TBool IsCrossedOut() const
This method returns ETrue if the entry is crossed out.

void SetIsADayNote(TBool aIsADayNote)
This method sets the entry’s day note attribute.
aIsADayNote – ETrue if the entry is to be a day note.

inline TBool IsADayNote() const
This method returns ETrue if the entry is a day note.

void SetIsTentative(TBool aIsTentative)
This method sets the tentative attribute.
aIsTentative – ETrue if the entry is tentative.

inline TBool IsTentative() const
This method returns ETrue if the entry is tentative.

Repeat Methods

void SetIsRepeating(TBool aIsRepeating)
This method sets the entry’s repeating attribute.
aIsRepeating – ETrue if the entry is to be a repeating entry.

inline TBool IsRepeating() const
This method returns ETrue if the entry is a repeating entry.

void ClearRepeat()
This method unsets the entry’s repeating attribute and clears the repeating details, including
exceptions.

void SetRptStartDate(TAgnDate aRptStartDate)
This method sets the start date for the entry’s repetition.
aRptStartDate – the start date for the repetition.

AGENDA MODEL API 311

void SetRptEndDate(TAgnDate aRptEndDate)
This method sets the end date for the entry’s repetition.
aRptEndDate – the end date for the repetition.

inline CAgnRptDef* RptDef()
inline const CAgnRptDef* RptDef() const
These methods provide access to the entry’s repeat definition.

void SetHasExceptions(TBool aHasExceptions)
This method sets the entry’s ‘has exceptions’ attribute.
aHasExceptions – ETrue if the entry has exceptions.

inline TBool HasExceptions() const
This method returns ETrue if the entry has exceptions.

void AddExceptionL(const TAgnException& aException)
This method adds an exception to the entry.
aException – the exception to be added to the entry.

TBool RemoveException(const TAgnException& aException)
This method removes an exception from the entry. If there are no exceptions after this one is
removed then the entry’s ‘has exceptions’ attribute is unset.
aException – the exception to be removed from the entry.

TBool FindException(TAgnException& aException) const
This method returns ETrue if the exception is found in the entry’s list of exceptions.
aException – the exception to find.

const CAgnExceptionList* Exceptions() const
This method provides access to the entry’s list of exceptions.

void RemoveAllExceptions()
This method removes all exceptions from the entry and unsets its ‘has exceptions’ attribute.

void PruneExceptions()
This method compares the entry’s exceptions with the repeat start and end dates. It removes
any exceptions which occur before the start or after the end of the repeat period and
exceptions which do not fall on repeat dates. If, after pruning, there are no exceptions left, the
entry’s ‘has exceptions’ property is unset.

enum CAgnEntry::TType

• EAppt – appointment
• ETodo – to-do
• EEvent – event
• EAnniv – anniversary

312 USING THE AGENDA MODEL

Class CAgnEntry – public CAgnBasicEntry
Defined in agmentry.h

This is the abstract base class for the agenda entry classes. CAgnEntry adds common entry
information to CAgnBasicEntry.
Agenda entries are identified by an entry ID. Instances are identified by an instance ID, which
consists of an entry ID and a date. IDs are used so that lists of entries can be efficiently
processed and passed as function arguments and return values.
This class also lets you cast an entry or instance (which is retrieved into a CAgnEntry
because its type is not yet known) to a pointer to the appropriate class. To find the type of an
entry or instance, use CAgnEntry::Type(), which is implemented by each concrete entry
class.

Type Methods

virtual TType Type() const =0
This pure virtual method returns the type of a derived object. When the derived type is
known, the correct casting method can be called.

const CAgnAppt* CastToAppt() const
CAgnAppt* CastToAppt()
These methods cast an entry to an appointment entry.

const CAgnTodo* CastToTodo() const
CAgnTodo* CastToTodo()
These methods cast an entry to a to-do list entry.

const CAgnEvent* CastToEvent() const
CAgnEvent* CastToEvent()
These methods cast an entry to an event entry.

const CAgnAnniv* CastToAnniv() const
CAgnAnniv* CastToAnniv()
These methods cast an entry to an anniversary entry.

Identifier Methods

inline void SetId(TAgnEntryId aId)
This method sets the ID of an entry.
aId – the ID to set.

inline TAgnEntryId EntryId() const
This method returns the entry ID.

inline void SetInstanceDate(TAgnDate aDate)
This method sets the date for an instance.
aDate – the date to be set.

inline TAgnDate InstanceDate() const
This method returns the date of an instance.

AGENDA MODEL API 313

inline void SetInstanceId(const TAgnInstanceId& aInstanceId)
This method sets the ID for an instance.
aInstanceId – the ID to set.

inline TAgnInstanceId InstanceId() const
This method returns the ID for an instance.

inline void SetIdAndInstanceDate(TAgnEntryId aId,TAgnDate aDate)
This method sets the date and ID for an instance.
aId – the ID to set.
aDate – the date to be set.

inline void SetIdAndInstanceDate(const TAgnInstanceId& aInstanceId)
This method sets the ID and date for an instance.
aInstanceId – the instance identifier to be set.

Methods Common to Multiple Types

void SetRptDefL(const CAgnRptDef* aRptDef)
This method sets the entry’s repeat definition.
aRptDef – the repeat definition to be set.

void MakeInstanceNonRepeating()
This method converts an instance of a repeating entry into a non-repeating entry. The entry’s
start and end date/times (or due date for a to-do entry) are set according to the instance’s start
and end dates. If the entry is a day note, its display date/time is set according to the instance
start date/time. If the entry is a to-do, its due date is set according to the instance end date.

CRichText* RichTextL()
This method provides access to the entry’s text.

void SetNotesTextL(HBufC* aNotes)
This method sets the entry’s notes text.
aNotes – the notes text to be set.

const TDesC& NotesTextL() const
This method provides access to the entry’s notes text. If none is set then an empty descriptor is
returned.

virtual TTime InstanceStartDate() const = 0
This method returns the start date and time for an instance of the entry.

virtual TTime InstanceEndDate() const = 0
This method returns the end date and time for an instance of the entry.

virtual TTimeIntervalMinutes DisplayTime() const = 0
This method returns the entry’s display time.

314 USING THE AGENDA MODEL

void SetEventPriority(TUint aPriority)
This method sets the priority for an entry. It should not be called for a to-do list entry.
aPriority – entry priority: should be a value between 0 and 255.

TUint EventPriority() const
This method returns the priority for an entry.

Class CAgnAppt – public CAgnEntry
Defined in agmentry.h

This class represents an agenda appointment.
While other entry types have a start and end date (or due/crossed out date for to-dos), and a
separate display time, appointments have a start date/time and an end date/time – the display
time is inherent in the start date/time.
An appointment whose end date/time is the same as its start date/time is known as a day note.
A day note has a date (the date component of its date/time) and a display time (the time
component of the date/time). The display time can be used to tell the user interface where to
display the day note in a view that contains times of day, such as in day or week views.

Construction Methods

static CAgnAppt* NewL(
const CParaFormatLayer* aParaFormatLayer,
const CCharFormatLayer* aCharFormatLayer,
TCreateHow aCreateHow = ECreateRichText)

static CAgnAppt* NewLC(
const CParaFormatLayer* aParaFormatLayer,
const CCharFormatLayer* aCharFormatLayer,
TCreateHow aCreateHow = ECreateRichText)

These methods create a new appointment entry.
aParaFormatLayer – pointer to the format layer on which the entry’s rich text paragraph

formatting will be based.
aCharFormatLayer – pointer to the format layer on which the entry’s rich text character

formatting will be based.
aCreateHow – this parameter is for testing purposes and should not be used; the default

value is sufficient.

Date and Time Methods

void SetStartAndEndDateTime(
const TTime& aStartDateTime,
const TTime& aEndDateTime=Time::NullTTime())

This method sets the start and end date/time for the appointment. A null value for the end
date/time means that the entry is a day note.
aStartDateTime – the start date and time.
aEndDateTime – the end date and time.

AGENDA MODEL API 315

TTime StartDateTime() const
This method returns the start date and time for the appointment.

TTime EndDateTime() const
This method returns the end date and time for the appointment.

void SetDisplayTime(TTimeIntervalMinutes aDisplayTime)
This method sets the display time for day notes. This function should be called only for a day
note. It also unsets the entry’s ‘has default display time’ property.
aDisplayTime – the display time for the day note (minutes after midnight).

virtual TTimeIntervalMinutes DisplayTime() const
This method returns the display time for a day note. When called for an appointment that is
not a day note, it returns the appointments start time.

Class CAgnEvent – public CAgnEntry
Defined in agmentry.h

This class represents an agenda event.
An event has a start date, an optional end date, and a display time. Events differ from
appointments in that events have a start and end date, whereas appointments have a start and
end date and time. Whereas an appointment can have a duration of anything from zero to
23 hours and 59 minutes, an event is always an all-day entry with no start or end times.

Construction Methods

static CAgnEvent* NewL(
const CParaFormatLayer* aParaFormatLayer,
const CCharFormatLayer* aCharFormatLayer,
TCreateHow aCreateHow = ECreateRichText)

static CAgnEvent* NewLC(
const CParaFormatLayer* aParaFormatLayer,
const CCharFormatLayer* aCharFormatLayer,
TCreateHow aCreateHow = ECreateRichText)

These methods create a new appointment entry.
aParaFormatLayer – pointer to the format layer on which the entry’s rich text paragraph

formatting will be based.
aCharFormatLayer – pointer to the format layer on which the entry’s rich text character

formatting will be based.
aCreateHow – this parameter is for testing purposes and should not be used; the default

value is sufficient.

Date and Time Methods

void SetStartAndEndDate(
const TTime& aStartDate,
const TTime& aEndDate=Time::NullTTime())

316 USING THE AGENDA MODEL

This method sets the start and end date for the event. A null value for the end date means that
the event lasts for only one day.
aStartDate – the start date.
aEndDate – the end date.

TTime StartDate() const
This method returns the event’s start date.

TTime EndDate() const
This method returns the event’s end date.

void SetDisplayTime(TTimeIntervalMinutes aDisplayTime)
This method sets the display time for the event.
aDisplayTime – the display time for the day note (minutes after midnight).

virtual TTimeIntervalMinutes DisplayTime() const
This method returns the display time for an event.

enum CAgnAnniv::TDisplayAs

• ENone – none of the following
• EBaseYear – displays the base year
• EElapsedYears – displays the years elapsed since the base year
• EBaseAndElapsed – displays both base and elapsed years

Class CAgnAnniv – public CAgnEvent
Defined in agmentry.h

This class represents an agenda anniversary.
An anniversary is an event which occurs once a year. It may be repeating, and if so, the
repeat type must be annual. Its details include an optional base year, so that an anniversary
can be displayed showing the number of years since that year (for example, how old someone
is on this birthday) and/or showing the base year itself.

Construction Methods

static CAgnAnniv* NewL(
const CParaFormatLayer* aParaFormatLayer,
const CCharFormatLayer* aCharFormatLayer,
TCreateHow aCreateHow = ECreateRichText)

static CAgnAnniv* NewLC(
const CParaFormatLayer* aParaFormatLayer,
const CCharFormatLayer* aCharFormatLayer,
TCreateHow aCreateHow = ECreateRichText)

AGENDA MODEL API 317

These methods create a new anniversary entry.
aParaFormatLayer – pointer to the format layer on which the entry’s rich text paragraph

formatting will be based.
aCharFormatLayer – pointer to the format layer on which the entry’s rich text character

formatting will be based.
aCreateHow – this parameter is for testing purposes and should not be used; the default

value is sufficient.

Year Methods

inline void SetHasBaseYear(TBool aHasBaseYear)
This method sets the anniversary to have a base year or not.
aHasBaseYear – ETrue if the anniversary is to have a base year.

inline TBool HasBaseYear() const
This method returns ETrue if the anniversary has a base year.

void SetBaseYear(TTimeIntervalYears aBaseYear)
This method sets the base year for an anniversary. It also sets the ‘has base year’ attribute.
aBaseYear – the base year to be set for the anniversary.

inline TTimeIntervalYears BaseYear() const
This method returns the base year for an anniversary.

void SetDisplayAs(TDisplayAs aDisplayAs)
This method sets how the anniversary is to be displayed.
aDisplayAs – how the anniversary is to be displayed.

inline TDisplayAs DisplayAs() const
This method returns how the anniversary is to be displayed.

enum CAgnTodo::TDisplayDueDateAs

• EAutomatic – displays the due date as a date. When the current date is within one week
of the due date, then the due date is displayed using the format ‘Next Wed’.

• EDate – always displays the due date as a date.
• EDays – displays the due date as the number of days between the current date and the due

date.
• EDontDisplay – never displays the due date.

Class CAgnTodo – public CagnEntry
Defined in agmentry.h

This class represents a to-do entry or instance.
A to-do entry represents a task or an action to be carried out. It has a display time, which
allows it to be displayed in views that contain times of day, such as day or week views. Also,
it may optionally have a start date (the first date on which it is displayed in day or week views)

318 USING THE AGENDA MODEL

and either a due date (to indicate the date by which the action should be carried out) or a
crossed out date (the date the action was carried out). An undated to-do entry does not have a
due date, a crossed out date or a start date. To-do details include the ID of the to-do list to
which the to-do belongs and a priority.

Construction Methods

static CAgnTodo* NewL(
const CParaFormatLayer* aParaFormatLayer,
const CCharFormatLayer* aCharFormatLayer,
TCreateHow aCreateHow = ECreateRichText)

static CAgnTodo* NewLC(
const CParaFormatLayer* aParaFormatLayer,
const CCharFormatLayer* aCharFormatLayer,
TCreateHow aCreateHow = ECreateRichText)

Member Methods

void SetTodoListId(TAgnTodoListId aTodoListId)
This method sets the identifier of the to-do list that the entry belongs to.
aTodoListId – the list identifier.

inline TAgnTodoListId TodoListId() const
This method returns the identifier of the to-do list that the entry belongs to.

void SetPriority(TUint aPriority)
This method sets the priority for the to-do list entry.
aPriority – the priority to be set.

inline TUint Priority() const
This method returns the entry priority.

void SetDisplayDueDateAs(TDisplayDueDateAs aDisplayAs)
This method sets the display mode of the entry’s due date.
aDisplayAs – the display mode to be set.

inline TDisplayDueDateAs DisplayDueDateAs() const
This method returns the display mode of the entry’s due date.

void SetDisplayTime(TTimeIntervalMinutes aDisplayTime)
This method sets the display time for the entry.
aDisplayTime – the display time for the entry in minutes after midnight.

virtual TTimeIntervalMinutes DisplayTime() const
This method returns the display time for the entry.

void SetDueDate(const TTime& aDueDate)
This method sets the due date for the entry.
aDueDate – the due date to be set.

AGENDA MODEL API 319

TTime DueDate() const
This method returns the due date for the entry.

void CrossOut(const TTime& aDate)
This method sets the crossed out date for the entry, i.e. the date the action required for the
entry was completed.
aDate – the date the action was completed.

void UnCrossOut()
This method sets the entry as uncrossed out.

TTime CrossedOutDate() const
This method returns the crossed out date for the entry. If the entry is not crossed out then a
NULL value is returned.

void SetDuration(TTimeIntervalDays aDuration)
This method sets the entry’s duration, i.e. the number of days between the start date and the
due date. This function can be called on an entry if it is not repeating or on an individual
instance if the entry is repeating
aDuration – the duration to be set.

inline TTimeIntervalDays Duration() const
This method returns the entry’s duration.

void SetAlarmFromDueDate()
Sets the alarm date to be a number of days from the entry’s due date rather than its start date.
This function should be called after calling SetAlarm().

void SetAlarmFromStartDate()
Sets the alarm date to be a number of days from the to-do entry’s start date rather than its due
date. This function should be called after calling SetAlarm().

inline TBool IsAlarmSetFromDueDate() const
This method returns ETrue if the alarm is set from the entry’s due date.

inline TBool IsAlarmSetFromStartDate() const
This method returns ETrue if the alarm is set from the entry’s start date.

TBool IsDated() const
This method returns ETrue if the entry has its due date set.

void MakeUndated()
This method makes the entry undated, thus clearing most of its fields. This function sets the
due date and crossed out date to NULL, sets the duration to zero and clears any alarm and
repeat details.

320 USING THE AGENDA MODEL

12.6.4 List Classes

Class CAgnList – public CBase
template<class InstanceItem>
Defined in agmlists.h

This class represents a list of Agenda items. The type of item is specified by the user of the
class.

Constructor

CAgnList()
This method creates a new, empty list.

Member Methods

inline TInt Count() const
This method returns the number of items in the list.

inline const InstanceItem& operator[](TInt aIndex) const
This operator returns an item from the list.
aIndex – the index of the item to be returned.

inline void Reset()
This method empties the list.

inline void Delete(TInt aIndex)
This method deletes an item from the list. A panic occurs if the index is out of range.
aIndex – the index of the item to be deleted.

inline void AppendL(const InstanceItem& aElement)
This method adds an item to the end of the list.
aElement – the item to be added to the end of the list.

inline void InsertL(TInt aIndex, const InstanceItem& aElement)
This method inserts an item into the list.
aIndex – the position at which to insert the item.
aElement – the item to be inserted.

inline TInt Find(const InstanceItem& aItem,
TKeyArrayFix& aKey,
TInt& aPos) const

This method returns the index of the first item that matches the key.
aItem – a reference to the item to be searched for.
aKey – a reference to a set of fields to be searched on.
aPos – if the element is found, the reference is set to the position of that element within the

array. The position is relative to zero, i.e. the first element in the array is at position 0. If
the element is not found and the array is not empty, then the value of the reference is set
to the number of elements in the array. If the element is not found and the array is empty,
then the reference is set to zero.

returns – zero if a match is found, otherwise a non-zero value.

AGENDA MODEL API 321

Class CAgnDayList – public CAgnList<InstanceItem>
Defined in agmlists.h

This class represents a list of Agenda items for a single day.
Note that the instance date of an instance does not have to be the same as the date of the day
list if the entry spans midnight.
The type of item is specified by the user of the class.

Construction Methods

inline static CAgnDayList* NewL(const TTime& aDay)
This method creates a new, empty list.
aDay – the day for the day list.

Member Methods

inline void SetDay(const TTime& aDay)
This method sets the day for the day list.
aDay – the day to be set.

inline TTime Day() const
This method returns the day for the day list.

Class CAgnDayDateTimeInstanceList –
public CAgnDayList<TAgnInstanceDateTimeId>
Defined in agmlists.h

This class represents a list of TAgnInstanceDateTimeId for one day.

Construction Method

static CAgnDayDateTimeInstanceList* NewL(const TTime& aDay)
This method creates a new, empty list.
aDay – the day for the day list.

Class CAgnMonthInstanceList – public CAgnList<TAgnInstanceId>
Defined in agmlists.h

This class represents a list of instance IDs for a month.

Construction Method

static CAgnMonthInstanceList* NewL(TTimeIntervalYears aYear,
TMonth aMonth)

This method creates a new, empty list.
aYear – the year for the list.
aMonth – the month for the list.

322 USING THE AGENDA MODEL

Member Methods

inline void SetYear(TTimeIntervalYears aYear)
This method sets the year for the list.
aYear – the year to be set.

inline TTimeIntervalYears Year() const
This method returns the year for the list.

inline void SetMonth(TMonth aMonth)
This method sets the month for the list.
aMonth – the month to be set.

inline TMonth Month() const
This method returns the month for the list.

struct CAgnTodoListList::TListItem
Defined in agmtodos.h

This structure represents an item in a list of to-do lists. Not all members are covered here.

Members

TAgnTodoListId iTodoListId – the identifier of the to-do list.

Class CAgnTodoListList
Defined in agmtodos.h

This class is a list of to-do list identifiers, each of which uniquely identifies a to-do list.

Construction Method

static CAgnTodoListList* NewL()
This method creates a new, empty list.

Member Methods

const CAgnTodoListList::TListItem& operator[](TInt aIndex) const
CAgnTodoListList::TListItem& operator[](TInt aIndex)
These operators provide access to an item from the list.
aIndex – index of the item required.

TAgnTodoListId TodoListId(TInt aIndex) const
This method returns the to-do list identifier from the item at the specified position.
aIndex – index of the item required.
returns – the to-do list identifier.

AGENDA MODEL API 323

inline TInt Count() const
This method returns the number of items in the list.

void Reset()
This method empties the list.

inline void AppendL(const TListItem* aItem)
This method adds an item to the end of the list.
aItem – the item to be added.

inline void InsertL(TInt aPosition, const TListItem* aItem)
This method inserts a new item into the list.
aPosition – the position at which the item is to be inserted.
aItem – the item to be inserted.

void Delete(TAgnTodoListId aTodoListId)
inline void Delete(TInt aPosition)
These methods delete an item from the list, either by identifier or by position.
aTodoListId – the identifier of the list to be deleted.
aPosition – the position of the item to be deleted.

TInt Find(TAgnTodoListId aTodoListId, TInt& aPos) const
This method searches for an item with the specified to-do list identifier.
aTodoListId – the identifier of the list to be found.
aPos – on return, the position in the list of the matching item, if found.
returns – 0 if the item is found, 1 if it cannot be found, and – 1 if the list is empty.

enum CAgnTodoList::TSortOrder

• EManual – sort manually
• EByDate – sort by date
• EByPriority – sort by priority

Class CagnTodoList
Defined in agmtodos.h

This class represents a to-do list. This is a list of to-do entries, with a name, an identifier and
display settings. The display settings include the sort order, whether to-do entries should be
displayed in other views, and whether crossed out to-do entries should be displayed.
It should not be confused with a to-do instance list (CAgnTodoInstanceList), which is a
filtered list of to-do instance IDs, representing a subset of a to-do list’s entries that are to be
displayed at a given time.

Construction Methods

static CAgnTodoList* NewL()
This method creates a new, empty list.

324 USING THE AGENDA MODEL

Member Methods

inline TAgnTodoListId Id() const
This method returns the list identifier.

void SetName(const TDesC& aName)
This method sets the name for the list.
aName – the name to be set.

inline TPtrC Name() const
This method returns the name for the list.

void SetSortOrder(TSortOrder aSortOrder)
This method sets the sort order for the list.
aSortOrder – the sort order to be set.

inline TSortOrder SortOrder() const
This method returns the sort order for the list.

void SetDisplayCrossedOutEntries(TBool aDisplay)
This method sets whether or not the list is to display crossed-out entries.
aDisplay – ETrue if crossed-out entries are to be displayed.

inline TBool DisplayCrossedOutEntries() const
This method returns ETrue if crossed-out entries are to be displayed.

Class CAgnTodoInstanceList – public CAgnList<TAgnInstanceId>
Defined in agmlists.h

This class represents a list of instance identifiers of to-do entries that belong to a particular
to-do list. It stores the identifier of the to-do list and a sort order, which is used to sort the
instance list.

Construction Method

static CAgnTodoInstanceList* NewL(
TAgnTodoListId aTodoListId=AgnModel::NullTodoListId())

This method creates a new, empty list.
aTodoListId – the identifier for the list containing the entries.

Member Methods

inline void SetTodoListId(TAgnTodoListId aTodoListId)
This method sets the identifier for the to-do list containing the entries.
aTodoListId – the identifier for the list containing the entries.

inline TAgnTodoListId TodoListId() const
This method returns the identifier for the to-do list containing the entries.

AN AGENDA CONNECTIVITY SERVICE 325

inline void SetSortOrder(CAgnTodoList::TSortOrder aSortOrder)
This method sets the sort order for the list.
aSortOrder – the sort order to be used.

inline CAgnTodoList::TSortOrder SortOrder() const
This method returns the sort order for the list.

TInt Find(TAgnInstanceId aId,TInt& aPos)
This method returns the position in the list of an instance identifier.
aId – the instance identifier to search for.
aPos – on return, this is set to the position of the instance identifier, if found.
returns – zero if the identifier was found, a positive number if the identifier was not found,

and a negative number if the list is empty.

inline const TAgnInstanceId& Id(TInt aIndex) const
This method returns the instance identifier at the specified position in the list.
aIndex – the position in the list of the desired instance identifier.
returns – the instance identifier at the desired position.

12.7 An Agenda Connectivity Service

We now need to plan the functions that we want our Agenda connectivity
service to support. We are not trying to compete with PIM synchronization
software – what we want to do is to provide a window on the Agenda
data from the PC. This allows the user to keep one copy of their data on
the Symbian OS mobile phone and to access it by the most convenient
means at the time.

For reasons of practicality, we will confine our service to listing
appointments, events and anniversaries, and to-do entries, and to creating
and editing appointments and to-do entries. We will not try to handle the
full range of repeating entries, simply for space reasons. If you want to
create a more fully-featured service then add more functions.

12.7.1 Protocol Description

The functions that we are going to create are planned around a user
interface, not a batch approach. Therefore, we will fetch all appointments
and events for a specific day. We will not (at least for now) create functions
to fetch entries for a monthly or yearly view, but we will retrieve to-do
entries. We will not try to create new to-do lists, but we will provide
functions to create new appointments, events or to-do entries.

This then allows us to propose a set of commands for our protocol
and a set of responses. The following defines the command and response
operation codes.

326 USING THE AGENDA MODEL

enum TRAgnCmdCode
{
ERAgnCmdNone = 100, // Reserved for internal usage
ERAgnCmdQueryVersion = 101, // Query version
ERAgnCmdVersionReply = 102, // Version reply
ERAgnCmdError = 103, // An error has occurred

ERAgnCmdOpenAgenda = 110, // Open an agenda database
ERAgnCmdOpenAgendaReply = 111, // An agenda database has been opened

ERAgnCmdFetchApptsByDay = 120, // Fetch all appointments for a day
ERAgnCmdFetchMoreAppts = 121, // Fetch more appointments
ERAgnCmdFetchApptsReply = 122, // Reply including appointments
ERAgnCmdCreateAppt = 123, // Create a new appointment or event
ERAgnCmdCreateApptReply = 125, // Reply after creating an appointment
ERAgnCmdEditAppt = 126, // Edit an appointment
ERAgnCmdEditApptReply = 128, // Reply after editing an appointment

ERAgnCmdFetchTodoLists = 130, // Fetch all To-do lists
ERAgnCmdFetchTodoListsReply = 131, // Reply including To-do lists
ERAgnCmdFetchOneTodoList = 132, // Fetch entries from one To-do list
ERAgnCmdFetchMoreTodoListEntries = 133, // Fetch more To-dos
ERAgnCmdFetchTodoListEntriesReply = 134, // Reply containing

// To-do list entries
ERAgnCmdCreateTodoListEntry = 135, // Create a new To-do list entry
ERAgnCmdCreateTodoListEntryReply = 136, // Reply after creating a

// To-do list entry
ERAgnCmdEditTodoListEntry = 137, // Edit a To-do list entry
ERAgnCmdEditTodoListEntryReply = 138, // Reply after editing a

// To-do list entry

ERAgnCmdDeleteInstance = 140, // Delete instance
ERAgnCmdDeleteReply = 141 // Reply after deletion
};

Some commands need no additional parameters or just one or more
identifiers. Opening an Agenda database requires the database file
name, and fetching appointments for a date requires the date. Creat-
ing or editing appointments, events or to-do entries requires additional
data.

Just as with the other protocols we have defined, some of the responses
include just a reply code while others include more data – notably the
appointments, events and to-do entries replies.

Query Version Command

Field Type Meaning

Opcode Int32 ERAgnCmdQueryVersion (=101)

Transaction ID Int32 PDU transaction identifier

AN AGENDA CONNECTIVITY SERVICE 327

Version Reply

Field Type Meaning

Opcode Int32 ERAgnCmdVersionReply (=102)

Transaction ID Int32 PDU transaction identifier

Major Version Int32 Major version number

Minor Version Int32 Minor version number

Build Number Int32 Build number

Error Reply

Field Type Meaning

Opcode Int32 ERAgnCmdError (=103)

Transaction ID Int32 PDU transaction identifier

Error Code Int32 Symbian OS error code

Open Agenda Database Command
This command includes the name of the agenda database to open.

Field Type Meaning

Opcode Int32 ERAgnCmdOpenAgenda (=110)

Transaction ID Int32 PDU transaction identifier

Name Length Int16 Length in characters of file name

Name Text Unicode data File name

Open Agenda Database Reply

Field Type Meaning

Opcode Int32 ERAgnCmdOpenAgendaReply (=111)

Transaction ID Int32 PDU transaction identifier

328 USING THE AGENDA MODEL

Fetch Appointments By Day Command
This command includes a text string for which to retrieve appointments, events and
anniversaries.

Field Type Meaning

Opcode Int32 ERAgnCmdFetchApptsByDay (=120)

Transaction ID Int32 PDU transaction identifier

Day Text Length Int16 Length in characters of date text

Day Text ASCII data Date text of the form YYYYMMDD, where
MM and DD are zero based

Fetch More Appointments Command

Field Type Meaning

Opcode Int32 ERAgnCmdFetchMoreAppts (=121)

Transaction ID Int32 PDU transaction identifier

Fetch Appointments Reply
The returned appointments, events and anniversaries are instances rather than entries,
so they are identified by a date and instance identifier. They include appropriate dates
and times, a set of Boolean properties and the entry text. We are not going to include
repeat details or notes text. Because multiple instances can be included, we take a
value of −1 as the end of the list. Alarm details are included only if the alarm is set.
Appointments have a start and end date and time, while events and anniversaries have
a start and end date and a display time.

Field Type Meaning

Opcode Int32 ERAgnCmdFetchApptsReply (=122)

Transaction ID Int32 PDU transaction identifier

. . .

Entry Type Int32 The entry type (EAppt, EEvent or EAnniv)

Instance ID Int32 Instance identifier

Instance Date Date/Time Instance date

Crossed Out Int8 Boolean ‘crossed out’ flag

Tentative Int8 Boolean tentative flag

Day Note Int8 Boolean day-note flag

AN AGENDA CONNECTIVITY SERVICE 329

Repeat Int8 Boolean repeat flag

Has Alarm Int8 Boolean ‘has alarm’ flag

. . .

Alarm Days Int16 Days before for alarm

Alarm Minutes Int16 Minutes after midnight for alarm

. . .

Text Length Int16 Length of text

Text Unicode data Text

. . . An appointment has a start and end date and time.

Start Date/Time Date/Time Start date and time

End Date/Time Date/Time End date and time

. . . An event or anniversary has a start and end date and a display time.

Start Date Date/Time Start date

End Date Date/Time End date

Display Time Int16 Display time in minutes after midnight

. . .

−1 Int32 Terminating instance identifier

Create Appointment or Event
The appointment or event details include alarm details, but not repeat details. This
allows the user to create a one-off appointment or event, but not a repetitive series.
Alarm details are included only if they are required. Because appointments and events
are very similar, they can be handled by one command type with an entry type and a
display time that is included only for events.

Field Type Meaning

Opcode Int32 ERAgnCmdCreateAppt (=123)

Transaction ID Int32 PDU transaction identifier

330 USING THE AGENDA MODEL

Entry Type Int32 Entry type – EAppt or EEvent

Start Date/Time Date/Time Start date and time for appointments or start date
for events

End Date/Time Date/Time End date and time for appointments or start date
for events

. . .

Display Time Int16 Display time for events in minutes after midnight

. . .

Has Alarm Int8 Boolean ‘has alarm’ flag

. . .

Alarm Days Int16 Days before for alarm

Alarm Minutes Int16 Minutes after midnight for alarm

. . .

Crossed Out Int8 Boolean ‘crossed out’ flag

Tentative Int8 Boolean tentative flag

Day Note Int8 Boolean day-note flag

Text Length Int16 Length in characters of text

Text Unicode data Text

Create Appointments Reply

Field Type Meaning

Opcode Int32 ERAgnCmdCreateApptReply (=125)

Transaction ID Int32 PDU transaction identifier

Instance ID Int32 Identifier for newly created appointment

AN AGENDA CONNECTIVITY SERVICE 331

Edit Appointment or Event
The appointment or event details include alarm details but not repeat details. However,
the instance being edited may already be part of a series. Therefore, we include the
ability to edit one instance or more of a series. We do not want to set all members if
not necessary, so we include flags for setting or not the times and alarms and the start
and end times, and alarm details are included only if they are being set. The instance
type is not contained in the command – it is found from the instance itself. Events have
a display time and start and end dates, while appointments have start and end dates
and times, otherwise their data is common.

Field Type Meaning

Opcode Int32 ERAgnCmdEditAppt (=126)

Transaction ID Int32 PDU transaction identifier

Instance ID Int32 Instance identifier

Instance Date Date/Time Instance date

Which Instances Int32 ‘Which instances’ enum value

Edit Times Int8 Boolean ‘edit times’ flag

. . .

Start Date/Time Date/Time Start date and time for appointments or start date for
events

End Date/Time Date/Time End date and time for appointments or start date for
events

. . .

Display Time Int16 Display time in minutes after midnight – only for events

. . .

Edit Alarm Int8 Boolean ‘edit alarm’ flag

. . .

Has Alarm Int8 Boolean ‘has alarm’ flag

. . .

Alarm Days Int16 Days before for alarm

Alarm Minutes Int16 Minutes after midnight for alarm

332 USING THE AGENDA MODEL

. . .

Crossed Out Int8 Boolean ‘crossed out’ flag

Tentative Int8 Boolean tentative flag

Day Note Int8 Boolean day-note flag

Edit Text Int8 Boolean ‘edit text’ flag

. . .

Text Length Int16 Length in characters of text

Text Unicode data Text

Edit Appointments Reply

Field Type Meaning

Opcode Int32 ERAgnCmdEditApptReply (=128)

Transaction ID Int32 PDU transaction identifier

Instance ID Int32 Identifier for edited appointment (may be zero if
it has not been necessary to create a new
sequence of appointments)

Fetch All To-do Lists Command

Field Type Meaning

Opcode Int32 ERAgnCmdFetchTodoLists (=130)

Transaction ID Int32 PDU transaction identifier

Fetch To-do Lists Reply
The returned lists include their names, whether or not they display crossed-out entries,
and sort order. The actual entries are not included. Because multiple lists may be
included, the list is terminated with a list identifier of −1.

Field Type Meaning

Opcode Int32 ERAgnCmdFetchTodoListsReply (=131)

Transaction ID Int32 PDU transaction identifier

AN AGENDA CONNECTIVITY SERVICE 333

. . .

List ID Int32 List identifier

Display Crossed Out Int8 Boolean ‘display crossed out’ flag

Sort Order Int32 Sort order

Name Length Int16 Length in characters of list name text

Name Text Unicode data Name text

. . .

−1 Int32 Terminating instance identifier

Fetch To-do Entries Command

Field Type Meaning

Opcode Int32 ERAgnCmdFetchOneTodoList (=132)

Transaction ID Int32 PDU transaction identifier

List ID Int32 Identifier of the list

Fetch More To-do Entries Command

Field Type Meaning

Opcode Int32 ERAgnCmdFetchMoreTodoListEntries (=133)

Transaction ID Int32 PDU transaction identifier

Fetch To-do Entries Reply
The returned to-do entries include the owning list identifier, instance date and identifier,
priority, due date and entry text. Because multiple instances can be included, we take
a list identifier of – 1 as the end of the list.

Field Type Meaning

Opcode Int32 ERAgnCmdFetchTodoListEntriesReply (=134)

Transaction ID Int32 PDU transaction identifier

334 USING THE AGENDA MODEL

. . .

List ID Int32 Owning list identifier

Instance ID Int32 Instance identifier

Instance Date Date/Time Instance date

Priority Int32 Entry priority

Due Date Date/Time Due date and time

Text Length Int16 Length in characters of text

Text Unicode data Text

. . .

−1 Int32 Terminating list identifier

Create To-do Entry
The appointment details include alarm details, but not repeat details. This allows the
user to create a one-off appointment, but not a repetitive series. Alarm details are
included only if they are required.

Field Type Meaning

Opcode Int32 ERAgnCmdCreateTodoListEntry (=135)

Transaction ID Int32 PDU transaction identifier

Due Date/Time Date/Time Due date and time

Priority Int32 Priority

Text Length Int16 Length in characters of text

Text Unicode data Text

Create To-do Entry Reply

Field Type Meaning

Opcode Int32 ERAgnCmdCreateTodoListEntryReply
(=136)

Transaction ID Int32 PDU transaction identifier

Instance ID Int32 Identifier for newly created entry

AN AGENDA CONNECTIVITY SERVICE 335

Edit To-do Entry
We do not want to set all members if not necessary, so we include flags for setting or
not the times and alarms, and the start and end times and alarm details are included
only if they are being set.

Field Type Meaning

Opcode Int32 ERAgnCmdEditTodoListEntry (=137)

Transaction ID Int32 PDU transaction identifier

Edit Due Date Int8 Boolean ‘edit due date’ flag

. . .

Due Date/Time Date/Time Due date and time

. . .

Priority Int32 Priority

Edit Text Int8 Boolean ‘edit text’ flag

. . .

Text Length Int16 Length in characters of text

Text Unicode data Text

Edit To-do Entry Reply

Field Type Meaning

Opcode Int32 ERAgnCmdEditTodoListEntryReply
(=138)

Transaction ID Int32 PDU transaction identifier

Instance ID Int32 Identifier for edited appointment (may be zero if
it has not been necessary to create a new
sequence of appointments)

Delete Instance Command
The same command can delete any type of instance.

Field Type Meaning

Opcode Int32 ERAgnCmdDeleteInstance (=140)

336 USING THE AGENDA MODEL

Transaction ID Int32 PDU transaction identifier

Instance ID Int32 Instance identifier

Instance Date Date/Time Instance date

Delete Instance Reply

Field Type Meaning

Opcode Int32 ERAgnCmdDeleteReply (=141)

Transaction ID Int32 PDU transaction identifier

New Entry Flag Int32 Boolean flag indicating whether a new entry has
been created due to a repeating entry being split.

12.7.2 Opening the Agenda Database
In this section we see some code to access the Agenda model. This code
builds on custom servers or socket servers and the routines to pack or
unpack data used in previous chapters.

We create an instance of the Agenda Server and the Agenda Model,
link the two and open an Agenda Database.

class CRAgnUtil : public CBase, public MAgnProgressCallBack
{
public:
static CRAgnUtil *NewL(const TDesC& aFileName);
CRAgnUtil();
void ConstructL(const TDesC& aFileName);
virtual ∼CRAgnUtil();

// For MAgnProgressCallBack
public:
virtual void Progress(TInt aPercentageCompleted);
virtual void Completed(TInt aError = KErrNone);

// Service Routines
public:
. . .

// Member Variables
private:
RAgendaServ* iAgnSrv;
CAgnModel* iModel;

CAgnDayList<TAgnInstanceId>* iApptsList;
TAgnFilter iApptFilter;
TInt iApptArrayIndex;

AN AGENDA CONNECTIVITY SERVICE 337

CAgnTodoInstanceList* iTodoListArray;

HBufC* iPlainTextBuff;
};

void CRAgnUtil::ConstructL(const TDesC& aFileName)
{
iAgnSrv = RAgendaServ::NewL(); // allocate and construct server
iAgnSrv->Connect(); // connect to the server
iModel = CAgnModel::NewL(NULL); // allocate and construct model
iModel->SetServer(iAgnSrv); // set server pointer for model
TTimeIntervalMinutes zeroTime = TTimeIntervalMinutes();
iModel->OpenL(aFileName, zeroTime, zeroTime, zeroTime,

this, ETrue); // Open file using server

// Set up a list and filter to return appointments, events
// and anniversaries
TTime nullDate(0);
iApptsList = CAgnDayList<TAgnInstanceId>::NewL(nullDate);
iApptFilter.SetIncludeTodos(EFalse);
iPlainTextBuff = HBufC::NewL(KMaxTextLen);

iTodoListArray = CAgnTodoInstanceList::NewL();
iTodoListArray->SetSortOrder(CAgnTodoList::EByDate);
}

// Routines for MAgnProgressCallBack
void CRAgnUtil::Progress(TInt aPercentageCompleted)
{
}

void CRAgnUtil::Completed(TInt aError)
{
}

12.7.3 Retrieving Entry Data
Assuming that we want to display appointments, events and anniversaries
for one day, we set up a TTime object and use that to populate a list of
appointments. We use the filter set up in the constructor to not receive
to-do entries. We could set up alternate filters for different types of entries,
but it is easier to just accept appointments, events and anniversaries and
handle them based on their types. As in previous chapters, we assume
that we may have more entries than will fit in a buffer and allow them to
be retrieved in more than one iteration.

// Fetch all entries for one day
void CRAgnUtil::FetchApptsByDayL(TTime aDay, TDes8 &aBuffer,

TDes8 &aTempBuffer)
{
iApptsList->Reset();
iApptsList->SetDay(aDay);
iModel->PopulateDayInstanceListL(iApptsList, iApptFilter, aDay);

338 USING THE AGENDA MODEL

iApptArrayIndex = 0;
FetchMoreApptsL(aBuffer, aTempBuffer);
}

// Fetch more pending appointments
void CRAgnUtil::FetchMoreApptsL(TDes8 &aBuffer, TDes8 &aTempBuffer)
{
while((iApptArrayIndex >= 0) && (iApptArrayIndex <

iApptsList->Count()))
{
aTempBuffer.Zero();
GetOneApptL((*iApptsList)[iApptArrayIndex], aTempBuffer);

// The entry may not have been useful so check that data has been
// added
if(aTempBuffer.Length() > 0)
{ // If the data will fit then append it, otherwise break out
if(aTempBuffer.Length()+aBuffer.Length()+4 < aBuffer.MaxLength())

{
CConnPack::WriteBufferL(aTempBuffer, aBuffer);
++iApptArrayIndex;
}

else
{ // Run out of room - leave it till next PDU
break;
}// endif will fit

}//endif got non-zero data
}//endwhile
CConnPack::WriteInt32L(-1, aBuffer);

}

The code to fetch the details of one appointment, event or anniversary
instance is straightforward and largely consists of writing out member
data. We check the type before casting. Most of the member data is
common, but the times are slightly different based on type. We also
check in case we have an unexpected type. If the instance is not an
expected type then no action is taken – in a debug implementation we
could raise a panic, because this would indicate a coding error. Because
we are working with instances rather than entries, we need to output the
instance date as well as the instance identifier.

void CRAgnUtil::GetOneApptL(const TAgnInstanceId &aId, TDes8 &aBuffer)
{
TAgnEntryId entryId(aId.Id());
CAgnEntry* entry = iModel->FetchEntryL(entryId);
CleanupStack::PushL(entry);

if((entry->Type() != CAgnEntry::EAppt) &&
(entry->Type() != CAgnEntry::EEvent) &&
(entry->Type() != CAgnEntry::EAnniv))

{

CleanupStack::PopAndDestroy(entry);

AN AGENDA CONNECTIVITY SERVICE 339

return;
}

// Write general instance details for all supported types
CConnPack::WriteInt32L((TInt32)entry->Type(), aBuffer);
CConnPack::WriteInt32L((TInt32)aId.Value(), aBuffer);
CConnPack::WriteTTimeL(AgnDateTime::AgnDateToTTime(aId.Date()),

aBuffer);

// Write general properties
CConnPack::WriteInt8L((TInt8)entry->IsCrossedOut(), aBuffer);
CConnPack::WriteInt8L((TInt8)entry->IsTentative(), aBuffer);
CConnPack::WriteInt8L((TInt8)entry->IsADayNote(), aBuffer);
// Write Repeat properties - we only indicate if it is - no
// more detail
CConnPack::WriteInt8L((TInt8)entry->IsRepeating(), aBuffer);

CConnPack::WriteInt8L((TInt8)entry->HasAlarm(), aBuffer);
if(entry->HasAlarm())

{
CConnPack::WriteInt16L((TInt16)entry->AlarmDaysWarning().Int(),

aBuffer);
CConnPack::WriteInt16L((TInt16)entry->AlarmTime().Int(), aBuffer);
}

// Write the entry rich text
TPtr tempPtr(iPlainTextBuff->Des());
entry->RichTextL()->Extract(tempPtr);
CConnPack::WriteUNCDataL(tempPtr, aBuffer);

if(entry->Type() == CAgnEntry::EAppt)
{
CAgnAppt* appt = entry->CastToAppt() ;
// Write the start and end date and time
CConnPack::WriteTTimeL(appt->StartDateTime(), aBuffer);
CConnPack::WriteTTimeL(appt->EndDateTime(), aBuffer);
}

else
{// Anniversaries derive from events
CAgnEvent* event = entry->CastToEvent() ;
// Write the start and end date and the display time
CConnPack::WriteTTimeL(event->StartDate(), aBuffer);
CConnPack::WriteTTimeL(event->EndDate(), aBuffer);
CConnPack::WriteInt16L((TInt16)event->DisplayTime().Int(), aBuffer);
}

CleanupStack::PopAndDestroy(entry);
}

12.7.4 Retrieving To-do Data
In order to provide the full set of to-do lists, we can simply use the
CAgnEntryModel::PeekAtTodoList method. All we want to pro-
vide is the list identifier, name and a couple of attributes. In fact, because
most users will not have many to-do lists and are unlikely to have hun-
dreds of entries in the lists (unless they are way behind with their work),
we could have just returned all to-do list entries as well, but this split

340 USING THE AGENDA MODEL

is neater and retrieving one extra packet should not slow things down
too much.

void CRAgnUtil::FetchTodoListsL(TDes8 &aBuffer)
{
Tint listCount = iModel->PeekAtTodoListList()->Count()
for(TInt listIndex = 0 ; listIndex < listCount ; ++listIndex)

{
Tint listId = iModel->PeekAtTodoListList()->TodoListId(listIndex);
CAgnTodoList *list = iModel->FetchTodoListL(listId);
CleanupStack::PushL(list);

CConnPack::WriteInt32L(list->Id().Value(), aBuffer);
CConnPack::WriteInt8L((TInt8)list->DisplayCrossedOutEntries(),

aBuffer);
CConnPack::WriteInt32L(list->SortOrder(), aBuffer);
TPtrC listName = list->Name();
CConnPack::WriteUNCDataL(listName, aBuffer);

CleanupStack::PopAndDestroy(list);
}

CConnPack::WriteInt32L(-1, aBuffer);
}

Given a to-do list, retrieving the entries uses the CAgnModel::Pop-
ulateTodoInstanceList method.

void CRAgnUtil::FetchOneTodoListL(TInt aListId, TDes8 &aBuffer,
TDes8 &aTempBuffer)

{
TAgnTodoListId listId(aListId);
TTime todoDate;
todoDate.HomeTime();

iTodoListArray->Reset();
iTodoListArray->SetTodoListId(listId);
iModel->PopulateTodoInstanceListL(iTodoListArray, todoDate);

FetchMoreTodoListEntriesL(aBuffer, aTempBuffer);
}

// Fetch more Todos
void CRAgnUtil::FetchMoreTodoListEntriesL(TDes8 &aBuffer,

TDes8 &aTempBuffer)
{
while(iTodoListArray->Count() > 0)

{
aTempBuffer.Zero();
GetOneTodoListEntryL(iTodoListArray->TodoListId().Value(),

(*iTodoListArray)[0], aTempBuffer);

// The entry may not have been useful so check that data has been
// added
if(aTempBuffer.Length() > 0)
{

AN AGENDA CONNECTIVITY SERVICE 341

// If the data will fit then append it, otherwise break out
if(aTempBuffer.Length()+aBuffer.Length()+4 < aBuffer.MaxLength())

{
CConnPack::WriteBufferL(aTempBuffer, aBuffer);
iTodoListArray->Delete(0);
}

else
{ // Run out of room - leave it till next PDU
break;
}// endif will fit

}//endif got non-zero data

}//endwhile
CConnPack::WriteInt32L(-1, aBuffer);

}

Once again, we just write member data to the buffer, remembering to
check the type of the instance before casting it.

void CRAgnUtil::GetOneTodoListEntryL(const TInt aTodoListId,
const TAgnInstanceId &aId,
TDes8 &aBuffer)

{
CAgnEntry* item = iModel->FetchInstanceL(aId);
CleanupStack::PushL(item);

if(item->Type() == CAgnEntry::ETodo)
{
CConnPack::WriteInt32L(aTodoListId, aBuffer);
CAgnTodo* todo = item->CastToTodo() ;
CConnPack::WriteInt32L(aId.Value(), aBuffer);
CConnPack::WriteTTime(AgnDateTime::AgnDateToTTime(aId.Date()),

aBuffer);

CConnPack::WriteInt32L(todo->Priority(), aBuffer);
TTime dueDate = todo->DueDate();
CConnPack::WriteTTime(dueDate, aBuffer);

TPtr tempPtr(iPlainTextBuff->Des());
todo->RichTextL()->Extract(tempPtr);
CConnPack::WriteUNCDataL(tempPtr, aBuffer);
}//endif a Todo entry

CleanupStack::PopAndDestroy(item);
}

12.7.5 Creating, Editing and Deleting Entries

Creating a new appointment or event requires us to create a new object
and set its attributes before adding it to the database. Agenda model
entries do not need anything unusual to create. Appointments and events
differ in their times, so we can create them in one routine with the
differences handled.

342 USING THE AGENDA MODEL

TInt CRAgnUtil::CreateApptL(TDes8 &aBuffer)
{
CAgnEntry::TType entryType =

(CAgnEntry::TType)CConnPack::ReadInt32L(aBuffer);
// We need a base entry
CAgnEntry* newEntry = NULL;

if((entryType != CAgnEntry::EAppt) &&
(entryType != CAgnEntry::EEvent))

{
User::Leave(KErrArgument);
}

if(entryType == CAgnEntry::EAppt)
{
newEntry = CAgnAppt::NewL(iModel->ParaFormatLayer(),

iModel->CharFormatLayer());
CleanupStack::PushL(newEntry);
CAgnAppt*appt = newEntry->CastToAppt();
// Read and set start end end times
TTime startTime = CConnPack::ReadTTimeL(aBuffer);
TTime endTime = CConnPack::ReadTTimeL(aBuffer);
appt->SetStartAndEndDateTime(startTime, endTime);
}

else if(entryType == CAgnEntry::EEvent)
{
newEntry = CAgnEvent::NewL(iModel->ParaFormatLayer(),

iModel->CharFormatLayer());
CleanupStack::PushL(newEntry);
CAgnEvent* event = newEntry->CastToEvent();
// Read and set start and end date
TTime startTime = CConnPack::ReadTTimeL(aBuffer);
TTime endTime = CConnPack::ReadTTimeL(aBuffer);
event->SetStartAndEndDate(startTime, endTime);
TInt displayTime = (TInt)CConnPack::ReadInt16L(aBuffer);
TTimeIntervalMinutes displayInterval(displayTime);
event->SetDisplayTime(displayInterval);
}

// Read and set alarm details
TInt8 hasAlarm = CConnPack::ReadInt8L(aBuffer);
if(hasAlarm != 0)

{
newEntry->SetHasAlarm(ETrue);
TInt alarmDays = (TInt16)CConnPack::ReadInt16L(aBuffer);
TTimeIntervalDays alarmIntervalDays(alarmDays);
TInt alarmMinutes = (TInt16)CConnPack::ReadInt16L(aBuffer);
TTimeIntervalMinutes alarmIntervalMinutes(alarmMinutes);
newEntry->SetAlarm(alarmIntervalDays, alarmIntervalMinutes);
}

else
{
newEntry->SetHasAlarm(EFalse);
}

// Set other properties
TInt8 isCrossedOut = CConnPack::ReadInt8L(aBuffer);
TBool bIsCrossedOut = (isCrossedOut!=0);

AN AGENDA CONNECTIVITY SERVICE 343

newEntry->SetIsCrossedOut(bIsCrossedOut);
TInt8 isTentative = CConnPack::ReadInt8L(aBuffer);
TBool bIsTentative = (isTentative!=0);
newEntry->SetIsTentative(bIsTentative);
Tin8t isDayNote = CConnPack::ReadInt8L(aBuffer);
TBool bIsDayNote = (isDayNote!=0);
newEntry->SetIsADayNote(bIsDayNote);

TInt textLength = CConnPack::PeekUint16L(aBuffer);
HBufC* textBuff = HBufC::NewLC(textLength);
TPtr tempPtr(textBuff->Des());
CConnPack::ReadUNCDataL(tempPtr, aBuffer);
newEntry->RichTextL()->InsertL(0,textBuff->Des());
CleanupStack::PopAndDestroy(textBuff);

TAgnEntryId newId = iModel->AddEntryL(newEntry, AgnModel::NullId());

CleanupStack::PopAndDestroy(newEntry);
return newId.Value();
}

Editing an appointment uses the FetchInstanceL() and Update-
InstanceL() methods, but most of its code is again concerned with
unpacking data from the buffer. As with creating appointments and events,
most of the behavior is common, so one routine can handle both types.

TInt CRAgnUtil::EditApptL(TDes8 &aBuffer)
{
TInt editId = CConnPack::ReadInt32L(aBuffer);
TTime editTime = CConnPack::ReadTTimeL(aBuffer);

TAgnWhichInstances whichInstances =
(TAgnWhichInstances)CConnPack::ReadInt32L(aBuffer);

TAgnEntryId editEntryId(editId);
TAgnInstanceId editInstance(editEntryId,

AgnDateTime::TTimeToAgnDate(editTime));
CAgnEntry* editEntry = iModel->FetchInstanceLC(editInstance);
CAgnEntry::TType instanceType = editEntry->Type();

TAgnEntryId newId;
newId.SetNullId();
if(instanceType == CAgnEntry::EAppt)

{
CAgnAppt* appt = editEntry->CastToAppt();

TInt8 editTime = CConnPack::ReadInt8L(aBuffer);
if(editTime != 0)
{ // Read and set start end end date and time
TTime startTime = CConnPack::ReadTTimeL(aBuffer);
TTime endTime = CConnPack::ReadTTimeL(aBuffer);
appt->SetStartAndEndDateTime(startTime, endTime);
}

}
else if((instanceType == CAgnEntry::EEvent) ||

(instanceType == CAgnEntry::EAnniv))

344 USING THE AGENDA MODEL

{
CAgnEvent* event = editEntry->CastToEvent();

TInt8 editTime = CConnPack::ReadInt8L(aBuffer);
if(editTime != 0)
{
// Read and set start and end date
TTime startTime = CConnPack::ReadTTimeL(aBuffer);
TTime endTime = CConnPack::ReadTTimeL(aBuffer);
event->SetStartAndEndDate(startTime, endTime);
TInt displayTime = (TInt)CConnPack::ReadInt16L(aBuffer);
TTimeIntervalMinutes displayInterval(displayTime);
event->SetDisplayTime(displayInterval);
}

}

TInt8 editAlarm = CConnPack::ReadInt8L(aBuffer);
if(editAlarm != 0)

{ // Read and set alarm details
TInt8 hasAlarm = CConnPack::ReadInt8L(aBuffer);
if(hasAlarm != 0)
{
editEntry->SetHasAlarm(ETrue);
TInt alarmDays = (TInt)CConnPack::ReadInt16L(aBuffer);
TTimeIntervalDays alarmIntervalDays(alarmDays);
TInt alarmMinutes = (TInt)CConnPack::ReadInt16L(aBuffer);
TTimeIntervalMinutes alarmIntervalMinutes(alarmMinutes);
editEntry->SetAlarm(alarmIntervalDays, alarmIntervalMinutes);
}

else
{
editEntry->SetHasAlarm(EFalse);
}

}//endif editing alarm details

// Set other properties
TInt8 isCrossedOut = CConnPack::ReadInt8L(aBuffer);
TBool bIsCrossedOut = (isCrossedOut!=0);
editEntry->SetIsCrossedOut(bIsCrossedOut);
TInt8 isTentative = CConnPack::ReadInt8L(aBuffer);
TBool bIsTentative = (isTentative!=0);
editEntry->SetIsTentative(bIsTentative);
TInt8 isDayNote = CConnPack::ReadInt8L(aBuffer);
TBool bIsDayNote = (isDayNote!=0);
editEntry->SetIsADayNote(bIsDayNote);

TInt8 editText = CConnPack::ReadInt8L(aBuffer);
if(editText)

{
TInt textLength = CConnPack::PeekUint16L(aBuffer);
HBufC* textBuff = HBufC::NewLC(textLength);
TPtr tempPtr(textBuff->Des());
CConnPack::ReadUNCDataL(tempPtr, aBuffer);
editEntry->RichTextL()->InsertL(0,textBuff->Des());
CleanupStack::PopAndDestroy(textBuff);
}

newId = iModel->UpdateInstanceL(editEntry, whichInstances);

AN AGENDA CONNECTIVITY SERVICE 345

CleanupStack::PopAndDestroy(editEntry);

return newId.Value();
}

To-do entries are created and edited in the same way as appointments.

TInt CRAgnUtil::CreateTodoListEntryL(TDes8 &aBuffer)
{
CAgnEntry* newEntry = CAgnTodo::NewL(iModel->ParaFormatLayer(),

iModel->CharFormatLayer());
CleanupStack::PushL(newEntry);
CAgnTodo* todo = newEntry->CastToTodo();

// Read and set the owning To-do list
TInt listIdValue = CConnPack::ReadInt32L(aBuffer);
TAgnTodoListId listId(listIdValue);
todo->SetTodoListId(listId);

// Read and set due date
TTime dueDate = CConnPack::ReadTTime(aBuffer);
todo->SetDueDate(dueDate);

// Read and set priority
TUint priority = CConnPack::ReadInt32L(aBuffer);
todo->SetPriority(priority);

TInt textLength = CConnPack::PeekUint16L(aBuffer);
HBufC* textBuff = HBufC::NewLC(textLength);
TPtr tempPtr(textBuff->Des());
CConnPack::ReadUNCDataL(tempPtr, aBuffer);
newEntry->RichTextL()->InsertL(0,textBuff->Des());
CleanupStack::PopAndDestroy(textBuff);

TAgnEntryId newId = iModel->AddEntryL(newEntry, AgnModel::NullId());

CleanupStack::PopAndDestroy(newEntry);
return newId.Value();
}

TInt CRAgnUtil::EditTodoListEntryL(TDes8 &aBuffer)
{
TInt editId = CConnPack::ReadInt32L(aBuffer);
TTime editTime = CConnPack::ReadTTime(aBuffer);

TAgnWhichInstances whichInstances =
(TAgnWhichInstances)CConnPack::ReadInt32L(aBuffer);

TAgnEntryId editEntryId(editId);
TAgnInstanceId editInstance(editEntryId,

AgnDateTime::TTimeToAgnDate(editTime));
CAgnEntry* editEntry = iModel->FetchInstanceLC(editInstance);

TAgnEntryId newId;
newId.SetNullId();
if(editEntry->Type() == CAgnEntry::ETodo)

346 USING THE AGENDA MODEL

{
CAgnTodo* todo = editEntry->CastToTodo();

TInt8 editTime = CConnPack::ReadInt8L(aBuffer);
if(editTime != 0)
{ // Read and set due date
TTime dueDate = CConnPack::ReadTTime(aBuffer);
todo->SetDueDate(dueDate);
}

// Read and set priority
TUint priority = CConnPack::ReadInt32L(aBuffer);
todo->SetPriority(priority);

TInt8 editText = CConnPack::ReadInt8L(aBuffer);
if(editText != 0)
{
TInt textLength = CConnPack::PeekUint16L(aBuffer);
HBufC* textBuff = HBufC::NewLC(textLength);
TPtr tempPtr(textBuff->Des());
CConnPack::ReadUNCDataL(tempPtr, aBuffer);
editEntry->RichTextL()->InsertL(0,textBuff->Des());
CleanupStack::PopAndDestroy(textBuff);
}

newId = iModel->UpdateInstanceL(editEntry, whichInstances);
}

CleanupStack::PopAndDestroy(editEntry);

return newId.Value();
}

An instance can be deleted without caring what type it is – all we
need is the instance date and identifier. If the instance being deleted is
part of a repeating series then deleting it may split the repeat into two
separate entries.

TBool CRAgnUtil::DeleteInstanceL(TDes8 &aBuffer)
{
TInt deleteId = CConnPack::ReadInt32L(aBuffer);
TTime deleteTime = CConnPack::ReadTTime(aBuffer);

TAgnWhichInstances whichInstances =
(TAgnWhichInstances)CConnPack::ReadInt32L(aBuffer);

TAgnEntryId delId(deleteId);
TAgnInstanceId deleteEntry(delId,

AgnDateTime::TTimeToAgnDate(deleteTime));
TAgnEntryId newId = iModel->DeleteInstanceL(deleteEntry,

whichInstances);
TBool hasNewId = newId.IsNullId();
return hasNewId;
}

13
Developing a Specialized Connectivity

GUI Application

13.1 What is Special About a GUI Application?

In this chapter, we will investigate the issues involved in developing a
GUI application to use specialized PC Connectivity services. We will
use as examples applications to interface to Contacts, Agenda and SMS
Messaging services, but we will also try to cover design aspects that could
apply to other applications.

Before we look at the issues and design approaches relevant to GUI
applications, it is worth touching briefly on the differences between a
GUI application and other types of application.

The major difference is that a GUI application is designed to be used
directly by a user; the sequence of actions is unpredictable and the user
expects a prompt response. In contrast, a batch-type synchronization
application could have a much more predictable sequence of actions and
would be less sensitive to delays. For these reasons, a GUI application
will tend to be event driven and will place a premium on minimizing
perceived delays.

13.2 Managing Connections to Phones

Just as with the file browser that we created earlier, we need to start
by managing the connection to the Symbian OS smartphone. This time
we will use BAL rather than SCOM. We do not plan to use any of
the file access methods, just the manufacturer, model and identification
and the ability to start a service. We could get these from SCOM, but
the extra functionality that we do not need will incur an overhead. If
we wanted any of the functions from SCOM then we could just use
the ISCDevice.OpenDeviceService to access the services on the
Symbian OS smartphone instead of using BAL directly.

348 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

The first thing we will need is an interface that we can call whenever
a phone is connected or disconnected:

/// <summary>
/// BALForm contains the interface methods required for event handling
/// so a form can interact with a BALApp.
/// </summary>
public interface BALForm
{
// Called when phones are connected or disconnected
void UpdatePhoneList();

}

This will be implemented by our application-specific classes.
Then we need a class that will encapsulate a connected phone. This is

not complicated and is similar to the one we created in Chapter 5.

// Class to hold information about a connected phone
public class BALConnectedPhone
{
public SymbianConnectBAL.ISCBALDevice mDevice;

public BALConnectedPhone(SymbianConnectBAL.ISCBALDevice aDevice)
{

// Device identification string is retrieved from the device
mDevice = aDevice;
mPhoneId = mDevice.Id;
mPhoneManufacturer = mDevice.Manufacturer;
mPhoneModel = mDevice.Model;

// The user-specified device name is stored in the registry
string nameKeyName = @"SOFTWARE\Symbian\Symbian Connect QI\Devices\"

+ mPhoneId;
Microsoft.Win32.RegistryKey aKey =

Microsoft.Win32.Registry.CurrentUser.OpenSubKey(nameKeyName);
if(aKey != null)
{
mPhoneName = aKey.GetValue("Name").ToString();
aKey.Close();

}
else
{
mPhoneName = "My " + mPhoneManufacturer + " " + mPhoneModel;

}
}

private string mPhoneId;
public string Id
{

get
{return mPhoneId;}

}

private string mPhoneManufacturer;
public string Manufacturer

MANAGING CONNECTIONS TO PHONES 349

{
get
{return mPhoneManufacturer;}

}

private string mPhoneModel;
public string Model
{

get
{return mPhoneModel;}

}

private string mPhoneName;
public string Name
{

get
{return mPhoneName;}

}
}// End of class BALConnectedPhone

Now we can create a class that owns a BAL application and manages
phone connection and disconnection events. It will own a public array
of connected phones and will implement an event handler, so it gets
informed when phones connect or disconnect. In turn, it will call its
owner whenever this happens.

public class BALApp
{
private BALForm mBALForm;

public BALApp(BALForm aBALForm)
{

mBALForm = aBALForm;
try
{
// Get access to BAL via the Application member
mBALApp = new SymbianConnectBAL.BALApplication();
// Set up the event handlers before initializing the collection
mPhoneArray = new System.Collections.ArrayList();
mBALApp.OnDeviceListChanged += new

SymbianConnectBAL.ISCBALEvents_OnDeviceListChangedEventHandler
(OnDeviceListChanged);

UpdatePhoneList(mBALApp.ConnectedDevices);
}
catch(System.Exception exc)
{
System.Console.WriteLine("Exception when accessing BAL

application: {0}", exc.Message);
}

}

public void UpdatePhoneList(SymbianConnectBAL.ISCBALDeviceCollection
aDevices)

{
lock(mPhoneArray)

350 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

{
// Check for adding new devices
foreach(SymbianConnectBAL.ISCBALDevice device in aDevices)
{

bool alreadyPresent = false;
foreach(BALConnectedPhone phone in mPhoneArray)
{
if(phone.Id == device.Id)
{

alreadyPresent = true;
}

}
if(!alreadyPresent)
{
mPhoneArray.Add(new BALConnectedPhone(device));

}
} //end foreach device in collection

// Check for removing devices
if(aDevices.Count != mPhoneArray.Count)
{

for(int i = 0 ; i < mPhoneArray.Count ; i ++)
{
bool found = false;
foreach(SymbianConnectBAL.ISCBALDevice device in aDevices)
{

if(((BALConnectedPhone)(mPhoneArray[i])).Id == device.Id)
{
found = true;
break;

}
}
if(!found)
{

mPhoneArray.RemoveAt(i);
}

} // end foreach phone in array
}

}// endlock
}

// Event handlers
public void OnDeviceListChanged()
{

UpdatePhoneList(mBALApp.ConnectedDevices);
mBALForm.UpdatePhoneList();

}

// SCOM Application handle
SymbianConnectBAL.BALApplication mBALApp;

// We will hold the details of connected phones in an
// array. We could use other collection types (e.g. a hashtable)
// but the small number of connected devices makes this overkill.
public System.Collections.ArrayList mPhoneArray;

}//End class

We could have embedded this logic in a class that was directly part
of the GUI, but by separating it out in this way we are able to reuse the

COMMUNICATING AND MANAGING DELAYS 351

same code for a number of applications and our maintenance burden
is reduced.

Given the BALApp class, we can create a form class that is the root of
our GUI application.

13.3 Starting a PC Connectivity Service

Once we have a connected phone, we will need to load and start a
service on it. We saw how to do this for a custom server in Chapter 7
and for a socket server in Chapter 8. You will need to ensure that your
special services are present on the phone and you will need to know
which type of service you want to start. However, you can try to load a
socket server or ectcpadapter and if that fails then try the other one,
as long as you handle exceptions for the loading failures. Remember that
you must handle the case where you cannot load your service because
the user may not have installed it.

A full example of this code is contained in the example applications
that accompany this book.

In the example applications that we will create later in this chapter, we
will use this method to start a service and obtain a stream to communicate
with it whenever a connected phone is selected.

13.4 Communicating and Managing Delays

In contrast to the SCOM application that we created in Chapter 5, we need
to explicitly manage read and write operations and delays. For our SCOM
application, we just changed the cursor to an hourglass whenever we
had an operation that we expected to take some time. In this application,
I will show an alternative approach that provides better feedback and is
more flexible in some ways.

Whenever we send a command to the phone, we will expect a
response (this is true for all of the commands that we implemented in
the previous chapters, with the exception of the Message Server event
handling). Therefore, we will start a read operation and set a flag to
indicate that there is a read operation pending and we refuse to send any
more PDUs. When a PDU is received, we unset the flag and allow more
PDUs to be sent. At the same time we can use a status text box to display
progress information to the user.

Putting these pieces together, Figure 13.1 shows a Windows Form with
controls to show connected phones. We use a list box for the phones and
text boxes for some of the phone details. We will also provide a status
box for progress information.

352 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

Figure 13.1

The form class must implement the BALForm interface that we defined
for use with the BALApp class we defined earlier and include the controls
that we have created:

public class ExampleForm : System.Windows.Forms.Form, BALForm
{

/// <summary>
/// BAL Application giving access to phones
/// </summary>
public BALApp mBALApp;

private System.Windows.Forms.ListBox PhoneListBox;
private System.Windows.Forms.TextBox ManufacturerTextBox;
private System.Windows.Forms.TextBox ModelTextBox;
private System.Windows.Forms.TextBox StatusBox;

We will need a range of members for the current phone and the state of
the phone list.

/// <summary>
/// Reference to the currently selected phone
/// </summary>
public BALConnectedPhone mCurrentPhone;
/// <summary>
/// ID of the currently selected phone
/// </summary>
public string mCurrentPhoneId;
/// <summary>
/// Is our list of connected devices empty
/// </summary>
public bool mIsEmptyPhoneList;

COMMUNICATING AND MANAGING DELAYS 353

// The following members represent states that enable or disable
// certain functionality
/// <summary>
/// Set when initializing the form - do not redraw anything and
/// ignore some events
/// </summary>
public bool mInitializing;
/// <summary>
/// Set when adding or removing from the phone list - ignore index
/// changes
/// </summary>
public bool mUpdatingPhoneList;
/// <summary>
/// Set when a phone has connected or disconnected - an OnPaint
/// event will cause the phone list to be refreshed
/// </summary>
public bool mPendingPhoneViewUpdate;

We will need some members for the stream that we use to talk to
the service on the phone, the state of a read operation and the next
transaction identifier.

/// <summary>
/// Is a read pending from the device - do not issue any commands
/// to the device
/// </summary>
private bool mPendingRead;
/// <summary>
/// BAL service to the device
/// </summary>
private BALApplicationAsyncStream mStream;
/// <summary>
/// Are we reading the length part of a PDU
/// </summary>
private bool mReadingLength;
/// <summary>
/// PDU transaction identifier
/// </summary>
private int mNextPDUId;

The constructor creates a new BALApp and passes itself in for
event callbacks.

public ExampleForm()
{

//
// Required for Windows Form Designer support
//
InitializeComponent();

mInitializing = true;
// Create a BALApp for access to phones
mBALApp = new BALApp(this);
mCurrentPhone = null;
mCurrentPhoneId = "";

354 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

mInitializing = false;
mNextPDUId = 1;
mUpdatingPhoneList = false;
mPendingPhoneViewUpdate = true;

ResetPhoneList();
SetButtonStates();

}

The SetButtonStates method will be seen later – it enables or
disables buttons or controls based on state variables.

We then have a set of methods that maintain the phone list initially and
when events are received from the BALApp. We handle the event from
BAL and trigger another event to actually update our list of connected
smartphones. This prevents us from interfering with BAL by carrying out
too much work directly in its event handler.

/// <summary>
/// Update display of list of connected phones.
/// </summary>
public void UpdatePhoneList()
{
// This method can be called from an event when a phone
// connects or disconnects.
// Don’t rewrite other views here as we don’t
// want to do too much in an event so just prime it.
mPendingPhoneViewUpdate = true;
PhoneUpdate();

}

/// <summary>
/// A phone has connected or disconnected so we need to reset
/// the list
/// </summary>
public delegate void PhoneUpdateEventHandler();
public event PhoneUpdateEventHandler PhoneUpdate;

protected virtual void OnPhoneUpdate()
{
ResetPhoneList();
mPendingPhoneViewUpdate = false;

}

/// <summary>
/// Called (often via an event) when a phone is connected or
/// disconnected
/// </summary>
private void ResetPhoneList()
{
bool wasCurrentPhone = false;
bool currentPhonePresent = false;
if(!mInitializing)
{

wasCurrentPhone = (mCurrentPhoneId != "");

COMMUNICATING AND MANAGING DELAYS 355

mUpdatingPhoneList = true; // Prevent selection events
PhoneListBox.BeginUpdate();
PhoneListBox.Items.Clear();
foreach(BALConnectedPhone phone in mBALApp.mPhoneArray)
{
PhoneListBox.Items.Add(phone);
if(phone.Id == mCurrentPhoneId)
{

currentPhonePresent = true;
PhoneListBox.SelectedIndex = PhoneListBox.Items.Count-1;

}
}
if(PhoneListBox.Items.Count > 0)
{
mIsEmptyPhoneList = false;
if(!currentPhonePresent)
{

PhoneListBox.SelectedIndex = 0;
mCurrentPhone = (BALConnectedPhone)mBALApp.mPhoneArray[0];
mCurrentPhoneId = mCurrentPhone.Id;
ManufacturerTextBox.Text = mCurrentPhone.Manufacturer;
ModelTextBox.Text = mCurrentPhone.Model;
InitializePhoneService();

}
}
else
{
mIsEmptyPhoneList = true;
mCurrentPhone = null;
mCurrentPhoneId = "";
ManufacturerTextBox.Text = "";
ModelTextBox.Text = "";

}
PhoneListBox.EndUpdate();

}
mUpdatingPhoneList = false;

// If we have lost the current phone then we
// may have to take some action
if(wasCurrentPhone && !currentPhonePresent)
{

mLostPhone = true;
StatusBox.Text = "";
SetButtonStates();

}
}

Whenever we connect to a new phone we want to load and start
our service(s) on it. This means that we just keep a member variable
for the stream. If we wanted to handle multiple connected phones or
multiple services (and therefore streams) then we would want to store the
stream(s) with the phone objects. When we check for an error we use
the Symbian OS constant KErrNone. In this case I have included this
constant manually – we are not really including Symbian OS header files
for their constants.

356 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

/// <summary>
/// Initializes the service we need on the phone.
/// </summary>
private void InitializePhoneService()
{

int errorCode = mCurrentPhone.StartService("dummy service",
out mStream);

if(errorCode != BALConnectedPhone.KErrNone)
{
MessageBox.Show("The service plug-in was not found",

"Service Missing Error",
MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

}
else
{
mStream.OnRead += new

ISCBALSequentialStreamSink_OnReadEventHandler(OnRead);
mStream.OnWrite += new

ISCBALSequentialStreamSink_OnWriteEventHandler(OnWrite);

// Clear data related to this phone
StatusBox.Text = "";
SetButtonStates();

}
}

Then we need to reset members when the user changes phone by
associating an event with the user changing the selected entry in the
phone list.

/// <summary>
/// Called when the selected phone has changed.
/// </summary>
private void PhoneListBox_SelectedIndexChanged(object sender,

System.EventArgs e)
{
if(!mUpdatingPhoneList)
{

int newIndex = PhoneListBox.SelectedIndex;
if(newIndex >= 0)
{
BALConnectedPhone newPhone =

(BALConnectedPhone)PhoneListBox.Items[newIndex];
mCurrentPhone = newPhone;
mCurrentPhoneId = newPhone.Id;
ManufacturerTextBox.Text = newPhone.Manufacturer;
ModelTextBox.Text = newPhone.Model;
InitializePhoneService();
ClearMainList();

}
}

}

We are going to implement the reads from and writes to the device
asynchronously. Actually, we don’t really mind about the writes, because

COMMUNICATING AND MANAGING DELAYS 357

we have not put together any protocols that would benefit from asyn-
chronous writes, but we do want asynchronous reads. When we started
the service we associated two event handlers and here they are. The
OnRead event handler performs the read in two stages. First it reads the
four-byte integer that is the number of bytes in the rest of the PDU and
then it reads the rest of the PDU. Internally, the whole PDU will almost
certainly have been buffered, so we will expect the second OnRead call
to be returned immediately.

/// <summary>
/// Event handler for writing to the BAL service.
/// </summary>
public void OnWrite(int aError)
{
}

/// <summary>
/// Event handler for reading from the BAL service.
/// </summary>
public void OnRead(object aBuffer, int aError)
{

if(aError == 0)
{
byte[] buff = (byte[])aBuffer;
if(mReadingLength && buff.Length >= 4)
{ // Just read the length of the rest of the buffer

int readPos = 0;
int msgLen = ConnPack.ReadInt32(ref buff, ref readPos);
if(msgLen > 0)
{
mReadingLength = false;
mStream.Read(msgLen);

}
}
else if(!mReadingLength && buff.Length >= 4)
{ // Read the 4-byte op-code and respond accordingly

int readPos = 0;
int opCode = ConnPack.ReadInt32(ref buff, ref readPos);
int PDUId = ConnPack.ReadInt32(ref buff, ref readPos);
ServiceRead(opCode, PDUId, ref buff, ref readPos);

}
}
else
{
StatusBox.Text = "OnRead error" + aError.ToString();

}
}

If we were using synchronous I/O then whenever we read from the
stream, we would know exactly what we were expecting. At first sight,
this seems a good idea, but we would still have to handle errors or
unexpected responses. Because we are using asynchronous I/O, we have
one point where we receive all responses. Therefore, we switch on the
opcode. In the example here, we have not yet put in any of the actual

358 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

logic for specific responses, but we can see the framework – note that
when we have completed a read operation we reset flags accordingly.
The logic behind the setting of the button states will become apparent
when we implement the real applications.

/// <summary>
/// Handle a PDU read from the device
/// </summary>
private void ServiceRead(int aOpCode, int aPDUId, ref byte[] aBuff,

ref int aReadPos)
{

int errno = 0;
switch(aOpCode)
{
default:

// Unrecognized operation - raise an error in debug or ignore
break;

}

ClearPendingReads();
if(errno != 0)
{
StatusBox.Text = "Error " + errno.ToString();

}
SetButtonStates();

}

/// <summary>
/// Called when pending reads are complete - clears status text and
/// enables buttons
/// </summary>
private void ClearPendingReads()
{

mPendingRead = false;
StatusBox.Text = "";

}

/// <summary>
/// Enables or disables buttons depending on state flags
/// </summary>
private void SetButtonStates()
{
// Disable all buttons if a read is pending
}

}

13.5 A GUI SMS Application

Now we have the basic structure for the application, we can add the
controls and functionality for the specific service we want. In order to
manage SMS, we will have a main form (Figure 13.2) with a list of SMS

A GUI SMS APPLICATION 359

Figure 13.2

message summaries and buttons to allow us to view the detail of a
message, delete a message or compose and send a message.

This is deliberately a very simple messaging application; we are not
including the ability to reply or forward a message, and we will show
only one message folder at a time (the Inbox or Sent Messages). A
more sophisticated application might implement a tabbed display and
hold details of multiple folders. The aim of this book is to show how
Connectivity applications can be created, not to spend too much time
fine-tuning the user interface.

One of the obvious functions that we will omit from this application is
integration with Contacts. A good messaging application (such as the one
supplied on Symbian OS smartphones) will display contact names rather
than just telephone numbers when displaying messages and will allow
recipients to be selected from the user’s Address Book.

Our first step will be to retrieve and display message summaries,
including the date of sending or receiving, the sending or receiving
phone number, and the body of the message. The user chooses which
message folder to display and the application then sends a command to
the Symbian OS smartphone when the ‘View SMS’ button is pressed.

As part of developing this application I created an RSMSUtil class
to hold the constants and a set of static methods to create commands
and decode responses. The same pattern is used in the subsequent

360 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

applications. You could just embed the code or make the methods part
of the form class, but I was planning for some reuse.

/// <summary>
/// Start to read Sms from the selected folder
/// </summary>
private void RetrieveButton_Click(object sender, System.EventArgs e)
{

// The folder chooser list box has hard-wired values, Inbox
// first and then the Sent Messages folder. We could populate
// the list programmatically and include IDs but this is adequate
int i = FolderChooseListBox.SelectedIndex;
int folderId = RSMSUtil.KMsvGlobalInBoxIndexEntryId;
if(i != 0)
{ folderId = RSMSUtil.KMsvSentEntryId; }
RSMSUtil.WriteFetchAllSms(mStream, ref mNextPDUId, folderId);
ClearMainList();
StatusBox.Text = "Fetching SMS - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);
mReadingSms = true;
SetButtonStates();

}

We will see that the WriteFetchAllSmsmethod adds the command
code, the PDU identifier and the folder identifier into a PDU and then
sends it to the smartphone using the methods that we developed in
Chapter 10.

// Standard folder ID constants
public const int KMsvGlobalInBoxIndexEntryId = 0x1002;
public const int KMsvSentEntryId = 0x1005;

/// Fetch all SMS in a folder
public static void WriteFetchAllSms

(BALApplicationAsyncStream aStream,
ref int aNextPDUId, int aFolderId)

{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERSmsCmdGetAllSms, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteInt32(aFolderId, ref message);
aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

Once we have sent the message, we need to extend our reading method
to handle the reply. We will read SMS details from the buffer until we run
out. At the same time, we set flags to indicate that we now have some
messages in our list and so the ‘Delete’ and ‘View’ buttons can be enabled.
Because we may have more messages in a folder than can be returned in
one packet, we request more messages until we receive no more.

A GUI SMS APPLICATION 361

/// <summary>
/// Handle a PDU read from the device
/// </summary>
private void ServiceRead(int aOpCode, int aPDUId, ref byte[] aBuff,

ref int aReadPos)
{

int errno = 0;
switch(aOpCode)
{
case (RSMSUtil.ERSmsCmdReceiveSms):

bool readSome = false;
bool gotOne = true;
while(gotOne)
{
RSMS newSms = new RSMS();
gotOne = RSMSUtil.ReadSms(ref aBuff, ref aReadPos,

ref newSms);
if(gotOne)
{

AddSms(ref newSms);
readSome = true;

}
}
if(!readSome)
{ mReadingSms = false; }
break;

case (RSMSUtil.ERSmsCmdReceiveNoMoreSms):
mReadingSms = false;
break;

. . .

}
ClearPendingReads();
if(errno != 0)
{
StatusBox.Text = "Error " + errno.ToString();

}
else if(mReadingSms)
{ // Read more SMS from the selected folder
RSMSUtil.WriteFetchMoreSms(mStream, ref mNextPDUId);
StatusBox.Text = "Fetching more SMS - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);

}
if(SmsView.Items.Count > 0)
{ mGotSms = true; }
SetButtonStates();

}

The actual method to read an SMS constructs an object as a convenient
container for the data.

/// Class to hold details of an SMS address
/// Member variables are public - really just a struct
public class RSMSAddress

362 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

{
public string mName;
public string mAddress;

}

/// Class to hold details of an SMS message
/// Member variables are public - really just a struct
public class RSMS
{
public int mId; // Message ID
public int mParentId; // Parent folder
public string mFromAddress; // Sender address
public string mBodyText; // Message body
public string mDescription; // Message description
public string mDetail; // Message detail
public ArrayList mDestinationAddress; // Destination addresses
public DateTime mDate; // Message date and time stamp

public RSMS()
{

mDestinationAddress = new ArrayList();
}

}

/// Read an SMS - terminated by a zero or negative message ID
static public bool ReadSms(ref byte[] aBuff, ref int aBuffOffset,

ref RSMS aSms)
{

int smsId = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
if(smsId <= 0)
{return false;}

aSms.mId = smsId;
aSms.mParentId = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
bool nullDate; // can’t be null for an SMS
ConnPack.ReadDateTime(ref aBuff, ref aBuffOffset,

out nullDate, out aSms.mDate);

System.Text.StringBuilder tempText;
ConnPack.ReadUNCData(ref aBuff, ref aBuffOffset, out tempText);
aSms.mDescription = tempText.ToString();
ConnPack.ReadUNCData(ref aBuff, ref aBuffOffset, out tempText);
aSms.mDetail = tempText.ToString();
ConnPack.ReadUNCData(ref aBuff, ref aBuffOffset, out tempText);
aSms.mFromAddress = tempText.ToString();

int recipientCount = ConnPack.ReadInt16(ref aBuff, ref aBuffOffset);
for(int i = 0 ; i < recipientCount ; i++)
{
System.Text.StringBuilder recName, recAddress;
ConnPack.ReadUNCData(ref aBuff, ref aBuffOffset, out recName);
ConnPack.ReadUNCData(ref aBuff, ref aBuffOffset, out recAddress);
RSMSAddress address = new RSMSAddress();
address.mName = recName.ToString();
address.mAddress = recAddress.ToString();
aSms.mDestinationAddress.Add(address);

}//endfor

A GUI SMS APPLICATION 363

System.Text.StringBuilder bodyText;
ConnPack.ReadASCIIData(ref aBuff, ref aBuffOffset, out bodyText);
aSms.mBodyText = bodyText.ToString();

return true;
}

Having read in messages, we will display a summary and store the
object in the main list.

/// <summary>
/// Add a read SMS to the main list
/// </summary>
private void AddSms(ref RSMS aSms)
{

System.Windows.Forms.ListViewItem newItem = new ListViewItem();
newItem.Tag = aSms;

newItem.Text = aSms.mDate.ToString();
newItem.SubItems.Add(aSms.mDetail);
newItem.SubItems.Add(aSms.mBodyText);
SmsView.Items.Add(newItem);

}

In the SMS service, we implemented event handling to allow the
Symbian OS smartphone to inform the PC when a new message arrived
(or other events occurred). However, in this application we will not make
use of event handling; we simply rely on the user to refresh the list when
necessary. If we did want to use event handling then we would create a
second stream, associate it with the service and send a PDU to initiate
event handling. We cannot use one stream for both purposes in parallel.

Once we have our list of messages, deleting or displaying details is
straightforward. Deleting involves retrieving the message identifier from
the stored object and sending a delete command to the phone.

/// <summary>
/// Delete an SMS
/// </summary>
private void DeleteButton_Click(object sender, System.EventArgs e)
{

if(SmsView.SelectedIndices.Count <= 0)
{
return;

}
int editIndex = SmsView.SelectedIndices[0];
RSMS delSms = (RSMS)SmsView.Items[editIndex].Tag;
if (MessageBox.Show
"Are you sure you want to delete this message ?",
"Confirm Delete",
MessageBoxButtons.YesNo, MessageBoxIcon.Question,
MessageBoxDefaultButton.Button2)
== DialogResult.Yes)

364 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

{
RSMSUtil.WriteDeleteSms(mStream, ref mNextPDUId, delSms.mId);
StatusBox.Text = "Deleting message - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);
SmsView.Items.RemoveAt(editIndex);
if(SmsView.Items.Count == 0)
{ mGotSms = false; }

}
SetButtonStates();

}

/// Delete one specific SMS
public static void WriteDeleteSms

(BALApplicationAsyncStream aStream,
ref int aNextPDUId, int aSmsId)

{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERSmsCmdDeleteSms, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteInt32(aSmsId, ref message);
aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

We will also extend our ServiceRead()method for the delete reply,
but we do not need to take any action on it.

Actually, we have a design choice to make here. The user has chosen
to delete an SMS message and we send a command to the smartphone to
achieve this. We then wait for a response (which could be an error). For
the sake of simplicity, I have chosen to update the visible message list as
soon as we send the command, but I could have waited until we receive
the response. For these examples I have chosen the simpler approach,
but for a more complex service you might choose to delay updating the
local data or display until the response is received.

Similarly, when a message is sent I have not chosen to update the
displayed list of sent messages, but the new message could simply
be appended.

Viewing the whole of a message, including all recipients, requires a
form with the necessary controls and just a Cancel button (because all
data is read-only), as shown in Figure 13.3.

To compose and send a message, we use a form with controls for
the body text and recipient, as shown in Figure 13.4. As was mentioned
earlier, a commercial application would allow the user to select recipients
from their Address Book and would also consider providing a count of the
number of characters typed, so the user would know when the message
would require multiple SMS.

The code behind the dialog is simply concerned with storing the data
entered for access. We pass in a reference to an object that the composing

A GUI SMS APPLICATION 365

Figure 13.3

Figure 13.4

form uses to pass back the data that the user has entered. We will use the
same technique repeatedly in the other applications where we are editing
or creating objects.

public class ComposeForm : System.Windows.Forms.Form
{

public RSMS mSms;

public ComposeForm(ref RSMS aSms)
{
//

366 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

// Required for Windows Form Designer support
//
InitializeComponent();
mSms = aSms;
}

/// <summary>
/// Save required data before returning
/// </summary>
private void SendButton_Click(object sender, System.EventArgs e)
{

mSms.mDestinationAddress.Add(AddressBox.Text);
mSms.mBodyText = TextBox.Text;

}
}

The main form contains the code to send the message.

/// <summary>
/// Compose a new SMS
/// </summary>
private void ComposeButton_Click(object sender, System.EventArgs e)
{

RSMS newSms = new RSMS();
ComposeForm composeForm = new ComposeForm(ref newSms);
if(composeForm.ShowDialog() == DialogResult.OK)
{
RSMSUtil.WriteSendSms(mStream, ref mNextPDUId, ref newSms);
StatusBox.Text = "Sending SMS - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);

}
SetButtonStates();

}

/// Create and send an SMS
public static void WriteSendSms(BALApplicationAsyncStream aStream,

ref int aNextPDUId,
ref RSMS aSms)

{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERSmsCmdSendSms, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteASCIIData(aSms.mBodyText, ref message);
ConnPack.WriteUint16((ushort)aSms.mDestinationAddress.Count,

ref message);
for(int i = 0 ; i < aSms.mDestinationAddress.Count ; i++)
{

string addressText = (string)aSms.mDestinationAddress[i];
ConnPack.WriteUNCData(addressText, ref message);

}
aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

A CONTACTS GUI APPLICATION 367

As with the deletion of messages, we will need to extend our
ServiceRead() method to handle the send reply, but we will not
do anything with the data. We could choose to update the message
object with the actual message identifier to allow deletion.

One aspect that we have not handled with the deletion and sending
functions is what happens if the smartphone disconnects while the form
is displayed. In all cases when writing or reading, we have the possibility
that the smartphone will disconnect and the write or read may fail.
However, if we display a dialog to ask the user to confirm a deletion
or to compose a SMS for sending, the phone may disconnect but the
user may still choose the operation. If we do not handle this properly
then the main form will display status text that is incorrect (we are not
deleting the message, for example, because the smartphone connection
has gone). To handle this, we use a flag to indicate when the smartphone
has disconnected and we check it when reacting to the OK button from
the delete or compose forms. If the smartphone has disconnected then
we ignore the action.

13.6 A Contacts GUI Application

The Contacts application that we will create has a similar structure to the
SMS application. We will have a main list that will hold some information
on all contacts and we will allow the user to view full details of selected
contacts, delete contacts or create new ones.

For the sake of simplicity, we will not deal with groups of contacts,
although this could be a useful avenue for a commercial application,
as PIM synchronization of contacts sometimes omits group, and we will
make only very limited use of templates.

The main aspect that we will have to deal with in the Contacts
application is the handling of fields. As we saw in Chapter 11, a contact
contains a set of fields and each field is identified by the full set of
associated field types. If a user creates all of their contacts in one way
(manually using the phone, for example, or on a PC PIM) then they are
likely to have a very similar set of fields on all of their contacts. However,
if a user has contacts created in a range of ways, the fields may not all
have the same types. Therefore, it is not possible to impose a standard
list of fields in a dialog. Instead, we need to use more flexible methods of
handling fields. Some of these methods will be explained below.

To begin with, we define classes to hold details of contacts and fields.

/// Class to hold details of a contact field - text value only
/// Member variables are public - really just a struct
public class RCNTField
{
public int mFieldId; // field ID

368 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

public ArrayList mFieldType; // array of field type IDs
public int mMapping; // Field type additional mapping
public string mFieldLabel; // field label
public string mFieldText; // field contents (text only)
public bool mChanged; // has the field data changed

}

/// Class to hold a contact details
/// Member variables are public - really just a struct
public class RCNTContact
{
public int mId; // contact ID
public ArrayList mFields; // array of fields

}

For our overview list on the main form (see Figure 13.5), I have chosen
to just display the names of contacts – we will provide access to other
details via a more detailed view.

Figure 13.5

A CONTACTS GUI APPLICATION 369

We are going to request these names only when bulk contacts are read
and we will need the system template to create new contacts. Therefore,
as soon as we get a connection to a phone, we will open the Contacts
database with a view that includes only the name fields and then we will
retrieve the template information.

As with the previous application, we use a utility class
(RCNTUtils in this case) to hold structures, command writing and
response reading methods.

/// <summary>
/// Initializes the service we need on the phone.
/// </summary>
private void InitializePhoneService()
{
int errorCode = mCurrentPhone.StartService("RCNTCS", out mStream);
if(errorCode != BALConnectedPhone.KErrNone)
{

MessageBox.Show("The Contacts plug-in was not found",
"Service Missing Error",
MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

}
else
{

mStream.OnRead += new
ISCBALSequentialStreamSink_OnReadEventHandler(OnRead);

mStream.OnWrite += new
ISCBALSequentialStreamSink_OnWriteEventHandler(OnWrite);

// Clear data related to this phone
mTemplateFields = new ArrayList();
// Open the database
RCNTUtils.WriteOpenDatabase(mStream, ref mNextMessageId);
StatusBox.Text = "Opening Contacts database - please wait";
mWantToFetchTemplateFields = true;
mWantToFetchContacts = false;
mGotContacts = false;
mPendingEditContact = 0;

mPendingRead = true;
mReadingLength = true;
mStream.Read(4);
SetButtonStates();

}
}

/// Open the Contacts database and set the view
public static void WriteOpenDatabase

(BALApplicationAsyncStream aStream,
ref int aNextPDUId)

{
ArrayList message = new ArrayList();;
ConnPack.WriteInt32(ERCntCmdOpenDatabase, ref message);
ConnPack.WriteInt32(aNextPDUId , ref message);

370 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

ConnPack.WriteInt32(KLastNameType, ref message);
ConnPack.WriteInt32(KFirstNameType, ref message);
ConnPack.WriteInt32(-1, ref message);

aNextPDUId ++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

/// Fetch details of the template fields
public static void WriteFetchTemplateFieldInfo(
BALApplicationAsyncStream aStream, ref int aNextPDUId)

{
ArrayList message = new ArrayList();;
ConnPack.WriteInt32(ERCntCmdFetchTemplateFieldInfo, ref message);
ConnPack.WriteInt32(aNextPDUId , ref message);
aNextPDUId ++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

The ServiceRead() method is then extended to store the template
field information. This illustrates a technique for queuing PDUs and
servicing the queue by means of theServiceRead() method.

/// <summary>
/// Handle a PDU read from the device
/// </summary>
private void ServiceRead(int aOpCode, int aPDUId, ref byte[] aBuff,

ref int aReadPos)
{
switch(aOpCode)
{

case(RCNTUtils.ERCntCmdTemplateFieldInfoReply):
RCNTUtils.ReadTemplateInfo(ref aBuff, ref aReadPos,

ref mTemplateFields);
break;

. . .

default:
break;

}

// If we have operations that we want to carry out then trigger them.
// Ask for template fields to get labels
if(mWantToFetchTemplateFields)
{

RCNTUtils.WriteFetchTemplateFieldInfo(mStream, ref mNextMessageId);
StatusBox.Text = "Fetching labels - please wait";
mWantToFetchTemplateFields = false;
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);

}
else
{

ClearPendingReads();
StatusBox.Text = "";

A CONTACTS GUI APPLICATION 371

}
SetButtonStates();

}

/// Read template field info
static public void ReadTemplateInfo(ref byte[] aBuff,

ref int aBuffOffset, ref ArrayList aFields)
{
int fieldId = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
while(fieldId >= 0)
{

RCNTField fieldData = new RCNTField();
fieldData.mFieldId = fieldId;
fieldData.mFieldType = new ArrayList();
int fieldTypeId = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
while(fieldTypeId >= 0)
{
fieldData.mFieldType.Add(fieldTypeId);
fieldTypeId = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);

}
fieldData.mMapping = ConnPack.ReadInt32(ref aBuff,

ref aBuffOffset);

System.Text.StringBuilder fieldLabel;
ConnPack.ReadData(ref aBuff, ref aBuffOffset, out fieldLabel);
fieldData.mFieldLabel = fieldLabel.ToString();

aFields.Add(fieldData);

fieldId = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
}//endwhile

}

Having set the view and cached the template fields, we can allow the
user to retrieve contacts. We could choose to retrieve the contacts data
and populate the list as soon as a new phone is connected or selected, but
I have chosen to use a button to allow the user to retrieve contacts. This
make it easier to see the behavior involved in retrieving contacts, and it
will be apparent that it can take several packets to retrieve all contacts.

private void FetchButton_Click(object sender, System.EventArgs e)
{

ClearContactList();

RCNTUtils.WriteFetchAllContacts(mStream, ref mNextPDUId);
StatusBox.Text = "Fetching Contacts - please wait";
mPendingRead = true;
mWantToFetchContacts = true;
mReadingLength = true;
mStream.Read(4);
SetButtonStates();

}

372 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

/// Fetch all contacts
public static void WriteFetchAllContacts

(BALApplicationAsyncStream aStream, ref int aNextPDUId)
{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERCntCmdFetchAllContacts, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteInt8(0, ref message); // Do not fetch all fields
aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

/// Fetch more contacts
public static void WriteFetchMoreContacts

(BALApplicationAsyncStream aStream, ref int aNextPDUId)
{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERCntCmdFetchMoreContacts, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteInt8(0, ref message); // Do not fetch all fields
aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

As with the SMS application, we need to extend the ServiceRead()
method to handle the incoming contact details, and we will automatically
fetch more contacts until we run out. In the example applications, I have
just extended the ServiceRead() method for each new purpose, but
this is unwieldy. If I had more response codes, I would put in place a
more maintainable structure.

/// <summary>
/// Handle a PDU read from the device
/// </summary>
private void ServiceRead(int aOpCode, int aPDUId, ref byte[] aBuff,

ref int aReadPos)
{
switch(aOpCode)
{

. . .

case(RCNTUtils.ERCntCmdContactsReply):
StatusBox.Text = "Reading Contacts -please wait";
bool carryOn = true;
bool gotAtLeastOne = false;
while(carryOn)
{

RCNTContact contact = new RCNTContact();
carryOn = RCNTUtils.ReadContact(ref aBuff, ref aReadPos,

ref mTemplateFields, ref contact);
if(carryOn)
{
gotAtLeastOne = true;
AddCard(ref contact, -1);

}
}

A CONTACTS GUI APPLICATION 373

if(!gotAtLeastOne)
{ mWantToFetchContacts = false;}
if(gotAtLeastOne)
{ mGotContacts = true;}
break;

. . .

}

// If we have operations that we want to carry out then trigger them.
if(mWantToFetchTemplateFields)
{

. . .

}
else if(mWantToFetchContacts)
{ // Ask for more contacts

RCNTUtils.WriteFetchMoreContacts(mStream, ref mNextPDUId);
StatusBox.Text = "Fetching more contacts - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);

}
else
{

ClearPendingReads();
StatusBox.Text = "";

}
SetButtonStates();

}

/// Read details of a contact - terminated by a negative card ID
static public bool ReadContact(ref byte[] aBuff, ref int buffOffset,

ref ArrayList aTemplateFields,
ref RCNTContact aContact)

{
int cardId = ConnPack.ReadInt32(ref aBuff, ref buffOffset);
if(cardId < 0)
{return false;}

aContact.mId = cardId;
aContact.mFields = new ArrayList();

int fieldId = ConnPack.ReadInt32(ref aBuff, ref buffOffset);
while(fieldId != -1)
{

RCNTField fieldData = new RCNTField();
fieldData.mFieldId = fieldId;
fieldData.mChanged = false;
fieldData.mFieldType = new ArrayList();
int typeId = ConnPack.ReadInt32(ref aBuff, ref buffOffset);
while(typeId >= 0)
{
fieldData.mFieldType.Add(typeId);
typeId = ConnPack.ReadInt32(ref aBuff, ref buffOffset);

}
fieldData.mMapping = ConnPack.ReadInt32(ref aBuff, ref buffOffset);

374 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

int fieldType = ConnPack.ReadInt32(ref aBuff, ref buffOffset);
System.Text.StringBuilder label;
bool recognizedField = false;
switch(fieldType)
{
case(KStorageTypeText):

ConnPack.ReadData(ref aBuff, ref buffOffset, out label);
System.Text.StringBuilder fieldText;
ConnPack.ReadData(ref aBuff, ref buffOffset, out fieldText);
fieldData.mFieldLabel = label.ToString();
fieldData.mFieldText = fieldText.ToString();
recognizedField = true;
break;

default: // unrecognized field type
break;

}

// If a recognized field type then add it to the contact
if(recognizedField)
{aContact.mFields.Add(fieldData) ;}

fieldId = ConnPack.ReadInt32(ref aBuff, ref buffOffset);
}//endwhile

// Check that labels are set and use the template if necessary
for(int i = 0 ; i < aContact.mFields.Count ; i++)
{

RCNTField field = (RCNTField)aContact.mFields[i];
if(field.mFieldLabel.Length < 1)
{
field.mFieldLabel = FindFieldLabelByType(ref aTemplateFields,

ref field);
aContact.mFields[i] = field;

}
}

return true;
}

At this point we need to use the template data to supply labels.

// Find the label of a field of a set of types - or return "" for
// not found
static public string FindFieldLabelByType
(ref ArrayList aTemplateFields, ref RCNTField aContactField)

{
string fieldLabel = "";
for(int tFieldi = 0 ; tFieldi < aTemplateFields.Count ; tFieldi++)
{

RCNTField tempField = (RCNTField)aTemplateFields[tFieldi];
if(DoFieldTypesMatch(ref tempField, ref aContactField))
{
fieldLabel = tempField.mFieldLabel;
break;

}

if(fieldLabel.Length > 0)

A CONTACTS GUI APPLICATION 375

{
break;

}
}// endfor each field in the template
return fieldLabel;

}

/// As contact fields are identified uniquely by the combination of
/// field types and mapping, we need to compare two fields by
/// comparing all the field types and the mapping.
/// If any field type is not found in both then there is a mismatch.
static public bool DoFieldTypesMatch(ref RCNTField field1,

ref RCNTField field2)
{
bool retVal = true;
if(field1.mFieldType.Count != field2.mFieldType.Count)
{

retVal = false;
}
if(field1.mMapping != field2.mMapping)
{

retVal = false;
}

for(int i1 = 0 ; (i1 < field1.mFieldType.Count) && retVal ; i1++)
{

int type1 = (int)field1.mFieldType[i1];
bool foundMatch = false;
for(int i2 = 0 ; i2 < field2.mFieldType.Count ; i2++)
{
if(type1 == (int)field2.mFieldType[i2])
{

foundMatch = true;
break;

}
}
if(!foundMatch)
{
retVal = false;

}
}//endfor each field type in first set

return retVal;
}

We can then add each contact to the list of contacts. In our summary list
we want to show the first and last names. These are not necessarily fixed
fields and so we have to search for the field text based on a field type
(note – not all field types in this case).

/// <summary>
/// Add a card to the contacts list view
/// if aWhere is negative then append the item, otherwise insert it
/// </summary>
private void AddCard(ref RCNTContact aContact, int aWhere)
{
System.Windows.Forms.ListViewItem newItem = new ListViewItem();

376 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

newItem.Tag = aContact;
newItem.Text = RCNTUtils.FindFieldTextByType(ref aContact,

RCNTUtils.KFirstNameType); // first name
newItem.SubItems.Add(RCNTUtils.FindFieldTextByType(ref aContact,

RCNTUtils.KLastNameType)); // last name
if((aWhere >= 0) && (aWhere < ContactList.Items.Count))
{

ContactList.Items.Insert(aWhere,newItem);
}
else
{

ContactList.Items.Add(newItem);
}

}

// Find the text of a field of a type - or return "" for not found
static public string FindFieldTextByType(ref RCNTContact aContact,

int aFieldType)
{
string fieldValue = "";
for(int fieldi = 0 ; fieldi < aContact.mFields.Count ; fieldi++)
{

RCNTField testField = (RCNTField)aContact.mFields[fieldi];
for(int typei = 0 ; typei < testField.mFieldType.Count ; typei++)
{
if(aFieldType == (int)testField.mFieldType[typei])
{

fieldValue = testField.mFieldText;
break;

}
}

}
return fieldValue;

}

If you run this code (the complete application is available with the
rest of the source code for this book) then you will see that there is
a delay when the phone is first asked for contacts and then batches
of contacts come in. For a ‘consumer’ type of user this behavior is
satisfactory – I can load this application and retrieve all my contacts in
less time than Microsoft Outlook takes to load and be ready for me
to access contact data. However, an ‘Enterprise’ user with hundreds
of contacts would find this unacceptable: the application would be
unresponsive for too long.

There are a number of possible ways of handling a phone with a very
large number of contacts:

• The application could choose never to retrieve all contacts, but only
to work with the ‘find’ method, though this makes it difficult to browse
the contacts set.

A CONTACTS GUI APPLICATION 377

• The application could start to retrieve names in the same way as
above, but could allow other commands to interrupt the flow of PDUs
and so avoid making the application totally unresponsive.

• The application could retrieve all details, but in a separate thread
and with a second communications stream. The two threads would
share a cache of contacts data. This would be the most sophisticated
method, but it is not presented here as it would detract from the
core illustration – how to communicate with the contacts service
developed in Chapter 11.

The best solution will depend on details of the environment.
At this point we have allowed the user only to see the names in their

Address Book. When the user selects a contact to view or edit, we will
hastily retrieve the whole of the contact data from the smartphone.

We can display or edit a full contact and all of its fields by using a form
that has a list box (as illustrated in Figure 13.6) to which each field can
be added in turn. This is very flexible, as it will work for any combination
of fields.

Figure 13.6

378 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

When we use the form to display or edit an existing contact, we load
the list with label-value pairs without knowing (or caring) which field is
really which.

public RCNTContact mContact;

public ContactEditForm(ref RCNTContact aContact)
{
mContact = aContact;
//
// Required for Windows Form Designer support
//
InitializeComponent();

// Populate the fields list
for(int fi = 0 ; fi < aContact.mFields.Count ; fi++)
{

RCNTField newField = (RCNTField)aContact.mFields[fi];
System.Windows.Forms.ListViewItem newItem = new ListViewItem();
newItem.Tag = newField;
newItem.Text = newField.mFieldLabel;
newItem.SubItems.Add(newField.mFieldText);

ContactDetailsList.Items.Add(newItem);
}

}

However, by default we have not stored all fields for our contacts.
Therefore, this form is going to show just the name fields. When the user
chooses to view or edit a contact, we need to fetch all the fields for the
contact. We could have chosen to retrieve the contact details and then
put up the dialog, but instead, for reasons that will become apparent,
I have chosen to put up the dialog and then fetch the contact details.
When the contact details are received, we need to be able to overwrite
the previously stored data.

public void ResetContact(ref RCNTContact aContact)
{
mContact = aContact;
// Repopulate the fields list
ContactDetailsList.Items.Clear();
for(int fi = 0 ; fi < aContact.mFields.Count ; fi++)
{

RCNTField newField = (RCNTField)aContact.mFields[fi];
System.Windows.Forms.ListViewItem newItem = new ListViewItem();
newItem.Tag = newField;
newItem.Text = newField.mFieldLabel;
newItem.SubItems.Add(newField.mFieldText);

ContactDetailsList.Items.Add(newItem);
}

}

A CONTACTS GUI APPLICATION 379

Within the edit form we will not try to allow the user to edit the fields
in place, but whenever a field is selected we will copy the label and
value into text boxes and then reflect any changes to the value back to
the value in the list.

private void ContactDetailList_SelectedIndexChanged(object sender,
System.EventArgs e)

{
FieldLabelBox.Clear();
FieldTextBox.Clear();
ListView.SelectedIndexCollection indices =

ContactDetailsList.SelectedIndices;
if(indices.Count >= 1)
{

int selIndex = indices[0];
RCNTField selField = (RCNTField)ContactDetailsList.

Items[selIndex].Tag;
FieldLabelBox.Text = selField.mFieldLabel;
FieldTextBox.Text = selField.mFieldText;

}//endif got a selection
}

private void FieldTextBox_TextChanged(object sender, System.EventArgs e)
{
ListView.SelectedIndexCollection indices =

ContactDetailsList.SelectedIndices;
if(indices.Count >= 1)
{ // Set the field text, mark it changed and update the list

int selIndex = indices[0];
RCNTField selField = (RCNTField)ContactDetailsList.

Items[selIndex].Tag;
selField.mFieldText = FieldTextBox.Text;
selField.mChanged = true;
ContactDetailsList.Items[selIndex].SubItems[1].Text =

FieldTextBox.Text;
} //endif got a selection

}

This means that the button-click routine for the edit button has two
logical parts to it. The first part raises the dialog and writes a command
to retrieve the contact data. The second part takes the data from the form
and writes the changed details to the smartphone.

This method also shows the use of the mLostPhone member. This is
set to false before the dialog is raised and is checked afterwards. It will
be set only if the currently connected smartphone disconnects while the
dialog is raised. We use the same technique for all the button-click event
handlers.

private void EditButton_Click(object sender, System.EventArgs e)
{
if(ContactList.SelectedIndices.Count <= 0)
{

return;
}

380 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

mLostPhone = false;
int editIndex = ContactList.SelectedIndices[0];
RCNTContact editContact = (RCNTContact)ContactList.

Items[editIndex].Tag;
mPendingEditContact = editContact.mId;
ArrayList contactSet = new ArrayList();
contactSet.Add(mPendingEditContact);
RCNTUtils.WriteFetchContactSet(mStream, ref mNextMessageId,

ref contactSet);
StatusBox.Text = "Fetching contact details - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);

mEditForm = new ContactEditForm(ref editContact);
if(mEditForm.ShowDialog()== DialogResult.OK)
{ // Check for some fields changed

bool newData = false;
editContact = mEditForm.mContact;
for(int fi = 0 ; fi < editContact.mFields.Count ; fi++)
{
RCNTField field = (RCNTField)mEditForm.mContact.mFields[fi];
if(field.mChanged)
{

newData = true;
break;

}
}
if(newData && !mLostPhone)
{ // Save the new contact
RCNTUtils.WriteEditContact(mStream, ref mNextMessageId,

ref editContact);
StatusBox.Text = "Saving changes to contact - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);
ContactList.Items.RemoveAt(editIndex);
AddCard(ref editContact, editIndex);

}// endif got new data
}// endif OK from edit form
SetButtonStates();

}

The contact being viewed or edited is fetched using the command to
retrieve a set of contacts, although in this case the set always contains
only one entry.

/// Fetch a set of contacts
public static void WriteFetchContactSet

(BALApplicationAsyncStream aStream,
ref int aNextMessageId, ref ArrayList aIds)

{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERCntCmdFetchContactSet, ref message);
ConnPack.WriteInt32(aNextMessageId, ref message);
ConnPack.WriteInt8(1, ref message); // Do fetch all fields

A CONTACTS GUI APPLICATION 381

for(int i = 0 ; i < aIds.Count ; i++)
{

int ID = (int)aIds[i];
ConnPack.WriteInt32(ID, ref message);

}
ConnPack.WriteInt32(-1, ref message);
aNextMessageId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

When the contact details are received, we need to recognize that
they are destined for the edit form. In order to access the edit form, a
reference to it has been stored in EditButton_Click() and so the
ServiceRead() method can overwrite the details. If this was slow
then we would have an unfriendly dialog, but, in practice, the delay is
not visible.

If this model of raising the dialog and then correcting its data was
not acceptable (because of delays) then we could have the Edit-
Button_Click() method send the command to retrieve the contact
details and have a method to raise the dialog called when the response
is received.

When we write an edited contact back to the phone, we can choose
to send only those fields that have changed.

/// Edit a contact
public static void WriteEditContact(BALApplicationAsyncStream aStream,

ref int aNextPDUId,
ref RCNTContact aContact)

{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERCntCmdEditContact, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteInt32(aContact.mId, ref message);

for(int i = 0 ; i < aContact.mFields.Count ; i++)
{

RCNTField field = (RCNTField)aContact.mFields[i];
if(field.mChanged)
{
for(int fi = 0 ; fi < field.mFieldType.Count ; fi++)
{

ConnPack.WriteInt32((int)field.mFieldType[fi], ref message);
}
ConnPack.WriteInt32(-1, ref message);
ConnPack.WriteInt32(field.mMapping, ref message);
ConnPack.WriteUNCData(field.mFieldText, ref message);

}
}
ConnPack.WriteInt32(-1, ref message);

aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

382 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

Deleting a contact is simply a matter of finding the contact identifier and
constructing the appropriate PDU. Again, we check for the smartphone
having disconnected while the dialog is raised using the mLostPhone
member.

private void DeleteButton_Click(object sender, System.EventArgs e)
{
if(ContactList.SelectedIndices.Count <= 0)
{

return;
}
mLostPhone = false;
int delIndex = ContactList.SelectedIndices[0];
RCNTContact delContact = (RCNTContact)ContactList.

Items[delIndex].Tag;
if ((MessageBox.Show ("Are you sure you want to delete this

contact ?",
"Confirm Delete",
MessageBoxButtons.YesNo, MessageBoxIcon.Question,
MessageBoxDefaultButton.Button2)
== DialogResult.Yes) && !mLostPhone)

{
RCNTUtils.WriteDeleteContact(mStream, ref mNextMessageId,

delContact.mId);
StatusBox.Text = "Deleting contact - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);
ContactList.Items.RemoveAt(delIndex);

}
SetButtonStates();

}

As with some of the earlier actions, we will need to extend Ser-
viceRead() for the reply when we edit or delete contacts, but we are
not concerned with the contents of the PDU.

We can create a new contact using the edit form.

private void CreateButton_Click(object sender, System.EventArgs e)
{
mLostPhone = false;
RCNTUtils.CreateNewContact(ref mTemplateFields,

out mPendingCreateContact);
ContactEditForm editForm = new ContactEditForm

(ref mPendingCreateContact);

if(editForm.ShowDialog()== DialogResult.OK)
{ // Check for some fields changed

bool newData = false;
for(int fi = 0 ; fi < mPendingCreateContact.mFields.Count ; fi++)
{
RCNTField field = (RCNTField)mPendingCreateContact.mFields[fi];
if(field.mChanged)
{

newData = true;

A CONTACTS GUI APPLICATION 383

break;
}

}
if(newData && !mLostPhone)
{ // Save the new contact
RCNTUtils.WriteCreateContact(mStream, ref mNextMessageId,

ref mPendingCreateContact);
StatusBox.Text = "Creating new contact - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);

}// endif got new data
}// endif OK from create form
SetButtonStates();

}

We can create a new contact object using the template fields.

// Creates a new contact based on template fields
static public void CreateNewContact(ref ArrayList aTemplateFields,

out RCNTContact aContact)
{
aContact = new RCNTContact();
aContact.mId = 0;
aContact.mFields = new ArrayList(aTemplateFields);

}

Once again, we choose to send data only for fields containing
some data.

/// Create a contact
public static void WriteCreateContact

(BALApplicationAsyncStream aStream,
ref int aNextPDUId, ref RCNTContact aContact)

{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERCntCmdCreateContact, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);

for(int i = 0 ; i < aContact.mFields.Count ; i++)
{

RCNTField field = (RCNTField)aContact.mFields[i];
if(field.mChanged)
{
for(int fi = 0 ; fi < field.mFieldType.Count ; fi++)
{

ConnPack.WriteInt32((int)field.mFieldType[fi], ref message);
}
ConnPack.WriteInt32(-1, ref message);
ConnPack.WriteInt32(field.mMapping, ref message);
ConnPack.WriteUNCData(field.mFieldText, ref message);

}
}
ConnPack.WriteInt32(-1, ref message);

384 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

At this point we have a contacts application that allows the user to
browse through their contacts and to edit or delete existing contacts or
to create new ones. It does not make any use of the find methods and
it has no explicit integration with any other application. If you were
building a combined application then you would almost certainly choose
to integrate more.

13.7 An Agenda GUI Application

Our final application to consider at this point is an Agenda application.
There is a lot of scope for good or clever GUI design (the two are not
always the same) to present the Agenda information in ways that are
helpful to the user. For example, Agenda applications may have year,
month, week or day views, and they may choose various ways to show
free time or days when appointments are booked. In this application, I
have chosen to display only one day of information at a time, and the
Agenda Connectivity service was written with this in mind. If you want to
display other views then you should consider extending the service on the
Symbian OS smartphone to retrieve more than one day’s data at a time;
creating a year view one day at a time would have serious performance
problems.

When the Contacts application obtained a connection, it sent some
commands to set the view and retrieve template information. In a similar
way, we will open the calendar file for our Agenda application. We
saw that the Agenda Model, unlike the Calendar Model, requires us to
explicitly specify the name of the calendar file. Unfortunately, different
models of Symbian OS smartphone use different locations and names for
their calendar file. Therefore, we need to choose the file name based on
the phone manufacturer and model. In my example I have handled only
two manufacturers and I have specified the models that I have tested this
software with. It would be possible to be more relaxed and try different
locations or names – as the service responds with an error number if the
calendar file is not found, this would be manageable. I could have put
the code to select the file name in the service on the phone, but it is
easier to upgrade PC software. By devolving the choice of name to the
PC application, I provide the ability to support new devices at a later date
simply by releasing an upgrade to the PC side. If I wanted to be really
clever, I could put the data about which manufacturers and models have
which named calendar file into the registry, and then supporting new
phones would require simply releasing a registry upgrade file.

AN AGENDA GUI APPLICATION 385

/// <summary>
/// Initializes the service we need on the phone.
/// </summary>
private void InitializePhoneService()
{
// Check for a phone with a known calendar file
string manuf = mCurrentPhone.Manufacturer;
string model = mCurrentPhone.Model;
string calendarFile = "unknown";
if((manuf == "Nokia") &&

((model=="7650") || (model=="3650") || (model=="6600")))
{ calendarFile = "C:\\System\\Data\\Calendar"; }
else if((manuf == "SonyEricsson") &&

((model=="P800") || (model=="P900")))
{ calendarFile = "C:\\Documents\\Agenda\\Agenda"; }
else
{

MessageBox.Show("The connected phone is not a recognized type",
"Unrecognized Model Error",
MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

return;
}
int errorCode = mCurrentPhone.StartService("RAGNCS", out mStream);
if(errorCode != BALConnectedPhone.KErrNone)
{

MessageBox.Show("The Agenda plug-in was not found",
"Service Missing Error",
MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

}
else
{

mStream.OnRead += new
ISCBALSequentialStreamSink_OnReadEventHandler(OnRead);

mStream.OnWrite += new
ISCBALSequentialStreamSink_OnWriteEventHandler(OnWrite);

// Clear data related to this phone
mAgendaOpen = false;
mGotAppts = false;

// try to open an agenda file - the name depends on the phone
// connected
RAGNUtils.WriteOpenAgenda(mStream, ref mNextPDUId, calendarFile);
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);
StatusBox.Text = "Opening Agenda File - please wait";
SetButtonStates();

}
}

/// Open agenda file by name
public static void WriteOpenAgenda(BALApplicationAsyncStream aStream,

ref int aNextPDUId, string aAgendaName)
{
ArrayList message = new ArrayList();

386 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

ConnPack.WriteInt32(ERAgnCmdOpenAgenda, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteUNCData(aAgendaName, ref message);
aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

The main form for this application has a list display that allows us to
display summary information on all appointments or events for a day,
and controls to select the day concerned and a range of actions, as shown
in Figure 13.7.

Figure 13.7

Microsoft Windows provides a very convenient control to allow the
user to select a date and so retrieving a day’s worth of data can be easily
initiated. In my experience, it is unlikely that a single day will have more
entries than can be retrieved in one go, so we do not include support for
this. If your entries are likely to include extensive notes or other data then
you might need to take a different approach.

private void FetchButton_Click(object sender, System.EventArgs e)
{
ClearApptList();
// Symbian OS wants a date string of the form YYYYMMDD:
// Where MM and DD are the month and day numbers but zero-based.
int year = DatePicker.Value.Year;
int month = DatePicker.Value.Month-1;
int day = DatePicker.Value.Day-1;
string dateString = year.ToString() + month.ToString("D2")

+ day.ToString("D2") + ":";

AN AGENDA GUI APPLICATION 387

RAGNUtils.WriteFetchApptsByDay(mStream, ref mNextPDUId, dateString);
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);
StatusBox.Text = "Fetching entries - please wait";
SetButtonStates();

}

/// Fetch appointments by day - based on a date string of the form
/// YYYYMMDD, where MM and DD are zero based
public static void WriteFetchApptsByDay
(BALApplicationAsyncStream aStream, ref int aNextPDUId, string aDate)

{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERAgnCmdFetchApptsByDay, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteASCIIData(aDate, ref message);
aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

Reading entries back follows the same pattern as for the previous
applications. Note that we can expect a combination of appointments,
events and anniversaries. Luckily, the differences that we care about
are relatively small and so we can store all types of entry in one
class.

public class RAGNDateTime
{
public bool mIsNull; // Is the date time null - i.e. unset
public DateTime mDate; // date and time (if not null)

public RAGNDateTime()
{

mDate = new DateTime();
}

}

public class RAGNInstance
{
public int mInstanceId; // instance identifier
public RAGNDateTime mDate; // instance date

public RAGNInstance()
{

mDate = new RAGNDateTime();
}

}

public class RAGNEntry
{
public int mEntryType; // type - appointment, event or anniversary
public RAGNInstance mInstance; // instance information
public RAGNDateTime mStartDate; // start date and time
public RAGNDateTime mEndDate; // end date and time
public int mDisplayTime; // display time in minutes after midnight

388 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

public int mAlarmFlag; // true if the appointment has an alarm set
public int mAlarmDays; // days before start for the alarm
public int mAlarmMinutes; // mins after midnight for alarm to start
public int mCrossedOut; // appointment crossed out?
public int mTentative; // appointment tentative?
public int mDayNote; // appointment a day note?
public int mRepeating; // appointment part of repeating sequence?
public string mText; // appointment text

public RAGNEntry()
{

mInstance = new RAGNInstance();
mStartDate = new RAGNDateTime();
mEndDate = new RAGNDateTime();
mDisplayTime = 0;
mAlarmFlag = 0;
mTentative = 0;
mCrossedOut = 0;
mDayNote = 0;
mText = "";

}
}

/// <summary>
/// Handle a PDU read from the device
/// </summary>
private void ServiceRead(int aOpCode, int aPDUId, ref byte[] aBuff,

ref int aReadPos)
{
int errno = 0;
switch(aOpCode)
{

case(RAGNUtils.ERAgnCmdFetchApptsReply):
StatusBox.Text = "Reading Entries - please wait";
bool carryOn = true;
bool gotAtLeastOne = false;
while(carryOn)
{

RAGNEntry appt = new RAGNEntry();
carryOn = RAGNUtils.ReadAppt(ref aBuff, ref aReadPos,

ref appt);
if(carryOn)
{
gotAtLeastOne = true;
AddEntry(ref appt, -1);

}
}
if(gotAtLeastOne)
{ mGotAppts = true;}
break;

. . .

/// Read an appointment from the PDU - terminated by a -1 value for type
static public bool ReadAppt(ref byte[] aBuff, ref int aBuffOffset,

ref RAGNEntry aAppt)

AN AGENDA GUI APPLICATION 389

{
int apptType = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
if(apptType == -1)
{

return false;
}
aAppt.mEntryType = apptType;
int instanceId = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
aAppt.mInstance.mInstanceId = instanceId;
ConnPack.ReadDateTime(ref aBuff, ref aBuffOffset,

out aAppt.mInstance.mDate.mIsNull,
out aAppt.mInstance.mDate.mDate);

aAppt.mCrossedOut = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
aAppt.mTentative = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
aAppt.mDayNote = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
aAppt.mRepeating = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
aAppt.mAlarmFlag = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
if(aAppt.mAlarmFlag != 0)
{

aAppt.mAlarmDays = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
aAppt.mAlarmMinutes = ConnPack.ReadInt32(ref aBuff,

ref aBuffOffset);
}
System.Text.StringBuilder apptName;
ConnPack.ReadData(ref aBuff, ref aBuffOffset, out apptName);
aAppt.mText = apptName.ToString();

ConnPack.ReadDateTime(ref aBuff, ref aBuffOffset,
out aAppt.mStartDate.mIsNull, out aAppt.mStartDate.mDate);

ConnPack.ReadDateTime(ref aBuff, ref aBuffOffset,
out aAppt.mEndDate.mIsNull, out aAppt.mEndDate.mDate);

if(apptType != RAGNUtils.EAppt)
{

aAppt.mDisplayTime = ConnPack.ReadInt32(ref aBuff, ref aBuffOffset);
}
else
{

aAppt.mDisplayTime = 0;
}
return true;

}

When we add an entry to the day view, we handle appointments
differently from events and anniversaries because the times work slightly
differently.

/// <summary>
/// Add an appointment or event to the view
/// if aWhere is negative then append the item, otherwise insert it
/// </summary>
private void AddEntry(ref RAGNEntry aAppt, int aWhere)
{
System.Windows.Forms.ListViewItem newItem = new ListViewItem();
newItem.Tag = aAppt;
// Set the start time and end time for an appointment

390 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

if(aAppt.mEntryType == RAGNUtils.EAppt)
{

newItem.Text = aAppt.mStartDate.mDate.ToShortTimeString();
newItem.SubItems.Add(aAppt.mEndDate.mDate.ToShortTimeString());

}
// Set the display time and a blank end for an event or anniversary
else
{

int hours = aAppt.mDisplayTime / 60;
int mins = aAppt.mDisplayTime % 60;
newItem.Text = hours.ToString() + ":" + mins.ToString("d2");
newItem.SubItems.Add("");

}
newItem.SubItems.Add(aAppt.mText);
string repeatText = "";
if(aAppt.mRepeating != 0)
{repeatText = "R";}
newItem.SubItems.Add(repeatText);
string tentativeText = "";
if(aAppt.mTentative != 0)
{tentativeText = "T";}
newItem.SubItems.Add(tentativeText);

if((aWhere >= 0) && (aWhere < ApptList.Items.Count))
{

ApptList.Items.Insert(aWhere,newItem);
}
else
{

ApptList.Items.Add(newItem);
}

}

At this point, we have a useful application that allows the user to select a
day and display entries in summary form. If we want to display all the data
for an entry, or to create or edit an entry, then we need a form with controls
for all the data that we are concerned with. We will need two forms, one
for appointments and one for events. The appointments form has the start
and end date and time, text and properties, as shown in Figure 13.8.

We will use a very similar form for events, the only difference being
that a display time is added. Anniversaries can be treated as events, and
this application can display them and allow some editing.

The code behind this form is concerned with initializing the controls
from a received object and updating the object with the control contents
on exit.

public RAGNEntry mEntry;

public ApptForm(ref RAGNEntry aAppt)
{
//
// Required for Windows Form Designer support
//
InitializeComponent();

AN AGENDA GUI APPLICATION 391

Figure 13.8

mEntry = aAppt;
StartTimePicker.Value = new DateTime(aAppt.mStartDate.mDate.Year,

aAppt.mStartDate.mDate.Month, aAppt.mStartDate.mDate.Day,
aAppt.mStartDate.mDate.Hour, aAppt.mStartDate.mDate.Minute,
aAppt.mStartDate.mDate.Second);

EndTimePicker.Value = new DateTime(aAppt.mEndDate.mDate.Year,
aAppt.mEndDate.mDate.Month, aAppt.mEndDate.mDate.Day,
aAppt.mEndDate.mDate.Hour, aAppt.mEndDate.mDate.Minute,
aAppt.mEndDate.mDate.Second);

ApptText.Text = aAppt.mText;
RepeatCheckBox.Checked = (aAppt.mRepeating != 0);
TentativeCheckBox.Checked = (aAppt.mTentative != 0);
AlarmCheckBox.Checked = (aAppt.mAlarmFlag != 0);
if(aAppt.mAlarmFlag != 0)
{

AlarmTimeBox.Text = aAppt.mAlarmMinutes.ToString();
}

}

/// <summary>
/// Put current values into entry
/// </summary>
private void OKButton_Click(object sender, System.EventArgs e)
{
mEntry.mStartDate.mDate = StartTimePicker.Value;
mEntry.mEndDate.mDate = EndTimePicker.Value;
mEntry.mText = ApptText.Text;
mEntry.mTentative = 0;
if(TentativeCheckBox.Checked)
{

mEntry.mTentative = 1;
}

392 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

mEntry.mAlarmFlag = 0;
if(AlarmCheckBox.Checked)
{

mEntry.mAlarmFlag = 1;
mEntry.mAlarmMinutes = system.Convert.ToInt32(AlarmTimeBox.Text);

}
}

Given this code, the code to edit an appointment follows the pattern
that we saw in the contacts application, except that it has to choose
which type of edit form to bring up depending on the entry type.

private void EditButton_Click(object sender, System.EventArgs e)
{
mLostPhone = false;
if(ApptList.SelectedIndices.Count <= 0)
{

return;
}
int editIndex = ApptList.SelectedIndices[0];
RAGNEntry editEntry = (RAGNEntry)ApptList.Items[editIndex].Tag;
bool saveData = false;
if(editEntry.mEntryType == RAGNUtils.EAppt)
{

ApptForm editForm = new ApptForm(ref editEntry);
if(editForm.ShowDialog()== DialogResult.OK)
{saveData = true;}

}
else
{

EventForm editForm = new EventForm(ref editEntry);
if(editForm.ShowDialog()== DialogResult.OK)
{saveData = true;}

}
if(saveData && !mLostPhone)
{ // Save the changed entry

RAGNUtils.WriteEditEntry(mStream, ref mNextMessageId,
ref editEntry);

StatusBox.Text = "Saving changes to entry - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);
ApptList.Items.RemoveAt(editIndex);
AddEntry(ref editEntry, editIndex);

}// endif OK from edit form
SetButtonStates();

}

There is one glaring omission from this code – any form of validity
checking. In a commercial application, it would be necessary to check
that the end date and time are no earlier than the start time and to query
the user if the times are in the past.

AN AGENDA GUI APPLICATION 393

public static void WriteEditEntry(BALApplicationAsyncStream aStream,
ref int aNextPDUId, ref RAGNEntry aAppt)

{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERAgnCmdEditAppt, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteInt32(aAppt.mInstance.mInstanceId, ref message);
ConnPack.WriteDateTime(false, aAppt.mInstance.mDate.mDate,

ref message);
ConnPack.WriteInt32(ECurrentInstance, ref message);
// Set to edit times - different ones based on type
ConnPack.WriteInt8(1, ref message);
ConnPack.WriteDateTime(aAppt.mStartDate.mIsNull,

aAppt.mStartDate.mDate, ref message);
ConnPack.WriteDateTime(aAppt.mEndDate.mIsNull,

aAppt.mEndDate.mDate, ref message);
if(aAppt.mEntryType != EAppt)
{

ConnPack.WriteInt16(aAppt.mDisplayTime, ref message);
}
// Set to edit alarm details
ConnPack.WriteInt8(1, ref message);
ConnPack.WriteInt8(aAppt.mAlarmFlag, ref message);
if(aAppt.mAlarmFlag != 0)
{

ConnPack.WriteInt16(aAppt.mAlarmDays, ref message);
ConnPack.WriteInt16(aAppt.mAlarmMinutes, ref message);

}
// Set other properties
ConnPack.WriteInt8(aAppt.mCrossedOut, ref message);
ConnPack.WriteInt8(aAppt.mTentative, ref message);
ConnPack.WriteInt8(aAppt.mDayNote, ref message);
ConnPack.WriteInt8(1, ref message);
ConnPack.WriteUNCData(aAppt.mText, ref message);
aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

As with other edit and create PDUs, we will need to extend the
ServiceRead() method, but we do not need to pay any attention to
the response.

The real reason for showing alarm details is to allow the user to edit
them or to create a new appointment with an alarm. We have made no
real attempt to make it easy to set an alarm time in this form; a more
friendly approach would be to provide another date and time picker.

Another area that has been avoided here is any detail on repeating
entries. Chapter 12 on the Agenda Model showed how complex Symbian
OS allows repeating entries to be, and I prefer to avoid the issue. If you
want to allow the user to create and edit repeating entries then you will
probably choose to expose only a subset of the possible options. You
will also have to extend the Agenda service to support whatever repeat
functionality you have chosen.

394 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

Creating an appointment or an event involves creating a new entry and
then using the same forms as we used earlier for edits. Because we have
different forms for appointments and events, we need separate buttons
and so separate (but very similar) methods.

private void CreateApptButton_Click(object sender, System.EventArgs e)
{
mLostPhone = false;
RAGNEntry newEntry = new RAGNEntry();
newEntry.mEntryType = RAGNUtils.EAppt;
newEntry.mStartDate.mDate = DateTime.Now;
newEntry.mEndDate.mDate = DateTime.Now;
ApptForm editForm = new ApptForm(ref newEntry);
if(editForm.ShowDialog()== DialogResult.OK && !mLostPhone)
{ // Save the new entry

RAGNUtils.WriteCreateEntry(mStream, ref mNextMessageId,
ref newEntry);

StatusBox.Text = "Saving new entry - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);
AddEntry(ref newEntry, -1);
mGotAppts = true;

}// endif OK from edit form
SetButtonStates();

}

private void CreateEventButton_Click(object sender, System.EventArgs e)
{
mLostPhone = false;
RAGNEntry newEntry = new RAGNEntry();
newEntry.mEntryType = RAGNUtils.EEvent;
newEntry.mStartDate.mDate = DateTime.Now;
newEntry.mEndDate.mDate = DateTime.Now;
EventForm editForm = new EventForm(ref newEntry);
if(editForm.ShowDialog()== DialogResult.OK && !mLostPhone)
{ // Save the new entry

RAGNUtils.WriteCreateEntry(mStream, ref mNextMessageId,
ref newEntry);

StatusBox.Text = "Saving new entry - please wait";
mPendingRead = true;
mReadingLength = true;
mStream.Read(4);
AddEntry(ref newEntry, -1);
mGotAppts = true;

}// endif OK from edit form
SetButtonStates();

}

/// Create a new appointment or event
public static void WriteCreateEntry(BALApplicationAsyncStream aStream,

ref int aNextPDUId, ref RAGNEntry aEntry)
{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERAgnCmdCreateAppt, ref message);

AN AGENDA GUI APPLICATION 395

ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteInt32(aEntry.mEntryType, ref message);
ConnPack.WriteDateTime(aEntry.mStartDate.mIsNull,

aEntry.mStartDate.mDate, ref message);
ConnPack.WriteDateTime(aEntry.mEndDate.mIsNull,

aEntry.mEndDate.mDate, ref message);
if(aEntry.mEntryType == RAGNUtils.EEvent)
{

ConnPack.WriteInt32(aEntry.mDisplayTime, ref message);
}
ConnPack.WriteInt8(aEntry.mAlarmFlag, ref message);
if(aEntry.mAlarmFlag != 0)
{

ConnPack.WriteInt16(aEntry.mAlarmDays, ref message);
ConnPack.WriteInt16(aEntry.mAlarmMinutes, ref message);

}
ConnPack.WriteInt8(aEntry.mCrossedOut, ref message);
ConnPack.WriteInt8(aEntry.mTentative, ref message);
ConnPack.WriteInt8(aEntry.mDayNote, ref message);
ConnPack.WriteUNCData(aEntry.mText, ref message);
aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

If we wanted to maintain a good cache of device data then we would
want to respond to the entry created response PDU by storing the instance
identifier, but, for the purposes of this application, we can just ignore
the response.

Because we are avoiding handling repeating entries in any detail, we
will not allow the user to create an anniversary. It would be possible
to create one using the event form, but without repeat information it
is pointless.

Deletion simply requires obtaining the instance date and identifier and
composing the appropriate PDU.

private void DeleteButton_Click(object sender, System.EventArgs e)
{
mLostPhone = false;
if(ApptList.SelectedIndices.Count <= 0)
{

return;
}
int editIndex = ApptList.SelectedIndices[0];
RAGNEntry delEntry = (RAGNEntry)ApptList.Items[editIndex].Tag;
if (MessageBox.Show ("Are you sure you want to delete this entry ?",

"Confirm Delete",
MessageBoxButtons.YesNo, MessageBoxIcon.Question,
MessageBoxDefaultButton.Button2)
== DialogResult.Yes && !mLostPhone)

{
RAGNUtils.WriteDeleteInstance(mStream, ref mNextMessageId,

ref delEntry.mInstance);
StatusBox.Text = "Deleting entry - please wait";
mPendingRead = true;

396 DEVELOPING A SPECIALIZED CONNECTIVITY GUI APPLICATION

mReadingLength = true;
mStream.Read(4);
ApptList.Items.RemoveAt(editIndex);
if(ApptList.Items.Count == 0)
{ mGotAppts = false; }

}
SetButtonStates();

}

/// Delete an instance
public static void WriteDeleteInstance

(BALApplicationAsyncStream aStream,
ref int aNextPDUId, ref RAGNInstance aInstance)

{
ArrayList message = new ArrayList();
ConnPack.WriteInt32(ERAgnCmdDeleteInstance, ref message);
ConnPack.WriteInt32(aNextPDUId, ref message);
ConnPack.WriteInt32(aInstance.mInstanceId, ref message);
ConnPack.WriteDateTime(aInstance.mDate.mIsNull, aInstance.mDate.mDate,

ref message);
ConnPack.WriteInt32(ECurrentInstance, ref message);
aNextPDUId++;
aStream.Write(ConnPack.AsByteArr(ref message));

}

13.8 Conclusion and Ideas for Further Development

That concludes the applications associated with the SMS, Contacts and
Agenda services. These were an almost arbitrary selection chosen to
illustrate some of the more common and more generally useful services.
Not all the features included in the services created in earlier chapters
were used (for example, to-do lists were omitted for reasons of space and
because they did not demonstrate any new principles), but the intention
was to show what can be achieved by creating a specialized service for
a Symbian OS smartphone.

The most obvious direction in which GUI applications could be
extended is that of integration. The SMS application, or a similar MMS
or email application, is crying out for integration with contacts data,
and a specialized meetings application could be created by selecting
contacts entries and sending them messages while associating them with
an appointment.

Although I have chosen to demonstrate GUI applications, the services
will work at least as well with other applications such as databases or
corporate systems (these are difficult to use as illustrations in a book). I
used command-line applications to create and debug all of the device
services. This kind of enterprise-level integration would allow Symbian
OS smartphones to form a part of a much larger system.

14
Starting General Socket Servers

Earlier chapters have described how to create specialized services based
on the Symbian OS Connectivity frameworks – either custom servers
or socket servers. These are pretty good and are adequate for most
purposes, but some developers may still want to use services that are
general-purpose TCP/IP socket servers.

There are a number of reasons why you might want to use such
a server:

• You may have a server that has not been designed for use with
Connect and you may want to use it without converting it.

• You may need to get around the assumptions imposed by the custom
server framework (being forced to operate within the RunL() of a
process that you cannot debug has its limitations).

• You may want to create a service that can be used with a wide range
of Symbian OS smartphones. I have designed the services described
in this book so as to separate out the specialized functionality for
reuse, but this still requires some different code for pre v8.0 and post
v8.0 Symbian OS smartphones.

Having decided that you want to use a general-purpose TCP/IP server,
there are several obstacles to be overcome:

1. You need to either use a fixed port number or have some way of
publishing a port number.

2. You need a method of connecting a client on the PC to the listening
port on the phone.

3. You need a method of starting the socket server when required.

I do not have any good solution to problem 1 – you will probably have
to use a fixed port number. This is frowned upon in theory, as fixed TCP/IP
port numbers are supposed to be allocated by the IANA, but, in practice,

398 STARTING GENERAL SOCKET SERVERS

you may risk choosing a number that you do not think will clash with
anybody else’s process. I don’t recommend it, but I do recognize that
it happens. The Symbian OS Connectivity framework for v8.0 and later
smartphones solves this problem by using one fixed port for the Service
Broker (and this fixed port number has been allocated by the IANA) and
defining a message protocol that allows other servers to pass dynamically
allocated port numbers back to the PC.

Problems 2 and 3 are addressed below.

14.1 Communicating with a Socket Server
A socket server works by listening on a port number. The following code
is extracted from several different methods of a test socket server that was
created to test this chapter.

class CTestSocketServer : public CActive
{
public:
static CTestSocketServer* NewL(TUint16 aPortNumber,

TUint16 aMaxConnections);

CTestSocketServer();
void ConstructL(TUint16 aPortNumber, TUint16 aMaxConnections);
∼CTestSocketServer();
void StartL();

public: //from CActive
void RunL();
void DoCancel();
TInt RunError(TInt aErr);

private:
RSocketServ iServer; // Session to the EPOC socket server (ESOCK)
RSocket iSocket; // The server socket
RSocket iClientSocket;
TUint16 iPortNumber; // Port number to listen on
TUint16 iMaxConnectionQueue; // Max connections

CRx* iRx;
CTx* iTx;

};

void DoMainL()
{
CActiveScheduler* p = new (ELeave) CActiveScheduler;
CleanupStack::PushL(p);
CActiveScheduler::Install(p);

CTestSocketServer* server = CTestSocketServer::NewL(3050, 1);
CleanupStack::PushL(server);
server->StartL();
p->Start();

CleanupStack::PopAndDestroy(server);
CleanupStack::PopAndDestroy(p);

COMMUNICATING WITH A SOCKET SERVER 399

}

CTestSocketServer* CTestSocketServer::NewL(TUint16 aPortNumber,
TUint16 aMaxConnections)

{
CTestSocketServer* self = new (ELeave) CTestSocketServer();
CleanupStack::PushL(self);
self->ConstructL(aPortNumber, aMaxConnections);
CleanupStack::Pop(self);
return self;
}

CTestSocketServer::CTestSocketServer():
CActive(CActive::EPriorityStandard)
{
}

void CTestSocketServer::ConstructL(TUint16 aPortNumber,
TUint16 aMaxConnections)

{
iPortNumber = aPortNumber;
iMaxConnectionQueue = aMaxConnections;
CActiveScheduler::Add(this);
}

CTestSocketServer::∼CTestSocketServer()
{
delete iRx;
delete iTx;
iSocket.Close();
iServer.Close();
}

void CTestSocketServer::StartL()
{
if (!IsActive())

{
User::LeaveIfError(iServer.Connect());
User::LeaveIfError(iSocket.Open(iServer, KAfInet, KSockStream,

KProtocolInetTcp));

TInetAddr address(KInetAddrAny,iPortNumber);
User::LeaveIfError(iSocket.Bind(address));
User::LeaveIfError(iSocket.Listen(iMaxConnectionQueue));

User::LeaveIfError(iClientSocket.Open(iServer));
iSocket.Accept(iClientSocket, iStatus);
SetActive();
}

}

I will not go into too much detail on the APIs that have been used – they
are the standard Symbian OS socket APIs and more details can be found
in the SDKs. The result of the above code is to listen on socket 3050. If
and when a client attempts to connect on this port number, the CTest-
SocketServer::RunL() method will be called and the socket server
will use additional Active Objects to start communications. Commonly, it

400 STARTING GENERAL SOCKET SERVERS

will create an Active Object to call RSocket::RecvOneOrMore() to
wait for commands.

Given a socket server on the phone listening on a known port, BAL
provides a method of connection. You can connect to a listening port by
using the StartGeneralService() method with a service name that
is the port number in decimal, prefixed by a ‘#’ character:

int serviceError = mPhone.StartGeneralService("#3050", out mAStream);

If a server is listening on the specified port then this will connect to it
and return a stream that can be used in the same way as a stream that
was used to connect to a named service.

14.2 Starting a Server

The final problem, that of starting the socket server when required, is less
easily solved. You could put the socket server in a GUI application on
the phone and require the user to start it manually, but that will not be
regarded as friendly by the users (it will also get closed down if a backup
is triggered which may be a problem for a Connectivity service). You
could arrange for your service to be started whenever the Symbian OS
smartphone boots up, but this is frowned upon. The available methods
involve misusing other APIs; in any case, any running server takes up
resources and a smartphone has only a limited amount of resources.

What we really want is to start the service from the PC only when
we need to use it. This is exactly what the Service Broker provides
for registered services from Symbian OS v8.0 onwards, so we need to
implement our own service that provides a similar service.

We can create a PC Connectivity service (either a custom server or a
specialized socket server) with a message protocol that allows us to start
another server on the phone. It may sound as though we are having to
create a specialized service which we were trying to avoid in the first
place, but, in fact, we are creating a service that can be used to start any
number of other servers and that allows us to keep our servers separate
from any other PC Connectivity issues.

I will not include the custom server code, but the key method is
as follows:

void CStartCSSession::StartServiceL(TInt aMsgId)
{
TInt nameLength = CConnPack::PeekInt32L(iReadPtr);
HBufC* nameBuff = HBufC::NewLC(nameLength);
TPtr namePtr(nameBuff->Des());
CConnPack::ReadUNCDataL(namePtr, iReadPtr);

STARTING A SERVER 401

RLibrary lib;
RThread processHandle;

TInt ret = lib.Load(namePtr);
if (ret == KErrNone)

{
TLibraryFunction ordinal1 = lib.Lookup(1);
TThreadFunction processFunc = REINTERPRET_CAST(TThreadFunction,

ordinal1());

ret = processHandle.Create(namePtr, processFunc, KServerStackSize,
NULL, &lib, NULL, KServerInitHeapSize,
KServerMaxHeapSize, EOwnerProcess);

lib.Close();
}

CleanupStack::PopAndDestroy(nameBuff);

if (ret == KErrNone)
{
processHandle.Resume();

iWritePtr.Zero();
CConnPack::WriteInt32L(EStartResponse, iWritePtr);
CConnPack::WriteInt32L(aMsgId, iWritePtr);
Write(&iWritePtr);
}

else
{
WriteErrorL(ret, aMsgId);
}

}

We use RLibrary::Load to load the named DLL and then find the
first ordinal for it. We will always want the first ordinal for a real server.
Once we have a reference to the server main function, we can create a
thread by calling RThread::Create and then start the thread by calling
RThread::Resume.

If we wanted to be notified when the new thread exits, we could use
the RThread::Logon method, but in this case we are content to start
the thread and let it run.

The similar code for an EKA2 Symbian OS smartphone is simpler,
as we do not need to load the library and obtain the ordinal directly.
Instead of using an RThread we use an RProcess and we call RPro-
cess::Create() using the name of the executable to be loaded, and
then RProcess::Resume().

If we are running on Symbian OS v8.0 or later then we will not use a
custom server but a socket server, and the above code can be used in an
ExecuteLD() call.

Using a service in this way requires that we install both the real server
and the starter service on the Symbian OS smartphone, connect to the
starter service by name, use it to start the real server, and then use a
separate BAL or SCOM stream to connect to the waiting server.

15
Connectivity Dos and Don’ts

This chapter consists of pieces of advice for developers creating PC
Connectivity services and applications. They could be presented as
design patterns, but they are not all formally presented. They could be
labeled ‘design principles’, but they are not all that grand. They are all
useful, however, and based on real experience of PC Connectivity for
Symbian OS smartphones.

15.1 Protocol Design

A PC Connectivity application is a true client-server application. You will
need to design and implement a service on a Symbian OS smartphone
and then implement a client on the PC to use the service. The protocol
between the service and the client is a crucial part of your design.

15.1.1 Document Your Protocol
It can be tempting to leave your protocol undocumented if you maintain
both the device-side and PC-side code, but resist the temptation. It does
not require much effort to document the protocol and there are both
short- and long-term advantages.

Plan your protocol as part of your design. By writing down the messages
and responses that you expect, you will be forced to think about some of
the details at an early stage.

It is quite likely that you may assign different developers to the device-
side and PC-side development. A documented protocol will ease their
interaction and allow them to proceed independently to some degree.

Expect your protocol to change during implementation. Unless you
are very skilled or very lucky, your first version of the protocol will need
to be adjusted. Some prototyping can reduce the scale of the changes,
but some changes are almost inevitable. When the protocol does change,
take the time to maintain the documentation, otherwise the difference
between the documentation and reality will grow and may put you off
maintenance later on.

404 CONNECTIVITY DOS AND DON’TS

15.1.2 Plan for a Maximum Packet Size
Plan for a fixed maximum size of Protocol Data Unit (PDU) in your
protocol. The size can be large, but should be fixed. If you need to
transfer an indeterminate amount of data then you need to design the
protocol in such a way as to spread the data over multiple PDUs. If you
avoid documenting the protocol then this issue of a maximum packet
size may be overlooked until late in the development, at which time your
developers may be reluctant to make changes.

The reason for a fixed maximum packet size is that the Symbian OS
smartphone has limited resources and cannot support indeterminate sized
buffers. There are APIs for buffers that can be extended but, if used to
excess, these can crash your service or the phone.

When setting the size of a PDU, bear in mind that the data may be
copied in an IP stack and so multiple copies may exist.

When designing a protocol to handle multi-PDU messages, do not just
add all the incoming PDUs to a buffer – that defeats the purpose of splitting
the message up in the first place. This implies that you will probably need
to build on a system API that supports multi-part operations.

15.1.3 Plan for Expansion and Extension
If your protocol and service are any good then you may find that you
discover new uses for them over time. If users like your application then
they will suggest ways to extend it.

One key to a protocol that may be extended is some version informa-
tion. Look forward to a time when many copies of your software are in
circulation on PCs and Symbian OS smartphones and it may be possible
for mismatched versions of client and service software to come together.
If you have not planned for this then the results will be unfortunate as
the two sides misunderstand each other. At best they will fail to com-
municate; at worst the client will cause unexpected damage to data on
the phone.

If you include version information in your protocol (a simple fetch
version command should suffice) then your client can check the version
of a service after loading it. If your client is able to handle multiple
versions of a protocol then it can take appropriate measures; if the client
does not recognize the version then it can fail gracefully and inform the
user of the problem.

One way to ease the handling of multiple versions is to be reluctant
to change existing messages or responses. Instead, add new versions and
maintain the old ones. If maintaining the old ones causes a maintenance
burden then cause the old ones to return an error value of KErrNotSup-
ported to the client. However, if a significant proportion of the protocol
is changed then it may be better to create a service with a new name and
a new protocol.

PROTOCOL DESIGN 405

15.1.4 Plan for Debugging

In an ideal world you will always have your debugging tools available, but
in real life you may have to make do with less than perfect information.
In some cases it is possible to obtain dumps of TCP/IP traffic and that
may be your only information. In these cases, a protocol that includes
extra information (such as transaction identifiers) and some repetitive or
redundant data (such as PDU counts, for example PDU 1 of 5) may
be considerably easier to understand than a protocol that relies heavily
on context for meaning. In addition, such protocols may reveal defects
earlier, as integrity checks can be built in.

15.1.5 Consider Compression

One of the limitations of PC Connectivity performance is the bandwidth
of the connection, so compressing data or tuning protocols to minimize
data volumes may improve performance. However, there are always costs
and trade-offs to consider.

Actually compressing data requires processing power at both ends
and requires that data be copied between buffers. This may offset the
performance gain of transferring less data. Also, there is a fixed overhead
to sending and receiving a message and so compressing an already
small message may have little effect. If a large amount of data, such as
multi-megabyte files, is to be transferred then compression will provide
a more relevant gain, although modern file formats, such as image and
audio file formats, tend to be compressed in the first place and so further
compression is likely to be ineffective.

When considering tuning protocols rather than just compressing data,
for example using two-byte integers rather than four-byte integers, con-
sider whether an increase in complexity is justified by the gain.

15.1.6 Consider Localization

Localization of applications should be second nature to any developer,
but, while their GUI may be correctly localized, bear in mind that the
communications protocol also requires consideration. If any text strings
are transferred then consider whether they need to be localized, and bear
in mind that the PC may be running a different language and locale from
the Symbian OS smartphone. If you send text localized on the device and
display it on the PC then it may not match the rest of the GUI.

Wherever possible, avoid transferring fixed-text strings and simply
transfer identifiers that can be translated on the PC or the phone. As a
bonus, these identifiers will also be smaller than the text and so will take
less time to transfer.

406 CONNECTIVITY DOS AND DON’TS

15.2 Robustness and Defensive Design

Robustness and defensive programming have been promoted in software
engineering for some time, but they are even more relevant to embedded
devices than other types of hardware, and they are more relevant to
communications-based applications than to other types of software.

Almost in contradiction, consumers expect higher levels of robustness
from smartphones than from other computing devices that they are
exposed to. Jokes about Microsoft Windows crashing may be unfair in
view of the size and complexity of the software that users run and expect
to coexist, but they are part of the PC culture; there is no such tolerance
of crashes in smartphones – users expect them to just work. This means
that any shortcomings in robustness will be highlighted.

15.2.1 Consider Running Out of Memory

Running low on memory is a standard issue for an embedded device.
PC Connectivity applications are no more prone to it than any other
type of Symbian OS software; nonetheless the issue is mentioned here
because it bears repeating. Implement all Symbian OS software based on
the approaches that have been developed and tested over a number of
versions of Symbian OS.

15.2.2 Consider Loss of Power or Connection

Any computing device may be subject to loss of power, but a smartphone
is more vulnerable than many others. The battery may run low because
the user has forgotten to charge the device, or the user may remove the
battery while tinkering with the phone.

More common (thankfully) than a complete loss of power is loss of
a connection. If you are implementing an Over The Air (OTA) service
then the smartphone may lose its signal at any time. PC Connectivity
applications are less subject to loss of connection for this reason, but
wireless connections can still be vulnerable and it is surprising how often
users break the connection, whether accidentally or deliberately.

Loss of power gives very little time to save any data or recover, and
loss of connection can be little better. Depending on the implementation,
you may find your service simply unloaded, or you may get a chance to
call a cleanup routine.

Therefore, you need to consider what happens if your service is
terminated at any point. This is most relevant where you are writing data
to the device, either writing directly to a file or writing to a database by
means of some API. Where you are using a system API, you may be able
to rely on it to manage transactions and recover from failure. If you are
writing directly to the filing system then consider the consequences of a

DEVICE AND SERVICE MANAGEMENT 407

partially written file, particularly if you have to write it across multiple
PDUs because of the size of the file. In some cases it can be sensible to
write to a temporary file and rename it for use when it is complete, but
this has been known to backfire if the file is very large – in some cases
the drive is not large enough for the original file and the new copy.

Although I have emphasized the need to protect the state of the
smartphone, you should also consider the effect, on any data on the
PC, of the connection to the device being lost. The first level is to
include exception handling to catch a loss of connection wherever you
communicate with the smartphone. The second level is to consider how
to protect data from being partially written, for which similar approaches
can be used to those on the smartphone.

15.2.3 Allow for a Missing Service
Fortunately, this issue is simpler to handle than some of the others. If you
are using a specialized PC Connectivity service that you have developed,
then you need to handle the possibility that the user may attempt to work
with a smartphone that lacks the service, either because they have just
installed the PC software and have not realized that it needs extra software
installed on the phone, or because they are trying to use a phone other
than their customary one. In either case, you can provide a simple and
clear indication of the problem and the user will know how to correct
it. If you do not respond helpfully, the user may simply dismiss your
application as broken and never again try to use it.

15.2.4 Allow for Mismatched Versions
This issue was mentioned earlier in this chapter as a protocol design
issue, but it is also another form of missing service. Allow for a phone
with the wrong version of your service – check for it when the service is
loaded and respond accordingly.

15.3 Device and Service Management

When implementing a PC Connectivity application, it is possible to focus
on the headline functionality and test an application extensively using
one PC and one Symbian OS smartphone and thus miss issues that will
appear only with multiple phones. Similarly, a developer may well use a
service in a different way from a real user and so miss situations that can
cause problems.

15.3.1 Multiple Models of Symbian OS Smartphone
Symbian OS provides a good range of standard services that are com-
mon across multiple smartphones and multiple versions of Symbian

408 CONNECTIVITY DOS AND DON’TS

OS. However, there are often variations, some caused by upgrades
(even improvements may have undesirable side effects) between versions
of Symbian OS or just by smartphone manufacturers having different
opinions on the best location for files or the best way to solve a problem.

In earlier chapters we have encountered differences in the locations
and names of common types of file and this is a good example to consider.
Unless Symbian OS mandates a location and a file name, do not assume
that all Symbian smartphones will use the same values. Therefore, your
software needs to allow for differences. It may be possible to detect
differences on the device and so hide them from the PC, or it may be
better to put the responsibility for detecting and handling differences on
the PC because PC software is easier to extend.

However you handle the differences, be very wary of making assump-
tions about smartphones that you have not seen. You may think that a
certain manufacturer always puts image files or their calendar database in
the same location, but you may be unpleasantly surprised by their newest
model of phone. If you must make assumptions then design your software
so it can check the assumptions and respond robustly. For example, in
the Agenda service implemented in Chapter 12 the command to load a
calendar database fails with a specific error number if the database is not
found, so the PC client can detect the problem and inform the user.

Along with designing your application to handle multiple models of
smartphone, also test it with as many models as possible. A developer
who does all his development on one phone is asking for embarrassment
when it fails totally on another phone. As a case in point, I developed
the services for this book on one phone and the same services crashed
another model of phone immediately when loaded. The services worked
perfectly well when using the emulator and the problem turned out to
be caused by a flaw in system logging software. I knew of all the API
changes between the phones, but I needed to carry out real tests on real
phones to be sure that they would work.

It may be a good idea to distribute your application with a list of
phones that it is known to work well with. This way users will not be
disappointed by applications that claim to work with ‘any Symbian OS
smartphone’ but do not work with their Symbian OS smartphone. The PC
application could warn the user when it encounters an unknown phone
and either allow or disallow the user to proceed. There are benefits to
allowing users to proceed after issuing a warning – the chances may be
good that things will work anyway, thus eliminating the need for you to
update and re-release your PC software just to add another phone to the
supported list. Also, you could provide a means for the users to contact
you, letting you know that the PC application works fine with a new
model of smartphone; you could then add this smartphone to the list of
potentially supported ones for the next release of the PC software.

DEVICE AND SERVICE MANAGEMENT 409

15.3.2 Why Device Identification is Important

As well as considering multiple models of phone, you need to consider
multiple physical phones, whether of the same manufacturer or not.
In a consumer environment you may not think that a user will ever
connect more than one Symbian OS smartphone to a PC, but increasing
use of mobile phones by all members of the family and increasing
penetration of smartphones in the mobile phone market make that an
unwise assumption. Smartphones are also being used more and more
in the enterprise and corporate environment, and that may well be the
trigger for developing PC Connectivity software in the first place.

Multiple connected phones raise two issues. Firstly, more than one
smartphone may be connected at a time, particularly with bearers such
as Bluetooth, and so PC Connectivity software must provide some way of
deciding which one to communicate with. While developing the services
for this book, I used command-line PC clients because they were very
simple and they allowed me to focus on the device side, so that I was
then able to develop the PC software on the assumption that I had
relatively reliable services on the phone. These command-line clients
could use just the first connected smartphone, and that was acceptable in
a test application. The same behavior is not acceptable in a production
application, and all of my GUI applications allow the user to select the
phone to work with.

Early PC Connect software was developed on the assumption that there
would only ever be one connected phone; subsequent work-arounds for
this looked clumsy and were not intuitive to users. In contrast, SCOM
and BAL have been designed to handle multiple connected phones from
the start, and there is no excuse for not doing the same.

Even if your user has only one Symbian OS smartphone connected
at a time, they may use multiple smartphones in series, i.e. different
smartphones at different times. This does not cause any problems when
directly working with the phone, but it does require some thought to asso-
ciate data with the correct smartphone. As a good example, the backup
software supplied by most Symbian OS smartphone manufacturers stores
archives in different directories for each smartphone. This is achieved by
using the device identifier that SCOM makes available (normally the IMEI
number). You should try to do the same thing with any data that you store.
Alternatively, you may associate data with a specific user, particularly
in an enterprise environment, and you need to take care how a specific
smartphone is associated with a specific user.

15.3.3 Loading and Unloading Services

Although not obvious, the choice of how and when to load and unload
a service is as much a design decision as details of protocol. Loading a

410 CONNECTIVITY DOS AND DON’TS

service takes time – a message has to be sent to the Symbian OS smart-
phone, the service itself has to start up and will probably need to connect
to one or more system servers, and then a response has to be sent back
to the PC. It has been known for a PC client to load and unload a service
for each transaction, but this is clumsy and reduces the responsiveness of
the application.

However, it is also wasteful of scarce resources to load a service when
it is not required. Setting a service to load at device boot time guarantees
that it will always be available, but it also guarantees that it will absorb
scarce resources even when the smartphone is not connected to a PC.

One aspect of a PC Connectivity service that is not obvious at first
is that a service may have multiple simultaneous connections from the
same PC. At the lowest level, a TCP/IP socket server can support multiple
connections and Symbian OS PC Connectivity services are built on TCP/IP
connections. In Symbian OS v8.0 and later, the socket servers spawn a
separate client socket for each connection. When using custom servers,
each connection uses a separate session. Unless you are certain that your
service will only ever use one connection at a time, check your design
for resources that are not thread-safe.

15.4 General Development and Debugging Skills

15.4.1 Learn to Love Logging
Modern debuggers and other development aids are very welcome and
should be used wherever possible. However, there can be times when
they cannot be used. The Symbian OS emulator works with the debuggers
that are part of the IDEs, but PC connectivity does not always work
well with a debugger; the connection can timeout when a break-point
is encountered. In addition, some functions, such as drive formatting,
camera access and audio playback, do not work well on the emulator;
and software that performs well on the emulator does not always work
properly on a real smartphone (sometimes due to the single-process
design of the emulator).

If the debugger cannot be used then you will need to revert to older
and more primitive methods of investigating behavior. The most common
one is logging. Inserting logging statements makes for a slower debugging
cycle and requires slightly more planning to be productive. You need to
consider possible causes of a problem and insert a number of logging
statements rather than putting in one at a time and running the service
to the next stage. However, if you put in too many logging statements,
particularly in loops, then the logging statements can cause the service to
grind to a halt.

Rather than waiting until you encounter a problem that requires
logging, make a habit of putting in logging from the start. Create a logging

GENERAL DEVELOPMENT AND DEBUGGING SKILLS 411

class and use macros that compile to nothing in a release build, so that you
do not need to remove it for a production build. In creating the services
for this book I made extensive use of logging. I have removed the logging
statements from the code in the text of the book for reasons of clarity – the
logging statements can obscure the structure of the code – but they were
essential during development.

15.4.2 Become Multi-skilled
Programming for Microsoft Windows requires considerable skill and
experience and a wide range of specialist knowledge to do a good
job. The same is true of programming for Symbian OS, but some of
the skills and knowledge are different (some skills are common, of
course). Some development teams address this difference by deciding
that some developers are PC development specialists while others are
phone development specialists. This works fine when all the software
works correctly, but as soon as a defect is found that is not obvious, it will
become clear that you may need to make changes to both components
to trace the problem.

It is very useful if, at a minimum, any developer can read and
understand the code that they communicate with and can insert logging
statements or use the debugger to understand what is going on. If
individual developers do not have these abilities then pair-programming
becomes necessary.

15.4.3 Consider Simple Test Harnesses
When developing a PC Connectivity application, you will have to decide
which part to develop first. I have found that I normally need to develop
the service on the Symbian OS smartphone first, as the PC client depends
too much on the service to be developed in isolation. However, you will
need some form of client to load and drive the service before you can
test it.

It is possible to develop both the service and the client simultaneously
and then test them together, but this makes it harder to trace faults. If
something goes wrong then it may not be obvious whether the fault is in
the phone service or in the PC client. A documented and clear protocol
can be valuable at this point, particularly if you have a means of dumping
commands and responses to a log file.

However, by investing some time in a simplified PC test harness to
drive the phone service you can make debugging easier. For all the
services described in this book, I created a simple command-line client
and I did not try to create the final PC client application until I had
a relatively robust phone service. The command-line clients were so
simple that they did not hide any obscure defects and so my attention
was focused on the phone service at first.

412 CONNECTIVITY DOS AND DON’TS

Then, when I was implementing the PC client I assumed that the phone
service was correct and that any defect was in the PC client. This was not
always true, as the PC client sometimes used commands in a different
way and so exposed some new defects in the phone service, but it was
certainly true more often than not.

Finally, if you are really keen on good development practices then you
could convert the command-line client into a scripted or automated test
harness for future regression testing.

15.4.4 Don’t Forget General Good Practices

This book has deliberately tried to highlight the aspects of programming
that are specific to developing a PC Connectivity application for Symbian
OS smartphones. However, do not think that this means that you can
ignore more general good habits.

On the Symbian OS smartphone, all the normal behaviors associ-
ated with memory handling, robustness and efficient design apply to a
Connectivity service as much as any other application or server.

On the PC, all the principles of good UI design apply. The PC client
applications developed for this book are definitely not optimized UI
designs; they were written to illustrate specific points, and there are a
number of obvious ways in which they could be made more friendly if
they were part of a commercial package.

As a final point on PC development, pay sufficient attention to the PC
installer. Most developers build and test their software directly and so
may neglect to create or test the installer until a late stage in the process.
Installers need to be tested on a range of PCs, and uninstallation and
upgrade scenarios need to be tested particularly carefully.

Appendix 1
Developer Resources

A1.1 Symbian OS Software Development Kits

SDKs are built based on a particular reference platform (sometimes known
as a ‘reference design’) for Symbian OS. A reference platform provides a
distinct UI and an associated set of system applications for such tasks as
messaging, browsing, telephony, multimedia and contact/calendar man-
agement. These applications typically make use of generic application
engines provided by Symbian OS. Reference platforms intended to sup-
port the installation of third-party applications written in native C++ have
to be supported by an SDK which defines that reference platform, or at
least a particular version of it. Since Symbian OS v6.0, four such reference
platforms have been introduced, resulting in four flavors of SDK which
can be found at the websites listed here:

• UIQ (www.symbian.com/developer)

• Nokia Series 90 (www.forum.nokia.com)

• Nokia Series 60 (www.forum.nokia.com)

• Nokia Series 80 (www.forum.nokia.com)

Prior to this, SDKs were targeted at specific devices, such as the Psion
netPad. Symbian no longer supports these legacy SDKs, but they are still
available from Psion Teklogix at www.psionteklogix.com.

For the independent software developer, the most important thing to
know in targeting a particular phone is its associated reference platform.
Then you need to know the Symbian OS version the phone is based on.
This knowledge defines to a large degree the target phone as a platform for
independent software development. You can then decide which SDK you
need to obtain. In most cases, with a single version of your application,
you will be able to target all phones based on the same reference platform
and Symbian OS version working with this SDK. The Symbian OS System
Definition papers give further details of possible differences between
phones based on a single SDK.

414 DEVELOPER RESOURCES

• Symbian OS System Definition
www.symbian.com/developer/techlib/papers/SymbOS def/
symbian os sysdef.pdf

• Symbian OS System Definition (in detail, including Symbian OS v8.0)
www.symbian.com/developer/techlib/papers/SymbOS cat/
SymbianOS cat.html

A1.2 Getting a UID for Your Application

A UID is a 32-bit number, which you get as you need from Symbian.
Every Uikon application should have its own UID. This allows Sym-

bian OS to distinguish files associated with that application from files
associated with other applications. UIDs are also used in other circum-
stances, such as to identify streams within a store, and to identify one or
more of an application’s views.

Getting a UID is simple enough. Just send an email to
uid@symbiandevnet.com, titled ’UID request’ and requesting clearly
how many UIDs you want – 10 is a reasonable first request. Assuming
your email includes your name and return email address, that’s all the
information Symbian needs. Within 24 hours, you’ll have your UIDs.

If you’re impatient, or you want to do some experimentation before
using real UIDs, you can allocate your own UIDs from a range that Sym-
bian has reserved for this purpose: 0×01000000 to 0×0fffffff.
However, you should never release any programs with UIDs in this range.

Don’t build different Symbian OS applications with the same appli-
cation UID – even the same test UID – on your emulator or Symbian
OS machine. If you do, the system will recognize only one of them,
and you won’t be able to launch any of the others.

A1.3 Symbian OS Developer Tools

As well as the following tools offerings from Symbian DevNet partners,
Symbian DevNet provides a number of free and open source tools:

www.symbian.com/developer/downloads/tools.html

AppForge
Develop Symbian Applications Using Visual Basic and AppForge.
AppForge development software integrates directly into Microsoft
Visual Basic, enabling you to immediately begin writing multi-platform

DEVELOPER RESOURCES 415

applications using the Visual Basic development language, debugging
tools and interface you already know.

www.appforge.com

Borland
Borland offers C++BuilderX Mobile Edition and JBuilder Mobile Edition
as well as the more recent Borland Mobile Studio for developers that
want to develop rapidly on Symbian OS using C++, Java or both. These
multi-platform IDEs offer on-target debugging, GUI RAD and a unifying
IDE for Symbian OS SDKs and compilers.

www.borland.com

Forum Nokia
In addition to a wide range of SDKs, Forum Nokia also offers various
development tools to download, including the Nokia Developer Suite for
J2ME, which plugs in to Borland’s JBuilder MobileSet or Sun’s Sun One
Studio integrated development environment.

www.forum.nokia.com

Metrowerks
Metrowerks offers the following products supporting Symbian OS devel-
opment:

• CodeWarrior Development Tools for Symbian OS Professional Edition

• CodeWarrior Development Tools for Symbian OS Personal Edition

• CodeWarrior Wireless Developer Kits for Symbian OS

www.metrowerks.com

Sun Microsystems
Sun provides a range of tools for developing Java 2 Micro Edition
applications, including the J2ME Wireless Toolkit and Sun One Studio
Mobile Edition.

http://java.sun.com

Texas Instruments
Development Tools for the OMAP Platform Easy-to-use software develop-
ment environments are available today for OMAP application developers,
OMAP Media Engine developers and device manufacturers. Tool suites
that include familiar third-party tools and TI’s own industry-leading
eXpressDSP DSP tools are available, allowing developers to easily
develop software across the entire family of OMAP processors.

http://focus.ti.com

416 DEVELOPER RESOURCES

Symbian DevNet Tools
Symbian DevNet offers the following tools as an unsupported resource to
all developers:

• Symbian OS SDK add-ons
www.symbian.com/developer/downloads/tools.html

• Symbian OS v5 SDK patches and tools archive
www.symbian.com/developer/downloads/archive.html

A1.4 Support Forums

Symbian DevNet offers two types of support forum:

• Support newsgroups
www.symbian.com/developer/public/index.html

• Support forum archive
www.symbian.com/developer/prof/index.html

Symbian DevNet partners also offer support for developers:

Sony Ericsson Developer World
As well as tools and SDKs, Sony Ericsson Developer World provides
a range of services, including newsletters and support packages for
developers working with the latest Sony Ericsson products.

http://developer.sonyericsson.com

Forum Nokia
As well as tools and SDKs, Forum Nokia provides newsletters, the Knowl-
edge Network, fee-based case-solving, a Knowledge Base of resolved
support cases, discussion archives, and a wide range of C++ and
Java-based technical papers of relevance to developers targeting Sym-
bian OS.

http://forum.nokia.com/main.html

Sun Microsystems Developer Services
In addition to providing a range of tools and SDKs, Sun also provides
a wide variety of developer support services including free forums,
newsletters, and a choice of fee-based support programs.

• Forums
http://forum.java.sun.com

DEVELOPER RESOURCES 417

• Support and newsletters
http://developer.java.sun.com/subscription

A1.5 Symbian OS Developer Training

Symbian’s Technical Training team and Training Partners offer public and
on-site developer courses around the globe.

• Course dates and availability
www.symbian.com/developer/training

Early bird discount: Symbian normally offers a 20% discount on all
bookings confirmed up to 1 month before the start of any course. This
discount cannot be used in conjunction with any other discounts.

Course Level Language

Symbian OS essentials Introductory C++
Java on Symbian OS Introductory Java
Symbian OS: Application engine development Intermediate C++
Symbian OS: Application UI development Intermediate C++
Symbian OS: Internals Advanced C++
Symbian OS: UI system creation Advanced C++

Please note
Intermediate and advanced courses require previous attendance of OS
Essentials. UI system creation course also requires previous attendance of
Application UI course.

A1.6 Developer Community Links

These community websites offer news, reviews, features and forums, and
represent a rich alternative source of information that complements the
Symbian Development Network and the development tools publishers.
They are good places to keep abreast of new software and, of course, to
announce the latest releases of your own applications.

My-Symbian
My-Symbian is a Poland-based website dedicated to news and informa-
tion about Symbian OS phones. This site presents descriptions of new
software for Symbian OS classified by UI. It also features discussion
forums and an online shop.

http://my-symbian.com

418 DEVELOPER RESOURCES

All About Symbian
All About Symbian is a UK-based website dedicated to news and informa-
tion about Symbian OS phones. The site features news, reviews, software
directories and discussion forums. It has strong OPL coverage.

www.allaboutsymbian.com

SymbianOne
SymbianOne features news, in-depth articles, case studies, employment
opportunities and event information all focused on Symbian OS. A weekly
newsletter provides up-to-date coverage of developments affecting the
Symbian OS ecosystem. This initiative is a joint venture with offices in
Canada and New Zealand.

www.symbianone.com

NewLC
NewLC is a France-based collaborative website dedicated to Symbian
OS C++ development. It aims to be initially valuable to developers just
starting to write C++ applications for Symbian OS, and in time will cover
more advanced topics.

www.newlc.com

infoSync World
infoSync World is a Norway-based site providing features, news, reviews,
comments and a wealth of other content related to mobile information
devices. It features a section dedicated to Symbian OS covering new
phones, software and services, mixed with strong opinions that infoSync
is not afraid to share.

http://symbian.infosyncworld.com

Your Symbian
Your Symbian (YS) is a fortnightly magazine distributed exclusively by
email. YS takes a lighthearted look at the Symbian OS world. Major news
is covered in its editorial and it includes a software round-up. To sign up,
browse the archives, or get in touch with the editorial team.

www.yoursymbian.com

TodoSymbian (Spanish)
TodoSymbian is a Spain-based website for everyone wanting to read in
Spanish about Symbian OS. It provides news, reviews, software directo-
ries, discussion forums, tutorials and a developers’ section.

www.todosymbian.com

DEVELOPER RESOURCES 419

A1.7 Symbian OS Books

Symbian OS C++ for Mobile Phones, Vol. 2
Richard Harrison et al.
John Wiley and Sons, ISBN 0470871083

Symbian OS C++ for Mobile Phones, Vol. 1
Richard Harrison et al.
John Wiley and Sons, ISBN 0470856114

Symbian OS Explained
Jo Stichbury
John Wiley and Sons, ISBN 0470021306

Programming Java 2 Micro Edition on Symbian OS
Martin de Jode et al.
John Wiley and Sons, ISBN 0470092238

Wireless Java for Symbian Devices
Jonathan Allin et al.
John Wiley and Sons, ISBN 0471486841

Symbian OS Communications Programming
Michael J Jipping
John Wiley and Sons, ISBN 0470844302

Programming for the Series 60 Platform and Symbian OS
Digia, Inc.
John Wiley and Sons, ISBN 0470849487

Developing Series 60 Applications
Edwards, Barker
Addison Wesley, ISBN 032126875X

A1.8 Open Source Projects

Many open source projects are happening on Symbian OS. They are
a rich source of partially or fully functional code which should prove
useful to learn about use of APIs you’re not yet familiar with. Please also
consider contributing to any project that you have an interest in.

Repository websites

SymbianOS.org
http://symbianos.org

Community website dedicated to the development of open source pro-
grams for Symbian OS. Hosted projects include Vim, Rijndael encryption
algorithm, MakeSis package for Debian GNU/Linux, etc.

420 DEVELOPER RESOURCES

Symbian open source
www.symbianopensource.com

Repository for Symbian OS open source software development. It provides
free services to developers who wish to create, or have created, open
source projects.

Open Source for EPOC32
www.edmund.roland.org/osfe.html

Website of Alfred Heggestad where he maintains a list of open source
projects for Symbian OS.

Appendix 2
Specifications of Symbian OS Phones

Additional technical information on a limited number of phones can be
found at www.symbian.com/phones.

Please note that this is a quick guide to Symbian OS phones, some
of which are not yet commercially available. The information contained
within this appendix was correct at time of going to press.

For full, up-to-date information, refer to the manufacturer’s website.
C++ developers may retrieve extended information using HAL APIs.

422 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 9210i

OS Version Symbian OS v6.0
UI/Category Series 80
Memory available to user 40 MB
Storage media Yes; MMC

Screen 640 × 200, 4096 colors
Pointing device No
Camera No

Network Protocol(s) GSM 900/1800
HSCSD

Java APIs CLDC 1.0
MIDP 1.0
PersonalJava 1.1.1
JavaPhone

Connectivity Infrared
Serial

This Symbian OS smartphone uses PLP rather than m-Router and so cannot be
accessed using the methods described in this book.

Browsing WAP 1.1
XHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES 423

Nokia 7650

OS Version Symbian OS v6.1
UI/Category Series 60
Memory available to user 4 MB NOR flash user data storage
Storage media No

Screen 176 × 208, 4096 colors
Pointing device No
Camera Yes; 640 × 480 resolution

Network Protocol(s) GSM 900/1800
HSCSD
GPRS (2 + 2, 3 + 1, class B and C)

Java APIs MIDP 1.0
CLDC 1.0
Nokia UI API

Connectivity Infrared
Bluetooth

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and with the methods described in this book if
SCOM is separately installed.

Browsing WAP 1.2.1

424 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 3600/3650

OS Version Symbian OS v6.1
UI/Category Series 60
Memory available to user 3.4 MB
Storage media Yes; MMC

Screen 176 × 208, 4096/65536 colors
Pointing device No
Camera Yes; 640 × 480 resolution

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (2 + 2, 3 + 1, class B and C)

Java APIs MIDP 1.0
CLDC 1.0
Nokia UI
Wireless Messaging
Mobile Media

Connectivity Infrared
Bluetooth

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and with the methods described in this book if
SCOM is separately installed.

Browsing WAP 1.2.1
XHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES 425

Nokia 3620/3660

OS Version Symbian OS v6.1
UI/Category Series 60
Memory available to user 4 MB
Storage media Yes; MMC

Screen 176 × 208, 4096/65536 colors
Pointing device No
Camera Yes; 640 × 480 resolution

Network Protocol(s) GSM 850/1900
HSCSD
GPRS

Java APIs MIDP 1.0
CLDC 1.0
Nokia UI
Mobile Media
Wireless Messaging

Connectivity Infrared
Bluetooth

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and with the methods described in this book if
SCOM is separately installed.

Browsing WAP 1.2.1
XHTML (MP)

426 SPECIFICATIONS OF SYMBIAN OS PHONES

Siemens SX1

OS Version Symbian OS v6.1
UI/Category Series 60
Memory available to user 16 MB
Storage media Yes; MMC

Screen 176 × 220, 65536 colors TFT
Pointing device No
Camera Yes; 640 × 480 and 160 × 120 resolution

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (class 10, B (2Tx, 4Rx)

Java APIs CLDC 1.0
MIDP 1.0
Wireless Messaging
Mobile Media

Connectivity Infrared
Bluetooth
USB

This Symbian OS smartphone ships with a PC suite based on SCOM and is fully
compatible with the methods described in this book.

Browsing WAP 2.0
XHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES 427

Nokia N-Gage

OS Version Symbian OS v6.1
UI/Category Series 60
Memory available to user 4 MB NOR flash user data storage
Storage media Yes; MMC

Screen 176 × 208, 4096 colors
Pointing device No
Camera No

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (2 + 2, 3 + 1, class B and C)

Java APIs MIDP 1.0
CLDC 1.0
Nokia UI
Wireless Messaging
Mobile Media

Connectivity Bluetooth
USB

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and with the methods described in this book if
SCOM is separately installed. However, the USB connection is not compatible
with SCOM.

Browsing WAP 1.2.1
XHTML (MP)

428 SPECIFICATIONS OF SYMBIAN OS PHONES

Sendo X

OS Version Symbian OS v6.1
UI/Category Series 60
Memory available to user 12 MB
Storage media Yes; MMC and SD

Screen 176 × 220, 65536 colors
Pointing device No
Camera Yes; 640 × 480 resolution

Network Protocol(s) GSM 900/1800/1900
GPRS (Class 8 (4 + 1))

Java APIs MIDP1.0
Nokia UI
Bluetooth
Wireless Messaging
Mobile Media

Connectivity Infrared
Bluetooth
USB
Serial

This Symbian OS smartphone ships with a PC suite based on SCOM and is fully
compatible with the methods described in this book.

Browsing WAP 2.0
XHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES 429

BenQ P30

OS Version Symbian OS v7.0
UI/Category UIQ 2.1
Memory available to user 32 MB
Storage media Yes; MMC and SD

Screen 208 × 320, 65536 colors TFT
Pointing device Yes
Camera Yes; 640 × 480 resolution

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (4 + 2, class 10)

Java APIs MIDP 2.0
PersonalJava 1.1.1
Wireless Messaging

Connectivity Infrared
Bluetooth
USB

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and with the methods described in this book if
SCOM is separately installed.

Browsing WAP 2.0
XHTML (MP)

430 SPECIFICATIONS OF SYMBIAN OS PHONES

Sony Ericsson P800

OS Version Symbian OS v7.0
UI/Category UIQ
Memory available to user 12 MB
Storage media Yes; Sony MS Duo

Screen 208 × 320 (Flip Open); 208 × 144 (Flip
Closed), 4096 colors

Pointing device Yes
Camera Yes; 640 × 480 resolution

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (4 + 1)

Java APIs CLDC 1.0
MIDP 1.0
PersonalJava 1.1.1

Connectivity Infrared
Bluetooth
USB (high speed serial connector with a
USB->Serial adapter built into the desk
stand)
Serial

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and with the methods described in this book if
SCOM is separately installed.

Browsing WAP 2.0
XHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES 431

Motorola A920/ A925

OS Version Symbian OS v7.0
UI/Category UIQ
Memory available to user 8 MB
Storage media Yes; MMC and SD

Screen 208 × 320, 65536 colors TFT
Pointing device Yes
Camera Yes

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS
3G

Java APIs MIDP 1.03
PersonalJava 1.1.1a

Connectivity Infrared
Bluetooth (A920 No/A925 Yes)
USB
Serial

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and with the methods described in this book if
SCOM is separately installed.

Browsing
WAP No
XHTML (MP) Yes

432 SPECIFICATIONS OF SYMBIAN OS PHONES

Sony Ericsson P900

OS Version Symbian OS v7.0 (+ security updates and
MIDP2.0)

UI/Category UIQ 2.1
Memory available to user 16 MB
Storage media Yes; Sony MS Duo

Screen 208 × 320 (Flip Open); 208 × 208 (Flip
Closed), 65536 colors TFT

Pointing device Yes
Camera Yes; 640 × 480 resolution

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS

Java APIs MIDP 2.0
PersonalJava 1.1.1
Bluetooth
Wireless Messaging

Connectivity Infrared
Bluetooth
USB (high speed serial connector with a
USB->Serial adapter built into the desk
stand)

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and with the methods described in this book if
SCOM is separately installed.

Browsing WAP 2.0
XHTML (MP)

SPECIFICATIONS OF SYMBIAN OS PHONES 433

Nokia 6600

OS Version Symbian OS v7.0s
UI/Category Series 60
Memory available to user 6 MB NOR flash user data storage
Storage media Yes; MMC

Screen 176 × 208; 65536 colors TFT
Pointing device No
Camera Yes; 640 × 480 resolution

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (2 + 2, 3 + 1, class B and C)

Java APIs MIDP 2.0
CLDC 1.0
Nokia UI
Mobile Media
Wireless Messaging
Bluetooth

Connectivity Infrared
Bluetooth

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and with the methods described in this book if
SCOM is separately installed.

Browsing
WAP WAP 2.0
XHTML (MP) Yes

434 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 6620

OS Version Symbian OS v7.0s
UI/Category Series 60
Memory available to user 6 MB NOR flash user data storage
Storage media Yes; MMC

Screen 176 × 220; 65536 colors TFT
Pointing device No
Camera Yes; 640 × 480 resolution

Network Protocol(s) GSM 850/1800/1900
EDGE

Java APIs MIDP 2.0
CLDC 1.0
Nokia UI
Mobile Media
Wireless Messaging
Bluetooth

Connectivity Infrared
Bluetooth
USB

This Symbian OS smartphone uses a version of PC Connectivity based on OBEX
and so cannot be accessed using the methods described in this book.

Browsing
WAP WAP 2.0
XHTML (MP) Yes

SPECIFICATIONS OF SYMBIAN OS PHONES 435

Nokia 9500

OS Version Symbian OS v7.0s
UI/Category Series 80
Memory available to user 80 MB
Storage media MMC card

Screen Two displays, both 65536 colors
main screen: 200 × 640 pixels
secondary screen: 128 × 128 pixels

Pointing device No
Camera Yes; 640 × 480 resolution

Network Protocol(s) EGSM 850/900
GSM 1800/1900
HSCSD
GPRS
EDGE

Java APIs MIDP 2.0
Personal profile

Connectivity Infrared
Bluetooth
USB

This Symbian OS smartphone uses a version of PC Connectivity based on OBEX
and so cannot be accessed using the methods described in this book.

Browsing HTML
XHTML

436 SPECIFICATIONS OF SYMBIAN OS PHONES

Motorola A1000

OS Version Symbian OS v7.0
UI/Category UIQ 2.1
Memory available to user 24 MB
Storage media Triflash-R

Screen 208 × 320; 65536 colors TFT
Pointing device No
Camera Yes; 1.2 megapixel, VGA camera

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS
3G
EDGE

Java APIs MIDP 2.0

Connectivity Bluetooth
USB

This Symbian OS smartphone ships with a PC suite based on SCOM and is fully
compatible with the methods described in this book.

Browsing
WAP
XHTML (MP)
Browser available Yes

SPECIFICATIONS OF SYMBIAN OS PHONES 437

Panasonic X700

OS Version Symbian OS v7.0s
UI/Category Series 60
Memory available to user –
Storage media miniSD

Screen 176 × 280; 65536 colors TFT
Pointing device No
Camera Yes; VGA camera

Network Protocol(s) GSM 900/1800/1900
GPRS (class 10 (4 + 1/3 + 2))

Java APIs MIDP 2.0

Connectivity Infrared
Bluetooth
USB

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and the methods described in this book if SCOM
is separately installed.

Browsing WAP 2.0
XHTML (MP)

438 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 7610

OS Version Symbian OS v7.0s
UI/Category Series 60 v2.1
Memory available to user 8 MB
Storage media MMC

Screen 176 × 208; 65536 colors TFT
Pointing device No
Camera Yes; 1152 × 864 resolution, 4× digital

zoom

Network Protocol(s) GSM 850/900/1800/1900
GPRS

Java APIs CLDC 1.0
MIDP 2.0
Nokia UI
Wireless Messaging
Mobile Media
Bluetooth API (no OBEX)

Connectivity Bluetooth
USB

This Symbian OS smartphone uses a version of PC Connectivity based on OBEX
and so cannot be accessed using the methods described in this book.

Browsing WAP 2.0
XHTML

SPECIFICATIONS OF SYMBIAN OS PHONES 439

Nokia N-Gage QD

OS Version Symbian OS v6.1
UI/Category Series 60 (v1)
Memory available to user 3.4 MB
Storage media MMC

Screen 176 × 208; 4096 colors
Pointing device No
Camera No

Network Protocol(s) GSM 850/900/1800/1900
HSCSD (CSD only in America)
GPRS (2 + 2, 3 + 1, class B)

Java APIs CLDC 1.0
MIDP 1.0
Nokia UI
Wireless Messaging
Mobile Media

Connectivity Infrared
Bluetooth
USB

This Symbian OS smartphone ships with a PC suite that is not based on SCOM
but is compatible with SCOM and the methods described in this book if SCOM
is separately installed. However, the USB connection is not compatible with
SCOM.

Browsing WAP 1.2.1
XHTML (MP)

Index

‘+’ icon 66
_ASSERT_ALWAYS macro 106
_ASSERT_DEBUG macro 106, 155–61
.cs files 128
.def files 94–5, 129
.dll files 90–1, 162
.exe files 90–1, 162
#import device 79
.ini files 41
_LIT macro 108, 160–1
.mmp files 90–6, 128–9
.oby files 93–4
.pkg files 95–6, 162–3
.sis files 95–6, 129–30, 162–3
abld build command 97
abld freeze command 95
abld makefile command 92–3
abld.bat files 92–3
abstract classes
see also base. . .

concepts 107–8
AccessCount 238–81
Active 34
active objects
see also event-driven programs
anti-patterns 113
cancellations 113
concepts 110–13, 144, 160–1, 212–25,

399–401
errors 113
non-preemptive multitasking 110
RunL 110–13, 399–401

Add 111–12, 219–25, 242–81, 350–8, 362–7,
371–84

AddAddresseeL 187–90
AddContactToGroupL 234–81
AddEntryL 287–346, 388–96
AddExceptionL 311–46
AddFieldL 238–81
AddFieldTypeL 244–81
AddNewContactL 234–81
AddNewGroupL 281
AddPhone 51–2, 81–6, 350–8
Address 190, 211–25
Address Book 364–7, 377–84
addresses

cards 228–81
messaging 170–90, 196–225

AddTodoListL 288–346
agclient.h 286
agenda model 1, 16, 283–346, 384–96

alarms 284–6, 309–46, 387–96
anniversaries 284–346, 390–6
API 286–346, 384–96
appointments 284–346, 386–96
classes 284–325, 384–96
concepts 283–346, 384–96
connection processes 290–346
connectivity service 325–46, 384–96
creation procedures 290–346, 384–96
databases 283–346
deletions 341–6, 384–96
edits 326–46, 384–96
entries 284–6, 306–46
events 284–346, 386–96
filtering 283–4, 286, 336–46
GUI applications 347, 384–96
lists 283–4, 286, 320–46, 384–96

442 INDEX

agenda model (continued)
operations code 326–46, 384–96
protocols 325–46, 388–96
repeat APIs 298–306
repeating entries 285, 298–306, 387–96
retrieval code 337–46, 384–96
sorting methods 295–346
to-dos 284–346, 396
types 283–4

agenda servers 286–346
agmbasic.h 309–46
agmentry.h 312, 314–17
agmexcpt.h 306
agmids.h 306–7
agmlists.h 320–1
agmmodel.h 287, 290, 294
agmrptd.h 298–9, 302–4
agmtodos.h 322–5
Alarm 309–46, 387–96
Alarm Server 284
AlarmDaysWarning 310–46
AlarmInstanceDateTime 309–46
alarms, agenda model 284–6, 309–46
AlarmTime 310–46
Alloc 107–8
AllocL 119–23, 127–9
anniversaries

agenda model 284–346, 390–6
sorting methods 296

APIs see Application Programming Interfaces
Append 149, 155–61, 201–4, 252–81
AppendL 252–81, 320–46
Application Programming Interfaces (APIs) 1–3, 13,

16–17, 109–10, 117–36, 167–90, 227–81
agenda model 286–346, 384–96
backwards compatibility 114–15
client-server processes 109–10, 403–12
concepts 1–3, 13, 16–17, 109–10, 118, 167–90,

227–81
contacts 227, 231–81, 367–84
custom servers 117–36, 397
databases 227–346, 368–84, 396
messaging 167–90
Service Brokers 141–2, 398
socket servers 140–66

applications
BAL 33–7, 48–52, 134–6, 347–96
class diagram 19–20
SCOM 15, 16–38, 48–52, 58–66, 78–86

appointments
agenda model 284–346, 386–96
sorting methods 296

architectural overview, PC Connectivity applications
11–13

AreAlarmedOnlyIncluded 293–346
AreAnnivsIncluded 292–346
AreCrossedOutIncluded 293–346
AreCrossedOutOnlyIncluded 293–346
AreEventsIncluded 292–346
AreNonRptsIncluded 293–346
AreRptsIncluded 293–346
AreTimedApptsIncluded 292–346
AreTodosIncluded 293–346
AreUnTimedApptsIncluded 292–346
ARM targets 90–2, 97, 163
armi 93
ArrayList 49–52, 219–25, 349–58, 362–84,

385–96
arrays

concepts 106–9, 133, 185–90, 219–25, 231–3,
336–46, 349–58, 362–96

contacts 231–81
errors 106–7

ASCII data 196, 201–4, 206–25, 328–46, 363–7
assert macros, concepts 106
asynchronous service 21, 25, 27, 32–3, 36–7, 53–7,

71–8, 133–6, 165, 169, 173–90, 353–8,
369–96

concepts 21, 25, 27, 32–3, 36–7, 53–7, 133–6,
169, 173–5, 211–25, 353–8

copy functions 53–7, 71–8, 87–8
custom servers 133–6, 211–25
disconnection operations 78, 87–8
errors 78, 218–19
event handlers 218–19
messaging 169, 173–5, 180–90, 211–25
MTMs 169, 174–5
SMS 174–5, 211–25
socket servers 165, 211–25

attachments, messaging 170, 172–5
Attributes 23, 27
audio 1–2, 16, 53, 117, 410
see also multimedia

backup functions 2, 8, 15–16, 21, 29, 400, 409
backwards compatibility, Symbian OS 113–15
BAL see Bearer Abstraction Layer
BALApplication 33–4, 133–6, 222–5, 348–96

INDEX 443

BALApplicationAsyncStream 36–7, 133–6,
222–5, 353–67, 369–96

BALConnectedPhone 348–96
BalForm 348–96
base classes, concepts 106–8, 119–23, 228–30
batteries 22–4
BatteryState 24
Bearer Abstraction Layer (BAL)

applications and devices 33–7
classes 33–7, 347–96
concepts 9, 16–18, 33–8, 133–6, 163–5,

347–96, 401, 409
custom servers 131–2, 133–6
efficiency issues 17
errors 18, 34, 37
event handling 34, 37, 349–96
services 34–7, 357–8
socket servers 163–5, 401
streams 35–7, 347–58, 401
type library 48–52

bearers, concepts 11–12
BenQ 429
Big Endian 145
BIO Messaging 168
bitmaps 98
bld.inf files 90–6
Bluetooth 8–9, 11–12, 40, 42, 46–7, 60, 97, 136,

168
concepts 8–9, 11–12, 40, 42, 46–7, 60, 97
errors 47
time considerations 60

Body 187–90, 197–225
BodyLength 147, 152–61, 197–225
book list 419
BSTR variables 38
bt.esk 42, 47
buffer descriptors
see also descriptors; TBuf...
concepts 106–8

buffers 8, 32–3, 36–7, 106–8, 123, 127–36, 145–8,
193–225, 274–81, 336–46, 357–8, 389–96,
404

build processes, concepts 90–6
buttons, disabling operations 67–8, 354–8

C# 3, 5, 18, 39, 48–52, 72, 78, 80, 86, 133, 191
concepts 3, 5, 18, 39, 48–52, 72, 78, 80, 86, 133,

191
SCOM access 48–52, 78, 80, 86, 133

C++
concepts 3, 5, 18, 37–8, 39, 78–88, 129–30
custom servers 129–30
destructors 101–2, 105–6
SCOM 37–8, 39, 78–88
Symbian OS 3, 5, 37–8, 39, 78–88

c: drive, conventions 54–5, 58, 94, 161–2
C classes, concepts 101, 105–6
caching operations

messaging 171–90
SCOM 60, 81–2

CActive 110–13, 212–25, 398–401
CActiveScheduler 111–13, 160–1, 398–401
cagmcallb.h 289
CAgnAnniv 284–346
CAgnAppt 284–346
CAgnBasicEntry 284–346
CAgnDayDateTimeInstanceList 321–46
CAgnDayList 321–46
CAgnEntry 283–346
CAgnEntryModel 283–346
CAgnEvent 284–346
CAgnExceptionList 311–46
CAgnIndexedModel 283–346
CAgnList 320–46
CAgnModel 283–346
CAgnMonthInstanceList 321–46
CAgnRptDef 298–346
CAgnTodo 284–346
CAgnTodoInstanceList 324–46
CAgnTodoList 323–46
CAgnTodoListList 288–346
calendar data 16, 384–96
see also agenda model

cameras 7, 114, 410
Cancel 110–13
Cancel buttons 264–7
Capacity 24, 59–60
cards

contacts models 228–81, 367–84
editing code 276–8, 367–84
retrieval code 271–81, 371–84
templates 228–30, 235–81, 367, 370–84

CArrayFix 232–81
CArrayPtrFlat 189–90
CastToAnniv 312–46
CastToAppt 312–46
CastToEvent 312–46
CastToTodo 312–46

444 INDEX

CBase class
cleanup stack 105–6
concepts 101–2, 105–6, 110–11, 147–8,

152–61, 175, 205, 241–5, 303–4, 320
messaging 172–90
virtual destructors 105–6
zero initialization 101

CBaseMtm 168–9, 172–90, 210–25
CBaseMtmUi 168–9
CBaseMtmUiData 168–9
CBaseServerMtm 168–9
CCharFormatLayer 205–25, 289–346
CClientMtmRegistry 185–90, 205–25
CClientSocket 139–65
CCmdTarget 84–6
CCommand 140, 150–1, 154–61
CConnPack 201–25, 271–81, 337–46, 360–7,

370–84, 386–96, 400–1
CContactCard 228–81
CContactCardTemplate 228–81
CContactDatabase 231–81
CContactDataField 228–81
CContactDateField 244–81
CContactFieldStorage 228–81
CContactGroup 228–81
CContactIdArray 232–81
CContactItem 228–81
CContactItemField 228–81
CContactItemFieldDef 247–81
CContactItemPlusGroup 228–81
CContactItemViewDef 249–81
CContactLocalView 255–81
CContactOwnCard 239–81
CContactStoreField 228–81
CContactTextField 228–81
CContactViewBase 254–81
CContentType 228–81
CCustomServer 119–27
CCustomServerSession 119–27
CD 5–6
CDesCArray 187–90
CEchoCSServer 125–9
ChangeL 175–90
ChangeTodoListOrderL 289–346
ChangeTodoOrderL 289–346
CharFormatLayer 289–346
ChildDataL 173–90
ChildDirectories 25, 54–7, 58–60, 86–7
ChildEntryL 173–90

ChildFiles 25–6, 58–60, 86–7
Children 173–90, 207–25
ChildrenL 179–90
ChildrenWithMtmL 173–90
ChildrenWithTypeL 173–90, 207–25
classes
see also C. . .; M. . .; R. . .; T. . .; individual

classes
agenda model 284–325, 384–96
BAL 33–7, 134–6, 347–96
concepts 18–19, 33–9, 58–60, 61–6, 100–2,

105–8, 119–23
contacts 228–56, 367–84
custom servers 119–29
descriptors 106–8
extended classes 18–19
logging classes 410–11
messaging 167–225, 359–67
naming conventions 100–2
SCOM 18–33, 39, 58–60, 61–6, 79–88
SMS 185–90, 359–67
socket servers 138–51
types 100–2, 105–8

cleanup stack 101–2, 103–6, 125–9, 159–61,
206–25, 272–81, 338–46, 398–401

CleanupClosePushL 105–6
CleanupStack 104–6, 125–9, 159–61, 206–25,

272–81, 338–46, 398–401
CleanupStack::PushL 105–6, 159, 209–25,

280–1, 338–46, 398–401
ClearAll 299–346
ClearAllDays 301–46
ClearAllSessions 119–23
ClearApptList 386–96
ClearContactList 371–84
ClearDays 300–46
ClearPendingReads 358, 361–7, 373–84
ClearRepeat 310–46
ClearWeek 301–46
client-server processes, PC Connectivity applications

12–13, 109–10, 403–12
client-side MTMs, concepts 168–90
clients, concepts 12–13, 109–10, 139–40, 151–61
Close 102, 105–6, 109, 252–81, 286–346
CloseContactL 233–6
CMessage 139–65
CMsgWait 212–25
CMsvEntry 170–90, 209–25
CMsvEntrySelection 179–90, 207–25

INDEX 445

CMsvOperationWait 205–25
CMsvSession 174–90, 205–25
CMsvStore 178–90
cntdb.h 231–6, 249–50
cntdef.h 229–30, 241, 247–8
cntfield.h 242–7
cntfldst.h 249
cntitem.h 236–40
cntviewbase.h 251–6
code
see also programming
conventions 5

color schemes 7–8
COM servers 15–38, 78, 84–6
see also Bearer Abstraction Layer; Symbian

Connect Object Module
command classes, socket servers 140–3, 149–61
command-line applications 219–25, 281, 396,

411–12
contacts 281
SMS 219–25

command–response sequence, SMS 192–225
CommDB 44
CommitContactL 234–81
common directories, concepts 93–4
comms

client-server processes 12–13, 109–10, 403–12
custom servers 132–6
socket servers 164–5, 398–401

community links 417–18
Complete 176–90
Completed 290–346
ComposeForm 365–7
compression considerations, PC Connectivity

applications 405
concrete descriptor objects
see also Hbuf... ; TBuf... ; TPtr...
concepts 107–8, 146, 148–9

configuration files, serial ports 42
conn namespace 141–51, 152–61
Connect 141–2, 149–50, 165–6, 286–346
ConnectedDevices 19–20, 33–4, 48–9, 58–60,

82–6, 349–58
ConnectedPhone 49–52, 60–6
connection processes

agenda model 290–346
concepts 8–9, 11–12, 39–52, 60–6, 78–86, 123,

165–6, 247–58, 290–346, 406–10
interruptions 406–7

power interruptions 406–7
Visual C++ 78–86
visual feedback 41

ConnectionBearer 20, 34
connectivity socket servers see socket servers
ConnPack 201–25, 271–81, 337–46, 360–7,

370–84, 386–96
console programs, emulators 98
ConstructL 104–6, 121–3, 127–9, 144–5, 148,

159–61, 205–25, 271–81, 336–46, 398–401
constructors, two-phase construction 104–6, 143–5,

151, 205–25
ContactDetailsList 378–84
ContactEditForm 378–84
ContactList 375–84
contacts 1, 10, 16, 121–2, 227–81, 359, 367–84
see also cards; groups
API 227, 231–81, 367–84
classes 228–56, 367–84
command-line applications 281
concepts 1, 10, 16, 121–2, 227–81, 359, 367–84
connectivity service 256–81
creation procedures 231–81, 326–46, 367–84
databases 227–81, 367–84
deletions 231–81, 367–84
edits 231–81, 367–84
event handlers 253–81
GUI applications 281, 347, 359, 367–84
label methods 240–81, 374–84
mapping methods 230, 246–81, 368–84
models 227–81, 367–84
navigation techniques 232–6, 367–84
observers 230–1, 254–81
operations code 256–81, 367–84
own cards 235–6, 276–81
protocols 256–81, 370–84
sorting methods 232–6
system templates 275–81
templates 228, 235–81, 367, 370–84
views 230–1, 249–81, 368–84

container classes, concepts 108–9
Contains 251–81
ContainsItem 241–81
content return, SMS messages 206–9
conventions 5
cooperative multitasking, concepts 110–13
copy functions 16, 20, 26, 27, 28–30, 53–7, 71–7,

87–8, 211–25
asynchronous actions 53–7, 71–8, 87–8

446 INDEX

copy functions (continued)
concepts 16, 20, 26, 27, 28–30, 53–7, 71–7,

87–8
event handlers 55–7, 71–7, 87–8
PC to phone 54–7, 71–7, 87–8
phone to PC 71–7, 87–8
root directories 54–7
synchronous actions 55, 78, 87–8
time considerations 55, 72–7
Visual C++ 87–8

CopyFileFromPC 26–7, 55–7, 72–7, 88
CopyL 252–81
CopyToPC 27, 73–7, 88
corporate systems 396
Count 173–90, 241–81, 320–46
CountL 234–81
CParaFormatLayer 205–25, 289–346
CRAgnCSServer 104
CRAgnUtil 336–46
crashes 406–7
CRCntUtil 271–81
Create 102, 401
CreateApptButton_Click 394–6
CreateApptL 342–6
CreateAttachmentL 172–90
CreateButton_Click 382–4
CreateContactCardTemplate... 235–81
CreateContactGroup... 234–81
CreateDirectory 70–1
CreateEventButton_Click 394–6
CreateInstance 79–80
CreateL 173–90, 232–81, 401
CreateMessageL 188–90, 210–25
CreateOwnCard... 235–81
CreateTodoListEntryL 345–6
creation procedures

agenda model 290–346, 384–96
contacts 231–81, 367–84
custom servers 124–9
databases 231–81
directories 70–1
SMS messages 209–25, 359–67
socket servers 138, 151–61, 397–401

CRichText 108, 170–90, 205–25
CrossOut 319–46
CRSmsCSServer 204–25
CRSmsMsg 204–25
CServerSocket 139–65
CSmsClientMtm 171–90, 205–25

CSmsHeader 174–90, 210–25
CSmsMessageSettings 189–90
CSmsNumber 174–90
CSmsSettings 189–90
CStartCSSession 400–1
CTestSocketServer 398–401
Ctrl-Q key 41
cursors, hourglass images 70–2, 351
custom servers
see also plug-ins
asynchronous service 133–6, 211–25
classes 119–29
comms 132–6
concepts 8–9, 13, 95–6, 117–36, 191–225, 351,

397, 410
contacts connectivity 256–81
creation procedures 124–9
debugging 136
definition 117–18
development 117–36
echo custom server 95–6, 118, 124–36
errors 119–23, 126–9, 130–2, 136
installation 129–30
limitations 118
log files 136
overview 117–18
packets 123–4, 132–3
protocols 123–4, 191–225, 256–81, 325–46
SCOM 130–2
SMS management 191–225
socket servers 137
starting procedures 130–2
synchronous service 125–36, 211–25
unloading considerations 132

customserver.h 125
customserver.in1 125
customservershared.h 125
CViewContact 256–81

Daily 304–46
Data 146, 149
data, metadata 106–7
data directory 93–4
databases

agenda model 283–346
concepts 227–30, 283–346, 367–84, 396
contacts 227–81, 367–84
creation procedures 231–81
open code 271–81

INDEX 447

rollbacks/recoveries 231
views 230–1, 249–81, 368–84

DataBuf 148–9
DataPtr 148–9
dates 21, 27, 30, 59–60, 72–7, 176–90, 220–5,

244–81, 285–346, 386–96
DateTime... 27, 30, 59–60, 72–7, 244–81,

387–96
day notes, sorting method 296
debugging 3, 92–4, 97–8, 104–5, 396–7, 405,

410–12
concepts 3, 92–4, 97–8, 104–5, 136, 396–7,

405, 410–12
custom servers 136
design issues 405, 410–12
messaging 171, 191–2, 219–25
socket servers 138, 155–61, 165–6, 397

DefaultSC 189–90
defensive designs, PC Connectivity applications

406–7
DEFFILE 90–1
delays

GUI applications 351–8
hourglass images 70–2, 351

Delete 26–7, 67–9, 88, 180–90, 209–25,
320–46, 363–7, 395–6

DeleteButton_Click 395–6
DeleteCardL 276–81
DeleteContactL 231–81
DeleteContactsL 231–81
DeleteEntryL 287–346
DeleteGroupL 280–1
DeleteInstanceL 295–346
DeleteL 180–90, 209–25
DeleteSmsL 209–25, 363–7
DeleteTodoListL 288–346
deletions 26–7, 67–70, 88, 173–90, 192

agenda model 341–6, 384–96
concepts 26–7, 67–70, 88
contacts 231–81, 367–84
SMS 192–3, 198–225, 359–67
time considerations 70

descriptors
see also buffer. . .; heap. . .; pointer. . .; strings
classes 106–8
concepts 106–8, 124
literals 108
modifiable/non-modifiable contrasts 108

DeSerialiseL 145–6

design issues, PC Connectivity applications 403–12
‘destination’ addresses, messaging 170, 174
destructors, C++ 101–2, 105–6
development resources 5–6, 413–20
device connection 19–20, 27–32, 33–7, 38, 48–53,

60–6, 78–86, 87–8, 123, 165–6, 347–58,
407–10

BAL 33–7, 48–52, 134–6, 347–96, 409
difference handling 52–3, 80–6, 113–15, 407–10
SCOM 19–20, 27–32, 38, 48–52, 60–6, 78–86,

87–8, 409
Visual C++ 78–86, 87–8

device and service management 52–3, 113–15,
180–6, 407–10

DeviceConnected 19–20, 28, 38, 84–8
DeviceCopyStorageFileComplete 20, 30, 57,

87–8
DeviceCopyStorageFileError 20, 29, 57,

87–8
DeviceCopyStorageFileExistingFileFound

20, 30, 57, 88
DeviceCopyStorageFileProgress 20, 28–9,

57, 87–8
DeviceDisconnected 19–20, 28, 84–6, 87–8
DeviceFormatStorageDriveComplete 31,

87–8
DeviceFormatStorageDriveError 31, 87–8
DeviceFormatStorageDriveProgress 31,

87–8
DeviceListChanged 33–4
difference handling, devices 52–3, 80–6, 113–15,

407–10
directories
see also filing systems
common directories 93–4
concepts 19, 21, 22–7, 53–7, 58–60, 63–77,

90–6, 161–3, 171–2
creation operations 70–1
deletions 26–7, 67–9, 88
message stores 171–2, 178–90, 213–25
naming conventions 69
navigation techniques 53–4, 58–60, 63–6, 86–7
renaming operations 67–8, 69–70, 88
simple actions 66–77
tree views 63–76, 87

disabling operations, buttons 67–8, 354–8
disconnection events 19–20, 27–8, 60–6, 73–8,

80–6, 87–8, 141–2, 348–58, 367
dispatch maps, Visual C++ 84–8

448 INDEX

display properties, files 71
DisplayDueDateAs 317–46
DisplayNextOnly 306–46
DisplayTime 313–46
DLLs 90–6, 118–36
DoActivate 113
DoCancel 111–13, 119–23, 212–25, 398–401
documentation needs, protocols 191–2, 403–4
DoEditsL 276–81
dongles 46–7
DoServiceL 103, 215–25
DoStartL 120–3
Drafts folder 172–3
drives, concepts 19, 21, 22–7, 31, 54–7, 58–60,

86–7, 94
DueDate 318–46
Duration 319–46

E32Dll 119–23, 161
E32main 152
e32std.h , trap harness 101
EAgnFilter 291–346
EAllInstances 291–346
EBig 145
echo custom server plug-in 95–6, 118, 124–36
echo socket server 151–61
echocs.cs 128
echocs.mmp file 90–6, 128–9
echoss.pkg 162–4
ectcpadapter 9, 35, 90–1, 117–36, 212–25, 351
ECurrentAndFutureInstances 291–346
ECurrentAndPastInstances 291–346
ECurrentInstance 291–346
EDayFilter 291–346
EditButton_Click 381–4, 392–6
EditCardInGroupL 280–1
EditCardL 277–81
EditGroupL 280–1
edits

agenda model 326–46, 384–96
contacts 231–81, 367–84

EditStoreL 171–90
EditTodoListEntryL 345–6
EFBForm 61–3, 74–7
EFindFilter 292–346
EKA2 151–2, 161, 401
ELittle 145
emails 108, 168, 171, 174, 396
see also messaging

EMsvCloseSession 181–90, 204–25
EMsvCorruptedIndexRebuilding 182–90
EMsvCorruptedIndexRebuilt 181–90
EMsvEntriesChanged 181–90, 199–225
EMsvEntriesCreated 181–90, 199–225
EMsvEntriesDeleted 181–90, 199–225
EMsvEntriesMoved 181–90, 199–225
EMsvGeneralError 181–90, 204–25
EMsvMediaAvailable 181–90
EMsvMediaChanged 181–90
EMsvMediaIncorrect 182–90
EMsvMediaUnavailable 181–90
EMsvMtmGroupDeInstalled 181–90
EMsvMtmGroupInstalled 181–90
EMsvServerFailedToStart 181–90, 204–25
EMsvServerReady 181–90
EMsvServerTerminated 181–90, 204–25
EMsvSort... 183–90
emulators

concepts 39–52, 90, 92, 94–100, 136, 410–12
connection techniques 39–52
console programs 98
definition 90, 96–7
driving procedures 98–100
emulator bearer 48
screens 98–100
socket servers 161–2, 165–6
starting procedures 97–8
usage details 96–100, 410

encoding data, headers 170
EndDate 299–346
EndDateTime 315–46
Endian 145–9
Entry 178–90
EntryCount 291–346
EntryId 178–90
enumerated object types, concepts 101
EOpenCallBack... 290–346
EPOC 7, 97–8, 151–2, 398–401
epoc32 45, 90–1, 93–4, 97–8, 125–6, 163
epoc.exe 97–8
epoc.ini 98
ER5 7–8, 151–2
ERAgnCmdCreateAppt 326–46, 394–6
ERAgnCmdCreateApptReply 326–46
ERAgnCmdCreateTodoListEntry 326–46
ERAgnCmdCreateTodoListEntryReply

326–46
ERAgnCmdDeleteInstance 326–46

INDEX 449

ERAgnCmdDeleteReply 326–46
ERAgnCmdEditAppt 326–46
ERAgnCmdEditApptReply 326–46
ERAgnCmdEditTodoListEntry 326–46
ERAgnCmdEditTodoListEntryReply 326–46
ERAgnCmdError 326–46
ERAgnCmdFetchApptsByDay 326–46, 387–96
ERAgnCmdFetchApptsReply 326–46, 388–96
ERAgnCmdFetchMoreAppts 326–46
ERAgnCmdFetchMoreTodoListEntries

326–46
ERAgnCmdFetchOneTodoList 326–46
ERAgnCmdFetchTodoListEntriesReply

326–46
ERAgnCmdFetchTodoLists 326–46
ERAgnCmdFetchTodoListsReply 326–46
ERAgnCmdNone 326–46
ERAgnCmdOpenAgenda 326–46
ERAgnCmdOpenAgendaReply 326–46
ERAgnCmdQueryVersion 326–46
ERAgnCmdVersionReply 326–46
ERCntCmdContactsCountReply 257–81
ERCntCmdContactsInGroupReply 257–81
ERCntCmdContactsReply 257–81, 372–84
ERCntCmdCreateContact 257–81, 383–4
ERCntCmdCreateContactReply 257–81
ERCntCmdCreateGroup 257–81
ERCntCmdCreateGroupReply 258–81
ERCntCmdDeleteContact 257–81
ERCntCmdDeleteGroup 257–81
ERCntCmdDeleteReply 257–81
ERCntCmdEditContact 258–81, 381–4
ERCntCmdEditContactInGroup 258–81
ERCntCmdEditContactInGroupReply 258–81
ERCntCmdEditContactReply 258–81
ERCntCmdEditGroup 258–81
ERCntCmdEditGroupReply 258–81
ERCntCmdError 258–81
ERCntCmdFetchAllContacts 257–81, 372–84
ERCntCmdFetchAllGroups 257–81
ERCntCmdFetchContactsCount 257–81
ERCntCmdFetchContactSet 257–81, 380–4
ERCntCmdFetchContactsInGroup 257–81
ERCntCmdFetchMoreContacts 257–81,

372–84
ERCntCmdFetchMoreGroups 257–81
ERCntCmdFetchOwnCardId 257–81
ERCntCmdFetchTemplateFieldInfo 257–81
ERCntCmdFindContacts 257–81

ERCntCmdGroupsReply 257–81
ERCntCmdNone 257–81
ERCntCmdOpenDatabase 257–81
ERCntCmdOpenDatabaseReply 257–81
ERCntCmdOwnCardIdReply 257–81
ERCntCmdQueryVersion 257–81
ERCntCmdSetOwnCardId 257–81
ERCntCmdSetOwnCardIdReply 257–81
ERCntCmdTemplateFieldInfoReply 257–81
ERCntCmdVersionReply 257–81
error handling, concepts 102–6
errors
see also debugging; testing facilities
arrays 106–7
BAL 18, 34, 37
Bluetooth 47
concepts 18, 20, 29–32, 55–7, 68–78, 81–8,

101, 102–6, 110–13
copy functions 55–7, 71–7, 87–8
custom servers 119–23, 126–9, 130–2, 136
file browsers 78
infrared connections 44
messaging 178–90, 193–225
out-of-memory errors 102–6, 118, 406
panics 106, 155–61, 188
RunL 110–13
SCOM 18, 20, 29–32, 55–7, 68–78, 81–8
SMS 193–225
socket servers 141–2, 150, 154–61, 164–6
types 77–8, 102–3

ERSmsCmdDeleteSms 192–225
ERSmsCmdError 193–225
ERSmsCmdFetch 193–225
ERSmsCmdGetAllSms 192–225
ERSmsCmdGetMoreSms 192–225
ERSmsCmdGetSmsById 192–225
ERSmsCmdMsvEvent 199–225
ERSmsCmdNone 194
ERSmsCmdQueryVersion 194, 215–25
ERSmsCmdReceivedNoMoreSms 223–5, 361–7
ERSmsCmdReceiveSms 361–7
ERSmsCmdReturnEvents 193–225
ERSmsCmdSendSms 192–225
ERSmsCmdVersionReply 193–225
ESOCK 17
ESymbolFilter 292–346
etel 44
ETidyFilter 292–346
event handlers

450 INDEX

event handlers (continued)
asynchronous service 218–19
BAL 34, 37, 134–6, 349–96
contacts 253–81
copy functions 55–7, 87–8
SCOM 19–20, 25, 27–33, 52, 55–7, 61–6, 85–8
SMS management 193–225

event-driven programs
see also active objects
concepts 110–13

EventOnDate 301–46
EventPriority 314–46
events

agenda model 284–346, 386–96
messaging 173–4, 193–225

ExecuteLD 112, 140–1, 150, 154–61, 401
exepath 162
EXPORT 91–2, 126–7
exports 91–6
extended classes, concepts 18–19
ExtractDataL 149, 156–61
ExtractL 149
ExtractLC 149
ExtractRawDataL 149
ExtractWithRawLenPrefixLC 149

factory classes, socket servers 139–43, 151–61
FailedToStart 142
faxes 44–5, 168, 170
see also messaging

FetchApptsByDayL 336–46
FetchEntryL 288–346
FetchInstanceL 294–346
FetchInstanceLC 294–346
FetchMoreApptsL 338–46
FetchMoreTodoListEntriesL 340–6
FetchOneTodoListL 340–6
FetchTodoListL 288–346
Field... 246–81, 367–84
fields, contacts 228–81, 367–84
file browsers 1–2, 39–88, 129–30, 347–8

custom servers 129–30
errors 78
examples 39, 60–88
graphical programs 60–88, 347–8

file management, concepts 16, 39
file servers 12
FileCopyComplete 72–7
FileCopyError 72–7

FileCopyExistingFileFound 72–7
FileCopyProgress 72–7
FileName 26–7, 58–60
files 1–2, 8, 10, 16, 19, 20–7, 28–30, 53–7, 58–60,

63–77
copy functions 16, 20, 26, 27, 28–30, 53–7,

71–7, 87–8
deletions 26–7, 67–9, 88
display properties 71
header files 91–2, 355–8
navigation techniques 53–4, 58–60, 63–6, 86–7
renaming operations 67–8, 69–70, 88
simple actions 66–77

filing systems
see also databases; directories
concepts 1–2, 8, 10, 21–7, 58–60
copy functions 16, 20, 26, 27, 28–30, 53–7,

71–7, 87–8
navigation techniques 53–4, 58–60, 63–6, 86–7

filtering, agenda model 283–4, 286, 336–46
Find 185–90, 242–81, 320–46, 374–84
FindException 311–46
FindLC 232–81
FindNextInstanceL 297–346
FindPreviousInstanceL 297–346
FindRptEndDate 299–346
FirstDayOfWeek 300–46
FM radios 7
folders, messaging 172–3, 359–67
form class, GUI applications 351–96
Format 25
format events 25, 27, 30–1
forwarded messages 188, 359
FreeSpace 24, 59–60
freezing concepts 94–5
‘from’ addresses, messaging 170, 174, 189–90,

196–225
FromAddress 190, 196–225

gcc directory 93
gencserv 118
general socket servers
see also TCP/IP
concepts 397–401

GetAllCards 274–81
GetAllGroupsL 278–81
GetAllSmsL 216–25
GetCardSet 274–81
GetCardsInGroupL 279–81

INDEX 451

GetCardTemplateIdListL 235–81
GetEntryL 173–90, 207–25
GetFieldInfo 273–81
GetGroupIdListL 234–81
GetGroupLabelL 241–81
GetMoreCards 274–81
GetMoreCardsL 274–81
GetMoreGroupsL 279–81
GetMoreSmsL 217–25
GetMsvEventL 213–25
GetOneApptL 338–46
GetOneCardL 272–81
GetOneSmsL 207–25
GetOneTodoListEntry 340–6
GetSmsByIdL 216–25
GetStartDay 303–46
GetTemplateInfoL 275–81
GetTemplateLabelL 240–81
GetValue 348–58
good practices, programming 412
graphical programs, file browsers 60–88, 347–88
GroupByMtm 184–90
GroupByPriority 184–90
GroupByType 184–90
GroupCount 234–81
GroupingOn 184–90
groups of cards

contacts 228–9, 234–81, 367
editing code 280–1
retrieval code 278–81

GroupStandardFolders 184–90
GUI applications 53–4, 59, 60–88, 98–100, 168–9,

191, 219, 225, 347–96, 400, 409
agenda model 347, 384–96
C# uses 39, 191
communications 351–8
concepts 39, 191, 281, 347–96, 400, 409
contacts 281, 347, 359
definition 347
delays 351–8
development issues 347–96
file browsers 60–88, 347–8
form class 351–96
further developments 396
SMS 191, 219, 225, 347, 358–67

HAL APIs 421
HandleContactViewEvent 254–81
HandleSessionEventL 182–90, 204–25

hardware 7–8
HasAlarm 309–46
HasBaseYear 317–46
HasContext 187–90
HasExceptions 311–46
HasItemLabelField 241–81
HasStoreL 178–90
HBufC concrete class 107–8, 148–9, 207, 245–9,

337, 343
Header 147–8, 152–61
header files 91–2, 125–9, 355–8
headers, messaging 170–2, 174–90
heap 103–8
heap descriptors
see also descriptors; HBufC...
concepts 108

hourglass images, cursors 70–2, 351
HRESULT 18, 30, 33, 37, 80, 87

IANA 138, 397–8
Id 20, 34, 49–52, 57, 80–1, 153, 237–81, 348–58
IDE 90–3, 165–6, 410
IErrorInfo 18
images 1–2, 16, 39, 52–3
see also bitmaps; multimedia; video
device difference handling 52–3
management applications 39, 52–3

IMAP 168
IMEI numbers 20, 49–50, 80, 81, 409
Inbox 172–3, 221–5, 359–67
include directory 90–4, 125–6
IncludeCrossedOut 293–346
indexed agenda models 283–346
indices

agenda models 283–346
messaging 172–3, 178–90, 358–67

infrared connections 8, 11–12, 40–1, 42, 43–5, 60,
97, 136, 168

concepts 8, 11–12, 40–1, 42, 43–5, 60, 97
errors 44
time considerations 60

InitializeComponent 353–8, 366–7, 378–84,
390–6

InitializePhones 82–6, 356–8
InitializePhoneService 368–84, 385–96
inner schedulers, concepts 212
InPreparation 176–90
InsertFieldL 238–81
InsertL 242–81, 320–46

452 INDEX

installation 95–6, 129–30, 161–3, 397–401, 412
custom servers 129–30
installer (.sis)files 95–6, 129–30, 162–3
socket servers 161–3, 397–401

installer (.sis)files 95–6, 129–30, 162–3
instance agenda models 283–346, 387–96
InstanceCount 299–346
InstanceDate 312–46
InstanceEndDate 313–46
InstanceId 313–46
InstanceStartDate 313–46
Integrated Development Environments 3
Interval 299–346
Intuwave 8
InvokeAsync 186–90
IPAddress 35
irda.esk 42, 45
IsActive 21
IsADayNote 310–46
IsAlarmSetFromDueDate 319–46
IsAlarmSetFromStartDate 319–46
ISCApplication 79–86
ISCBALDevice 34–5, 163–5, 348–58
ISCBALDeviceCollection 33–5, 349–58
ISCBALDeviceService 35–6, 131–2, 163–5
ISCBALDeviceServiceCollection 34, 35,

163–5
ISCBALSequentialStream 35–6, 131–6,

163–5, 221–5, 356–8, 368–96
ISCBALSequentialStreamSink 37, 135–6,

356–8, 368–96
ISCDevice2 , concepts 18–19, 20–1, 32–3, 38,

49–53, 58–60, 80–6, 347–58
ISCDeviceCollection 19–20, 21
ISCDeviceStorage 19, 21, 22, 26, 58–60, 86–7
ISCDeviceStorageDirectory 19, 21, 24,

25–6, 58–60, 65–6, 68–76, 86–7, 88
ISCDeviceStorageDirectoryCollection 25,

26, 59–60, 86–7
ISCDeviceStorageDrive2 19, 23–5, 27, 54–7,

58–60, 86–7
ISCDeviceStorageDriveCollection 21, 25,

54–5, 86–7
ISCDeviceStorageFile 19, 21, 26–7, 66,

68–76, 86–7, 88
ISCDeviceStorageFileCollection 25–6, 27,

86–7
ISCEvents 19–20, 28–31, 52, 84–6
IsCrossedOut 310–46

ISCSequentialStream 21, 32–3
IsDated 319–46
IsDaySet 300–46
IsDeletable 237–81
IsDeleted 237–81
IsFull 247–81
IsHidden 237–81
IsNullId 307–46
IsNullInstance 308–46
IsOperationCanceled 74
IsReadOnly 243–81
IsReceiveComplete 146
IsRepeating 310–46
IsSendCompleteL 146–7
IsTentative 310–46
IsValid 292–346
IsValidLabel 245–81

Java 3, 89, 102
jog dials 7, 99
joysticks 7, 99
jukebox applications 39, 52
‘Just in Time’ basis, tree views 65–6

kernel-side programming 109, 151–2
KErrAccessDenied 178–90
KErrArgument 158, 200–4, 210, 342–6
KErrGeneral 204–5, 217–25
KErrNone 101, 102–3, 113, 126–7, 141–2, 161,

183–90, 217–25, 286, 290, 355–8, 368, 401
KErrNotFound 131, 185–90, 250–81
KErrNotSupported 120–3, 126–9, 131,

156–61, 404
keyboards 7
KMsvDraftEntryId 173, 175–90
KMsvGlobalInBoxIndexEntryId 173, 175–90,

360–7
KMsvGlobalOutBoxIndexEntryId 173,

175–90
KMsvGroup... 183–90
KMsvMediaIncorrect 182–90
KMsvNoGrouping 183–90
KMsvNullIndexEntryId 172–3, 175–90
KMsvSentEntryId 173, 175–90, 360–7
KStorageTypeText 262–81, 374–84
KUidContact... 232, 237–81
KUidMsgTypeSMS 175–90
KUidMsvMessageEntry 175–90
KUidMsvNullEntry 176–90

INDEX 453

Label 244–81
label methods, contacts 240–81, 374–84
LabelUnspecified 244–81
laptops 45
LastModified 27, 237–81
leak problems, memory 103–4
least significant byte (LSB) 145–6
Leaves 102–3
Length 149, 152–61, 164–5, 219–25
length information 133–6, 147–9, 152–61, 164–5,

174–90, 196–225, 278–81, 327–46
libraries 90–6, 128–30, 138, 400–1
LIBRARY 90–1
Linux 4
list boxes 377–84
listeners 44
lists

agenda model 283–4, 286, 320–46, 384–96
SMS messages 206–9, 358–67

literals
see also _LIT macro
concepts 108

Little Endian 145
loading considerations 132, 409–10
LoadMessageL 171–90, 206–25
localization considerations, PC Connectivity

applications 405
log files 136, 410–12
Logon 401
Lotus Notes 2
LPCTSTR variables 38
LSB see least significant byte

M classes, concepts 102
m-Router
see also TCP/IP
concepts 8–9, 12, 17–18, 40–3, 45–8, 117
versions 40, 47

Mac OS 4
MAgnModelStateCallBack 287–346
MAgnProgressCallBack 289–346
Mail directory 171
MakeInstanceNonRepeating 313–46
makekeys 96
MakeUndated 319–46
makmake 90
Managed C++ 78
management connectivity 16
Manufacturer 20, 34, 49–52, 80–2, 347–58, 385

Mapping 246–81, 374–84
mapping methods, contacts 230, 246–81, 368–84
MatchesAll 250–81
MaxBodyLength 147, 152–61, 210–25
MCommand 140–3, 149–51, 154–61
MContactDbObserver 255–81
MContactViewObserver 254–81
MediaAttributes 24
MediaType 24
memory

leak problems 103–4
out-of-memory errors 102–6, 118, 406

Memory Sticks 94
message folders 172–3, 359–67
message servers

concepts 167–90, 204–25
events 173–4, 213–25
MTMs 167–72, 204–25
SMS 169, 204–25

message stores 171–2, 178–90, 213–25
Message Type Modules (MTMs)

asynchronous service 169, 174–5, 211–25
client-side MTMs 168–90
components 168–9
concepts 117, 167–90, 204–25
generic classes 185–7
message servers 167–72, 204–25
SMS 169, 204–25
synchronous service 169, 211–25

messaging 7–8, 117–66, 167–90, 191–225,
256–81, 358–67

see also Short Messaging System
asynchronous service 169, 173–4, 180–90,

211–25
attachments 170, 172–4
bodies 170–2, 197–225
caching operations 171–90
classes 167–225, 359–67
common classes 175–87
components 168–9
concepts 167–90, 191–225
contacts connectivity 256–81, 359
debugging 171, 191–2, 219–25
errors 178–90, 193–225
events 173–4, 193–225
folders 172–3, 359–67
generic classes 175–85
headers 170–2, 174–90
indices 172–3, 178–90, 358–67

454 INDEX

messaging (continued)
navigation techniques 172–3
‘pull/push’ methods 174–5
sessions 173–4
stores 171–2, 178–90, 213–25
structures 170–3
synchronous service 169, 180–90, 211–25

Messaging Application 173–4
metadata, concepts 106–7
Metrowerks CodeWarrior 45, 90–2, 97, 165–6, 415
MFactory 139–43, 157–61
MFC 79, 84–6
MHeader 147–8, 152–61
Microsoft 2, 3–4, 8–9, 12, 18, 39, 227, 348, 376

Outlook 2, 227, 376
Visual C++ 3, 18, 39
Windows 3–4, 8–9, 12, 386, 406

MIMEType 27
missing services 407
Mixin classes
see also M classes
concepts 102, 150, 204

mLostPhone 379–80
MMC cards 25, 94
MMessage 142–3, 146–8
MMS see Multimedia Messaging Service
MMsvSessionObserver 173–90, 204–25
MMsvStoreObserver 177–90
mobile phones
see also device. . .; smartphones
BenQ 429
difference handling 52–3, 80–6, 113–15, 407–10
Motorola 431, 436
multiple models 52–3, 80–6, 113–15, 407–10
NOKIA 6, 8–9, 50, 52–3, 60, 81, 98, 385, 422–5,

427, 433–5, 438–9
Panasonic 437
Sendo 6, 428
Siemens 426
Sony Ericsson 6, 9, 41, 53, 385, 430, 432
specifications 421–39

Mode 251–81
Model 20, 34, 49–52, 80–2, 347–58
Month 322–46
MonthlyByDates 304–46
MonthlyByDays 304–46
most significant byte (MSB) 145–6
Motorola 431, 436
MoveL 180–90, 242–81

MP3 players 2, 117
MSB see most significant byte
MServerSocketObserver 139–44, 159–61,

165–6
msvapi.h 182
msvids.h 172–3
msvstd.h 175–90
mtclreg.h 185–7
MTMs see Message Type Modules
multimedia 1–2, 7, 22–7, 52–3, 117, 410
see also audio; bitmaps; images; video

Multimedia Messaging Service (MMS) 168, 170–4,
396

multiphone programming, Symbian OS 113–15,
409–10

multiple models 52–3, 80–6, 113–15, 407–10
multiple versions, protocols 404, 407–8

Name 35, 49–52, 80–2, 190, 324–46
named servers see socket servers
naming conventions, Symbian OS 69, 100–3
navigation techniques

contacts 232–6, 367–84
filing systems 53–4, 58–60, 63–6, 86–7
messaging 172–3
time considerations 60
Visual C++ 86–7

NewClientL 142–3
NewCommandL 157–61
NewInfoL 126–9
NewL 95, 105, 125–9, 154–61, 178–90, 205–25,

239–81, 286–346, 398–401
NewLC 105–6, 159–61, 212–25, 239–81, 314–46
NewMessageL 143, 157–61
NewMessageReceived 150–1
NewMessageReceivedL 141
NewMtmL 186–90
NewSessionL 119–23, 125–9
NOKIA 6, 8–9, 50, 52–3, 60, 81, 98, 385, 422–5,

427, 433–5, 438–9
non-modifiable descriptors, concepts 108
non-preemptive multitasking, concepts 110
NotesTextL 313–46
NumDaysSet 300–46
NumSCAddresses 189–90

OBEX see Object Exchange Protocol
Object Exchange Protocol (OBEX) 10, 168
object-oriented programming, concepts 3

INDEX 455

observers 139–44, 159–61, 165–6, 173–90,
204–25, 230–1, 254–81

concepts 139–44, 159–61, 165–6, 173–90,
204–25, 230–1, 254–81

contacts 230–1, 254–81
Ogg formats 117
OleView 85
OnDeviceConnected 28
OnDeviceCopyStorageFileComplete 30,

56–7, 74–7
OnDeviceCopyStorageFileError 29, 56–7,

75–7
OnDeviceCopyStorageFileExistingFile

Found 30, 56–7, 75–7
OnDeviceCopyStorageFileProgress 28,

56–7, 74–7
OnDeviceDisconnected 28
OnDeviceListChanged 349–58
OnPaint 62–6, 75–7
OnPhoneUpdate 354–8
OnRead 33, 37, 135–6, 165, 356–8, 368–84
OnWrite 33, 37, 134–5, 222–5, 356–8
Open 102
open source projects, Symbian OS 419–20
OpenAsyncDeviceService 21, 32–3
OpenAsyncL 181–90
OpenContactL 233–81
OpenContactLX 233–81
OpenDeviceService 21, 32–3, 347–58
OpenL 231–81, 287–346
OpenSyncL 182–90
Operator 179–90
OPL 89
optimization issues 412
OTA see Over The Air
out-of-memory errors 102–6, 118, 406
out-of-process COM servers, concepts 15
Outbox 172–3, 210–25
Over The Air (OTA) 138, 406
overview 4
OwnCard... 235–81

packets
custom servers 123–4, 132–3
design issues 404
protocol conventions 123–4, 132–3, 404
size issues 404

packing/unpacking data, SMS 200–4
Panasonic 437

panics, concepts 106, 155–61, 188
ParaFormatLayer 289–346
Parent 25–6, 58–60, 176–90
Path 22, 24–5, 26, 58–60
PC Connectivity applications

agenda model 283–346, 384–96
architectural overview 11–13
client-server processes 12–13, 109–10, 403–12
compression considerations 405
concepts 1–4, 7–10, 39–52, 359, 396, 403–12
connection processes 8–9, 11–12, 39–52, 60–6,

78–86, 123, 247–58, 290–346, 406–10
contacts 1, 10, 16, 121–2, 227–81, 359, 367–84
custom servers 8–9, 13, 95–6, 117–36, 191–225,

256–81, 397, 410
debugging considerations 405, 410–12
defensive designs 406–7
definition 2
design issues 403–12
device difference handling 52–3, 80–6, 113–15,

407–10
device and service management 52–3, 113–15,

180–6, 407–10
disconnection events 19–20, 27–8, 60–6, 73–8,

80–8, 141–2, 348–58, 367
dos and don’ts 403–12
examples 39–88
file-browser example 39–88
GUI applications 347–96, 409
historical background 7–10, 117
Java 3, 89
loading considerations 132, 409–10
localization considerations 405
messaging 7–8, 117–66, 167–90, 191–225,

256–81
missing services 407
multiphone programming 113–15, 409–10
multiple models 52–3, 80–6, 113–15, 407–10
OBEX 10, 168
PLP 8–9, 117
power interruptions 406–7
protocol designs 191–2, 403–4
robust designs 405, 406–7
SMS 1, 10, 44–5, 121–2, 167–90, 191–225,

358–67
socket servers 13, 35–6, 137–66, 191–225,

256–81, 397–401, 410
TCP/IP 8–9, 11–13, 35–6, 123–4, 137–66,

397–401, 405, 410

456 INDEX

PC Connectivity applications (continued)
testing facilities 96–7, 405, 410–12

PC suites
concepts 2, 8–10, 12–13, 15–16
SCOM 15–17
typical functions 2, 15–16

PDAs 8, 41–2, 98
PDU see Protocol Data Unit
PeekAtTodoListList 288–346
PeekInt32L 200–4, 400–1
PeekL 149
Perl 4, 92
Personal Information Manager (PIM) 2, 8, 16,

227–81, 325–6
see also Lotus Notes; Microsoft. . .

PhoneUpdate 354–8
PIM see Personal Information Manager
pipe processors 117–18, 137
PLP 8–9, 117
plug-ins
see also custom servers
concepts 8–9, 90–1, 95, 103, 106, 112, 114–15,

117–36, 192–225
pointer descriptors
see also descriptors; TPtr...
concepts 107–8

pointers 103–8, 125–9
Pop 104–6, 125–9, 159–61, 206, 213–25
POP3 168, 174
PopAndDestroy 105–6, 160–1, 207–25,

272–81, 338–46, 398–401
PopulateDayInstanceListL 295–346
PopulateMonthInstanceListL 296–346
PopulateTodoInstanceListL 297–346
Port 36
ports 36, 40–8, 138–66, 397–401

m-Router 40–3, 45–8
socket servers 138–66, 397–401

power interruptions, PC Connectivity applications
406–7

PPP 8, 11–12
preemptive multitasking, concepts 110
PrepareToWrite 147, 152–61
Priority 318–46
processes, Symbian OS 109–10
programming
see also software. . .

code conventions 5
crashes 406–7

good practices 412
multiphone programming 113–15, 409–10
optimization issues 412
panics 106, 155–61, 188
skills 411
Symbian OS background 89–115, 411

programs directory 161–2
Progress 289–346
Protocol Data Unit (PDU) 121, 191–225, 259–81,

326–46, 351–67, 370–84, 388–96, 404–5, 407
protocols

agenda models 325–46, 388–96
contacts connectivity 256–81, 370–84
custom servers 123–9, 132–3, 191–225, 256–81,

325–46
debugging plans 405
design issues 403–5
documentation needs 191–2, 403–4
dos and don’ts 403–5
multiple versions 404, 407–8
PDU 121, 191–225, 259–81, 326–46, 351–67,

370–84, 388–96, 404–5, 407
reverse engineering 12–13
size issues 404
tuning considerations 405
version information 404, 407–8

prototyping issues 403
PruneExceptions 311–46
Psion 7–8, 41, 98
‘pull’ concepts, messaging 174
‘push’ concepts, SMS 174
PushL 105–6, 159, 209–25, 280–1, 338–46,

398–401

R classes, concepts 101–2, 105–6, 108–9
RAgendaServ 286–346
RAGNDateTime 387–96
RAGNEntry 388–96
RAGNInstance 387–96
RAGNUtils 385–96
RAM drives 94
RArray 108–9
RCNTField 367–84
RCNTUtils 368–84
RContactViewSortOrder 251–81
Read 32–3, 36–7, 112, 132–6, 152–61, 164–5,

200–4, 210–25, 232–81, 347–96, 400–1
ReadComplete 112
ReadCompleteL 119–29, 215–25

INDEX 457

ReadContactL 232–6
ReadContactLC 233–6
reading operations, SMS 192–209, 359–67
ReadL 147, 152–61
ReadMinimalContactL 232–6, 272–81
ReadPtr 147, 152–61
ReadStoreL 171–90
Receive 146–7
ReceiveCompleteL 146–7
Recipients 206–25
recipients, SMS 196–225
RecvOneOrMore 400–1
reference boards 40–7
Refresh 25
RegisterPort 142
registration, socket servers 161–3
registry 50–2, 188–90, 348–58, 384
release directory 93–4, 97–8
remote installation, software 2, 8, 15–16
removable drives 25, 54–5
Remove 242–81, 350–8, 364–7, 392–3
RemoveAddressee 187–90
RemoveAllExceptions 311–46
RemoveCommand 140–1, 144–5
RemoveContactFromGroupL 235–81
RemoveException 311–46
RemoveField 238–81
RemoveFieldType 244–81
RemovePhone 51–2, 83–6
Rename 26–7, 67–8, 69–70
renaming operations 26–7, 67–8, 69–70, 88

concepts 26–7, 67–8, 69–70, 88
time considerations 70

repeat APIs, agenda model 298–306
RepeatForever 306–46
repeating agenda entries 285, 298–306,

387–96
RequestId 57
Reset 109, 146–7, 149, 153–61, 242–81,

320–46, 354–8, 378–84
ResetContact 378–84
ResetPhoneList 78, 354–8
ResetStore 244–81
responses

command–response sequence 192–225
packing/unpacking data 200–4

restore functions 2, 8, 15–16, 171, 188–90
RestoreBodyTextL 171–90
RestoreL 190

RestoreMessageL 190
reverse engineering, protocols 12–13
ReverseOrder 242–81
RFile class 101–2
Rich Text messages 170–90, 205, 313–46
RichTextL 313–46
RLibrary 401
robust designs, PC Connectivity applications 405,

406–7
robustness needs 102–3
rollbacks/recoveries, databases 231
ROM conventions 54, 58, 93, 129
z: drive 54, 58, 94

root directories
concepts 24, 54–7, 86–7
copy functions 54–7

RootDirectory 24, 54–7, 58–60, 86–7
RPointerArray 108–9
RProcess 401
RptDef 311–46
RptNextInstanceOnly 293–346
RS232 serial connections 8, 11–12, 40, 41–3,

45–6
RServiceBrokerClient 141–66
RSMSAddress 361–7
RSMSUtil 359–67
RSocket 399–401
RThread 401
RunError 111–13, 398–401
RunL 110–13, 119–23, 212–25, 397–401

SaveMessage 171–90
SaveMessageL 186–90
SCAddress 189–90
SCAsyncStreamSink 21, 32–3
SCBAL.exe 48–52
ScDriveAttributes 22–3
ScDriveBatteryState 22–4
ScErrorDescription 29
ScFormatStorageFormatting 30–1
ScFormatStorageProgress 30–1
ScMediaAttributes 23
ScMediaTypes 23–4
SCOM see Symbian Connect Object Module
ScOverwrite 29–30
screens 7–8
see also multimedia; video
emulators 98–100

ScStorageType 22, 24, 26

458 INDEX

SDKs see software development kits
Send 146–7, 150–61
Send-As API, concepts 169
SendButton 366–7
SendCompleteL 140–1, 146–7, 150–1
SendError 150, 154–61
SendErrorMessage 150, 154–61
SendingState 177–90
SendMessage 155–61
Sendo 6, 428
SendResponse 140–1, 151, 155–61
SendSmsL 210–25
serial connections 8, 11–12, 40, 41–5, 47

concepts 8, 11–12, 40, 41–5, 47
Serialise 145–6, 153–61, 200–4
server socket classes 142–51
server-side MTMs, concepts 168–9
servers
see also client-server. . .
concepts 12–13, 15–38, 109–10

ServerSocketStoppedDueToErr 142, 159–61,
165–6

Service Brokers, concepts 138–66, 398, 400–1
Service Centers, SMS settings 211–25
ServiceId 188–90
ServiceRead 357–67, 370–84, 393–6
services

BAL 34–7, 357–8
SCOM 32–3

ServiceSettings 188–90
sessions

custom servers 119–36
messaging 173–4

SetActive 21, 112, 212–25
SetAddress 190
SetAlarm 319–46
SetAlarmFromDueDate 319–46
SetAlarmFromStartDate 319–46
SetAttrib 205–25
SetBaseYear 317–46
SetBodyLength 147, 152–61
SetButtonStates 354–96
SetComplete 176–90
SetCurrentEntry 175–90
SetCurrentEntryL 186–90
SetDaily 304–46
SetDate 302–46
SetDay 300–46
SetDbViewContactType 232–81

SetDeleted 237–81
SetDisplayDueDateAs 318–46
SetDisplayNextOnly 299–346
SetDisplayTime 315–46
SetDueDate 318–46
SetDuration 319–46
SetEndDate 298–346
SetEntryL 173–90, 209–25
SetEventPriority 314–46
SetEventSession 216–25
SetFromAddressL 189–90
SetGroupByMtm 184–90
SetGroupByPriority 184–90
SetGroupByType 184–90
SetGroupLabelL 241–81
SetGroupStandardFolders 184–90
SetHasAlarm 309–46
SetHasBaseYear 317–46
SetHasExceptions 311–46
SetHidden 237–81
SetId 307–46
SetIdAndDate 308–46
SetIdAndInstanceDate 313–46
SetIncludeAlarmedOnly 293–346
SetIncludeAnnivs 292–346
SetIncludeCrossedOutOnly 293–346
SetIncludeEvents 292–346
SetIncludeNonRpts 293–346
SetIncludeRpts 293–346
SetIncludeRptsNextInstanceOnly 293–346
SetIncludeTimedAppts 292–346
SetIncludeTodos 293–346
SetIncludeUnTimedAppts 292–346
SetInPreparation 177–90
SetInstanceDate 312–46
SetInstanceId 313–46
SetInterval 299–346
SetIsADayNote 310–46
SetIsCrossedOut 310–46
SetIsRepeating 310–46
SetIsTentative 310–46
SetLabelL 245–81
SetLastModified 237–81
SetLength 153–61
SetMapping 246–81
SetMode 251–81
SetMonth 322–46
SetMonthlyByDates 304–46
SetMonthlyByDays 304–46

INDEX 459

SetName 190, 324–46
SetNameL 190
SetNotesTextL 313–46
SetNullId 307–46
SetNullInstance 308–46
SetOwnCardL 235–81
SetPriority 110–11, 318–46
SetRepeatForever 299–346
SetRptDefL 313–46
SetRptEndDate 310–46
SetRptStartDate 310–46
SetSendingState 177–90
SetServiceCenterAddressL 190
SetShowInvisibleEntries 185–90
SetSmsSettingsL 190
SetSorting 184–90
SetSortOrder 325–46
SetSortTypeL 178–90
SetStandardText... 248–81
SetStartAndEndDateTime 314–46
SetStartDate 298–346
SetTemplateLabelL 240–81
SetTemplateRefId 238–81
SetText 248–81
SetTextArray 248–81
SetTextL 248–81
SetThingL 249–81
SetTime 249–81
SetTodoListId 318–46
SetUnread 177–90
SetUse 251–81
SetVisible 177–90
SetWeekly 304–46
SetYear 322–46
SetYearlyByDate 305–46
SetYearlyByDay 305–46
Short Messaging System (SMS) 1, 10, 44–5, 121–2,

167–90, 191–225, 358–67
see also messaging
asynchronous service 174–5, 211–25
classes 185–90, 359–67
command-line applications 219–25
command–response sequence 192–225
concepts 167–90, 191–225, 358–67
content return 206–9
creation procedures 209–25, 359–67
custom servers 191–225
deletions 192–3, 198–225, 359–67
errors 193–225

event handlers 193–225
GUI applications 191, 219, 225, 347, 358–67
length issues 174–5, 196–225
lists 206–9, 358–67
management protocols 191–9
management-connectivity-service development

191–225
message servers 169, 204–25
MTMs 169, 204–25
packing/unpacking data 200–4
reading operations 192–209, 359–67
Service Centers 211–25
socket servers 191–225
specific classes 187–90
specific variations 174–5

ShowInvisibleEntries 185–90
Siemens 426
Size 26
skills, programming 411
smartphones
see also mobile phones
concepts 1–6, 7–10, 45–6, 52–3, 113–15, 401
difference handling 52–3, 80–6, 113–15, 407–10
multiple models 52–3, 80–6, 113–15, 407–10
USB 45–6

SMS see Short Messaging System
smsclnt.h 188–90
SmsHeader 174–90, 206–25
SMTP 168
smuthdr.h 189–90
smutset.h 189–90
socket servers

asynchronous service 165, 211–25
classes 138–51
command classes 140–3, 149–61
comms 164–5, 398–401
concepts 13, 35–6, 137–66, 191–225, 256–81,

351, 397–401, 410
contacts connectivity 256–81
creation procedures 138, 151–61
custom servers 137
debugging 138, 155–61, 165–6, 397
definition 137–8
development 151–61
echo socket server 151–61
EKA2 151–2, 161, 401
emulators 161–2, 165–6
errors 141–2, 150, 154–61, 164–6
factory classes 139–43, 151–61

460 INDEX

socket servers (continued)
general socket servers 397–401
installation 161–3, 397–401
libraries 138
overview 137–8
ports 138, 397–401
registration 161–3
SCOM 163–5, 401
SMS management 191–225

SocketClosing 150–1
softkeys 7
software
see also programming
remote installation 2, 8, 15–16

software development kits (SDKs) 5–6, 125, 136,
399, 413–14

Sony Ericsson 6, 9, 41, 53, 385, 430, 432
Sorting 184–90
sorting methods

agenda model 295–346
contacts 232–6

SortL 232–6
SortType 179–90
SOURCE 90–1
source files, concepts 90–6
SOURCEPATH 90–1
specifications, mobile phones 421–39
stacks, protocols 123–4
stand-alone PC Connectivity applications, concepts

1–2
Standard Template Library (STL) 108
standardization benefits 9–10
StandardTextLC 248–81
Start 35, 113, 159–61, 212–25
StartDate 298–346
StartDateTime 315–46
StartGeneralService 400–1
StartL 159–61, 398–401
StartService 36, 400–1
StartServiceOnStream 36, 131–2, 163–5,

221–5
State 148–9
static classes, concepts 106, 145, 148
StdAfx.h 79, 86
STL see Standard Template Library
Stop 113, 161
Storage 21, 70–1
storage classes, SCOM 21, 22–31, 58–60, 86–7
StorageDrives 21, 58–60, 86–7

StorageType 244–81
StoreBodyTextL 171–90
StoreL 190
stores, messaging 171–2, 178–90, 213–25
StoreStorage 249–81
streams

BAL 35–7, 347–96, 401
message stores 171
SCOM 32–3, 130–2, 401

StringBuilder 362–3, 371–84
strings 49, 106–8, 358, 361–7, 405
support forums 416–17
SwitchCurrentEntryL 175, 186–90, 206–25
Symbian Connect Object Module (SCOM) 9, 13,

15–38, 39–88, 351–2, 401, 409
application, connection and device classes

18–21, 27–32, 38, 58–66
BAL 16–17, 33, 134–6, 347–96
C# access 48–52, 78, 80, 86, 133
C++ 37–8, 39, 78–88
caching operations 60, 81–2
classes 18–33, 39, 58–66, 79–88, 100–2
concepts 9, 15–38, 39–88, 351–2, 401, 409
custom servers 130–2
device connection 19–20, 27–31, 38, 48–52,

60–6, 78–86, 87–8, 409
efficiency issues 17
errors 18, 20, 29–32, 55–7, 68–78, 81–8
event handling 19–20, 25, 27–32, 52, 55–7,

61–6, 85–8
functionality provisions 15–38
PC Suites 15–16
services 32–3
socket servers 163–5, 401
storage classes 21, 22–31, 58–60
streams 32–3, 130–2, 401
type library 48–52, 79–80, 85–6
Visual Basic 37–8
Visual C++ 78–88

Symbian OS
see also individual topics
active objects 110–13, 144, 160–1, 212–25,

399–401
agenda model 1, 16, 283–346, 384–96
arrays 106–7, 108–9, 133
backwards compatibility 113–15
book list 419
build processes 90–6
C++ 3, 5, 37–8, 39, 78–88, 89–115

INDEX 461

clients 109–10
community links 417–18
concepts 1–6, 7–10, 89–115
contacts 1, 10, 16, 121–2, 227–81, 367–84
databases 227–346, 368–84, 396
descriptors 106–8, 124
design issues 403–12
development resources 5–6, 413–20
dos and don’ts 403–12
EPOC 7, 97–8, 151–2, 398–401
error handling 102–6
historical background 7–10, 117
messaging 7–8, 117–66, 167–90, 191–225,

256–81
multiphone programming 113–15, 409–10
naming conventions 69, 100–3
OBEX 10, 168
open source projects 419–20
PLP 8–9, 117
processes 109–10
programming background 89–115, 411
servers 12–13, 15–38, 109–10
TCP/IP 8–9, 11–13, 35–6, 123–4, 137–66, 405,

410
threads 109–10
v6.0 7–8
v6.1 3, 7–9, 13, 40, 46, 114–15
v7.0 3, 5, 7–9, 40, 114–15
v7.0s 7–9, 13, 40, 114–15
v8.0 3, 13, 35, 41, 114–15, 137–8, 152, 397–8,

400–1, 410
SymbianConnectBAL 48–52, 134–5, 163–5,

348–96
SymbianConnect.dll 48–52
SymbianConnectRunTime 48–52
SynchroniseDateTime 21
synchronous service 32–3, 35, 55, 78, 125–36,

211–25, 357–8
copy functions 55, 78, 87–8
custom servers 125–36, 211–25
disconnection operations 78, 87–8
errors 78
messaging 169, 180–90, 211–25

system templates, contacts 275–81
SYSTEMINCLUDE 90–1

T classes, concepts 101, 105
TAgnDailyRpt 299–346
TAgnDate 306–46

TAgnEntryId 287–346
TAgnException 306–46
TAgnFilter 291–346
TAgnId 306–46
TAgnInstance 307–46
TAgnInstanceDateTimeId 321–46
TAgnInstanceId 307–46
TAgnMonthlyByDaysRpt 301–46
TAgnMonthlyRpt 300–46
TAgnRpt 298–346
TAgnsrvFindFilter 292–346
TAgnsrvTidyFilter 292–346
TAgnStatus 309–46
TAgnSymbolFilter 292–346
TAgnTodoListId 288–346
TAgnWeeklyRpt 300–46
TAgnWhichInstances 291–346
TAgnYearlyByDateRpt 302–46
TAgnYearlyByDayRpt 303–46
TakeOwnershipOfMessage 150–1
TARGET 90–1
TARGETPATH 90–1
TARGETTYPE 90–1
TBuf concrete class type 107–8, 211
TBufC concrete class type 107–8
TBufCBase class type 107–8
TCleanupItem 105–6
TConnBuff 200–4
TContactItemId 254–81
TContactViewEvent 253–81
TContactViewPreferences 252–81
TCP/IP
see also general socket servers
concepts 3, 8–9, 11–13, 35–6, 123–4, 137–66,

397–401, 405, 410
custom servers 123
PC Connectivity applications 8–9, 11–13, 35–6,

123–4, 137–66, 397–401, 405, 410
socket servers 137–66, 397–401

TCreator 157–61
TDes base class, concepts 107–8, 121–2, 143–7,

152, 200–4, 342–6
TDesC base class, concepts 107–8, 127–9, 143–7,

152, 187–90, 232–6, 313
TDisplayAs 316–46
TDisplayDueDateAs 317–46
TDriveNumber 181–90
TechView emulator 98
TechView Technology Kit 5

462 INDEX

templates, cards 228, 235–81, 367, 370–84
TEndian 145, 148–9
testing facilities 96–7, 405, 410–12
see also debugging
emulators 96–7, 410–12
log files 410–12
test harnesses 411–12

TEventType 253–81
Text 248–81
text strings, transfer considerations 405
Thing 249–81
threads, concepts 109–10
Time 249–81, 387–96
time considerations 55, 60, 70, 72–7, 121–2,

244–81, 285–346, 351–8, 387–96, 409–10
agenda model 285–346, 387–96
Bluetooth 60
contacts 244–81
copy functions 55, 72–7
deletions 70
GUI applications 351–8, 387–96
infrared connections 60
messaging 170–3, 206–25
navigation techniques 60
renaming operations 70

times 21, 27, 30, 59–60, 72–7, 206–7, 220–5
TInt types 101, 103, 110–11, 122, 126–7, 141–2,

176–90, 200–25, 234–6, 243–6, 254, 299
TLibraryFunction 401
TListItem 322–46
TMsvEntry 170–90, 206–25
TMsvEntrySelection 183–90
TMsvGrouping 183–90
TMsvId 175–90, 208–25
TMsvSelectionOrdering 178–90
TMsvSessionEvent 181–90, 218–25
TMsvSorting 183–90
to-dos

agenda model 284–346, 396
sorting methods 296

TodoListCount 288–346
tools directory 93
TOpenCallBackFrequency 290–346
ToString method 49, 358, 361–7, 374–84,

386–96
touch-sensitive screens 7, 99
TPtr concrete class type 107–8, 176–90
TPtrC concrete class type 107–8, 143–4, 176–90,

240–2, 324

TRAgnCmdCode 326–46
trap harness, concepts 102–3, 111–12, 215–25
TRAP macro 102–3, 111–12, 215–25
TRAPD macro 102–3, 161, 217–25
TRCntCmdCode 257–81
tree views 63–76, 87
TRemsvr 200–4
TRequestStatus 111–13, 180–90
TRSmsCmdCode 192–225
TserverInfo 142–3, 160–1
TSortOrder 323–46
TSortPref 236–81
TState 148–9
TThreadFunction 401
TTime... 202–4, 287–346
TType 291–346
TUid 175–90, 237–81
TUint 143–4, 150, 153–61, 202–4, 307–8,

399–401
tuning considerations, protocols 405
two-phase construction, concepts 104–6, 143–5,

151, 205–25
Type 22, 24–6, 312–46, 373–84
type library

BAL 48–52
SCOM 48–52, 79–80, 85–6

udeb build 92–4, 97–8
UIDs 90–1, 94–5, 128–9, 162–3, 205–6, 247,

251–2, 414
UIQ, emulators 98–100
UnCrossOut 319–46
Unicode 107, 196–225
UniqueId 24
Unix 60
unloading considerations 132, 409–10
Unread 177–90
UnsetDay 300–46
UpdateEntryL 288–346
UpdateFieldSet 238–81
UpdateInstanceL 294–346
UpdatePhoneList 61–3, 348–58
UpdateTodoListL 288–346
urel build 92–4
USB 11–12, 44, 45–6
Use 251–81
User::Leave() 102–3, 126–9, 200–4, 207–25,

342–6, 399–401
User::Panic() 106

INDEX 463

user interfaces, concepts 2, 7–8
UserAddField 243–81
USERINCLUDE 90–1

VB see Visual Basic
VC++ see Visual C++
Version 35
version information, protocols 404, 407–8
video 1–2, 53, 117
see also images

views, contacts 230–1, 249–81, 368–84
virtual destructors 105–6
virtual functions, concepts 120–9
Visible 177–90
Visual Basic (VB) 3, 18, 37–8, 89
Visual C++ (VC++) 3, 18, 39, 78–88

concepts 3, 18, 39, 78–88
copy functions 87–8
device connection 78–86, 87–8
navigation techniques 86–7
SCOM 78–88

visual feedback, connection processes 41
VolumeLabel 24

‘waiter’ objects 205
watchers 44

Weekly 304–46
wins 92
winscw directory 92–4, 97–8
winsock 17
Write 32–3, 36–7, 112, 122–3, 128–36, 164–5,

202–4, 206–25, 272–81, 349–84, 387–96,
401

WriteComplete 112
WriteCompleteL 122–3
WriteErrorL 401
WriteInt8L 339–46, 380–4, 393–6
WriteInt16L 273–81, 339–46, 380–4,

393–6
WriteInt32L 272–81, 339–46, 360–7, 380–4,

387–96, 401
WritePtr 147, 152–61, 164–5

XML 162–3

YearlyByDate 305–46
YearlyByDay 305–46
z: drive 54, 57–60, 94, 129–30,

161–2
custom servers 129–30
ROM conventions 54, 58, 94, 129
socket servers 161–2

zero initialization, CBase class 101

	Programming PC Connectivity Applications for Symbian OS
	Cover

	Contents
	1 Introduction
	1.1 What is PC Connectivity and Why is This Book Different from Other Symbian OS Books ?
	1.2 What This Book Will Tell You (and What It Will Not)
	1.3 How This Book is Structured
	1.4 Conventions Used in This Book
	1.5 Developer Resources

	2 A History of Symbian OS and PC Connectivity
	2.1 A History of Symbian OS
	2.2 PC Connectivity Using PLP
	2.3 PC Connectivity Using TCP/IP
	2.4 PC Connectivity Using OBEX

	3 An Architectural Overview of PC Connectivity
	3.1 The Bearers, TCP/IP and PPP
	3.2 A Client-Server Model of PC Connectivity

	4 The Symbian Connect Object Model
	4.1 Overview
	4.2 Functionality in SCOM and in PC Suites
	4.3 SCOM and BAL
	4.4 COM Programming and Language Choice
	4.5 Error Handling
	4.6 SCOM Class Reference
	4.7 BAL Class Reference
	4.8 Using SCOM in C++ and Visual Basic

	5 An Example PC Connect Application – a File Browser
	5.1 Overview
	5.2 Connecting to a Phone or Emulator
	5.3 Accessing SCOM and Connecting to a Device
	5.4 Handling Differences Between Devices
	5.5 Copying Files – Asynchronous Actions
	5.6 Navigating the Filing System
	5.7 A File Browser Application
	5.8 Simple Actions on Files and Directories
	5.9 Error Handling and Disconnection
	5.10 Visual C++ Code for Application and Device Management
	5.11 Visual C++ Code for Drive and Directory Navigation
	5.12 Visual C++ Code for Synchronous and Asynchronous Operations

	6 Programming for Symbian OS
	6.1 Building a Project
	6.2 Using the Emulator
	6.3 Types and Naming Conventions
	6.4 Error Handling
	6.5 Descriptors
	6.6 Arrays
	6.7 Processes and Threads
	6.8 Active Objects
	6.9 Backwards Compatibility and Programming for Multiple Phone Types

	7 Developing Custom Servers
	7.1 Overview of Custom Servers
	7.2 Limitations of Custom Servers
	7.3 Custom Servers API
	7.4 Protocol Conventions
	7.5 Creating Your First Custom Server
	7.6 Installing a Custom Server
	7.7 Starting a Custom Server from SCOM
	7.8 Communicating with a Custom Server
	7.9 Asynchronous Communication
	7.10 Debugging a Custom Server

	8 Developing Socket Servers
	8.1 Overview of Connectivity Socket Servers
	8.2 An Introduction to the Server Socket Classes
	8.3 Using the Service Broker API
	8.4 Server Socket Classes
	8.5 Developing an Echo Socket Server
	8.6 Installing and Registering a Server Socket Service
	8.7 Starting a Socket Service from SCOM
	8.8 Communicating with a Socket Service
	8.9 Asynchronous Communication
	8.10 Debugging a Socket Service

	9 Introducing SMS and Messaging Classes
	9.1 The Message Server and MTMs
	9.2 The Structure of Messages
	9.3 Message Server Events and Sessions
	9.4 SMS Specific Variations
	9.5 Common Messaging Classes
	9.6 SMS Specific Classes

	10 Developing an SMS Management Connectivity Service
	10.1 SMS Management Protocol
	10.2 Packing and Unpacking Data
	10.3 Obtaining Access to the Message Server and the SMS MTM
	10.4 Listing SMS Messages and Returning Their Contents
	10.5 Deleting and Creating SMS Messages
	10.6 Handling Message Server Events
	10.7 Putting the Messaging Code in a Connectivity Plug-in
	10.8 A Command-line SMS Application

	11 Using the Contacts Model
	11.1 Databases and Models
	11.2 The Contacts Model
	11.3 Views
	11.4 Contacts Observers
	11.5 Synchronization and Performance Issues
	11.6 Contacts Model API
	11.7 A Contacts Connectivity Service

	12 Using the Agenda Model
	12.1 The Various Agenda Models
	12.2 Types of Agenda Entries
	12.3 Repeating Entries
	12.4 Alarms
	12.5 List and Filter Classes
	12.6 Agenda Model API
	12.7 An Agenda Connectivity Service

	13 Developing a Specialized Connectivity GUI Application
	13.1 What is Special About a GUI Application?
	13.2 Managing Connections to Phones
	13.3 Starting a PC Connectivity Service
	13.4 Communicating and Managing Delays
	13.5 A GUI SMS Application
	13.6 A Contacts GUI Application
	13.7 An Agenda GUI Application
	13.8 Conclusion and Ideas for Further Development

	14 Starting General Socket Servers
	14.1 Communicating with a Socket Server
	14.2 Starting a Server

	15 Connectivity Dos and Don'ts
	15.1 Protocol Design
	15.2 Robustness and Defensive Design
	15.3 Device and Service Management
	15.4 General Development and Debugging Skills

	Appendix 1 Developer Resources
	Appendix 2 Specifications of Symbian OS Phones
	Index
	Team-kB

