
XML™ Bible
Elliotte Rusty Harold

IDG Books Worldwide, Inc.
An International Data Group Company

Foster City, CA ✦ Chicago, IL ✦ Indianapolis, IN ✦ New York, NY

3236-7 FM.F.qc 6/30/99 2:59 PM Page iii

XML™ Bible
Published by
IDG Books Worldwide, Inc.
An International Data Group Company
919 E. Hillsdale Blvd., Suite 400
Foster City, CA 94404
www.idgbooks.com (IDG Books Worldwide Web site)
Copyright © 1999 IDG Books Worldwide, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced or
transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.
ISBN: 0-7645-3236-7
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1O/QV/QY/ZZ/FC
Distributed in the United States by IDG Books
Worldwide, Inc.
Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United Kingdom;
by IDG Norge Books for Norway; by IDG Sweden Books
for Sweden; by IDG Books Australia Publishing
Corporation Pty. Ltd. for Australia and New Zealand; by
TransQuest Publishers Pte Ltd. for Singapore,
Malaysia, Thailand, Indonesia, and Hong Kong; by
Gotop Information Inc. for Taiwan; by ICG Muse, Inc.
for Japan; by Norma Comunicaciones S.A. for
Colombia; by Intersoft for South Africa; by Eyrolles for
France; by International Thomson Publishing for
Germany, Austria and Switzerland; by Distribuidora
Cuspide for Argentina; by Livraria Cultura for Brazil; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer
Publishing Corporation, Inc., for the Philippines; by
Contemporanea de Ediciones for Venezuela; by
Express Computer Distributors for the Caribbean and
West Indies; by Micronesia Media Distributor, Inc. for
Micronesia; by Grupo Editorial Norma S.A. for
Guatemala; by Chips Computadoras S.A. de C.V. for
Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.
Authorized Sales Agent: Anthony Rudkin Associates for
the Middle East and North Africa.

For general information on IDG Books Worldwide’s
books in the U.S., please call our Consumer Customer
Service department at 800-762-2974. For reseller
information, including discounts and premium sales,
please call our Reseller Customer Service department
at 800-434-3422.
For information on where to purchase IDG Books
Worldwide’s books outside the U.S., please contact our
International Sales department at 317-596-5530 or fax
317-596-5692.
For consumer information on foreign language
translations, please contact our Customer Service
department at 800-434-3422, fax 317-596-5692, or e-mail
rights@idgbooks.com.
For information on licensing foreign or domestic rights,
please phone +1-650-655-3109.
For sales inquiries and special prices for bulk
quantities, please contact our Sales department at
650-655-3200 or write to the address above.
For information on using IDG Books Worldwide’s books
in the classroom or for ordering examination copies,
please contact our Educational Sales department at
800-434-2086 or fax 317-596-5499.
For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 650-655-3000 or fax
650-655-3299.
For authorization to photocopy items for corporate,
personal, or educational use, please contact Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, or fax 978-750-4470.

Library of Congress Cataloging-in-Publication Data
Harold, Elliote Rusty.

XML bible / Elliote Rusty Harold.
p. cm.

ISBN 0-7645-3236-7 (alk. paper)
1. XML (Document markup language) I. Title.

QA76.76.H94H34 1999 99-31021
005.7’2--dc21 CIP

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK
AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS
CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE
INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR
WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL
BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: All brand names and product names used in this book are trade names, service marks, trademarks,
or registered trademarks of their respective owners. IDG Books Worldwide is not associated with any product or
vendor mentioned in this book.

is a registered trademark or trademark under exclusive license
to IDG Books Worldwide, Inc. from International Data Group, Inc.
in the United States and/or other countries.

3236-7 FM.F.qc 6/30/99 2:59 PM Page iv

Eleventh Annual
Computer Press
Awards 1995Tenth Annual

Computer Press
Awards 1994

Eighth Annual
Computer Press
Awards 1992 Ninth Annual

Computer Press
Awards 1993

IDG is the world’s leading IT media, research and exposition company. Founded in 1964, IDG had 1997 revenues of $2.05
billion and has more than 9,000 employees worldwide. IDG offers the widest range of media options that reach IT buyers
in 75 countries representing 95% of worldwide IT spending. IDG’s diverse product and services portfolio spans six key areas
including print publishing, online publishing, expositions and conferences, market research, education and training, and
global marketing services. More than 90 million people read one or more of IDG’s 290 magazines and newspapers, including
IDG’s leading global brands — Computerworld, PC World, Network World, Macworld and the Channel World family of
publications. IDG Books Worldwide is one of the fastest-growing computer book publishers in the world, with more than
700 titles in 36 languages. The “...For Dummies®” series alone has more than 50 million copies in print. IDG offers online
users the largest network of technology-specific Web sites around the world through IDG.net (http://www.idg.net), which
comprises more than 225 targeted Web sites in 55 countries worldwide. International Data Corporation (IDC) is the world’s
largest provider of information technology data, analysis and consulting, with research centers in over 41 countries and more
than 400 research analysts worldwide. IDG World Expo is a leading producer of more than 168 globally branded conferences
and expositions in 35 countries including E3 (Electronic Entertainment Expo), Macworld Expo, ComNet, Windows World
Expo, ICE (Internet Commerce Expo), Agenda, DEMO, and Spotlight. IDG’s training subsidiary, ExecuTrain, is the world’s
largest computer training company, with more than 230 locations worldwide and 785 training courses. IDG Marketing
Services helps industry-leading IT companies build international brand recognition by developing global integrated marketing
programs via IDG’s print, online and exposition products worldwide. Further information about the company can be found
at www.idg.com. 1/24/99

Welcome to the world of IDG Books Worldwide.

IDG Books Worldwide, Inc., is a subsidiary of International Data Group, the world’s largest publisher of
computer-related information and the leading global provider of information services on information technology.
IDG was founded more than 30 years ago by Patrick J. McGovern and now employs more than 9,000 people
worldwide. IDG publishes more than 290 computer publications in over 75 countries. More than 90 million
people read one or more IDG publications each month.

Launched in 1990, IDG Books Worldwide is today the #1 publisher of best-selling computer books in the
United States. We are proud to have received eight awards from the Computer Press Association in recognition
of editorial excellence and three from Computer Currents’ First Annual Readers’ Choice Awards. Our best-
selling ...For Dummies® series has more than 50 million copies in print with translations in 31 languages. IDG
Books Worldwide, through a joint venture with IDG’s Hi-Tech Beijing, became the first U.S. publisher to
publish a computer book in the People’s Republic of China. In record time, IDG Books Worldwide has become
the first choice for millions of readers around the world who want to learn how to better manage their
businesses.

Our mission is simple: Every one of our books is designed to bring extra value and skill-building instructions
to the reader. Our books are written by experts who understand and care about our readers. The knowledge
base of our editorial staff comes from years of experience in publishing, education, and journalism —
experience we use to produce books to carry us into the new millennium. In short, we care about books, so
we attract the best people. We devote special attention to details such as audience, interior design, use of
icons, and illustrations. And because we use an efficient process of authoring, editing, and desktop publishing
our books electronically, we can spend more time ensuring superior content and less time on the technicalities
of making books.

You can count on our commitment to deliver high-quality books at competitive prices on topics you want
to read about. At IDG Books Worldwide, we continue in the IDG tradition of delivering quality for more than
30 years. You’ll find no better book on a subject than one from IDG Books Worldwide.

John Kilcullen Steven Berkowitz
Chairman and CEO President and Publisher
IDG Books Worldwide, Inc. IDG Books Worldwide, Inc.

3236-7 FM.F.qc 6/30/99 2:59 PM Page v

Credits
Acquisitions Editor
John Osborn

Development Editor
Terri Varveris

Contributing Writer
Heather Williamson

Technical Editor
Greg Guntle

Copy Editors
Amy Eoff
Amanda Kaufman
Nicole LeClerc
Victoria Lee

Production
IDG Books Worldwide Production

Proofreading and Indexing
York Production Services

About the Author
Elliotte Rusty Harold is an internationally respected writer, programmer, and
educator both on the Internet and off. He got his start by writing FAQ lists for the
Macintosh newsgroups on Usenet, and has since branched out into books, Web
sites, and newsletters. He lectures about Java and object-oriented programming
at Polytechnic University in Brooklyn. His Cafe con Leche Web site at http://
metalab.unc.edu/xml/ has become one of the most popular independent XML
sites on the Internet.

Elliotte is originally from New Orleans where he returns periodically in search of
a decent bowl of gumbo. However, he currently resides in the Prospect Heights
neighborhood of Brooklyn with his wife Beth and cats Charm (named after the
quark) and Marjorie (named after his mother-in-law). When not writing books, he
enjoys working on genealogy, mathematics, and quantum mechanics. His previous
books include The Java Developer’s Resource, Java Network Programming, Java
Secrets, JavaBeans, XML: Extensible Markup Language, and Java I/O.

3236-7 FM.F.qc 6/30/99 2:59 PM Page vi

For Ma, a great grandmother

3236-7 FM.F.qc 6/30/99 2:59 PM Page vii

3236-7 FM.F.qc 6/30/99 2:59 PM Page viii

Preface

Welcome to the XML Bible. After reading this book I hope you’ll agree with me that
XML is the most exciting development on the Internet since Java, and that it makes
Web site development easier, more productive, and more fun.

This book is your introduction to the exciting and fast growing world of XML. In this
book, you’ll learn how to write documents in XML and how to use style sheets to
convert those documents into HTML so legacy browsers can read them. You’ll
also learn how to use document type definitions (DTDs) to describe and validate
documents. This will become increasingly important as more and more browsers like
Mozilla and Internet Explorer 5.0 provide native support for XML.

About You the Reader
Unlike most other XML books on the market, the XML Bible covers XML not from
the perspective of a software developer, but rather that of a Web-page author. I
don’t spend a lot of time discussing BNF grammars or parsing element trees.
Instead, I show you how you can use XML and existing tools today to more
efficiently produce attractive, exciting, easy-to-use, easy-to-maintain Web sites
that keep your readers coming back for more.

This book is aimed directly at Web-site developers. I assume you want to use XML
to produce Web sites that are difficult to impossible to create with raw HTML. You’ll
be amazed to discover that in conjunction with style sheets and a few free tools,
XML enables you to do things that previously required either custom software
costing hundreds to thousands of dollars per developer, or extensive knowledge
of programming languages like Perl. None of the software in this book will cost
you more than a few minutes of download time. None of the tricks require any
programming.

What You Need to Know
XML does build on HTML and the underlying infrastructure of the Internet. To that
end, I will assume you know how to use ftp files, send email, and load URLs in your
Web browser of choice. I will also assume you have a reasonable knowledge of
HTML at about the level supported by Netscape 1.1. On the other hand, when I
discuss newer aspects of HTML that are not yet in widespread use like cascading
style sheets, I will cover them in depth.

3236-7 FM.F.qc 6/30/99 2:59 PM Page ix

x Preface

To be more specific, in this book I assume that you can:

✦ Write a basic HTML page including links, images, and text using a text editor.

✦ Place that page on a Web server.

On the other hand, I do not assume that you:

✦ Know SGML. In fact, this preface is almost the only place in the entire book
you’ll see the word SGML used. XML is supposed to be simpler and more
widespread than SGML. It can’t be that if you have to learn SGML first.

✦ Are a programmer, whether of Java, Perl, C, or some other language, XML is
a markup language, not a programming language. You don’t need to be a
programmer to write XML documents.

What You’ll Learn
This book has one primary goal; to teach you to write XML documents for the Web.
Fortunately, XML has a decidedly flat learning curve, much like HTML (and unlike
SGML). As you learn a little you can do a little. As you learn a little more, you can do
a little more. Thus the chapters in this book build steadily on each other. They are
meant to be read in sequence. Along the way you’ll learn:

✦ How an XML document is created and delivered to readers.

✦ How semantic tagging makes XML documents easier to maintain and develop
than their HTML equivalents.

✦ How to post XML documents on Web servers in a form everyone can read.

✦ How to make sure your XML is well-formed.

✦ How to use international characters like _ and _ in your documents.

✦ How to validate documents with DTDs.

✦ How to use entities to build large documents from smaller parts.

✦ How attributes describe data.

✦ How to work with non-XML data.

✦ How to format your documents with CSS and XSL style sheets.

✦ How to connect documents with XLinks and Xpointers.

✦ How to merge different XML vocabularies with namespaces.

✦ How to write metadata for Web pages using RDF.

3236-7 FM.F.qc 6/30/99 2:59 PM Page x

xiPreface

In the final section of this book, you’ll see several practical examples of XML being
used for real-world applications including:

✦ Web Site Design

✦ Push

✦ Vector Graphics

✦ Genealogy

How the Book Is Organized
This book is divided into five parts and includes three appendixes:

I. Introducing XML

II. Document Type Definitions

III. Style Languages

IV. Supplemental Technologies

V. XML Applications

By the time you’re finished reading this book, you’ll be ready to use XML to create
compelling Web pages. The five parts and the appendixes are described below.

Part I: Introducing XML
Part I consists of Chapters 1 through 7. It begins with the history and theory behind
XML, the goals XML is trying to achieve, and shows you how the different pieces of
the XML equation fit together to create and deliver documents to readers. You’ll see
several compelling examples of XML applications to give you some idea of the wide
applicability of XML, including the Vector Markup Language (VML), the Resource
Description Framework (RDF), the Mathematical Markup Language (MathML), the
Extensible Forms Description Language (XFDL), and many others. Then you’ll learn
by example how to write XML documents with tags you define that make sense for
your document. You’ll see how to edit them in a text editor, attach style sheets to
them, and load them into a Web browser like Internet Explorer 5.0 or Mozilla. You’ll
even learn how you can write XML documents in languages other than English,
even languages that aren’t written remotely like English, such as Chinese, Hebrew,
and Russian.

3236-7 FM.F.qc 6/30/99 2:59 PM Page xi

xii Preface

Part II: Document Type Definitions
Part II consists of Chapters 8 through 11, all of which focus on document type
definitions (DTDs). An XML document may optionally contain a DTD that specifies
which elements are and are not allowed in an XML document. The DTD specifies
the exact context and structure of those elements. A validating parser can read a
document and compare it to its DTD, and report any mistakes it finds. This enables
document authors to make sure that their work meets any necessary criteria.

In Part II, you’ll learn how to attach a DTD to a document, how to validate your
documents against their DTDs, and how to write your own DTDs that solve your
own problems. You’l learn the syntax for declaring elements, attributes, entities,
and notations. You’ll see how you can use entity declarations and entity references
to build both a document and its DTD from multiple, independent pieces. This
allows you to make long, hard-to-follow documents much simpler by separating
them into related modules and components. And you’ll learn how to integrate other
forms of data like raw text and GIF image files in your XML document.

Part III: Style Languages
Part III consists of Chapters 12 through 15. XML markup only specifies what’s in a
document. Unlike HTML, it does not say anything about what that content should
look like. Information about an XML document’s appearance when printed, viewed
in a Web browser, or otherwise displayed is stored in a style sheet. Different style
sheets can be used for the same document. You might, for instance, want to use a
style sheet that specifies small fonts for printing, another one that uses larger fonts
for on-screen use, and a third with absolutely humongous fonts to project the
document on a wall at a seminar. You can change the appearance of an XML docu-
ment by choosing a different style sheet without touching the document itself.

Part III describes in detail the two style sheet languanges in broadest use on the
Web, Cascading Style Sheets (CSS) and the Extensible Style Language (XSL).

CSS is a simple style-sheet language originally designed for use with HTML. CSS
exists in two versions: CSS Level 1 and CSS Level 2. CSS Level 1 provides basic
information about fonts, color, positioning, and text properties, and is reasonably
well supported by current Web browsers for HTML and XML. CSS Level 2 is a more
recent standard that adds support for aural style sheets, user interface styles,
international and bi-directional text, and more. CSS is a relatively simple standard
that spplies fixed style rules to the contents of particular elements.

XSL, by contrast, is a more complicated and more powerful style language that cannot
only apply styles to the contents of elements but can also rearrange elements, add
boilerplate text, and transform documents in almost arbitrary ways. XSL is divided
into two parts: a transformation language for converting XML trees to alternative
trees, and a formatting language for specifying the appearance of the elements of an
XML tree. Currently, the transformation language is better supported by most tools

3236-7 FM.F.qc 6/30/99 2:59 PM Page xii

xiiiPreface

than the formatting language. Nonetheless, it is beginning to firm up, and is supported
by Microsoft Internet Explorer 5.0 and some third-party formatting engines.

Part IV: Supplemental Technologies
Part IV consists of Chapters 16 through 19. It introduces some XML-based languages
and syntaxes that layer on top of basic XML. XLinks provides multi-directional
hypertext links that are far more powerful than the simple HTML <A> tag. XPointers
introduce a new syntax you can attach to the end of URLs to link not only to parti-
cular documents, but to particular parts of particular documents. Namespaces use
prefixes and URLs to disambiguate conflicting XML markup languages. The Resource
Description Framework (RDF) is an XML application used to embed meta-data in
XML and HTML documents. Meta-data is information about a document, such as the
author, date, and title of a work, rather than the work itself. All of these can be added
to your own XML-based markup languages to extend their power and utility.

Part V: XML Applications
Part V, which consists of Chapters 20–23, shows you four practical uses of XML in
different domains. XHTML is a reformulation of HTML 4.0 as valid XML. Microsoft’s
Channel Definition Format (CDF), is an XML-based markup language for defining
channels that can push updated Web site content to subscribers. The Vector
Markup Language (VML) is an XML application for scalable graphics used by Micro-
soft Office 2000 and Internet Explorer 5.0. Finally, a completely new application is
developed for genealogical data to show you not just how to use XML tags, but why
and when to choose them.

Appendixes
This book has two appendixes, which focus on the formal specifications for XML, as
opposed to the more informal description of it used throughout the rest of the
book. Appendix A provides detailed explanations of three individual parts of the
XML 1.0 specification: XML BNF grammar, well-formedness constraints, and the
validity constraints. Appendix B contains the official W3C XML 1.0 specification
published by the W3C. The book also has a third appendix, Appendix C, which
describes the contents of the CD-ROM that accompanies this book.

What You Need
To make the best use of this book and XML, you need:

✦ A PC running Windows 95, Windows 98, or Windows NT

✦ Internet Explorer 5.0

✦ A Java 1.1 or later virtual machine

3236-7 FM.F.qc 6/30/99 2:59 PM Page xiii

xiv Preface

Any system that can run Windows will suffice. In this book, I mostly assume you’re
using Windows 95 or NT 4.0 or later. As a longtime Mac and Unix user, I somewhat
regret this. Like Java, XML is supposed to be platform independent. Also like Java,
the reality is somewhat short of the hype. Although XML code is pure text that can
be written with any editor, many of the tools are currently only available on
Windows.

However, although there aren’t many Unix or Macintosh native XML programs,
there are an increasing number of XML programs written in Java. If you have a Java
1.1 or later virtual machine on your platform of choice, you should be able to make
do. Even if you can’t load your XML documents directly into a Web browser, you
can still convert them to XML documents and view those. When Mozilla is released,
it should provide the best XML browser yet across multiple platforms.

How to Use This Book
This book is designed to be read more or less cover to cover. Each chapter builds
on the material in the previous chapters in a fairly predictable fashion. Of course,
you’re always welcome to skim over material that’s already familiar to you. I also
hope you’ll stop along the way to try out some of the examples and to write some
XML documents of your own. It’s important to learn not just by reading, but also by
doing. Before you get started, I’d like to make a couple of notes about grammatical
conventions used in this book.

Unlike HTML, XML is case sensitive. <FATHER> is not the same as <Father> or
<father>. The father element is not the same as the Father element or the
FATHER element. Unfortunately, case-sensitive markup languages have an annoying
habit of conflicting with standard English usage. On rare occasion this means
that you may encounter sentences that don’t begin with a capital letter. More
commonly, you’ll see capitalization used in the middle of a sentence where you
wouldn’t normally expect it. Please don’t get too bothered by this. All XML and
HTML code used in this book is placed in a monospaced font, so most of the time
it will be obvious from the context what is meant.

I have also adopted the British convention of only placing punctuation inside quote
marks when it belongs with the material quoted. Frankly, although I learned to write
in the American educational system, I find the British system is far more logical,
especially when dealing with source code where the difference between a comma
or a period and no punctuation at all can make the difference between perfectly
correct and perfectly incorrect code.

3236-7 FM.F.qc 6/30/99 2:59 PM Page xiv

xvPreface

What the Icons Mean
Throughout the book, I’ve used icons in the left margin to call your attention to
points that are particularly important.

Note icons provide supplemental information about the subject at hand, but gen-
erally something that isn’t quite the main idea. Notes are often used to elaborate
on a detailed technical point.

Tip icons indicate a more efficient way of doing something, or a technique that
may not be obvious.

CD-ROM icons tell you that software discussed in the book is available on the
companion CD-ROM. This icon also tells you if a longer example, discussed but
not included in its entirety in the book, is on the CD-ROM.

Caution icons warn you of a common misconception or that a procedure doesn’t
always work quite like it’s supposed to. The most common purpose of a Caution
icon in this book is to point out the difference between what a specification says
should happen, and what actually does.

The Cross Reference icon refers you to other chapters that have more to say about
a particular subject.

About the Companion CD-ROM
The inside back cover of this book contains a CD-ROM that holds all numbered
code listings that you’ll find in the text. It also includes many longer examples that
couldn’t fit into this book. The CD-ROM also contains the complete text of various
XML specifications in HTML. (Some of the specifications will be in other formats as
well.) Finally, you will find an assortment of useful software for working with XML
documents. Many (though not all) of these programs are written in Java, so they’ll
run on any system with a reasonably compatible Java 1.1 or later virtual machine.
Most of the programs that aren’t written in Java are designed for Windows 95, 98,
and NT.

For a complete description of the CD-ROM contents, you can read Appendix C. In
addition, to get a complete description of what is on the CD-ROM, you can load the
file index.html onto your Web browser. The files on the companion CD-ROM are not
compressed, so you can access them directly from the CD.

Cross-
Reference

Caution

On the
CD-ROM

Tip

Note

3236-7 FM.F.qc 6/30/99 2:59 PM Page xv

xvi Preface

Reach Out
The publisher and I want your feedback. After you have had a chance to use this
book, please take a moment to complete the IDG Books Worldwide Registration
Card (in the back of the book). Please be honest in your evaluation. If you thought a
particular chapter didn’t tell you enough, let me know. Of course, I would prefer to
receive comments like: “This is the best book I’ve ever read”, “Thanks to this book,
my Web site won Cool Site of the Year”, or “When I was reading this book on the
beach, I was besieged by models who thought I was super cool”, but I’ll take any
comments I can get :-).

Feel free to send me specific questions regarding the material in this book. I’ll do
my best to help you out and answer your questions, but I can’t guarantee a reply.
The best way to reach me is by email:

elharo@metalab.unc.edu

Also, I invite you to visit my Cafe con Leche Web site at http://metalab.unc.
edu/xml/, which contains a lot of XML-related material and is updated almost
daily. Despite my persistent efforts to make this book perfect, some errors have
doubtless slipped by. Even more certainly, some of the material discussed here
will change over time. I’ll post any necessary updates and errata on my Web site at
http://metalab.unc.edu/xml/books/bible/. Please let me know via email of
any errors that you find that aren’t already listed.

Elliotte Rusty Harold
elharo@metalab.unc.edu
http://metalab.unc.edu/xml/
New York City, June 1999

3236-7 FM.F.qc 6/30/99 2:59 PM Page xvi

Acknowledgments

The folks at IDG have all been great. The acquisitions editor, John Osborn, deserves
special thanks for arranging the unusual scheduling this book required to hit the
moving target XML presents. Terri Varveris shepherded this book through the
development process. With poise and grace, she managed the constantly shifting
outline and schedule that a book based on unstable specifications and software
requires. Amy Eoff corrected many of my grammatical shortcomings. Susan Parini
and Ritchie Durdin, the production coordinators, also deserve special thanks for
managing the production of this book and for dealing with last-minute figure
changes.

Steven Champeon brought his SGML experience to the book, and provided many
insightful comments on the text. My brother Thomas Harold put his command
of chemistry at my disposal when I was trying to grasp the Chemical Markup
Language. Carroll Bellau provided me with parts of my family tree, which you’ll
find in Chapter 17.

I also greatly appreciate all the comments, questions, and corrections sent in by
readers of my previous book, XML: Extensible Markup Language. I hope that I’ve
managed to address most of those comments in this book. They’ve definitely
helped make XML Bible a better book. Particular thanks are due to Alan Esenther
and Donald Lancon Jr. for their especially detailed comments.

WandaJane Phillips wrote the original version of Chapter 21 on CDF that is adapted
here. Heather Williamson, in addition to performing yeoman-like service as technical
editor, wrote Chapter 13, CSS Level 2, and parts of Chapters 18, 19, and 22. Her help
was instrumental in helping me almost meet my deadline. (Blame for this almost
rests on my shoulders, not theirs.) Also, I would like to thank Piroz Mohseni, who
also served as a technical editor for this book.

The agenting talents of David and Sherry Rogelberg of the Studio B Literary Agency
(http://www.studiob.com/) have made it possible for me to write more or less
full-time. I recommend them highly to anyone thinking about writing computer
books. And as always, thanks go to my wife Beth for her endless love and
understanding.

3236-7 FM.F.qc 6/30/99 2:59 PM Page xvii

3236-7 FM.F.qc 6/30/99 2:59 PM Page xviii

Contents at a Glance
Preface ..ix
Acknowledgments ..xvii

Part I: Introducing XML ..1
Chapter 1: An Eagle’s Eye View of XML ..3
Chapter 2: An Introduction to XML Applications ..17
Chapter 3: Your First XML Document ..49
Chapter 4: Structuring Data ..59
Chapter 5: Attributes, Empty Tags, and XSL ..95
Chapter 6: Well-Formed XML Documents
Chapter 7: Foreign Languages and Non-Roman Text ..161

Part II: Document Type Definitions ..189
Chapter 8: Document Type Definitions and Validity ..191
Chapter 9: Entities and External DTD Subsets ..247
Chapter 10: Attribute Declarations in DTDs ..283
Chapter 11: Embedding Non-XML Data ..307

Part III: Style Languages ..321
Chapter 12: Cascading Style Sheets Level 1 ..323
Chapter 13: Cascading Style Sheets Level 2 ..389
Chapter 14: XSL Transformations ..433
Chapter 15: XSL Formatting Objects ..513

Part IV: Supplemental Technologies ..569
Chapter 16: XLinks ..571
Chapter 17: XPointers ..591
Chapter 18: Namespaces ..617
Chapter 19: The Resource Description Framework ..631

PartV: XML Applications ..655
Chapter 20: Reading Document Type Definitions ..657
Chapter 21: Pushing Web Sites with CDF ..775
Chapter 22: The Vector Markup Language ..805
Chapter 23: Designing a New XML Application ..833

3236-7 FM.F.qc 6/30/99 2:59 PM Page xix

xx Contents at a Glance

Appendix A: XML Reference Material ..863
Appendix B: The XML 1.0 Specification ..921
Appendix C: What’s on the CD-ROM ..971

Index ..975

End-User License Agreement ..1018

CD-ROM Installation Instructions ..1022

3236-7 FM.F.qc 6/30/99 2:59 PM Page xx

Contents
Preface ..ix
Acknowledgments ..xvii

Part I: Introducing XML 1

Chapter 1: An Eagle’s Eye View of XML ..3
What Is XML? ..3

XML Is a Meta-Markup Language ...3
XML Describes Structure and Semantics, Not Formatting4

Why Are Developers Excited about XML? ..6
Design of Domain-Specific Markup Languages ...6
Self-Describing Data ...6
Interchange of Data Among Applications ..7
Structured and Integrated Data ..8

The Life of an XML Document ..8
Editors ...9
Parsers and Processors ...9
Browsers and Other Tools ..9
The Process Summarized ..10

Related Technologies ..10
Hypertext Markup Language ..10
Cascading Style Sheets ..11
Extensible Style Language ...12
URLs and URIs ..12
XLinks and XPointers ...13
The Unicode Character Set ...14
How the Technologies Fit Together ...14

Chapter 2: An Introduction to XML Applications17
What Is an XML Application? ..17

Chemical Markup Language ..18
Mathematical Markup Language ..19
Channel Definition Format ..22
Classic Literature ...22
Synchronized Multimedia Integration Language24
HTML+TIME ..25
Open Software Description ...26
Scalable Vector Graphics ..27
Vector Markup Language ...29
MusicML ..30
VoxML ..32

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxi

xxii Contents

Open Financial Exchange ..34
Extensible Forms Description Language ...36
Human Resources Markup Language ..38
Resource Description Framework ..40

XML for XML ...42
XSL ...42
XLL ...43
DCD ..43

Behind-the-Scene Uses of XML ...44

Chapter 3: Your First XML Document ..49
Hello XML ..49

Creating a Simple XML Document ..50
Saving the XML File ..50
Loading the XML File into a Web Browser ..51

Exploring the Simple XML Document ..52
Assigning Meaning to XML Tags ...54
Writing a Style Sheet for an XML Document ...55
Attaching a Style Sheet to an XML Document ..56

Chapter 4: Structuring Data ..59
Examining the Data ..59

Batters ...60
Pitchers ..62
Organization of the XML Data ...62

XMLizing the Data ..65
Starting the Document: XML Declaration and Root Element65
XMLizing League, Division, and Team Data ..67
XMLizing Player Data ...69
XMLizing Player Statistics ...70
Putting the XML Document Back Together Again72

The Advantages of the XML Format ...80
Preparing a Style Sheet for Document Display ...81

Linking to a Style Sheet ...82
Assigning Style Rules to the Root Element ...84
Assigning Style Rules to Titles ..85
Assigning Style Rules to Player

and Statistics Elements ...88
Summing Up ..89

Chapter 5: Attributes, Empty Tags, and XSL ..95
Attributes ..95
Attributes versus Elements ..101

Structured Meta-data ...102
Meta-Meta-Data ...105
What’s Your Meta-data Is Someone Else’s Data106
Elements Are More Extensible ..106
Good Times to Use Attributes ..107

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxii

xxiiiContents

Empty Tags ..108
XSL ...109

XSL Style Sheet Templates ..110
The Body of the Document ...111
The Title ..113
Leagues, Divisions, and Teams ...115
Players ...120
Separation of Pitchers and Batters ..122
CSS or XSL? ...130

Chapter 6: Well-Formed XML Documents ..133
#1: The XML declaration must begin the document144
#2: Use Both Start and End Tags in Non-Empty Tags144

Chapter 7: Foreign Languages and Non-Roman Text161
Non-Roman Scripts on the Web ...161
Scripts, Character Sets, Fonts, and Glyphs ..166

A Character Set for the Script ...166
A Font for the Character Set ...167
An Input Method for the Character Set ...167
Operating System and Application Software ..168

Legacy Character Sets ...169
The ASCII Character Set ..169
The ISO Character Sets ..172
The MacRoman Character Set ..175
The Windows ANSI Character Set ..176

The Unicode Character Set ...177
UTF 8 ..182
The Universal Character System ..182

How to Write XML in Unicode ..183
Inserting Characters in XML Files with Character References183
Converting to and from Unicode ..184
How to Write XML in Other Character Sets ..185

Part II: Document Type Definitions 189

Chapter 8: Document Type Definitions and Validity191
Document Type Definitions ..191
Document Type Declarations ...192
Validating Against a DTD ...195
Listing the Elements ..201
Element Declarations ...208

ANY ..209
#PCDATA ..209
Child Lists ..212
Sequences ...214
One or More Children ..215

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxiii

xxiv Contents

Zero or More Children ...215
Zero or One Child ...216
The Complete Document and DTD ..217
Choices ..223
Children with Parentheses ..224
Mixed Content ..227
Empty Elements ..228

Comments in DTDs ..229
Sharing Common DTDs Among Documents ...234

DTDs at Remote URLs ..241
Public DTDs ...241
Internal and External DTD Subsets ..243

Chapter 9: Entities and External DTD Subsets ..247
What Is an Entity? ..247
Internal General Entities ...249

Defining an Internal General Entity Reference ..249
Using General Entity References in the DTD ..251
Predefined General Entity References ...252

External General Entities ...253
Internal Parameter Entities ...256
External Parameter Entities ..258
Building a Document from Pieces ..264
Entities and DTDs in Well-Formed Documents ..274

Internal Entities ..274
External Entities ...276

Chapter 10: Attribute Declarations in DTDs ..283
What Is an Attribute? ...283
Declaring Attributes in DTDs ..284
Declaring Multiple Attributes ...285
Specifying Default Values for Attributes ...286

#REQUIRED ...286
#IMPLIED ...287
#FIXED ..288

Attribute Types ..288
The CDATA Attribute Type ..289
The Enumerated Attribute Type ..289
The NMTOKEN Attribute Type ...290
The NMTOKENS Attribute Type ...291
The ID Attribute Type ..292
The IDREF Attribute Type ...292
The ENTITY Attribute Type ..293
The ENTITIES Attribute Type ...294
The NOTATION Attribute Type ...294

Predefined Attributes ..295
xml:space ...295
xml:lang ...297

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxiv

xxvContents

A DTD for Attribute-Based Baseball Statistics ...300
Declaring SEASON Attributes in the DTD ..301
Declaring LEAGUE and DIVISION Attributes in the DTD301
Declaring TEAM Attributes in the DTD ...302
Declaring PLAYER Attributes in the DTD ..302
The Complete DTD for the Baseball Statistics Example304

Chapter 11: Embedding Non-XML Data ..307
Notations ...307
Unparsed External Entities ...311

Declaring Unparsed Entities ...311
Embedding Unparsed Entities ..312
Embedding Multiple Unparsed Entities ...315

Processing Instructions ...315
Conditional Sections in DTDs ...319

Part III: Style Languages 321

Chapter 12: Cascading Style Sheets Level 1 ..323
What Is CSS? ..323
Attaching Style Sheets to Documents ...324
Selection of Elements ..327

Grouping Selectors ...328
Pseudo-Elements ..328
Pseudo-Classes ...330
Selection by ID ..332
Contextual Selectors ..332
STYLE Attributes ..333

Inheritance ..334
Cascades ...335

The @import Directive ...336
The !important Declaration ...336
Cascade Order ..337

Comments in CSS Style Sheets ...337
CSS Units ...338

Length values ..339
URL Values ...341
Color Values ..342
Keyword Values ..343

Block, Inline, and List Item Elements ...344
List Items ...347
The whitespace Property ..350

Font Properties ...352
The font-family Property ...352
The font-style Property ...354
The font-variant Property ...355
The font-weight Property ..356

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxv

xxvi Contents

The font-size Property ...356
The font Shorthand Property ..359

The Color Property ..360
Background Properties ...361

The background-color Property ...361
The background-image Property ..362
The background-repeat Property ...363
The background-attachment Property ..364
The background-position Property ..365
The Background Shorthand Property ..369

Text Properties ...369
The word-spacing Property ..370
The letter-spacing Property ..371
The text-decoration Property ...371
The vertical-align Property ...372
The text-transform Property ...373
The text-align Property ..374
The text-indent Property ...375
The line-height Property ...375

Box Properties ..377
Margin Properties ...378
Border Properties ...379
Padding Properties ...382
Size Properties ...383
Positioning Properties ...384
The float Property ..385
The clear Property ...386

Chapter 13: Cascading Style Sheets Level 2 ..389
What’s New in CSS2? ..389

New Pseudo-classes ...390
New Pseudo-Elements ...391
Media Types ..391
Paged Media ..391
Internationalization ..391
Visual Formatting Control ...391
Tables ...391
Generated Content ...392
Aural Style Sheets ...392
New Implementations ..392

Selecting Elements ...393
Pattern Matching ..393
The Universal Selector ..394
Descendant and Child Selectors ...395
Adjacent Sibling Selectors ...396
Attribute Selectors ...396
@rules ..397
Pseudo Elements ..402

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxvi

xxviiContents

Pseudo Classes ...403
Formatting a Page ..405

Size Property ...405
Margin Property ...405
Mark Property ...405
Page Property ...406
Page-Break Properties ...407

Visual Formatting ...407
Display Property ...407
Width and Height Properties ..410
Overflow Property ..411
Clip Property ...411
Visibility Property ..412
Cursor Property ..412
Color-Related Properties ..413
Font Properties ...416
Text Shadow Property ...419
Vertical Align Property ..419

Boxes ...420
Outline Properties ..420
Positioning Properties ...422

Counters and Automatic Numbering ...424
Aural Style Sheets ..425

Speak Property ...426
Volume Property ...426
Pause Properties ..427
Cue Properties ..427
Play-During Property ...428
Spatial Properties ...428
Voice Characteristics Properties ..429
Speech Properties ..431

Chapter 14: XSL Transformations ..433
What Is XSL? ...433
Overview of XSL Transformations ...435

Trees ..435
XSL Style Sheet Documents ..437
Where Does the XML Transformation Happen?439
How to Use XT ..440
Direct Display of XML Files with XSL Style Sheets442

XSL Templates ..444
The xsl:apply-templates Element ...445
The select Attribute ...447

Computing the Value of a Node with xsl:value-of ..448
Processing Multiple Elements with xsl:for-each ..450
Patterns for Matching Nodes ..451

Matching the Root Node ..451
Matching Element Names ..452

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxvii

xxviii Contents

Matching Children with / ...454
Matching Descendants with // ..455
Matching by ID ..456
Matching Attributes with @ ..456
Matching Comments with comment() ...458
Matching Processing Instructions with pi() ...459
Matching Text Nodes with text() ..460
Using the Or Operator | ..460
Testing with [] ..461

Expressions for Selecting Nodes ..463
Node Axes ...463
Expression Types ...470

The Default Template Rules ..480
The Default Rule for Elements ..480
The Default Rule for Text Nodes ..480
Implication of the Two Default Rules ...481

Deciding What Output to Include ..481
Using Attribute Value Templates ..482
Inserting Elements into the Output with xsl:element484
Inserting Attributes into the Output with xsl:attribute484
Defining Attribute Sets ...485
Generating Processing Instructions with xsl:pi486
Generating Comments with xsl:comment ...487
Generating Text with xsl:text ..487

Copying the Current Node with xsl:copy ..488
Counting Nodes with xsl:number ...490

Default Numbers ...491
Number to String Conversion ...493

Sorting Output Elements ...494
CDATA and < Signs ...497
Modes ..499
Defining Constants with xsl:variable ...501
Named Templates ..502

Parameters ..503
Stripping and Preserving Whitespace ...505
Making Choices ..506

xsl:if ..507
xsl:choose ..507

Merging Multiple Style Sheets ...508
Import with xsl:import ...508
Inclusion with xsl:include ..508
Embed Style Sheets in Documents with xsl:stylesheet509

Chapter 15: XSL Formatting Objects ..513
Overview of the XSL Formatting Language ...513
Formatting Objects and Their Properties ...514

The fo Namespace ..517
Formatting Properties ..518

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxviii

xxixContents

Transforming to Formatting Objects ...522
Using FOP ..524

Page Layout ..526
Master Pages ...526
Page Sequences ..529

Content ..535
Block-level Formatting Objects ..535
Inline Formatting Objects ..537
Table-formatting Objects ...538
Out-of-line Formatting Objects ...538

Rules ..539
Graphics ..540
Links ...540
Lists ..542
Tables ..543
Characters ...546
Sequences ...546
Footnotes ..547
Floats ...547
XSL Formatting Properties ..548

Units and Data Types ...549
Informational Properties ...551
Paragraph Properties ...551
Character Properties ...554
Sentence Properties ...556
Area Properties ...559
Aural Properties ...565

Part IV: Supplemental Technologies 569

Chapter 16: XLinks ..571
XLinks versus HTML Links ..571
Simple Links ..572

Descriptions of the Local Resource ...574
Descriptions of the Remote Resource ...575
Link Behavior ..576

Extended Links ...580
Out-of-Line Links ..583
Extended Link Groups ...584

An Example ...585
The steps Attribute ..587

Renaming XLink Attributes ...588

Chapter 17: XPointers ..591
Why Use XPointers? ...591
XPointer Examples ...592
Absolute Location Terms ..594

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxix

xxx Contents

id() ..597
root() ..598
html() ...598

Relative Location Terms ...598
child ...600
descendant ..601
ancestor ...601
preceding ...601
following ..601
psibling ..602
fsibling ...602

Relative Location Term Arguments ...602
Selection by Number ..603
Selection by Node Type ...606
Selection by Attribute ..610

String Location Terms ...611
The origin Absolute Location Term ...612
Spanning a Range of Text ..614

Chapter 18: Namespaces ..617
What Is a Namespace? ...617
Namespace Syntax ...620

Definition of Namespaces ..620
Multiple Namespaces ...622
Attributes ..624
Default Namespaces ...625

Namespaces in DTDs ...628

Chapter 19: The Resource Description Framework631
What Is RDF? ...631
RDF Statements ..632
Basic RDF Syntax ..634

The root Element ..634
The Description Element ...634
Namespaces ..635
Multiple Properties and Statements ..637
Resource Valued Properties ..638
XML Valued Properties ..641

Abbreviated RDF Syntax ..642
Containers ...643

The Bag container ..643
The Seq Container ..646
The Alt Container ...646
Statements about Containers ...647
Statements about Container Members ..650
Statements about Implied Bags ..652

RDF Schemas ..652

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxx

xxxiContents

Part V: XML Applications 655

Chapter 20: Reading Document Type Definitions657
The Importance of Reading DTDs ..658

What Is XHTML? ...659
Why Validate HTML? ..659
Modularization of XHTML Working Draft ..660

The Structure of the XHTML DTDs ..660
XHTML Strict DTD ..662
XHTML Transitional DTD ..669
The XHTML Frameset DTD ...676

The XHTML Modules ...679
The Common Names Module ..680
The Character Entities Module ...684
The Intrinsic Events Module ...686
The Common Attributes Modules ..689
The Document Model Module ..695
The Inline Structural Module ..704
Inline Presentational Module ..706
Inline Phrasal Module ..709
Block Structural Module ..711
Block-Presentational Module ..712
Block-Phrasal Module ..714
The Scripting Module ..716
The Stylesheets Module ..718
The Image Module ..719
The Frames Module ...720
The Linking Module ...723
The Client-side Image Map Module ..725
The Object Element Module ...726
The Java Applet Element Module ...728
The Lists Module ..730
The Forms Module ...733
The Table Module ...737
The Meta Module ...742
The Structure Module ..743
Non-Standard modules ..746

The XHTML Entity Sets ...746
The XHTML Latin-1 Entities ..747
The XHTML Special Character Entities ...752
The XHTML Symbol Entities ...754

Simplified Subset DTDs ...761
Techniques to Imitate ..768

Comments ...768
Parameter Entities ..770

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxxi

xxxii Contents

Chapter 21: Pushing Web Sites with CDF ..775
What Is CDF? ...775
How Channels Are Created ...776

Determining Channel Content ..776
Creating CDF Files and Documents ..777

Description of the Channel ...780
Title ..780
Abstract ...781
Logos ..782

Information Update Schedules ...783
Precaching and Web Crawling ..787

Precaching ...787
Web Crawling ..788

Reader Access Log ...789
The BASE Attribute ..791
The LASTMOD Attribute ...792
The USAGE Element ...794

DesktopComponent Value ...795
Email Value ..796
NONE Value ...797
ScreenSaver Value ..798
SoftwareUpdate Value ..800

Chapter 22: The Vector Markup Language ..805
What Is VML? ..805
Drawing with a Keyboard ..808

The shape Element ...808
The shapetype Element ...811
The group Element ...813

Positioning VML Shapes with Cascading Style Sheet Properties814
The rotation Property ..817
The flip Property ..817
The center-x and center-y Properties ..820

VML in Office 2000 ...821
Settings ..821
A Simple Graphics Demonstration of a House822

A Quick Look at SVG ..830

Chapter 23: Designing a New XML Application833
Organization of the Data ...833

Listing the Elements ...834
Identifying the Fundamental Elements ..835
Establishing Relationships Among the Elements838

The Person DTD ...840
The Family DTD ..845
The Source DTD ...847

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxxii

xxxiiiContents

The Family Tree DTD ...848
Designing a Style Sheet for Family Trees ..855

Appendix A: XML Reference Material ..863

Appendix B: The XML 1.0 Specification ..921

Appendix C: What’s on the CD-ROM ..971

Index ..975

End-User License Agreement ..1021

CD-ROM Installation Instructions ..1022

3236-7 FM.F.qc 6/30/99 2:59 PM Page xxxiii

An Eagle’s Eye
View of XML

This first chapter introduces you to XML. It explains in
general what XML is and how it is used. It shows you how

the different pieces of the XML equation fit together, and how
an XML document is created and delivered to readers.

What Is XML?
XML stands for Extensible Markup Language (often written as
eXtensibleMarkup Language to justify the acronym). XML is a
set of rules for defining semantic tags that break a document
into parts and identify the different parts of the document. It
is a meta-markup language that defines a syntax used to define
other domain-specific, semantic, structured markup languages.

XML Is a Meta-Markup Language
The first thing you need to understand about XML is that it
isn’t just another markup language like the Hypertext Markup
Language (HTML) or troff. These languages define a fixed set
of tags that describe a fixed number of elements. If the markup
language you use doesn’t contain the tag you need — you’re
out of luck. You can wait for the next version of the markup
language hoping that it includes the tag you need; but then
you’re really at the mercy of what the vendor chooses to
include.

XML, however, is a meta-markup language. It’s a language
in which you make up the tags you need as you go along.
These tags must be organized according to certain general
principles, but they’re quite flexible in their meaning. For
instance, if you’re working on genealogy and need to desc-
ribe people, births, deaths, burial sites, families, marriages,
divorces, and so on, you can create tags for each of these.
You don’t have to force your data to fit into paragraphs, list
items, strong emphasis, or other very general categories.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is XML?

Why are developers
excited about XML?

The life of an XML
document

Related technologies

✦ ✦ ✦ ✦

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 3

4 Part I ✦ Introducing XML

The tags you create can be documented in a Document Type Definition (DTD).
You’ll learn more about DTDs in Part II of this book. For now, think of a DTD as a
vocabulary and a syntax for certain kinds of documents. For example, the MOL.DTD
in Peter Murray-Rust’s Chemical Markup Language (CML) describes a vocabulary
and a syntax for the molecular sciences: chemistry, crystallography, solid state
physics, and the like. It includes tags for atoms, molecules, bonds, spectra, and so
on. This DTD can be shared by many different people in the molecular sciences
field. Other DTDs are available for other fields, and you can also create your own.

XML defines a meta syntax that domain-specific markup languages like MusicML,
MathML, and CML must follow. If an application understands this meta syntax, it
automatically understands all the languages built from this meta language. A
browser does not need to know in advance each and every tag that might be used
by thousands of different markup languages. Instead it discovers the tags used by
any given document as it reads the document or its DTD. The detailed instructions
about how to display the content of these tags are provided in a separate style
sheet that is attached to the document.

For example, consider Schrodinger’s equation:

Scientific papers are full of equations like this, but scientists have been waiting
eight years for the browser vendors to support the tags needed to write even the
most basic math. Musicians are in a similar bind, since Netscape Navigator and
Internet Explorer don’t support sheet music.

XML means you don’t have to wait for browser vendors to catch up with what you
want to do. You can invent the tags you need, when you need them, and tell the
browsers how to display these tags.

XML Describes Structure and
Semantics, Not Formatting
The second thing to understand about XML is that XML markup describes a
document’s structure and meaning. It does not describe the formatting of the
elements on the page. Formatting can be added to a document with a style sheet.
The document itself only contains tags that say what is in the document, not what
the document looks like.

ih
∂ψ r, t

∂t = – h2

2m
∂2ψ r, t

∂x2 + V(r) ψ r, t

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 4

5Chapter 1 ✦ An Eagle’s Eye View of XML

By contrast, HTML encompasses formatting, structural, and semantic markup.
is a formatting tag that makes its content bold. is a semantic tag that
means its contents are especially important. <TD> is a structural tag that indicates
that the contents are a cell in a table. In fact, some tags can have all three kinds of
meaning. An <H1> tag can simultaneously mean 20 point Helvetica bold, a level-1
heading, and the title of the page.

For example, in HTML a song might be described using a definition title, definition
data, an unordered list, and list items. But none of these elements actually have
anything to do with music. The HTML might look something like this:

<dt>Hot Cop
<dd> by Jacques Morali, Henri Belolo, and Victor Willis

Producer: Jacques Morali
Publisher: PolyGram Records
Length: 6:20
Written: 1978
Artist: Village People

In XML the same data might be marked up like this:

<SONG>
<TITLE>Hot Cop</TITLE>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

Instead of generic tags like <dt> and , this listing uses meaningful tags like
<SONG>, <TITLE>, <COMPOSER>, and <YEAR>. This has a number of advantages,
including that it’s easier for a human to read the source code to determine what
the author intended.

XML markup also makes it easier for non-human automated robots to locate all of
the songs in the document. In HTML robots can’t tell more than that an element is
a dt. They cannot determine whether that dt represents a song title, a definition,
or just some designer’s favorite means of indenting text. In fact, a single document
may well contain dt elements with all three meanings.

XML element names can be chosen such that they have extra meaning in additional
contexts. For instance, they might be the field names of a database. XML is far more
flexible and amenable to varied uses than HTML because a limited number of tags
don’t have to serve many different purposes.

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 5

6 Part I ✦ Introducing XML

Why Are Developers Excited about XML?
XML makes easy many Web-development tasks that are extremely painful
using only HTML, and it makes tasks that are impossible with HTML, possible.
Because XML is eXtensible, developers like it for many reasons. Which ones
most interest you depend on your individual needs. But once you learn XML,
you’re likely to discover that it’s the solution to more than one problem
you’re already struggling with. This section investigates some of the
generic uses of XML that excite developers. In Chapter 2, you’ll see some
of the specific applications that have already been developed with XML.

Design of Domain-Specific Markup Languages
XML allows various professions (e.g., music, chemistry, math) to develop their own
domain-specific markup languages. This allows individuals in the field to trade
notes, data, and information without worrying about whether or not the person on
the receiving end has the particular proprietary payware that was used to create
the data. They can even send documents to people outside the profession with a
reasonable confidence that the people who receive them will at least be able to
view the documents.

Furthermore, the creation of markup languages for individual domains does not
lead to bloatware or unnecessary complexity for those outside the profession. You
may not be interested in electrical engineering diagrams, but electrical engineers
are. You may not need to include sheet music in your Web pages, but composers
do. XML lets the electrical engineers describe their circuits and the composers
notate their scores, mostly without stepping on each other’s toes. Neither field will
need special support from the browser manufacturers or complicated plug-ins, as is
true today.

Self-Describing Data
Much computer data from the last 40 years is lost, not because of natural disaster or
decaying backup media (though those are problems too, ones XML doesn’t solve),
but simply because no one bothered to document how one actually reads the data
media and formats. A Lotus 1-2-3 file on a 10-year old 5.25-inch floppy disk may be
irretrievable in most corporations today without a huge investment of time and
resources. Data in a less-known binary format like Lotus Jazz may be gone forever.

XML is, at a basic level, an incredibly simple data format. It can be written in 100
percent pure ASCII text as well as in a few other well-defined formats. ASCII text is
reasonably resistant to corruption. The removal of bytes or even large sequences of
bytes does not noticeably corrupt the remaining text. This starkly contrasts with
many other formats, such as compressed data or serialized Java objects where the
corruption or loss of even a single byte can render the entire remainder of the file
unreadable.

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 6

7Chapter 1 ✦ An Eagle’s Eye View of XML

At a higher level, XML is self-describing. Suppose you’re an information archaeologist
in the 23rd century and you encounter this chunk of XML code on an old floppy disk
that has survived the ravages of time:

<PERSON ID=”p1100” SEX=”M”>
<NAME>
<GIVEN>Judson</GIVEN>
<SURNAME> McDaniel</SURNAME>

</NAME>
<BIRTH>
<DATE>21 Feb 1834</DATE> </BIRTH>

<DEATH>
<DATE>9 Dec 1905</DATE> </DEATH>

</PERSON>

Even if you’re not familiar with XML, assuming you speak a reasonable facsimile of
20th century English, you’ve got a pretty good idea that this fragment describes a
man named Judson McDaniel, who was born on February 21, 1834 and died on
December 9, 1905. In fact, even with gaps in, or corruption of the data, you could
probably still extract most of this information. The same could not be said for some
proprietary spreadsheet or word-processor format.

Furthermore, XML is very well documented. The W3C’s XML 1.0 specification and
numerous paper books like this one tell you exactly how to read XML data. There
are no secrets waiting to trip up the unwary.

Interchange of Data Among Applications
Since XML is non-proprietary and easy to read and write, it’s an excellent
format for the interchange of data among different applications. One such
format under current development is the Open Financial Exchange Format
(OFX). OFX is designed to let personal finance programs like Microsoft Money
and Quicken trade data. The data can be sent back and forth between programs
and exchanged with banks, brokerage houses, and the like.

OFX is discussed in Chapter 2.

As noted above, XML is a non-proprietary format, not encumbered by copyright,
patent, trade secret, or any other sort of intellectual property restriction. It has
been designed to be extremely powerful, while at the same time being easy for
both human beings and computer programs to read and write. Thus it’s an
obvious choice for exchange languages.

By using XML instead of a proprietary data format, you can use any tool that
understands XML to work with your data. You can even use different tools for
different purposes, one program to view and another to edit for instance. XML
keeps you from getting locked into a particular program simply because that’s what

Cross-
Reference

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 7

8 Part I ✦ Introducing XML

your data is already written in, or because that program’s proprietary format is all
your correspondent can accept.

For example, many publishers require submissions in Microsoft Word. This
means that most authors have to use Word, even if they would rather use
WordPerfect or Nisus Writer. So it’s extremely difficult for any other company
to publish a competing word processor unless they can read and write Word
files. Since doing so requires a developer to reverse-engineer the undocumented
Word file format, it’s a significant investment of limited time and resources. Most
other word processors have a limited ability to read and write Word files, but
they generally lose track of graphics, macros, styles, revision marks, and other
important features. The problem is that Word’s document format is undocu-
mented, proprietary, and constantly changing. Word tends to end up winning
by default, even when writers would prefer to use other, simpler programs. If
a common word-processing format were developed in XML, writers could use
the program of their choice.

Structured and Integrated Data
XML is ideal for large and complex documents because the data is structured. It not
only lets you specify a vocabulary that defines the elements in the document; it
also lets you specify the relations between elements. For example, if you’re putting
together a Web page of sales contacts, you can require that every contact have a
phone number and an email address. If you’re inputting data for a database, you
can make sure that no fields are missing. You can require that every book have an
author. You can even provide default values to be used when no data is entered.

XML also provides a client-side include mechanism that integrates data from
multiple sources and displays it as a single document. The data can even be
rearranged on the fly. Parts of it can be shown or hidden depending on user
actions. This is extremely useful when you’re working with large information
repositories like relational databases.

The Life of an XML Document
XML is, at the root, a document format. It is a series of rules about what XML
documents look like. There are two levels of conformity to the XML standard. The
first is well-formedness and the second is validity. Part I of this book shows you how
to write well-formed documents. Part II shows you how to write valid documents.

HTML is a document format designed for use on the Internet and inside Web
browsers. XML can certainly be used for that, as this book demonstrates. However,
XML is far more broadly applicable. As previously discussed, it can be used as a
storage format for word processors, as a data interchange format for different
programs, as a means of enforcing conformity with Intranet templates, and as a way
to preserve data in a human-readable fashion.

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 8

9Chapter 1 ✦ An Eagle’s Eye View of XML

However, like all data formats, XML needs programs and content before it’s useful. So it
isn’t enough to only understand XML itself which is little more than a specification for
what data should look like. You also need to know how XML documents are edited, how
processors read XML documents and pass the information they read on to applications,
and what these applications do with that data.

Editors
XML documents are most commonly created with an editor. This may be a basic
text editor like Notepad or vi that doesn’t really understand XML at all. On the
other hand, it may be a completely WYSIWYG editor like Adobe FrameMaker that
insulates you almost completely from the details of the underlying XML format. Or
it may be a structured editor like JUMBO that displays XML documents as trees. For
the most part, the fancy editors aren’t very useful yet, so this book concentrates on
writing raw XML by hand in a text editor.

Other programs can also create XML documents. For example, later in this book, in
the chapter on designing a new DTD, you’ll see some XML data that came straight out
of a FileMaker database. In this case, the data was first entered into the FileMaker
database. Then a FileMaker calculation field converted that data to XML. In general,
XML works extremely well with databases.

Specifically, you’ll see this in Chapter 23, Designing a New XML Application.

In any case, the editor or other program creates an XML document. More often
than not this document is an actual file on some computer’s hard disk, but it
doesn’t absolutely have to be. For example, the document may be a record or
a field in a database, or it may be a stream of bytes received from a network.

Parsers and Processors
An XML parser (also known as an XML processor) reads the document and verifies
that the XML it contains is well formed. It may also check that the document is
valid, though this test is not required. The exact details of these tests will be
covered in Part II. But assuming the document passes the tests, the processor
converts the document into a tree of elements.

Browsers and Other Tools
Finally the parser passes the tree or individual nodes of the tree to the end
application. This application may be a browser like Mozilla or some other
program that understands what to do with the data. If it’s a browser, the data
will be displayed to the user. But other programs may also receive the data.
For instance, the data might be interpreted as input to a database, a series of
musical notes to play, or a Java program that should be launched. XML is extr-
emely flex-ible and can be used for many different purposes.

Cross-
Reference

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 9

10 Part I ✦ Introducing XML

The Process Summarized
To summarize, an XML document is created in an editor. The XML parser reads the
document and converts it into a tree of elements. The parser passes the tree to the
browser that displays it. Figure 1-1 shows this process.

Figure 1-1: XML Document Life Cycle

It’s important to note that all of these pieces are independent and decoupled from
each other. The only thing that connects them all is the XML document. You can
change the editor program independently of the end application. In fact you may
not always know what the end application is. It may be an end user reading your
work, or it may be a database sucking in data, or it may even be something that
hasn’t been invented yet. It may even be all of these. The document is independent
of the programs that read it.

HTML is also somewhat independent of the programs that read and write it, but it’s
really only suitable for browsing. Other uses, like database input, are outside its
scope. For example, HTML does not provide a way to force an author to include cer-
tain required content, like requiring that every book have an ISBN number. In XML
you can require this. You can even enforce the order in which particular elements
appear (for example, that level-2 headers must always follow level-1 headers).

Related Technologies
XML doesn’t operate in a vacuum. Using XML as more than a data format requires
interaction with a number of related technologies. These technologies include
HTML for backward compatibility with legacy browsers, the CSS and XSL style-
sheet languages, URLs and URIs, the XLL linking language, and the Unicode
character set.

Hypertext Markup Language
Mozilla 5.0 and Internet Explorer 5.0 are the first Web browsers to provide some
(albeit incomplete) support for XML, but it takes about two years before most users
have upgraded to a particular release of the software. (In 1999, my wife Beth is still

Note

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 10

11Chapter 1 ✦ An Eagle’s Eye View of XML

using Netscape 1.1.) So you’re going to need to convert your XML content into
classic HTML for some time to come.

Therefore, before you jump into XML, you should be completely comfortable with
HTML. You don’t need to be an absolutely snazzy graphical designer, but you
should know how to link from one page to the next, how to include an image in a
document, how to make text bold, and so forth. Since HTML is the most common
output format of XML, the more familiar you are with HTML, the easier it will be to
create the effects you want.

On the other hand, if you’re accustomed to using tables or single-pixel GIFs to
arrange objects on a page, or if you start to make a Web site by sketching out its
appearance rather than its content, then you’re going to have to unlearn some bad
habits. As previously discussed, XML separates the content of a document from the
appearance of the document. The content is developed first; then a format is
attached to that content with a style sheet. Separating content from style is an
extremely effective technique that improves both the content and the appearance
of the document. Among other things, it allows authors and designers to work more
independently of each other. However, it does require a different way of thinking
about the design of a Web site, and perhaps even the use of different project-
management techniques when multiple people are involved.

Cascading Style Sheets
Since XML allows arbitrary tags to be included in a document, there isn’t any way
for the browser to know in advance how each element should be displayed. When
you send a document to a user you also need to send along a style sheet that tells
the browser how to format individual elements. One kind of style sheet you can use
is a Cascading Style Sheet (CSS).

CSS, initially designed for HTML, defines formatting properties like font size,
font family, font weight, paragraph indentation, paragraph alignment, and other
styles that can be applied to particular elements. For example, CSS allows HTML
documents to specify that all H1 elements should be formatted in 32 point cent-
ered Helvetica bold. Individual styles can be applied to most HTML tags that
override the browser’s defaults. Multiple style sheets can be applied to a single
document, and multiple styles can be applied to a single element. The styles
then cascade according to a particular set of rules.

CSS rules and properties are explored in more detail in Chapter 12, Cascading
Style Sheets Level 1, and Chapter 13, Cascading Style Sheets Level 2.

It’s easy to apply CSS rules to XML documents. You simply change the names of the
tags you’re applying the rules to. Mozilla 5.0 directly supports CSS style sheets
combined with XML documents, though at present, it crashes rather too frequently.

Cross-
Reference

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 11

12 Part I ✦ Introducing XML

Extensible Style Language
The Extensible Style Language (XSL) is a more advanced style-sheet language
specifically designed for use with XML documents. XSL documents are themselves
well-formed XML documents.

XSL documents contain a series of rules that apply to particular patterns of XML
elements. An XSL processor reads an XML document and compares what it sees to
the patterns in a style sheet. When a pattern from the XSL style sheet is recognized
in the XML document, the rule outputs some combination of text. Unlike cascading
style sheets, this output text is somewhat arbitrary and is not limited to the input
text plus formatting information.

CSS can only change the format of a particular element, and it can only do so on an
element-wide basis. XSL style sheets, on the other hand, can rearrange and reorder
elements. They can hide some elements and display others. Furthermore, they can
choose the style to use not just based on the tag, but also on the contents and
attributes of the tag, on the position of the tag in the document relative to other
elements, and on a variety of other criteria.

CSS has the advantage of broader browser support. However, XSL is far more
flexible and powerful, and better suited to XML documents. Furthermore, XML
documents with XSL style sheets can be easily converted to HTML documents with
CSS style sheets.

XSL style sheets will be explored in great detail in Chapter 14, XSL Transformations,
and Chapter 15, XSL Formatting Objects.

URLs and URIs
XML documents can live on the Web, just like HTML and other documents. When they
do, they are referred to by Uniform Resource Locators (URLs), just like HTML files. For
example, at the URL http://www.hypermedic.com/style/xml/tempest.xml you’ll
find the complete text of Shakespeare’s Tempest marked up in XML.

Although URLs are well understood and well supported, the XML specification
uses the more general Uniform Resource Identifier (URI). URIs are a more general
architecture for locating resources on the Internet, that focus a little more on the
resource and a little less on the location. In theory, a URI can find the closest copy
of a mirrored document or locate a document that has been moved from one site
to another. In practice, URIs are still an area of active research, and the only kinds
of URIs that are actually supported by current software are URLs.

Cross-
Reference

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 12

13Chapter 1 ✦ An Eagle’s Eye View of XML

XLinks and XPointers
As long as XML documents are posted on the Internet, you’re going to want to be
able to address them and hot link between them. Standard HTML link tags can be
used in XML documents, and HTML documents can link to XML documents. For
example, this HTML link points to the aforementioned copy of the Tempest
rendered in XML:

The Tempest by Shakespeare

Whether the browser can display this document if you follow the link, depends on
just how well the browser handles XML files. Most current browsers don’t handle
them very well.

However, XML lets you go further with XLinks for linking to documents and
XPointers for addressing individual parts of a document.

XLinks enable any element to become a link, not just an A element. Furthermore,
links can be bi-directional, multidirectional, or even point to multiple mirror sites
from which the nearest is selected. XLinks use normal URLs to identify the site
they’re linking to.

XLinks are discussed in Chapter 16, XLinks.

XPointers enable links to point not just to a particular document at a particular
location, but to a particular part of a particular document. An XPointer can refer to
a particular element of a document, to the first, the second, or the 17th such
element, to the first element that’s a child of a given element, and so on. XPointers
provide extremely powerful connections between documents that do not require
the targeted document to contain additional markup just so its individual pieces
can be linked to it.

Furthermore, unlike HTML anchors, XPointers don’t just refer to a point in a
document. They can point to ranges or spans. Thus an XPointer might be used to
select a particular part of a document, perhaps so that it can be copied or loaded
into a program.

XPointers are discussed in Chapter 17, XPointers.Cross-
Reference

Cross-
Reference

Note

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 13

14 Part I ✦ Introducing XML

The Unicode Character Set
The Web is international, yet most of the text you’ll find on it is in English. XML is
starting to change that. XML provides full support for the two-byte Unicode
character set, as well as its more compact representations. This character set
supports almost every character commonly used in every modern script on Earth.

Unfortunately, XML alone is not enough. To read a script you need three things:

1. A character set for the script

2. A font for the character set

3. An operating system and application software that understands the
character set

If you want to write in the script as well as read it, you’ll also need an input method
for the script. However, XML defines character references that allow you to use
pure ASCII to encode characters not available in your native character set. This is
sufficient for an occasional quote in Greek or Chinese, though you wouldn’t want to
rely on it to write a novel in another language.

In Chapter 7, Foreign Languages and non-Roman Text, you’ll explore how interna-
tional text is represented in computers, how XML understands text, and how you
can use the software you have to read and write in languages other than English.

How the Technologies Fit Together
XML defines a grammar for tags you can use to mark up a document. An XML
document is marked up with XML tags. The default encoding for XML documents
is Unicode.

Among other things, an XML document may contain hypertext links to other
documents and resources. These links are created according to the XLink
specification. XLinks identify the documents they’re linking to with URIs
(in theory) or URLs (in practice). An XLink may further specify the individual
part of a document it’s linking to. These parts are addressed via XPointers.

If an XML document is intended to be read by human beings — and not all XML
documents are — then a style sheet provides instructions about how individual
elements are formatted. The style sheet may be written in any of several style-sheet
languages. CSS and XSL are the two most popular style-sheet languages, though
there are others including DSSSL — the Document Style Semantics and Specification
Language — on which XSL is based.

Cross-
Reference

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 14

15Chapter 1 ✦ An Eagle’s Eye View of XML

I’ve outlined a lot of exciting stuff in this chapter. However, honesty compels me to
tell you that I haven’t discussed all of it yet. In fact, much of what I’ve described is
the promise of XML rather than the current reality. XML has a lot of people in the
software industry very excited, and a lot of programmers are working very hard to
turn these dreams into reality. New software is released every day that brings us
closer to XML nirvana, but this is all very new, and some of the software isn’t fully
cooked yet. Throughout the rest of this book, I’ll be careful to point out not only
what is supposed to happen, but what actually does happen. Depressingly these
are all too often not the same thing. Nonetheless with a little caution you can do
real work right now with XML.

Summary
In this chapter, you have learned some of the things that XML can do for you. In
particular, you have learned:

✦ XML is a meta-markup language that enables the creation of markup
languages for particular documents and domains.

✦ XML tags describe the structure and semantics of a document’s content, not
the format of the content. The format is described in a separate style sheet.

✦ XML grew out of many users’ frustration with the complexity of SGML and the
inadequacies of HTML.

✦ XML documents are created in an editor, read by a parser, and displayed by a
browser.

✦ XML on the Web rests on the foundations provided by HTML, Cascading Style
Sheets, and URLs.

✦ Numerous supporting technologies layer on top of XML, including XSL style
sheets, XLinks, and XPointers. These let you do more than you can
accomplish with just CSS and URLs.

✦ Be careful. XML isn’t completely finished. It will change and expand, and you
will encounter bugs in current XML software.

In the next chapter, you’ll see a number of XML applications, and learn about some
ways XML is being used in the real world today. Examples include vector graphics,
music notation, mathematics, chemistry, human resources, Webcasting, and more.

✦ ✦ ✦

Caution

3236-7 ch01.F.qc 6/29/99 1:03 PM Page 15

An Introduction
to XML
Applications

In this chapter we’ll be looking at some examples of XML
applications, markup languages used to further refine XML,

and behind-the-scene uses of XML. It is inspiring to look at
some of the uses to which XML has already been put, even in
this early stage of its development. This chapter will give you
some idea of the wide applicability of XML. Many more XML
applications are being created or ported from other formats
as I write this.

Part V covers some of the XML applications discussed in
this chapter in more detail.

What Is an XML Application?
XML is a meta-markup language for designing domain-specific
markup languages. Each XML-based markup language is called
an XML application. This is not an application that uses XML
like the Mozilla Web browser, the Gnumeric spreadsheet, or
the XML Pro editor, but rather an application of XML to a
specific domain such as Chemical Markup Language (CML) for
chemistry or GedML for genealogy.

Each XML application has its own syntax and vocabulary. This
syntax and vocabulary adheres to the fundamental rules of
XML. This is much like human languages, which each have
their own vocabulary and grammar, while at the same time
adhering to certain fundamental rules imposed by human
anatomy and the structure of the brain.

Cross-
Reference

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is an XML
application?

XML for XML

Behind-the-scene
uses of XML

✦ ✦ ✦ ✦

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 17

18 Part I ✦ Introducing XML

XML is an extremely flexible format for text-based data. The reason XML was
chosen as the foundation for the wildly different applications discussed in this
chapter (aside from the hype factor) is that XML provides a sensible, well-
documented format that’s easy to read and write. By using this format for its data, a
program can offload a great quantity of detailed processing to a few standard free
tools and libraries. Furthermore, it’s easy for such a program to layer additional
levels of syntax and semantics on top of the basic structure XML provides.

Chemical Markup Language
Peter Murray-Rust’s Chemical Markup Language (CML) may have been the first
XML application. CML was originally developed as an SGML application, and
gradually transitioned to XML as the XML standard developed. In its most
simplistic form, CML is “HTML plus molecules”, but it has applications far beyond
the limited confines of the Web.

Molecular documents often contain thousands of different, very detailed objects.
For example, a single medium-sized organic molecule may contain hundreds of
atoms, each with several bonds. CML seeks to organize these complex chemical
objects in a straightforward manner that can be understood, displayed, and
searched by a computer. CML can be used for molecular structures and sequences,
spectrographic analysis, crystallography, publishing, chemical databases, and
more. Its vocabulary includes molecules, atoms, bonds, crystals, formulas,
sequences, symmetries, reactions, and other chemistry terms. For instance Listing
2-1 is a basic CML document for water (H2O):

Listing 2-1: The water molecule H2O

<?xml version=”1.0”?>
<CML>
<MOL TITLE=”Water”>
<ATOMS>
<ARRAY BUILTIN=”ELSYM”>H O H</ARRAY>

</ATOMS>
<BONDS>
<ARRAY BUILTIN=”ATID1”>1 2</ARRAY>
<ARRAY BUILTIN=”ATID2”>2 3</ARRAY>
<ARRAY BUILTIN=”ORDER”>1 1</ARRAY>

</BONDS>
</MOL>

</CML>

The biggest improvement CML offers over traditional approaches to managing
chemical data is ease of searching. CML also enables complex molecular data to be
sent over the Web. Because the underlying XML is platform-independent, the
problem of platform-dependency that plagues the binary formats used by

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 18

19Chapter 2 ✦ An Introduction to XML Applications

traditional chemical software and documents like the Protein Data Bank (PDB)
format or MDL Molfiles, is avoided.

Murray-Rust also created JUMBO, the first general-purpose XML browser. Figure 2-1
shows JUMBO displaying a CML file. Jumbo works by assigning each XML element to
a Java class that knows how to render that element. To allow Jumbo to support new
elements, you simply write Java classes for those elements. Jumbo is distributed
with classes for displaying the basic set of CML elements including molecules,
atoms, and bonds, and is available at http://www.xml-cml.org/.

Figure 2-1: The JUMBO browser displaying a CML file

Mathematical Markup Language
Legend claims that Tim Berners-Lee invented the World Wide Web and HTML
at CERN so that high-energy physicists could exchange papers and preprints.
Personally I’ve never believed that. I grew up in physics; and while I’ve wandered
back and forth between physics, applied math, astronomy, and computer science
over the years, one thing the papers in all of these disciplines had in common was
lots and lots of equations. Until now, nine years after the Web was invented, there
hasn’t been any good way to include equations in Web pages.

There have been a few hacks — Java applets that parse a custom syntax, converters
that turn LaTeX equations into GIF images, custom browsers that read TeX files —
but none of these have produced high quality results, and none of them have
caught on with Web authors, even in scientific fields. Finally, XML is starting to
change this.

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 19

20 Part I ✦ Introducing XML

The Mathematical Markup Language (MathML) is an XML application for
mathematical equations. MathML is sufficiently expressive to handle pretty
much all forms of math — from grammar-school arithmetic through calculus
and differential equations. It can handle many considerably more advanced
topics as well, though there are definite gaps in some of the more advanced
and obscure notations used by certain sub-fields of mathematics. While there
are limits to MathML on the high end of pure mathematics and theoretical

physics, it is eloquent enough to handle almost all educational, scientific,
engineering, business, economics, and statistics needs. And MathML is likely
to be expanded in the future, so even the purest of the pure mathematicians
and the most theoretical of the theoretical physicists will be able to publish
and do research on the Web. MathML completes the development of the Web
into a serious tool for scientific research and communication (despite its long
digression to make it suitable as a new medium for advertising brochures).

Netscape Navigator and Internet Explorer do not yet support MathML. Nonetheless,
it is the fervent hope of many mathematicians that they soon will. The W3C has
integrated some MathML support into their test-bed browser, Amaya. Figure 2-2
shows Amaya displaying the covariant form of Maxwell’s equations written in
MathML.

Amaya is on the CD-ROM in the browsers/amaya directory.

Figure 2-2: The Amaya browser displaying the
covariant form of Maxwell’s equations written
in MathML

The XML file the Amaya browser is displaying is given in Listing 2-2:

Listing 2-2: Maxwell’s Equations in MathML

<?xml version=”1.0”?>
<html xmlns=”http://www.w3.org/TR/REC-html40”

xmlns:m=”http://www.w3.org/TR/REC-MathML/”
>

On the
CD-ROM

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 20

21Chapter 2 ✦ An Introduction to XML Applications

<head>
<title>Fiat Lux</title>
<meta name=”GENERATOR” content=”amaya V1.3b” />
</head>
<body>

<P>
And God said,
</P>

<math>
<m:mrow>
<m:msub>
<m:mi>δ</m:mi>
<m:mi>α</m:mi>

</m:msub>
<m:msup>
<m:mi>F</m:mi>
<m:mi>αβ</m:mi>

</m:msup>
<m:mi></m:mi>
<m:mo>=</m:mo>
<m:mi></m:mi>
<m:mfrac>
<m:mrow>
<m:mn>4</m:mn>
<m:mi>π</m:mi>

</m:mrow>
<m:mi>c</m:mi>

</m:mfrac>
<m:mi></m:mi>
<m:msup>
<m:mi>J</m:mi>
<m:mrow>
<m:mi>β</m:mi>
<m:mo></m:mo>

</m:mrow>
</m:msup>

</m:mrow>
</math>

<P>
and there was light
</P>
</body>
</html>

Listing 2-2 is an example of a mixed HTML/XML page. The headers and paragraphs
of text (“Fiat Lux”, “Maxwell’s Equations”, “And God said”, “and there was light”) is
given in classic HTML. The actual equations are written in MathML, an application
of XML.

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 21

22 Part I ✦ Introducing XML

In general, such mixed pages require special support from the browser, as is the
case here, or perhaps plug-ins, ActiveX controls, or JavaScript programs that parse
and display the embedded XML data. Ultimately, of course, you want a browser like
Mozilla 5.0 or Internet Explorer 5.0 that can parse and display pure XML files
without an HTML intermediary.

Channel Definition Format
Microsoft’s Channel Definition Format (CDF) is an XML application for defining
channels. Web sites use channels to upload information to readers who subscribe
to the site rather than waiting for them to come and get it. This is alternately called
Webcasting or push. CDF was first introduced in Internet Explorer 4.0.

A CDF document is an XML file, separate from, but linked to an HTML document on
the site being pushed. The channel defined in the CDF document determines which
pages are sent to the readers, how the pages are transported, and how often the
pages are sent. Pages can either be pushed by sending notifications, or even whole
Web sites, to subscribers; or pulled down by the readers at their convenience.

You can add CDF to your site without changing any of the existing content.
You simply add an invisible link to a CDF file on your home page. Then when
a reader visits the page, the browser displays a dialog box asking them if they
want to subscribe to the channel. If the reader chooses to subscribe, the browser
downloads a copy of the CDF document describing the channel. The browser
then combines the parameters specified in the CDF document with the user’s
own preferences to determine when to check back with the server for new con-
tent. This isn’t true push, because the client has to initiate the connection, but
it still happens without an explicit request by the reader. Figure 2-3 shows the
IDG Active Channel in Internet Explorer 4.0.

CDF is covered in more detail in Chapter 21, Pushing Web Sites with CDF.

Internet Explorer 4.0 is on the CD-ROM in the browsers/ie4 directory.

Classic Literature
Jon Bosak has translated the complete plays of Shakespeare into XML. The
complete text of the plays is included, and XML markup is used to distinguish
between titles, subtitles, stage directions, speeches, lines, speakers, and more.

The complete set of plays is on the CD-ROM in the examples/shakespeare
directory.

On the
CD-ROM

On the
CD-ROM

Cross-
Reference

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 22

23Chapter 2 ✦ An Introduction to XML Applications

Figure 2-3: The IDG Active Channel in Internet Explorer 4.0

You may ask yourself what this offers over a book, or even a plain text file. To a
human reader, the answer is not much. But to a computer doing textual analysis,
it offers the opportunity to easily distinguish between the different elements into
which the plays have been divided. For instance, it makes it quite simple for the
computer to go through the text and extract all of Romeo’s lines.

Furthermore, by altering the style sheet with which the document is formatted,
an actor could easily print a version of the document in which all their lines were
formatted in bold face, and the lines immediately before and after theirs were
italicized. Anything else you might imagine that requires separating a play into the
lines uttered by different speakers is much more easily accomplished with the XML-
formatted versions than with the raw text.

Bosak has also marked up English translations of the old and new testaments, the
Koran, and the Book of Mormon in XML. The markup in these is a little different.
For instance, it doesn’t distinguish between speakers. Thus you couldn’t use these
particular XML documents to create a red-letter Bible, for example, although a
different set of tags might allow you to do that. (A red-letter Bible prints words
spoken by Jesus in red.) And because these files are in English rather than the
original languages, they are not as useful for scholarly textual analysis. Still, time
and resources permitting, those are exactly the sorts of things XML would allow
you to do if you wanted to. You’d simply need to invent a different vocabulary and
syntax than the one Bosak used that would still describe the same data.

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 23

24 Part I ✦ Introducing XML

The XML-ized Bible, Koran, and Book of Mormon are all on the CD-ROM in the
examples/religion directory.

Synchronized Multimedia Integration Language
The Synchronized Multimedia Integration Language (SMIL, pronounced “smile”) is a
W3C recommended XML application for writing “TV-like” multimedia presentations
for the Web. SMIL documents don’t describe the actual multimedia content (that is
the video and sound that are played) but rather when and where they are played.

For instance, a typical SMIL document for a film festival might say that the browser
should simultaneously play the sound file beethoven9.mid, show the video file
corange.mov, and display the HTML file clockwork.htm. Then, when it’s done, it
should play the video file 2001.mov, the audio file zarathustra.mid, and display the
HTML file aclarke.htm. This eliminates the need to embed low bandwidth data like
text in high bandwidth data like video just to combine them. Listing 2-3 is a simple
SMIL file that does exactly this.

Listing 2-3: A SMIL film festival

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”
“http://www.w3.org/TR/REC-smil/SMIL10.dtd”>

<smil>
<body>
<seq id=”Kubrick”>
<audio src=”beethoven9.mid”/>
<video src=”corange.mov”/>
<text src=”clockwork.htm”/>
<audio src=”zarathustra.mid”/>
<video src=”2001.mov”/>
<text src=”aclarke.htm”/>

</seq>
</body>

</smil>

Furthermore, as well as specifying the time sequencing of data, a SMIL document
can position individual graphics elements on the display and attach links to media
objects. For instance, at the same time the movie and sound are playing, the text of
the respective novels could be subtitling the presentation.

On the
CD-ROM

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 24

25Chapter 2 ✦ An Introduction to XML Applications

HTML+TIME
SMIL operates independently of the Web page. The streaming media pushed
through SMIL has its own pane in the browser frame, but it doesn’t really
have any interaction with the content in the HTML on the rest of the page. For
instance, SMIL only lets you time SMIL elements like audio, video, and text. It
doesn’t let you add timing information to basic HTML tags like <P>, , or .
And SMIL duplicates some aspects of HTML, such as how elements are positioned
on the page.

Microsoft, along with Macromedia and Compaq, has proposed a semi-competing
XML application called Timed Interactive Multimedia Extensions for HTML (or
HTML+TIME for short). HTML+TIME builds on SMIL to support timing for tradi-
tional HTML elements and features much closer integration with the HTML on the
Web page. For example, HTML+TIME lets you write a countdown Web page like
Listing 2-4 that adds to the page as time progresses.

Listing 2-4: A countdown Web page using HTML+TIME

<html>
<head><title>Countdown</title></head>
<body>
<p t:begin=”0” t:dur=”1”>10</p>
<p t:begin=”1” t:dur=”1”>9</p>
<p t:begin=”2” t:dur=”1”>8</p>
<p t:begin=”3” t:dur=”1”>7</p>
<p t:begin=”4” t:dur=”1”>6</p>
<p t:begin=”5” t:dur=”1”>5</p>
<p t:begin=”6” t:dur=”1”>4</p>
<p t:begin=”7” t:dur=”1”>3</p>
<p t:begin=”8” t:dur=”1”>2</p>
<p t:begin=”9” t:dur=”1”>1</p>
<p t:begin=”10” t:dur=”1”>Blast Off!</p>

</body>
</html>

This is useful for slide shows, timed quizzes, and the like. In HTML+TIME, the film
festival example of Listing 2-3 looks like the following:

<t:seq id=”Kubrick”>
<t:audio src=”beethoven9.mid”/>
<t:video src=”corange.mov”/>
<t:textstream src=”clockwork.htm”/>
<t:audio src=”zarathustra.mid”/>
<t:video src=”2001.mov”/>
<t:textstream src=”aclarke.htm”/>

</seq>

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 25

26 Part I ✦ Introducing XML

It’s close to, though not quite exactly the same as, the SMIL version. The major
difference is that the SMIL version is intended to be stored in separate files and
rendered by special players like RealPlayer, whereas the HTML+TIME version is
supposed to be included in the Web page and rendered by the browser. Another
key difference is that there are several products that can play SMIL files now,
including RealPlayer G2, whereas HTML+TIME-enabled Web browsers do not exist
at the moment. However, it’s likely that future versions of Internet Explorer will
include HTML+TIME support.

There are some nice features and some good ideas in HTML+TIME. However, the
W3C had already given its blessing to SMIL several months before Microsoft
proposed HTML+TIME, and SMIL has a lot more momentum and support in the
third-party, content creator community. Thus it seems we’re in for yet another
knockdown, drag-out, Microsoft-vs.-everybody-else-in-the-known-universe battle
which will only leave third party developers bruised and confused. One can only
hope that the W3C has the will and energy to referee this fight fairly. Web
development really would be a lot simpler if Microsoft didn’t pick up its toys and go
home every time they don’t get their way.

Open Software Description
The Open Software Description (OSD) format is an XML application co-developed
by Marimba and Microsoft for updating software automatically. OSD defines XML
tags that describe software components. The description of a component includes
the version of the component, its underlying structure, and its relationships to and
dependencies on other components. This provides enough information for OSD to
decide whether a user needs a particular update or not. If they do need the update,
it can be automatically pushed to users, rather than requiring them to manually
download and install it. Listing 2-5 is an example of an OSD file for an update to
WhizzyWriter 1000:

Listing 2-5: An OSD file for an update to WhizzyWriter 1000

<?XML version=”1.0”?>
<CHANNEL HREF=”http://updates.whizzy.com/updateChannel.html”>
<TITLE>WhizzyWriter 1000 Update Channel</TITLE>
<USAGE VALUE=”SoftwareUpdate”/>
<SOFTPKG HREF=”http://updates.whizzy.com/updateChannel.html”

NAME=”{46181F7D-1C38-22A1-3329-00415C6A4D54}”
VERSION=”5,2,3,1”
STYLE=”MSAppLogo5”
PRECACHE=”yes”>

<TITLE>WhizzyWriter 1000</TITLE>
<ABSTRACT>
Abstract: WhizzyWriter 1000: now with tint control!

</ABSTRACT>

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 26

27Chapter 2 ✦ An Introduction to XML Applications

<IMPLEMENTATION>
<CODEBASE HREF=”http://updates.whizzy.com/tinupdate.exe”/>
</IMPLEMENTATION>

</SOFTPKG>
</CHANNEL>

Only information about the update is kept in the OSD file. The actual update files
are stored in a separate CAB archive or executable and downloaded when needed.
There is considerable controversy about whether or not this is actually a good
thing. Many software companies, Microsoft not least among them, have a long
history of releasing updates that cause more problems than they fix. Many users
prefer to stay away from new software for a while until other, more adventurous
souls have given it a shakedown.

Scalable Vector Graphics
Vector graphics are superior to the bitmap GIF and JPEG images currently used on
the Web for many pictures including flow charts, cartoons, advertisements, and
similar images. However, many traditional vector graphics formats like PDF,
PostScript, and EPS were designed with ink on paper in mind rather than electrons
on a screen. (This is one reason PDF on the Web is such an inferior replacement for
HTML, despite PDF’s much larger collection of graphics primitives.) A vector
graphics format for the Web should support a lot of features that don’t make sense
on paper like transparency, anti-aliasing, additive color, hypertext, animation, and
hooks to enable search engines and audio renderers to extract text from graphics.
None of these features are needed for the ink-on-paper world of PostScript and PDF.

Several vendors have made a variety of proposals to the W3C for XML applications
for vector graphics. These include:

✦ The Precision Graphics Markup Language (PGML) from IBM, Adobe, Netscape,
and Sun.

✦ The Vector Markup Language (VML) from Microsoft, Macromedia, Autodesk,
Hewlett-Packard, and Visio

✦ Schematic Graphics on the World Wide Web from the Central Laboratory of
the Research Councils

✦ DrawML from Excosoft AB

✦ Hyper Graphics Markup Language (HGML) from PRP and Orange PCSL

Each of these reflects the interests and experience of its authors. For example, not
surprisingly given Adobe’s participation, PGML has the flavor of PostScript but with
XML element-attribute syntax rather than PostScript’s reverse Polish notation.
Listing 2-6 demonstrates the embedding of a pink triangle in PGML.

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 27

28 Part I ✦ Introducing XML

Listing 2-6: A pink triangle in PGML

<?xml version=”1.0”?>
<!DOCTYPE pgml SYSTEM “pgml.dtd”>
<pgml>
<group name=”PinkTriangle” fillcolor=”pink”>
<path>
<moveto x=”0” y=”0”/>
<lineto x=”100” y=”173”/>
<lineto x=”200” y=”0”/>
<closepath/>

</path>
</group>

</pgml>

The W3C has formed a working group with representatives from the above vendors
to decide on a single, unified, scalable vector graphics specification called SVG. SVG
is an XML application for describing two-dimensional graphics. It defines three
basic types of graphics: shapes, images, and text. A shape is defined by its outline,
also known as its path, and may have various strokes or fills. An image is a
bitmapped file like a GIF or a JPEG. Text is defined as a string of text in a particular
font, and may be attached to a path, so it’s not restricted to horizontal lines of text
like the ones that appear on this page. All three kinds of graphics can be positioned
on the page at a particular location, rotated, scaled, skewed, and otherwise
manipulated. Since SVG is a text format, it’s easy for programs to generate
automatically; and it’s easy for programs to manipulate. In particular you can
combine it with DHTML and ECMAScript to make the pictures on a Web page
animated and responsive to user action.

Since SVG describes graphics rather than text — unlike most of the other XML
applications discussed in this chapter — it will probably need special display
software. All of the proposed style-sheet languages assume they’re displaying
fundamentally text-based data, and none of them can support the heavy graphics
requirements of an application like SVG. It’s possible SVG support may be added to
future browsers, especially since Mozilla is open source code; and it would be even
easier for a plug-in to be written. However, for the time being, the prime benefit of
SVG is that it is likely to be used as an exchange format between different programs
like Adobe Illustrator and CorelDraw, which use different native binary formats.

SVG is not fully fleshed out at the time of this writing, and there are exactly zero
implementations of it. The first working draft of SVG was released by the World
Wide Web Consortium in February of 1999. Compared to other working drafts,
however, it is woefully incomplete. It’s really not much more than an outline of
graphics elements that need to be included, without any details about how exactly
those elements will be encoded in XML. I wouldn’t be surprised if this draft got
pushed out the door a little early to head off the adoption of competing efforts
like VML.

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 28

29Chapter 2 ✦ An Introduction to XML Applications

Vector Markup Language
Microsoft has developed their own XML application for vector graphics called the
Vector Markup Language (VML). VML is more finished than SVG, and is already
supported by Internet Explorer 5.0 and Microsoft Office 2000. Listing 2-7 is an HTML
file with embedded VML that draws the pink triangle. Figure 2-4 shows this file
displayed in Internet Explorer 5.0. However, VML is not nearly as ambitious a
format as SVG, and leaves out a lot of advanced features SVG includes such as
clipping, masking, and compositing.

Listing 2-7: The pink triangle in VML

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>
<head>
<title>
A Pink Triangle, Listing 2-7 from the XML Bible

</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>
<body>

<div>

<vml:polyline
style=”width: 200px; height: 200px”
stroke=”false”
fill=”true”
fillcolor=”#FFCCCC”
points=”10pt, 275pt, 310pt, 275pt, 160pt, 45pt”>

</vml:polyline>

</div>
</body>
</html>

There’s really no reason for there to be two separate, mutually incompatible vector
graphics standards for the Web, and Microsoft will probably grudgingly support
SVG in the end. However, VML is available today, even if its use is limited to
Microsoft products, whereas SVG is only an incomplete draft specification. Web
artists would prefer to have a single standard, but having two is not unheard of
(think Gif and JPEG). As long as the formats are documented and non-proprietary,

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 29

30 Part I ✦ Introducing XML

it’s not out of the question for Web browsers to support both. At the least, the
underlying XML makes it a lot easier for programmers to write converters that
translate files from one format to the other.

Figure 2-4: The pink triangle created with VML

VML is discussed in more detail in Chapter 22, The Vector Markup Language.

MusicML
The Connection Factory has created an XML application for sheet music called
MusicML. MusicML includes notes, beats, clefs, staffs, rows, rhythms, rests, beams,
rows, chords and more. Listing 2-8 shows the first bar from Beth Anderson’s Flute
Swale in MusicML.

Listing 2-8: The first bar of Beth Anderson’s Flute Swale

<?xml version=”1.0”?>
<!DOCTYPE sheetmusic SYSTEM “music.dtd”>
<sheetmusic>
<musicrow size=”one”>

<entrysegment>

Cross-
Reference

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 30

31Chapter 2 ✦ An Introduction to XML Applications

<entrypart cleff=”bass” rythm=”fourquarter”
position=”one”>

<molkruis level=”plus1” name=”f” notetype=”sharp”/>
<molkruis level=”plus1” name=”c” notetype=”sharp”/>
</entrypart>

</entrysegment>

<segment>

<subsegment position=”one”>
<beam size=”double”>
<note beat=”sixteenth” name=”a” level=”zero”

dynamics=”mf”/>
<note beat=”sixteenth” name=”b” level=”zero”></note>
<note beat=”sixteenth” name=”c” level=”plus1”></note>
<note beat=”sixteenth” name=”a” level=”zero”></note>

</beam>
<beam size=”single”>
<note beat=”eighth” name=”d” level=”plus1”/>
<note beat=”eighth” name=”c” level=”plus1”/>

</beam>
<note beat=”quarter” name=”b” level=”zero”/>
<note beat=”quarter” name=”a” level=”zero”/>

</subsegment>

</segment>

</musicrow>
</sheetmusic>

The Connection Factory has also written a Java applet that can parse and display
MusicML. Figure 2-5 shows the above example rendered by this applet. The applet
has a few bugs (for instance the last note is missing) but overall it’s a surprisingly
good rendition.

Figure 2-5: The first bar of Beth
Anderson’s Flute Swale in MusicML

MusicML isn’t going to replace Finale or Nightingale anytime soon. And it really
seems like more of a proof of concept than a polished product. MusicML has a lot
of discrepancies that will drive musicians nuts (e.g., rhythm is misspelled, treble
and bass clefs are reversed, segments should really be measures, and so forth).

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 31

32 Part I ✦ Introducing XML

Nonetheless something like this is a reasonable output format for music notation
programs that enables sheet music to be displayed on the Web. Furthermore, if
the various notation programs all support MusicML or something like it, then it
can be used as an interchange format to move data from one program to the other,
something composers desperately need to be able to do now.

VoxML
Motorola’s VoxML (http://www.voxml.com/) is an XML application for the spoken
word. In particular, it’s intended for those annoying voice mail and automated
phone response systems (“If your hair turned green after using our product, please
press one. If your hair turned purple after using our product, please press two. If
you found an unidentifiable insect in the product, please press 3. Otherwise, please
stay on the line until your hair grows back to its natural color.”).

VoxML enables the same data that’s used on a Web site to be served up via
telephone. It’s particularly useful for information that’s created by combining small
nuggets of data, such as stock prices, sports scores, weather reports, and test
results. The Weather Channel and CBS MarketWatch.com are considering using
VoxML to provide more information over regular voice phones.

A small VoxML file for a shampoo company’s automated phone response system
might look something like the code in Listing 2-9.

Listing 2-9: A VoxML file

<?xml version=”1.0”?>
<DIALOG>
<CLASS NAME=”help_top”>
<HELP>Welcome to TIC consumer products division.

For shampoo information, say shampoo now.
</HELP>

</CLASS>

<STEP NAME=”init” PARENT=”help_top”>
<PROMPT>Welcome to Wonder Shampoo
<BREAK SIZE=”large”/>
Which color did Wonder Shampoo turn your hair?
</PROMPT>
<INPUT TYPE=”OPTIONLIST”>
<OPTION NEXT=”#green”>green</OPTION>
<OPTION NEXT=”#purple”>purple</OPTION>
<OPTION NEXT=”#bald”>bald</OPTION>
<OPTION NEXT=”#bye”>exit</OPTION>

</INPUT>
</STEP>

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 32

33Chapter 2 ✦ An Introduction to XML Applications

<STEP NAME=”green” PARENT=”help_top”>
<PROMPT>
If Wonder Shampoo turned your hair green and you wish
to return it to its natural color, simply shampoo seven
times with three parts soap, seven parts water, four
parts kerosene, and two parts iguana bile.

</PROMPT>
<INPUT TYPE=”NONE” NEXT=”#bye”/>

</STEP>

<STEP NAME=”purple” PARENT=”help_top”>
<PROMPT>
If Wonder Shampoo turned your hair purple and you wish
to return it to its natural color, please walk
widdershins around your local cemetery
three times while chanting “Surrender Dorothy”.

</PROMPT>
<INPUT TYPE=”NONE” NEXT=”#bye”/>

</STEP>

<STEP NAME=”bald” PARENT=”help_top”>
<PROMPT>
If you went bald as a result of using Wonder Shampoo,
please purchase and apply a three months supply
of our Magic Hair Growth Formula(TM). Please do not
consult an attorney as doing so would violate the
license agreement printed on inside fold of the Wonder
Shampoo box in 3 point type which you agreed to
by opening the package.

</PROMPT>
<INPUT TYPE=”NONE” NEXT=”#bye”/>

</STEP>

<STEP NAME=”bye” PARENT=”help_top”>
<PROMPT>
Thank you for visiting TIC Corp. Goodbye.
</PROMPT>
<INPUT TYPE=”NONE” NEXT=”#exit”/>

</STEP>

</DIALOG>

I can’t show you a screen shot of this example, because it’s not intended to be
shown in a Web browser. Instead, you would listen to it on a telephone.

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 33

34 Part I ✦ Introducing XML

Open Financial Exchange
Software cannot be changed willy-nilly. The data that software knows how to read has
inertia. The more data you have in a given program’s proprietary, undocumented
format, the harder it is to change programs. For example, my personal finances for
the last five years are stored in Quicken. How likely is it that I will change to Microsoft
Money even if Money has features I need that Quicken doesn’t have? Unless Money
can read and convert Quicken files with zero loss of data, the answer is “NOT
BLOODY LIKELY!”

The problem can even occur within a single company or a single company’s
products. Microsoft Word 97 for Windows can’t read documents created by some
earlier versions of Word. And earlier versions of Word can’t read Word 97 files at all.
And Microsoft Word 98 for the Mac can’t quite read everything that’s in a Word 97
for Windows file, even though Word 98 for the Mac came out a year later!

As noted in Chapter 1, the Open Financial Exchange Format (OFX) is an XML
application used to describe financial data of the type you’re likely to store in a
personal finance product like Money or Quicken. Any program that understands
OFX can read OFX data. And since OFX is fully documented and non-proprietary
(unlike the binary formats of Money, Quicken, and other programs) it’s easy for
programmers to write the code to understand OFX.

OFX not only allows Money and Quicken to exchange data with each other. It allows
other programs that use the same format to exchange the data as well. For
instance, if a bank wants to deliver statements to customers electronically, it only
has to write one program to encode the statements in the OFX format rather than
several programs to encode the statement in Quicken’s format, Money’s format,
Managing Your Money’s format, and so forth.

The more programs that use a given format, the greater the savings in development
cost and effort. For example, six programs reading and writing their own and each
other’s proprietary format require 36 different converters. Six programs reading
and writing the same OFX format require only six converters. Effort is reduced to
O(n) rather than O(n2). Figure 2-6 depicts six programs reading and writing their
own and each other’s proprietary format. Figure 2-7 depicts six programs reading
and writing the same OFX format. Every arrow represents a converter that has to
trade files and data between programs. In Figure 2-6, you can see the connections
for six different programs reading and writing each other’s proprietary binary
format. In Figure 2-7, you can see the same six different programs reading and
writing one open XML format. The XML-based exchange is much simpler and
cleaner than the binary-format exchange.

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 34

35Chapter 2 ✦ An Introduction to XML Applications

Figure 2-6: Six different programs reading and writing their own and each other’s formats

Quicken Money

CheckFree

Proprietary
Bank System

Managing Your Money

Mutual Fund
Program

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 35

36 Part I ✦ Introducing XML

Figure 2-7: Six programs reading and writing the same OFX format

Extensible Forms Description Language
I went down to my local bookstore today and bought a copy of Armistead Maupin’s
novel Sure of You. I paid for that purchase with a credit card, and when I did so I
signed a piece of paper agreeing to pay the credit card company $14.07 when billed.
Eventually they will send me a bill for that purchase, and I’ll pay it. If I refuse to pay
it, then the credit card company can take me to court to collect, and they can use
my signature on that piece of paper to prove to the court that on October 15, 1998 I
really did agree to pay them $14.07.

The same day I also ordered Anne Rice’s The Vampire Armand from the online
bookstore amazon.com. Amazon charged me $16.17 plus $3.95 shipping and
handling and again I paid for that purchase with a credit card. But the difference is

Quicken Money

CheckFree

Proprietary
Bank System

Managing Your Money

Mutual Fund
Program

OFX
Format

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 36

37Chapter 2 ✦ An Introduction to XML Applications

that Amazon never got a signature on a piece of paper from me. Eventually the
credit card company will send me a bill for that purchase, and I’ll pay it. But if I did
refuse to pay the bill, they don’t have a piece of paper with my signature on it
showing that I agreed to pay $20.12 on October 15, 1998. If I claim that I never made
the purchase, the credit card company will bill the charges back to Amazon. Before
Amazon or any other online or phone-order merchant is allowed to accept credit
card purchases without a signature in ink on paper, they have to agree that they will
take responsibility for all disputed transactions.

Exact numbers are hard to come by, and of course vary from merchant to
merchant, but probably a little under 10% of Internet transactions get billed back to
the originating merchant because of credit card fraud or disputes. This is a huge
amount! Consumer businesses like Amazon simply accept this as a cost of doing
business on the Net and work it into their price structure, but obviously this isn’t
going to work for six figure business-to-business transactions. Nobody wants to
send out $200,000 of masonry supplies only to have the purchaser claim they never
made or received the order. Before business-to-business transactions can move
onto the Internet, a method needs to be developed that can verify that an order was
in fact made by a particular person and that this person is who he or she claims to
be. Furthermore, this has to be enforceable in court. (It’s a sad fact of American
business that many companies won’t do business with anyone they can’t sue.)

Part of the solution to the problem is digital signatures — the electronic equivalent
of ink on paper. To digitally sign a document, you calculate a hash code for the
document using a known algorithm, encrypt the hash code with your private key,
and attach the encrypted hash code to the document. Correspondents can decrypt
the hash code using your public key and verify that it matches the document.
However, they can’t sign documents on your behalf because they don’t have your
private key. The exact protocol followed is a little more complex in practice, but the
bottom line is that your private key is merged with the data you’re signing in a
verifiable fashion. No one who doesn’t know your private key can sign the
document.

The scheme isn’t foolproof — it’s vulnerable to your private key being stolen, for
example-but it’s probably as hard to forge a digital signature as it is to forge a real
ink-on-paper signature. However, there are also a number of less obvious attacks on
digital signature protocols. One of the most important is changing the data that’s
signed. Changing the data that’s signed should invalidate the signature, but it
doesn’t if the changed data wasn’t included in the first place. For example, when
you submit an HTML form, the only things sent are the values that you fill into the
form’s fields and the names of the fields. The rest of the HTML markup is not
included. You may agree to pay $1500 for a new 450 MHz Pentium II PC running
Windows NT, but the only thing sent on the form is the $1500. Signing this number
signifies what you’re paying, but not what you’re paying for. The merchant can then
send you two gross of flushometers and claim that’s what you bought for your
$1500. Obviously, if digital signatures are to be useful, all details of the transaction
must be included. Nothing can be omitted.

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 37

38 Part I ✦ Introducing XML

The problem gets worse if you have to deal with the U.S. federal government.
Government regulations for purchase orders and requisitions often spell out the
contents of forms in minute detail, right down to the font face and type size. Failure
to adhere to the exact specifications can lead to your invoice for $20,000,000 worth
of depleted uranium artillery shells being rejected. Therefore, you not only need to
establish exactly what was agreed to; you also need to establish that you met all
legal requirements for the form. HTML’s forms just aren’t sophisticated enough to
handle these needs.

XML, however, can. It is almost always possible to use XML to develop a markup
language with the right combination of power and rigor to meet your needs, and
this example is no exception. In particular UWI.COM has proposed an XML
application called the Extensible Forms Description Language (XFDL) for forms
with extremely tight legal requirements that are to be signed with digital signatures.
XFDL further offers the option to do simple mathematics in the form, for instance to
automatically fill in the sales tax and shipping and handling charges and total up
the price.

UWI.COM has submitted XFDL to the W3C, but it’s really overkill for Web brow-
sers, and thus probably won’t be adopted there. The real benefit of XFDL, if it
becomes widely adopted, is in business-to-business and business-to-government
transactions. XFDL can become a key part of electronic commerce, which is not
to say it will become a key part of electronic commerce. It’s still early, and there
are other players in this space.

Human Resources Markup Language
HireScape’s Human Resources Markup Language (HRML) is an XML application that
provides a simple vocabulary for describing job openings. It defines elements
matching the parts of a typical classified want ad such as companies, divisions,
recruiters, contact information, terms, experience, and more. A job listing in HRML
might look something like the code in Listing 2-10.

Listing 2-10: A Job Listing in HRML

<?xml version=”1.0”?>
<HRML_JOB>

<COMPANY>

<CO_NAME>IDG Books</CO_NAME>
<CO_INTERNET_ADDR>
<CO_HOME_PAGE>http://www.idgbooks.com/</CO_HOME_PAGE>
<CO_JOBS_PAGE>
http://www.idgbooks.com/cgi-

bin/gatekeeper.pl?uidg4841:%2Fcompany%2Fjobs%2Findex.html
</CO_JOBS_PAGE>

</CO_INTERNET_ADDR>

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 38

39Chapter 2 ✦ An Introduction to XML Applications

</COMPANY>

<JOB>

<JOB_METADATA>
<JOB_LOADED_DT>09/10/1998</JOB_LOADED_DT>
<JOB_LOADED_URL>
http://www.idgbooks.com/cgi-

bin/gatekeeper.pl?uidg4841:%2Fcompany%2Fjobs%2Findex.html
</JOB_LOADED_URL>

</JOB_METADATA>

<JOB_DATA>

<JOB_TITLE>Web Development Manager</JOB_TITLE>

<JOB_NUMBER_AVAIL>1</JOB_NUMBER_AVAIL>
<JOB_YEARS_EXP>3</JOB_YEARS_EXP>
<JOB_DESC>
This position is responsible for the technical
and production functions of the Online
group as well as strategizing and implementing
technology to improve the IDG Books web sites.
Skills must include Perl, C/C++, HTML, SQL, JavaScript,
Windows NT 4, mod-perl, CGI, TCP/IP, Netscape servers
and Apache server. You must also have excellent
communication skills, project management, the ability
to communicate technical solutions to non-technical
people and management experience.

</JOB_DESC>

<JOB_KEYWORDS>
Perl, C/C++, HTML, SQL, JavaScript, Windows NT 4,
mod-perl, CGI, TCP/IP, Netscape server, Apache server

</JOB_KEYWORDS>

<JOB_TERMS PAY=”Salaried” TYPE=”Full-time”>
$60,000

</JOB_TERMS>

<JOB_LOCATION CITY=”Foster City” STATE=”California”
STATE_ABBR=”CA” POSTAL_CODE=”94404” COUNTRY=”USA”>

</JOB_LOCATION>

</JOB_DATA>

</JOB>

<RESPONSE>

<RESP_EMAIL>cajobs@idgbooks.com</RESP_EMAIL>
<POSTAL_ADDR ENTITY_TYPE=”Response”>

Continued

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 39

40 Part I ✦ Introducing XML

Listing 2-10 (continued)

<ADDR_LINE_1>Dee Harris, HR Manager</ADDR_LINE_1>
<ADDR_LINE_2>919 E. Hillsdale Blvd.</ADDR_LINE_2>
<ADDR_LINE_3>Suite 400</ADDR_LINE_3>
<CITY>Foster City</CITY>
<STATE>CA</STATE>
<POSTAL_CODE>94404</POSTAL_CODE>

</POSTAL_ADDR>

</RESPONSE>

</HRML_JOB>

Although you could certainly define a style sheet for HRML, and use it to place job
listings on Web pages, that’s not its main purpose. Instead HRML is designed to
automate the exchange of job information between companies, applicants,
recruiters, job boards, and other interested parties. There are hundreds of job
boards on the Internet today as well as numerous Usenet newsgroups and mailing
lists. It’s impossible for one individual to search them all, and it’s hard for a
computer to search them all because they all use different formats for salaries,
locations, benefits, and the like.

But if many sites adopt HRML, then it becomes relatively easy for a job seeker to
search with criteria like “all the jobs for Java programmers in New York City paying
more than $100,000 a year with full health benefits.” The IRS could enter a search
for all full-time, on-site, freelance openings so they’d know which companies to go
after for failure to withhold tax and pay unemployment insurance.

In practice, these searches would likely be mediated through an HTML form just
like current Web searches. The main difference is that such a search would return
far more useful results because it can use the structure in the data and semantics of
the markup rather than relying on imprecise English text.

Resource Description Framework
XML adds structure to documents. The Resource Description Framework (RDF)
is an XML application that adds semantics. RDF can be used to specify anything
from the author and abstract of a Web page to the version and dependencies of a
software package to the director, screenwriter, and actors in a movie. What links
all of these uses is that what’s being encoded in RDF is not the data itself (the Web
page, the software, the movie) but information about the data. This data about data
is called meta-data, and is RDF’s raison d’être.

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 40

41Chapter 2 ✦ An Introduction to XML Applications

An RDF vocabulary defines a set of elements and their permitted content that’s
appropriate for meta-data in a given domain. RDF enables communities of interest to
standardize their vocabularies and share those vocabularies with others who may
extend them. For example, the Dublin Core is an RDF vocabulary specifically designed
for meta-data about Web pages. Educom’s Instructional Metadata System (IMS) builds
on the Dublin Core by adding additional elements that are useful when describing
school-related content like learning level, educational objectives, and price.

Of course, although RDF can be used for print-publishing systems, video-store
catalogs, automated software updates, and much more, it’s likely to be adopted
first for embedding meta-data in Web pages. RDF has the potential to synchronize
the current hodge-podge of <META> tags used for site maps, content rating,
automated indexing, and digital libraries into a unified collection that all of these
tools understand. Once RDF meta-data becomes a standard part of Web pages,
search engines will be able to return more focused, useful results. Intelligent
agents can more easily traverse the Web to find information you want or conduct
business for you. The Web can go from its current state as an unordered sea of
information to a structured, searchable, understandable store of data.

As the name implies, RDF describes resources. A resource is anything that can be
addressed with a URI. The description of a resource is composed of a number of
properties. Each property has a type and a value. For example, <DC:Format>HTML
</DC:Format> has the type “DC:Format” and the value “HTML”. Values may be text
strings, numbers, dates, and so forth, or they may be other resources. These other
resources can have their own descriptions in RDF. For example, the code in Listing
2-11 uses the Dublin Core vocabulary to describe the Cafe con Leche Web site.

Listing 2-11: An RDF description of the Cafe con Leche home
page using the Dublin Core vocabulary

<RDF:RDF
xmlns:RDF=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:DC=”http://purl.org/DC/”>

<RDF:Description about=”http://metalab.unc.edu/xml/”>
<DC:Creator>Elliotte Rusty Harold</DC:Creator>
<DC:Language>en</DC:Language>
<DC:Format>HTML</DC:Format>
<DC:Date>1999-08-19</DC:date>
<DC:Type>home page</DC:Type>
<DC:Title>Cafe con Leche</DC:Title>

</RDF:Description>

</RDF:RDF>

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 41

42 Part I ✦ Introducing XML

RDF will be used for version 2.0 of the Platform for Internet Content Selection (PICS)
and the Platform for Privacy Preferences (P3P) as well as for many other areas
where meta-data is needed to describe Web pages and other kinds of content.

XML for XML
XML is an extremely general-purpose format for text data. Some of the things it is
used for are further refinements of XML itself. These include the XSL style-sheet
language, the XLL-linking language, and the Document Content Description for XML.

XSL
XSL, the Extensible Style Language, is itself an XML application. XSL has two major
parts. The first part defines a vocabulary for transforming XML documents. This
part of XSL includes XML tags for trees, nodes, patterns, templates, and other
elements needed for matching and transforming XML documents from one markup
vocabulary to another (or even to the same one in a different order).

The second part of XSL defines an XML vocabulary for formatting the transformed
XML document produced by the first part. This includes XML tags for formatting
objects including pagination, blocks, characters, lists, graphics, boxes, fonts, and
more. A typical XSL style sheet is shown in Listing 2-12:

Listing 2-12: An XSL style sheet

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/TR/WD-xsl”
xmlns:fo=”http://www.w3.org/TR/WD-xsl/FO”
result-ns=”fo”>
<xsl:template match=”/”>
<fo:basic-page-sequence >

<xsl:apply-templates/>
</fo:basic-page-sequence>

</xsl:template>

<xsl:template match=”ATOM”>
<fo:block font-size=”10pt” font-family=”serif”
space-before=”12pt”>
<xsl:value-of select=”NAME”/>

</fo:block>
</xsl:template>

</xsl:stylesheet>

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 42

43Chapter 2 ✦ An Introduction to XML Applications

We’ll explore XSL in great detail in Chapters 14 and 15.

XLL
The Extensible Linking Language, XLL, defines a new, more general kind of link
called an XLink. XLinks accomplish everything possible with HTML’s URL-based
hyperlinks and anchors. However, any element can become a link, not just A
elements. For instance a footnote element can link directly to the text of the note
like this:

<footnote xlink:form=”simple” href=”footnote7.xml”>7</footnote>

Furthermore, XLinks can do a lot of things HTML links can’t. XLinks can be bi-
directional so readers can return to the page they came from. XLinks can link to
arbitrary positions in a document. XLinks can embed text or graphic data inside a
document rather than requiring the user to activate the link (much like HTML’s
 tag but more flexible). In short, XLinks make hypertext even more powerful.

XLinks are discussed in more detail in Chapter 16, XLinks.

DCD
XML’s facilities for declaring how the contents of an XML element should be
formatted are weak to nonexistent. For example, suppose as part of a date, you set
up MONTH elements like this:

<MONTH>9</MONTH>

All you can say is that the contents of the MONTH element should be character data.
You cannot say that the month should be given as an integer between 1 and 12.

A number of schemes have been proposed to use XML itself to more tightly restrict
what can appear in the contents of any given element. One such proposal is the
Document Content Description, (DCD). For example, here’s a DCD that declares that
MONTH elements may only contain an integer between 1 and 12:

<DCD>
<ElementDef Type=”MONTH” Model=”Data” Datatype=”i1”
Min=”1” Max=”12” />

</DCD>

There are more examples I could show you of XML used for XML, but the ones I’ve
already discussed demonstrate the basic point: XML is powerful enough to
describe and extend itself. Among other things, this means that the XML
specification can remain small and simple. There may well never be an XML 2.0
because any major additions that are needed can be built out of raw XML rather

Cross-
Reference

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 43

44 Part I ✦ Introducing XML

than becoming new features of the XML. People and programs that need these
enhanced features can use them. Others who don’t need them can ignore them. You
don’t need to know about what you don’t use. XML provides the bricks and mortar
from which you can build simple huts or towering castles.

Behind-the-Scene Uses of XML
Not all XML applications are public, open standards. A lot of software vendors are
moving to XML for their own data simply because it’s a well-understood, general-
purpose format for structured data that can be manipulated with easily available
cheap and free tools.

Microsoft Office 2000 promotes HTML to a coequal file format with its native binary
formats. However, HTML 4.0 doesn’t provide support for all of the features Office
requires, such as revision tracking, footnotes, comments, index and glossary
entries, and more. Additional data that can’t be written as HTML is embedded in
the file in small chunks of XML. Word’s vector graphics will be stored in VML. In this
case, embedded XML’s invisibility in standard browsers is the crucial factor.

Federal Express uses detailed tracking information as a competitive advantage over
other shippers like UPS and the Post Office. First that information was available
through custom software, then through the Web. More recently FedEx has begun
beta testing an API/library that third-party and in-house developers can use to
integrate their software and systems with FedEx’s. The data format used for this
service is XML.

Netscape Navigator 5.0 supports direct display of XML in the Web browser, but
Netscape actually started using XML internally as early as version 4.5. When you
ask Netscape to show you a list of sites related to the current one you’re looking it,
your browser connects to a CGI program running on a Netscape server. The data
that server sends back is XML. Listing 2-13 shows the XML data for sites related to
http://metalab.unc.edu/.

Listing 2-13: XML data for sites related to
http://metalab.unc.edu/

<?xml version=”1.0”?>
<RDF:RDF>
<RelatedLinks>
<aboutPage
href=”http://info.netscape.com/fwd/rl/http://metalab.unc.edu:80
/*”>

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 44

45Chapter 2 ✦ An Introduction to XML Applications

</aboutPage>
<child instanceOf=”Separator1”></child>
<child
href=”http://info.netscape.com/fwd/rl/http://www.sun.com/”
name=”Sun Microsystems”>
</child>
<child
href=”http://info.netscape.com/fwd/rl/http://www.unc.edu/”
name=”Unc”>
</child>
<child
href=”http://info.netscape.com/fwd/rl/http://sunsite.sut.ac.jp/
” name=”SunSITE Japan”>
</child>
<child
href=”http://info.netscape.com/fwd/rl/http://sunsite.nus.sg/”
name=”SunSITE Singapore”>
</child>
<child
href=”http://info.netscape.com/fwd/rl/http://sunsite.berkeley.e
du/” name=”Berkeley Digital Library SunSITE”>
</child>
<child
href=”http://info.netscape.com/fwd/rl/http://www.sun.com/sunsit
e” name=”SunSITE on the net”>
</child>
<child
href=”http://info.netscape.com/fwd/rl/http://www.sunsite.auc.dk
/” name=”SunSITE Denmark”>
</child>
<child
href=”http://info.netscape.com/fwd/rl/http://sunsite.edu.cn/”
name=”SunSITE China”>
</child>
<child
href=”http://info.netscape.com/fwd/rl/http://sunsite.stanford.o
rg/” name=”Stanford University SunSITE”>
</child>
<child
href=”http://info.netscape.com/fwd/rl/http://www.cdromshop.com/
cdshop/desc/p.061590000085.html” name=”SunSITE Archive”>
</child>
<child instanceOf=”Separator1”></child>
<child instanceOf=”Separator1”></child>
<child href=”http://home.netscape.com/escapes/smart_browsing”
name=”Learn About Smart Browsing...”>
</child>
</RelatedLinks>
</RDF:RDF>

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 45

46 Part I ✦ Introducing XML

This all happens completely behind the scenes. The users never know that the data
is being transferred in XML. The actual display is a menu in Netscape Navigator, not
an XML or HTML page.

This really just scratches the surface of the use of XML for internal data. Many
other projects that use XML are just getting started, and many more will be started
over the next year. Most of these won’t receive any publicity or write-ups in the
trade press, but they nonetheless have the potential to save their companies
thousands of dollars in development costs over the life of the project. The self-
documenting nature of XML can be as useful for a company’s internal data as for its
external data. For instance, many companies right now are scrambling to try and
figure out whether programmers who retired 20 years ago used two-digit dates. If
that were your job, would you rather be pouring over data that looked like this:

3c 79 65 61 72 3e 39 39 3c 2f 79 65 61 72 3e

or like this:

<YEAR>99</YEAR>

Unfortunately many programmers are now stuck trying to clean up data in the first
format. XML even makes the mistakes easier to find and fix.

Summary
This chapter has just begun to touch the many and varied applications to which
XML has been and will be put. Some of these applications like CML, MathML, and
MusicML are clear extensions to HTML for Web browsers. But many others, like
OFX, XFDL, and HRML, go into completely new directions. And all of these
applications have their own semantics and syntax that sits on top of the underlying
XML. In some cases, the XML roots are obvious. In other cases, you could easily
spend months working with it and only hear of XML tangentially. In this chapter,
you explored the following applications to which XML has been put to use:

✦ Molecular sciences with CML

✦ Science and math with MathML

✦ Webcasting with CDF

✦ Classic literature

✦ Multimedia with SMIL and HTML+TIME

✦ Software updates through OSD

✦ Vector graphics with both PGML and VML

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 46

47Chapter 2 ✦ An Introduction to XML Applications

✦ Music notation in MusicML

✦ Automated voice responses with VoxML

✦ Financial data with OFX

✦ Legally binding forms with XFDL

✦ Human resources job information with HRML

✦ Meta-data through RDF

✦ XML itself, including XSL, XLL, and DCD, to refine XML

✦ Internal use of XML by various companies, including Microsoft, Federal
Express, and Netscape

In the next chapter, you will begin writing your own XML documents and displaying
them in Web browsers.

✦ ✦ ✦

3236-7 ch02.F.qc 6/29/99 1:03 PM Page 47

Your First XML
Document

This chapter teaches you how to create simple XML doc-
uments with tags you define that make sense for your

document. You’ll learn how to write a style sheet for the doc-
ument that describes how the content of those tags should
be displayed. Finally, you’ll learn how to load the documents
into a Web browser so that they can be viewed.

Since this chapter will teach you by example, and not from
first principals, it will not cross all the t’s and dot all the i’s.
Experienced readers may notice a few exceptions and special
cases that aren’t discussed here. Don’t worry about these;
you’ll get to them over the course of the next several chap-
ters. For the most part, you don’t need to worry about the
technical rules right up front. As with HTML, you can learn
and do a lot by copying simple examples that others have
prepared and modifying them to fit your needs.

Toward that end I encourage you to follow along by typing in
the examples I give in this chapter and loading them into the
different programs discussed. This will give you a basic feel
for XML that will make the technical details in future chapters
easier to grasp in the context of these specific examples.

Hello XML
This section follows an old programmer’s tradition of introduc-
ing a new language with a program that prints “Hello World” on
the console. XML is a markup language, not a programming lan-
guage; but the basic principle still applies. It’s easiest to get
started if you begin with a complete, working example you can
expand on rather than trying to start with more fundamental
pieces that by themselves don’t do anything. And if you do
encounter problems with the basic tools, those problems are

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a simple
XML document

Exploring the Simple
XML Document

Assigning meaning to
XML tags

Writing style sheets
for XML documents

Attaching style sheets
to XML documents

✦ ✦ ✦ ✦

3236-7 ch03.F.qc 6/29/99 1:03 PM Page 49

50 Part I ✦ Introducing XML

a lot easier to debug and fix in the context of the short, simple documents used here
rather than in the context of the more complex documents developed in the rest of
the book.

In this section, you’ll learn how to create a simple XML document and save it in a
file. We’ll then take a closer look at the code and what it means.

Creating a Simple XML Document
In this section, you will learn how to type an actual XML document. Let’s start with
about the simplest XML document I can imagine. Here it is in Listing 3-1:

Listing 3-1: Hello XML

<?xml version=”1.0” standalone=”yes”?>
<FOO>
Hello XML!
</FOO>

That’s not very complicated, but it is a good XML document. To be more precise, it’s
a well-formed XML document. (XML has special terms for documents that it considers
“good” depending on exactly which set of rules they satisfy. “Well-formed” is one of
those terms, but we’ll get to that later in the book.) This document can be typed in
any convenient text editor like Notepad, BBEdit, or emacs.

Well-formedness is covered in Chapter 6, Well-Formed XML Documents.

Saving the XML File
Once you’ve typed the preceding code, save the document in a file called hello.xml,
HelloWorld.xml, MyFirstDocument.xml, or some other name. The three-letter
extension .xml is fairly standard. However, do make sure that you save it in plain
text format, and not in the native format of some word processor like WordPerfect
or Microsoft Word.

If you’re using Notepad on Windows 95/98 to edit your files, when saving the doc-
ument be sure to enclose the file name in double quotes, e.g. “Hello.xml”, not
merely Hello.xml, as shown in Figure 3-1. Without the quotes, Notepad will
append the .txt extension to your file name, naming it Hello.xml.txt, which is not
what you want at all.

Note

Cross-
Reference

3236-7 ch03.F.qc 6/29/99 1:03 PM Page 50

51Chapter 3 ✦ Your First XML Document

Figure 3-1: A saved XML document in Notepad with the file name
in quotes

The Windows NT version of Notepad gives you the option to save the file in Unicode.
Surprisingly this will work too, though for now you should stick to basic ASCII. XML
files may be either Unicode or a compressed version of Unicode called UTF-8, which
is a strict superset of ASCII, so pure ASCII files are also valid XML files.

UTF-8 and ASCII are discussed in more detail in Chapter 7, Foreign Languages and
non-Roman Text.

Loading the XML File into a Web Browser
Now that you’ve created your first XML document, you’re going to want to look at
it. The file can be opened directly in a browser that supports XML such as Internet
Explorer 5.0. Figure 3-2 shows the result.

What you see will vary from browser to browser. In this case it’s a nicely formatted
and syntax colored view of the document’s source code. However, whatever it is,
it’s likely not to be particularly attractive. The problem is that the browser doesn’t
really know what to do with the FOO element. You have to tell the browser what it’s
expected to do with each element by using a style sheet. We’ll cover that shortly,
but first let’s look a little more closely at your first XML document.

Cross-
Reference

3236-7 ch03.F.qc 6/29/99 1:03 PM Page 51

52 Part I ✦ Introducing XML

Figure 3-2: hello.xml in Internet Explorer 5.0

Exploring the Simple XML Document
Let’s examine the simple XML document in Listing 3-1 to better understand what
each line of code means. The first line is the XML declaration:

<?xml version=”1.0” standalone=”yes”?>

This is an example of an XML processing instruction. Processing instructions begin
with <? And end with ?>. The first word after the <? is the name of the processing
instruction, which is xml in this example.

The XML declaration has version and standalone attributes. An attribute is a
name-value pair separated by an equals sign. The name is on the left-hand side of
the equals sign and the value is on the right-hand side with its value given between
double quote marks.

Every XML document begins with an XML declaration that specifies the version of
XML in use. In the above example, the version attribute says this document con-
forms to XML 1.0. The XML declaration may also have a standalone attribute that
tells you whether or not the document is complete in this one file or whether it needs
to import other files. In this example, and for the next several chapters, all docu-
ments will be complete unto themselves so the standalone attribute is set to yes.

Now let’s take a look at the next three lines of Listing 3-1:

<FOO>
Hello XML!
</FOO>

3236-7 ch03.F.qc 6/29/99 1:03 PM Page 52

53Chapter 3 ✦ Your First XML Document

Collectively these three lines form a FOO element. Separately, <FOO> is a start tag;
</FOO> is an end tag; and Hello XML! is the content of the FOO element.

You may be asking what the <FOO> tag means. The short answer is “whatever you
want it to.” Rather than relying on a few hundred predefined tags, XML lets you
create the tags that you need. The <FOO> tag therefore has whatever meaning you
assign it. The same XML document could have been written with different tag
names, as shown in Listings 3-2, 3-3, and 3-4, below:

Listing 3-2: greeting.xml

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING>

Listing 3-3: paragraph.xml

<?xml version=”1.0” standalone=”yes”?>
<P>
Hello XML!
</P>

Listing 3-4: document.xml

<?xml version=”1.0” standalone=”yes”?>
<DOCUMENT>
Hello XML!
</DOCUMENT>

The four XML documents in Listings 3-1 through 3-4 have tags with different names.
However, they are all equivalent, since they have the same structure and content.

3236-7 ch03.F.qc 6/29/99 1:03 PM Page 53

54 Part I ✦ Introducing XML

Assigning Meaning to XML Tags
Markup tags can have three kinds of meaning: structure, semantics, and style.
Structure divides documents into a tree of elements. Semantics relates the
individual elements to the real world outside of the document itself. Style specifies
how an element is displayed.

Structure merely expresses the form of the document, without regard for differences
between individual tags and elements. For instance, the four XML documents shown
in Listings 3-1 through 3-4 are structurally the same. They all specify documents with
a single non-empty, root element. The different names of the tags have no structural
significance.

Semantic meaning exists outside the document, in the mind of the author or
reader or in some computer program that generates or reads these files. For
instance, a Web browser that understands HTML, but not XML, would assign the
meaning “paragraph” to the tags <P> and </P> but not to the tags <GREETING>
and </GREETING>, <FOO> and </FOO>, or <DOCUMENT> and </DOCUMENT>. An
English-speaking human would be more likely to understand <GREETING> and
</GREETING> or <DOCUMENT> and </DOCUMENT> than <FOO> and </FOO> or <P>
and </P>. Meaning, like beauty, is in the mind of the beholder.

Computers, being relatively dumb machines, can’t really be said to understand the
meaning of anything. They simply process bits and bytes according to predetermined
formula (albeit very quickly). A computer is just as happy to use <FOO> or <P> as it is
to use the more meaningful <GREETING> or <DOCUMENT> tags. Even a Web browser
can’t be said to really understand that what a paragraph is. All the browser knows is
that when a paragraph is encountered a blank line should be placed before the next
element.

Naturally, it’s better to pick tags that more closely reflect the meaning of the
information they contain. Many disciplines like math and chemistry are working
on creating industry standard tag sets. These should be used when appropriate.
However, most tags are made up as you need them.

Here are some other possible tags:

<MOLECULE> <INTEGRAL>

<PERSON> <SALARY>

<author> <email>

<planet> <sign>

<Bill> <plus/>

<Hillary> <plus/>

3236-7 ch03.F.qc 6/29/99 1:03 PM Page 54

55Chapter 3 ✦ Your First XML Document

<Gennifer> <plus/>

<Paula> <plus/>

<Monica> <equals/>

<divorce>

The third kind of meaning that can be associated with a tag is style meaning. Style
meaning specifies how the content of a tag is to be presented on a computer screen
or other output device. Style meaning says whether a particular element is bold,
italic, green, 24 points, or what have you. Computers are better at understanding
style than semantic meaning. In XML, style meaning is applied through style sheets.

Writing a Style Sheet for an XML Document
XML allows you to create any tags you need. Of course, since you have almost com-
plete freedom in creating tags, there’s no way for a generic browser to anticipate your
tags and provide rules for displaying them. Therefore, you also need to write a style
sheet for your XML document that tells browsers how to display particular tags. Like
tag sets, style sheets can be shared between different documents and different peo-
ple, and the style sheets you create can be integrated with style sheets others have
written.

As discussed in Chapter 1, there is more than one style-sheet language available.
The one used here is called Cascading Style Sheets (CSS). CSS has the advantage of
being an established W3C standard, being familiar to many people from HTML, and
being supported in the first wave of XML-enabled Web browsers.

As noted in Chapter 1, another possibility is the Extensible Style Language. XSL is
currently the most powerful and flexible style-sheet language, and the only one
designed specifically for use with XML. However, XSL is more complicated than
CSS, not yet as well supported, and not finished either.

XSL will be discussed in Chapters 5, 14, and 15.

The greeting.xml example shown in Listing 3-2 only contains one tag, <GREETING>,
so all you need to do is define the style for the GREETING element. Listing 3-5 is a
very simple style sheet that specifies that the contents of the GREETING element
should be rendered as a block-level element in 24-point bold type.

Cross-
Reference

Note

3236-7 ch03.F.qc 6/29/99 1:03 PM Page 55

56 Part I ✦ Introducing XML

Listing 3-5: greeting.xsl

GREETING {display: block; font-size: 24pt; font-weight: bold;}

Listing 3-5 should be typed in a text editor and saved in a new file called greeting.css
in the same directory as Listing 3-2. The .css extension stands for Cascading Style
Sheet. Once again the extension, .css, is important, although the exact file name is
not. However if a style sheet is to be applied only to a single XML document it’s
often convenient to give it the same name as that document with the extension .css
instead of .xml.

Attaching a Style Sheet to an XML Document
After you’ve written an XML document and a CSS style sheet for that document, you
need to tell the browser to apply the style sheet to the document. In the long term
there are likely to be a number of different ways to do this, including browser-server
negotiation via HTTP headers, naming conventions, and browser-side defaults. How-
ever, right now the only way that works is to include another processing instruction
in the XML document to specify the style sheet to be used.

The processing instruction is <?xml-stylesheet?> and it has two attributes, type
and href. The type attribute specifies the style-sheet language used, and the href
attribute specifies a URL, possibly relative, where the style sheet can be found. In
Listing 3-6, the xml-stylesheet processing instruction specifies that the style
sheet named greeting.css written in the CSS style-sheet language is to be applied
to this document.

Listing 3-6: styledgreeting.xml with an xml-stylesheet
processing instruction

<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css2” href=”greeting.css”?>
<GREETING>
Hello XML!
</GREETING>

3236-7 ch03.F.qc 6/29/99 1:03 PM Page 56

57Chapter 3 ✦ Your First XML Document

Now that you’ve created your first XML document and style sheet, you’re going to
want to look at it. All you have to do is load Listing 3–6 into Mozilla or Internet
Explorer 5.0. Figure 3–3 shows styledgreeting in Internet Explorer 5.0. Figure 3–4
shows styledgreeting.xml in an early developer build of Mozilla.

Figure 3-3: styledgreeting.xml in Internet Explorer 5.0

Figure 3-4: styledgreeting.xml in an early developer build of Mozilla

3236-7 ch03.F.qc 6/29/99 1:03 PM Page 57

58 Part I ✦ Introducing XML

Summary
In this chapter you learned how to create a simple XML document. In particular you
learned:

✦ How to write and save simple XML documents.

✦ How to assign to XML tags the three kinds of meaning: structure, semantics,
and style.

✦ How to write a CSS style sheet for an XML document that tells browsers how
to display particular tags.

✦ How to attach a CSS style sheet to an XML document with an xml-
stylesheet processing instruction.

✦ How to load XML documents into a Web browser.

In the next chapter, we’ll develop a much larger example of an XML document that
demonstrates more of the practical considerations involved in choosing XML tags.

✦ ✦ ✦

3236-7 ch03.F.qc 6/29/99 1:03 PM Page 58

Structuring Data

In this chapter, we will develop a longer example that shows
how a large list of baseball statistics and other similar data

might be stored in XML. A document like this has several
potential uses. Most obviously it can be displayed on a Web
page. It can also be used as input to other programs that want
to analyze particular seasons or lineup. Along the way, you’ll
learn, among other things, how to mark up the data in XML,
why XML tags are chosen, and how to prepare a CSS style
sheet for a document.

Examining the Data
As I write this (October, 1998), the New York Yankees have just
won their 24th World Series by sweeping the San Diego Padres
in four games. The Yankees finished the regular season with
an American League record 114 wins. Overall, 1998 was an
astonishing season. The St. Louis Cardinals’ Mark McGwire
and the Chicago Cubs’ Sammy Sosa dueled through September
for the record, previously held by Roger Maris, for most home
runs hit in a single season since baseball was integrated. (The
all-time major league record for home runs in a single season
is still held by catcher Josh Gibson who hit 75 home runs in
the Negro league in 1931. Admittedly, Gibson didn’t have to
face the sort of pitching Sosa and McGwire faced in today’s
integrated league. Then again neither did Babe Ruth who was
widely (and incorrectly) believed to have held the record until
Roger Maris hit 61 in 1961.)

What exactly made 1998 such an exciting season? A cynic
would tell you that 1998 was an expansion year with three
new teams, and consequently much weaker pitching overall.
This gave outstanding batters like Sosa and McGwire and
outstanding teams like the Yankees a chance to really shine
because, although they were as strong as they’d been in
1997, the average opponent they faced was a lot weaker. Of
course true baseball fanatics know the real reason, statistics.

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Examining the data

XMLizing the data

The advantages of
the XML format

Preparing a style
sheet for document
display

✦ ✦ ✦ ✦

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 59

60 Part I ✦ Introducing XML

That’s a funny thing to say. In most sports you hear about heart, guts, ability,
skill, determination, and more. But only in baseball do the fans get so worked
up about raw numbers. Batting average, earned run average, slugging average,
on base average, fielding percentage, batting average against right handed pitch-
ers, batting average against left handed pitchers, batting average against right
handed pitchers when batting left-handed, batting average against right handed
pitchers in Cleveland under a full moon, and so on.

Baseball fans are obsessed with numbers; the more numbers the better. Every
season the Internet is host to thousands of rotisserie leagues in which avid
netizens manage teams and trade players with each other and calculate how
their fantasy teams are doing based on the real-world performance of the players
on their fantasy rosters. STATS, Inc. tracks the results of each and every pitch
made in a major league game, so it’s possible to figure out that one batter does
better than his average with men in scoring position while another does worse.

In the next two sections, for the benefit of the less baseball-obsessed reader, we will
examine the commonly available statistics that describe an individual player’s
batting and pitching. Fielding statistics are also available, but I’ll omit them to
restrict the examples to a more manageable size. The specific example I’m using is
the New York Yankees, but the same statistics are available for any team.

Batters
A few years ago, Bruce Bukiet, Jose Palacios, and myself, wrote a paper called “A
Markov Chain Approach to Baseball” (Operations Research, Volume 45, Number 1,
January-February, 1997, pp. 14-23, http://www.math.njit.edu/~bukiet/
Papers/ball.pdf). In this paper we analyzed all possible batting orders for all
teams in the 1989 National League. The results of that paper were mildly inter-
esting. The worst batter on the team, generally the pitcher, should bat eighth rather
than the customary ninth position, at least in the National League, but what
concerns me here is the work that went into producing this paper. As low grad
student on the totem pole, it was my job to manually re-key the complete batting
history of each and every player in the National League. That summer would have
been a lot more pleasant if I had had the data available in a convenient format like
XML. Right now, I’m going to concentrate on data for individual players. Typically
this data is presented in rows of numbers as shown in Table 4-1 for the 1998
Yankees offense (batters). Since pitchers rarely bat in the American League, only
players who actually batted are listed.

Each column effectively defines an element. Thus there need to be elements for
player, position, games played, at bats, runs, hits, doubles, triples, home runs, runs
batted in, and walks. Singles are generally not reported separately. Rather they’re
calculated by subtracting the total number of doubles, triples, and home runs from
the number of hits.

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 60

61Chapter 4 ✦ Structuring Data
Ta

bl
e

4-
1

Th
e

19
98

 Y
an

ke
es

 O
ff

en
se

R
un

s
H

it
G

am
es

H

om
e

B
at

te
d

St
ri

ke

by

N
am

e
P

os
it

io
n

P
la

ye
d

A
t

B
at

s
R

un
s

H
it

s
D

ou
bl

es
Tr

ip
le

s
R

un
s

In
W

al
ks

O
ut

s
P

it
ch

Sc
ot

t B
ro

si
us

Th
ird

 B
as

e
15

2
53

0
86

15
9

34
0

19
98

52
97

10

H
om

er
 B

us
h

Se
co

nd

45
71

17
27

3
0

1
5

5
19

0
B

as
e

C
ha

d
C

ur
tis

O
ut

fie
ld

15
1

45
6

79
11

1
21

1
10

56
75

80
7

C
hi

li
D

av
is

D
es

ig
na

te
d

35
10

3
11

30
7

0
3

9
14

18
0

H
itt

er

M
ik

e
Fi

gg
a

C
at

ch
er

1
4

1
1

0
0

0
0

0
1

0

Jo
e

G
ira

rd
i

C
at

ch
er

78
25

4
31

70
11

4
3

31
14

38
2

D
er

ek
 J

et
er

Sh
or

ts
to

p
14

9
62

6
12

7
20

3
25

8
19

84
57

11
9

5

C
hu

ck

Se
co

nd

15
0

60
3

11
7

16
0

25
4

17
64

76
70

Kn
ob

la
uc

h
B

as
e

18

Ri
ck

y
Le

de
e

O
ut

fie
ld

42
79

13
19

5
2

1
12

7
29

0

M
ik

e
Lo

w
el

l
Th

ird
 B

as
e

8
15

1
4

0
0

0
0

0
1

0

Ti
no

 M
ar

tin
ez

Fi
rs

t B
as

e
14

2
53

1
92

14
9

33
1

28
12

3
61

83
6

Pa
ul

 O
’N

ei
ll

O
ut

fie
ld

15
2

60
2

95
19

1
40

2
24

11
6

57
10

3
2

Jo
rg

e
Po

sa
da

C
at

ch
er

11
1

35
8

56
96

23
0

17
63

47
92

0

Ti
m

 R
ai

ne
s

O
ut

fie
ld

10
9

32
1

53
93

13
1

5
47

55
49

3

Lu
is

 S
oj

o
Sh

or
ts

to
p

54
14

7
16

34
3

1
0

14
4

15
0

Sh
an

e
O

ut
fie

ld
27

67
18

25
6

0
10

27
5

12
0

Sp
en

ce
r

D
ar

ry
l

D
es

ig
na

te
d

10
1

29
5

44
73

11
2

24
57

46
90

3
St

ra
w

be
rr

y
H

itt
er

D
al

e
Sv

eu
m

Fi
rs

t b
as

e
30

58
6

9
0

0
0

3
4

16
0

B
er

ni
e

O
ut

fie
ld

12
8

49
9

10
1

16
9

30
5

26
97

74
81

1
W

ill
ia

m
s

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 61

62 Part I ✦ Introducing XML

The data in the previous table and the pitcher data in the next section is actually a
somewhat limited list that only begins to specify the data collected on a typical
baseball game. There are a lot more elements including throwing arm, batting
arm, number of times the pitcher balked (rare), fielding percentage, college
attended, and more. However, I’ll stick to this basic information to keep the exam-
ples manageable.

Pitchers
Pitchers are not expected to be home-run hitters or base stealers. Indeed a pitcher
who can reach first on occasion is a surprise bonus for a team. Instead pitchers are
judged on a whole different set of numbers, shown in Table 4-2. Each column of this
table also defines an element. Some of these elements, such as name and position,
are the same for batters and pitchers. Others like saves and shutouts only apply to
pitchers. And a few — like runs and home runs — have the same name as a batter
statistic, but have different meanings. For instance, the number of runs for a batter
is the number of runs the batter scored. The number of runs for a pitcher is the
number of runs scored by the opposing teams against this pitcher.

Organization of the XML Data
XML is based on a containment model. Each XML element can contain text or
other XML elements called its children. A few XML elements may contain both
text and child elements, though in general this is bad form and should be avoided
wherever possible.

However, there’s often more than one way to organize the data, depending on your
needs. One of the advantages of XML is that it makes it fairly straightforward to
write a program that reorganizes the data in a different form. We’ll discuss this
when we talk about XSL transformations in Chapter 14.

To get started, the first question you’ll have to address is what contains what? For
instance, it is fairly obvious that a league contains divisions that contain teams that
contain players. Although teams can change divisions when moving from one city
to another, and players are routinely traded at any given moment in time, each
player belongs to exactly one team and each team belongs to exactly one division.
Similarly, a season contains games, which contain innings, which contain at bats,
which contain pitches or plays.

However, does a season contain leagues or does a league contain a season? The
answer isn’t so obvious, and indeed there isn’t one unique answer. Whether it
makes more sense to make season elements children of league elements or league
elements children of season elements depends on the use to which the data will be
put. You can even create a new root element that contains both seasons and
leagues, neither of which is a child of the other (though doing so effectively would
require some advanced techniques that won’t be discussed for several chapters
yet). You can organize the data as you like.

Note

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 62

63Chapter 4 ✦ Structuring Data
Ta

bl
e

4-
2

Th
e

19
98

 Y
an

ke
es

 P
it

ch
er

s

N
am

e
P

W
L

S
G

G
S

C
G

SH
O

ER
A

IP
H

H
R

R
ER

H
B

W
P

B
K

W
B

SO

Jo
e

Re
lie

f
1

0
0

8
0

0
0

6.
52

9.
2

11
0

7
7

0
0

0
4

7
B

or
ow

sk
i

Pi
tc

he
r

Ry
an

Re

lie
f

2
1

0
5

1
0

0
5.

68
12

.2
12

2
9

8
1

0
0

9
13

B
ra

dl
ey

Pi
tc

he
r

Jim
 B

ru
sk

e
Re

lie
f

1
0

0
3

1
0

0
3

9
9

2
3

3
0

0
0

1
Pi

tc
he

r
3

M
ik

e
Re

lie
f

4
1

0
24

2
0

0
5.

62
41

.2
46

5
29

26
3

2
1

13
20

B
ud

di
e

Pi
tc

he
r

D
av

id

St
ar

tin
g

20
7

0
31

31
3

0
3.

55
20

7.
2

18
6

20
89

82
15

6
0

59
20

9
C

on
e

Pi
tc

he
r

To
dd

Re

lie
f

0
0

0
2

0
0

0
9

2
5

0
2

2
0

0
0

1
0

Er
do

s
Pi

tc
he

r

O
rla

nd
o

St
ar

tin
g

12
4

0
21

21
3

1
3.

13
14

1
11

3
11

53
49

6
5

2
52

13
1

H
er

na
nd

ez
Pi

tc
he

r

D
ar

re
n

Re
lie

f
0

3
2

34
0

0
0

3.
33

51
.1

53
4

19
19

2
1

0
14

31
H

ol
m

es
Pi

tc
he

r

H
id

ek
i

St
ar

tin
g

13
9

0
29

28
2

1
4.

06
17

3
14

8
27

79
78

9
6

1
76

12
6

Ira
bu

Pi
tc

he
r

M
ik

e
St

ar
tin

g
0

1
0

3
2

0
0

12
.7

9
6.

1
9

2
9

9
0

1
1

4
1

Je
rz

em
be

ck
Pi

tc
he

r

G
ra

em
e

Re
lie

f
3

0
0

50
0

0
0

1.
67

37
.2

26
3

10
7

2
2

0
6

20
Ll

oy
d

Pi
tc

he
r

Ra
m

iro

Re
lie

f
10

2
1

41
14

1
1

3.
25

13
0.

1
13

1
9

50
47

9
3

0
30

56
M

en
do

za
Pi

tc
he

r

Je
ff

N
el

so
n

Re
lie

f
5

3
3

45
0

0
0

3.
79

40
.1

44
1

18
17

8
2

0
22

35
Pi

tc
he

r

C
on

tin
ue

d

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 63

64 Part I ✦ Introducing XML
Ta

bl
e

4-
2

(c
on

tin
ue

d)

N
am

e
P

W
L

S
G

G
S

C
G

SH
O

ER
A

IP
H

H
R

R
ER

H
B

W
P

B
K

W
B

SO

An
dy

St

ar
tin

g
16

11
0

33
32

5
0

4.
24

21
6.

1
22

6
20

 1
10

 1
2

6
5

0
87

14
6

Pe
tt

itt
e

Pi
tc

he
r

M
ar

ia
no

Re

lie
f

3
0

36
54

0
0

0
1.

91
61

.1
48

3
13

13
1

0
0

17
36

Ri
ve

ra
Pi

tc
he

r

M
ik

e
Re

lie
f

4
1

6
67

0
0

0
5.

47
79

71
13

51
48

4
0

0
26

69
St

an
to

n
Pi

tc
he

r

Ja
y

Re
lie

f
1

0
0

7
0

0
0

3.
12

8.
2

4
1

3
3

0
1

0
4

6
Te

ss
m

er
Pi

tc
he

r

D
av

id

St
ar

tin
g

18
4

0
30

30
8

5
3.

49
21

4.
1

19
5

29
86

83
1

2
0

29
16

3
W

el
ls

Pi
tc

he
r

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 64

65Chapter 4 ✦ Structuring Data

Readers familiar with database theory may recognize XML’s model as essentially a
hierarchical database, and consequently recognize that it shares all the disadvan-
tages (and a few advantages) of that data model. There are certainly times when a
table-based relational approach makes more sense. This example certainly looks
like one of those times. However, XML doesn’t follow a relational model.

On the other hand, it is completely possible to store the actual data in multiple
tables in a relational database, then generate the XML on the fly. Indeed, the larger
examples on the CD-ROM were created in that fashion. This enables one set of
data to be presented in multiple formats. Transforming the data with style sheets
provides still more possible views of the data.

Since my personal interests lie in analyzing player performance within a single
season, I’m going to make season the root of my documents. Each season will
contain leagues, which will contain divisions, which will contain players. I’m
not going to granularize my data all the way down to the level of individual
games, innings, or plays — because while useful — such examples would be
excessively long.

You, however, may have other interests. If you choose to divide the data in some
other fashion, that works too. There’s almost always more than one way to organize
data in XML. In fact, we’ll return to this example in several upcoming chapters
where we’ll explore alternative markup vocabularies.

XMLizing the Data
Let’s begin the process of marking up the data for the 1998 Major League season in
XML with tags that you define. Remember that in XML we’re allowed to make up the
tags as we go along. We’ve already decided that the fundamental element of our
document will be a season. Seasons will contain leagues. Leagues will contain
divisions. Divisions will contain teams. Teams contain players. Players will have
statistics including games played, at bats, runs, hits, doubles, triples, home runs,
runs batted in, walks, and hits by pitch.

Starting the Document: XML Declaration
and Root Element
XML documents may be recognized by the XML declaration. This is a processing
instruction placed at the start of all XML files that identifies the version in use. The
only version currently understood is 1.0.

<?xml version=”1.0”?>

Every good XML document (where the word good has a very specific meaning to be
discussed in the next chapter) must have a root element. This is an element that
completely contains all other elements of the document. The root element’s start

Note

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 65

66 Part I ✦ Introducing XML

tag comes before all other elements’ start tags, and the root element’s end tag
comes after all other element’s end tags. For our root element, we will use SEASON
with a start tag of <SEASON> and an end tag of </SEASON>. The document now
looks like this:

<?xml version=”1.0”?>
<SEASON>
</SEASON>

The XML declaration is not an element or a tag. It is a processing instruction.
Therefore, it does not need to be contained inside the root element, SEASON. But
every element we put in this document will go in between the <SEASON> start tag
and the </SEASON> end tag.

This choice of root element means that we will not be able to store multiple
seasons in a single file. If you want to do that, however, you can define a new root
element that contains seasons. For example,

<?xml version=”1.0”?>
<DOCUMENT>
<SEASON>
</SEASON>
<SEASON>
</SEASON>

</DOCUMENT>

Naming Conventions

Before we begin, I’d like to say a few words about naming conventions. As you’ll see in the
next chapter, XML element names are quite flexible and can contain any number of letters
and digits in either upper- or lowercase. You have the option of writing XML tags that look
like any of the following:

<SEASON>

<Season>

<season>

<season1998>

<Season98>

<season_98>

There are several thousand more variations. I don’t really care (nor does XML) whether you
use all uppercase, all lowercase, mixed-case with internal capitalization, or some other con-
vention. However, I do recommend that you choose one convention and stick to it.

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 66

67Chapter 4 ✦ Structuring Data

Of course we will want to identify which season we’re talking about. To do that, we
should give the SEASON element a YEAR child. For example:

<?xml version=”1.0”?>
<SEASON>
<YEAR>
1998

</YEAR>
</SEASON>

I’ve used indentation here and in other examples to indicate that the YEAR element
is a child of the SEASON element and that the text 1998 is the contents of the YEAR
element. This is good coding style, but it is not required. White space in XML is not
especially significant. The same example could have been written like this:

<?xml version=”1.0”?>
<SEASON>
<YEAR>1998</YEAR>

</SEASON>

Indeed, I’ll often compress elements to a single line when they’ll fit and space is at a
premium. You can compress the document still further, even down to a single line,
but with a corresponding loss of clarity. For example:

<?xml version=”1.0”?><SEASON><YEAR>1998</YEAR></SEASON>

Of course this version is much harder to read and understand which is why I didn’t
write it that way. The tenth goal listed in the XML 1.0 specification is “Terseness in
XML markup is of minimal importance.” The baseball example reflects this goal
throughout.

XMLizing League, Division, and Team Data
Major league baseball is divided into two leagues, the American League and
the National League. Each league has a name. The two names could be encoded
like this:

<?xml version=”1.0”?>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>

</LEAGUE>
</SEASON>

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 67

68 Part I ✦ Introducing XML

I’ve chosen to define the name of a league with a LEAGUE_NAME element, rather than
simply a NAME element because NAME is too generic and it’s likely to be used in
other contexts. For instance, divisions, teams, and players also have names.

Elements from different domains with the same name can be combined using
namespaces. Namespaces will be discussed in Chapter 18. However, even with
namespaces, you wouldn’t want to give multiple items in the same domain (for
example, TEAM and LEAGUE in this example) the same name.

Each league can be divided into east, west, and central divisions, which can be
encoded as follows:

<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>

</DIVISION>
<DIVISION>
<DIVISION_NAME>Central</DIVISION_NAME>

</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DIVISION_NAME>

</DIVISION>
</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>

</DIVISION>
<DIVISION>
<DIVISION_NAME>Central</DIVISION_NAME>

</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DIVISION_NAME>

</DIVISION>
</LEAGUE>

The true value of an element depends on its parent, that is the elements that
contain it as well as itself. Both the American and National Leagues have an East
division but these are not the same thing.

Each division is divided into teams. Each team has a name and a city. For example,
data that pertains to the American League East can be encoded as follows:

<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Boston</TEAM_CITY>

Cross-
Reference

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 68

69Chapter 4 ✦ Structuring Data

<TEAM_NAME>Red Sox</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Yankees</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Tampa Bay</TEAM_CITY>
<TEAM_NAME>Devil Rays</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Toronto</TEAM_CITY>
<TEAM_NAME>Blue Jays</TEAM_NAME>

</TEAM>
</DIVISION>

XMLizing Player Data
Each team is composed of players. Each player has a first name and a last name. It’s
important to separate the first and last names so that you can sort by either one.
The data for the starting pitchers in the 1998 Yankees lineup can be encoded as
follows:

<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Yankees</TEAM_NAME>
<PLAYER>
<GIVEN_NAME>Orlando</GIVEN_NAME>
<SURNAME>Hernandez</SURNAME>

</PLAYER>
<PLAYER>
<GIVEN_NAME>David</GIVEN_NAME>
<SURNAME>Cone</SURNAME>

</PLAYER>
<PLAYER>
<GIVEN_NAME>David</GIVEN_NAME>
<SURNAME>Wells</SURNAME>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Andy</GIVEN_NAME>
<SURNAME>Pettitte</SURNAME>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Hideki</GIVEN_NAME>
<SURNAME>Irabu</SURNAME>

</PLAYER>
</TEAM>

The tags <GIVEN_NAME> and <SURNAME> are preferable to the more obvious
<FIRST_NAME> and <LAST_NAME> or <FIRST_NAME> and <FAMILY_NAME>.
Whether the family name or the given name comes first or last varies from culture
to culture. Furthermore, surnames aren’t necessarily family names in all cultures.

Note

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 69

70 Part I ✦ Introducing XML

XMLizing Player Statistics
The next step is to provide statistics for each player. Statistics look a little different
for pitchers and batters, especially in the American League in which few pitchers
bat. Below are Joe Girardi’s 1998 statistics. He’s a catcher so we use batting
statistics:

<PLAYER>
<GIVEN_NAME>Joe </GIVEN_NAME>
<SURNAME>Girardi</SURNAME>
<POSITION>Catcher</POSITION>
<GAMES>78</GAMES>
<GAMES_STARTED>76</GAMES_STARTED>
<AT_BATS>254</AT_BATS>
<RUNS>31</RUNS>
<HITS>70</HITS>
<DOUBLES>11</DOUBLES>
<TRIPLES>4</TRIPLES>
<HOME_RUNS>3</HOME_RUNS>
<RBI>31</RBI>
<STEALS>2</STEALS>
<CAUGHT_STEALING>4</CAUGHT_STEALING>
<SACRIFICE_HITS>8</SACRIFICE_HITS>
<SACRIFICE_FLIES>1</SACRIFICE_FLIES>
<ERRORS>3</ERRORS>
<WALKS>14</WALKS>
<STRUCK_OUT>38</STRUCK_OUT>
<HIT_BY_PITCH>2</HIT_BY_PITCH>

</PLAYER>

Now let’s look at the statistics for a pitcher. Although pitchers occasionally bat in
the American League, and frequently bat in the National League, they do so far less
often than all other players do. Pitchers are hired and fired, cheered and booed,
based on their pitching performance. If they can actually hit the ball on occasion
too, that’s pure gravy. Pitching statistics include games played, wins, losses, innings
pitched, earned runs, shutouts, hits against, walks given up, and more. Here are
Hideki Irabu’s 1998 statistics encoded in XML:

<PLAYER>
<GIVEN_NAME>Hideki</GIVEN_NAME>
<SURNAME>Irabu</SURNAME>
<POSITION>Starting Pitcher</POSITION>
<WINS>13</WINS>
<LOSSES>9</LOSSES>
<SAVES>0</SAVES>
<GAMES>29</GAMES>
<GAMES_STARTED>28</GAMES_STARTED>
<COMPLETE_GAMES>2</COMPLETE_GAMES>
<SHUT_OUTS>1</SHUT_OUTS>

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 70

71Chapter 4 ✦ Structuring Data

<ERA>4.06</ERA>
<INNINGS>173</INNINGS>
<HOME_RUNS>148</HOME_RUNS>
<RUNS>27</RUNS>
<EARNED_RUNS>79</EARNED_RUNS>
<HIT_BATTER>78</HIT_BATTER>
<WILD_PITCHES>9</WILD_PITCHES>
<BALK>6</BALK>
<WALKED_BATTER>1</WALKED_BATTER>
<STRUCK_OUT_BATTER>76</STRUCK_OUT_BATTER>

</PLAYER>

Terseness in XML Markup is of Minimal Importance

Throughout this example, I’ve been following the explicit XML principal that “Terseness in
XML markup is of minimal importance.” This certainly assists non-baseball literate readers
who may not recognize baseball arcana such as the standard abbreviation for a walk BB
(base on balls), not W as you might expect. If document size is truly an issue, it’s easy to
compress the files with zip or some other standard tool.

However, this does mean XML documents tend to be quite long, and relatively tedious to
type by hand. I confess that this example sorely tempts me to use abbreviations, clarity be
damned. If I were to do so, a typical PLAYER element might look like this:

<PLAYER>
<GIVEN_NAME>Joe</GIVEN_NAME>
<SURNAME>Girardi</SURNAME>
<P>C</P>
<G>78</G>
<AB>254</AB>
<R>31</R>
<H>70</H>
<DO>11</DO>
<TR>4</TR>
<HR>3</HR>
<RBI>31</RBI>
<BB>14</BB>
<SO>38</SO>
<SB>2</SB>
<CS>4</CS>
<HBP>2</HBP>

</PLAYER>

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 71

72 Part I ✦ Introducing XML

Putting the XML Document Back Together Again
Until now, I’ve been showing the XML document in pieces, element by element.
However, it’s now time to put all the pieces together and look at the complete
document containing the statistics for the 1998 Major League season. Listing 4-1
demonstrates the complete XML document with two leagues, six divisions, thirty
teams, and nine players.

Listing 4-1: A complete XML document

<?xml version=”1.0”?>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Atlanta</TEAM_CITY>
<TEAM_NAME>Braves</TEAM_NAME>
<PLAYER>
<SURNAME>Malloy</SURNAME>
<GIVEN_NAME>Marty</GIVEN_NAME>
<POSITION>Second Base</POSITION>
<GAMES>11</GAMES>
<GAMES_STARTED>8</GAMES_STARTED>
<AT_BATS>28</AT_BATS>
<RUNS>3</RUNS>
<HITS>5</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>1</HOME_RUNS>
<RBI>1</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>0</ERRORS>
<WALKS>2</WALKS>
<STRUCK_OUT>2</STRUCK_OUT>
<HIT_BY_PITCH>0</HIT_BY_PITCH>
</PLAYER>
<PLAYER>
<SURNAME>Guillen</SURNAME>
<GIVEN_NAME>Ozzie </GIVEN_NAME>
<POSITION>Shortstop</POSITION>
<GAMES>83</GAMES>
<GAMES_STARTED>59</GAMES_STARTED>
<AT_BATS>264</AT_BATS>
<RUNS>35</RUNS>
<HITS>73</HITS>

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 72

73Chapter 4 ✦ Structuring Data

<DOUBLES>15</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>1</HOME_RUNS>
<RBI>22</RBI>
<STEALS>1</STEALS>
<CAUGHT_STEALING>4</CAUGHT_STEALING>
<SACRIFICE_HITS>4</SACRIFICE_HITS>
<SACRIFICE_FLIES>2</SACRIFICE_FLIES>
<ERRORS>6</ERRORS>
<WALKS>24</WALKS>
<STRUCK_OUT>25</STRUCK_OUT>
<HIT_BY_PITCH>1</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<SURNAME>Bautista</SURNAME>
<GIVEN_NAME>Danny</GIVEN_NAME>
<POSITION>Outfield</POSITION>
<GAMES>82</GAMES>
<GAMES_STARTED>27</GAMES_STARTED>
<AT_BATS>144</AT_BATS>
<RUNS>17</RUNS>
<HITS>36</HITS>
<DOUBLES>11</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>3</HOME_RUNS>
<RBI>17</RBI>
<STEALS>1</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>3</SACRIFICE_HITS>
<SACRIFICE_FLIES>2</SACRIFICE_FLIES>
<ERRORS>2</ERRORS>
<WALKS>7</WALKS>
<STRUCK_OUT>21</STRUCK_OUT>
<HIT_BY_PITCH>0</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<SURNAME>Williams</SURNAME>
<GIVEN_NAME>Gerald</GIVEN_NAME>
<POSITION>Outfield</POSITION>
<GAMES>129</GAMES>
<GAMES_STARTED>51</GAMES_STARTED>
<AT_BATS>266</AT_BATS>
<RUNS>46</RUNS>
<HITS>81</HITS>
<DOUBLES>18</DOUBLES>
<TRIPLES>3</TRIPLES>
<HOME_RUNS>10</HOME_RUNS>
<RBI>44</RBI>
<STEALS>11</STEALS>
<CAUGHT_STEALING>5</CAUGHT_STEALING>
<SACRIFICE_HITS>2</SACRIFICE_HITS>
<SACRIFICE_FLIES>1</SACRIFICE_FLIES>

Continued

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 73

74 Part I ✦ Introducing XML

Listing 4-1 (continued)

<ERRORS>5</ERRORS>
<WALKS>17</WALKS>
<STRUCK_OUT>48</STRUCK_OUT>
<HIT_BY_PITCH>3</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<SURNAME>Glavine</SURNAME>
<GIVEN_NAME>Tom</GIVEN_NAME>
<POSITION>Starting Pitcher</POSITION>
<WINS>20</WINS>
<LOSSES>6</LOSSES>
<SAVES>0</SAVES>
<GAMES>33</GAMES>
<GAMES_STARTED>33</GAMES_STARTED>
<COMPLETE_GAMES>4</COMPLETE_GAMES>
<SHUT_OUTS>3</SHUT_OUTS>
<ERA>2.47</ERA>
<INNINGS>229.1</INNINGS>
<HOME_RUNS>202</HOME_RUNS>
<RUNS>13</RUNS>
<EARNED_RUNS>67</EARNED_RUNS>
<HIT_BATTER>63</HIT_BATTER>
<WILD_PITCHES>2</WILD_PITCHES>
<BALK>3</BALK>
<WALKED_BATTER>0</WALKED_BATTER>
<STRUCK_OUT_BATTER>74</STRUCK_OUT_BATTER>

</PLAYER>
<PLAYER>
<SURNAME>Lopez</SURNAME>
<GIVEN_NAME>Javier</GIVEN_NAME>
<POSITION>Catcher</POSITION>
<GAMES>133</GAMES>
<GAMES_STARTED>124</GAMES_STARTED>
<AT_BATS>489</AT_BATS>
<RUNS>73</RUNS>
<HITS>139</HITS>
<DOUBLES>21</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>34</HOME_RUNS>
<RBI>106</RBI>
<STEALS>5</STEALS>
<CAUGHT_STEALING>3</CAUGHT_STEALING>
<SACRIFICE_HITS>1</SACRIFICE_HITS>
<SACRIFICE_FLIES>8</SACRIFICE_FLIES>
<ERRORS>5</ERRORS>
<WALKS>30</WALKS>
<STRUCK_OUT>85</STRUCK_OUT>
<HIT_BY_PITCH>6</HIT_BY_PITCH></PLAYER>

<PLAYER>
<SURNAME>Klesko</SURNAME>
<GIVEN_NAME>Ryan</GIVEN_NAME>

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 74

75Chapter 4 ✦ Structuring Data

<POSITION>Outfield</POSITION>
<GAMES>129</GAMES>
<GAMES_STARTED>124</GAMES_STARTED>
<AT_BATS>427</AT_BATS>
<RUNS>69</RUNS>
<HITS>117</HITS>
<DOUBLES>29</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>18</HOME_RUNS>
<RBI>70</RBI>
<STEALS>5</STEALS>
<CAUGHT_STEALING>3</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>4</SACRIFICE_FLIES>
<ERRORS>2</ERRORS>
<WALKS>56</WALKS>
<STRUCK_OUT>66</STRUCK_OUT>
<HIT_BY_PITCH>3</HIT_BY_PITCH></PLAYER>

<PLAYER>
<SURNAME>Galarraga</SURNAME>
<GIVEN_NAME>Andres</GIVEN_NAME>
<POSITION>First Base</POSITION>
<GAMES>153</GAMES>
<GAMES_STARTED>151</GAMES_STARTED>
<AT_BATS>555</AT_BATS>
<RUNS>103</RUNS>
<HITS>169</HITS>
<DOUBLES>27</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>44</HOME_RUNS>
<RBI>121</RBI>
<STEALS>7</STEALS>
<CAUGHT_STEALING>6</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>5</SACRIFICE_FLIES>
<ERRORS>11</ERRORS>
<WALKS>63</WALKS>
<STRUCK_OUT>146</STRUCK_OUT>
<HIT_BY_PITCH>25</HIT_BY_PITCH></PLAYER>

<PLAYER>
<SURNAME>Helms</SURNAME>
<GIVEN_NAME>Wes</GIVEN_NAME>
<POSITION>Third Base</POSITION>
<GAMES>7</GAMES>
<GAMES_STARTED>2</GAMES_STARTED>
<AT_BATS>13</AT_BATS>
<RUNS>2</RUNS>
<HITS>4</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>1</HOME_RUNS>
<RBI>2</RBI>

Continued

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 75

76 Part I ✦ Introducing XML

Listing 4-1 (continued)

<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>1</ERRORS>
<WALKS>0</WALKS>
<STRUCK_OUT>4</STRUCK_OUT>
<HIT_BY_PITCH>0</HIT_BY_PITCH></PLAYER>

</TEAM>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>

<TEAM_NAME>Phillies</TEAM_NAME>
</TEAM>

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Cincinatti</TEAM_CITY>
<TEAM_NAME>Reds</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Houston</TEAM_CITY>
<TEAM_NAME>Astros</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Milwaukee</TEAM_CITY>
<TEAM_NAME>Brewers</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Pittsburgh</TEAM_CITY>
<TEAM_NAME>Pirates</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>St. Louis</TEAM_CITY>
<TEAM_NAME>Cardinals</TEAM_NAME>

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 76

77Chapter 4 ✦ Structuring Data

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Colorado</TEAM_CITY>
<TEAM_NAME>Rockies</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Los Angeles</TEAM_CITY>
<TEAM_NAME>Dodgers</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>San Diego</TEAM_CITY>
<TEAM_NAME>Padres</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>San Francisco</TEAM_CITY>
<TEAM_NAME>Giants</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Boston</TEAM_CITY>
<TEAM_NAME>Red Sox</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Yankees</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Tampa Bay</TEAM_CITY>
<TEAM_NAME>Devil Rays</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Toronto</TEAM_CITY>
<TEAM_NAME>Blue Jays</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

Continued

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 77

78 Part I ✦ Introducing XML

Listing 4-1 (continued)

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Kansas City</TEAM_CITY>
<TEAM_NAME>Royals</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Detroit</TEAM_CITY>
<TEAM_NAME>Tigers</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Cleveland</TEAM_CITY>
<TEAM_NAME>Indians</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Minnesota</TEAM_CITY>
<TEAM_NAME>Twins</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Oakland</TEAM_CITY>
<TEAM_NAME>Athletics</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Seattle</TEAM_CITY>
<TEAM_NAME>Mariners</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Texas</TEAM_CITY>
<TEAM_NAME>Rangers</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

Figure 4-1 shows this document loaded into Internet Explorer 5.0.

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 78

79Chapter 4 ✦ Structuring Data

Figure 4-1: The 1998 major league statistics displayed
in Internet Explorer 5.0

Even now this document is incomplete. It only contains players from one team (the
Atlanta Braves) and only nine players from that team. Showing more than that
would make the example too long to include in this book.

A more complete XML document called 1998statistics.xml with statistics for
all players in the 1998 major league is on the CD-ROM in the examples/base-
ball directory.Furthermore, I’ve deliberately limited the data included to
make this a manageable example within the confines of this book. In reality
there are far more details you could include. I’ve already alluded to the pos-
sibility of arranging the data game by game, pitch by pitch. Even without
going to that extreme, there are a lot of details that could be added to indi-
vidual elements. Teams also have coaches, managers, owners (How can you
think of the Yankees without thinking of George Steinbrenner?), home stadi-
ums, and more.

I’ve also deliberately omitted numbers that can be calculated from other numbers
given here, such as batting average (number of hits divided by number of at bats).
Nonetheless, players have batting arms, throwing arms, heights, weights, birth
dates, positions, numbers, nicknames, colleges attended, and much more. And of
course there are many more players than I’ve shown here. All of this is equally easy
to include in XML. But we will stop the XMLification of the data here so we can
move on; first to a brief discussion of why this data format is useful, then to the
techniques that can be used for actually displaying it in a Web browser.

On the
CD-ROM

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 79

80 Part I ✦ Introducing XML

The Advantages of the XML Format
Table 4-1 does a pretty good job of displaying the batting data for a team in a
comprehensible and compact fashion. What exactly have we gained by rewriting
that table as the much longer XML document of Example 4-1? There are several
benefits. Among them:

✦ The data is self-describing

✦ The data can be manipulated with standard tools

✦ The data can be viewed with standard tools

✦ Different views of the same data are easy to create with style sheets

The first major benefit of the XML format is that the data is self-describing. The
meaning of each number is clearly and unmistakably associated with the number
itself. When reading the document, you know that the 121 in <HITS>121</HITS>
refers to hits and not runs batted in or strikeouts. If the person typing in the
document skips a number, that doesn’t mean that every number after it is
misinterpreted. HITS is still HITS even if the preceding RUNS element is missing.

In Part II you’ll see that XML can even use DTDs to enforce constraints that certain
elements like HITS or RUNS must be present.

The second benefit to providing the data in XML is that it enables the data to be
manipulated in a wide range of XML-enabled tools, from expensive payware like
Adobe FrameMaker to free open-source software like Python and Perl. The data
may be bigger, but the extra redundancy allows more tools to process it.

The same is true when the time comes to view the data. The XML document can be
loaded into Internet Explorer 5.0, Mozilla, FrameMaker 5.5.6, and many other tools,
all of which provide unique, useful views of the data. The document can even be
loaded into simple, bare-bones text editors like vi, BBEdit, and TextPad. So it’s at
least marginally viewable on most platforms.

Using new software isn’t the only way to get a different view of the data either. In
the next section, we’ll build a style sheet for baseball statistics that provides a
completely different way of looking at the data than what you see in Figure 4-1.
Every time you apply a different style sheet to the same document you see a
different picture.

Lastly, you should ask yourself if the size is really that important. Modern hard
drives are quite big, and can a hold a lot of data, even if it’s not stored very
efficiently. Furthermore, XML files compress very well. The complete major league
1998 statistics document is 653K. However, compressing the file with gzip gets that
all the way down to 66K, almost 90 percent less. Advanced HTTP servers like Jigsaw

Cross-
Reference

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 80

81Chapter 4 ✦ Structuring Data

can actually send compressed files rather than the uncompressed files so that
network bandwidth used by a document like this is fairly close to its actual
information content. Finally, you should not assume that binary file formats,
especially general-purpose ones, are necessarily more efficient. A Microsoft Excel
file that contains the same data as the 1998statistics.xml actually takes up 2.37 MB,
more than three times as much space. Although you can certainly create more
efficient file formats and encoding of this data, in practice that simply isn’t often
necessary.

Preparing a Style Sheet for Document Display
The view of the raw XML document shown in Figure 4-1 is not bad for some uses.
For instance, it allows you to collapse and expand individual elements so you see
only those parts of the document you want to see. However, most of the time you’d
probably like a more finished look, especially if you’re going to display it on the
Web. To provide a more polished look, you must write a style sheet for the
document.

In this chapter, we’ll use CSS style sheets. A CSS style sheet associates particular
formatting with each element of the document. The complete list of elements used
in our XML document is:

SEASON

YEAR

LEAGUE

LEAGUE_NAME

DIVISION

DIVISION_NAME

TEAM

TEAM_CITY

TEAM_NAME

PLAYER

SURNAME

GIVEN_NAME

POSITION

GAMES

GAMES_STARTED

AT_BATS

RUNS

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 81

82 Part I ✦ Introducing XML

HITS

DOUBLES

TRIPLES

HOME_RUNS

RBI

STEALS

CAUGHT_STEALING

SACRIFICE_HITS

SACRIFICE_FLIES

ERRORS

WALKS

STRUCK_OUT

HIT_BY_PITCH

Generally, you’ll want to follow an iterative procedure, adding style rules for each of
these elements one at a time, checking that they do what you expect, then moving
on to the next element. In this example, such an approach also has the advantage of
introducing CSS properties one at a time for those who are not familiar with them.

Linking to a Style Sheet
The style sheet can be named anything you like. If it’s only going to apply to one
document, then it’s customary to give it the same name as the document but with
the three-letter extension .css instead of .xml. For instance, the style sheet for the
XML document 1998shortstats.xml might be called 1998shortstats.css. On the other
hand, if the same style sheet is going to be applied to many documents, then it
should probably have a more generic name like baseballstats.css.

Since CSS style sheets cascade, more than one can be applied to the same docu-
ment. Thus it’s possible that baseballstats.css would apply some general format-
ting rules, while 1998shortstats.css would override a few to handle specific details
in the one document 1998shortstats.xml. We’ll discuss this procedure in Chapter
12, Cascading Style Sheets Level 1.

To attach a style sheet to the document, you simply add an additional <?xml-
stylesheet?> processing instruction between the XML declaration and the root
element, like this:

<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”baseballstats.css”?>
<SEASON>
...

Cross-
Reference

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 82

83Chapter 4 ✦ Structuring Data

This tells a browser reading the document to apply the style sheet found in the file
baseballstats.css to this document. This file is assumed to reside in the same
directory and on the same server as the XML document itself. In other words,
baseballstats.css is a relative URL. Complete URLs may also be used. For example:

<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css”
href=”http://metalab.unc.edu/xml/examples/baseballstats.css”?>
<SEASON>
...

You can begin by simply placing an empty file named baseballstats.css in the same
directory as the XML document. Once you’ve done this and added the necessary
processing instruction to 1998shortstats.xml (Listing 4-1), the document now
appears as shown in Figure 4-2. Only the element content is shown. The collapsible
outline view of Figure 4-1 is gone. The formatting of the element content uses the
browser’s defaults, black 12-point Times Roman on a white background in this case.

Figure 4-2: The 1998 major league statistics displayed after a blank
style sheet is applied

You’ll also see a view much like Figure 4-2 if the style sheet named by the xml-
stylesheet processing instruction can’t be found in the specified location.

Note

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 83

84 Part I ✦ Introducing XML

Assigning Style Rules to the Root Element
You do not have to assign a style rule to each element in the list. Many elements
can simply allow the styles of their parents to cascade down. The most important
style, therefore, is the one for the root element, which is SEASON in this example.
This defines the default for all the other elements on the page. Computer monitors
at roughly 72 dpi don’t have as high a resolution as paper at 300 or more dpi.
Therefore, Web pages should generally use a larger point size than is customary.
Let’s make the default 14-point type, black on a white background, as shown below:

SEASON {font-size: 14pt; background-color: white;
color: black; display: block}

Place this statement in a text file, save the file with the name baseballstats.css in
the same directory as Listing 4-1, 1998shortstats.xml, and open 1998shortstats.xml
in your browser. You should see something like what is shown in Figure 4-3.

Figure 4-3: Baseball statistics in 14-point type with a black-on-
white background

The default font size changed between Figure 4-2 and Figure 4-3. The text color and
background color did not. Indeed, it was not absolutely required to set them, since
black foreground and white background are the defaults. Nonetheless, nothing is
lost by being explicit regarding what you want.

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 84

85Chapter 4 ✦ Structuring Data

Assigning Style Rules to Titles
The YEAR element is more or less the title of the document. Therefore, let’s make it
appropriately large and bold — 32 points should be big enough. Furthermore, it
should stand out from the rest of the document rather than simply running
together with the rest of the content, so let’s make it a centered block element. All
of this can be accomplished by the following style rule.

YEAR {display: block; font-size: 32pt; font-weight: bold;
text-align: center}

Figure 4-4 shows the document after this rule has been added to the style sheet.
Notice in particular the line break after “1998.” That’s there because YEAR is now a
block-level element. Everything else in the document is an inline element. You can
only center (or left-align, right-align or justify) block-level elements.

Figure 4-4: Stylizing the YEAR element as a title

In this document with this style rule, YEAR duplicates the functionality of HTML’s H1
header element. Since this document is so neatly hierarchical, several other
elements serve the role of H2 headers, H3 headers, etc. These elements can be
formatted by similar rules with only a slightly smaller font size.

For instance, SEASON is divided into two LEAGUE elements. The name of each
LEAGUE, that is, the LEAGUE_NAME element — has the same role as an H2 element in
HTML. Each LEAGUE element is divided into three DIVISION elements. The name of

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 85

86 Part I ✦ Introducing XML

each DIVISION— that is, the DIVISION_NAME element — has the same role as an H3
element in HTML. These two rules format them accordingly:

LEAGUE_NAME {display: block; text-align: center; font-size:
28pt; font-weight: bold}
DIVISION_NAME {display: block; text-align: center; font-size:
24pt; font-weight: bold}

Figure 4-5 shows the resulting document.

Figure 4-5: Stylizing the LEAGUE_NAME and DIVISION_NAME
elements as headings

One crucial difference between HTML and XML is that in HTML there’s generally
no one element that contains both the title of a section (the H2, H3, H4, etc.,
header) and the complete contents of the section. Instead the contents of a sec-
tion have to be implied as everything between the end of one level of header and
the start of the next header at the same level. This is particularly important for soft-
ware that has to parse HTML documents, for instance to generate a table of con-
tents automatically.

Divisions are divided into TEAM elements. Formatting these is a little trickier
because the title of a team is not simply the TEAM_NAME element but rather the
TEAM_CITY concatenated with the TEAM_NAME. Therefore these need to be inline
elements rather than separate block-level elements. However, they are still titles so
we set them to bold, italic, 20-point type. Figure 4-6 shows the results of adding
these two rules to the style sheet.

Note

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 86

87Chapter 4 ✦ Structuring Data

TEAM_CITY {font-size: 20pt; font-weight: bold;
font-style: italic}

TEAM_NAME {font-size: 20pt; font-weight: bold;
font-style: italic}

Figure 4-6: Stylizing Team Names

At this point it would be nice to arrange the team names and cities as a combined
block-level element. There are several ways to do this. You could, for instance, add
an additional TEAM_TITLE element to the XML document whose sole purpose is
merely to contain the TEAM_NAME and TEAM_CITY. For instance:

<TEAM>
<TEAM_TITLE>
<TEAM_CITY>Colorado</TEAM_CITY>
<TEAM_NAME>Rockies</TEAM_NAME>

</TEAM_TITLE>
</TEAM>

Next, you would add a style rule that applies block-level formatting to TEAM_TITLE:

TEAM_TITLE {display: block; text-align: center}

However, you really should never reorganize an XML document just to make the
style sheet work easier. After all, the whole point of a style sheet is to keep
formatting information out of the document itself. However, you can achieve much
the same effect by making the immediately preceding and following elements block-

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 87

88 Part I ✦ Introducing XML

level elements; that is, TEAM and PLAYER respectively. This places the TEAM_NAME
and TEAM_CITY in an implicit block-level element of their own. Figure 4-7 shows the
result.

TEAM {display: block}
PLAYER {display: block}

Figure 4-7: Stylizing team names and cities as headers

Assigning Style Rules to Player
and Statistics Elements
The trickiest formatting this document requires is for the individual players and
statistics. Each team has a couple of dozen players. Each player has statistics. You
could think of a TEAM element as being divided into PLAYER elements, and place
each player in his own block-level section as you did for previous elements.
However, a more attractive and efficient way to organize this is to use a table. The
style rules that accomplish this look like this:

TEAM {display: table}
TEAM_CITY {display: table-caption}
TEAM_NAME {display: table-caption}
PLAYER {display: table-row}
SURNAME {display: table-cell}
GIVEN_NAME {display: table-cell}
POSITION {display: table-cell}

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 88

89Chapter 4 ✦ Structuring Data

GAMES {display: table-cell}
GAMES_STARTED {display: table-cell}
AT_BATS {display: table-cell}
RUNS {display: table-cell}
HITS {display: table-cell}
DOUBLES {display: table-cell}
TRIPLES {display: table-cell}
HOME_RUNS {display: table-cell}
RBI {display: table-cell}
STEALS {display: table-cell}
CAUGHT_STEALING {display: table-cell}
SACRIFICE_HITS {display: table-cell}
SACRIFICE_FLIES {display: table-cell}
ERRORS {display: table-cell}
WALKS {display: table-cell}
STRUCK_OUT {display: table-cell}
HIT_BY_PITCH {display: table-cell}

Unfortunately, table properties are only supported in CSS Level 2, and this is not yet
supported by Internet Explorer 5.0 or any other browser available at the time of
this writing. Instead, since table formatting doesn’t yet work, I’ll settle for just
making TEAM and PLAYER block-level elements, and leaving all the rest with the
default formatting.

Summing Up
Listing 4-2 shows the finished style sheet. CSS style sheets don’t have a lot of
structure beyond the individual rules. In essence, this is just a list of all the rules I
introduced separately above. Reordering them wouldn’t make any difference as
long as they’re all present.

Listing 4-2: baseballstats.css

SEASON {font-size: 14pt; background-color: white;
color: black; display: block}

YEAR {display: block; font-size: 32pt; font-weight: bold;
text-align: center}

LEAGUE_NAME {display: block; text-align: center;
font-size: 28pt; font-weight: bold}

DIVISION_NAME {display: block; text-align: center;
font-size: 24pt; font-weight: bold}

TEAM_CITY {font-size: 20pt; font-weight: bold;
font-style: italic}

TEAM_NAME {font-size: 20pt; font-weight: bold;
font-style: italic}

TEAM {display: block}
PLAYER {display: block}

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 89

90 Part I ✦ Introducing XML

This completes the basic formatting for baseball statistics. However, work clearly
remains to be done. Browsers that support real table formatting would definitely
help. However, there are some other pieces as well. They are noted below in no
particular order:

✦ The numbers are presented raw with no indication of what they represent. Each
number should be identified by a caption that names it, like “RBI” or “At Bats.”

✦ Interesting data like batting average that could be calculated from the data
presented here is not included.

✦ Some of the titles are a little short. For instance, it would be nice if the title of
the document were “1998 Major League Baseball” instead of simply “1998”.

✦ If all players in the Major League were included, this document would be so
long it would be hard to read. Something similar to Internet Explorer’s
collapsible outline view for documents with no style sheet would be useful in
this situation.

✦ Because pitcher statistics are so different from batter statistics, it would be
nice to sort them separately in the roster.

Many of these points could be addressed by adding more content to the document.
For instance, to change the title “1998” to “1998 Major League Baseball,” all you
have to do is rewrite the YEAR element like this:

1998 Major League Baseball

Captions can be added to the player stats with a phantom player at the top of each
roster, like this:

<PLAYER>
<SURNAME>Surname</SURNAME>
<GIVEN_NAME>Given name</GIVEN_NAME>
<POSITION>Postion</POSITION>
<GAMES>Games</GAMES>
<GAMES_STARTED>Games Started</GAMES_STARTED>
<AT_BATS>At Bats</AT_BATS>
<RUNS>Runs</RUNS>
<HITS>Hits</HITS>
<DOUBLES>Doubles</DOUBLES>
<TRIPLES>Triples</TRIPLES>
<HOME_RUNS>Home Runs</HOME_RUNS>
<RBI>Runs Batted In</RBI>
<STEALS>Steals</STEALS>
<CAUGHT_STEALING>Caught Stealing</CAUGHT_STEALING>
<SACRIFICE_HITS>Sacrifice Hits</SACRIFICE_HITS>
<SACRIFICE_FLIES>Sacrifice Flies</SACRIFICE_FLIES>
<ERRORS>Errors</ERRORS>
<WALKS>Walks</WALKS>
<STRUCK_OUT>Struck Out</STRUCK_OUT>
<HIT_BY_PITCH>Hit By Pitch</HIT_BY_PITCH>
</PLAYER>

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 90

91Chapter 4 ✦ Structuring Data

Still, there’s something fundamentally troublesome about such tactics. The year is
1998, not “1998 Major League Baseball.” The caption “At Bats” is not the same as a
number of at bats. (It’s the difference between the name of a thing and the thing
itself.) You can encode still more markup like this:

<TABLE_HEAD>
<COLUMN_LABEL>Surname</COLUMN_LABEL>
<COLUMN_LABEL>Given name</COLUMN_LABEL>
<COLUMN_LABEL>Position</COLUMN_LABEL>
<COLUMN_LABEL>Games</COLUMN_LABEL>
<COLUMN_LABEL>Games Started</COLUMN_LABEL>
<COLUMN_LABEL>At Bats</COLUMN_LABEL>
<COLUMN_LABEL>Runs</COLUMN_LABEL>
<COLUMN_LABEL>Hits</COLUMN_LABEL>
<COLUMN_LABEL>Doubles</COLUMN_LABEL>
<COLUMN_LABEL>Triples</COLUMN_LABEL>
<COLUMN_LABEL>Home Runs</COLUMN_LABEL>
<COLUMN_LABEL>Runs Batted In</COLUMN_LABEL>
<COLUMN_LABEL>Steals</COLUMN_LABEL>
<COLUMN_LABEL>Caught Stealing</COLUMN_LABEL>
<COLUMN_LABEL>Sacrifice Hits</COLUMN_LABEL>
<COLUMN_LABEL>Sacrifice Flies</COLUMN_LABEL>
<COLUMN_LABEL>Errors</COLUMN_LABEL>
<COLUMN_LABEL>Walks</COLUMN_LABEL>
<COLUMN_LABEL>Struck Out</COLUMN_LABEL>
<COLUMN_LABEL>Hit By Pitch</COLUMN_LABEL>

</TABLE_HEAD>

However, this basically reinvents HTML, and returns us to the point of using
markup for formatting rather than meaning. Furthermore, we’re still simply
repeating the information that’s already contained in the names of the elements.
The full document is large enough as is. We’d prefer not to make it larger.

Adding batting and other averages is easy. Just include the data as additional
elements. For example, here’s a player with batting, slugging, and on-base averages:

<PLAYER>
<SURNAME>Malloy</SURNAME>
<GIVEN_NAME>Marty</GIVEN_NAME>
<POSITION>Second Base</POSITION>
<GAMES>11</GAMES>
<GAMES_STARTED>8</GAMES_STARTED>
<ON_BASE_AVERAGE>.233</ON_BASE_AVERAGE>
<SLUGGING_AVERAGE>.321</SLUGGING_AVERAGE>
<BATTING_AVERAGE>.179</BATTING_AVERAGE>
<AT_BATS>28</AT_BATS>
<RUNS>3</RUNS>
<HITS>5</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>1</HOME_RUNS>
<RBI>1</RBI>

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 91

92 Part I ✦ Introducing XML

<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>0</ERRORS>
<WALKS>2</WALKS>
<STRUCK_OUT>2</STRUCK_OUT>
<HIT_BY_PITCH>0</HIT_BY_PITCH>
</PLAYER>

However, this information is redundant because it can be calculated from the other
information already included in a player’s listing. Batting average, for example, is
simply the number of base hits divided by the number of at bats; that is,
HITS/AT_BATS. Redundant data makes maintaining and updating the document
exponentially more difficult. A simple change or addition to a single element
requires changes and recalculations in multiple locations.

What’s really needed is a different style-sheet language that enables you to add
certain boiler-plate content to elements and to perform transformations on the
element content that is present. Such a language exists — the Extensible Style
Language (XSL).

Extensible Style Language (XSL) is covered in Chapters 5, 14, and 15.

CSS is simpler than XSL and works well for basic Web pages and reasonably
straightforward documents. XSL is considerably more complex, but also more
powerful. XSL builds on the simple CSS formatting you’ve learned about here, but
also provides transformations of the source document into various forms the
reader can view. It’s often a good idea to make a first pass at a problem using CSS
while you’re still debugging your XML, then move to XSL to achieve greater
flexibility.

Summary
In this chapter, you saw examples demonstrating the creation of an XML document
from scratch. In particular you learned

✦ How to examine the data you’ll include in your XML document to identify the
elements.

✦ How to mark up the data with XML tags you define.

✦ The advantages XML formats provide over traditional formats.

✦ How to write a style sheet that says how the document should be formatted
and displayed.

Cross-
Reference

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 92

93Chapter 4 ✦ Structuring Data

This chapter was full of seat-of-the-pants/back-of-the-envelope coding. The
document was written without more than minimal concern for details. In the next
chapter, we’ll explore some additional means of embedding information in XML
documents including attributes, comments, and processing instructions, and look
at an alternative way of encoding baseball statistics in XML.

✦ ✦ ✦

3236-7 ch04.F.qc 6/29/99 1:04 PM Page 93

Attributes,
Empty Tags,
and XSL

You can encode a given set of data in XML in nearly
an infinite number of ways. There’s no one right

way to do it although some ways are more right than others,
and some are more appropriate for particular uses. In this
chapter, we explore a different solution to the problem of
marking up baseball statistics in XML, carrying over the
baseball example from the previous chapter. Specifically,
we will address the use of attributes to store information
and empty tags to define element positions. In addition,
since CSS doesn’t work well with content-less XML
elements of this form, we’ll examine an alternative —
and more powerful — style sheet language called XSL.

Attributes
In the last chapter, all data was categorized into the name of
a tag or the contents of an element. This is a straightforward
and easy-to-understand approach, but it’s not the only one.
As in HTML, XML elements may have attributes. An attribute
is a name-value pair associated with an element. The name
and the value are each strings, and no element may contain
two attributes with the same name.

You’re already familiar with attribute syntax from HTML. For
example, consider this tag:

<IMG SRC=cup.gif WIDTH=89 HEIGHT=67 ALT=”Cup
of coffee”>

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Attributes

Attributes versus
elements

Empty tags

XSL

✦ ✦ ✦ ✦

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 95

96 Part I ✦ Introducing XML

It has four attributes, the SRC attribute whose value is cup.gif, the WIDTH attribute
whose value is 89, the HEIGHT attribute whose value is 67, and the ALT attribute
whose value is Cup of coffee. However, in XML-unlike HTML-attribute values
must always be quoted and start tags must have matching close tags. Thus, the
XML equivalent of this tag is:

Another difference between HTML and XML is that XML assigns no particular
meaning to the IMG tag and its attributes. In particular, there’s no guarantee that
an XML browser will interpret this tag as an instruction to load and display the
image in the file cup.gif.

You can apply attribute syntax to the baseball example quite easily. This has the
advantage of making the markup somewhat more concise. For example, instead of
containing a YEAR child element, the SEASON element only needs a YEAR attribute.

<SEASON YEAR=”1998”>
</SEASON>

On the other hand, LEAGUE should be a child of the SEASON element rather than an
attribute. For one thing, there are two leagues in a season. Anytime there’s likely to
be more than one of something child elements are called for. Attribute names must
be unique within an element. Thus you should not, for example, write a SEASON
element like this:

<SEASON YEAR=”1998” LEAGUE=”National” League=”American”>
</SEASON>

The second reason LEAGUE is naturally a child element rather than an attribute is
that it has substructure; it is subdivided into DIVISION elements. Attribute values
are flat text. XML elements can conveniently encode structure-attribute values
cannot.

However, the name of a league is unstructured, flat text; and there’s only one name
per league so LEAGUE elements can easily have a NAME attribute instead of a
LEAGUE_NAME child element:

<LEAGUE NAME=”National League”>
</LEAGUE>

Since an attribute is more closely tied to its element than a child element is, you
don’t run into problems by using NAME instead of LEAGUE_NAME for the name of the
attribute. Divisions and teams can also have NAME attributes without any fear of
confusion with the name of a league. Since a tag can have more than one attribute
(as long as the attributes have different names), you can make a team’s city an
attribute as well, as shown below:

Note

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 96

97Chapter 5 ✦ Attributes, Empty Tags, and XSL

<LEAGUE NAME=”American League”>
<DIVISION NAME=”East”>
<TEAM NAME=”Orioles” CITY=”Baltimore”></TEAM>
<TEAM NAME=”Red Sox” CITY=”Boston”></TEAM>
<TEAM NAME=”Yankees” CITY=”New York”></TEAM>
<TEAM NAME=”Devil Rays” CITY=”Tampa Bay”></TEAM>
<TEAM NAME=”Blue Jays” CITY=”Toronto”></TEAM>
</DIVISION>

</LEAGUE>

Players will have a lot of attributes if you choose to make each statistic an attribute.
For example, here are Joe Girardi’s 1998 statistics as attributes:

<PLAYER GIVEN_NAME=”Joe” SURNAME=”Girardi”
GAMES=”78” AT_BATS=”254” RUNS=”31” HITS=”70”
DOUBLES=”11” TRIPLES=”4” HOME_RUNS=”3”
RUNS_BATTED_IN=”31” WALKS=”14” STRUCK_OUT=”38”
STOLEN_BASES=”2” CAUGHT_STEALING=”4”
SACRIFICE_FLY=”1” SACRIFICE_HIT=”8”
HIT_BY_PITCH=”2”>

</PLAYER>

Listing 5-1 uses this new attribute style for a complete XML document containing
the baseball statistics for the 1998 major league season. It displays the same
information (i.e., two leagues, six divisions, 30 teams, and nine players) as does
Listing 4-1 in the last chapter. It is merely marked up differently. Figure 5-1 shows
this document loaded into Internet Explorer 5.0 without a style sheet.

Figure 5-1: The 1998 major league baseball statistics using
attributes for most information.

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 97

98 Part I ✦ Introducing XML

Listing 5-1: A complete XML document that uses attributes to
store baseball statistics

<?xml version=”1.0” standalone=”yes”?>
<SEASON YEAR=”1998”>
<LEAGUE NAME=”National League”>
<DIVISION NAME=”East”>
<TEAM CITY=”Atlanta” NAME=”Braves”>
<PLAYER GIVEN_NAME=”Marty” SURNAME=”Malloy”
POSITION=”Second Base” GAMES=”11” GAMES_STARTED=”8”
AT_BATS=”28” RUNS=”3” HITS=”5” DOUBLES=”1”
TRIPLES=”0” HOME_RUNS=”1” RBI=”1” STEALS=”0”
CAUGHT_STEALING=”0” SACRIFICE_HITS=”0”
SACRIFICE_FLIES=”0” ERRORS=”0” WALKS=”2”
STRUCK_OUT=”2” HIT_BY_PITCH=”0”>
</PLAYER>
<PLAYER GIVEN_NAME=”Ozzie” SURNAME=”Guillen”
POSITION=”Shortstop” GAMES=”83” GAMES_STARTED=”59”
AT_BATS=”264” RUNS=”35” HITS=”73” DOUBLES=”15”
TRIPLES=”1” HOME_RUNS=”1” RBI=”22” STEALS=”1”
CAUGHT_STEALING=”4” SACRIFICE_HITS=”4”
SACRIFICE_FLIES=”2” ERRORS=”6” WALKS=”24”
STRUCK_OUT=”25” HIT_BY_PITCH=”1”>
</PLAYER>
<PLAYER GIVEN_NAME=”Danny” SURNAME=”Bautista”
POSITION=”Outfield” GAMES=”82” GAMES_STARTED=”27”
AT_BATS=”144” RUNS=”17” HITS=”36” DOUBLES=”11”
TRIPLES=”0” HOME_RUNS=”3” RBI=”17” STEALS=”1”
CAUGHT_STEALING=”0” SACRIFICE_HITS=”3”
SACRIFICE_FLIES=”2” ERRORS=”2” WALKS=”7”
STRUCK_OUT=”21” HIT_BY_PITCH=”0”>

</PLAYER>
<PLAYER GIVEN_NAME=”Gerald” SURNAME=”Williams”
POSITION=”Outfield” GAMES=”129” GAMES_STARTED=”51”
AT_BATS=”266” RUNS=”46” HITS=”81” DOUBLES=”18”
TRIPLES=”3” HOME_RUNS=”10” RBI=”44” STEALS=”11”
CAUGHT_STEALING=”5” SACRIFICE_HITS=”2”
SACRIFICE_FLIES=”1” ERRORS=”5” WALKS=”17”
STRUCK_OUT=”48” HIT_BY_PITCH=”3”>
</PLAYER>
<PLAYER GIVEN_NAME=”Tom” SURNAME=”Glavine”
POSITION=”Starting Pitcher” GAMES=”33”
GAMES_STARTED=”33” WINS=”20” LOSSES=”6” SAVES=”0”
COMPLETE_GAMES=”4” SHUT_OUTS=”3” ERA=”2.47”
INNINGS=”229.1” HOME_RUNS_AGAINST=”13”
RUNS_AGAINST=”67” EARNED_RUNS=”63” HIT_BATTER=”2”
WILD_PITCHES=”3” BALK=”0” WALKED_BATTER=”74”
STRUCK_OUT_BATTER=”157”>
</PLAYER>
<PLAYER GIVEN_NAME=”Javier” SURNAME=”Lopez”
POSITION=”Catcher” GAMES=”133” GAMES_STARTED=”124”
AT_BATS=”489” RUNS=”73” HITS=”139” DOUBLES=”21”
TRIPLES=”1” HOME_RUNS=”34” RBI=”106” STEALS=”5”

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 98

99Chapter 5 ✦ Attributes, Empty Tags, and XSL

CAUGHT_STEALING=”3” SACRIFICE_HITS=”1”
SACRIFICE_FLIES=”8” ERRORS=”5” WALKS=”30”
STRUCK_OUT=”85” HIT_BY_PITCH=”6”>
</PLAYER>
<PLAYER GIVEN_NAME=”Ryan” SURNAME=”Klesko”
POSITION=”Outfield” GAMES=”129” GAMES_STARTED=”124”
AT_BATS=”427” RUNS=”69” HITS=”117” DOUBLES=”29”
TRIPLES=”1” HOME_RUNS=”18” RBI=”70” STEALS=”5”
CAUGHT_STEALING=”3” SACRIFICE_HITS=”0”
SACRIFICE_FLIES=”4” ERRORS=”2” WALKS=”56”
STRUCK_OUT=”66” HIT_BY_PITCH=”3”>
</PLAYER>
<PLAYER GIVEN_NAME=”Andres” SURNAME=”Galarraga”
POSITION=”First Base” GAMES=”153” GAMES_STARTED=”151”
AT_BATS=”555” RUNS=”103” HITS=”169” DOUBLES=”27”
TRIPLES=”1” HOME_RUNS=”44” RBI=”121” STEALS=”7”
CAUGHT_STEALING=”6” SACRIFICE_HITS=”0”
SACRIFICE_FLIES=”5” ERRORS=”11” WALKS=”63”
STRUCK_OUT=”146” HIT_BY_PITCH=”25”>
</PLAYER>
<PLAYER GIVEN_NAME=”Wes” SURNAME=”Helms”
POSITION=”Third Base” GAMES=”7” GAMES_STARTED=”2”
AT_BATS=”13” RUNS=”2” HITS=”4” DOUBLES=”1”
TRIPLES=”0” HOME_RUNS=”1” RBI=”2” STEALS=”0”
CAUGHT_STEALING=”0” SACRIFICE_HITS=”0”
SACRIFICE_FLIES=”0” ERRORS=”1” WALKS=”0”
STRUCK_OUT=”4” HIT_BY_PITCH=”0”>
</PLAYER>

</TEAM>
<TEAM CITY=”Florida” NAME=”Marlins”>
</TEAM>
<TEAM CITY=”Montreal” NAME=”Expos”>
</TEAM>
<TEAM CITY=”New York” NAME=”Mets”>
</TEAM>
<TEAM CITY=”Philadelphia” NAME=”Phillies”>
</TEAM>

</DIVISION>
<DIVISION NAME=”Central”>
<TEAM CITY=”Chicago” NAME=”Cubs”>
</TEAM>
<TEAM CITY=”Cincinnati” NAME=”Reds”>
</TEAM>
<TEAM CITY=”Houston” NAME=”Astros”>
</TEAM>
<TEAM CITY=”Milwaukee” NAME=”Brewers”>
</TEAM>
<TEAM CITY=”Pittsburgh” NAME=”Pirates”>
</TEAM>
<TEAM CITY=”St. Louis” NAME=”Cardinals”>
</TEAM>

</DIVISION>

Continued

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 99

100 Part I ✦ Introducing XML

Listing 5-1 (continued)

<DIVISION NAME=”West”>
<TEAM CITY=”Arizona” NAME=”Diamondbacks”>
</TEAM>
<TEAM CITY=”Colorado” NAME=”Rockies”>
</TEAM>
<TEAM CITY=”Los Angeles” NAME=”Dodgers”>
</TEAM>
<TEAM CITY=”San Diego” NAME=”Padres”>
</TEAM>
<TEAM CITY=”San Francisco” NAME=”Giants”>
</TEAM>

</DIVISION>
</LEAGUE>
<LEAGUE NAME=”American League”>
<DIVISION NAME=”East”>
<TEAM CITY=”Baltimore” NAME=”Orioles”>
</TEAM>
<TEAM CITY=”Boston” NAME=”Red Sox”>
</TEAM>
<TEAM CITY=”New York” NAME=”Yankees”>
</TEAM>
<TEAM CITY=”Tampa Bay” NAME=”Devil Rays”>
</TEAM>
<TEAM CITY=”Toronto” NAME=”Blue Jays”>
</TEAM>

</DIVISION>
<DIVISION NAME=”Central”>
<TEAM CITY=”Chicago” NAME=”White Sox”>
</TEAM>
<TEAM CITY=”Kansas City” NAME=”Royals”>
</TEAM>
<TEAM CITY=”Detroit” NAME=”Tigers”>
</TEAM>
<TEAM CITY=”Cleveland” NAME=”Indians”>
</TEAM>
<TEAM CITY=”Minnesota” NAME=”Twins”>
</TEAM>

</DIVISION>
<DIVISION NAME=”West”>
<TEAM CITY=”Anaheim” NAME=”Angels”>
</TEAM>
<TEAM CITY=”Oakland” NAME=”Athletics”>
</TEAM>
<TEAM CITY=”Seattle” NAME=”Mariners”>
</TEAM>
<TEAM CITY=”Texas” NAME=”Rangers”>
</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 100

101Chapter 5 ✦ Attributes, Empty Tags, and XSL

Listing 5-1 uses only attributes for player information. Listing 4-1 used only element
content. There are intermediate approaches as well. For example, you could make
the player’s name part of element content while leaving the rest of the statistics as
attributes, like this:

<P>
On Tuesday <PLAYER GAMES=”78” AT_BATS=”254” RUNS=”31”
HITS=”70” DOUBLES=”11” TRIPLES=”4” HOME_RUNS=”3”
RUNS_BATTED_IN=”31” WALKS=”14” STRIKE_OUTS=”38”
STOLEN_BASES=”2” CAUGHT_STEALING=”4”
SACRIFICE_FLY=”1” SACRIFICE_HIT=”8”
HIT_BY_PITCH=”2”>Joe Girardi</PLAYER> struck out twice
and...

</P>

This would include Joe Girardi’s name in the text of a page while still making his
statistics available to readers who want to look deeper, as a hypertext footnote or
tool tip. There’s always more than one way to encode the same data. Which way
you pick generally depends on the needs of your specific application.

Attributes versus Elements
There are no hard and fast rules about when to use child elements and when to use
attributes. Generally, you’ll use whichever suits your application. With experience,
you’ll gain a feel for when attributes are easier than child elements and vice versa.
Until then, one good rule of thumb is that the data itself should be stored in
elements. Information about the data (meta-data) should be stored in attributes.
And when in doubt, put the information in the elements.

To differentiate between data and meta-data, ask yourself whether someone reading
the document would want to see a particular piece of information. If the answer is
yes, then the information probably belongs in a child element. If the answer is no,
then the information probably belongs in an attribute. If all tags were stripped from
the document along with all the attributes, the basic information should still be
present. Attributes are good places to put ID numbers, URLs, references, and other
information not directly or immediately relevant to the reader. However, there are
many exceptions to the basic principal of storing meta-data as attributes. These
include:

✦ Attributes can’t hold structure well.

✦ Elements allow you to include meta-meta-data (information about the
information about the information).

✦ Not everyone always agrees on what is and isn’t meta-data.

✦ Elements are more extensible in the face of future changes.

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 101

102 Part I ✦ Introducing XML

Structured Meta-data
One important principal to remember is that elements can have substructure and
attributes can’t. This makes elements far more flexible, and may convince you to
encode meta-data as child elements. For example, suppose you’re writing a paper
and you want to include a source for a fact. It might look something like this:

<FACT SOURCE=”The Biographical History of Baseball,
Donald Dewey and Nicholas Acocella (New York: Carroll &
Graf Publishers, Inc. 1995) p. 169”>
Josh Gibson is the only person in the history of baseball to
hit a pitch out of Yankee Stadium.

</FACT>

Clearly the information “The Biographical History of Baseball, Donald Dewey and
Nicholas Acocella (New York: Carroll & Graf Publishers, Inc. 1995) p. 169” is
meta-data. It is not the fact itself. Rather it is information about the fact. However,
the SOURCE attribute contains a lot of implicit substructure. You might find it more
useful to organize the information like this:

<SOURCE>
<AUTHOR>Donald Dewey</AUTHOR>
<AUTHOR>Nicholas Acocella</AUTHOR>
<BOOK>
<TITLE>The Biographical History of Baseball</TITLE>
<PAGES>169</PAGES>
<YEAR>1995</YEAR>

</BOOK>
</SOURCE>

Furthermore, using elements instead of attributes makes it straightforward to
include additional information like the authors’ e-mail addresses, a URL where an
electronic copy of the document can be found, the title or theme of the particular
issue of the journal, and anything else that seems important.

Dates are another common example. One common piece of meta-data about
scholarly articles is the date the article was first received. This is important for
establishing priority of discovery and invention. It’s easy to include a DATE
attribute in an ARTICLE tag like this:

<ARTICLE DATE=”06/28/1969”>
Polymerase Reactions in Organic Compounds

</ARTICLE>

However, the DATE attribute has substructure signified by the /. Getting that
structure out of the attribute value, however, is much more difficult than reading
child elements of a DATE element, as shown below:

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 102

103Chapter 5 ✦ Attributes, Empty Tags, and XSL

<DATE>
<YEAR>1969</YEAR>
<MONTH>06</MONTH>
<DAY>28</DAY>

</DATE>

For instance, with CSS or XSL, it’s easy to format the day and month invisibly so
that only the year appears. For example, using CSS:

YEAR {display: inline}
MONTH {display: none}
DAY {display: none}

If the DATE is stored as an attribute, however, there’s no easy way to access only
part of it. You must write a separate program in a programming language like
ECMAScript or Java that can parse your date format. It’s easier to use the standard
XML tools and child elements.

Furthermore, the attribute syntax is ambiguous. What does the date “10/11/1999”
signify? In particular, is it October 11th or November 10th? Readers from different
countries will interpret this data differently. Even if your parser understands one
format, there’s no guarantee the people entering the data will enter it correctly. The
XML, by contrast, is unambiguous.

Finally, using DATE children rather than attributes allows more than one date to be
associated with an element. For instance, scholarly articles are often returned to
the author for revisions. In these cases, it can also be important to note when the
revised article was received. For example:

<ARTICLE>
<TITLE>
Maximum Projectile Velocity in an Augmented Railgun

</TITLE>
<AUTHOR>Elliotte Harold</AUTHOR>
<AUTHOR>Bruce Bukiet</AUTHOR>
<AUTHOR>William Peter</AUTHOR>
<DATE>
<YEAR>1992</YEAR>
<MONTH>10</MONTH>
<DAY>29</DAY>

</DATE>
<DATE>
<YEAR>1993</YEAR>
<MONTH>10</MONTH>
<DAY>26</DAY>

</DATE>
</ARTICLE>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 103

104 Part I ✦ Introducing XML

As another example, consider the ALT attribute of an IMG tag in HTML. This is
limited to a single string of text. However, given that a picture is worth a thousand
words, you might well want to replace an IMG with marked up text. For instance,
consider the pie chart shown in Figure 5-2.

Figure 5-2: Distribution of positions in major league baseball

Using an ALT attribute, the best description of this picture you can provide is:

<IMG SRC=”05021.gif”
ALT=”Pie Chart of Positions in Major League Baseball”
WIDTH=”819” HEIGHT=”623”>

However, with an ALT child element, you have more flexibility because you can
embed markup. For example, you might provide a table of the relevant numbers
instead of a pie chart.

Major League Baseball Positions

6%

6%

7%
6%

20%

27%

9%

19%

Starting Pitcher Relief Pitcher Catcher Outfield First Base Shortstop Second Base Third Base

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 104

105Chapter 5 ✦ Attributes, Empty Tags, and XSL

<ALT>
<TABLE>
<TR>
<TD>Starting Pitcher</TD> <TD>242</TD> <TD>20%</TD>

</TR>
<TR>
<TD>Relief Pitcher</TD> <TD>336</TD> <TD>27%</TD>

</TR>
<TR>
<TD>Catcher</TD> <TD>104</TD> <TD>9%</TD>

</TR>
<TR>
<TD>Outfield</TD> <TD>235</TD> <TD>19%</TD>

</TR>
<TR>
<TD>First Base</TD> <TD>67</TD> <TD>6%</TD>

</TR>
<TR>
<TD>Shortstop</TD> <TD>67</TD> <TD>6%</TD>

</TR>
<TR>
<TD>Second Base</TD> <TD>88</TD> <TD>7%</TD>

</TR>
<TR>
<TD>Third Base</TD> <TD>67</TD> <TD>6%</TD>

</TR>
</TABLE>

</ALT>

You might even provide the actual Postscript, SVG, or VML code to render the
picture in the event that the bitmap image is not available.

Meta-Meta-Data
Using elements for meta-data also easily allows for meta-meta-data, or information
about the information about the information. For example, the author of a poem
may be considered to be meta-data about the poem. The language in which that
author’s name is written is data about the meta-data about the poem. This isn’t a
trivial concern, especially for distinctly non-Roman languages. For instance, is the
author of the Odyssey Homer or ______? If you use elements, it’s easy to write:

<POET LANGUAGE=”English”>Homer</POET>
<POET LANGUAGE=”Greek”>______</POET>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 105

106 Part I ✦ Introducing XML

However, if POET is an attribute rather than a child element, you’re stuck with
unwieldy constructs like this:

<POEM POET=”Homer” POET_LANGUAGE=”English”
POEM_LANGUAGE=”English”>Homer
Tell me, O Muse, of the cunning man...

</POEM>

And it’s even more bulky if you want to provide both the poet’s English and Greek
names.

<POEM POET_NAME_1=”Homer” POET_LANGUAGE_1=”English”
POET_NAME_2=”______” POET_LANGUAGE_2=”Greek”
POEM_LANGUAGE=”English”>Homer
Tell me, O Muse, of the cunning man...

</POEM>

What’s Your Meta-data Is Someone Else’s Data
“Metaness” is in the mind of the beholder. Who is reading your document and why
they are reading it determines what they consider to be data and what they consider
to be meta-data. For example, if you’re simply reading an article in a scholarly journal,
then the author of the article is tangential to the information it contains. However, if
you’re sitting on a tenure and promotions committee scanning a journal to see who is
publishing and who is not, then the names of the authors and the number of articles
they’ve published may be more important to you than what they wrote (sad but true).

In fact, you may change your mind about what’s meta and what’s data. What’s only
tangentially relevant today, may become crucial to you next week. You can use style
sheets to hide unimportant elements today, and change the style sheets to reveal
them later. However, it’s more difficult to later reveal information that was first
stored in an attribute. Usually, this requires rewriting the document itself rather
than simply changing the style sheet.

Elements Are More Extensible
Attributes are certainly convenient when you only need to convey one or two
words of unstructured information. In these cases, there may genuinely be no
current need for a child element. However, this doesn’t preclude such a need
in the future.

For instance, you may now only need to store the name of the author of an article,
and you may not need to distinguish between the first and last names. However, in
the future you may uncover a need to store first and last names, e-mail addresses,
institution, snail mail address, URL, and more. If you’ve stored the author of the
article as an element, then it’s easy to add child elements to include this additional
information.

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 106

107Chapter 5 ✦ Attributes, Empty Tags, and XSL

Although any such change will probably require some revision of your documents,
style sheets, and associated programs, it’s still much easier to change a simple
element to a tree of elements than it is to make an attribute a tree of elements.
However, if you used an attribute, then you’re stuck. It’s quite difficult to extend
your attribute syntax beyond the region it was originally designed for.

Good Times to Use Attributes
Having exhausted all the reasons why you should use elements instead of
attributes, I feel compelled to point out that there are nonetheless some times when
attributes make sense. First of all, as previously mentioned, attributes are fully
appropriate for very simple data without substructure that the reader is unlikely to
want to see. One example is the HEIGHT and WIDTH attributes of an IMG. Although
the values of these attributes may change if the image changes, it’s hard to imagine
how the data in the attribute could be anything more than a very short string of
text. HEIGHT and WIDTH are one-dimensional quantities (in more ways than one) so
they work well as attributes.

Furthermore, attributes are appropriate for simple information about the document
that has nothing to do with the content of the document. For example, it is often
useful to assign an ID attribute to each element. This is a unique string possessed
only by one element in the document. You can then use this string for a variety of
tasks including linking to particular elements of the document, even if the elements
move around as the document changes over time. For example:

<SOURCE ID=”S1”>
<AUTHOR ID=”A1”>Donald Dewey</AUTHOR>
<AUTHOR ID=”A2”>Nicholas Acocella</AUTHOR>
<BOOK ID=”B1”>
<TITLE ID=”B2”>
The Biographical History of Baseball

</TITLE>
<PAGES ID=”B3”>169</PAGES>
<YEAR ID=”B4”>1995</YEAR>

</BOOK>
</SOURCE>

ID attributes make links to particular elements in the document possible. In this
way, they can serve the same purpose as the NAME attribute of HTML’s A elements.
Other data associated with linking —HREFs to link to, SRCs to pull images and
binary data from, and so forth — also work well as attributes.

You’ll see more examples of this when XLL, the Extensible Linking Language, is dis-
cussed in Chapter 16, XLinks, and Chapter 17, XPointers.

Cross-
Reference

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 107

108 Part I ✦ Introducing XML

Attributes are also often used to store document-specific style information. For
example, if TITLE elements are generally rendered as bold text but if you want
to make just one TITLE element both bold and italic, you might write something
like this:

<TITLE style=”font-style: italic”>Significant Others</TITLE>

This enables the style information to be embedded without changing the tree
structure of the document. While ideally you’d like to use a separate element, this
scheme gives document authors somewhat more control when they cannot add
elements to the tag set they’re working with. For example, the Webmaster of a site
might require the use of a particular DTD and not want to allow everyone to modify
the DTD. Nonetheless, they want to allow them to make minor adjustments to
individual pages. Use this scheme with restraint, however, or you’ll soon find
yourself back in the HTML hell XML was supposed to save us from, where
formatting is freely intermixed with meaning and documents are no longer
maintainable.

The final reason to use attributes is to maintain compatibility with HTML. To the
extent that you’re using tags that at least look similar to HTML such as , <P>,
and <TD>, you might as well employ the standard HTML attributes for these tags.
This has the double advantage of enabling legacy browsers to at least partially
parse and display your document, and of being more familiar to the people writing
the documents.

Empty Tags
Last chapter’s no-attribute approach was an extreme position. It’s also possible to
swing to the other extreme — storing all the information in the attributes and none
in the content. In general, I don’t recommend this approach. Storing all the
information in element content — while equally extreme — is much easier to work
with in practice. However, this section entertains the possibility of using only
attributes for the sake of elucidation.

As long as you know the element will have no content, you can use empty tags as a
short cut. Rather than including both a start and an end tag you can include one
empty tag. Empty tags are distinguished from start tags by a closing /> instead of
simply a closing >. For instance, instead of <PLAYER></PLAYER> you would write
<PLAYER/>.

Empty tags may contain attributes. For example, here’s an empty tag for Joe Girardi
with several attributes:

<PLAYER GIVEN_NAME=”Joe” SURNAME=”Girardi”
GAMES=”78” AT_BATS=”254” RUNS=”31” HITS=”70”
DOUBLES=”11” TRIPLES=”4” HOME_RUNS=”3”
RUNS_BATTED_IN=”31” WALKS=”14” STRUCK_OUT=”38”
STOLEN_BASES=”2” CAUGHT_STEALING=”4”

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 108

109Chapter 5 ✦ Attributes, Empty Tags, and XSL

SACRIFICE_FLY=”1” SACRIFICE_HIT=”8”
HIT_BY_PITCH=”2”/>

XML parsers treat this identically to the non-empty equivalent. This PLAYER
element is precisely equal (though not identical) to the previous PLAYER element
formed with an empty tag.

<PLAYER GIVEN_NAME=”Joe” SURNAME=”Girardi”
GAMES=”78” AT_BATS=”254” RUNS=”31” HITS=”70”
DOUBLES=”11” TRIPLES=”4” HOME_RUNS=”3”
RUNS_BATTED_IN=”31” WALKS=”14” STRUCK_OUT=”38”
STOLEN_BASES=”2” CAUGHT_STEALING=”4”
SACRIFICE_FLY=”1” SACRIFICE_HIT=”8”
HIT_BY_PITCH=”2”></PLAYER>

The difference between <PLAYER/> and <PLAYER></PLAYER> is syntactic sugar,
and nothing more. If you don’t like the empty tag syntax, or find it hard to read, you
don’t have to use it.

XSL
Attributes are visible in an XML source view of the document as shown in Figure
5-1. However, once a CSS style sheet is applied the attributes disappear. Figure 5-3
shows Listing 5-1 once the baseball stats style sheet from the previous chapter is
applied. It looks like a blank document because CSS styles only apply to element
content, not to attributes. If you use CSS, any data you want to display to the
reader should be part of an element’s content rather than one of its attributes.

Figure 5-3: A blank document is displayed when CSS is applied
to an XML document whose elements do not contain any
character data.

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 109

110 Part I ✦ Introducing XML

However, there is an alternative style sheet language that does allow you to access
and display attribute data. This language is the Extensible Style Language (XSL);
and it is also supported by Internet Explorer 5.0, at least in part. XSL is divided into
two sections, transformations and formatting.

The transformation part of XSL enables you to replace one tag with another. You
can define rules that replace your XML tags with standard HTML tags, or with
HTML tags plus CSS attributes. You can also do a lot more including reordering the
elements in the document and adding additional content that was never present in
the XML document.

The formatting part of XSL defines an extremely powerful view of documents as
pages. XSL formatting enables you to specify the appearance and layout of a page
including multiple columns, text flow around objects, line spacing, assorted font
properties, and more. It’s designed to be powerful enough to handle automated
layout tasks for both the Web and print from the same source document. For
instance, XSL formatting would allow one XML document containing show times
and advertisements to generate both the print and online editions of a local
newspaper’s television listings. However, IE 5.0 and most other tools do not yet
support XSL formatting. Therefore, in this section I’ll focus on XSL transformations.

XSL formatting is discussed in Chapter 15, XSL Formatting Objects.

XSL Style Sheet Templates
An XSL style sheet contains templates into which data from the XML document is
poured. For example, one template might look something like this:

<HTML>
<HEAD>
<TITLE>
XSL Instructions to get the title

</TITLE>
</HEAD>
<H1>XSL Instructions to get the title</H1>
<BODY>
XSL Instructions to get the statistics

</BODY>
</HTML>

The italicized sections will be replaced by particular XSL elements that copy data
from the underlying XML document into this template. You can apply this template
to many different data sets. For instance, if the template is designed to work with
the baseball example, then the same style sheet can display statistics from different
seasons.

Cross-
Reference

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 110

111Chapter 5 ✦ Attributes, Empty Tags, and XSL

This may remind you of some server-side include schemes for HTML. In fact, this
is very much like server-side includes. However, the actual transformation of the
source XML document and XSL style sheet takes place on the client rather than on
the server. Furthermore, the output document does not have to be HTML. It can be
any well-formed XML.

XSL instructions can retrieve any data stored in the elements of the XML document.
This includes element content, element names, and, most importantly for our
example, element attributes. Particular elements are chosen by a pattern that
considers the element’s name, its value, its attributes’ names and values, its
absolute and relative position in the tree structure of the XML document, and
more. Once the data is extracted from an element, it can be moved, copied, and
manipulated in a variety of ways. We won’t cover everything you can do with XML
transformations in this brief introduction. However, you will learn to use XSL to
write some pretty amazing documents that can be viewed on the Web right away.

Chapter 14, XSL Transformations, covers XSL transformations in depth.

The Body of the Document
Let’s begin by looking at a simple example and applying it to the XML document
with baseball statistics shown in Listing 5-1. Listing 5-2 is an XSL style sheet. This
style sheet provides the HTML mold into which XML data will be poured.

Listing 5-2: An XSL style sheet

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

<xsl:template match=”/”>
<HTML xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>
<HEAD>
<TITLE>
Major League Baseball Statistics

</TITLE>
</HEAD>
<BODY>
<H1>Major League Baseball Statistics</H1>

<HR></HR>
Copyright 1999

Elliotte Rusty Harold

Continued

Cross-
Reference

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 111

112 Part I ✦ Introducing XML

Listing 5-2 (continued)

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

It resembles an HTML file included inside an xsl:template element. In other
words its structure looks like this:

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

<xsl:template match=”/”>
HTML file goes here

</xsl:template>

</xsl:stylesheet>

Listing 5-2 is not only an XSL style sheet; it’s also a well-formed XML document.
It begins with an XML declaration. The root element of this document is xsl:
stylesheet. This style sheet contains a single template for the XML data
encoded as an xsl:template element. The xsl:template element has a match
attribute with the value / and its content is a well-formed HTML document. It’s
not a coincidence that the output HTML is well-formed. Because the HTML must
first be part of an XSL style sheet, and because XSL style sheets are well-formed
XML documents, all the HTML in a XSL style sheet must be well-formed.

The Web browser tries to match parts of the XML document against each
xsl:template element. The / template matches the root of the document; that is
the entire document itself. The browser reads the template and inserts data from
the XML document where indicated by XSL instructions. However, this particular
template contains no XSL instructions, so its contents are merely copied verbatim
into the Web browser, producing the output you see in Figure 5-4. Notice that Figure
5-4 does not display any data from the XML document, only from the XSL template.

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 112

113Chapter 5 ✦ Attributes, Empty Tags, and XSL

Attaching the XSL style sheet of Listing 5-2 to the XML document in Listing 5-1 is
straightforward. Simply add a <?xml-stylesheet?> processing instruction with a
type attribute with value text/xsl and an href attribute that points to the style
sheet between the XML declaration and the root element. For example:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”5-2.xsl”?>
<SEASON YEAR=”1998”>
...

This is the same way a CSS style sheet is attached to a document. The only
difference is that the type attribute is text/xsl instead of text/css.

Figure 5-4: The data from the XML document, not the XSL
template, is missing after application of the XSL style sheet in
Listing 5-2.

The Title
Of course there was something rather obvious missing from Figure 5-4 — the data!
Although the style sheet in Listing 5-2 displays something (unlike the CSS style
sheet of Figure 5-3) it doesn’t show any data from the XML document. To add this,
you need to use XSL instruction elements to copy data from the source XML
document into the XSL template. Listing 5-3 adds the necessary XSL instructions to
extract the YEAR attribute from the SEASON element and insert it in the TITLE and
H1 header of the resulting document. Figure 5-5 shows the rendered document.

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 113

114 Part I ✦ Introducing XML

Listing 5-3: An XSL style sheet with instructions to extract the
SEASON element and YEAR attribute

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

<xsl:template match=”/”>
<HTML xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>
<HEAD>
<TITLE>
<xsl:for-each select=”SEASON”>
<xsl:value-of select=”@YEAR”/>

</xsl:for-each>
Major League Baseball Statistics

</TITLE>
</HEAD>
<BODY>

<xsl:for-each select=”SEASON”>
<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>
</xsl:for-each>

<HR></HR>
Copyright 1999

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

The new XSL instructions that extract the YEAR attribute from the SEASON element are:

<xsl:for-each select=”SEASON”>
<xsl:value-of select=”@YEAR”/>

</xsl:for-each>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 114

115Chapter 5 ✦ Attributes, Empty Tags, and XSL

Figure 5-5: Listing 5-1 after application of the XSL style sheet
in Listing 5-3

These instructions appear twice because we want the year to appear twice in the
output document-once in the H1 header and once in the TITLE. Each time they
appear, these instructions do the same thing. <xsl:for-each select=”SEASON”>
finds all SEASON elements. <xsl:value-of select=”@YEAR”/> inserts the value
of the YEAR attribute of the SEASON element — that is, the string “1998” — found by
<xsl:for-each select=”SEASON”>.

This is important, so let me say it again: xsl:for-each selects a particular XML
element in the source document (Listing 5-1 in this case) from which data will be
read. xsl:value-of copies a particular part of the element into the output
document. You need both XSL instructions. Neither alone is sufficient.

XSL instructions are distinguished from output elements like HTML and H1 because
the instructions are in the xsl namespace. That is, the names of all XSL elements
begin with xsl:. The namespace is identified by the xmlns:xsl attribute of the
root element of the style sheet. In Listings 5-2, 5-3, and all other examples in this
book, the value of that attribute is http://www.w3.org/TR/WD-xsl.

Namespaces are covered in depth in Chapter 18, Namespaces.

Leagues, Divisions, and Teams
Next, let’s add some XSL instructions to pull out the two LEAGUE elements. We’ll
map these to H2 headers. Listing 5-4 demonstrates. Figure 5-6 shows the document
rendered with this style sheet.

Cross-
Reference

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 115

116 Part I ✦ Introducing XML

Listing 5-4: An XSL style sheet with instructions to extract
LEAGUE elements

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

<xsl:template match=”/”>
<HTML xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>
<HEAD>
<TITLE>
<xsl:for-each select=”SEASON”>
<xsl:value-of select=”@YEAR”/>

</xsl:for-each>

Major League Baseball Statistics
</TITLE>

</HEAD>
<BODY>

<xsl:for-each select=”SEASON”>
<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>

</H2>
</xsl:for-each>

</xsl:for-each>

<HR></HR>
Copyright 1999

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 116

117Chapter 5 ✦ Attributes, Empty Tags, and XSL

Figure 5-6: The league names are displayed as H2 headers when
the XSL style sheet in Listing 5-4 is applied.

The key new materials are the nested xsl:for-each instructions

<xsl:for-each select=”SEASON”>
<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>

</H2>
</xsl:for-each>

</xsl:for-each>

The outermost instruction says to select the SEASON element. With that element
selected, we then find the YEAR attribute of that element and place it between <H1>
and </H1> along with the extra text Major League Baseball Statistics. Next,
the browser loops through each LEAGUE child of the selected SEASON and places
the value of its NAME attribute between <H2 ALIGN=”CENTER”> and </H2>.
Although there’s only one xsl:for-each matching a LEAGUE element, it loops over
all the LEAGUE elements that are immediate children of the SEASON element. Thus,
this template works for anywhere from zero to an indefinite number of leagues.

The same technique can be used to assign H3 headers to divisions and H4 headers to
teams. Listing 5-5 demonstrates the procedure and Figure 5-7 shows the document
rendered with this style sheet. The names of the divisions and teams are read from
the XML data.

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 117

118 Part I ✦ Introducing XML

Listing 5-5: An XSL style sheet with instructions to extract
DIVISION and TEAM elements

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

<xsl:template match=”/”>
<HTML xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>
<HEAD>
<TITLE>
<xsl:for-each select=”SEASON”>
<xsl:value-of select=”@YEAR”/>

</xsl:for-each>

Major League Baseball Statistics
</TITLE>

</HEAD>
<BODY>

<xsl:for-each select=”SEASON”>
<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>

</H2>

<xsl:for-each select=”DIVISION”>
<H3 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>
</H3>

<xsl:for-each select=”TEAM”>
<H4 ALIGN=”CENTER”>
<xsl:value-of select=”@CITY”/>
<xsl:value-of select=”@NAME”/>
</H4>

</xsl:for-each>
</xsl:for-each>

</xsl:for-each>
</xsl:for-each>

<HR></HR>
Copyright 1999

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 118

119Chapter 5 ✦ Attributes, Empty Tags, and XSL

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Figure 5-7: Divisions and team names are displayed after
application of the XSL style sheet in Listing 5-5.

In the case of the TEAM elements, the values of both its CITY and NAME attributes
are used as contents for the H4 header. Also notice that the nesting of the xsl:for-
each elements that selects seasons, leagues, divisions, and teams mirrors the
hierarchy of the document itself. That’s not a coincidence. While other schemes are
possible that don’t require matching hierarchies, this is the simplest, especially for
highly structured data like the baseball statistics of Listing 5-1.

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 119

120 Part I ✦ Introducing XML

Players
The next step is to add statistics for individual players on a team. The most natural
way to do this is in a table. Listing 5-6 shows an XSL style sheet that arranges the
players and their stats in a table. No new XSL elements are introduced. The same
xsl:for-each and xsl:value-of elements are used on the PLAYER element and
its attributes. The output is standard HTML table tags. Figure 5-8 displays the
results.

Listing 5-6: An XSL style sheet that places players and their
statistics in a table

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

<xsl:template match=”/”>
<HTML xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>
<HEAD>
<TITLE>
<xsl:for-each select=”SEASON”>
<xsl:value-of select=”@YEAR”/>

</xsl:for-each>

Major League Baseball Statistics
</TITLE>

</HEAD>
<BODY>

<xsl:for-each select=”SEASON”>
<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>

</H2>

<xsl:for-each select=”DIVISION”>
<H3 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>
</H3>

<xsl:for-each select=”TEAM”>
<H4 ALIGN=”CENTER”>
<xsl:value-of select=”@CITY”/>
<xsl:value-of select=”@NAME”/>
</H4>

<TABLE>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 120

121Chapter 5 ✦ Attributes, Empty Tags, and XSL

<THEAD>
<TR>
<TH>Player</TH><TH>P</TH><TH>G</TH>
<TH>GS</TH><TH>AB</TH><TH>R</TH><TH>H</TH>
<TH>D</TH><TH>T</TH><TH>HR</TH><TH>RBI</TH>
<TH>S</TH><TH>CS</TH><TH>SH</TH><TH>SF</TH>
<TH>E</TH><TH>BB</TH><TH>SO</TH><TH>HBP</TH>
</TR>
</THEAD>
<TBODY>
<xsl:for-each select=”PLAYER”>
<TR>
<TD>
<xsl:value-of select=”@GIVEN_NAME”/>
<xsl:value-of select=”@SURNAME”/>
</TD>
<TD><xsl:value-of select=”@POSITION”/></TD>
<TD><xsl:value-of select=”@GAMES”/></TD>
<TD>
<xsl:value-of select=”@GAMES_STARTED”/>

</TD>
<TD><xsl:value-of select=”@AT_BATS”/></TD>
<TD><xsl:value-of select=”@RUNS”/></TD>
<TD><xsl:value-of select=”@HITS”/></TD>
<TD><xsl:value-of select=”@DOUBLES”/></TD>
<TD><xsl:value-of select=”@TRIPLES”/></TD>
<TD><xsl:value-of select=”@HOME_RUNS”/></TD>
<TD><xsl:value-of select=”@RBI”/></TD>
<TD><xsl:value-of select=”@STEALS”/></TD>
<TD>
<xsl:value-of select=”@CAUGHT_STEALING”/>
</TD>
<TD>
<xsl:value-of select=”@SACRIFICE_HITS”/>
</TD>
<TD>
<xsl:value-of select=”@SACRIFICE_FLIES”/>
</TD>
<TD><xsl:value-of select=”@ERRORS”/></TD>
<TD><xsl:value-of select=”@WALKS”/></TD>
<TD>
<xsl:value-of select=”@STRUCK_OUT”/>
</TD>
<TD>
<xsl:value-of select=”@HIT_BY_PITCH”/>
</TD>
</TR>
</xsl:for-each>
</TBODY>
</TABLE>

</xsl:for-each>

Continued

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 121

122 Part I ✦ Introducing XML

Listing 5-6 (continued)

</xsl:for-each>

</xsl:for-each>
</xsl:for-each>

<HR></HR>
Copyright 1999

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Separation of Pitchers and Batters
One discrepancy you may have noted in Figure 5-8 is that the pitchers aren’t handled
properly. Throughout this chapter and Chapter 4, we’ve always given the pitchers
a completely different set of statistics, whether those stats were stored in element
content or attributes. Therefore, the pitchers really need a table that is separate from
the other players. Before putting a player into the table, you must test whether he is
or is not a pitcher. If his POSITION attribute contains the string “pitcher” then omit
him. Then reverse the procedure in a second table that only includes pitchers-PLAYER
elements whose POSITION attribute contains the string “pitcher”.

To do this, you have to add additional code to the xsl:for-each element that
selects the players. You don’t select all players. Instead, you select those players
whose POSITION attribute is not pitcher. The syntax looks like this:

<xsl:for-each select=”PLAYER[(@POSITION != ‘Pitcher’)”>

But because the XML document distinguishes between starting and relief pitchers,
the true answer must test both cases:

<xsl:for-each select=”PLAYER[(@POSITION != ‘Starting Pitcher’)
and (@POSITION != ‘Relief Pitcher’)]”>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 122

123Chapter 5 ✦ Attributes, Empty Tags, and XSL

Figure 5-8: Player statistics are displayed after applying the XSL style
sheet in Listing 5-6.

For the table of pitchers, you logically reverse this to the position being equal to
either “Starting Pitcher” or “Relief Pitcher”. (It is not sufficient to just change not
equal to equal. You also have to change and to or.) The syntax looks like this:

<xsl:for-each select=”PLAYER[(@POSITION = ‘Starting Pitcher’)
or (@POSITION = ‘Relief Pitcher’)]”>

Only a single equals sign is used to test for equality rather than the double equals
sign used in C and Java. That’s because there’s no equivalent of an assignment
operator in XSL.

Listing 5-7 shows an XSL style sheet separating the batters and pitchers into two
different tables. The pitchers’ table adds columns for all the usual pitcher statistics.
Listing 5-1 encodes in attributes: wins, losses, saves, shutouts, etc. Abbreviations
are used for the column labels to keep the table to a manageable width. Figure 5-9
shows the results.

Note

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 123

124 Part I ✦ Introducing XML

Listing 5-7: An XSL style sheet that separates batters
and pitchers

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

<xsl:template match=”/”>
<HTML xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>
<HEAD>
<TITLE>
<xsl:for-each select=”SEASON”>
<xsl:value-of select=”@YEAR”/>

</xsl:for-each>

Major League Baseball Statistics
</TITLE>

</HEAD>
<BODY>

<xsl:for-each select=”SEASON”>
<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>

</H2>

<xsl:for-each select=”DIVISION”>
<H3 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>
</H3>

<xsl:for-each select=”TEAM”>
<H4 ALIGN=”CENTER”>
<xsl:value-of select=”@CITY”/>
<xsl:value-of select=”@NAME”/>
</H4>

<TABLE>
<CAPTION>Batters</CAPTION>
<THEAD>
<TR>
<TH>Player</TH><TH>P</TH><TH>G</TH>
<TH>GS</TH><TH>AB</TH><TH>R</TH><TH>H</TH>
<TH>D</TH><TH>T</TH><TH>HR</TH><TH>RBI</TH>
<TH>S</TH><TH>CS</TH><TH>SH</TH><TH>SF</TH>
<TH>E</TH><TH>BB</TH><TH>SO</TH>
<TH>HBP</TH>
</TR>
</THEAD>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 124

125Chapter 5 ✦ Attributes, Empty Tags, and XSL

<TBODY>
<xsl:for-each select=”PLAYER[(@POSITION
!= ‘Starting Pitcher’)
and (@POSITION != ‘Relief Pitcher’)]”>
<TR>
<TD>
<xsl:value-of select=”@GIVEN_NAME”/>
<xsl:value-of select=”@SURNAME”/>
</TD>
<TD><xsl:value-of select=”@POSITION”/></TD>
<TD><xsl:value-of select=”@GAMES”/></TD>
<TD>
<xsl:value-of select=”@GAMES_STARTED”/>

</TD>
<TD><xsl:value-of select=”@AT_BATS”/></TD>
<TD><xsl:value-of select=”@RUNS”/></TD>
<TD><xsl:value-of select=”@HITS”/></TD>
<TD><xsl:value-of select=”@DOUBLES”/></TD>
<TD><xsl:value-of select=”@TRIPLES”/></TD>
<TD>
<xsl:value-of select=”@HOME_RUNS”/>

</TD>
<TD><xsl:value-of select=”@RBI”/></TD>
<TD><xsl:value-of select=”@STEALS”/></TD>
<TD>
<xsl:value-of select=”@CAUGHT_STEALING”/>
</TD>
<TD>
<xsl:value-of select=”@SACRIFICE_HITS”/>
</TD>
<TD>
<xsl:value-of select=”@SACRIFICE_FLIES”/>
</TD>
<TD><xsl:value-of select=”@ERRORS”/></TD>
<TD><xsl:value-of select=”@WALKS”/></TD>
<TD>
<xsl:value-of select=”@STRUCK_OUT”/>
</TD>
<TD>
<xsl:value-of select=”@HIT_BY_PITCH”/>
</TD>
</TR>
</xsl:for-each> <!— PLAYER —>
</TBODY>
</TABLE>

<TABLE>
<CAPTION>Pitchers</CAPTION>
<THEAD>
<TR>
<TH>Player</TH><TH>P</TH><TH>G</TH>
<TH>GS</TH><TH>W</TH><TH>L</TH><TH>S</TH>

Continued

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 125

126 Part I ✦ Introducing XML

Listing 5-7 (continued)

<TH>CG</TH><TH>SO</TH><TH>ERA</TH>
<TH>IP</TH><TH>HR</TH><TH>R</TH><TH>ER</TH>
<TH>HB</TH><TH>WP</TH><TH>B</TH><TH>BB</TH>
<TH>K</TH>
</TR>
</THEAD>
<TBODY>
<xsl:for-each select=”PLAYER[(@POSITION
= ‘Starting Pitcher’)
or (@POSITION = ‘Relief Pitcher’)]”>
<TR>
<TD>
<xsl:value-of select=”@GIVEN_NAME”/>
<xsl:value-of select=”@SURNAME”/>
</TD>
<TD><xsl:value-of select=”@POSITION”/></TD>
<TD><xsl:value-of select=”@GAMES”/></TD>
<TD>
<xsl:value-of select=”@GAMES_STARTED”/>

</TD>
<TD><xsl:value-of select=”@WINS”/></TD>
<TD><xsl:value-of select=”@LOSSES”/></TD>
<TD><xsl:value-of select=”@SAVES”/></TD>
<TD>
<xsl:value-of select=”@COMPLETE_GAMES”/>
</TD>
<TD>
<xsl:value-of select=”@SHUT_OUTS”/>
</TD>
<TD><xsl:value-of select=”@ERA”/></TD>
<TD><xsl:value-of select=”@INNINGS”/></TD>
<TD>
<xsl:value-of select=”@HOME_RUNS_AGAINST”/>
</TD>
<TD>
<xsl:value-of select=”@RUNS_AGAINST”/>
</TD>
<TD>
<xsl:value-of select=”@EARNED_RUNS”/>
</TD>
<TD>
<xsl:value-of select=”@HIT_BATTER”/>
</TD>
<TD>
<xsl:value-of select=”@WILD_PITCH”/>

</TD>
<TD><xsl:value-of select=”@BALK”/></TD>
<TD>
<xsl:value-of select=”@WALKED_BATTER”/>
</TD>
<TD>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 126

127Chapter 5 ✦ Attributes, Empty Tags, and XSL

<xsl:value-of select=”@STRUCK_OUT_BATTER”/>
</TD>
</TR>
</xsl:for-each> <!— PLAYER —>
</TBODY>

</TABLE>

</xsl:for-each> <!— TEAM —>
</xsl:for-each> <!— DIVISION —>

</xsl:for-each> <!— LEAGUE —>
</xsl:for-each> <!— SEASON —>

<HR></HR>
Copyright 1999

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Figure 5-9: Pitchers are distinguished from other players
after applying the XSL style sheet in Listing 5-7.

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 127

128 Part I ✦ Introducing XML

Element Contents and the select Attribute In this chapter, I focused on using XSL to
format data stored in the attributes of an element because it isn’t accessible when
using CSS. However, XSL works equally well when you want to include an element’s
character data rather than (or in addition to) its attributes. To indicate that an
element’s text is to be copied into the output document, simply use the element’s
name as the value of the select attribute of the xsl:value-of element. For
example, consider, once again, Listing 5-8:

Listing 5-8greeting.xml<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/xsl” href=”greeting.xsl”?>
<GREETING>
Hello XML!
</GREETING>

Let’s suppose you want to copy the greeting “Hello XML!” into an H1 header. First,
you use xsl:for-each to select the GREETING element:

<xsl:for-each select=”GREETING”>
<H1>
</H1>

</xsl:for-each>

This alone is enough to copy the two H1 tags into the output. To place the text of
the GREETING element between them, use xsl:value-of with no select attribute.
Then, by default, the contents of the current element (GREETING) are selected.
Listing 5-9 shows the complete style sheet.

Listing 5-9: greeting.xsl

<?xml version=”1.0” ?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>
<xsl:template match=”/”>
<HTML>
<BODY>
<xsl:for-each select=”GREETING”>
<H1>
<xsl:value-of/>

</H1>
</xsl:for-each>

</BODY>
</HTML>

</xsl:template>
</xsl:stylesheet>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 128

129Chapter 5 ✦ Attributes, Empty Tags, and XSL

You can also use select to choose the contents of a child element. Simply make the
name of the child element the value of the select attribute of xsl:value-of. For
instance, consider the baseball example from the previous chapter in which each
player’s statistics were stored in child elements rather than in attributes. Given this
structure of the document (which is actually far more likely than the attribute-based
structure of this chapter) the XSL for the batters’ table looks like this:

<TABLE>
<CAPTION>Batters</CAPTION>
<THEAD>
<TR>
<TH>Player</TH><TH>P</TH><TH>G</TH>
<TH>GS</TH><TH>AB</TH><TH>R</TH><TH>H</TH>
<TH>D</TH><TH>T</TH><TH>HR</TH><TH>RBI</TH>
<TH>S</TH><TH>CS</TH><TH>SH</TH><TH>SF</TH>
<TH>E</TH><TH>BB</TH><TH>SO</TH><TH>HBP</TH>
</TR>
</THEAD>
<TBODY>
<xsl:for-each select=”PLAYER[(POSITION
!= ‘Starting Pitcher’)
and (POSITION != ‘Relief Pitcher’)]”>
<TR>
<TD>
<xsl:value-of select=”GIVEN_NAME”/>
<xsl:value-of select=”SURNAME”/>
</TD>
<TD><xsl:value-of select=”POSITION”/></TD>
<TD><xsl:value-of select=”GAMES”/></TD>
<TD>
<xsl:value-of select=”GAMES_STARTED”/>

</TD>
<TD><xsl:value-of select=”AT_BATS”/></TD>
<TD><xsl:value-of select=”RUNS”/></TD>
<TD><xsl:value-of select=”HITS”/></TD>
<TD><xsl:value-of select=”DOUBLES”/></TD>
<TD><xsl:value-of select=”TRIPLES”/></TD>
<TD><xsl:value-of select=”HOME_RUNS”/></TD>
<TD><xsl:value-of select=”RBI”/></TD>
<TD><xsl:value-of select=”STEALS”/></TD>
<TD>
<xsl:value-of select=”CAUGHT_STEALING”/>
</TD>
<TD>
<xsl:value-of select=”SACRIFICE_HITS”/>
</TD>
<TD>
<xsl:value-of select=”SACRIFICE_FLIES”/>
</TD>
<TD><xsl:value-of select=”ERRORS”/></TD>

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 129

130 Part I ✦ Introducing XML

<TD><xsl:value-of select=”WALKS”/></TD>
<TD>
<xsl:value-of select=”STRUCK_OUT”/>
</TD>
<TD>
<xsl:value-of select=”HIT_BY_PITCH”/>
</TD>
</TR>
</xsl:for-each> <!— PLAYER —>
</TBODY>
</TABLE>

In this case, within each PLAYER element, the contents of that element’s
GIVEN_NAME, SURNAME, POSITION, GAMES, GAMES_STARTED, AT_BATS, RUNS,
HITS, DOUBLES, TRIPLES, HOME_RUNS, RBI, STEALS, CAUGHT_STEALING,
SACRIFICE_HITS, SACRIFICE_FLIES, ERRORS, WALKS, STRUCK_OUT and
HIT_BY_PITCH children are extracted and copied to the output. Since we used
the same names for the attributes in this chapter as we did for the PLAYER child
elements in the last chapter, this example is almost identical to the equivalent
section of Listing 5-7. The main difference is that the @ signs are missing. They
indicate an attribute rather than a child.

You can do even more with the select attribute. You can select elements: by
position (for example the first, second, last, seventeenth element, and so forth);
with particular contents; with specific attribute values; or whose parents or
children have certain contents or attribute values. You can even apply a complete
set
of Boolean logical operators to combine different selection conditions. We will
explore more of these possibilities when we return to XSL in Chapters 14 and 15.

CSS or XSL?
CSS and XSL overlap to some extent. XSL is certainly more powerful than CSS.
However XSL’s power is matched by its complexity. This chapter only touched on
the basics of what you can do with XSL. XSL is more complicated, and harder to
learn and use than CSS, which raises the question, “When should you use CSS and
when should you use XSL?”

CSS is more broadly supported than XSL. Parts of CSS Level 1 are supported for
HTML elements by Netscape 4 and Internet Explorer 4 (although annoying
differences exist). Furthermore, most of CSS Level 1 and some of CSS Level 2 is
likely to be well supported by Internet Explorer 5.0 and Mozilla 5.0 for both XML
and HTML. Thus, choosing CSS gives you more compatibility with a broader range
of browsers.

Additionally, CSS is more stable. CSS level 1 (which covers all the CSS you’ve seen
so far) and CSS Level 2 are W3C recommendations. XSL is still a very early working

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 130

131Chapter 5 ✦ Attributes, Empty Tags, and XSL

draft, and probably won’t be finalized until after this book is printed. Early adopters
of XSL have already been burned once, and will be burned again before standards
gel. Choosing CSS means you’re less likely to have to rewrite your style sheets from
month to month just to track evolving software and standards. Eventually, however,
XSL will settle down to a usable standard.

Furthermore, since XSL is so new, different software implements different variations
and subsets of the draft standard. At the time of this writing (spring 1999) there are
at least three major variants of XSL in widespread use. Before this book is published,
there will be more. If the incomplete and buggy implementations of CSS in current
browsers bother you, the varieties of XSL will drive you insane.

However, XSLis definitely more powerful than CSS. CSS only allows you to apply
formatting to element contents. It does not allow you to change or reorder those
contents; choose different formatting for elements based on their contents or
attributes; or add simple, extra text like a signature block. XSL is far more appro-
priate when the XML documents contain only the minimum of data and none of
the HTML frou-frou that surrounds the data.

With XSL, you can separate the crucial data from everything else on the page,
like mastheads, navigation bars, and signatures. With CSS, you have to include all
these pieces in your data documents. XML+XSL allows the data documents to live
separately from the Web page documents. This makes XML+XSL documents more
maintainable and easier to work with.

In the long run XSL should become the preferred choice for real-world, data-intensive
applications. CSS is more suitable for simple pages like grandparents use to post
pictures of their grandchildren. But for these uses, HTML alone is sufficient. If you’ve
really hit the wall with HTML, XML+CSS doesn’t take you much further before you run
into another wall. XML+XSL, by contrast, takes you far past the walls of HTML. You
still need CSS to work with legacy browsers, but long-term XSL is the way to go.

Summary
In this chapter, you saw examples of creating an XML document from scratch.
Specifically, you learned:

✦ Information can also be stored in an attribute of an element.

✦ An attribute is a name-value pair included in an element’s start tag.

✦ Attributes typically hold meta-information about the element rather than the
element’s data.

✦ Attributes are less convenient to work with than the contents of an element.

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 131

132 Part I ✦ Introducing XML

✦ Attributes work well for very simple information that’s unlikely to change its
form as the document evolves. In particular, style and linking information
works well as an attribute.

✦ Empty tags offer syntactic sugar for elements with no content.

✦ XSL is a powerful style language that enables you to access and display
attribute data and transform documents.

In the next chapter, we’ll specify the exact rules that well-formed XML documents
must adhere to. We’ll also explore some additional means of embedding
information in XML documents including comments and processing instructions.

✦ ✦ ✦

3236-7 ch05.F.qc 6/29/99 1:04 PM Page 132

Well-Formed
XML Documents

HTML 4.0 has about a hundred different tags. Most of
these tags have half a dozen possible attributes for

several thousand different possible variations. Because XML is
more powerful than HTML, you might think you need to know
even more tags, but you don’t. XML gets its power through
simplicity and extensibility, not through a plethora of tags.

In fact, XML predefines almost no tags at all. Instead XML
allows you to define your own tags as needed. However these
tags and the documents built from them are not completely
arbitrary. Instead they have to follow a specific set of rules
which we will elaborate upon in this chapter. A document that
follows these rules is said to be well-formed. Well-formedness
is the minimum criteria necessary for XML processors and
browsers to read files. In this chapter, you’ll examine the rules
for well-formed XML documents and well-formed HTML.
Particular attention is paid to how XML differs from HTML.

What XML Documents
Are Made Of

An XML document contains text that comprises XML markup
and character data. It is a sequential set of bytes of fixed
length, which adheres to certain constraints. It may or may
not be a file. For instance, an XML document may:

✦ Be stored in a database

✦ Be created on the fly in memory by a CGI program

✦ Be some combination of several different files, each of
which is embedded in another

✦ Never exist in a file of its own

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What XML documents
are made of

Markup and
character data

Well-formed XML
in stand-alone
documents

Well-formed HTML

✦ ✦ ✦ ✦

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 133

134 Part I ✦ Introducing XML

However, nothing essential is lost if you think of an XML document as a file, as long
as you keep in the back of your mind that it might not really be a file on a hard drive.

XML documents are made up of storage units called entities. Each entity contains
either text or binary data, never both. Text data is comprised of characters. Binary
data is used for images and applets and the like. To use a concrete example, a raw
HTML file that includes tags is an entity but not a document. An HTML file
plus all the pictures embedded in it with tags is a complete document.

In this chapter, and the next several chapters, I will treat only simple XML
documents that are made up of a single entity, the document itself. Furthermore,
these documents are only going to contain text data, not binary data like images or
applets. Such documents can be understood completely on their own without
reading any other files. In other words they stand alone. Such a document normally
contains a standalone attribute in its XML declaration with the value yes, like the
one following:

<?xml version=”1.0” standalone=”yes”?>

External entities and entity references can be used to combine multiple files and
other data sources to create a single XML document. These documents cannot be
parsed without reference to other files. These documents normally contain a
standalone attribute in the XML declaration with the value no.

<?xml version=”1.0” standalone=”no”?>

External entities and entity references will be discussed in Chapter 9, Entities and
External DTD Subsets.

Markup and Character Data
XML documents are text. Text is made up of characters. A character is a letter, a
digit, a punctuation mark, a space, a tab or something similar. XML uses the
Unicode character set, which not only includes the usual letters and symbols from
the English and other Western European alphabets, but also the Cyrillic, Greek,
Hebrew, Arabic, and Devanagari alphabets. In addition, it also includes the most
common Han ideographs for the Chinese and Japanese alphabet and the Hangul
syllables from the Korean alphabet. For now, in this chapter, I’ll stick to English text.

International character sets are discussed in Chapter 7, Foreign Languages and
Non-Roman Text.

The text of an XML document serves two purposes, character data and markup.
Character data is the basic information of the document. Markup, on the other
hand, mostly describes a document’s logical structure. For example, recall Listing
3-2, greeting.xml, from Chapter 3, repeated below:

Cross-
Reference

Cross-
Reference

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 134

135Chapter 6 ✦ Well-Formed XML Documents

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING>

Here <?xml version=”1.0” standalone=”yes”?>, <GREETING>, and
</GREETING> are markup. Hello XML! is the character data. One of the big
advantages of XML over other formats is that it clearly separates the actual data of
a document from its markup.

To be more precise, markup includes all comments, character references, entity
references, CDATA section delimiters, tags, processing instructions, and DTDs.
Everything else is character data. However, this is tricky because when a document
is processed some of the markup turns into character data. For example, the
markup > is turned into the greater than sign character (>). The character data
that’s left after the document is processed and all of the markup that stands for
particular character data has been replaced by the actual character data it stands
for is called parsed character data.

Comments
XML comments are almost exactly like HTML comments. They begin with <!— and
end with —> . All data between the <!— and —> is ignored by the XML processor. It’s
as if it wasn’t there. Comments can be used to make notes to yourself or to
temporarily comment out sections of the document that aren’t ready. For example,

<?xml version=”1.0” standalone=”yes”?>
<!—This is Listing 3-2 from The XML Bible—>
<GREETING>
Hello XML!
<!—Goodbye XML—>
</GREETING>

There are some rules that must be followed when using comments. These rules are
outlined below:

1. Comments may not come before the XML declaration, which absolutely must
be the very first thing in the document. For example, the following is not
acceptable:

<!—This is Listing 3-2 from The XML Bible—>
<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
<!—Goodbye XML—>
</GREETING>

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 135

136 Part I ✦ Introducing XML

2. Comments may not be placed inside a tag. For example, the following is
illegal:

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING <!—Goodbye—> >

3. Comments may be used to surround and hide tags. In the following example,
the <antigreeting> tag and all its children are commented out; they are not
shown when the document is rendered, as if they don’t exist:

<?xml version=”1.0” standalone=”yes”?>
<DOCUMENT>
<GREETING>
Hello XML!
</GREETING>
<!—
<ANTIGREETING>
Goodbye XML!
</ANTIGREETING>
—>
</DOCUMENT>

Since comments effectively delete sections of text, care must be taken to
ensure that the remaining text is still a well-formed XML document. For
instance, be careful not to comment out a start tag unless you also comment
out the corresponding end tag. For example, the following is illegal:

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
<!—
</GREETING>
—>

Once the commented text is removed what remains is:

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!

Since the <GREETING> tag is no longer matched by a closing </GREETING>
tag, this is no longer a well-formed XML document.

4. The two-hyphen string (—) may not occur inside a comment except as part of
its opening or closing tag. For example, the following is an illegal comment:

<!—The red door—that is, the second one—was left open—>

This means, among other things, that you cannot nest comments like this:

<?xml version=”1.0” standalone=”yes”?>
<DOCUMENT>
<GREETING>

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 136

137Chapter 6 ✦ Well-Formed XML Documents

Hello XML!
</GREETING>

<!—
<ANTIGREETING>
<!—Goodbye XML!—>

</ANTIGREETING>
—>
</DOCUMENT>

It also means that you may run into trouble if you’re commenting out a lot
of C, Java, or JavaScript source code that’s full of expressions like i— or
numberLeft—. Generally it’s not too hard to work around this problem
once you recognize it.

Entity References
Entity references are markup that is replaced with character data when the
document is parsed. XML predefines the five entity references listed in Table 6-1.
Entity references are used in XML documents in place of specific characters that
would otherwise be interpreted as part of markup. For instance, the entity
reference < stands for the less-than sign (<), which would otherwise be
interpreted as the beginning of a tag.

Table 6-1
XML Predefined Entity References

Entity Reference Character

& &

< <

> >

" “

' ‘

In XML, unlike HTML, entity references must end with a semicolon. Therefore,
> is a correct entity reference and > is not.

Raw less-than signs (<) and ampersands (&) in normal XML text are always
interpreted as starting tags and entity references, respectively. (The abnormal text
is CDATA sections, described below.) Therefore, less-than signs and ampersands
must always be encoded as < and & respectively. For example, you would
write the phrase “Ben & Jerry’s New York Super Fudge Chunk Ice Cream” as Ben
& Jerry’s New York Super Fudge Chunk Ice Cream.

Caution

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 137

138 Part I ✦ Introducing XML

Greater-than signs, double quotes, and apostrophes must be encoded when they
would otherwise be interpreted as part of markup. However, it’s easier just to get in
the habit of encoding all of them rather than trying to figure out whether a
particular use would or would not be interpreted as markup.

Entity references may also be used in attribute values. For example,

<PARAM NAME=”joke” VALUE=”The diner said,
"e;Waiter, There's a fly in my soup!"e;”>

</PARAM>

CDATA
Most of the time anything inside a pair of angle brackets (<>) is markup and
anything that’s not is character data. However there is one exception. In CDATA
sections all text is pure character data. Anything that looks like a tag or an entity
reference is really just the text of the tag or the entity reference. The XML processor
does not try to interpret it in any way.

CDATA sections are used when you want all text to be interpreted as pure character
data rather than as markup. This is primarily useful when you have a large block of
text that contains a lot of <, >, &, or “ characters, but no markup. This would be true
for much C and Java source code.

CDATA sections are also extremely useful if you’re trying to write about XML in
XML. For example, this book contains many small blocks of XML code. The word
processor I’m using doesn’t care about that. But if I were to convert this book to
XML, I’d have to painstakingly replace all the less-than signs with < and all the
ampersands with & as I did in the following:

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING>

To avoid having to do this, I can instead use a CDATA section to indicate that a
block of text is to be presented as is with no translation. CDATA sections begin with
<![CDATA[and end with]]>. For example:

<![CDATA[
<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING>
]]>

The only text that’s not allowed within a CDATA section is the closing CDATA
delimiter]]>. Comments may appear in CDATA sections, but do not act as
comments. That is, both the comment tags and all the text they contain will be
rendered.

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 138

139Chapter 6 ✦ Well-Formed XML Documents

Since]]> may not appear in a CDATA section, CDATA sections cannot nest. This
makes it relatively difficult to write about CDATA sections in XML. If you need to do
this, you just have to bite the bullet and use the < and & entity references.

CDATA sections aren’t needed that often, but when they are needed, they’re needed
badly.

Tags
What distinguishes XML files from plain text files is markup. The largest part of the
markup is the tags. While you saw how tags are used in the previous chapter, this
section will define what tags are and provide a broader picture of how they’re used.

In brief, a tag is anything in an XML document that begins with < and ends with >
and is not inside a comment or a CDATA section. Thus, an XML tag has the same
form as an HTML tag. Start or opening tags begin with a < which is followed by the
name of the tag. End or closing tags begin with a </ which is followed by the name
of the tag. The first > encountered closes the tag.

Tag Names
Every tag has a name. Tag names must begin with a letter or an underscore (_).
Subsequent characters in the name may include letters, digits, underscores,
hyphens, and periods. They may not include white space. (The underscore often
substitutes for white space.) The following are some legal XML tags:

<HELP>

<Book>

<volume>

<heading1>

<section.paragraph>

<Mary_Smith>

<_8ball>

Colons are also technically legal in tag names. However, these are reserved for use
with namespaces. Namespaces enable you to mix and match tag sets that may
use the same tag names. Namespaces are discussed in Chapter 18, Namespaces.

The following are not syntactically correct XML tags:

<Book%7>

<volume control>

<1heading>

Cross-
Reference

Note

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 139

140 Part I ✦ Introducing XML

<Mary Smith>

<.employee.salary>

The rules for tag names actually apply to names of many other things as well. The
same rules are used for attribute names, ID attribute values, entity names, and a
number of other constructs you’ll encounter in the next several chapters.

Closing tags have the same name as their opening tag but are prefixed with a / after
the initial angle bracket. For example, if the opening tag is <FOO>, then the closing
tag is </FOO>. These are the end tags for the previous set of legal start tags.

</HELP>

</Book>

</volume>

</heading1>

</section.paragraph>

</Mary_Smith>

</_8ball>

XML names are case sensitive. This is different from HTML where <P> and <p> are
the same tag, and a </p> can close a <P> tag. The following are not end tags for the
set of legal start tags we’ve been discussing.

</help>

</book>

</Volume>

</HEADING1>

</Section.Paragraph>

</MARY_SMITH>

</_8BALL>

Although both lower- and uppercase letters may be used in XML tags, from this
point forward I will mostly follow the convention of making my tags uppercase,
mainly because this makes them stand out better in the pages of this book.
However, on occasion when I’m using a tag set developed by someone else it will be
necessary to adopt that person’s case convention.

Empty Tags
Many HTML tags that do not contain data do not have closing tags. For example,
there are no , , </HR>, or </BR> tags in HTML. Some page authors do

Note

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 140

141Chapter 6 ✦ Well-Formed XML Documents

include tags after their list items, and some HTML tools also use .
However the HTML 4.0 standard specifically denies that this is required. Like all
unrecognized tags in HTML, the presence of an unnecessary has no effect on
the rendered output.

This is not the case in XML. The whole point of XML is to allow new tags to be
discovered as a document is parsed. Thus unrecognized tags may not simply be
ignored. Furthermore, an XML processor must be able to determine on the fly
whether a tag it’s never seen before does or does not have an end tag.

XML distinguishes between tags that have closing tags and tags that do not, called
empty tags. Empty tags are closed with a slash and a closing angle bracket (/>). For
example,
 or <HR/>.

Current Web browsers deal inconsistently with tags like this. However, if you’re
trying to maintain backwards compatibility, you can use closing tags instead, and
just not include any text in them. For example,

</BR>

<HR></HR>

When you learn about DTDs and style sheets in the next few chapters, you’ll see a
couple more ways to maintain backward and forward compatibility with HTML in
documents that must be parsed by legacy browsers.

Attributes
As discussed in the previous chapter, start tags and empty tags may optionally
contain attributes. Attributes are name-value pairs separated by an equals sign (=).
For example,

<GREETING LANGUAGE=”English”>
Hello XML!
<MOVIE SRC=”WavingHand.mov”/>

</GREETING>

Here the <GREETING> tag has a LANGUAGE attribute, which has the value English.
The <MOVIE> tag has a SRC attribute, which has the value WavingHand.mov.

Attribute Names
Attribute names are strings that follow the same rules as tag names. That is,
attribute names must begin with a letter or an underscore (_). Subsequent letters in
the name may include letters, digits, underscores, hyphens, and periods. They may
not include white space. (The underscore often substitutes for whitespace.)

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 141

142 Part I ✦ Introducing XML

The same tag may not have two attributes with the same name. For example, the
following is illegal:

<RECTANGLE SIDE=”8cm” SIDE=”10cm”/>

Attribute names are case sensitive. The SIDE attribute is not the same as the side
or the Side attribute. Therefore the following is acceptable:

<BOX SIDE=”8cm” side=”10cm” Side=”31cm”/>

However, this is extremely confusing, and I strongly urge you not to write markup
like this.

Attribute Values
Attributes values are also strings. Even when the string shows a number, as in the
LENGTH attribute below, that number is the two characters 7 and 2, not the binary
number 72.

<RULE LENGTH=”72”/>

If you’re writing code to process XML, you’ll need to convert the string to a number
before performing arithmetic on it.

Unlike attribute names, there are few limits on the content of an attribute value.
Attribute values may contain white space, begin with a number, or contain any
punctuation characters (except, sometimes, single and double quotes).

XML attribute values are delimited by quote marks. Unlike HTML attributes, XML
attributes must be enclosed in quotes. Most of the time double quotes are used.
However, if the attribute value itself contains a double quote, then single quotes
may be used. For example:

<RECTANGLE LENGTH=’7”’ WIDTH=’8.5”’/>

If the attribute value contains both single and double quotes, then the one that’s
not used to delimit the string must be replaced with the proper entity references. I
generally just go ahead and replace both, which is always okay. For example:

<RECTANGLE LENGTH=’8'7"’ WIDTH=”10'6"”/>

Well-Formed XML in Standalone Documents
Although you can make up as many tags as you need, your XML documents do need
to follow certain rules in order to be well-formed. If a document is not well-formed,
most attempts to read or render it will fail.

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 142

143Chapter 6 ✦ Well-Formed XML Documents

In fact, the XML specification strictly prohibits XML parsers from trying to fix and
understand malformed documents. The only thing a conforming parser is allowed
to do is report the error. It may not fix the error. It may not make a best-faith effort
to render what the author intended. It may not ignore the offending malformed
markup. All it can do is report the error and exit.

The objective here is to avoid the bug-for-bug compatibility wars that have hin-
dered HTML, and made writing HTML parsers and renderers so difficult. Because
Web browsers allow malformed HTML, Web page designers don’t make the extra
effort to ensure that their HTML is correct. In fact, they even rely on bugs in indi-
vidual browsers to achieve special effects. In order to properly display the huge
installed base of HTML pages, every new Web browser must support every
nuance, every quirk of all the Web browsers that have come before. Customers
would ignore any browser that strictly adhered to the HTML standard. It is to avoid
this sorry state that XML processors are explicitly required to only accept well-
formed XML.

In order for a document to be well-formed, all markup and character data in an XML
document must adhere to the rules given in the previous sections. Furthermore,
there are several rules regarding how the tags and character data must relate to
each other. These rules are summarized below:

1. The XML declaration must begin the document.

2. Elements that contain data must have both start and end tags.

3. Elements that do not contain data and use only a single tag must end with />.

4. The document must contain exactly one element that completely contains all
other elements.

5. Elements may nest but may not overlap.

6. Attribute values must be quoted.

7. The characters < and & may only be used to start tags and entity references
respectively.

8. The only entity references which appear are &, <, >, ' and
".

These eight rules must be adjusted slightly for documents that do have a DTD, and
there are additional rules for well-formedness that define the relationship between
the document and its DTD, but we’ll explore these rules in later chapters. For now
let’s look at each of these simple rules for documents without DTDs in more detail.

DTDs are discussed in Part II.
Cross-
Reference

Note

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 143

144 Part I ✦ Introducing XML

#1: The XML declaration must begin the document
This is the XML declaration for stand-alone documents in XML 1.0:

<?xml version=”1.0” standalone=”yes”?>

If the declaration is present at all, it must be absolutely the first thing in the file
because XML processors read the first several bytes of the file and compare those
bytes against various encodings of the string <?xml to determine which character
set is being used (UTF-8, big-endian Unicode, or little-endian Unicode). Nothing
(except perhaps for an invisible byte order mark) should come before this,
including white space. For instance, this line is not an acceptable way to start an
XML file because of the extra spaces at the front of the line:

<?xml version=”1.0” standalone=”yes”?>

UTF-8 and the variants of Unicode are discussed in Chapter 7, Foreign Languages
and Non-Roman Text.

XML does allow you to omit the XML declaration completely. In general, this
practice is not recommended. However, it does have occasional uses. For instance,
omitting the XML declaration enables you to build one well-formed XML document
by combining other well-formed XML documents, a technique we’ll explore in
Chapter 9. Furthermore, it makes it possible to write well-formed HTML documents,
a style we’ll explore later in this chapter.

#2: Use Both Start and End Tags in Non-Empty Tags
Web browsers are relatively forgiving if you forget to close an HTML tag. For
instance, if a document includes a tag but no corresponding tag, the
entire document after the tag will be made bold. However, the document will
still be displayed.

XML is not so forgiving. Every start tag must be closed with the corresponding end
tag. If a document fails to close a tag, the browser or renderer simply reports an
error message and does not display any of the document’s content in any form.

#3: End Empty Tags with “/>”
Tags that do not contain data, such as HTML’s
, <HR>, and , do not
require closing tags. However, empty XML tags must be identified by closing with a
/> rather than just a >. For example, the XML equivalents of
, <HR>, and
are
, <HR/>, and .

Cross-
Reference

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 144

145Chapter 6 ✦ Well-Formed XML Documents

Current Web browsers deal inconsistently with tags like this. However, if you’re
trying to maintain backwards compatibility, you can use closing tags instead, and
just not include any text in them For example:

</BR>
<HR></HR>

Even then, Netscape has troubles with
</BR> (It interprets both as line breaks,
rather than only the first.), so unfortunately it is not always practical to include
well-formed empty tags in HTML.

#4: Let One Element Completely Contain All Other
Elements
An XML document has a root element that completely contains all other elements
of the document. This sometimes called the document element instead. Assuming
the root element is non-empty (which is almost always the case), it must be
delimited by start and end tags. These tags may have, but do not have to have, the
name root or DOCUMENT. For instance, in the following document the root element
is GREETING.

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING>

The XML declaration is not an element. Rather it’s a processing instruction.
Therefore it does not have to be included inside the root element. Similarly, other
non-element data in an XML document like other processing instructions, DTDs,
and comments does not have to be inside the root element. But all actual elements
(other than the root itself) must be contained in the root element.

#5: Do Not Overlap Elements
Elements may contain (and indeed often do contain) other elements. However,
elements may not overlap. Practically, this means that if an element contains a start
tag for an element, it must also contain the corresponding end tag. Likewise, an
element may not contain an end tag without its matching start tag. For example, the
following is acceptable XML:

<PRE><CODE>n = n + 1;</CODE></PRE>

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 145

146 Part I ✦ Introducing XML

However the following is not legal XML because the closing </PRE> tag comes
before the closing </CODE> tag:

<PRE><CODE>n = n + 1;</PRE></CODE>

Most HTML browsers can handle this case with ease. However XML browsers are
required to report an error for this construct.

Empty tags may appear anywhere, of course. For example,

<PLAYWRIGHTS>Oscar Wilde<HR/>Joe Orton</PLAYWRIGHTS>

This rule, in combination with Rule 4, implies that for all non-root elements, there is
exactly one other element that contains the non-root element, but which does not
contain any other element that contains the non-root element. This immediate
container is called the parent of the non-root element. The non-root element is
referred to as the child of the parent element. Thus each non-root element always
has exactly one parent, but a single element may have an indefinite number of
children or no children at all.

Consider Listing 6-1, shown below. The root element is the DOCUMENT element.
This contains two state children. The first STATE element contains four children:
NAME, TREE, FLOWER, and CAPITOL. The second STATE element contains only three
children: NAME, TREE, and CAPITOL. Each of these contains only character data,
not more children.

Listing 6-1: Parents and Children

<?xml version=”1.0” standalone=”yes”?>
<DOCUMENT>
<STATE>
<NAME>Louisiana</NAME>
<TREE>Bald Cypress</TREE>
<FLOWER>Magnolia</FLOWER>
<CAPITOL>Baton Rouge</CAPITOL>

</STATE>
<STATE>
<NAME>Mississippi</NAME>
<TREE>Magnolia</TREE>
<CAPITOL>Jackson</CAPITOL>

</STATE>
</DOCUMENT>

In programmer terms, this means that XML documents form a tree. Figure 6-1
shows Listing 5-1’s tree structure as well as why this structure is called a tree. It
starts from the root and gradually bushes out to the leaves on the end of the tree.

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 146

147Chapter 6 ✦ Well-Formed XML Documents

Trees also have a number of nice properties that make them easy for computer
programs to read, though this doesn’t matter to you as the author of the document.

Figure 6-1: Listing 6-1’s tree structure

Trees are more commonly drawn from the top down. That is, the root of the tree is
shown at the top of the picture rather than the bottom. While this looks less like a
real tree, it doesn’t affect the topology of the data structure in the least.

#6: Enclose Attribute Values in Quotes
XML requires all attribute values to be enclosed in quote marks, whether or not the
attribute value includes spaces. For example:

This isn’t true in HTML. For instance, HTML allows tags to contain unquoted
attributes. For example, this is an acceptable HTML <A> tag:

The only restriction is that the attribute value must not itself contain embedded
spaces.

If an attribute value itself includes double quotes, you may use single quotes to
surround the value instead. For example,

<IMG SRC=”sistinechapel.jpg”
ALT=’And God said, “Let there be light,”

and there was light’/>

Note

Note

name
Louisiana

tree
Bald Cypress

flower
Magnolia

capitol
Baton Rouge

name
Mississippi

tree
Magnolia

capitol
Jackson

state state

document

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 147

148 Part I ✦ Introducing XML

If an attribute value includes both single and double quotes, you may use the entity
reference ' for a single quote (an apostrophe) and " for a double
quote. For example:

<PARAM name=”joke” value=”The diner said,
"Waiter, There's a fly in my soup!"”>

#7: Only Use < and & to Start Tags and Entities
XML assumes that the opening angle bracket always starts a tag, and that the
ampersand always starts an entity reference. (This is often true of HTML as well,
but most browsers will assume the semicolon if you leave it out.) For example,
consider this line,

<H1>A Homage to Ben & Jerry’s
New York Super Fudge Chunk Ice Cream</H1>

Web browsers will probably display it correctly, but for maximum safety you should
escape the ampersand with & like this:

<H1>A Homage to Ben & Jerry’s New York Super Fudge Chunk
Ice Cream</H1>

The open-angle bracket (<) is similar. Consider this common line of Java code:

<CODE> for (int i = 0; i <= args.length; i++) { </CODE>

Both XML and HTML consider the less-than sign in <= to be the start of a tag. The
tag continues until the next >. Thus this line gets rendered as:

for (int i = 0; i

rather than:

for (int i = 0; i <= args.length; i++) {

The = args.length; i++) { is interpreted as part of an unrecognized tag.

The less-than sign can be included in text in both XML and HTML by writing it as
<. For example:

<CODE> for (int i = 0; i <= args.length; i++) { </CODE>

Well-formed XML requires & to be written as & and < to be written as <
whenever they’re used as themselves rather than as part of a tag or entity.

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 148

149Chapter 6 ✦ Well-Formed XML Documents

#8: Only Use the Five Preexisting Entity References
You’re probably familiar with a number of entity references from HTML. For
example © inserts the copyright symbol “. ® inserts the registered
trademark symbol “. However, other than the five entity references already
discussed, XML can only use entity references that are defined in a DTD first.

You don’t know about DTDs yet. If the ampersand character & appears anywhere in
your document, it must be immediately followed by amp;, lt;, gt;, apos; or
quot;. All other uses violate well-formedness.

In Chapter 9, Entities and External DTD Subsets, you’ll learn how DTDs make it
possible to define new entity references that insert particular symbols or chunks of
boiler-plate text.

Well-Formed HTML
You can practice your XML skills even before most Web browsers directly support
XML by writing well-formed HTML. This is HTML that adheres to XML’s well-
formedness constraints, but only uses standard HTML tags. Well-formed HTML is
easier to read than the sloppy HTML most humans and WYSIWYG tools like
FrontPage write. It’s also easier for Web robots and automated search engines to
understand. It’s more robust, and less likely to break when you make a change. And
it’s less likely to be subject to annoying cross-browser and cross-platform
differences in rendering. Furthermore, you can then use XML tools to work on
HTML documents, while still maintaining backwards compatibility for readers
whose browsers don’t support XML.

Real-World Web Page Problems
Real-world Web pages are extremely sloppy. Tags aren’t closed. Elements overlap.
Raw less-than signs are included in pages. Semicolons are omitted from the ends of
entity references. Web pages with these problems are formally invalid, but most
Web browsers accept them. Nonetheless, your Web pages will be cleaner, display
faster, and be easier to maintain if you fix these problems.

Some of the common problems that Web pages have include the following:

1. Start tags without matching end tags (unclosed elements)

2. End tags without start tags

3. Overlapping elements

4. Unquoted attributes

Cross-
Reference

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 149

150 Part I ✦ Introducing XML

5. Unescaped <, >, &, and “ signs

6. No root element

7. End tag case doesn’t match start tag case

I’ve listed these in rough order of importance. Exact details vary from tag to tag,
however. For instance, an unclosed tag will turn all elements following it
bold. However, an unclosed or <P> tag causes no problems at all.

There are also some rules that only apply to XML documents, and that may actually
cause problems if you attempt to integrate them into your existing HTML pages.
These include:

1. Begin with an XML declaration

2. Empty tags must be closed with a />

3. The only entity references used are &, <, >, ' and "

Fixing these problems isn’t hard, but there are a few pitfalls that can trip up the
unwary. Let’s explore them.

Close All Start Tags
Any element that contains content, whether text or other child elements, should
have a start tag and an end tag. HTML doesn’t absolutely require this. For instance,
<P> , <DT>, <DD>, and are often used in isolation. However, doing this relies on
the Web browser to make a good guess at where the element ends, and browsers
don’t always do quite what authors want or expect. Therefore it’s best to explicitly
close all start tags.

The biggest change this requires to how you write HTML is probably thinking of <P>
as a container rather than a simple paragraph break mark. For instance, previously
you would probably format the opening of the Federalist Papers like this:

To the People of the State of New York:
<P>

AFTER an unequivocal experience of the inefficiency of the
subsisting federal government, you are called upon to
deliberate on a new Constitution for the United States of
America. The subject speaks its own importance; comprehending
in its consequences nothing less than the existence of the
UNION, the safety and welfare of the parts of which it is
composed, the fate of an empire in many respects the most
interesting in the world. It has been frequently remarked that
it seems to have been reserved to the people of this country,
by their conduct and example, to decide the important question,
whether societies of men are really capable or not of

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 150

151Chapter 6 ✦ Well-Formed XML Documents

establishing good government from reflection and choice, or
whether they are forever destined to depend for their political
constitutions on accident and force. If there be any truth in
the remark, the crisis at which we are arrived may with
propriety be regarded as the era in which that decision is to
be made; and a wrong election of the part we shall act may, in
this view, deserve to be considered as the general misfortune
of mankind.
<P>

Well-formedness requires that it be formatted like this instead:

<P>
To the People of the State of New York:
</P>

<P>
AFTER an unequivocal experience of the inefficiency of the
subsisting federal government, you are called upon to
deliberate on a new Constitution for the United States of
America. The subject speaks its own importance; comprehending
in its consequences nothing less than the existence of the
UNION, the safety and welfare of the parts of which it is
composed, the fate of an empire in many respects the most
interesting in the world. It has been frequently remarked that
it seems to have been reserved to the people of this country,
by their conduct and example, to decide the important question,
whether societies of men are really capable or not of
establishing good government from reflection and choice, or
whether they are forever destined to depend for their political
constitutions on accident and force. If there be any truth in
the remark, the crisis at which we are arrived may with
propriety be regarded as the era in which that decision is to
be made; and a wrong election of the part we shall act may, in
this view, deserve to be considered as the general misfortune
of mankind.
</P>

You’ve probably been taught to think of <P> as ending a paragraph. Now you have
to think of it as beginning one. This does give you some advantages though. For
instance, you can easily assign a variety of formatting attributes to a paragraph. For
example, here’s the original HTML title of House Resolution 581 as seen on
http://thomas.loc.gov/home/hres581.html:

<center>
<p><h2>House Calendar No. 272</h2>

<p><h1>105TH CONGRESS 2D SESSION H. RES. 581</h1>

<p>[Report No. 105-795]

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 151

152 Part I ✦ Introducing XML

<p>Authorizing and directing the Committee on the
Judiciary to investigate whether sufficient grounds
exist for the impeachment of William Jefferson Clinton,
President of the United States.
</center>

Here’s the same text, but using well-formed HTML. The align attribute now
replaces the deprecated center element, and a CSS style attribute is used instead
of the tag.

<h2 align=”center”>House Calendar No. 272</h2>

<h1 align=”center”>105TH CONGRESS 2D SESSION H. RES. 581</h1>

<p align=”center”>[Report No. 105-795]</p>

<p align=”center” style=”font-weight:bold”>
Authorizing and directing the Committee on the Judiciary to
investigate whether sufficient grounds exist for the
impeachment of William Jefferson Clinton,
President of the United States.
</p>

Delete Orphaned End Tags and Don’t Let Elements Overlap
When editing pages, it’s not uncommon to remove a start tag and forget to remove
its associated end tag. In HTML an orphaned end tag like a or </TD>
that doesn’t have any matching start tag is unlikely to cause problems by itself.
However, it does make the file longer than it needs to be, the download slower, and
has the potential to confuse people or tools that are trying to understand and edit
the HTML source. Therefore, you should make sure that each end tag is properly
matched with a start tag.

However, more often an end tag that doesn’t match any start tag means that
elements incorrectly overlap. Most elements that overlap on Web pages are quite
easy to fix. For instance, consider this common problem:

<I>This text is bold and italic</I>

Since the I element starts inside the B element, it must end inside the B element. All
that you need to do to fix it is swap the end tags like this:

<I>This text is bold and italic</I>

Alternately, you can swap the start tags instead:

<I>This text is bold and italic</I>

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 152

153Chapter 6 ✦ Well-Formed XML Documents

On occasion you may have a tougher problem. For example, consider this fragment
from the White House home page (http://www.whitehouse.gov/, November 4,
1998). I’ve emboldened the problem tags to make it easier to see the mistake:

<TD valign=TOP width=85>

<img border=0
src=”/WH/images/pin_calendar.gif”
align=LEFT height=50 width=75 hspace=5 vspace=5>
 </TD>
<TD valign=TOP width=225>
What’s New:

What’s happening at the White <nobr>House - </nobr>

<!— New Begin —>
Remarks Of The
President Regarding Social Security

<!— New End —>

</TD>

Here the element begins inside the first <TD valign=TOP
width=85> element but continues past that element, into the <TD valign=TOP
width=225> element where it finishes. The proper solution in this case is to close
the FONT element immediately before the first </TD> closing tag; then add a new
 start tag immediately after the start of the second TD element, as
follows:

<TD valign=TOP width=85>

<img border=0
src=”/WH/images/pin_calendar.gif”
align=LEFT height=50 width=75 hspace=5 vspace=5>

</TD>
<TD valign=TOP width=225>

What’s New:

What’s happening at the White <nobr>House - </nobr>

<!— New Begin —>
Remarks Of The
President Regarding Social Security

<!— New End —>

</TD>

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 153

154 Part I ✦ Introducing XML

Quote All Attributes
HTML attributes only require quote marks if they contain embedded white space.
Nonetheless, it doesn’t hurt to include them. Furthermore, using quote marks may
help in the future if you later decide to change the attribute value to something that
does include white space. It’s quite easy to forget to add the quote marks later,
especially if the attribute is something like an ALT in an whose malformedness
is not immediately apparent when viewing the document in a Web browser.

For instance, consider this tag:

It should be rewritten like this:

Escape <, >, and & Signs
HTML is more forgiving of loose less-than signs and ampersands than XML.
Nonetheless, even in pure HTML they do cause trouble, especially if they’re
followed immediately by some other character. For instance, consider this email
address as it would appear if copied and pasted from the From: header in Eudora:

Elliotte Rusty Harold <elharo@metalab.unc.edu>

Were it to be rendered in HTML, this is all you would see:

Elliotte Rusty Harold

The <elharo@metalab.unc.edu> has been unintentionally hidden by the angle
brackets. Anytime you want to include a raw less-than sign or ampersand in HTML,
you really should use the < and & entity references. The correct HTML for
such a line would be:

Elliotte Rusty Harold <elharo@metalab.unc.edu>

You’re slightly less likely to see problems with an unescaped greater-than sign
because this will only be interpreted as markup if it’s preceded by an as yet
unfinished tag. However, there may be such unfinished tags in a document, and a
nearby greater-than sign can mask their presence. For example, consider this
fragment of Java code:

for (int i=0;i<10;i++) {
for (int j=20;j>10;j—) {

It’s likely to be rendered as:

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 154

155Chapter 6 ✦ Well-Formed XML Documents

for (int i=0;i10;j—) {

If those are only two lines in a 100-line program, it’s entirely possible you’ll miss the
omission when casually proofreading. On the other hand, if the greater-than sign is
escaped, the unescaped less-than sign will hide the rest of the program, and the
problem will be easier to spot.

Use a Root Element
The root element for HTML files is supposed to be html. Most browsers forgive
your failure to include this. Nonetheless, it’s definitely better to make the very first
tag in your document <html> and the very last </html>. If any extra text or markup
has gotten in front of <html> or behind </html>, move it between <html> and
</html>.

One common manifestation of this problem is forgetting to include </html> at the
end of the document. I always begin my documents by typing <html> and </html>,
then type in between them, rather than waiting until I’ve finished writing the
document and hoping that by that point, possibly days later, I still remember that I
need to put in a closing </html> tag.

Use the Same Case for All Tags
HTML isn’t case-sensitive but XML is. I recommend picking a single convention for
tag case, either all uppercase or all lowercase, and sticking to it throughout the
document. This is easier than trying to remember the details of each tag. I normally
pick all lowercase, because it’s much easier to type. Furthermore, the W3C’s effort
to reformulate HTML as an XML application also uses this convention.

Chapter 20, Reading Document Type Definitions, will explore the reformulation of
HTML in XML in great detail. However, further exploration will have to wait
because that effort uses XML techniques you won’t learn for several chapters.

Close Empty Tags with a />.
Empty tags are the bête noir of converting HTML to well-formed XML. HTML does
not formally recognize the XML <elementname/> syntax for empty tags. You can
convert
 to
, <hr> to <hr/>, to and so on quite easily.
However, it’s a crapshoot whether any given browser will render the transformed
tags properly or not.

Do not confuse truly empty elements like
, <hr>, and with elements
that do contain content but often only have a start tag in standard HTML such as
<p>, , <dt>, and <dd>.

Caution

Cross-
Reference

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 155

156 Part I ✦ Introducing XML

The simplest solution, and one approved by the XML specification, is to replace the
empty tags with start-tag/end-tag pairs with no content. The browser should then
ignore the unrecognized end tag. Take a look at the following example,

</br>
<hr></hr>

This seems to work well in practice with one notable exception. Netscape 4.5 and
earlier treats </br> the same as
; that is, as a signal to break the line. Thus
while
 is a single line break,
</br> is a double line break, more akin to a
paragraph mark in practice. Furthermore, Netscape ignores
 completely. Web
sites that must support legacy browsers (essentially all Web sites) cannot use
either
</br> or
. What does seem to work in practice for XML and
legacy browsers is the following:

Note the space between <br and />. I can’t really explain why this works when the
more natural variants don’t. All I can do is offer it to you as a possible solution if
you really care about well-formed HTML.

Use Only the &, <, >, ' and " Entity References
Many Web pages don’t need entity references other than &, <, >,
' and ". However, the HTML 4.0 specification does define many more
including:

✦ ™ the trademark symbol (tm)

✦ © the copyright symbol (c)

✦ ∞ the infinity symbol ∞

✦ π the lower case Greek letter pi, π

There are several hundred others. However, using any of these will make your
document not well-formed. The real solution to this problem is to use a DTD. We’ll
discuss the effect DTDs have on entity references in Chapter 9. In the meantime,
there are several short- term solutions.

The simplest solution is to write your document in a character set that has all of
the symbols you need, then use a <META> directive to specify the character set in
use. For example, to specify that your document uses UTF-8 encoding (a character
set we’ll discuss in Chapter 7 that contains all the characters you’re likely to want)
you would place this <META> directive in the head of your document:

<META http-equiv=”Content-Type”
content=”text/html; charset=UTF-8”>

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 156

157Chapter 6 ✦ Well-Formed XML Documents

Alternately, you can simply tell your Web server to emit the necessary content type
header. However, it’s normally easier to use the <META> tag.

Content-Type: text/html; charset=UTF-8

The problem with this approach is that many browsers are unlikely to be able to
display the UTF-8 character set. The same is true of most other character sets
you’re likely to use to provide these special characters.

HTML 4.0 supports character entity references just like XML’s; that is, you can
replace a character by &# and the decimal or hexadecimal value of the character in
Unicode. For example:

✦ ™ the trademark symbol (tm)

✦ © the copyright symbol (c)

✦ ∞ the infinity symbol ∞

✦ π the lower case Greek letter pi, π

HTML 3.2 only officially supports the numeric character references between 0 and
255 (ISO Latin-1) but 4.0 and later versions of Navigator and Internet Explorer do
recognize broader sections of the Unicode set.

If you’re really desperate for well-formed XML that’s backwards compatible with
HTML you can include these characters as inline images. For example:

✦ the
trademark symbol (tm)

✦ <img src=”copyright.gif” width=”12” height=”12”
alt=”Copyright”> the copyright symbol (c)

✦ img src=”infinity.gif” width=”12” height=”12”
alt=”infinity”> the infinity symbol ∞

✦ the
lowercase Greek letter pi, π

In practice, however, I don’t recommend using these. Well-formedness is not nearly
so important in HTML that it justifies the added download and rendering time this
imposes on your readers.

The XML Declaration
HTML documents don’t need XML declarations. However, they can have them. Web
browsers simply ignore tags they don’t recognize. From their perspective, the
following line is just another tag:

<?xml version=”1.0” standalone=”yes”?>

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 157

Title • 0000-0/0 • ch00.1 • Chapter 0 • Proof 1 • GPS • 00/00/00 • p.158

158 Part I ✦ Introducing XML

Since browsers that don’t understand XML, don’t understand the <?xml?> tag, they
quietly ignore it. Browsers that do understand XML will recognize this as an
indication that this document is composed of well-formed XML, and will be treated
as such.

Unfortunately, browsers that halfway understand XML may have troubles with this
syntax. In particular, Internet Explorer 4.0 for the Mac (but not Netscape Navigator
or other versions of IE) uses this as a signal to download the file rather than
displaying it. Consequently I’ve removed the XML declaration from my Web pages.

Follow the Rules
It is not particularly difficult to write well-formed XML documents that follow the
rules described in this chapter. However XML browsers are less forgiving of poor
syntax than HTML browsers, so you do need to be careful.

If you violate any well-formedness constraints, XML parsers and browsers will
report a syntax error. Thus the process of writing XML can be a little like the
process of writing code in a real programming language. You write it, then you
compile it, then when the compilation fails, you note the errors reported and fix
them.

Generally this is an iterative process in which you go through several edit-compile
cycles before you first get to look at the finished document. Despite this, there’s no
question that writing XML is a lot easier than writing C or Java source code, and
with a little practice, you’ll get to the point at which you have relatively few errors,
and you can write XML almost as quickly as you can type.

HTML Clean-Up Tools
There are several tools that will help you clean up your pages, most notably RUWF
(Are You Well Formed?) from XML.COM and HTML Tidy from Dave Raggett of the
W3C.

RUWF
Any tool that can check XML documents for well-formedness can test well-formed
HTML documents as well. However, one of the easiest tools to use is the RUWF well-
formedness checker from XML.COM. Figure 6-2 shows this tester. Simply type in the
URL of the page you want to check, and RUWF returns the first several dozen errors
on the page.

Here’s the first batch of errors RUWF found on the White House home page. Most of
these errors are malformed XML, but legal (if not necessarily good style) HTML.
However, at least one error (“Line 55, column 30: Encountered with no
start-tag.”) is a problem for both HTML and XML.

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 158

159Chapter 6 ✦ Well-Formed XML Documents

Figure 6-2: The RUWF well-formedness tester

Line 28, column 7: Encountered </HEAD> expected </META>
...assumed </META> ...assumed </META> ...assumed </META>
...assumed </META>
Line 36, column 12, character ‘0’: after AttrName= in start-tag
Line 37, column 12, character ‘0’: after AttrName= in start-tag
Line 38, column 12, character ‘0’: after AttrName= in start-tag
Line 40, column 12, character ‘0’: after AttrName= in start-tag
Line 41, column 10, character ‘A’: after AttrName= in start-tag
Line 42, column 12, character ‘0’: after AttrName= in start-tag
Line 43, column 14: Encountered </CENTER> expected </br>
...assumed </br> ...assumed </br>
Line 51, column 11, character ‘+’: after AttrName= in start-tag
Line 52, column 51, character ‘0’: after AttrName= in start-tag
Line 54, column 57: after &
Line 55, column 30: Encountered with no start-tag.
Line 57, column 10, character ‘A’: after AttrName= in start-tag
Line 59, column 15, character ‘+’: after AttrName= in start-tag

HTML Tidy
Once you’ve identified the problems, you’ll want to fix them. Many common
problems — for instance, putting quote marks around attribute values — can be
fixed automatically. The most convenient tool for doing this is Dave Raggett’s

Title • 0000-0/0 • ch00.1 • Chapter 0 • Proof 1 • GPS • 00/00/00 • p.159

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 159

160 Part I ✦ Introducing XML

command-line program HTML Tidy. Tidy is a character-mode program written in
ANSI C that can be compiled and run on most platforms including Windows, Unix,
BeOS and the Mac.

Tidy is on the CD-ROM in the directory utilities/tidy. Binaries are included for
Windows NT and BeOS. Portable source is included for all platforms. You can
download the latest version from http://www.w3.org/People/Raggett/
tidy/.

Tidy cleans up HTML files in several ways, not all of which are relevant to XML well-
formedness. In fact, in its default mode Tidy tends to remove unnecessary (for
HTML, but not for XML) end tags like and make other modifications that
break well-formedness. However, you can use the -asxml switch to specify that you
want well-formed XML output. For example, to convert the file index.html to well-
formed XML, you would type from a DOS window or shell prompt:

C:\> tidy -m -asxml index.html

The -m flag tells Tidy to convert the file in place. The -asxml flag tells Tidy to
format the output as XML.

Summary
In this chapter, you learned how to write well-formed XML. In particular, you
learned:

✦ XML documents are sequences of characters that meet certain well-formed-
ness criteria.

✦ The text of XML documents is divided into character data and markup.

✦ Comments can document your code with notes to yourself or to temporarily
comment out sections of the document that aren’t ready.

✦ Entity references allow you to include <, >, &, “, and ‘ in your document.

✦ CDATA sections are useful for embedding text that contains a lot of <, >, and &
characters

✦ Tags are anything in an XML document that begins with < and ends with >,
and are not inside a comment or CDATA section.

✦ Start tags and empty tags may contain attributes, which describe elements.

✦ HTML documents can also be well-formed with a little extra effort.

In the next chapter, we’ll explore how to write XML in languages other than English,
in particular in languages that don’t look even remotely like English, such as Arabic,
Chinese, and Greek.

✦ ✦ ✦

On the
CD-ROM

3236-7 ch06.F.qc 6/29/99 1:04 PM Page 160

Foreign
Languages and
Non-Roman Text

The Web is international, yet most of the text you’ll find on
it is English. XML is starting to change this. XML provides

full support for the double-byte Unicode character set, as well
as its more compact representations. This is good news for Web
authors because Unicode supports almost every character
commonly used in every modern script on Earth.

In this chapter, you’ll learn how international text is repre-
sented in computer applications, how XML understands text,
and how you can take advantage of the software you have to
read and write in languages other than English.

Non-Roman Scripts on the Web
Although the Web is international, much of its text is in
English. Because of the Web’s expansiveness, however, you
can still surf through Web pages in French, Spanish, Chinese,
Arabic, Hebrew, Russian, Hindi, and other languages. Most
of the time, though, these pages come out looking less than
ideal. Figure 7-1 shows the October 1998 cover page of one of
the United States Information Agency’s propaganda journals,
Issues in Democracy (http://www.usia.gov/journals/
itdhr/1098/ijdr/ijdr1098.htm), in Russian translation
viewed in an English encoding. The red Cyrillic text in the
upper left is a bitmapped image file so it’s legible (if you
speak Russian) and so are a few words in English such as
“Adobe Acrobat.” However, the rest of the text is mostly a
bunch of accented Roman vowels, not the Cyrillic letters
they are supposed to be.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
effects of non-Roman
scripts on the Web

Using scripts,
character sets,
fonts, and glyphs

Legacy character sets

Using the Unicode
Character Set

Writing XML
in Unicode

✦ ✦ ✦ ✦

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 161

162 Part I ✦ Introducing XML

The quality of Web pages deteriorates even further when complicated, non-
Western scripts like Chinese and Japanese are used. Figure 7-2 shows the home
page for the Japanese translation of my book JavaBeans (IDG Books, 1997,
http://www. ohmsha.co.jp/data/books/contents/4-274-06271-6.htm)
viewed in an English browser. Once again the bitmapped image shows the proper
Japanese (and English) text, but the rest of the text on the page looks almost like a
random collection of characters except for a few recognizable English words like
JavaBeans. The Kanji characters you’re supposed to see are completely absent.

Figure 7-1: The Russian translation of the October 1998 issue of
Issues of Democracy viewed in a Roman script

These pages look as they’re intended to look if viewed with the right encoding and
application software, and if the correct font is installed. Figure 7-3 shows Issues in
Democracy viewed with the Windows 1251 encoding of Cyrillic. As you can see, the
text below the picture is now readable (if you can read Russian).

You can select the encoding for a Web page from the View/Encoding menu in
Netscape Navigator or Internet Explorer. In an ideal world, the Web server would
tell the Web browser what encoding to use, and the Web browser would listen. It
would also be nice if the Web server could send the Web browser the fonts it
needed to display the page. In practice, however, you often need to select the
encoding manually, even trying several to find the exact right one when more than
one encoding is available for a script. For instance, a Cyrillic page might be

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 162

163Chapter 7 ✦ Foreign Languages and Non-Roman Text

encoded in Windows 1251, ISO 8859-5, or KOI6-R. Picking the wrong encoding may
make Cyrillic letters appear, but the words will be gibberish.

Figure 7-2: The
Japanese translation of
JavaBeans viewed
in an English browser

Figure 7-3: Issues of Democracy viewed in a Cyrillic script

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 163

164 Part I ✦ Introducing XML

Even when you can identify the encoding, there’s no guarantee you have fonts
available to display it. Figure 7-4 shows the Japanese home page for JavaBeans with
Japanese encoding, but without a Japanese font installed on the computer. Most
of the characters in the text are shown as a box, which indicates an unavailable
character glyph. Fortunately, Netscape Navigator can recognize that some of the
bytes on the page are double-byte Japanese characters rather than two one-byte
Western characters.

Figure 7-4: The Japanese translation of JavaBeans in Kanji
without the necessary fonts installed

If you do have a Japanese localized edition of your operating system that includes
the necessary fonts, or additional software like Apple’s Japanese Language Kit or
NJStar’s NJWin (http://www.njstar.com/) that adds Japanese-language support
to your existing system, you would be able to see the text more or less as it was
meant to be seen as shown in Figure 7-5.

Of course, the higher quality fonts you use, the better the text will look. Chinese
and Japanese fonts tend to be quite large (there are over 80,000 characters in
Chinese alone) and the distinctions between individual ideographs can be quite
subtle. Japanese publishers generally require higher-quality paper and printing
than Western publishers, so they can maintain the fine detail necessary to print
Japanese letters. Regrettably a 72-dpi computer monitor can’t do justice to most
Japanese and Chinese characters unless they’re displayed at almost obscenely
large point sizes.

Note

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 164

165Chapter 7 ✦ Foreign Languages and Non-Roman Text

Figure 7-5: The Japanese translation of JavaBeans in Kanji
with the necessary fonts installed

Because each page can only have a single encoding, it is difficult to write a Web
page that integrates multiple scripts, such as a French commentary on a Chinese
text. For a reasons such as this the Web community needs a single, universal
character set to display all characters for all computers and Web browsers.
We don’t have such a character set yet, but XML and Unicode get as close
as is currently possible.

XML files are written in Unicode, a double-byte character set that can represent
most characters in most of the world’s languages. If a Web page is written in
Unicode, as XML pages are, and if the browser understands Unicode, as XML
browsers should, then it’s not a problem for characters from different languages
to be included on the same page.

Furthermore, the browser doesn’t need to distinguish between different encodings
like Windows 1251, ISO 8859-5, or KOI8-R. It can just assume everything’s written
in Unicode. As long as the double-byte set has the space to hold all of the different
characters, there’s no need to use more than one character set. Therefore there’s
no need for browsers to try to detect which character set is in use.

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 165

166 Part I ✦ Introducing XML

Scripts, Character Sets, Fonts, and Glyphs
Most modern human languages have written forms. The set of characters used to
write a language is called a script. A script may be a phonetic alphabet, but it
doesn’t have to be. For instance, Chinese, Japanese, and Korean are written with
ideographic characters that represent whole words. Different languages often share
scripts, sometimes with slight variations. For instance, the modern Turkish
alphabet is essentially the familiar Roman alphabet with three extra letters — , ,
and ı. Chinese, Japanese, and Korean, on the other hand, share essentially the same
80,000 Han ideographs, though many characters have different meanings in the
different languages.

The word script is also often used to refer to programs written in weakly typed,
interpreted languages like JavaScript, Perl, and TCL. In this chapter, the word script
always refers to the characters used to write a language and not to any sort of
program.

Some languages can even be written in different scripts. Serbian and Croatian are
virtually identical and are generally referred to as Serbo-Croatian. However, Serbian
is written in a modified Cyrillic script, and Croatian is written in a modified Roman
script. As long as a computer doesn’t attempt to grasp the meaning of the words it
processes, working with a script is equivalent to working with any language that
can be written in that script.

Unfortunately, XML alone is not enough to read a script. For each script a computer
processes, four things are required:

1. A character set for the script

2. A font for the character set

3. An input method for the character set

4. An operating system and application software that understand the
character set

If any of these four elements are missing, you won’t be able to work easily in the
script, though XML does provide a work-around that’s adequate for occasional use.
If the only thing your application is missing is an input method, you’ll be able to
read text written in the script. You just won’t be able to write in it.

A Character Set for the Script
Computers only understand numbers. Before they can work with text, that text has
to be encoded as numbers in a specified character set. For example, the popular
ASCII character set encodes the capital letter ‘A’ as 65. The capital letter ‘B’ is
encoded as 66. ‘C’ is 67, and so on.

Note

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 166

167Chapter 7 ✦ Foreign Languages and Non-Roman Text

These are semantic encodings that provide no style or font information. C, C, or
even C are all 67. Information about how the character is drawn is stored elsewhere.

A Font for the Character Set
A font is a collection of glyphs for a character set, generally in a specific size, face,
and style. For example, C, C, and C are all the same character, but they are drawn
with different glyphs. Nonetheless their essential meaning is the same.

Exactly how the glyphs are stored varies from system to system. They may be
bitmaps or vector drawings; they may even consist of hot lead on a printing press.
The form they take doesn’t concern us here. The key idea is that a font tells the
computer how to draw each character in the character set.

An Input Method for the Character Set
An input method enables you to enter text. English speakers don’t think much
about the need for an input method for a script. We just type on our keyboards
and everything’s hunky-dory. The same is true in most of Europe, where all that’s
needed is a slightly modified keyboard with a few extra umlauts, cedillas, or
thorns (depending on the country).

Radically different character sets like Cyrillic, Hebrew, Arabic, and Greek are more
difficult to input. There’s a finite number of keys on the keyboard, generally not
enough for Arabic and Roman letters, or Roman and Greek letters. Assuming both
are needed though, a keyboard can have a Greek lock key that shifts the keyboard
from Roman to Greek and back. Both Greek and Roman letters can be printed on
the keys in different colors. The same scheme works for Hebrew, Arabic, Cyrillic,
and other non-Roman alphabetic character sets.

However, this scheme really breaks down when faced with ideographic scripts
like Chinese and Japanese. Japanese keyboards can have in the ballpark of 5,000
different keys; and that’s still less than 10% of the language! Syllabic, phonetic,
and radical representations exist that can reduce the number of keys; but it is
questionable whether a keyboard is really an appropriate means of entering text
in these languages. Reliable speech and handwriting recognition have even
greater potential in Asia than in the West.

Since speech and handwriting recognition still haven’t reached the reliability of
even a mediocre typist like myself, most input methods today are map multiple
sequences of keys on the keyboard to a single character. For example, to type the
Chinese character for sheep, you might hold down the Alt key and type a tilde (~),
then type yang, then hit the enter key. The input method would then present you
with a list of words that are pronounced more or less like yang. For example:

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 167

168 Part I ✦ Introducing XML

You would then choose the character you wanted, _. The exact details of both the
GUI and the transliteration system used to convert typed keys like yang to the
ideographic characters like _ vary from program to program, operating system to
operating system, and language to language.

Operating System and Application Software
As of this writing, the major Web browsers (Netscape Navigator and Internet
Explorer) do a surprisingly good job of displaying non-Roman scripts. Provided
the underlying operating system supports a given script and has the right fonts
installed, a Web browser can probably display it.

MacOS 7.1 and later can handle most common scripts in the world today. However,
the base operating system only supports Western European languages. Chinese,
Japanese, Korean, Arabic, Hebrew, and Cyrillic are available as language kits that
cost about $100 a piece. Each provides fonts and input methods for languages
written in those scripts. There’s also an Indian language kit, which handles the
Devanagari, Gujarati, and Gurmukhu scripts common on the Indian subcontinent.
MacOS 8.5 adds optional, limited support for Unicode (which most applications
don’t yet take advantage of).

Windows NT 4.0 uses Unicode as its native character set. NT 4.0 does a fairly good
job with Roman languages, Cyrillic, Greek, Hebrew, and a few others. The Lucida
Sans Unicode font covers about 1300 of the most common of Unicode’s 40,000 or so
characters. Microsoft Office 97 includes Chinese, Japanese, and Korean fonts that
you can install to read text in these languages. (Look in the Fareast folder in the
Valupack folder on your Office CD-ROM.)

Microsoft claims Windows 2000 (previously known as NT 5.0) will also include
fonts covering most of the Chinese-Japanese-Korean ideographs, as well as input
methods for these scripts. However they also promised that Windows 95 would
include Unicode support, and that got dropped before shipment. Consequently,
I’m not holding my breath. Certainly, it would be nice if they do provide full
international support in all versions of NT rather than relying on localized
systems.

Microsoft’s consumer operating systems, Windows 3.1, 95, and 98, do not fully
support Unicode. Instead they rely on localized systems that can only handle basic
English characters plus the localized script.

The major Unix variants have varying levels of support for Unicode. Solaris 2.6
supports European languages, Greek, and Cyrillic. Chinese, Japanese, and Korean
are supported by localized versions using different encodings rather than Unicode.
Linux has embryonic support for Unicode, which may grow to something useful in
the near future.

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 168

169Chapter 7 ✦ Foreign Languages and Non-Roman Text

Legacy Character Sets
Different computers in different locales use different default character sets. Most
modern computers use a superset of the ASCII character set. ASCII encodes the
English alphabet and the most common punctuation and whitespace characters.

In the United States, Macs use the MacRoman character set, Windows PCs use a
character set called Windows ANSI, and most Unix workstations use ISO Latin-1.
These are all extensions of ASCII that support additional characters like ç and ¿
that are needed for Western European languages like French and Spanish. In other
locales like Japan, Greece, and Israel, computers use a still more confusing hodge-
podge of character sets that mostly support ASCII plus the local language.

This doesn’t work on the Internet. It’s unlikely that while you’re reading the San
Jose Mercury News you’ll turn the page and be confronted with several columns
written in German or Chinese. However, on the Web it’s entirely possible a user will
follow a link and end up staring at a page of Japanese. Even if the surfer can’t read
Japanese it would still be nice if they saw a correct version of the language, as seen
in Figure 7-5, instead of a random collection of characters like those shown in
Figure 7-2.

XML addresses this problem by moving beyond small, local character sets to one
large set that’s supposed to encompass all scripts used in all living languages (and a
few dead ones) on planet Earth. This character set is called Unicode. As previously
noted, Unicode is a double-byte character set that provides representations of over
40,000 different characters in dozens of scripts and hundreds of languages. All XML
processors are required to understand Unicode, even if they can’t fully display it.

As you learned in Chapter 6, an XML document is divided into text and binary
entities. Each text entity has an encoding. If the encoding is not explicitly specified
in the entity’s definition, then the default is UTF-8 — a compressed form of Unicode
which leaves pure ASCII text unchanged. Thus XML files that contain nothing but
the common ASCII characters may be edited with tools that are unaware of the
complications of dealing with multi-byte character sets like Unicode.

The ASCII Character Set
ASCII, the American Standard Code for Information Interchange, is one of the
original character sets, and is by far the most common. It forms a sort of lowest
common denominator for what a character set must support. It defines all the
characters needed to write U.S. English, and essentially nothing else. The charac-
ters are encoded as the numbers 0-127. Table 7-1 presents the ASCII character set.

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 169

170 Part I ✦ Introducing XML

Table 7-1
The ASCII Character Set

Code Character Code Char- Code Char- Code Char-
acter acter acter

0 null(Control-@) 32 Space 64 @ 96 `

1 start of heading 33 ! 65 A 97 a
(Control-A)

2 start of text 34 “ 66 B 98 b
(Control-B)

3 end of text 35 # 67 C 99 c
(Control-C)

4 end of transmis- 36 $ 68 D 100 d
sion (Control-D)

5 enquiry 37 % 69 E 101 e
(Control-E)

6 acknowledge 38 & 70 F 102 f
(Control-F)

7 bell (Control-G) 39 ‘ 71 G 103 g

8 backspace 40 (72 H 104 h
(Control-H)

9 tab(Control-I) 41) 73 I 105 i

10 linefeed 42 * 74 J 106 j
(Control-J)

11 vertical tab) 43 + 75 K 107 k
(Control-K

12 formfeed 44 , 76 L 108 l
(Control-L)

13 carriage return 45 - 77 M 109 m
(Control-M)

14 shift out 46 . 78 N 110 n
(Control-N)

15 shift in 47 / 79 O 111 o
(Control-O)

16 data link escape 48 0 80 P 112 p
(Control-P)

17 device control 1 49 1 81 Q 113 q
(Control-Q)

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 170

171Chapter 7 ✦ Foreign Languages and Non-Roman Text

Code Character Code Char- Code Char- Code Char-
acter acter acter

18 device control 2 50 2 82 R 114 r
(Control-R)

19 device control 3 51 3 83 S 115 s
(Control-S)

20 device control 4 52 4 84 T 116 t
(Control-T)

21 negative acknowl- 53 5 85 U 117 u
edge (Control-U)

22 synchronous idle 54 6 86 V 118 v
(Control-V)

23 end of transmission 55 7 87 W 119 w
block (Control-W)

24 cancel (Control-X) 56 8 88 X 120 x

25 end of medium 57 9 89 Y 121 y
(Control-Y)

26 substitute 58 : 90 Z 122 z
(Control-Z)

27 escape (Control-[) 59 ; 91 [123 {

28 file separator 60 < 92 \ 124 |
(Control-\)

29 group separator 61 = 93] 125 }
(Control-])

30 record separator 62 > 94 ^ 126 ~
(Control-^)

31 unit separator 63 ? 95 _ 127 delete
(Control-_)

Characters 0 through 31 are non-printing control characters. They include the
carriage return, the linefeed, the tab, the bell, and similar characters. Many of these
are leftovers from the days of paper-based teletype terminals. For instance, carriage
return used to literally mean move the carriage back to the left margin, as you’d do
on a typewriter. Linefeed moved the platen up one line. Aside from the few control
characters mentioned, these aren’t used much anymore.

Most other character sets you’re likely to encounter are supersets of ASCII. In other
words, they define 0 though 127 exactly the same as ASCII, but add additional char-
acters from 128 on up.

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 171

172 Part I ✦ Introducing XML

The ISO Character Sets
The A in ASCII stands for American, so it shouldn’t surprise you that ASCII is only
adequate for writing English, and strictly American English at that. ASCII contains
no £, ü, ¿, or many other characters you might want for writing in other languages
or locales.

ASCII can be extended by assigning additional characters to numbers above 128.
The International Standards Organization (ISO) has defined a number of different
character sets based on ASCII that add additional characters needed for other
languages and locales. The most prominent such character set is ISO 8859-1,
commonly called Latin-1. Latin-1 includes enough additional characters to write
essentially all Western European languages. Characters 0 through 127 are the same
as they are in ASCII. Characters 128 through 255 are given in Table 7-2. Again, the
first 32 characters are mostly unused, non-printing control characters.

Table 7-2
The ISO 8859-1 Latin-1 Character Set

Code Character Code Character Code Character Code Character

128 Undefined 160 non-break- 192 À 224 À
ing space

129 Undefined 161 ¡ 193 Á 225 Á

130 Bph 162 ¢ 194 Â 226 Â

131 Nbh 163 £ 195 Ã 227 Ã

132 Undefined 164 196 Ä 228 Ä

133 Nel 165 ¥ 197 Å 229 Å

134 Ssa 166 B 198 Æ 230 Æ

135 Esa 167 § 199 Ç 231 Ç

136 Hts 168 ¨ 200 È 232 È

137 Htj 169 © 201 É 233 É

138 Vts 170 ª 202 Ê 234 Ê

139 Pld 171 « 203 Ë 235 Ë

140 Plu 172 ¬ 204 Ì 236 Ì

141 Ri 173 Discretionary 205 Í 237 Í
hyphen

142 ss2 174 ® 206 Î 238 Î

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 172

173Chapter 7 ✦ Foreign Languages and Non-Roman Text

Code Character Code Character Code Character Code Character

143 ss3 175 ¯ 207 Ï 239 Ï

144 Dcs 176 ° 208 W 240 e

145 pu1 177 ± 209 Ñ 241 Ñ

146 pu2 178 2 210 Ò 242 Ò

147 Sts 179 3 211 Ó 243 Ó

148 Cch 180 ´ 212 Ô 244 Ô

149 Mw 181 µ 213 Õ 245 Õ

150 Spa 182 ¶ 214 Ö 246 Ö

151 Epa 183 · 215 × 247 ÷

152 Sos 184 ¸ 216 Ø 248 Ø

153 Undefined 185 1 217 Ù 249 Ù

154 Sci 186 º 218 Ú 250 Ú

155 Csi 187 » 219 Û 251 Û

156 St 188 1/4 220 Ü 252 Ü

157 Osc 189 1/2 221 253

158 Pm 190 3/4 222 T 254 T

159 Apc 191 ¿ 223 ß 255 Ÿ

Latin-1 still lacks many useful characters including those needed for Greek, Cyrillic,
Chinese, and many other scripts and languages. You might think these could just be
moved into the numbers from 256 up. However there’s a catch. A single byte can only
hold values from 0 to 255. To go beyond that, you need to use a multi-byte character
set. For historical reasons most programs are written under the assumption that
characters and bytes are identical, and they tend to break when faced with multi-byte
character sets. Therefore, most current operating systems (Windows NT being the
notable exception) use different, single-byte character sets rather than one large
multi-byte set. Latin-1 is the most common such set, but other sets are needed to
handle additional languages.

ISO 8859 defines ten other character sets (8859-2 through 8859-10 and 8859-15)
suitable for different scripts, with four more (8859-11 through 8859-14) in active
development. Table 7-3 lists the ISO character sets and the languages and scripts
they can be used for. All share the same ASCII characters from 0 to 127, and then
each includes additional characters from 128 to 255.

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 173

174 Part I ✦ Introducing XML

Table 7-3
The ISO Character Sets

Also
Known

Character Set As Languages

ISO 8859-1 Latin-1 ASCII plus the characters required for most Western European
languages including Albanian, Afrikaans, Basque, Catalan,
Danish, Dutch, English, Faroese, Finnish, Flemish, Galician,
German, Icelandic, Irish, Italian, Norwegian, Portuguese,
Scottish, Spanish, and Swedish. However it omits the ligatures
ij (Dutch), Œ (French), and German quotation marks.

ISO 8859-2 Latin-2 ASCII plus the characters required for most Central European
languages including Czech, English, German, Hungarian,
Polish, Romanian, Croatian, Slovak, Slovene, and Sorbian.

ISO 8859-3 Latin-3 ASCII plus the characters required for English, Esperanto,
German, Maltese, and Galician.

ISO 8859-4 Latin-4 ASCII plus the characters required for the Baltic languages
Latvian, Lithuanian, German, Greenlandic, and Lappish;
superseded by ISO 8859-10, Latin-6

ISO 8859-5 ASCII plus Cyrillic characters required for Byelorussian,
Bulgarian, Macedonian, Russian, Serbian, and Ukrainian.

ISO 8859-6 ASCII plus Arabic.

ISO 8859-7 ASCII plus Greek.

ISO 8859-8 ASCII plus Hebrew.

ISO 8859-9 Latin-5 Latin-1 except that the Turkish letters , ı, , , , and take
the place of the less commonly used Icelandic letters , , T,
y, W, and e.

ISO 8859-10 Latin-6 ASCII plus characters for the Nordic languages Lithuanian,
Inuit (Greenlandic Eskimo), non-Skolt Sami (Lappish), and
Icelandic.

ISO 8859-11 ASCII plus Thai.

ISO 8859-12 This may eventually be used for ASCII plus Devanagari (Hindi,
Sanskrit, etc.) but no proposal is yet available.

ISO 8859-13 Latin-7 ASCII plus the Baltic Rim, particularly Latvian.

ISO 8859-14 Latin-8 ASCII plus Gaelic and Welsh.

ISO 8859-15 Latin-9, Essentially the same as Latin-1 but with a Euro sign instead
Latin-0 of the international currency sign . Furthermore, the Finnish

characters , , , replace the uncommon symbols B, ¨, ¸.
And the French Œ, œ, and Ÿ characters replace the fractions
1/4, 1/2, 3/4.

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 174

175Chapter 7 ✦ Foreign Languages and Non-Roman Text

These sets often overlap. Several languages, most notably English and German, can
be written in more than one of the character sets. To some extent the different sets
are designed to allow different combinations of languages. For instance Latin-1 can
combine most Western languages and Icelandic whereas Latin-5 combines most
Western languages with Turkish instead of Icelandic. Thus if you needed a document
in English, French, and Icelandic, you’d use Latin-1. However a document containing
English, French, and Turkish would use Latin-5. However, a document that required
English, Hebrew, and Turkish, would have to use Unicode since no single-byte
character set handles all three languages and scripts.

A single-byte set is insufficient for Chinese, Japanese, and Korean. These languages
have more than 256 characters apiece, so they must use multi-byte character sets.

The MacRoman Character Set
The MacOS predates Latin-1 by several years. (The ISO 8859-1 standard was first
adopted in 1987. The first Mac was released in 1984.) Unfortunately this means
that Apple had to define its own extended character set called MacRoman.
MacRoman has most of the same extended characters as Latin-1 (except for the
Icelandic letters T, y, and e) but the characters are assigned to different numbers.
MacRoman is the same as ASCII and Latin-1 in the codes though the first 127
characters. This is one reason text files that use extended characters often look
funny when moved from a PC to a Mac or vice versa. Table 7-4 lists the upper half
of the MacRoman character set.

Table 7-4
The MacRoman Character Set

Code Character Code Character Code Character Code Character

128 Â 160 † 192 ¿ 224 ‡

129 Å 161 ° 193 ¡ 225 ·

130 Ç 162 ¢ 194 ¬ 226 ‚

131 É 163 £ 195 √ 227 „

132 Ñ 164 § 196 ƒ 228 ‰

133 Ö 165 · 197 ˜ 229 Â

134 Û 166 ¶ 198 ∆ 230 Ê

135 Á 167 ß 199 « 231 Á

136 À 168 ® 200 » 232

Continued

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 175

176 Part I ✦ Introducing XML

Table 7-4 (continued)

Code Character Code Character Code Character Code Character

137 Â 169 © 201 ... 233 È

138 Ä 170 ™ 202 non-break- 234 Í
ing space

139 Ã 171 ´ 203 À 235 Î

140 Å 172 ¨ 204 Ã 236 Ï

141 Ç 173 ≠ 205 Õ 237 Ì

142 É 174 Æ 206 Œ 238 Î

143 È 175 Ø 207 Œ 239 Ó

144 Ê 176 ∞ 208 ¯ 240 Ô

145 Ë 177 ± 209 _ 241 Apple

146 Í 178 ≤ 210 “ 242 Ò

147 Ì 179 ≥ 211 “ 243 Ú

148 Ì 180 ¥ 212 ‘ 244 Û

149 Ï 181 µ 213 ‘ 245 1

150 ñ 182 ∂ 214 ÷ 246 ˆ

151 ó 183 ∑ 215 ◊ 247 ˜

152 ò 184 ∏ 216 Ÿ 248 ¯

153 ô 185 Π 217 Ÿ 249 ˘

154 ö 186 ∫ 218 / 250 ˙

155 õ 187 ª 219 251 °

156 ú 188 ° 220 ‹ 252 ¸

157 Ù 189 Ω 221 › 253 ˝

158 Û 190 Æ 222 fi 254 ˛

159 Ü 191 Ø 223 fl 255 ˇ

The Windows ANSI Character Set
The first version of Windows to achieve widespread adoption followed the Mac by a
few years, so it was able to adopt the Latin-1 character set. However, it replaced the
non-printing control characters between 130 and 159 with more printing characters
to stretch the available range a little further. This modified version of Latin-1 is
generally called “Windows ANSI.” Table 7-5 lists the Windows ANSI characters.

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 176

177Chapter 7 ✦ Foreign Languages and Non-Roman Text

Table 7-5
The Windows ANSI Character Set

Code Character Code Character Code Character Code Character

128 Undefined 136 ˆ 144 Undefined 152 ~

129 Undefined 137 ‰ 145 ‘ 153 ™

130 , 138 146 ‘ 154

131 ■■ 139 ‹ 147 “ 155 ›

132 “ 140 Œ 148 “ 156 Œ

133 ... 141 Undefined 149 • 157 Undefined

134 † 142 Undefined 150 – 158 Undefined

135 ‡ 143 Undefined 151 — 159 Ÿ

The Unicode Character Set
Using different character sets for different scripts and languages works well enough
as long as:

1. You don’t need to work in more than one script at once.

2. You never trade files with anyone using a different character set.

Since Macs and PCs use different character sets, more people fail these criteria
than not. Obviously what is needed is a single character set that everyone agrees
on and that encodes all characters in all the world’s scripts. Creating such a set is
difficult. It requires a detailed understanding of hundreds of languages and their
scripts. Getting software developers to agree to use that set once it’s been created
is even harder. Nonetheless work is ongoing to create exactly such a set called
Unicode, and the major vendors (Microsoft, Apple, IBM, Sun, Be, and many others)
are slowly moving toward complying with it. XML specifies Unicode as its default
character set.

Unicode encodes each character as a two-byte unsigned number with a value
between 0 and 65,535. Currently a few more than 40,000 different Unicode charac-
ters are defined. The remaining 25,000 spaces are reserved for future extensions.
About 20,000 of the characters are used for the Han ideographs and another
11,000 or so are used for the Korean Hangul syllables. The remainder of the char-
acters encodes most of the rest of the world’s languages. Unicode characters 0
through 255 are identical to Latin-1 characters 0 through 255.

I’d love to show you a table of all the characters in Unicode, but if I did this book
would consist entirely of this table and not much else. If you need to know more
about the specific encodings of the different characters in Unicode, get a copy of

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 177

178 Part I ✦ Introducing XML

The Unicode Standard (second edition, ISBN 0-201-48346-9, from Addison-Wesley).
This 950-page book includes the complete Unicode 2.0 specification, including
character charts for all the different characters defined in Unicode 2.0. You can
also find information online at the Unicode Consortium Web site at http://www.
unicode.org/ and http://charts.unicode.org/. Table 7-6 lists the different
scripts encoded by Unicode which should give you some idea of Unicode’s
versatility. The characters of each script are generally encoded in a consecutive
sub-range (block) of the 65,536 code points in Unicode. Most languages can be
written with the characters in one of these blocks (for example, Russian can be
written with the Cyrillic block) though some languages like Croatian or Turkish
may need to mix and match characters from the first four Latin blocks.

Table 7-6
Unicode Script Blocks

Script Range Purpose

Basic Latin 0-127 ASCII, American English.

Latin-1 Supplement 126-255 Upper half of ISO Latin-1, in conjunction with the
Basic Latin block can handle Danish, Dutch, English,
Faroese, Flemish, German, Hawaiian, Icelandic,
Indonesian, Irish, Italian, Norwegian, Portuguese,
Spanish, Swahili, and Swedish.

Latin Extended-A 256-383 This block adds the characters from the ISO 8859 sets
Latin-2, Latin-3, Latin-4, and Latin-5 not already found
in the Basic Latin and Latin-1 blocks. In conjunction
with those blocks, this block can encode Afrikaans,
Breton, Basque, Catalan, Czech, Esperanto, Estonian,
French, Frisian, Greenlandic, Hungarian, Latvian,
Lithuanian, Maltese, Polish, Provençal, Rhaeto-
Romanic, Romanian, Romany, Slovak, Slovenian,
Sorbian, Turkish, and Welsh.

Latin Extended-B 383-591 Mostly characters needed to extend the Latin script to
handle languages not traditionally written in this
script; includes many African languages, Croatian
digraphs to match Serbian Cyrillic letters, the Pinyin
transcription of Chinese, and the Sami characters
from Latin-10.

IPA Extensions 592-687 The International Phonetic Alphabet.

Spacing Modifier 686-767 Small symbols that somehow change (generally
Letters phonetically) the previous letter.

Combining Diacritical 766-879 Diacritical marks like ~, ‘, and _ that will somehow be
Marks combined with the previous character (most com-

monly, be placed on top of) rather than drawn as a
separate character.

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 178

179Chapter 7 ✦ Foreign Languages and Non-Roman Text

Script Range Purpose

Greek 880-1023 Modern Greek, based on ISO 8859-7; also provides
characters for Coptic.

Cyrillic 1024-1279 Russian and most other Slavic languages (Ukrainian,
Byelorussian, and so forth), and many non-Slavic
languages of the former Soviet Union (Azerbaijani,
Ossetian, Kabardian, Chechen, Tajik, and so forth);
based on ISO 8859-5. A few languages (Kurdish,
Abkhazian) require both Latin and Cyrillic characters

Armenian 1326-1423 Armenian

Hebrew 1424-1535 Hebrew (classical and modern), Yiddish, Judezmo,
early Aramaic.

Arabic 1536-1791 Arabic, Persian, Pashto, Sindhi, Kurdish, and classical
Turkish.

Devanagari 2304-2431 Sanskrit, Hindi, Nepali, and other languages of the
Indian subcontinent including Awadhi, Bagheli,
Bhatneri, Bhili, Bihari, Braj Bhasha, Chhattisgarhi,
Garhwali, Gondi, Harauti, Ho, Jaipuri, Kachchhi,
Kanauji, Konkani, Kului, Kumaoni, Kurku, Kurukh,
Marwari, Mundari, Newari, Palpa, and Santali.

Bengali 2432-2559 A North Indian script used in India’s West Bengal state
and Bangladesh; used for Bengali, Assamese, Daphla,
Garo, Hallam, Khasi, Manipuri, Mizo, Naga, Munda,
Rian, Santali.

Gurmukhi 2560-2687 Punjabi

Gujarati 2686-2815 Gujarati

Oriya 2816-2943 Oriya, Khondi, Santali.

Tamil 2944-3071 Tamil and Badaga, used in south India, Sri Lanka,
Singapore, and parts of Malaysia.

Telugu 3072-3199 Telugu, Gondi, Lambadi.

Kannada 3200-3327 Kannada, Tulu.

Malalayam 3326-3455 Malalayam

Thai 3584-3711 Thai, Kuy, Lavna, Pali.

Lao 3712-3839 Lao

Tibetan 3840-4031 Himalayan languages including Tibetan, Ladakhi, and
Lahuli.

Continued

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 179

180 Part I ✦ Introducing XML

Table 7-6 (continued)

Script Range Purpose

Georgian 4256-4351 Georgian, the language of the former Soviet Republic
of Georgian on the Black Sea.

Hangul Jamo 4352-4607 The alphabetic components of the Korean Hangul
syllabary.

Latin Extended 7680-7935 Normal Latin letters like E and Y combined with
Additional diacritical marks, rarely used except for Vietnamese

vowels

Greek Extended 7936-8191 Greek letters combined with diacritical marks; used in
Polytonic and classical Greek.

General Punctuation 8192-8303 Assorted punctuation marks.

Superscripts and 8304-8351 Common subscripts and superscripts.
Subscripts

Currency Symbols 8352-8399 Currency symbols not already present in other blocks.

Combining Marks for 8400-8447 Used to make a diacritical mark span two or more
Symbols characters.

Letter like Symbols 8446-8527 Symbols that look like letters such as ™ and _.

Number Forms 8526-8591 Fractions and Roman numerals.

Arrows 8592-8703 Arrows

Mathematical 8704-8959 Mathematical operators that don’t already appear in
Operators other blocks.

Miscellaneous 8960-9039 Cropping marks, braket notation from quantum
Technical mechanics, symbols needed for the APL programming

language, and assorted other technical symbols.

Control Pictures 9216-9279 Pictures of the ASCII control characters; generally
used in debugging and network-packet sniffing.

Optical Character 9280-9311 OCR-A and the MICR (magnetic ink character
Recognition recognition) symbols on printed checks.

Enclosed 9312-9471 Letters and numbers in circles and parentheses.
alphanumerics

Box Drawing 9472-9599 Characters for drawing boxes on monospaced
terminals.

Block Elements 9600-9631 Monospaced terminal graphics as used in DOS and
elsewhere.

Geometric Shapes 9632-9727 Squares, diamonds, triangles, and the like.

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 180

181Chapter 7 ✦ Foreign Languages and Non-Roman Text

Script Range Purpose

Miscellaneous 9726-9983 Cards, chess, astrology, and more.
Symbols

Dingbats 9984-10175 The Zapf Dingbat characters.

CJK Symbols and 12286- Symbols and punctuation used in Chinese, Japanese,
Punctuation 12351 and Korean.

Hiragana 12352- A cursive syllabary for Japanese
12447

Katakana 12446- A non-cursive syllabary used to write words imported
12543 from the West in Japanese, especially modern words

like “keyboard”.

Bopomofo 12544- A phonetic alphabet for Chinese used primarily for
12591 teaching.

Hangul Compatibility 12592- Korean characters needed for compatibility with the
Jamo 12687 KSC 5601 encoding.

Kanbun 12686- Marks used in Japanese to indicate the reading order
12703 of classical Chinese.

Enclosed CJK Letters 12800- Hangul and Katakana characters enclosed in circles
and Months 13055 and parentheses.

CJK Compatibility 13056- Characters needed only to encode KSC 5601 and
13311 CNS 11643.

CJK Unified 19966- The Han ideographs used for Chinese, Japanese, and
Ideographs 40959 Korean.

Hangul Syllables 44032- A Korean syllabary.
55203

Surrogates 55296- Currently unused, but will eventually allow the
57343 extension of Unicode to over one million different

characters.

Private Use 57344- Software developers can include their custom
63743 characters here; not compatible across

implementations.

CJK Compatibility 63744- A few extra Han ideographs needed only to maintain
Ideographs 64255 compatibility with existing standards like KSC 5601.

Alphabetic Presen- 64256- Ligatures and variants sometimes used in Latin,
tation Forms 64335 Armenian, and Hebrew.

Arabic Presentation 64336- Variants of assorted Arabic characters.
Forms 65023

Continued

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 181

182 Part I ✦ Introducing XML

Table 7-6 (continued)

Script Range Purpose

Combining Half 65056- Combining multiple diacritical marks into a single
Marks 65071 diacritical mark that spans multiple characters.

CJK Compatibility 65072- Mostly vertical variants of Han ideographs used in
Forms 65103 Taiwan.

Small Form Variants 65104- Smaller version of ASCII punctuation mostly used in
65135 Taiwan.

Additional Arabic 65136- More variants of assorted Arabic characters.
Presentation Forms 65279

Half-width and Full- 65280- Characters that allow conversion between different
width Forms 65519 Chinese and Japanese encodings of the same

characters.

Specials 65520- The byte order mark and the zero-width, no breaking
65535 space often used to start Unicode files.

UTF 8
Since Unicode uses two bytes for each character, files of English text are about twice
as large in Unicode as they would be in ASCII or Latin-1. UTF-8 is a compressed ver-
sion of Unicode that uses only a single byte for the most common characters, that is
the ASCII characters 0-127, at the expense of having to use three bytes for the less
common characters, particularly the Hangul syllables and Han ideographs. If you’re
writing mostly in English, UTF-8 can reduce your file sizes by as much as 50 percent.
On the other hand if you’re writing mostly in Chinese, Korean, or Japanese, UTF-8 can
increase your file size by as much as 50 percent — so it should be used with caution.
UTF-8 has mostly no effect on non-Roman, non-CJK scripts like Greek, Arabic, Cyrillic,
and Hebrew.

XML processors assume text data is in the UTF-8 format unless told otherwise. This
means they can read ASCII files, but other formats like MacRoman or Latin-1 cause
them trouble. You’ll learn how to fix this problem shortly.

The Universal Character System
Unicode has been criticized for not encompassing enough, especially in regard to
East Asian languages. It only defines about 20,000 of the 80,000 Han ideographs used
amongst Chinese, Japanese, Korean, and historical Vietnamese. (Modern Vietnamese
uses a Roman alphabet.)

UCS (Universal Character System), also known as ISO 10646, uses four bytes per
character (more precisely, 31 bits) to provide space for over two billion different

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 182

183Chapter 7 ✦ Foreign Languages and Non-Roman Text

characters. This easily covers every character ever used in any language in any
script on the planet Earth. Among other things this enables a full set of characters
to be assigned to each language so that the French “e” is not the same as the
English “e” is not the same as the German “e,” and so on.

Like Unicode, UCS defines a number of different variants and compressed forms.
Pure Unicode is sometimes referred to as UCS-2, which is two-byte UCS. UTF-16 is a
special encoding that maps some of the UCS characters into byte strings of varying
length in such a fashion that Unicode (UCS-2) data is unchanged.

At this point, the advantage of UCS over Unicode is mostly theoretical. The only
characters that have actually been defined in UCS are precisely those already in
Unicode. However, it does provide more room for future expansion.

How to Write XML in Unicode
Unicode is the native character set of XML, and XML browsers will probably do a
pretty good job of displaying it, at least to the limits of the available fonts. None-
theless, there simply aren’t many if any text editors that support the full range of
Unicode. Consequently, you’ll probably have to tackle this problem in one of a
couple of ways:

1. Write in a localized character set like Latin-3; then convert your file to Unicode.

2. Include Unicode character references in the text that numerically identify
particular characters.

The first option is preferable when you’ve got a large amount of text to enter in
essentially one script, or one script plus ASCII. The second works best when you
need to mix small portions of multiple scripts into your document.

Inserting Characters in XML Files with
Character References
Every Unicode character is a number between 0 and 65,535. If you do not have a
text editor that can write in Unicode, you can always use a character reference to
insert the character in your XML file instead.

A Unicode character reference consists of the two characters &# followed by the
character code, followed by a semicolon. For instance, the Greek letter π has
Unicode value 960 so it may be inserted in an XML file as π. The Cyrillic
character has Unicode value 1206 so it can be included in an XML file with the
character reference Ҷ

Unicode character references may also be specified in hexadecimal (base 16).
Although most people are more comfortable with decimal numbers, the Unicode

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 183

184 Part I ✦ Introducing XML

Specification gives character values as two-byte hexadecimal numbers. It’s often
easier to use hex values directly rather than converting them to decimal.

All you need to do is include an x after the &# to signify that you’re using a hexa-
decimal value. For example, π has hexadecimal value 3C0 so it may be inserted in
an XML file as π. The Cyrillic character has hexadecimal value 4B6 so it
can be included in an XML file with the escape sequence Ҷ. Because two
bytes always produce exactly four hexadecimal digits, it’s customary (though not
required) to include leading zeros in hexadecimal character references so they are
rounded out to four digits.

Unicode character references, both hexadecimal and decimal, may be used to
embed characters that would otherwise be interpreted as markup. For instance,
the ampersand (&) is encoded as & or &. The less-than sign (<) is
encoded as < or <.

Converting to and from Unicode
Application software that exports XML files, such as Adobe Framemaker, handles
the conversion to Unicode or UTF-8 automatically. Otherwise you’ll need to use a
conversion tool. Sun’s freely available Java Development Kit (JDK) includes a sim-
ple command-line utility called native2ascii that converts between many common
and uncommon localized character sets and Unicode.

For example, the following command converts a text file named myfile.txt from the
platform’s default encoding to Unicode

C:\> native2ascii myfile.txt myfile.uni

You can specify other encodings with the -encoding option:

C:> native2ascii -encoding Big5 chinese.txt chinese.uni

You can also reverse the process to go from Unicode to a local encoding with the -
reverse option:

C:> native2ascii -encoding Big5 -reverse chinese.uni chinese.txt

If the output file name is left off, the converted file is printed out.

The native2ascii program also processes Java-style Unicode escapes, which are
characters embedded as \u09E3. These are not in the same format as XML
numeric character references, though they’re similar. If you convert to Unicode
using native2ascii, you can still use XML character references — the viewer will
still recognize them.

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 184

185Chapter 7 ✦ Foreign Languages and Non-Roman Text

How to Write XML in Other Character Sets
Unless told otherwise, an XML processor assumes that text entity characters are
encoded in UTF-8. Since UTF-8 includes ASCII as a subset, ASCII text is easily parsed
by XML processors as well.

The only character set other than UTF-8 that an XML processor is required to
understand is raw Unicode. If you cannot convert your text into either UTF-8 or
raw Unicode, you can leave the text in its native character set and tell the XML
processor which set that is. This should be a last resort, though, because there’s
no guarantee an arbitrary XML processor can process other encodings. Nonethe-
less Netscape Navigator and Internet Explorer both do a pretty good job of inter-
preting the common character sets.

To warn the XML processor that you’re using a non-Unicode encoding, you include
an encoding attribute in the XML declaration at the start of the file. For example,
to specify that the entire document uses Latin-1 by default (unless overridden by
another processing instruction in a nested entity) you would use this XML
declaration:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

You can also include the encoding declaration as part of a separate processing
instruction after the XML declaration but before any character data appears.

<?xml encoding=”ISO-8859-1”?>

Table 7-7 lists the official names of the most common character sets used today, as
they would be given in XML encoding attributes. For encodings not found in this list,
consult the official list maintained by the Internet Assigned Numbers Authority
(IANA) at http://www.isi.edu/in-notes/iana/assignments/character-sets.

Table 7-7
Names of Common Character Sets

Character Set Name Languages/Countries

US-ASCII English

UTF-8 Compressed Unicode

UTF-16 Compressed UCS

ISO-10646-UCS-2 Raw Unicode

ISO-10646-UCS-4 Raw UCS

Continued

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 185

186 Part I ✦ Introducing XML

Table 7-7 (continued)

Character Set Name Languages/Countries

ISO-8859-1 Latin-1, Western Europe

ISO-8859-2 Latin-2, Eastern Europe

ISO-8859-3 Latin-3, Southern Europe

ISO-8859-4 Latin-4, Northern Europe

ISO-8859-5 ASCII plus Cyrillic

ISO-8859-6 ASCII plus Arabic

ISO-8859-7 ASCII plus Greek

ISO-8859-8 ASCII plus Hebrew

ISO-8859-9 Latin-5, Turkish

ISO-8859-10 Latin-6, ASCII plus the Nordic languages

ISO-8859-11 ASCII plus Thai

ISO-8859-13 Latin-7, ASCII plus the Baltic Rim languages,
particularly Latvian

ISO-8859-14 Latin-8, ASCII plus Gaelic and Welsh

ISO-8859-15 Latin-9, Latin-0; Western Europe

ISO-2022-JP Japanese

Shift_JIS Japanese, Windows

EUC-JP Japanese, Unix

Big5 Chinese, Taiwan

GB2312 Chinese, mainland China

KOI6-R Russian

ISO-2022-KR Korean

EUC-KR Korean, Unix

ISO-2022-CN Chinese

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 186

187Chapter 7 ✦ Foreign Languages and Non-Roman Text

Summary
In this chapter you learned:

✦ Web pages should identify the encoding they use.

✦ What a script is, how it relates to languages, and the four things a script
requires.

✦ How scripts are used in computers with character sets, fonts, glyphs, and
input methods.

✦ What character sets are commonly used on different platforms and that most
are based on ASCII.

✦ How to write XML in Unicode without a Unicode editor (write the document
in ASCII and include Unicode character references).

✦ When writing XML in other encodings, include an encoding attribute in the
XML declaration.

In the next chapter, you’ll begin exploring DTDs and how they enable you to define
and enforce a vocabulary, syntax, and grammar for your documents.

✦ ✦ ✦

3236-7 ch07.F.qc 6/29/99 1:04 PM Page 187

Document Type
Definitions and
Validity

XML has been described as a meta-markup language, that
is, a language for describing markup languages. In this

chapter you begin to learn how to document and describe the
new markup languages you create. Such markup languages
(also known as tag sets) are defined via a document type
definition (DTD), which is what this chapter is all about.
Individual documents can be compared against DTDs in a
process known as validation. If the document matches the
constraints listed in the DTD, then the document is said to be
valid. If it doesn’t, the document is said to be invalid.

Document Type Definitions
The acronym DTD stands for document type definition. A
document type definition provides a list of the elements,
attributes, notations, and entities contained in a document, as
well as their relationships to one another. DTDs specify a set
of rules for the structure of a document. For example, a DTD
may dictate that a BOOK element have exactly one ISBN child,
exactly one TITLE child, and one or more AUTHOR children,
and it may or may not contain a single SUBTITLE. The DTD
accomplishes this with a list of markup declarations for
particular elements, entities, attributes, and notations.

This chapter focuses on element declarations. Chapters 9,
10, and 11 introduce entities, attributes, and notations,
respectively.

DTDs can be included in the file that contains the document
they describe, or they can be linked from an external URL.

Cross-
Reference

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Document Type
Definitions (DTDs)

Document type
declarations

Validation against
a DTD

The list of elements

Element declarations

Comments in DTDs

Common DTDs that
can be shared
among documents

✦ ✦ ✦ ✦

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 191

192 Part II ✦ Document Type Definitions

Such external DTDs can be shared by different documents and Web sites. DTDs
provide a means for applications, organizations, and interest groups to agree upon,
document, and enforce adherence to markup standards.

For example, a publisher may want an author to adhere to a particular format
because it makes it easier to lay out a book. An author may prefer writing words in
a row without worrying about matching up each bullet point in the front of the
chapter with a subhead inside the chapter. If the author writes in XML, it’s easy for
the publisher to check whether the author adhered to the predetermined format
specified by the DTD, and even to find out exactly where and how the author
deviated from the format. This is much easier than having editors read through
documents with the hope that they spot all the minor deviations from the format,
based on style alone.

DTDs also help ensure that different people and programs can read each other’s
files. For instance, if chemists agree on a single DTD for basic chemical notation,
possibly via the intermediary of an appropriate professional organization such as
the American Chemical Society, then they can be assured that they can all read and
understand one another’s papers. The DTD defines exactly what is and is not
allowed to appear inside a document. The DTD establishes a standard for the
elements that viewing and editing software must support. Even more importantly, it
establishes extensions beyond those that the DTD declares are invalid. Thus, it
helps prevent software vendors from embracing and extending open protocols in
order to lock users into their proprietary software.

Furthermore, a DTD shows how the different elements of a page are arranged
without actually providing their data. A DTD enables you to see the structure of
your document separate from the actual data. This means you can slap a lot of
fancy styles and formatting onto the underlying structure without destroying it,
much as you paint a house without changing its basic architectural plan. The
reader of your page may not see or even be aware of the underlying structure, but
as long as it’s there, human authors and JavaScripts, CGIs, servlets, databases, and
other programs can use it.

There’s more you can do with DTDs. You can use them to define glossary entities
that insert boilerplate text such as a signature block or an address. You can
ascertain that data entry clerks are adhering to the format you need. You can
migrate data to and from relational and object databases. You can even use XML as
an intermediate format to convert different formats with suitable DTDs. So let’s get
started and see what DTDs really look like.

Document Type Declarations
A document type declaration specifies the DTD a document uses. The document type
declaration appears in a document’s prolog, after the XML declaration but before
the root element. It may contain the document type definition or a URL identifying
the file where the document type definition is found. It may even contain both, in

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 192

193Chapter 8 ✦ Document Type Definitions and Validity

which case the document type definition has two parts, the internal and external
subsets.

A document type declaration is not the same thing as a document type definition.
Only the document type definition is abbreviated DTD. A document type declara-
tion must contain or refer to a document type definition, but a document type
definition never contains a document type declaration. I agree that this is unnec-
essarily confusing. Unfortunately, XML seems stuck with this terminology.
Fortunately, most of the time the difference between the two is not significant.

Recall Listing 3-2 (greeting.xml) from Chapter 3. It is shown below:

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING>

This document contains a single element, GREETING. (Remember, <?xml version
=”1.0” standalone=”yes”?> is a processing instruction, not an element.) Listing
8-1 shows this document, but now with a document type declaration. The docu-
ment type declaration declares that the root element is GREETING. The document
type declaration also contains a document type definition, which declares that the
GREETING element contains parsed character data.

Listing 8-1: Hello XML with DTD

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>
<GREETING>
Hello XML!
</GREETING>

The only difference between Listing 3-2 and Listing 8-1 are the three new lines
added to Listing 8-1:

<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>

These lines are this Listing 8-1’s document type declaration. The document type
declaration comes between the XML declaration and the document itself. The XML
declaration and the document type declaration together are called the prolog of the
document. In this short example, <?xml version=”1.0” standalone=”yes”?> is
the XML declaration; <!DOCTYPE GREETING [<!ELEMENT GREETING (#PCDATA)>
]> is the document type declaration; <!ELEMENT GREETING (#PCDATA)> is the

Caution

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 193

194 Part II ✦ Document Type Definitions

document type definition; and <GREETING> Hello XML! </GREETING> is the
document or root element.

A document type declaration begins with <!DOCTYPE and ends with]>. It’s
customary to place the beginning and end on separate lines, but line breaks and
extra whitespace are not significant. The same document type declaration could be
written on a single line:

<!DOCTYPE GREETING [<!ELEMENT GREETING (#PCDATA)>]>

The name of the root element—GREETING in this example follows <!DOCTYPE. This
is not just a name but a requirement. Any valid document with this document type
declaration must have the root element GREETING. In between the [and the] is the
document type definition.

The DTD consists of a series of markup declarations that declare particular
elements, entities, and attributes. One of these declarations declares the root
element. In Listing 8-1 the entire DTD is simply this one line:

<!ELEMENT GREETING (#PCDATA)>

In general, of course, DTDs will be much longer and more complex.

The single line <!ELEMENT GREETING (#PCDATA)> (case-sensitive as most things
are in XML) is an element type declaration. In this case, the name of the declared
element is GREETING. It is the only element. This element may contain parsed
character data (or #PCDATA). Parsed character data is essentially any text that’s not
markup text. This also includes entity references, such as &, that are replaced
by text when the document is parsed.

You can load this document into an XML browser as usual. Figure 8-1 shows Listing
8-1 in Internet Explorer 5.0. The result is probably what you’d expect, a collapsible
outline view of the document source. Internet Explorer indicates that a document
type declaration is present by adding the line <!DOCTYPE GREETING (View
Source for full doctype...)> in blue.

Figure 8-1: Hello XML with DTD displayed in Internet Explorer 5.0

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 194

195Chapter 8 ✦ Document Type Definitions and Validity

Of course, the document can be combined with a style sheet just as it was in Listing
3-6 in Chapter 3. In fact, you can use the same style sheet. Just add the usual
<?xml-stylesheet?> processing instruction to the prolog as shown in Listing 8-2.

Listing 8-2: Hello XML with a DTD and style sheet

<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”greeting.css”?>
<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>
<GREETING>
Hello XML!
</GREETING>

Figure 8-2 shows the resulting Web page. This is exactly the same as it was in Figure
3-3 in Chapter 3 without the DTD. Formatting generally does not consider the DTD.

Figure 8-2 Hello XML with a DTD and style sheet displayed in Internet Explorer 5.0

Validating Against a DTD
A valid document must meet the constraints specified by the DTD. Furthermore, its
root element must be the one specified in the document type declaration. What the
document type declaration and DTD in Listing 8-1 say is that a valid document must
look like this:

<GREETING>
various random text but no markup

</GREETING>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 195

196 Part II ✦ Document Type Definitions

A valid document may not look like this:

<GREETING>
<sometag>various random text</sometag>
<someEmptyTag/>

</GREETING>

Nor may it look like this:

<GREETING>
<GREETING>various random text</GREETING>

</GREETING>

This document must consist of nothing more and nothing less than parsed
character data between an opening <GREETING> tag and a closing </GREETING>
tag. Unlike a merely well-formed document, a valid document does not allow
arbitrary tags. Any tags used must be declared in the document’s DTD.
Furthermore, they must be used only in the way permitted by the DTD. In Listing
8-1, the <GREETING> tag can be used only to start the root element, and it may not
be nested.

Suppose we make a simple change to Listing 8-2 by replacing the <GREETING> and
</GREETING> tags with <foo> and </foo>, as shown in Listing 8-3. Listing 8-3 is
invalid. It is a well-formed XML document, but it does not meet the constraints
specified by the document type declaration and the DTD it contains.

Listing 8-3: Invalid Hello XML does not meet DTD rules

<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”greeting.css”?>
<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>
<foo>
Hello XML!
</foo>

Not all documents have to be valid, and not all parsers check documents for valid-
ity. In fact, most Web browsers including IE5 and Mozilla do not check documents
for validity.

A validating parser reads a DTD and checks whether a document adheres to the
rules specified by the DTD. If it does, the parser passes the data along to the XML
application (such as a Web browser or a database). If the parser finds a mistake,
then it reports the error. If you’re writing XML by hand, you’ll want to validate your

Note

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 196

197Chapter 8 ✦ Document Type Definitions and Validity

documents before posting them so you can be confident that readers won’t
encounter errors.

There are about a dozen different validating parsers available on the Web. Most of
them are free. Most are libraries intended for programmers to incorporate into their
own, more finished products, and they have minimal (if any) user interfaces.
Parsers in this class include IBM’s alphaWorks’ XML for Java, Microsoft and
DataChannel’s XJParser, and Silfide’s SXP.

XML for Java: http://www.alphaworks.ibm.com/tech/xml

XJParser: http://www.datachannel.com/xml_resources/

SXP: http://www.loria.fr/projets/XSilfide/EN/sxp/

Some libraries also include stand-alone parsers that run from the command line.
These are programs that read an XML file and report any errors found but do not
display them. For example, XJParse is a Java program included with IBM’s XML for
Java 1.1.16 class library in the samples.XJParse package. To run this program,
you first have to add the XML for Java jar files to your Java class path. You can
then validate a file by opening a DOS Window or a shell prompt and passing the
local name or remote URL of the file you want to validate to the XJParse program,
like this:

C:\xml4j>java samples.XJParse.XJParse -d D:\XML\08\invalid.xml

At the time of this writing IBM’s alphaWorks released version 2.0.6 of XML for Java.
In this version you invoke only XJParse instead of samples.XJParse. However, ver-
sion 1.1.16 provides more features for stand-alone validation.

You can use a URL instead of a file name, as shown below:

C:\xml4j>java samples.XJParse.XJParse -d
http://metalab.unc.edu/books/bible/examples/08/invalid.xml

In either case, XJParse responds with a list of the errors found, followed by a tree
form of the document. For example:

D:\XML\07\invalid.xml: 6, 4: Document root element, “foo”, must
match DOCTYPE root, “GREETING”.
D:\XML\07\invalid.xml: 8, 6: Element “<foo>” is not valid in
this context.
<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”greeting.css”?>
<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>
<foo>
Hello XML!
</foo>

Note

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 197

198 Part II ✦ Document Type Definitions

This is not especially attractive output. However, the purpose of a validating parser
such as XJParse isn’t to display XML files. Instead, the parser’s job is to divide the
document into a tree structure and pass the nodes of the tree to the program that
will display the data. This might be a Web browser such as Netscape Navigator or
Internet Explorer. It might be a database. It might even be a custom program you’ve
written yourself. You use XJParse, or other command line, validating parser to
verify that you’ve written good XML that other programs can handle. In essence,
this is a proofreading or quality assurance phase, not finished output.

Because XML for Java and most other validating parsers are written in Java, they
share all the disadvantages of cross-platform Java programs. First, before you can
run the parser you must have the Java Development Kit (JDK) or Java Runtime
Environment installed. Secondly, you need to add the XML for Java jar files to your
class path. Neither of these tasks is as simple as it should be. None of these tools
were designed with an eye toward nonprogrammer end-users; they tend to be
poorly designed and frustrating to use.

If you’re writing documents for Web browsers, the simplest way to validate them is
to load them into the browser and see what errors it reports. However, not all Web
browsers validate documents. Some may merely accept well-formed documents
without regard to validity. Internet Explorer 5.0 beta 2 validated documents, but the
release version did not.

The JRE for Windows and Unix is included on the CD-ROM in the misc/jre folder.

Web-based validators are an alternative if the documents are placed on a Web
server and aren’t particularly private. These parsers only require that you enter the
URL of your document in a simple form. They have the distinct advantage of not
requiring you to muck around with Java runtime software, class paths, and
environment variables.

Richard Tobin’s RXP-based, Web-hosted XML well-formedness checker and
validator is shown in Figure 8-3. You’ll find it at
http://www.cogsci.ed.ac.uk/%7Erichard/xml-check.html. Figure 8-4 shows
the errors displayed as a result of using this program to validate Listing 8-3.

Brown University’s Scholarly Technology Group provides a validator at http://
www.stg.brown.edu/service/xmlvalid/ that’s notable for allowing you to
upload files from your computer instead of placing them on a public Web server.
This is shown in Figure 8-5. Figure 8-6 shows the results of using this program to
validate Listing 8-3.

On the
CD-ROM

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 198

199Chapter 8 ✦ Document Type Definitions and Validity

Figure 8-3: Richard Tobin’s RXP-based, Web-hosted XML
well-formedness checker and validator

Figure 8-4: The errors with Listing 8-3, as reported by Richard
Tobin’s XML validator

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 199

200 Part II ✦ Document Type Definitions

Figure 8-5: Brown University’s Scholarly Technology Group’s
Web-hosted XML validator

Figure 8-6: The errors with Listing 8-3, as reported by Brown
University’s Scholarly Technology Group’s XML validator

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 200

201Chapter 8 ✦ Document Type Definitions and Validity

Listing the Elements
The first step to creating a DTD appropriate for a particular document is to
understand the structure of the information you’ll encode using the elements defined
in the DTD. Sometimes information is quite structured, as in a contact list. Other
times it is relatively free-form, as in an illustrated short story or a magazine article.

Let’s use a relatively structured document as an example. In particular, let’s return
to the baseball statistics first shown in Chapter 4. Adding a DTD to that document
enables us to enforce constraints that were previously adhered to only by
convention. For instance, we can require that a SEASON contain exactly two LEAGUE
children, every TEAM have a TEAM_CITY and a TEAM_NAME, and the TEAM_CITY
always precede the TEAM_NAME.

Recall that a complete baseball statistics document contains the following
elements:

SEASON

YEAR

LEAGUE

LEAGUE_NAME

DIVISION

DIVISION_NAME

TEAM

TEAM_CITY

TEAM_NAME

PLAYER

SURNAME

GIVEN_NAME

POSITION

GAMES

GAMES_STARTED

AT_BATS

RUNS

HITS

DOUBLES

TRIPLES

HOME_RUNS

RBI

STEALS

CAUGHT_STEALING

SACRIFICE_HITS

SACRIFICE_FLIES

ERRORS

WALKS

STRUCK_OUT

HIT_BY_PITCH

COMPLETE_GAMES

SHUT_OUTS

ERA

INNINGS

HOME_RUNS

RUNS

EARNED_RUNS

HIT_BATTER

WILD_PITCHES

BALK

WALKED_BATTER

STRUCK_OUT_BATTER

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 201

202 Part II ✦ Document Type Definitions

WINS

LOSSES

SAVES

COMPLETE_GAMES

SHUT_OUTS

The DTD you write needs element declarations for each of these. Each element
declaration lists the name of an element and the children the element may have.
For instance, a DTD can require that a LEAGUE have exactly three DIVISION
children. It can also require that the SURNAME element be inside a PLAYER element,
never outside. It can insist that a DIVISION have an indefinite number of TEAM
elements but never less than one.

A DTD can require that a PLAYER have exactly one each of the GIVEN_NAME,
SURNAME, POSITION, and GAMES elements, but make it optional whether a PLAYER
has an RBI or an ERA. Furthermore, it can require that the GIVEN_NAME, SURNAME,
POSITION, and GAMES elements be used in a particular order. A DTD can also
require that elements occur in a particular context. For instance, the GIVEN_NAME,
SURNAME, POSITION, and GAMES may be used only inside a PLAYER element.

It’s often easier to begin if you have a concrete, well-formed example document in
mind that uses all the elements you want in your DTD. The examples in Chapter 4
serve that purpose here. Listing 8-4 is a trimmed-down version of Listing 4-1 in
Chapter 4. Although it has only two players, it demonstrates all the essential
elements.

Listing 8-4: A well-formed XML document for which a DTD
will be written

<?xml version=”1.0” standalone=”yes”?>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>
<PLAYER>
<SURNAME>Ludwick</SURNAME>
<GIVEN_NAME>Eric</GIVEN_NAME>
<POSITION>Starting Pitcher</POSITION>
<WINS>1</WINS>
<LOSSES>4</LOSSES>
<SAVES>0</SAVES>
<GAMES>13</GAMES>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 202

203Chapter 8 ✦ Document Type Definitions and Validity

<GAMES_STARTED>6</GAMES_STARTED>
<COMPLETE_GAMES>0</COMPLETE_GAMES>
<SHUT_OUTS>0</SHUT_OUTS>
<ERA>7.44</ERA>
<INNINGS>32.2</INNINGS>
<HOME_RUNS>46</HOME_RUNS>
<RUNS>7</RUNS>
<EARNED_RUNS>31</EARNED_RUNS>
<HIT_BATTER>27</HIT_BATTER>
<WILD_PITCHES>0</WILD_PITCHES>
<BALK>2</BALK>
<WALKED_BATTER>0</WALKED_BATTER>
<STRUCK_OUT_BATTER>17</STRUCK_OUT_BATTER>

</PLAYER>
<PLAYER>
<SURNAME>Daubach</SURNAME>
<GIVEN_NAME>Brian</GIVEN_NAME>
<POSITION>First Base</POSITION>
<GAMES>10</GAMES>
<GAMES_STARTED>3</GAMES_STARTED>
<AT_BATS>15</AT_BATS>
<RUNS>0</RUNS>
<HITS>3</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>0</HOME_RUNS>
<RBI>3</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>0</ERRORS>
<WALKS>1</WALKS>
<STRUCK_OUT>5</STRUCK_OUT>
<HIT_BY_PITCH>1</HIT_BY_PITCH>

</PLAYER>
</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>

<TEAM_NAME>Phillies</TEAM_NAME>
</TEAM>

Continued

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 203

204 Part II ✦ Document Type Definitions

Listing 8-4 (continued)

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 204

205Chapter 8 ✦ Document Type Definitions and Validity

Table 8-1 lists the different elements in this particular listing, as well as the conditions
they must adhere to. Each element has a list of the other elements it must contain,
the other elements it may contain, and the element in which it must be contained. In
some cases, an element may contain more than one child element of the same type. A
SEASON contains one YEAR and two LEAGUE elements. A DIVISION generally contains
more than one TEAM. Less obviously, some batters alternate between designated
hitter and the outfield from game to game. Thus, a single PLAYER element might have
more than one POSITION. In the table, a requirement for a particular number of
children is indicated by prefixing the element with a number (for example, 2 LEAGUE)
and the possibility of multiple children is indicated by adding to the end of the
element’s name, such as PLAYER(s).

Listing 8-4 adheres to these conditions. It could be shorter if the two PLAYER
elements and some TEAM elements were omitted. It could be longer if many other
PLAYER elements were included. However, all the other elements are required to be
in the positions in which they appear.

Elements have two basic types in XML. Simple elements contain text, also known
as parsed character data, #PCDATA or PCDATA in this context. Compound ele-
ments contain other elements or, more rarely, text and other elements. There are
no integer, floating point, date, or other data types in standard XML. Thus, you
can’t use a DTD to say that the number of walks must be a non-negative integer, or
that the ERA must be a floating point number between 0.0 and 1.0, even though
doing so would be useful in examples like this one. There are some early efforts to
define schemas that use XML syntax to describe information that might tradition-
ally be encoded in a DTD, as well as data type information. As of mid-1999, these
are mostly theoretical with few practical implementations.

Now that you’ve identified the information you’re storing, and the optional and
required relationships between these elements, you’re ready to build a DTD for the
document that concisely — if a bit opaquely — summarizes those relationships.

It’s often possible and convenient to cut and paste from one DTD to another. Many
elements can be reused in other contexts. For instance, the description of a TEAM
works equally well for football, hockey, and most other team sports.

You can include one DTD within another so that a document draws tags from both.
You might, for example, use a DTD that describes the statistics of individual players
in great detail, and then nest that DTD inside the broader DTD for team sports. To
change from baseball to football, simply swap out your baseball player DTD for a
football player DTD.

To do this, the file containing the DTD is defined as an external entity. External
parameter entity references are discussed in Chapter 9, Entities.

Cross-
Reference

Note

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 205

206 Part II ✦ Document Type Definitions

Table 8-1
The Elements in the Baseball Statistics

Element (if any) in
Elements It Elements It Which It Must

Element Must Contain May Contain Be Contained

SEASON YEAR, 2 LEAGUE

YEAR Text SEASON

LEAGUE LEAGUE_NAME, SEASON
3 DIVISION

LEAGUE_NAME Text LEAGUE

DIVISION DIVISION_NAME TEAM(s) LEAGUE
, TEAM

DIVISION Text DIVISION
_NAME

TEAM TEAM_CITY, PLAYER(s) DIVISION
TEAM_NAME

TEAM_CITY Text TEAM

TEAM_NAME Text TEAM

PLAYER SURNAME, GIVEN GAMES_STARTED, AT TEAM
_NAME, POSITION, _BATS, RUNS, HITS,
GAMES DOUBLES, TRIPLES,

HOME_RUNS, RBI,
STEALS, CAUGHT_
STEALING,
SACRIFICE_HITS,
SACRIFICE_FLIES,
ERRORS, WALKS,
STRUCK_OUT, HIT_
BY_PITCH, COMPLETE
_GAMES, SHUT_OUTS,
ERA, INNINGS, HIT_
BATTER, WILD_
PITCHES, BALK,
WALKED_BATTER,
STRUCK_OUT_
BATTER

SURNAME Text PLAYER

GIVEN_NAME Text PLAYER

POSITION Text PLAYER

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 206

207Chapter 8 ✦ Document Type Definitions and Validity

Element (if any) in
Elements It Elements It Which It Must

Element Must Contain May Contain Be Contained

GAMES Text PLAYER

GAMES_ Text PLAYER
STARTED

AT_BATS Text PLAYER

RUNS Text PLAYER

HITS Text PLAYER

DOUBLES Text PLAYER

TRIPLES Text PLAYER

HOME_RUNS Text PLAYER

RBI Text PLAYER

STEALS Text PLAYER

CAUGHT_ Text PLAYER
STEALING

SACRIFICE_ Text PLAYER
HITS

SACRIFICE Text PLAYER
_FLIES

ERRORS Text PLAYER

WALKS Text PLAYER

STRUCK_OUT Text PLAYER

HIT_BY_ Text PLAYER
PITCH

COMPLETE_ Text PLAYER
GAMES

SHUT_OUTS Text PLAYER

ERA Text PLAYER

INNINGS Text PLAYER

HOME_RUNS Text PLAYER
_AGAINST

Continued

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 207

208 Part II ✦ Document Type Definitions

Table 8-1 (continued)

Element (if any) in
Elements It Elements It Which It Must

Element Must Contain May Contain Be Contained

RUNS_ Text PLAYER
AGAINST

HIT_BATTER Text PLAYER

WILD_ Text PLAYER
PITCHES

BALK Text PLAYER

WALKED_ Text PLAYER
BATTER

STRUCK_OUT Text PLAYER
_BATTER

Element Declarations
Each tag used in a valid XML document must be declared with an element declara-
tion in the DTD. An element declaration specifies the name and possible contents of
an element. The list of contents is sometimes called the content specification. The
content specification uses a simple grammar to precisely specify what is and isn’t
allowed in a document. This sounds complicated, but all it really means is that you
add a punctuation mark such as *, ?, or + to an element name to indicate that it
may occur more than once, may or may not occur, or must occur at least once.

DTDs are conservative. Everything not explicitly permitted is forbidden. However,
DTD syntax does enable you to compactly specify relationships that are
cumbersome to specify in sentences. For instance, DTDs make it easy to say that
GIVEN_NAME must come before SURNAME— which must come before POSITION,
which must come before GAMES, which must come before GAMES_STARTED, which
must come before AT_BATS, which must come before RUNS, which must come
before HITS— and that all of these may appear only inside a PLAYER.

It’s easiest to build DTDs hierarchically, working from the outside in. This enables
you to build a sample document at the same time you build the DTD to verify that
the DTD is itself correct and actually describes the format you want.

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 208

209Chapter 8 ✦ Document Type Definitions and Validity

ANY
The first thing you have to do is identify the root element. In the baseball example,
SEASON is the root element. The !DOCTYPE declaration specifies this:

<!DOCTYPE SEASON [

]>

However, this merely says that the root tag is SEASON. It does not say anything
about what a SEASON element may or may not contain, which is why you must next
declare the SEASON element in an element declaration. That’s done with this line of
code:

<!ELEMENT SEASON ANY>

All element type declarations begin with <!ELEMENT (case sensitive) and end with
>. They include the name of the element being declared (SEASON in this example)
followed by the content specification. The ANY keyword (again case-sensitive) says
that all possible elements as well as parsed character data can be children of the
SEASON element.

Using ANY is common for root elements — especially of unstructured documents —
but should be avoided in most other cases. Generally it’s better to be as precise as
possible about the content of each tag. DTDs are usually refined throughout their
development, and tend to become less strict over time as they reflect uses and
contexts unimagined in the first cut. Therefore, it’s best to start out strict and
loosen things up later.

#PCDATA
Although any element may appear inside the document, elements that do appear
must also be declared. The first one needed is YEAR. This is the element declaration
for the YEAR element:

<!ELEMENT YEAR (#PCDATA)>

This declaration says that a YEAR may contain only parsed character data, that is,
text that’s not markup. It may not contain children of its own. Therefore, this YEAR
element is valid:

<YEAR>1998</YEAR>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 209

210 Part II ✦ Document Type Definitions

These YEAR elements are also valid:

<YEAR>98</YEAR>
<YEAR>1998 C.E.</YEAR>
<YEAR>
The year of our lord one thousand,
nine hundred, & ninety-eight
</YEAR>

Even this YEAR element is valid because XML does not attempt to validate the
contents of PCDATA, only that it is text that doesn’t contain markup.

<YEAR>Delicious, delicious, oh how boring</YEAR>

However, this YEAR element is invalid because it contains child elements:

<YEAR>
<MONTH>January</MONTH>
<MONTH>February</MONTH>
<MONTH>March</MONTH>
<MONTH>April</MONTH>
<MONTH>May</MONTH>
<MONTH>June</MONTH>
<MONTH>July</MONTH>
<MONTH>August</MONTH>
<MONTH>September</MONTH>
<MONTH>October</MONTH>
<MONTH>November</MONTH>
<MONTH>December</MONTH>

</YEAR>

The SEASON and YEAR element declarations are included in the document type
declaration, like this:

<!DOCTYPE SEASON [
<!ELEMENT SEASON ANY>
<!ELEMENT YEAR (#PCDATA)>

]>

As usual, spacing and indentation are not significant. The order in which the
element declarations appear isn’t relevant either. This next document type
declaration means exactly the same thing:

<!DOCTYPE SEASON [
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT SEASON ANY>

]>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 210

211Chapter 8 ✦ Document Type Definitions and Validity

Both of these say that a SEASON element may contain parsed character data and
any number of any other declared elements in any order. The only other such
declared element is YEAR, which may contain only parsed character data. For
instance, consider the document in Listing 8-5.

Listing 8-5: A valid document

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE SEASON [
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT SEASON ANY>

]>
<SEASON>
<YEAR>1998</YEAR>

</SEASON>

Because the SEASON element may also contain parsed character data, you can add
additional text outside of the YEAR. Listing 8-6 demonstrates this.

Listing 8-6: A valid document that contains a YEAR and normal
text

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE SEASON [
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT SEASON ANY>

]>
<SEASON>
<YEAR>1998</YEAR>
Major League Baseball

</SEASON>

Eventually we’ll disallow documents such as this. However, for now it’s legal
because SEASON is declared to accept ANY content. Most of the time it’s easier to
start with ANY for an element until you define all of it’s children. Then you can
replace it with the actual children you want to use.

You can attach a simple style sheet, such as the baseballstats.css style sheet
developed in Chapter 4, to Listing 8-6 — as shown in Listing 8-7 — and load it into a
Web browser, as shown in Figure 8-7. The baseballstats.css style sheet contains

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 211

212 Part II ✦ Document Type Definitions

style rules for elements that aren’t present in the DTD or the document part of
Listing 8-7, but this is not a problem. Web browsers simply ignore any style rules for
elements that aren’t present in the document.

Listing 8-7: A valid document that contains a style sheet, a
YEAR, and normal text

<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”baseballstats.css”?>
<!DOCTYPE SEASON [
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT SEASON ANY>

]>
<SEASON>
<YEAR>1998</YEAR>
Major League Baseball

</SEASON>

Figure 8-7: A valid document that contains a style sheet, a YEAR
element, and normal text displayed in Internet Explorer 5.0

Child Lists
Because the SEASON element was declared to accept any element as a child,
elements could be tossed in willy-nilly. This is useful when you have text that’s
more or less unstructured, such as a magazine article where paragraphs, sidebars,
bulleted lists, numbered lists, graphs, photographs, and subheads may appear
pretty much anywhere in the document. However, sometimes you may want to
exercise more discipline and control over the placement of your data. For example,

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 212

213Chapter 8 ✦ Document Type Definitions and Validity

you could require that every LEAGUE have one LEAGUE_NAME, that every PLAYER
have a GIVEN_NAME and a SURNAME, and that the GIVEN_NAME come before the
SURNAME.

To declare that a LEAGUE must have a name, simply declare a LEAGUE_NAME
element, then include LEAGUE_NAME in parentheses at the end of the LEAGUE
declaration, like this:

<!ELEMENT LEAGUE (LEAGUE_NAME)>
<!ELEMENT LEAGUE_NAME (#PCDATA)>

Each element should be declared in its own <!ELEMENT> declaration exactly once,
even if it appears as a child in other <!ELEMENT> declarations. Here I’ve placed the
declaration LEAGUE_NAME after the declaration of LEAGUE that refers to it, but that
doesn’t matter. XML allows these sorts of forward references. The order in which
the element tags appear is irrelevant as long as their declarations are all contained
inside the DTD.

You can add these two declarations to the document, and then include LEAGUE and
LEAGUE_NAME elements in the SEASON. Listing 8-8 demonstrates this. Figure 8-8
shows the rendered document.

Listing 8-8: A SEASON with two LEAGUE children

<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”baseballstats.css”?>
<!DOCTYPE SEASON [
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT LEAGUE (LEAGUE_NAME)>
<!ELEMENT LEAGUE_NAME (#PCDATA)>
<!ELEMENT SEASON ANY>

]>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>

</LEAGUE>
</SEASON>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 213

214 Part II ✦ Document Type Definitions

Figure 8-8: A valid document that contains a style sheet, a
YEAR element, and two LEAGUE children

Sequences
Let’s restrict the SEASON element as well. A SEASON contains exactly one YEAR,
followed by exactly two LEAGUE elements. Instead of saying that a SEASON can
contain ANY elements, specify these three children by including them in SEASON’s
element declaration, enclosed in parentheses and separated by commas, as follows:

<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>

A list of child elements separated by commas is called a sequence. With this
declaration, every valid SEASON element must contain exactly one YEAR element,
followed by exactly two LEAGUE elements, and nothing else. The complete
document type declaration now looks like this:

<!DOCTYPE SEASON [
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT LEAGUE (LEAGUE_NAME)>
<!ELEMENT LEAGUE_NAME (#PCDATA)>
<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>

]>

The document part of Listing 8-8 does adhere to this DTD because its SEASON
element contains one YEAR child followed by two LEAGUE children, and nothing
else. However, if the document included only one LEAGUE, then the document,
though well-formed, would be invalid. Similarly, if the LEAGUE came before the YEAR
element instead of after it, or if the LEAGUE element had YEAR children, or if the
document in any other way did not adhere to the DTD, then the document would be
invalid and validating parsers would reject it.

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 214

215Chapter 8 ✦ Document Type Definitions and Validity

It’s straightforward to expand these techniques to cover divisions. As well as a
LEAGUE_NAME, each LEAGUE has three DIVISION children. For example:

<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>

One or More Children
Each DIVISION has a DIVISION_NAME and between four and six TEAM children.
Specifying the DIVISION_NAME is easy. This is demonstrated below:

<!ELEMENT DIVISION (DIVISION_NAME)>
<!ELEMENT DIVISION_NAME (#PCDATA)>

However, the TEAM children are trickier. It’s easy to say you want four TEAM children
in a DIVISION, as shown below:

<!ELEMENT DIVISION (DIVISION_NAME, TEAM, TEAM, TEAM, TEAM)>

Five and six are not harder. But how do you say you want between four and six
inclusive? In fact, XML doesn’t provide an easy way to do this. But you can say you
want one or more of a given element by placing a plus sign (+) after the element
name in the child list. For example:

<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>

This says that a DIVISION element must contain a DIVISION_NAME element
followed by one or more TEAM elements.

There is a hard way to say that a DIVISION contains between four and six TEAM
elements, but not three and not seven. However, it’s so ridiculously complex that
nobody would actually use it in practice. Once you finish reading this chapter, see
if you can figure out how to do it.

Zero or More Children
Each TEAM should contain one TEAM_CITY, one TEAM_NAME, and an indefinite
number of PLAYER elements. In reality, you need at least nine players for a baseball
team. However, in the examples in this book, many teams are listed without players
for reasons of space. Thus, we want to specify that a TEAM can contain zero or more
PLAYER children. Do this by appending an asterisk (*) to the element name in the
child list. For example:

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>

Tip

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 215

216 Part II ✦ Document Type Definitions

Zero or One Child
The final elements in the document to be brought into play are the children of the
PLAYER. All of these are simple elements that contain only text. Here are their
declarations:

<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT GIVEN_NAME (#PCDATA)>
<!ELEMENT POSITION (#PCDATA)>
<!ELEMENT GAMES (#PCDATA)>
<!ELEMENT GAMES_STARTED (#PCDATA)>
<!ELEMENT AT_BATS (#PCDATA)>
<!ELEMENT RUNS (#PCDATA)>
<!ELEMENT HITS (#PCDATA)>
<!ELEMENT DOUBLES (#PCDATA)>
<!ELEMENT TRIPLES (#PCDATA)>
<!ELEMENT HOME_RUNS (#PCDATA)>
<!ELEMENT RBI (#PCDATA)>
<!ELEMENT STEALS (#PCDATA)>
<!ELEMENT CAUGHT_STEALING (#PCDATA)>
<!ELEMENT SACRIFICE_HITS (#PCDATA)>
<!ELEMENT SACRIFICE_FLIES (#PCDATA)>
<!ELEMENT ERRORS (#PCDATA)>
<!ELEMENT WALKS (#PCDATA)>
<!ELEMENT STRUCK_OUT (#PCDATA)>
<!ELEMENT HIT_BY_PITCH (#PCDATA)>
<!ELEMENT COMPLETE_GAMES (#PCDATA)>
<!ELEMENT SHUT_OUTS (#PCDATA)>
<!ELEMENT ERA (#PCDATA)>
<!ELEMENT INNINGS (#PCDATA)>
<!ELEMENT EARNED_RUNS (#PCDATA)>
<!ELEMENT HIT_BATTER (#PCDATA)>
<!ELEMENT WILD_PITCHES (#PCDATA)>
<!ELEMENT BALK (#PCDATA)>
<!ELEMENT WALKED_BATTER (#PCDATA)>
<!ELEMENT WINS (#PCDATA)>
<!ELEMENT LOSSES (#PCDATA)>
<!ELEMENT SAVES (#PCDATA)>
<!ELEMENT COMPLETE_GAMES (#PCDATA)>
<!ELEMENT STRUCK_OUT_BATTER (#PCDATA)>

Now we can write the declaration for the PLAYER element. All players have one
SURNAME, one GIVEN_NAME, one POSITION, and one GAMES. We could declare that
each PLAYER also has one AT_BATS, RUNS, HITS, and so forth. However, I’m not sure
it’s accurate to list zero runs for a pitcher who hasn’t batted. For one thing, this
likely will lead to division by zero errors when you start calculating batting averages
and so on. If a particular element doesn’t apply to a given player, or if it’s not
available, then the more sensible thing to do is to omit the particular statistic from
the player’s information. We don’t allow more than one of each element for a given

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 216

217Chapter 8 ✦ Document Type Definitions and Validity

player. Thus, we want zero or one element of the given type. Indicate this in a child
element list by appending a question mark (?) to the element, as shown below:

<!ELEMENT PLAYER (GIVEN_NAME, SURNAME, POSITION, GAMES,
GAMES_STARTED, AT_BATS?, RUNS?, HITS?, DOUBLES?,
TRIPLES?, HOME_RUNS?, RBI?, STEALS?, CAUGHT_STEALING?,
SACRIFICE_HITS?, SACRIFICE_FLIES?, ERRORS?, WALKS?,
STRUCK_OUT?, HIT_BY_PITCH?, WINS?, LOSSES?, SAVES?,
COMPLETE_GAMES?, SHUT_OUTS?, ERA?, INNINGS?, EARNED_RUNS?,
HIT_BATTER?,WILD_PITCHES?, BALK?,WALKED_BATTER?,
STRUCK_OUT_BATTER?)

>

This says that every PLAYER has a SURNAME, GIVEN_NAME, POSITION, GAMES, and
GAMES_STARTED. Furthermore, each player may or may not have a single AT_BATS,
RUNS, HITS, DOUBLES, TRIPLES, HOME_RUNS, RBI, STEALS, CAUGHT_STEALING,
SACRIFICE_HITS, SACRIFICE_FLIES, ERRORS, WALKS, STRUCK_OUT, and
HIT_BY_PITCH.

The Complete Document and DTD
We now have a complete DTD for baseball statistics. This DTD, along with the
document part of Listing 8-4, is shown in Listing 8-9.

Listing 8-9 only covers a single team and nine players. On the CD-ROM you’ll find
a document containing statistics for all 1998 Major League teams and players in
the examples/baseball/1998validstats.xml directory.

Listing 8-9: A valid XML document on baseball
statistics with a DTD

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE SEASON [
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>
<!ELEMENT LEAGUE_NAME (#PCDATA)>
<!ELEMENT DIVISION_NAME (#PCDATA)>
<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>
<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>
<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>
<!ELEMENT PLAYER (GIVEN_NAME, SURNAME, POSITION, GAMES,
GAMES_STARTED, WINS?, LOSSES?, SAVES?,

Continued

On the
CD-ROM

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 217

218 Part II ✦ Document Type Definitions

Listing 8-9 (continued)

AT_BATS?, RUNS?, HITS?, DOUBLES?, TRIPLES?, HOME_RUNS?,
RBI?, STEALS?, CAUGHT_STEALING?, SACRIFICE_HITS?,
SACRIFICE_FLIES?, ERRORS?, WALKS?, STRUCK_OUT?,
HIT_BY_PITCH?, COMPLETE_GAMES?, SHUT_OUTS?, ERA?, INNINGS?,
EARNED_RUNS?, HIT_BATTER?, WILD_PITCHES?, BALK?,
WALKED_BATTER?, STRUCK_OUT_BATTER?)

>
<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT GIVEN_NAME (#PCDATA)>
<!ELEMENT POSITION (#PCDATA)>
<!ELEMENT GAMES (#PCDATA)>
<!ELEMENT GAMES_STARTED (#PCDATA)>
<!ELEMENT COMPLETE_GAMES (#PCDATA)>
<!ELEMENT WINS (#PCDATA)>
<!ELEMENT LOSSES (#PCDATA)>
<!ELEMENT SAVES (#PCDATA)>
<!ELEMENT AT_BATS (#PCDATA)>
<!ELEMENT RUNS (#PCDATA)>
<!ELEMENT HITS (#PCDATA)>
<!ELEMENT DOUBLES (#PCDATA)>
<!ELEMENT TRIPLES (#PCDATA)>
<!ELEMENT HOME_RUNS (#PCDATA)>
<!ELEMENT RBI (#PCDATA)>
<!ELEMENT STEALS (#PCDATA)>
<!ELEMENT CAUGHT_STEALING (#PCDATA)>
<!ELEMENT SACRIFICE_HITS (#PCDATA)>
<!ELEMENT SACRIFICE_FLIES (#PCDATA)>
<!ELEMENT ERRORS (#PCDATA)>
<!ELEMENT WALKS (#PCDATA)>
<!ELEMENT STRUCK_OUT (#PCDATA)>
<!ELEMENT HIT_BY_PITCH (#PCDATA)>
<!ELEMENT SHUT_OUTS (#PCDATA)>
<!ELEMENT ERA (#PCDATA)>
<!ELEMENT INNINGS (#PCDATA)>
<!ELEMENT HOME_RUNS_AGAINST (#PCDATA)>
<!ELEMENT RUNS_AGAINST (#PCDATA)>
<!ELEMENT EARNED_RUNS (#PCDATA)>
<!ELEMENT HIT_BATTER (#PCDATA)>
<!ELEMENT WILD_PITCHES (#PCDATA)>
<!ELEMENT BALK (#PCDATA)>
<!ELEMENT WALKED_BATTER (#PCDATA)>
<!ELEMENT STRUCK_OUT_BATTER (#PCDATA)>

]>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 218

219Chapter 8 ✦ Document Type Definitions and Validity

<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>
<PLAYER>
<GIVEN_NAME>Eric</GIVEN_NAME>
<SURNAME>Ludwick</SURNAME>
<POSITION>Starting Pitcher</POSITION>
<GAMES>13</GAMES>
<GAMES_STARTED>6</GAMES_STARTED>
<WINS>1</WINS>
<LOSSES>4</LOSSES>
<SAVES>0</SAVES>
<COMPLETE_GAMES>0</COMPLETE_GAMES>
<SHUT_OUTS>0</SHUT_OUTS>
<ERA>7.44</ERA>
<INNINGS>32.2</INNINGS>
<EARNED_RUNS>31</EARNED_RUNS>
<HIT_BATTER>27</HIT_BATTER>
<WILD_PITCHES>0</WILD_PITCHES>
<BALK>2</BALK>
<WALKED_BATTER>0</WALKED_BATTER>
<STRUCK_OUT_BATTER>17</STRUCK_OUT_BATTER>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Brian</GIVEN_NAME>
<SURNAME>Daubach</SURNAME>
<POSITION>First Base</POSITION>
<GAMES>10</GAMES>
<GAMES_STARTED>3</GAMES_STARTED>
<AT_BATS>15</AT_BATS>
<RUNS>0</RUNS>
<HITS>3</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>0</HOME_RUNS>
<RBI>3</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>0</ERRORS>
<WALKS>1</WALKS>
<STRUCK_OUT>5</STRUCK_OUT>
<HIT_BY_PITCH>1</HIT_BY_PITCH>

</PLAYER>
</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 219

220 Part II ✦ Document Type Definitions

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>

<TEAM_NAME>Phillies</TEAM_NAME>
</TEAM>

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 220

221Chapter 8 ✦ Document Type Definitions and Validity

Listing 8-9 is not the only possible document that matches this DTD, however.
Listing 8-10 is also a valid document, because it contains all required elements in
their required order and does not contain any elements that aren’t declared. This is
probably the smallest reasonable document that you can create that fits the DTD.
The limiting factors are the requirements that each SEASON contain two LEAGUE
children, that each LEAGUE contain three DIVISION children, and that each
DIVISION contain at least one TEAM.

Listing 8-10: Another XML document that’s valid according to
the baseball DTD

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE SEASON [
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>
<!ELEMENT LEAGUE_NAME (#PCDATA)>
<!ELEMENT DIVISION_NAME (#PCDATA)>
<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>
<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>
<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>
<!ELEMENT PLAYER (GIVEN_NAME, SURNAME, POSITION, GAMES,
GAMES_STARTED, COMPLETE_GAMES?, WINS?, LOSSES?, SAVES?,
AT_BATS?, RUNS?, HITS?, DOUBLES?, TRIPLES?, HOME_RUNS?,
RBI?, STEALS?, CAUGHT_STEALING?, SACRIFICE_HITS?,
SACRIFICE_FLIES?, ERRORS?, WALKS?, STRUCK_OUT?,
HIT_BY_PITCH?, COMPLETE_GAMES?, SHUT_OUTS?, ERA?, INNINGS?,
EARNED_RUNS?, HIT_BATTER?, WILD_PITCHES?, BALK?,
WALKED_BATTER?, STRUCK_OUT_BATTER?)

>
<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT GIVEN_NAME (#PCDATA)>
<!ELEMENT POSITION (#PCDATA)>
<!ELEMENT GAMES (#PCDATA)>
<!ELEMENT GAMES_STARTED (#PCDATA)>
<!ELEMENT COMPLETE_GAMES (#PCDATA)>
<!ELEMENT WINS (#PCDATA)>
<!ELEMENT LOSSES (#PCDATA)>
<!ELEMENT SAVES (#PCDATA)>
<!ELEMENT AT_BATS (#PCDATA)>
<!ELEMENT RUNS (#PCDATA)>
<!ELEMENT HITS (#PCDATA)>
<!ELEMENT DOUBLES (#PCDATA)>
<!ELEMENT TRIPLES (#PCDATA)>
<!ELEMENT HOME_RUNS (#PCDATA)>

Continued

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 221

222 Part II ✦ Document Type Definitions

Listing 8-10 (continued)

<!ELEMENT RBI (#PCDATA)>
<!ELEMENT STEALS (#PCDATA)>
<!ELEMENT CAUGHT_STEALING (#PCDATA)>
<!ELEMENT SACRIFICE_HITS (#PCDATA)>
<!ELEMENT SACRIFICE_FLIES (#PCDATA)>
<!ELEMENT ERRORS (#PCDATA)>
<!ELEMENT WALKS (#PCDATA)>
<!ELEMENT STRUCK_OUT (#PCDATA)>
<!ELEMENT HIT_BY_PITCH (#PCDATA)>
<!ELEMENT SHUT_OUTS (#PCDATA)>
<!ELEMENT ERA (#PCDATA)>
<!ELEMENT INNINGS (#PCDATA)>
<!ELEMENT HOME_RUNS_AGAINST (#PCDATA)>
<!ELEMENT RUNS_AGAINST (#PCDATA)>
<!ELEMENT EARNED_RUNS (#PCDATA)>
<!ELEMENT HIT_BATTER (#PCDATA)>
<!ELEMENT WILD_PITCHES (#PCDATA)>
<!ELEMENT BALK (#PCDATA)>
<!ELEMENT WALKED_BATTER (#PCDATA)>
<!ELEMENT STRUCK_OUT_BATTER (#PCDATA)>

]>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Atlanta</TEAM_CITY>
<TEAM_NAME>Braves</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>

<TEAM_NAME>Phillies</TEAM_NAME>
</TEAM>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 222

223Chapter 8 ✦ Document Type Definitions and Validity

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

Choices
In general, a single parent element has many children. To indicate that the children
must occur in sequence, they are separated by commas. However, each such child
element may be suffixed with a question mark, a plus sign, or an asterisk to adjust
the number of times it appears in that place in the sequence.

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 223

224 Part II ✦ Document Type Definitions

So far, the assumption has been made that child elements appear or do not appear
in a specific order. You may, however, wish to make your DTD more flexible, such as
by allowing document authors to choose between different elements in a given
place. For example, in a DTD describing a purchase by a customer, each PAYMENT
element might have either a CREDIT_CARD child or a CASH child providing
information about the method of payment. However, an individual PAYMENT would
not have both.

You can indicate that the document author needs to input either one or another
element by separating child elements with a vertical bar (|) rather than a comma
(,) in the parent’s element declaration. For example, the following says that the
PAYMENT element must have a single child of type CASH or CREDIT_CARD.

<!ELEMENT PAYMENT (CASH | CREDIT_CARD)>

This sort of content specification is called a choice. You can separate any number
of children with vertical bars when you want exactly one of them to be used. For
example, the following says that the PAYMENT element must have a single child of
type CASH, CREDIT_CARD, or CHECK.

<!ELEMENT PAYMENT (CASH | CREDIT_CARD | CHECK)>

The vertical bar is even more useful when you group elements with parentheses.
You can group combinations of elements in parentheses, then suffix the
parentheses with asterisks, question marks, and plus signs to indicate that
particular combinations of elements must occur zero or more, zero or one, or one
or more times.

Children with Parentheses
The final thing you need to know about arranging child elements in parent element
declarations is how to group elements with parentheses. Each set of parentheses
combines several elements as a single element. This parenthesized element can
then be nested inside other parentheses in place of a single element. Furthermore,
it may then have a plus sign, a comma, or a question mark affixed to it. You can
group these parenthesized combinations into still larger parenthesized groups to
produce quite complex structures. This is a very powerful technique.

For example, consider a list composed of two elements that must alternate with
each other. This is essentially how HTML’s definition list works. Each <dt> tag
should match one <dd> tag. If you replicate this structure in XML, the declaration of
the dl element looks like this:

<!ELEMENT dl (dt, dd)*>

The parentheses indicate that it’s the matched <dt><dd> pair being repeated, not
<dd> alone.

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 224

225Chapter 8 ✦ Document Type Definitions and Validity

Often elements appear in more or less random orders. News magazine articles
generally have a title mostly followed by paragraphs of text, but with graphs,
photos, sidebars, subheads, and pull quotes interspersed throughout, perhaps with
a byline at the end. You can indicate this sort of arrangement by listing all the
possible child elements in the parent’s element declaration separated by vertical
bars and grouped inside parentheses. You can then place an asterisk outside the
closing parenthesis to indicate that zero or more occurrences of any of the
elements in the parentheses are allowed. For example;

<!ELEMENT ARTICLE (TITLE, (P | PHOTO | GRAPH | SIDEBAR
| PULLQUOTE | SUBHEAD)*, BYLINE?)>

As another example, suppose you want to say that a DOCUMENT element, rather than
having any children at all, must have one TITLE followed by any number of
paragraphs of text and images that may be freely intermingled, followed by an
optional SIGNATURE block. Write its element declaration this way:

<!ELEMENT DOCUMENT (TITLE, (PARAGRAPH | IMAGE)*, SIGNATURE?)>

This is not the only way to describe this structure. In fact, it may not even be the
best way. An alternative is to declare a BODY element that contains PARAGRAPH and
IMAGE elements and nest that between the TITLE and the SIGNATURE. For example:

<!ELEMENT DOCUMENT (TITLE, BODY, SIGNATURE?)>
<!ELEMENT BODY ((PARAGRAPH | IMAGE)*)>

The difference between these two approaches is that the second requires an
additional BODY element in the document. This element provides an additional level
of organization that may (or may not) be useful to the application that’s reading the
document. The question to ask is whether the reader of this document (who may
be another computer program) may want to consider the BODY as a single item in
its own right, separate from the TITLE and the SIGNATURE and distinguished from
the sum of its elements.

For another example, consider international addresses. Addresses outside the
United States don’t always follow U.S. conventions. In particular, postal codes
sometimes precede the state or follow the country, as in these two examples:

Doberman-YPPAN
Box 2021
St. Nicholas QUEBEC
CAN GOS-3LO

or

Editions Sybex
10/12 Villa Coeur-de-Vey
75685 Paris Cedex 14
France

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 225

226 Part II ✦ Document Type Definitions

Although your mail will probably arrive even if pieces of the address are out of
order, it’s better to allow an address to be more flexible. Here’s one address element
declaration that permits this:

<!ELEMENT ADDRESS (STREET+, (CITY | STATE | POSTAL_CODE
| COUNTRY)*)>

This says that an ADDRESS element must have one or more STREET children
followed by any number of CITY, STATE, POSTAL_CODE, or COUNTRY elements. Even
this is less than ideal if you’d like to allow for no more than one of each.
Unfortunately, this is beyond the power of a DTD to enforce. By allowing a more
flexible ordering of elements, you give up some ability to control the maximum
number of each element.

On the other hand, you may have a list composed of different kinds of elements,
which may appear in an arbitrary order, as in a list of recordings that may contain
CDs, albums, and tapes. An element declaration to differentiate between the
different categories for this list would look like this:

<!ELEMENT MUSIC_LIST (CD | ALBUM | TAPE)*>

You could use parentheses in the baseball DTD to specify different sets of statistics
for pitchers and batters. Each player could have one set or the other, but not both.
The element declaration looks like this:

<!ELEMENT PLAYER (GIVEN_NAME, SURNAME, POSITION, GAMES,
GAMES_STARTED, ((COMPLETE_GAMES?, WINS?, LOSSES?, SAVES?,
SHUT_OUTS?, ERA?, INNINGS?, EARNED_RUNS?, HIT_BATTER?,
WILD_PITCHES?, BALK?, WALKED_BATTER?, STRUCK_OUT_BATTER?)

|(AT_BATS?, RUNS?, HITS?, DOUBLES?, TRIPLES?, HOME_RUNS?,
RBI?, STEALS?, CAUGHT_STEALING?, SACRIFICE_HITS?,
SACRIFICE_FLIES?, ERRORS?, WALKS?, STRUCK_OUT?,
HIT_BY_PITCH?)))>

There are still a few things that are difficult to handle in element declarations. For
example, there’s no good way to say that a document must begin with a TITLE
element and end with a SIGNATURE element, but may contain any other elements
between those two. This is because ANY may not combine with other child
elements.

And, in general, the less precise you are about where things appear, the less control
you have over how many of them there are. For example, you can’t say that a
document should have exactly one TITLE element but that the TITLE may appear
anywhere in the document.

Nonetheless, using parentheses to create blocks of elements, either in sequence
with a comma or in parallel with a vertical bar, enables you to create complicated

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 226

227Chapter 8 ✦ Document Type Definitions and Validity

structures with detailed rules for how different elements follow one another. Try
not to go overboard with this though. Simpler solutions are better. The more
complicated your DTD is, the harder it is to write valid files that satisfy the DTD, to
say nothing of the complexity of maintaining the DTD itself.

Mixed Content
You may have noticed that in most of the examples shown so far, elements either
contained child elements or parsed character data, but not both. The only
exceptions were the root elements in early examples where the full list of tags was
not yet developed. In these cases, because the root element could contain ANY data,
it was allowed to contain both child elements and raw text.

You can declare tags that contain both child elements and parsed character data.
This is called mixed content. You can use this to allow an arbitrary block of text to
be suffixed to each TEAM. For example:

<!ELEMENT TEAM (#PCDATA | TEAM_CITY | TEAM_NAME | PLAYER)*>

Mixing child elements with parsed character data severely restricts the structure
you can impose on your documents. In particular, you can specify only the names
of the child elements that can appear. You cannot constrain the order in which they
appear, the number of each that appears, or whether they appear at all. In terms of
DTDs, think of this as meaning that the child part of the DTD must look like this:

<!ELEMENT PARENT (#PCDATA | CHILD1 | CHILD2 | CHILD3)* >

Almost everything else, other than changing the number of children, is invalid. You
cannot use commas, question marks, or plus signs in an element declaration that
includes #PCDATA. A list of elements and #PCDATA separated by vertical bars is
valid. Any other use is not. For example, the following is illegal:

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*, #PCDATA)>

The primary reason to mix content is when you’re in the process of converting old
text data to XML, and testing your DTD by validating as you add new tags rather
than finishing the entire conversion and then trying to find the bugs. This is a good
technique, and I do recommend you use it — after all, it is much easier to recognize
a mistake in your code immediately after you made it rather than several hours
later — however, this is only a crutch for use when developing. It should not be
visible to the end-user. When your DTD is finished it should not mix element
children with parsed character data. You can always create a new tag that holds
parsed character data.

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 227

228 Part II ✦ Document Type Definitions

For example, you can include a block of text at the end of each TEAM element by
declaring a new BLURB that holds only #PCDATA and adding it as the last child
element of TEAM. Here’s how this looks:

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*, BLURB)>
<!ELEMENT BLURB (#PCDATA)>

This does not significantly change the text of the document. All it does is add one
more optional element with its opening and closing tags to each TEAM element.
However, it does make the document much more robust. Furthermore, XML
applications that receive the tree from the XML processor have an easier time
handling the data when it’s in the more structured format allowed by nonmixed
content.

Empty Elements
As discussed earlier, it’s occasionally useful to define an element that has no
content. Examples in HTML include the image, horizontal rule, and break ,
<HR>, and
. In XML, such empty elements are identified by empty tags that end
with />, such as , <HR/>, and
.

Valid documents must declare both the empty and nonempty elements used.
Because empty elements by definition don’t have children, they’re easy to declare.
Use an <!ELEMENT> declaration containing the name of the empty element as nor-
mal, but use the keyword EMPTY (case-sensitive as all XML tags are) instead of a
list of children. For example:

<!ELEMENT BR EMPTY>
<!ELEMENT IMG EMPTY>
<!ELEMENT HR EMPTY>

Listing 8-11 is a valid document that uses both empty and nonempty elements.

Listing 8-11: A valid document that uses empty tags

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (TITLE, SIGNATURE)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT COPYRIGHT (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT BR EMPTY>
<!ELEMENT HR EMPTY>
<!ELEMENT LAST_MODIFIED (#PCDATA)>
<!ELEMENT SIGNATURE (HR, COPYRIGHT, BR, EMAIL,

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 228

229Chapter 8 ✦ Document Type Definitions and Validity

BR, LAST_MODIFIED)>
]>
<DOCUMENT>
<TITLE>Empty Tags</TITLE>
<SIGNATURE>
<HR/>
<COPYRIGHT>1998 Elliotte Rusty Harold</COPYRIGHT>

<EMAIL>elharo@metalab.unc.edu</EMAIL>

<LAST_MODIFIED>Thursday, April 22, 1999</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

Comments in DTDs
DTDs can contain comments, just like the rest of an XML document. These
comments cannot appear inside a declaration, but they can appear outside one.
Comments are often used to organize the DTD in different parts, to document the
allowed content of particular elements, and to further explain what an element is.
For example, the element declaration for the YEAR element might have a comment
such as this:

<!— A four digit year like 1998, 1999, or 2000 —>
<!ELEMENT YEAR (#PCDATA)>

As with all comments, this is only for the benefit of people reading the source code.
XML processors will ignore it.

One possible use of comments is to define abbreviations used in the markup. For
example, in this and previous chapters, I’ve avoided using abbreviations for
baseball terms because they’re simply not obvious to the casual fan. An alternative
approach is to use abbreviations but define them with comments in the DTD.
Listing 8-12 is similar to previous baseball examples, but uses DTD comments and
abbreviated tags.

Listing 8-12: A valid XML document that uses abbreviated
tags defined in DTD comments

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE SEASON [

<!ELEMENT YEAR (#PCDATA)>

Continued

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 229

230 Part II ✦ Document Type Definitions

Listing 8-12 (continued)

<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>

<!— American or National —>
<!ELEMENT LEAGUE_NAME (#PCDATA)>

<!— East, West, or Central —>
<!ELEMENT DIVISION_NAME (#PCDATA)>
<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>
<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>
<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>
<!ELEMENT PLAYER (GIVEN_NAME, SURNAME, P, G,
GS, AB?, R?, H?, D?, T?, HR?, RBI?, SB?, CS?,
SH?, SF?, E?, BB?, S?, HBP?, CG?, SO?, ERA?, IP?,
HRA?, RA?, ER?, HB?, WP?, B?, WB?, K?)

>

<!— ======================= —>
<!— Player Info —>
<!— Player’s last name —>
<!ELEMENT SURNAME (#PCDATA)>

<!— Player’s first name —>
<!ELEMENT GIVEN_NAME (#PCDATA)>

<!— Position —>
<!ELEMENT P (#PCDATA)>

<!—Games Played —>
<!ELEMENT G (#PCDATA)>

<!—Games Started —>
<!ELEMENT GS (#PCDATA)>

<!— ======================= —>
<!— Batting Statistics —>
<!— At Bats —>
<!ELEMENT AB (#PCDATA)>

<!— Runs —>
<!ELEMENT R (#PCDATA)>

<!— Hits —>
<!ELEMENT H (#PCDATA)>

<!— Doubles —>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 230

231Chapter 8 ✦ Document Type Definitions and Validity

<!ELEMENT D (#PCDATA)>

<!— Triples —>
<!ELEMENT T (#PCDATA)>

<!— Home Runs —>
<!ELEMENT HR (#PCDATA)>

<!— Runs Batted In —>
<!ELEMENT RBI (#PCDATA)>

<!— Stolen Bases —>
<!ELEMENT SB (#PCDATA)>

<!— Caught Stealing —>
<!ELEMENT CS (#PCDATA)>

<!— Sacrifice Hits —>
<!ELEMENT SH (#PCDATA)>

<!— Sacrifice Flies —>
<!ELEMENT SF (#PCDATA)>

<!— Errors —>
<!ELEMENT E (#PCDATA)>

<!— Walks (Base on Balls) —>
<!ELEMENT BB (#PCDATA)>

<!— Struck Out —>
<!ELEMENT S (#PCDATA)>

<!— Hit By Pitch —>
<!ELEMENT HBP (#PCDATA)>

<!— ======================= —>
<!— Pitching Statistics —>
<!— Complete Games —>
<!ELEMENT CG (#PCDATA)>

<!— Shut Outs —>
<!ELEMENT SO (#PCDATA)>

<!— ERA —>
<!ELEMENT ERA (#PCDATA)>

<!— Innings Pitched —>
<!ELEMENT IP (#PCDATA)>

Continued

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 231

232 Part II ✦ Document Type Definitions

Listing 8-12 (continued)

<!— Home Runs hit Against —>
<!ELEMENT HRA (#PCDATA)>

<!— Runs hit Against —>
<!ELEMENT RA (#PCDATA)>

<!— Earned Runs —>
<!ELEMENT ER (#PCDATA)>

<!— Hit Batter —>
<!ELEMENT HB (#PCDATA)>

<!— Wild Pitches —>
<!ELEMENT WP (#PCDATA)>

<!— Balk —>
<!ELEMENT B (#PCDATA)>

<!— Walked Batter —>
<!ELEMENT WB (#PCDATA)>

<!— Struck Out Batter —>
<!ELEMENT K (#PCDATA)>

<!— ======================= —>
<!— Fielding Statistics —>
<!— Not yet supported —>

]>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Atlanta</TEAM_CITY>
<TEAM_NAME>Braves</TEAM_NAME>
<PLAYER>
<GIVEN_NAME>Ozzie</GIVEN_NAME>
<SURNAME>Guillen</SURNAME>
<P>Shortstop</P>
<G>83</G>
<GS>59</GS>
<AB>264</AB>
<R>35</R>
<H>73</H>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 232

233Chapter 8 ✦ Document Type Definitions and Validity

<D>15</D>
<T>1</T>
<HR>1</HR>
<RBI>22</RBI>
<SB>1</SB>
<CS>4</CS>
<SH>4</SH>
<SF>2</SF>
<E>6</E>
<BB>24</BB>
<S>25</S>
<HBP>1</HBP>

</PLAYER>
</TEAM>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>

<TEAM_NAME>Phillies</TEAM_NAME>
</TEAM>

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>

Continued

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 233

234 Part II ✦ Document Type Definitions

Listing 8-12 (continued)

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

When the entire Major League is included, the resulting document shrinks from
699K with long tags to 391K with short tags, a savings of 44 percent. The
information content, however, is virtually the same. Consequently, the compressed
sizes of the two documents are much closer, 58K for the document with short tags
versus 66K for the document with long tags.

There’s no limit to the amount of information you can or should include in
comments. Including more does make your DTDs longer (and thus both harder to
scan and slower to download). However, in the next couple of chapters, you’ll learn
ways to reuse the same DTD in multiple XML documents, as well as break long
DTDs into more manageable pieces. Thus, the disadvantages of using comments are
temporary. I recommend using comments liberally in all of your DTDs, but
especially in those intended for public use.

Sharing Common DTDs Among Documents
Previous valid examples included the DTD in the document’s prolog. The real
power of XML, however, comes from common DTDs that can be shared among

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 234

235Chapter 8 ✦ Document Type Definitions and Validity

many documents written by different people. If the DTD is not directly included in
the document but is linked in from an external source, changes made to the DTD
automatically propagate to all documents using that DTD. On the other hand,
backward compatibility is not guaranteed when a DTD is modified. Incompatible
changes can break documents.

When you use an external DTD, the document type declaration changes. Instead of
including the DTD in square brackets, the SYSTEM keyword is followed by an
absolute or relative URL where the DTD can be found. For example:

<!DOCTYPE root_element_name SYSTEM “DTD_URL”>

Here root_element_name is simply the name of the root element as before, SYSTEM
is an XML keyword, and DTD_URL is a relative or an absolute URL where the DTD
can be found. For example:

<!DOCTYPE SEASON SYSTEM “baseball.dtd”>

Let’s convert a familiar example to demonstrate this process. Listing 8-12 includes
an internal DTD for baseball statistics. We’ll convert this listing to use an external
DTD. First, strip out the DTD and put it in a file of its own. This is everything
between the opening <!DOCTYPE SEASON [and the closing]> exclusive.
<!DOCTYPE SEASON [and]> are not included. This can be saved in a file called
baseball.dtd, as shown in Listing 8-13. The file name is not important, though the
extension .dtd is conventional.

Listing 8-13: The baseball DTD file

<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>

<!— American or National —>
<!ELEMENT LEAGUE_NAME (#PCDATA)>

<!— East, West, or Central —>
<!ELEMENT DIVISION_NAME (#PCDATA)>
<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>
<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>
<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>
<!ELEMENT PLAYER (GIVEN_NAME, SURNAME, P, G,
GS, AB?, R?, H?, D?, T?, HR?, RBI?, SB?, CS?,
SH?, SF?, E?, BB?, S?, HBP?, CG?, SO?, ERA?, IP?,

Continued

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 235

236 Part II ✦ Document Type Definitions

Listing 8-13 (continued)

HRA?, RA?, ER?, HB?, WP?, B?, WB?, K?)
>

<!— ======================= —>
<!— Player Info —>
<!— Player’s last name —>
<!ELEMENT SURNAME (#PCDATA)>

<!— Player’s first name —>
<!ELEMENT GIVEN_NAME (#PCDATA)>

<!— Position —>
<!ELEMENT P (#PCDATA)>

<!—Games Played —>
<!ELEMENT G (#PCDATA)>

<!—Games Started —>
<!ELEMENT GS (#PCDATA)>

<!— ======================= —>
<!— Batting Statistics —>
<!— At Bats —>
<!ELEMENT AB (#PCDATA)>

<!— Runs —>
<!ELEMENT R (#PCDATA)>

<!— Hits —>
<!ELEMENT H (#PCDATA)>

<!— Doubles —>
<!ELEMENT D (#PCDATA)>

<!— Triples —>
<!ELEMENT T (#PCDATA)>

<!— Home Runs —>
<!ELEMENT HR (#PCDATA)>

<!— Runs Batted In —>
<!ELEMENT RBI (#PCDATA)>

<!— Stolen Bases —>
<!ELEMENT SB (#PCDATA)>

<!— Caught Stealing —>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 236

237Chapter 8 ✦ Document Type Definitions and Validity

<!ELEMENT CS (#PCDATA)>

<!— Sacrifice Hits —>
<!ELEMENT SH (#PCDATA)>

<!— Sacrifice Flies —>
<!ELEMENT SF (#PCDATA)>

<!— Errors —>
<!ELEMENT E (#PCDATA)>

<!— Walks (Base on Balls) —>
<!ELEMENT BB (#PCDATA)>

<!— Struck Out —>
<!ELEMENT S (#PCDATA)>

<!— Hit By Pitch —>
<!ELEMENT HBP (#PCDATA)>

<!— ======================= —>
<!— Pitching Statistics —>
<!— Complete Games —>
<!ELEMENT CG (#PCDATA)>

<!— Shut Outs —>
<!ELEMENT SO (#PCDATA)>

<!— ERA —>
<!ELEMENT ERA (#PCDATA)>

<!— Innings Pitched —>
<!ELEMENT IP (#PCDATA)>

<!— Home Runs hit Against —>
<!ELEMENT HRA (#PCDATA)>

<!— Runs hit Against —>
<!ELEMENT RA (#PCDATA)>

<!— Earned Runs —>
<!ELEMENT ER (#PCDATA)>

<!— Hit Batter —>
<!ELEMENT HB (#PCDATA)>

<!— Wild Pitches —>
<!ELEMENT WP (#PCDATA)>

Continued

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 237

238 Part II ✦ Document Type Definitions

Listing 8-13 (continued)

<!— Balk —>
<!ELEMENT B (#PCDATA)>

<!— Walked Batter —>
<!ELEMENT WB (#PCDATA)>

<!— Struck Out Batter —>
<!ELEMENT K (#PCDATA)>

<!— ======================= —>
<!— Fielding Statistics —>
<!— Not yet supported —>

Next, you need to modify the document itself. The XML declaration is no longer a
stand-alone document because it depends on a DTD in another file. Therefore, the
standalone attribute must be changed to no, as follows:

<?xml version=”1.0” standalone=”no”?>

Then you must change the <!DOCTYPE> tag so it points to the DTD by including the
SYSTEM keyword and a URL (usually relative) where the DTD is found:

<!DOCTYPE SEASON SYSTEM “baseball.dtd”>

The rest of the document is the same as before. However, now the prolog contains
only the XML declaration and the document type declaration. It does not contain
the DTD. Listing 8-14 shows the code.

Listing 8-14: Baseball statistics with an external DTD

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE SEASON SYSTEM “baseball.dtd”>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Atlanta</TEAM_CITY>
<TEAM_NAME>Braves</TEAM_NAME>
<PLAYER>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 238

239Chapter 8 ✦ Document Type Definitions and Validity

<GIVEN_NAME>Ozzie</GIVEN_NAME>
<SURNAME>Guillen</SURNAME>
<P>Shortstop</P>
<G>83</G>
<GS>59</GS>
<AB>264</AB>
<R>35</R>
<H>73</H>
<D>15</D>
<T>1</T>
<HR>1</HR>
<RBI>22</RBI>
<SB>1</SB>
<CS>4</CS>
<SH>4</SH>
<SF>2</SF>
<E>6</E>
<BB>24</BB>
<S>25</S>
<HBP>1</HBP>

</PLAYER>
</TEAM>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>

<TEAM_NAME>Phillies</TEAM_NAME>
</TEAM>

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>

Continued

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 239

240 Part II ✦ Document Type Definitions

Listing 8-14 (continued)

<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

Make sure that both Listing 8-14 and baseball.dtd are in the same directory and
then load Listing 8-14 into your Web browser as usual. If all is well, you see the
same output as when you loaded Listing 8-12. You can now use this same DTD to
describe other documents, such as statistics from other years.

Once you add a style sheet, you have the three essential parts of the document
stored in three different files. The data is in the document file, the structure and
semantics applied to the data is in the DTD file, and the formatting is in the style
sheet. This structure enables you to inspect or change any or all of these relatively
independently.

The DTD and the document are more closely linked than the document and the
style sheet. Changing the DTD generally requires revalidating the document and

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 240

241Chapter 8 ✦ Document Type Definitions and Validity

may require edits to the document to bring it back into conformance with the DTD.
The necessity of this sequence depends on your edits; adding elements is rarely an
issue, though removing elements may be problematic.

DTDs at Remote URLs
If a DTD is applied to multiple documents, you cannot always put the DTD in the
same directory as each document for which it is used. Instead, you can use a URL
to specify precisely where the DTD is found. For example, let’s suppose the baseball
DTD is found at http://metalab.unc.edu/xml/dtds/baseball.dtd. You can
link to it by using the following <!DOCTYPE> tag in the prolog:

<!DOCTYPE SEASON SYSTEM
“http://metalab.unc.edu/xml/dtds/baseball.dtd”>

This example uses a full URL valid from anywhere. You may also wish to locate
DTDs relative to the Web server’s document root or the current directory. In
general, any reference that forms a valid URL relative to the location of the
document is acceptable. For example, these are all valid document type
declarations:

<!DOCTYPE SEASON SYSTEM “/xml/dtds/baseball.dtd”>

<!DOCTYPE SEASON SYSTEM “dtds/baseball.dtd”>

<!DOCTYPE SEASON SYSTEM “../baseball.dtd”>

A document can’t have more than one document type declaration, that is, more
than one <!DOCTYPE> tag. To use elements declared in more than one DTD, you
need to use external parameter entity references. These are discussed in the next
chapter.

Public DTDs
The SYSTEM keyword is intended for private DTDs used by a single author or group.
Part of the promise of XML, however, is that broader organizations covering an
entire industry, such as the ISO or the IEEE, can standardize public DTDs to cover
their fields. This standardization saves people from having to reinvent tag sets for
the same items and makes it easier for users to exchange interoperable documents.

DTDs designed for writers outside the creating organization use the PUBLIC
keyword instead of the SYSTEM keyword. Furthermore, the DTD gets a name. The
syntax follows:

<!DOCTYPE root_element_name PUBLIC “DTD_name” “DTD_URL”>

Note

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 241

242 Part II ✦ Document Type Definitions

Once again, root_element_name is the name of the root element. PUBLIC is an
XML keyword indicating that this DTD is intended for broad use and has a name.
DTD_name is the name associated with this DTD. Some XML processors may
attempt to use this name to retrieve the DTD from a central repository. Finally,
DTD_URL is a relative or absolute URL where the DTD can be found if it cannot be
retrieved by name from a well-known repository.

DTD names are slightly different from XML names. They may contain only the ASCII
alphanumeric characters, the space, the carriage return, the linefeed characters,
and the following punctuation marks: -’()+,/:=?;!*#@$_%. Furthermore, the names of
public DTDs follow a few conventions.

If a DTD is an ISO standard, its name begins with the string “ISO.” If a non-ISO
standards body has approved the DTD, its name begins with a plus sign (+). If no
standards body has approved the DTD, its name begins with a hyphen (-). These
initial strings are followed by a double slash (//) and the name of the DTD’s owner,
which is followed by another double slash and the type of document the DTD
describes. Then there’s another double slash followed by an ISO 639 language
identifier, such as EN for English. A complete list of ISO 639 identifiers is available
from http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt. For
example, the baseball DTD can be named as follows:

-//Elliotte Rusty Harold//DTD baseball statistics//EN

This example says this DTD is not standards-body approved (-), belongs to Elliotte
Rusty Harold, describes baseball statistics, and is written in English. A full
document type declaration pointing to this DTD with this name follows:

<!DOCTYPE SEASON PUBLIC
“-//Elliotte Rusty Harold//DTD baseball statistics//EN”
“http://metalab.unc.edu/xml/dtds/baseball.dtd”>

You may have noticed that many HTML editors such as BBEdit automatically place
the following string at the beginning of every HTML file they create:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML//EN”>

Now you know what this string means! It says the document follows a non-
standards-body-approved (-) DTD for HTML produced by the W3C in the English
language.

Technically the W3C is not a standards organization because it’s membership is
limited to corporations that pay its fees rather than to official government-
approved bodies. It only publishes recommendations instead of standards. In
practice, the distinction is irrelevant.

Note

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 242

243Chapter 8 ✦ Document Type Definitions and Validity

Internal and External DTD Subsets
Although most documents consist of easily defined pieces, not all documents use a
common template. Many documents may need to use standard DTDs such as the
HTML 4.0 DTD while adding custom elements for their own use. Other documents
may use only standard elements, but need to reorder them. For instance, one HTML
page may have a BODY that must contain exactly one H1 header followed by a DL
definition list while another may have a BODY that contains many different headers,
paragraphs, and images in no particular order. If a particular document has a
different structure than other pages on the site, it can be useful to define its
structure in the document itself rather than in a separate DTD. This approach also
makes the document easier to edit.

To this end, a document can use both an internal and an external DTD. The internal
declarations go inside square brackets at the end of the <!DOCTYPE> tag. For
example, suppose you want a page that includes baseball statistics but also has a
header and a footer. Such a document might look like Listing 8-15. The baseball
information is pulled from the file baseball.dtd, which forms the external DTD
subset. The definition of the root element DOCUMENT as well as the TITLE and
SIGNATURE elements come from the internal DTD subset included in the document
itself. This is a little unusual. More commonly, the more generic pieces are likely to
be part of an external DTD while the internal pieces are more topic-specific.

Listing 8-15: A baseball document whose DTD has both an
internal and an external subset

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT SYSTEM “baseball.dtd” [

<!ELEMENT DOCUMENT (TITLE, SEASON, SIGNATURE)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT COPYRIGHT (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT LAST_MODIFIED (#PCDATA)>
<!ELEMENT SIGNATURE (COPYRIGHT, EMAIL, LAST_MODIFIED)>

]>

<DOCUMENT>
<TITLE>1998 Major League Baseball Statistics</TITLE>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>

Continued

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 243

244 Part II ✦ Document Type Definitions

Listing 8-15 (continued)

<TEAM>
<TEAM_CITY>Atlanta</TEAM_CITY>
<TEAM_NAME>Braves</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>

<TEAM_NAME>Phillies</TEAM_NAME>
</TEAM>

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 244

245Chapter 8 ✦ Document Type Definitions and Validity

<TEAM_NAME>White Sox</TEAM_NAME>
</TEAM>

</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>
<SIGNATURE>
<COPYRIGHT>Copyright 1999 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>March 10, 1999</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

In the event of a conflict between elements of the same name in the internal and
external DTD subsets, the elements declared internally take precedence. This
precedence provides a crude, partial inheritance mechanism. For example, suppose
you want to override the definition of a PLAYER element so that it can only contain
batting statistics while disallowing pitching statistics. You could use most of the
same declarations in the baseball DTD, changing the PLAYER element as follows:

<!DOCTYPE SEASON SYSTEM “baseball.dtd” [
<!ELEMENT PLAYER (GIVEN_NAME, SURNAME, P, G,
GS, AB?, R?, H?, D?, T?, HR?, RBI?, SB?, CS?,
SH?, SF?, E?, BB?, S?, HBP?)

>
]>

Summary
In this chapter, you learned how to use a DTD to describe the structure of a
document, that is, both the required and optional elements it contains and how
those elements relate to one another. In particular you learned:

✦ A document type definition (DTD) provides a list of the elements, tags,
attributes, and entities contained in the document, and their relationships to
one another.

✦ A document’s prolog may contain a document type declaration that specifies
the root element and contains a DTD. This is placed between the XML declara-
tion and before where the actual document begins. It is delimited by <!DOC-
TYPE ROOT [and]>, where ROOT is the name of the root element.

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 245

246 Part II ✦ Document Type Definitions

✦ DTDs lay out the permissible tags and the structure of a document. A docu-
ment that adheres to the rules of its DTD is said to be valid.

✦ Element type declarations declare the name and children of an element.

✦ Children separated by commas in an element type declaration must appear in
the same order in that element inside the document.

✦ A plus sign means one or more instances of the element may appear.

✦ An asterisk means zero or more instances of the element may appear.

✦ A question mark means zero or one instances of the child may appear.

✦ A vertical bar means one element or another is to be used.

✦ Parentheses group child elements to allow for more detailed element declara-
tions.

✦ Mixed content contains both elements and parsed character data but limits
the structure you can impose on the parent element.

✦ Empty elements are declared with the EMPTY keyword.

✦ Comments make DTDs much more legible.

✦ External DTDs can be located using the SYSTEM keyword and a URL in the doc-
ument type declaration.

✦ Standard DTDs can be located using the PUBLIC keyword in the document
type declaration.

✦ Declarations in the internal DTD subset override conflicting declarations in
the external DTD subset

In the next chapter, you learn more about DTDs, including how entity references
provide replacement text and how to separate DTDs from the documents they
describe so they can be easily shared between documents. You also learn how to
use multiple DTDs to describe a single document.

✦ ✦ ✦

3236-7 ch08.F.qc 6/29/99 1:06 PM Page 246

Entities and
External DTD
Subsets

A single XML document may draw both data and
declarations from many different sources, in many

different files. In fact, some of the data may draw directly from
databases, CGI scripts, or other non-file sources. The items
where the pieces of an XML file are stored, in whatever form
they take, are called entities. Entity references load these
entities into the main XML document. General entity
references load data into the root element of an XML
document, while parameter entity references load
data into the document’s DTD.

What Is an Entity?
Logically speaking, an XML document is composed of a prolog
followed by a root element which strictly contains all other
elements. But in practice, the actual data of an XML document
can spread across multiple files. For example, each PLAYER
element might appear in a separate file even though the root
element contains all 900 or so players in a league. The storage
units that contain particular parts of an XML document are
called entities. An entity may consist of a file, a database record,
or any other item that contains data. For example, all the
complete XML files and style sheets in this book are entities.

The storage unit that contains the XML declaration, the
document type declaration, and the root element is called
the document entity. However, the root element and its
descendents may also contain entity references pointing to
additional data that should be inserted into the document. A
validating XML processor combines all the different referenced
entities into a single logical document before it passes the
document onto the end application or displays the file.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is an entity?

Internal general
entities

External general
entities

Internal parameter
entities

External parameter
entities

How to build a
document from
pieces

Entities and DTDs
in well-formed
documents

✦ ✦ ✦ ✦

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 247

248 Part II ✦ Document Type Definition

Non-validating processors may, but do not have to, insert external entities. They
must insert internal entities.

The primary purpose of an entity is to hold content: well-formed XML, other forms
of text, or binary data. The prolog and the document type declaration are part of
the root entity of the document they belong to. An XSL style sheet qualifies as an
entity, but only because it itself is a well-formed XML document. The entity that
makes up the style sheet is not one of the entities that composes the XML
document to which the style sheet applies. A CSS style sheet is not an entity at all.

Most entities have names by which you can refer to them. The only exception is
the document entity-the main file containing the XML document (although there’s
no requirement that this be a file as opposed to a database record, the output of a
CGI program, or something else). The document entity is the storage unit, in
whatever form it takes, that holds the XML declaration, the document type
declaration (if any), and the root element. Thus, every XML document has at least
one entity.

There are two kinds of entities: internal and external. Internal entities are defined
completely within the document entity. The document itself is one such entity, so
all XML documents have at least one internal entity.

External entities, by contrast, draw their content from another source located via a
URL. The main document only includes a reference to the URL where the actual
content resides. In HTML, an IMG element represents an external entity (the actual
image data) while the document itself contained between the <HTML> and </HTML>
tags is an internal entity.

Entities fall into two categories: parsed and unparsed. Parsed entities contain well-
formed XML text. Unparsed entities contain either binary data or non-XML text (like
an email message). Currently, unparsed entities aren’t well supported (if at all) by
most XML processors. In this chapter, we focus on parsed entities.

Chapter 11, Embedding Non-XML Data, covers unparsed entities.

Entity references enable data from multiple entities to merge together to form a
single document. General entity references merge data into the document content.
Parameter entity references merge declarations into the document’s DTD. <,
>, ', "e;, and & are predefined entity references that refer to
the text entities <, >, ‘, “, and &, respectively. However, you can also define new
entities in your document’s DTD.

Cross-
Reference

Note

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 248

249Chapter 9 ✦ Entities and External DTD Subsets

Internal General Entities
You can think of an internal general entity reference as an abbreviation for
commonly used text or text that’s hard to type. An <!ENTITY> tag in the DTD
defines an abbreviation and the text the abbreviation stands for. For instance,
instead of typing the same footer at the bottom of every page, you can simply
define that text as the footer entity in the DTD and then type &footer; at the
bottom of each page. Furthermore, if you decide to change the footer block
(perhaps because your email address changes), you only need to make the change
once in the DTD instead of on every page that shares the footer.

General entity references begin with an ampersand (&) and end with a semicolon
(;), with the entity’s name between these two characters. For instance, < is a
general entity reference for the less than sign (<) The name of this entity is lt. The
replacement text of this entity is the one character string <. Entity names consist of
any set of alphanumeric characters and the underscore. Whitespace and other
punctuation characters are prohibited. Like most everything else in XML, entity
references are case sensitive.

Although the colon (:) is technically permitted in entity names, this character is
reserved for use with namespaces, which are discussed in Chapter 18.

Defining an Internal General Entity Reference
Internal general entity references are defined in the DTD with the <!ENTITY> tag,
which has the following format:

<!ENTITY name “replacement text”>

The name is the abbreviation for the replacement text. The replacement text
must be enclosed in quotation marks because it may contain whitespace and XML
markup. You type the name of the entity in the document, but the reader sees the
replacement text.

For example, my name is the somewhat excessive “Elliotte Rusty Harold” (blame
my parents for that one). Even with years of practice, I still make typos with that
phrase. I can define a general entity reference for my name so that every time I type
&ERH;, the reader will see “Elliotte Rusty Harold”. That definition is:

<!ENTITY ERH “Elliotte Rusty Harold”>

Listing 9-1 demonstrates the &ERH; general entity reference. Figure 9-1 shows this
document loaded into Internet Explorer. You see that the &ERH; entity reference in
the source code is replaced by Elliotte Rusty Harold in the output.

Cross-
Reference

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 249

250 Part II ✦ Document Type Definition

Listing 9-1: The ERH internal general entity reference

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE DOCUMENT [

<!ENTITY ERH “Elliotte Rusty Harold”>

<!ELEMENT DOCUMENT (TITLE, SIGNATURE)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT COPYRIGHT (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT LAST_MODIFIED (#PCDATA)>
<!ELEMENT SIGNATURE (COPYRIGHT, EMAIL, LAST_MODIFIED)>

]>
<DOCUMENT>
<TITLE>&ERH;</TITLE>
<SIGNATURE>
<COPYRIGHT>1999 &ERH;</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>March 10, 1999</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

Figure 9-1: Listing 9-1 after the internal general entity
reference has been replaced by the actual entity

Notice that the general entity reference, &ERH; appears inside both the COPYRIGHT
and TITLE elements even though these are declared to accept only #PCDATA as
children. This arrangement is legal because the replacement text of the &ERH;
entity reference is parsed character data. Validation is done against the document
after all entity references have been replaced by their values.

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 250

251Chapter 9 ✦ Entities and External DTD Subsets

The same thing occurs when you use a style sheet. The styles are applied to the
element tree as it exists after entity values replace the entity references.

You can follow the same model to declare general entity references for the
copyright, the email address, or the last modified date:

<!ENTITY COPY99 “Copyright 1999”>
<!ENTITY EMAIL “elharo@metalab.unc.edu”>
<!ENTITY LM “Last modified: “>

I omitted the date in the &LM; entity because it’s likely to change from document to
document. There is no advantage to making it an entity reference.

Now you can rewrite the document part of Listing 9-1 even more compactly:

<DOCUMENT>
<TITLE>&ERH;</TITLE>
<SIGNATURE>
<COPYRIGHT>©99; &ERH;</COPYRIGHT>
<EMAIL>&EMAIL;</EMAIL>
<LAST_MODIFIED>&LM; March 10, 1999</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

One of the advantages of using entity references instead of the full text is that
these references make it easy to change the text. This is especially useful when a
single DTD is shared between multiple documents. (You’ll learn this skill in the
section on sharing common DTDs among documents.) For example, suppose I
decide to use the email address eharold@solar.stanford.edu instead of
elharo@metalab.unc.edu. Rather than searching and replacing through
multiple files, I simply change one line of the DTD as follows:

<!ENTITY EMAIL “eharold@solar.stanford.edu”>

Using General Entity References in the DTD
You may wonder whether it’s possible to include one general entity reference inside
another as follows:

<!ENTITY COPY99 “Copyright 1999 &ERH;”>

This example is in fact valid, because the ERH entity appears as part of the COPY99
entity that itself will ultimately become part of the document’s content. You can
also use general entity references in other places in the DTD that ultimately become
part of the document content (such as a default attribute value), although there are
restrictions. The first restriction: The statement cannot use a circular reference like
this one:

<!ENTITY ERH “©99 Elliotte Rusty Harold”>
<!ENTITY COPY99 “Copyright 1999 &ERH;”>

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 251

252 Part II ✦ Document Type Definition

The second restriction: General entity references may not insert text that is only
part of the DTD and will not be used as part of the document content. For example,
the following attempted shortcut fails:

<!ENTITY PCD “(#PCDATA)”>
<!ELEMENT ANIMAL &PCD;>
<!ELEMENT FOOD &PCD;>

It’s often useful, however, to have entity references merge text into a document’s
DTD. For this purpose, XML uses the parameter entity reference, which is
discussed later in this chapter.

The only restriction on general entity values is that they may not contain the three
characters %, &, and “ directly, though you can include them via character
references. & and % may be included if they’re starting an entity reference rather
than simply representing themselves. The lack of restrictions means that an entity
may contain tags and span multiple lines. For example, the following SIGNATURE
entity is valid:

<!ENTITY SIGNATURE
“<SIGNATURE>

<COPYRIGHT>1999 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>March 10, 1999</LAST_MODIFIED>

</SIGNATURE>”
>

The next obvious question is whether it’s possible for entities to have parameters.
Can you use the above SIGNATURE entity but change the date in each separate
LAST_MODIFIED element on each page? The answer is no; entities are only for static
replacement text. If you need to pass data to an entity, you should use a tag along
with the appropriate rendering instructions in the style sheet instead.

Predefined General Entity References
XML predefines five general entity references, as listed in Table 9-1. These five entity
references appear in XML documents in place of specific characters that would
otherwise be interpreted as markup. For instance, the entity reference < stands
for the less-than sign (<), which could be interpreted as the beginning of a tag.

For maximum compatibility, you should declare these references in your DTD if you
plan to use them. Declaration is actually quite tricky because you must also escape
the characters in the DTD without using recursion. To declare these references, use
character references containing the hexadecimal ASCII value of each character.
Listing 9-2 shows the necessary declarations:

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 252

253Chapter 9 ✦ Entities and External DTD Subsets

Table 9-1
XML Predefined Entity References

Entity Reference Character

& &

< <

> >

" “

' ‘

Listing 9-2: Declarations for predefined general entity
references

<!ENTITY lt “&#60;”>
<!ENTITY gt “>”>
<!ENTITY amp “&#38;”>
<!ENTITY apos “'”>
<!ENTITY quot “"”>

External General Entities
External entities are data outside the main file containing the root element/document
entity. External entity references let you embed these external entities in your
document and build XML documents from multiple independent files.

Documents using only internal entities closely resemble the HTML model. The
complete text of the document is available in a single file. Images, applets, sounds,
and other non-HTML data may be linked in, but at least all the text is present. Of
course, the HTML model has some problems. In particular, it’s quite difficult to
embed dynamic information in the file. You can embed dynamic information by
using CGI, Java applets, fancy database software, server side includes, and various
other means, but HTML alone only provides a static document. You have to go
outside HTML to build a document from multiple pieces. Frames are perhaps the
simplest HTML solution to this problem, but they are a user interface disaster that
consistently confuse and annoy users.

Part of the problem is that one HTML document does not naturally fit inside
another. Every HTML document should have exactly one BODY, but no more. Server
side includes only enable you to embed fragments of HTML—never an entire valid
document—inside a document. In addition, server side includes are server
dependent and not truly part of HTML.

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 253

254 Part II ✦ Document Type Definition

XML, however, is more flexible. One document’s root element is not necessarily the
same as another document’s root element. Even if two documents share the same
root element, the DTD may declare that the element is allowed to contain itself. The
XML standard does not prevent well-formed XML documents from being embedded
in other well-formed XML documents when convenient.

XML goes further, however, by defining a mechanism whereby an XML document
can be built out of multiple smaller XML documents found either on local or remote
systems. The parseris responsible for merging all the different documents together
in a fixed order. Documents may contain other documents, which may contain
other documents. As long as there’s no recursion (an error reported by the
processor), the application only sees a single, complete document. In essence, this
provides client-side includes.

With XML, you can use an external general entity reference to embed one document
in another. In the DTD, you declare the external reference with the following syntax:

<!ENTITY name SYSTEM “URI”>

URI stands for Uniform Resource Identifier. URIs are similar to URLs but allow for
more precise specification of the linked resource. In theory, URIs separate the
resource from the location so a Web browser can select the nearest or least con-
gested of several mirrors without requiring an explicit link to that mirror. URIs are
an area of active research and heated debate. Therefore, in practice and certainly
in this book, URIs are URLs for all purposes.

For example, you may want to put the same signature block on almost every page
of a site. For the sake of definiteness, let’s assume the signature block is the XML
code shown in Listing 9-3. Furthermore, let’s assume that you can retrieve this code
from the URL http://metalab.unc.edu/xml/signature.xml.

Listing 9-3: An XML signature file

<?xml version=”1.0”?>
<SIGNATURE>
<COPYRIGHT>1999 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>

</SIGNATURE>

Note

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 254

255Chapter 9 ✦ Entities and External DTD Subsets

Associate this file with the entity reference &SIG; by adding the following
declaration to the DTD:

<!ENTITY SIG SYSTEM “http://metalab.unc.edu/xml/signature.xml”>

You can also use a relative URL. For example,

<!ENTITY SIG SYSTEM “/xml/signature.xml”>

If the file to be included is in the same directory as the file doing the including, you
only need to use the file name. For example,

<!ENTITY SIG SYSTEM “signature.xml”>

With any of these declarations, you can include the contents of the signature file in
a document at any point merely by using &SIG;, as illustrated with the simple
document in Listing 9-4. Figure 9-2 shows the rendered document in Internet
Explorer 5.0.

Listing 9-4: The SIG external general entity reference

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (TITLE, SIGNATURE)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT COPYRIGHT (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT SIGNATURE (COPYRIGHT, EMAIL)>
<!ENTITY SIG SYSTEM

“http://metalab.unc.edu/xml/signature.xml”>
]>
<DOCUMENT>
<TITLE>Entity references</TITLE>
&SIG;

</DOCUMENT>

Aside from the addition of the external entity reference, note that the standalone
attribute of the XML declaration now has the value no because this file is no longer
complete. Parsing the file requires additional data from the external file
signature.xml.

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 255

256 Part II ✦ Document Type Definition

Figure 9-2: A document that uses an external general entity
reference.

Internal Parameter Entities
General entities become part of the document, not the DTD. They can be used in
the DTD but only in places where they will become part of the document body.
General entity references may not insert text that is only part of the DTD and will
not be used as part of the document content. It’s often useful, however, to have
entity references in a DTD. For this purpose, XML provides the parameter entity
reference.

Parameter entity references are very similar to general entity references—with
these two key differences:

1. Parameter entity references begin with a percent sign (%) rather than an
«ampersand (&).

2. Parameter entity references can only appear in the DTD, not the document
«content.

Parameter entities are declared in the DTD like general entities with the addition of
a percent sign before the name. The syntax looks like this:

<!ENTITY % name “replacement text”>

The name is the abbreviation for the entity. The reader sees the replacement text,
which must appear in quotes. For example:

<!ENTITY % ERH “Elliotte Rusty Harold”>
<!ENTITY COPY99 “Copyright 1999 %ERH;”>

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 256

257Chapter 9 ✦ Entities and External DTD Subsets

Our earlier failed attempt to abbreviate (#PCDATA) works when a parameter entity
reference replaces the general entity reference:

<!ENTITY % PCD “(#PCDATA)”>
<!ELEMENT ANIMAL %PCD;>
<!ELEMENT FOOD %PCD;>

The real value of parameter entity references appears in sharing common lists of
children and attributes between elements. The larger the block of text you’re
replacing and the more times you use it, the more useful parameter entity
references become. For instance, suppose your DTD declares a number of block
level container elements like PARAGRAPH, CELL, and HEADING. Each of these
container elements may contain an indefinite number of inline elements like
PERSON, DEGREE, MODEL, PRODUCT, ANIMAL, INGREDIENT, and so forth. The element
declarations for the container elements could appear as the following:

<!ELEMENT PARAGRAPH
(PERSON | DEGREE | MODEL | PRODUCT | ANIMAL | INGREDIENT)*>

<!ELEMENT CELL
(PERSON | DEGREE | MODEL | PRODUCT | ANIMAL | INGREDIENT)*>

<!ELEMENT HEADING
(PERSON | DEGREE | MODEL | PRODUCT | ANIMAL | INGREDIENT)*>

The container elements all have the same contents. If you invent a new element like
EQUATION, CD, or ACCOUNT, this element must be declared as a possible child of all
three container elements. Adding it to two, but forgetting to add it to the third
element, may cause trouble. This problem multiplies when you have 30 or 300
container elements instead of three.

The DTD is much easier to maintain if you don’t give each container a separate
child list. Instead, make the child list a parameter entity reference; then use that
parameter entity reference in each of the container element declarations. For
example:

<!ENTITY % inlines
“(PERSON | DEGREE | MODEL | PRODUCT | ANIMAL | INGREDIENT)*”>

<!ELEMENT PARAGRAPH %inlines;>
<!ELEMENT CELL %inlines;>
<!ELEMENT HEADING %inlines;>

To add a new element, you only have to change a single parameter entity
declaration, rather than three, 30, or 300 element declarations.

Parameter entity references must be declared before they’re used. The following
example is invalid because the %PCD; reference is not declared until it’s already
been used twice:

<!ELEMENT FOOD %PCD;>
<!ELEMENT ANIMAL %PCD;>
<!ENTITY % PCD “(#PCDATA)”>

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 257

258 Part II ✦ Document Type Definition

Parameter entities can only be used to provide part of a declaration in the external
DTD subset. That is, parameter entity references can only appear inside a declara-
tion in the external DTD subset. The above examples are all invalid if they’re used
in an internal DTD subset.

In the internal DTD subset, parameter entity references can only be used outside of
declarations. For example, the following is valid in both the internal and external
DTD subsets:

<!ENTITY % hr “<!ELEMENT HR EMPTY>”>
%hr;

Of course, this really isn’t any easier than declaring the HR element without
parameter entity references:

<!ELEMENT HR EMPTY>

You’ll mainly use parameter entity references in internal DTD subsets when they’re
referring to external parameter entities; that is, when they’re pulling in declarations
or parts of declarations from a different file. This is the subject of the next section.

External Parameter Entities
The preceding examples used monolithic DTDs that define all the elements used in
the document. This technique becomes unwieldy with longer documents, however.
Furthermore, you often want to use part of a DTD in many different places.

For example, consider a DTD that describes a snail mail address. The definition of
an address is quite general, and can easily be used in many different contexts.
Similarly, the list of predefined entity references in Listing 9-2 is useful in most XML
files, but you’d rather not copy and paste it all the time.

External parameter entities enable you to build large DTDs from smaller ones. That
is, one external DTD may link to another and in so doing pull in the elements and
entities declared in the first. Although cycles are prohibited—DTD 1 may not refer
to DTD 2 if DTD 2 refers to DTD 1—such nested DTDs can become large and
complex.

At the same time, breaking a DTD into smaller, more manageable chunks makes the
DTD easier to analyze. Many of the examples in the last chapter were unnecessarily
large because an entire document and its complete DTD were stored in a single file.
Both the document and its DTD become much easier to understand when split into
separate files.

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 258

259Chapter 9 ✦ Entities and External DTD Subsets

Furthermore, using smaller, modular DTDs that only describe one set of elements
makes it easier to mix and match DTDs created by different people or
organizations. For instance, if you’re writing a technical article about high
temperature superconductivity, you can use a molecular sciences DTD to describe
the molecules involved, a math DTD to write down your equations, a vector
graphics DTD for the figures, and a basic HTML DTD to handle the explanatory text.

In particular, you can use the mol.dtd DTD from Peter Murray-Rust’s Chemical
Markup Language, the MathML DTD from the W3C’s Mathematical Markup
Language, the SVG DTD for the W3C’s Scalable Vector Graphics, and the W3C’s
HTML-in-XML DTD.

You can probably think of more examples where you need to mix and match
concepts (and therefore tags) from different fields. Human thought doesn’t restrict
itself to narrowly defined categories. It tends to wander all over the map. The
documents you write will reflect this.

Let’s see how to organize the baseball statistics DTD as a combination of several
different DTDs. This example is extremely hierarchical. One possible division is to
write separate DTDs for PLAYER, TEAM, and SEASON. This is far from the only way to
divide the DTD into more manageable chunks, but it will serve as a reasonable
example. Listing 9-5 shows a DTD solely for a player that can be stored in a file
named player.dtd:

Listing 9-5: A DTD for the PLAYER element and its children
(player.dtd)

<!— Player Info —>
<!ELEMENT PLAYER (GIVEN_NAME, SURNAME, P, G,
GS, AB?, R?, H?, D?, T?, HR?, RBI?, SB?, CS?,
SH?, SF?, E?, BB?, S?, HBP?, W?, L?, SV?, CG?, SO?, ERA?,
IP?, HRA?, RA?, ER?, HB?, WP?, B?, WB?, K?)

>

<!— Player’s last name —>
<!ELEMENT SURNAME (#PCDATA)>

<!— Player’s first name —>
<!ELEMENT GIVEN_NAME (#PCDATA)>

<!— Position —>
<!ELEMENT P (#PCDATA)>

<!—Games Played —>
<!ELEMENT G (#PCDATA)>

Continued

Note

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 259

260 Part II ✦ Document Type Definition

Listing 9-5 (continued)

<!—Games Started —>
<!ELEMENT GS (#PCDATA)>

<!— ======================= —>
<!— Batting Statistics —>
<!— At Bats —>
<!ELEMENT AB (#PCDATA)>

<!— Runs —>
<!ELEMENT R (#PCDATA)>

<!— Hits —>
<!ELEMENT H (#PCDATA)>

<!— Doubles —>
<!ELEMENT D (#PCDATA)>

<!— Triples —>
<!ELEMENT T (#PCDATA)>

<!— Home Runs —>
<!ELEMENT HR (#PCDATA)>

<!— Runs Batted In —>
<!ELEMENT RBI (#PCDATA)>

<!— Stolen Bases —>
<!ELEMENT SB (#PCDATA)>

<!— Caught Stealing —>
<!ELEMENT CS (#PCDATA)>

<!— Sacrifice Hits —>
<!ELEMENT SH (#PCDATA)>

<!— Sacrifice Flies —>
<!ELEMENT SF (#PCDATA)>

<!— Errors —>
<!ELEMENT E (#PCDATA)>

<!— Walks (Base on Balls) —>
<!ELEMENT BB (#PCDATA)>

<!— Struck Out —>
<!ELEMENT S (#PCDATA)>

<!— Hit By Pitch —>
<!ELEMENT HBP (#PCDATA)>

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 260

261Chapter 9 ✦ Entities and External DTD Subsets

<!— ======================= —>
<!— Pitching Statistics —>
<!— Complete Games —>
<!ELEMENT CG (#PCDATA)>

<!— Wins —>
<!ELEMENT W (#PCDATA)>

<!— Losses —>
<!ELEMENT L (#PCDATA)>

<!— Saves —>
<!ELEMENT SV (#PCDATA)>

<!— Shutouts —>
<!ELEMENT SO (#PCDATA)>

<!— ERA —>
<!ELEMENT ERA (#PCDATA)>

<!— Innings Pitched —>
<!ELEMENT IP (#PCDATA)>

<!— Home Runs hit Against —>
<!ELEMENT HRA (#PCDATA)>

<!— Runs hit Against —>
<!ELEMENT RA (#PCDATA)>

<!— Earned Runs —>
<!ELEMENT ER (#PCDATA)>

<!— Hit Batter —>
<!ELEMENT HB (#PCDATA)>

<!— Wild Pitches —>
<!ELEMENT WP (#PCDATA)>

<!— Balk —>
<!ELEMENT B (#PCDATA)>

<!— Walked Batter —>
<!ELEMENT WB (#PCDATA)>

<!— Struck Out Batter —>
<!ELEMENT K (#PCDATA)>

<!— ======================= —>
<!— Fielding Statistics —>
<!— Not yet supported —>

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 261

262 Part II ✦ Document Type Definition

By itself, this DTD doesn't enable you to create very interesting documents. Listing 9-6
shows a simple valid file that only uses the PLAYER DTD in Listing 9-5. By itself, this
simple file is not important; however, you can build other, more complicated files out
of these small parts.

Listing 9-6: A valid document using the PLAYER DTD

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE PLAYER SYSTEM “player.dtd”>
<PLAYER>
<GIVEN_NAME>Chris</GIVEN_NAME>
<SURNAME>Hoiles</SURNAME>
<P>Catcher</P>
<G>97</G>
<GS>81</GS>
<AB>267</AB>
<R>36</R>
<H>70</H>
<D>12</D>
<T>0</T>
<HR>15</HR>
<RBI>56</RBI>
<SB>0</SB>
<CS>1</CS>
<SH>5</SH>
<SF>4</SF>
<E>3</E>
<BB>38</BB>
<S>50</S>
<HBP>4</HBP>

</PLAYER>

What other parts of the document can have their own DTDs? Obviously, a TEAM is a
big part. You could write its DTD as follows:

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 262

263Chapter 9 ✦ Entities and External DTD Subsets

On closer inspection, however, you should notice that something is missing: the
definition of the PLAYER element. The definition is in the separate file player.dtd
and needs to be connected to this DTD.

You connect DTDs with external parameter entity references. For a private DTD,
this connection takes the following form:

<!ENTITY % name SYSTEM “URI”>
%name;

For example:

<!ENTITY % player SYSTEM “player.dtd”>
%player;

This example uses a relative URL (player.dtd) and assumes that the file player.dtd
will be found in the same place as the linking DTD. If that’s not the case, you can
use a full URL as follows:

<!ENTITY % player SYSTEM
“http://metalab.unc.edu/xml/dtds/player.dtd”>

%player;

Listing 9-7 shows a completed TEAM DTD that includes a reference to the PLAYER
DTD:

Listing 9-7: The TEAM DTD (team.dtd)

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>
<!ENTITY % player SYSTEM “player.dtd”>
%player;

A SEASON contains LEAGUE, DIVISION, and TEAM elements. Although LEAGUE and
DIVISION could each have their own DTD, it doesn’t pay to go overboard with
splitting DTDs. Unless you expect you’ll have some documents that contain LEAGUE
or DIVISION elements that are not part of a SEASON, you might as well include all
three in the same DTD. Listing 9-8 demonstrates.

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 263

264 Part II ✦ Document Type Definition

Listing 9-8: The SEASON DTD (season.dtd)

<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>

<!— American or National —>
<!ELEMENT LEAGUE_NAME (#PCDATA)>

<!— East, West, or Central —>
<!ELEMENT DIVISION_NAME (#PCDATA)>
<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>
<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>
<!ENTITY % team SYSTEM “team.dtd”>
%team;

Building a Document from Pieces
The baseball examples have been quite large. Although only a truncated version
with limited numbers of players appears in this book, the full document is more
than half a megabyte, way too large to comfortably download or search, especially
if the reader is only interested in a single team, player, or division. The techniques
discussed in the previous section of this chapter allow you to split the document
into many different, smaller, more manageable documents, one for each team,
player, division, and league. External entity references connect the players to form
teams, the teams to form divisions, the divisions to form leagues, and the leagues to
form a season.

Unfortunately you cannot embed just any XML document as an external parsed
entity. Consider, for example, Listing 9-9, ChrisHoiles.xml. This is a revised version
of Listing 9-6. However, if you look closely you’ll notice that the prolog is different.
Listing 9-6’s prolog is:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE PLAYER SYSTEM “player.dtd”>

Listing 9-9’s prolog is simply the XML declaration with no standalone attribute and
with an encoding attribute. Furthermore the document type declaration is
completely omitted. In a file like Listing 9-9 that’s meant to be embedded in another
document, this sort of XML declaration is called a text declaration, though as you
can see it’s really just a legal XML declaration.

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 264

265Chapter 9 ✦ Entities and External DTD Subsets

Listing 9-9: ChrisHoiles.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<PLAYER>
<GIVEN_NAME>Chris</GIVEN_NAME>
<SURNAME>Hoiles</SURNAME>
<P>Catcher</P>
<G>97</G>
<GS>81</GS>
<AB>267</AB>
<R>36</R>
<H>70</H>
<D>12</D>
<T>0</T>
<HR>15</HR>
<RBI>56</RBI>
<SB>0</SB>
<CS>1</CS>
<SH>5</SH>
<SF>4</SF>
<E>3</E>
<BB>38</BB>
<S>50</S>
<HBP>4</HBP>

</PLAYER>

I’ll spare you the other 1,200 or so players, although you’ll find them all on the
accompanying CD-ROM in the examples/baseball/players folder.

Text declarations must have an encoding attribute (unlike XML declarations which
may but do not have to have an encoding attribute) that specifies the character set
the entity uses. This allows compound documents to be assembled from entities
written in different character sets. For example, a document in Latin-5 might
combine with a document in UTF-8. The processor/browser still has to understand
all the encodings used by the different entities.

The examples in this chapter are all given in ASCII. Since ASCII is a strict subset of
both ISO Latin-1 and UTF-8, you could use either of these text declarations:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<?xml version=”1.0” encoding=”UTF-8”?>

Listing 9-10, mets.dtd, and Listing 9-11, mets.xml, show how you can use external
parsed entities to put together a complete team. The DTD defines external entity
references for each player on the team. The XML document loads the DTD using an

On the
CD-ROM

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 265

266 Part II ✦ Document Type Definition

external parameter entity reference in its internal DTD subset. Then, its document
entity includes many external general entity references that load in the individual
players.

Listing 9-10: The New York Mets DTD with entity references
for players (mets.dtd)

<!ENTITY AlLeiter SYSTEM “mets/AlLeiter.xml”>
<!ENTITY ArmandoReynoso SYSTEM “mets/ArmandoReynoso.xml”>
<!ENTITY BobbyJones SYSTEM “mets/BobbyJones.xml”>
<!ENTITY BradClontz SYSTEM “mets/BradClontz.xml”>
<!ENTITY DennisCook SYSTEM “mets/DennisCook.xml”>
<!ENTITY GregMcmichael SYSTEM “mets/GregMcmichael.xml”>
<!ENTITY HideoNomo SYSTEM “mets/HideoNomo.xml”>
<!ENTITY JohnFranco SYSTEM “mets/JohnFranco.xml”>
<!ENTITY JosiasManzanillo SYSTEM “mets/JosiasManzanillo.xml”>
<!ENTITY OctavioDotel SYSTEM “mets/OctavioDotel.xml”>
<!ENTITY RickReed SYSTEM “mets/RickReed.xml”>
<!ENTITY RigoBeltran SYSTEM “mets/RigoBeltran.xml”>
<!ENTITY WillieBlair SYSTEM “mets/WillieBlair.xml”>

Figure 9-3 shows the XML document loaded into Internet Explorer. Notice that all
data for all players is present even though the main document only contains
references to the entities where the player data resides. Internet Explorer resolves
external references-not all XML parsers/browsers do.

You can find the remaining teams on the CD-ROM in the directory
examples/baseball. Notice in particular how compactly external entity references
enable you to embed multiple players.

Listing 9-11: The New York Mets with players loaded from
external entities (mets.xml)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE TEAM SYSTEM “team.dtd” [
<!ENTITY % players SYSTEM “mets.dtd”>
%players;

]>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>
&AlLeiter;

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 266

267Chapter 9 ✦ Entities and External DTD Subsets

&ArmandoReynoso;
&BobbyJones;
&BradClontz;
&DennisCook;
&GregMcmichael;
&HideoNomo;
&JohnFranco;
&JosiasManzanillo;
&OctavioDotel;
&RickReed;
&RigoBeltran;
&WillieBlair;

</TEAM>

Figure 9-3: The XML document displays all players on the 1998
New York Mets.

It would be nice to continue this procedure building a division by combining team
files, a league by combining divisions, and a season by combining leagues.
Unfortunately, if you try this you rapidly run into a wall. The documents embedded
via external entities cannot have their own DTDs. At most, their prolog can contain
the text declaration. This means you can only have a single level of document
embedding. This contrasts with DTD embedding where DTDs can be nested
arbitrarily deeply.

Thus, your only likely alternative is to include all teams, divisions, leagues, and
seasons in a single document which refers to the many different player documents.
This requires a few more than 1,200 entity declarations (one for each player). Since
DTDs can nest arbitrarily, we begin with a DTD that pulls in DTDs like Listing 9-10
containing entity definitions for all the teams. This is shown in Listing 9-12:

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 267

268 Part II ✦ Document Type Definition

Listing 9-12: The players DTD (players.dtd)

<!ENTITY % angels SYSTEM “angels.dtd”>
%angels;
<!ENTITY % astros SYSTEM “astros.dtd”>
%astros;
<!ENTITY % athletics SYSTEM “athletics.dtd”>
%athletics;
<!ENTITY % bluejays SYSTEM “bluejays.dtd”>
%bluejays;
<!ENTITY % braves SYSTEM “braves.dtd”>
%braves;
<!ENTITY % brewers SYSTEM “brewers.dtd”>
%brewers;
<!ENTITY % cubs SYSTEM “cubs.dtd”>
%cubs;
<!ENTITY % devilrays SYSTEM “devilrays.dtd”>
%devilrays;
<!ENTITY % diamondbacks SYSTEM “diamondbacks.dtd”>
%diamondbacks;
<!ENTITY % dodgers SYSTEM “dodgers.dtd”>
%dodgers;
<!ENTITY % expos SYSTEM “expos.dtd”>
%expos;
<!ENTITY % giants SYSTEM “giants.dtd”>
%giants;
<!ENTITY % indians SYSTEM “indians.dtd”>
%indians;
<!ENTITY % mariners SYSTEM “mariners.dtd”>
%mariners;
<!ENTITY % marlins SYSTEM “marlins.dtd”>
%marlins;
<!ENTITY % mets SYSTEM “mets.dtd”>
%mets;
<!ENTITY % orioles SYSTEM “orioles.dtd”>
%orioles;
<!ENTITY % padres SYSTEM “padres.dtd”>
%padres;
<!ENTITY % phillies SYSTEM “phillies.dtd”>
%phillies;
<!ENTITY % pirates SYSTEM “pirates.dtd”>
%pirates;
<!ENTITY % rangers SYSTEM “rangers.dtd”>
%rangers;
<!ENTITY % redsox SYSTEM “redsox.dtd”>
%redsox;
<!ENTITY % reds SYSTEM “reds.dtd”>
%reds;
<!ENTITY % rockies SYSTEM “rockies.dtd”>
%rockies;

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 268

269Chapter 9 ✦ Entities and External DTD Subsets

<!ENTITY % royals SYSTEM “royals.dtd”>
%royals;
<!ENTITY % tigers SYSTEM “tigers.dtd”>
%tigers;
<!ENTITY % twins SYSTEM “twins.dtd”>
%twins;
<!ENTITY % whitesox SYSTEM “whitesox.dtd”>
%whitesox;
<!ENTITY % yankees SYSTEM “yankees.dtd”>
%yankees;

Listing 9-13, a master document, pulls together all the player sub-documents as well
as the DTDs that define the entities for each player. Although this document is
much smaller than the monolithic document developed earlier (32K vs. 628K), it’s
still quite long, so not all players are included here. The full version of Listing 9-13
relies on 33 DTDs and over 1,000 XML files to produce the finished document. The
largest problem with this approach is that it requires over 1000 separate
connections to the Web server before the document can be displayed.

The full example is on the CD-ROM in the file examples/baseball/players/
index.xml.

Listing 9-13: Master document for the 1998 season using
external entity references for players

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE SEASON SYSTEM “baseball.dtd” [

<!ENTITY % players SYSTEM “players.dtd”>
%players;

]>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

Continued

On the
CD-ROM

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 269

270 Part II ✦ Document Type Definition

Listing 9-13 (continued)

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>
&RigoBeltran;
&DennisCook;
&SteveDecker;
&JohnFranco;
&MattFranco;
&ButchHuskey;
&BobbyJones;
&MikeKinkade;
&HideoNomo;
&VanceWilson;

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>
<TEAM_NAME>Phillies</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 270

271Chapter 9 ✦ Entities and External DTD Subsets

<TEAM_NAME>White Sox</TEAM_NAME>
&JeffAbbott;
&MikeCameron;
&MikeCaruso;
&LarryCasian;
&TomFordham;
&MarkJohnson;
&RobertMachado;
&JimParque;
&ToddRizzo;

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

You do have some flexibility in which levels you choose for your master document
and embedded data. For instance, one alternative to the structure used by Listing
9-12 places the teams and all their players in individual documents, then combines
those team files into a season with external entities as shown in Listing 9-14. This
has the advantage of using a smaller number of XML files of more even sizes that
places less load on the Web server and would download and display more quickly.
To be honest, however, the intrinsic advantage of one approach or the other is
minimal. Feel free to use whichever one more closely matches the organization of
your data, or simply whichever one you feel more comfortable with.

Listing 9-14: The 1998 season using external entity
references for teams

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE SEASON SYSTEM “baseball.dtd” [

<!ENTITY angels SYSTEM “angels.xml”>
<!ENTITY astros SYSTEM “astros.xml”>
<!ENTITY athletics SYSTEM “athletics.xml”>
<!ENTITY bluejays SYSTEM “bluejays.xml”>
<!ENTITY braves SYSTEM “braves.xml”>
<!ENTITY brewers SYSTEM “brewers.xml”>
<!ENTITY cubs SYSTEM “cubs.xml”>

Continued

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 271

272 Part II ✦ Document Type Definition

Listing 9-14 (continued)

<!ENTITY devilrays SYSTEM “devilrays.xml”>
<!ENTITY diamondbacks SYSTEM “diamondbacks.xml”>
<!ENTITY dodgers SYSTEM “dodgers.xml”>
<!ENTITY expos SYSTEM “expos.xml”>
<!ENTITY giants SYSTEM “giants.xml”>
<!ENTITY indians SYSTEM “indians.xml”>
<!ENTITY mariners SYSTEM “mariners.xml”>
<!ENTITY marlins SYSTEM “marlins.xml”>
<!ENTITY mets SYSTEM “mets.xml”>
<!ENTITY orioles SYSTEM “orioles.xml”>
<!ENTITY padres SYSTEM “padres.xml”>
<!ENTITY phillies SYSTEM “phillies.xml”>
<!ENTITY pirates SYSTEM “pirates.xml”>
<!ENTITY rangers SYSTEM “rangers.xml”>
<!ENTITY redsox SYSTEM “red sox.xml”>
<!ENTITY reds SYSTEM “reds.xml”>
<!ENTITY rockies SYSTEM “rockies.xml”>
<!ENTITY royals SYSTEM “royals.xml”>
<!ENTITY tigers SYSTEM “tigers.xml”>
<!ENTITY twins SYSTEM “twins.xml”>
<!ENTITY whitesox SYSTEM “whitesox.xml”>
<!ENTITY yankees SYSTEM “yankees.xml”>

]>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
&marlins;
&braves;
&expos;
&mets;
&phillies;

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
&cubs;
&reds;
&astros;
&brewers;
&pirates;

</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
&diamondbacks;
&rockies;
&dodgers;
&padres;
&giants;

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 272

273Chapter 9 ✦ Entities and External DTD Subsets

</DIVISION>
</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>
&orioles;
&redsox;
&yankees;
&devilrays;
&bluejays

</DIVISION>
<DIVISION>
<DIVISION_NAME>Central</DIVISION_NAME>
&whitesox;
&indians;
&tigers;
&royals;
&twins;

</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DIVISION_NAME>
&angels;
&athletics;
&mariners;
&rangers;
</DIVISION>

</LEAGUE>
</SEASON>

A final, less likely, alternative is to actually build teams from external player entities
into separate files and then combine those team files into the divisions, leagues,
and seasons. The master document can define the entity references used in the
child team documents. However, in this case the team documents are not usable on
their own because the entity references are not defined until they’re aggregated
into the master document.

It’s truly unfortunate that only the top-level document can be attached to a DTD.
This somewhat limits the utility of external parsed entities. However, when you
learn about XLinks and XPointers, you’ll see some other ways to build large,
compound documents out of small parts. However, those techniques are not part of
the core XML standard and not necessarily supported by any validating XML
processor and Web browser like the techniques of this chapter.

Chapter 16, XLinks, covers XLinks and Chapter 17, XPointers, discusses XPointers.
Cross-
Reference

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 273

274 Part II ✦ Document Type Definition

Entities and DTDs in Well-Formed Documents
Part I of this book explored well-formed XML documents without DTDs. And Part II
has been exploring documents that have DTDs and adhere to the constraints in the
DTD, that is valid documents. But there is a third level of conformance to the XML
standard: documents that have DTDs and are well-formed but aren’t valid, either
because the DTD is incomplete or because the document doesn’t fit the DTD’s
constraints. This is the least common of the three types.

However, not all documents need to be valid. Sometimes it suffices for an XML
document to be merely well-formed. DTDs also have a place in well-formed XML
documents (though they aren’t required as they are for valid documents). And
some non-validating XML processors can take advantage of information in a DTD
without requiring perfect conformance to it. We explore that option in this section.

If a well-formed but invalid XML document does have a DTD, that DTD must have
the same general form as explored in previous chapters. That is, it begins with a
document type declaration and may contain ELEMENT, ATTLIST, and ENTITY
declarations. Such a document differs from a valid document in that the processor
only considers the ENTITY declarations.

Internal Entities
The primary advantage of using a DTD in invalid well-formed XML documents is
that you may use internal general entity references other than the five pre-defined
references >, <, ", ', and &. You simply declare the entities
you want as normal; then use them in your document.

For example, to repeat the earlier example, suppose you want the entity reference
&ERH; to be replaced by the string “Elliotte Rusty Harold” (OK, suppose I want the
entity reference &ERH; to be replaced by the string “Elliotte Rusty Harold”) but you
don’t want to write a complete DTD for your document. Simply declare the ERH
entity reference in a DTD, as Listing 9-15 demonstrates. This document is only well-
formed, not valid, but perfectly acceptable if you don’t require validity.

Listing 9-15: The ERH entity reference in a DTD yields a well-
formed yet invalid document

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE DOCUMENT [

<!ENTITY ERH “Elliotte Rusty Harold”>
]>
<DOCUMENT>
<TITLE>&ERH;</TITLE>

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 274

275Chapter 9 ✦ Entities and External DTD Subsets

<SIGNATURE>
<COPYRIGHT>1999 &ERH;</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>March 10, 1999</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

The document type declaration in Listing 9-15 is very sparse. Aside from defining
the ERH entity reference, it simply says that the root element is DOCUMENT. However,
well-formedness doesn’t even require the document to adhere to that one small
constraint. For example, Listing 9-16 displays another document that uses a PAGE
root element even though the document type declaration still says the root element
should be DOCUMENT. This document is still well-formed, but it’s not valid-then again
neither was Listing 9-15.

Listing 9-16: A well-formed but invalid document

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE DOCUMENT [

<!ENTITY ERH “Elliotte Rusty Harold”>
]>
<PAGE>
<TITLE>&ERH;</TITLE>
<SIGNATURE>
<COPYRIGHT>1999 &ERH;</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>March 10, 1999</LAST_MODIFIED>
</SIGNATURE>

</PAGE>

It’s possible that the DTD may contain other <!ELEMENT>, <!ATTLIST>, and
<!NOTATION> declarations as well. All of these are ignored by a non-validating
processor. Only <!ENTITY> declarations are considered. The DTD of Listing 9-17
actively contradicts its contents. For instance, the ADDRESS element is supposed to
be empty according to the DTD but in fact contains several undeclared child
elements. Furthermore, each ADDRESS element is required to have OCCUPANT,
STREET, CITY, and ZIP attributes but these are nowhere to be found. The root
element is supposed to be DOCUMENT, not ADDRESS. The DOCUMENT element should
contain a TITLE and a SIGNATURE, neither of which is declared in the DTD. This
document is still well-formed, though very, very invalid.

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 275

276 Part II ✦ Document Type Definition

Listing 9-17: An extremely invalid, though still
well-formed, document

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE DOCUMENT [

<!ENTITY ERH “Elliotte Rusty Harold”>
<!ELEMENT ADDRESS EMPTY>
<!ELEMENT DOCUMENT (TITLE, ADDRESS+, SIGNATURE)>
<!ATTLIST ADDRESS OCCUPANT CDATA #REQUIRED>
<!ATTLIST ADDRESS DEPARTMENT CDATA #IMPLIED>
<!ATTLIST ADDRESS COMPANY CDATA #IMPLIED>
<!ATTLIST ADDRESS STREET CDATA #REQUIRED>
<!ATTLIST ADDRESS CITY CDATA #REQUIRED>
<!ATTLIST ADDRESS ZIP CDATA #REQUIRED>

]>
<ADDRESS>
<OCCUPANT>Elliotte Rusty Harold</OCCUPANT>
<DEPARTMENT>Computer Science</DEPARTMENT>
<COMPANY>Polytechnic University</COMPANY>
<STREET>5 Metrotech Center</STREET>
<CITY>Brooklyn</CITY>
<STATE>NY</STATE>
<ZIP>11201</ZIP>

</ADDRESS>

External Entities
Non-validating processors may resolve external entity references, but they are not
required to. Expat, the open source XML parser used by Mozilla, for instance, does
not resolve external entity references. Most others including the one used in
Internet Explorer 5.0 do. Non-validating processors may only resolve parsed
entities, however.They may not resolve unparsed external entities containing non-
XML data such as images or sounds.

External entities are particularly useful for storing boilerplate text. For instance,
HTML predefines entity references for the non-ASCII ISO Latin-1 letters that are a
little easier to remember than the numeric character entity references. For
instance, å is ˚, _ is þ, _ is Ý, and so on. Listing 9-18
demonstrates an official ISO DTD that defines these references (with slight
modifications to the comments and whitespace to make it fit neatly on the page).

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 276

277Chapter 9 ✦ Entities and External DTD Subsets

Listing 9-18: A DTD for the non-ASCII ISO-Latin-1 characters

<!— (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

—>
<!— Character entity set. Typical invocation:

<!ENTITY % ISOlat1 PUBLIC
“ISO 8879-1986//ENTITIES Added Latin 1//EN//XML”>

%ISOlat1;
—>
<!— This version of the entity set can be used with any SGML

document which uses ISO 8859-1 or ISO 10646 as its
document character set. This includes XML documents and
ISO HTML documents.

Version: 1998-10-01
—>

<!ENTITY Agrave “À” ><!— capital A, grave accent —>
<!ENTITY Aacute “Á “><!— capital A, acute accent —>
<!ENTITY Acirc “Â “><!— capital A, circumflex accent —>
<!ENTITY Atilde “Ã “><!— capital A, tilde —>
<!ENTITY Auml “Ä “><!— capital A, dieresis umlaut —>
<!ENTITY Aring “Å “><!— capital A, ring —>
<!ENTITY AElig “Æ “><!— capital AE diphthong ligature—>
<!ENTITY Ccedil “Ç “><!— capital C, cedilla —>
<!ENTITY Egrave “È “><!— capital E, grave accent —>
<!ENTITY Eacute “É “><!— capital E, acute accent —>
<!ENTITY Ecirc “Ê “><!— capital E, circumflex accent —>
<!ENTITY Euml “Ë “><!— capital E, dieresis umlaut —>
<!ENTITY Igrave “Ì “><!— capital I, grave accent —>
<!ENTITY Iacute “Í “><!— capital I, acute accent —>
<!ENTITY Icirc “Î” ><!— capital I, circumflex accent —>
<!ENTITY Iuml “Ï” ><!— capital I, dieresis umlaut —>
<!ENTITY ETH “Ð” ><!— capital Eth, Icelandic —>
<!ENTITY Ntilde “Ñ” ><!— capital N, tilde —>
<!ENTITY Ograve “Ò” ><!— capital O, grave accent —>
<!ENTITY Oacute “Ó” ><!— capital O, acute accent —>
<!ENTITY Ocirc “Ô” ><!— capital O, circumflex accent —>
<!ENTITY Otilde “Õ” ><!— capital O, tilde —>
<!ENTITY Ouml “Ö”><!—capital O dieresis/umlaut mark—>
<!ENTITY Oslash “Ø” ><!— capital O, slash —>
<!ENTITY Ugrave “Ù” ><!— capital U, grave accent —>
<!ENTITY Uacute “Ú” ><!— capital U, acute accent —>
<!ENTITY Ucirc “Û” ><!— capital U circumflex accent —>
<!ENTITY Uuml “Ü” ><!— capital U dieresis umlaut —>
<!ENTITY Yacute “Ý” ><!— capital Y, acute accent —>
<!ENTITY THORN “Þ” ><!— capital THORN, Icelandic —>

Continued

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 277

278 Part II ✦ Document Type Definition

Listing 9-18 (continued)

<!ENTITY szlig “ß” ><!— small sharp s, (sz ligature) —>
<!ENTITY agrave “à” ><!— small a, grave accent —>
<!ENTITY aacute “á” ><!— small a, acute accent —>
<!ENTITY acirc “â” ><!— small a, circumflex accent —>
<!ENTITY atilde “ã” ><!— small a, tilde —>
<!ENTITY auml “ä” ><!— small a dieresis/umlaut mark—>
<!ENTITY aring “å” ><!— small a, ring —>
<!ENTITY aelig “æ” ><!— small ae, diphthong ligature —>
<!ENTITY ccedil “ç” ><!— small c, cedilla —>
<!ENTITY egrave “è” ><!— small e, grave accent —>
<!ENTITY eacute “é” ><!— small e, acute accent —>
<!ENTITY ecirc “ê” ><!— small e, circumflex accent —>
<!ENTITY euml “ë” ><!— small e, dieresis or umlaut —>
<!ENTITY igrave “ì” ><!— small i, grave accent —>
<!ENTITY iacute “í” ><!— small i, acute accent —>
<!ENTITY icirc “î” ><!— small i, circumflex accent —>
<!ENTITY iuml “ï” ><!— small i, dieresis or umlaut —>
<!ENTITY eth “ð” ><!— small eth, Icelandic —>
<!ENTITY ntilde “ñ” ><!— small n, tilde —>
<!ENTITY ograve “ò” ><!— small o, grave accent —>
<!ENTITY oacute “ó” ><!— small o, acute accent —>
<!ENTITY ocirc “ô” ><!— small o, circumflex accent —>
<!ENTITY otilde “õ” ><!— small o, tilde —>
<!ENTITY ouml “ö” ><!— small o, dieresis or umlaut—>
<!ENTITY oslash “ø” ><!— small o, slash —>
<!ENTITY ugrave “ù” ><!— small u, grave accent —>
<!ENTITY uacute “ú” ><!— small u, acute accent —>
<!ENTITY ucirc “û” ><!— small u, circumflex accent —>
<!ENTITY uuml “ü” ><!— small u, dieresis or umlaut —>
<!ENTITY yacute “ý” ><!— small y, acute accent —>
<!ENTITY thorn “þ” ><!— small thorn, Icelandic —>
<!ENTITY yuml “ÿ” ><!— small y, dieresis or umlaut —>

Rather than including Listing 9-18 in the internal subset of your document’s DTD,
you can simply use a parameter entity reference to link to it, then use the general
entity references in your document.

For example, suppose you wanted to put the medieval document Hildebrandslied
on the Web in well-formed XML. However since this manuscript is written in
German, it uses the non-ASCII characters ê, î, ô, û, and æ.

For maximum portability you can type the poem in ASCII while encoding these letters
as the entity references ê, î, ô û, and æ respectively.
However, even if you don't require a valid finished document, you still need a DTD to

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 278

279Chapter 9 ✦ Entities and External DTD Subsets

declare these and any other entity references you may use. The simplest way to get
the extra characters you need, is merely to refer to the external DTD of Listing 9-18.
Listing 9-19 demonstrates

:Listing 9-19: A well-formed, invalid document that uses entity
references for non ASCII ISO-Latin-1 characters

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [
<!ENTITY % ISOlat1

PUBLIC “ISO 8879-1986//ENTITIES Added Latin 1//EN//XML”
“http://www.schema.net/public-text/ISOlat1.pen”>

%ISOlat1;
]>
<DOCUMENT>
<TITLE>Das Hildebrandslied, circa 775 C.E. </TITLE>
<LINE>Ik gihôrta dhat seggen,</LINE>
<LINE>dhat sih urhêttun ænon muotîn,</LINE>
<LINE>Hiltibrant enti Hadhubrant untar heriun tuêm.
</LINE>
<LINE>sunufatarungo: iro saro rihtun,</LINE>
<COMMENT>I’ll spare you the next 61 lines</COMMENT>

</DOCUMENT>

The document part consists of well-formed XML using tags made up on the spot.
These are not declared in the DTD and do not need to be for a merely well-formed
document. However the entity references do need to be declared in the DTD, either
in the internal or external subset. Listing 9-19 declares them in the external subset
by using the external parameter entity reference %ISOlat1 to load the entities
declared in Listing 9-18.

DTDs are also useful for storing common boilerplate text used across a Web site of
well- formed XML documents, much as they are for valid XML documents. The
procedure is a little easier when working with merely well formed XML documents,
because there’s no chance that the boilerplate you insert will not meet the
constraints of the parent document DTD.

First, place the boilerplate in a file without a DTD, as shown in Listing 9-20.

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 279

280 Part II ✦ Document Type Definition

Listing 9-20: Signature boilerplate without a DTD

<?xml version=”1.0”?>
<SIGNATURE>
<COPYRIGHT>1999 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>

</SIGNATURE>

Next, write a small DTD as in Listing 9-21 that defines an entity reference for the file
in Listing 9-20. Here, I assume that you can locate Listing 9-20 in the file
signature.xml in the boilerplate directory at the root level of the Web server, and
that you can find Listing 9-21 in the file signature.dtd in the dtds directory at the
root level of the Web server.

Listing 9-21: Signature DTD that defines an entity reference

<!ENTITY SIGNATURE SYSTEM “/boilerplate/signature.xml”>

Now, you can import signature.dtd in any document, then use the general entity
reference &SIGNATURE; to embed the contents of signature.xml in your file. Listing
9-22 demonstrates.

Listing 9-22: A file that uses &SIGNATURE;

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE DOCUMENT [

<!ENTITY % SIG SYSTEM “/dtds/signature.dtd”>
%SIG;

]>
<DOCUMENT>
<TITLE>A Very Boring Document</TITLE>
&SIGNATURE;

</DOCUMENT>

This may seem like one more level of indirection than you really need. For instance,
Listing 9-23 defines the &SIGNATURE; entity reference directly in its internal DTD
subset, and indeed this does work. However, the additional level of indirection

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 280

281Chapter 9 ✦ Entities and External DTD Subsets

provides protection against a reorganization of a Web site since you cannot only
change the signature used on all your pages by editing one file. You can also change
the location of the signature used by all your Web pages by editing one file. On the
other hand, the more direct approach of Listing 9-22 more easily allows for
different signatures on different pages.

Listing 9-23: A file that uses &SIGNATURE; with one less
level of indirection

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE DOCUMENT [
<!ENTITY SIGNATURE SYSTEM “/boilerplate/signature.xml”>

]>
<DOCUMENT>
<TITLE>A Very Boring Document</TITLE>
&SIGNATURE;

</DOCUMENT>

Summary
In this chapter, you discovered that XML documents are built from both internal
and external entities. . In particular, you learned the following:

✦ Entities are the physical storage units from which the document is assembled.

✦ An entity holds content: well-formed XML, other forms of text, or binary data.

✦ Internal entities are defined completely within the document and external
entities draw their content from another resource located via a URL.

✦ General entity references have the form &name; and are used in a document’s
content.

✦ Internal general entity references are replaced by an entity value given in the
entity declaration.

✦ External general entity references are replaced by the data at a URL specified
in the entity declaration after the SYSTEM keyword.

✦ Internal parameter entity references have the form %name; and are used
exclusively in DTDs.

✦ You can merge different DTDs with external parameter entity references.

✦ External entity references enable you to build large, compound documents
out of small parts.

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 281

282 Part II ✦ Document Type Definition

✦ There is a third level of conformance to the XML standard: well-formed, but
not valid. This is either because the DTD is incomplete or because the docu-
ment doesn’t meet the DTD’s constraints.

When a document uses attributes, the attributes must also be declared in the DTD.
The next chapter discusses how to declare attributes in DTDs, and how you can
thereby attach constraints to the attribute values.

✦ ✦ ✦

3236-7 ch09.F.qc 6/29/99 1:06 PM Page 282

Attribute
Declarations
in DTDs

Some XML elements have attributes. Attributes contain
information intended for the application. Attributes are

intended for extra information associated with an element
(like an ID number) used only by programs that read and write
the file, and not for the content of the element that’s read and
written by humans. In this chapter, you will learn about the
various attribute types and how to declare attributes in DTDs.

What Is an Attribute?
As first discussed in Chapter 3, start tags and empty tags may
contain attributes-name-value pairs separated by an equals
sign (=). For example,

<GREETING LANGUAGE=”English”>
Hello XML!
<MOVIE SOURCE=”WavingHand.mov”/>

</GREETING>

In the preceding example, the GREETING element has a
LANGUAGE attribute, which has the value English. The MOVIE
element has a SOURCE attribute, which has the value
WavingHand.mov. The GREETING element’s content is Hello
XML!. The language in which the content is written is useful
information about the content. The language, however, is not
itself part of the content.

Similarly, the MOVIE element’s content is the binary data stored
in the file WavingHand.mov. The name of the file is not the
content, although the name tells you where the content can be
found. Once again, the attribute contains information about
the content of the element, rather than the content itself.

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is an attribute?

How to declare
attributes in DTDs

How to declare
multiple attributes

How to specify
default values for
attributes

Attribute types

Predefined attributes

A DTD for attribute-
based baseball
statistics

✦ ✦ ✦ ✦

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 283

284 Part II ✦ Document Type Definitions

Elements can possess more than one attribute. For example:

<RECTANGLE WIDTH=”30” HEIGHT=”45”/>
<SCRIPT LANGUAGE=”javascript” ENCODING=”8859_1”>...</SCRIPT>

In this example, the LANGUAGE attribute of the SCRIPT element has the value
javascript. The ENCODING attribute of the SCRIPT element has the value 8859_1.
The WIDTH attribute of the RECTANGLE element has the value 30. The HEIGHT
attribute of the RECT element has the value 45. These values are all strings, not
numbers.

End tags cannot possess attributes. The following example is illegal:

<SCRIPT>...</SCRIPT LANGUAGE=”javascript” ENCODING=”8859_1”>

Declaring Attributes in DTDs
Like elements and entities, the attributes used in a document must be declared in
the DTD for the document to be valid. The <!ATTLIST> tag declares attributes.
<!ATTLIST> has the following form:

<!ATTLIST Element_name Attribute_name Type Default_value>

Element_name is the name of the element possessing this attribute.
Attribute_name is the name of the attribute. Type is the kind of attribute-one of
the ten valid types listed in Table 10-1. The most general type is CDATA. Finally,
Default_value is the value the attribute takes on if no value is specified for the
attribute.

For example, consider the following element:

<GREETING LANGUAGE=”Spanish”>
Hola!

</GREETING>

This element might be declared as follows in the DTD:

<!ELEMENT GREETING (#PCDATA)>
<!ATTLIST GREETING LANGUAGE CDATA “English”>

The <!ELEMENT> tag simply says that a greeting element contains parsed character
data. That’s nothing new. The <!ATTLIST> tag says that GREETING elements have
an attribute with the name LANGUAGE whose value has the type CDATA—which is
essentially the same as #PCDATA for element content. If you encounter a GREETING
tag without a LANGUAGE attribute, the value English is used by default.

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 284

285Chapter 10 ✦ Attribute Declarations in DTDs

Table 10-1
Attribute Types

Type Meaning

CDATA Character data — text that is not markup

Enumerated A list of possible values from which exactly one will be chosen

ID A unique name not shared by any other ID type attribute in the document

IDREF The value of an ID type attribute of an element in the document

IDREFS Multiple IDs of elements separated by whitespace

ENTITY The name of an entity declared in the DTD

ENTITIES The names of multiple entities declared in the DTD, separated by
whitespace

NMTOKEN An XML name

NOTATION The name of a notation declared in the DTD

NMTOKENS Multiple XML names separated by whitespace

The attribute list is declared separately from the tag itself. The name of the element
to which the attribute belongs is included in the <!ATTLIST> tag. This attribute
declaration applies only to that element, which is GREETING in the preceding
example. If other elements also have LANGUAGE attributes, they require separate
<!ATTLIST> declarations.

As with most declarations, the exact order in which attribute declarations appear is
not important. They can come before or after the element declaration with which
they’re associated. In fact, you can even declare an attribute more than once
(though I don’t recommend this practice), in which case the first such declaration
takes precedence.

You can even declare attributes for tags that don’t exist, although this is
uncommon. Perhaps you could declare these nonexistent attributes as part of the
initial editing of the DTD, with a plan to return later and declare the elements.

Declaring Multiple Attributes
Elements often have multiple attributes. HTML’s IMG element can have HEIGHT,
WIDTH, ALT, BORDER, ALIGN, and several other attributes. In fact, most HTML tags

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 285

286 Part II ✦ Document Type Definitions

can have multiple attributes. XML tags can also have multiple attributes. For
instance, a RECTANGLE element naturally needs both a LENGTH and a WIDTH.

<RECTANGLE LENGTH=”70px” WIDTH=”85px”/>

You can declare these attributes in several attribute declarations, with one
declaration for each attribute. For example:

<!ELEMENT RECTANGLE EMPTY>
<!ATTLIST RECTANGLE LENGTH CDATA “0px”>
<!ATTLIST RECTANGLE WIDTH CDATA “0px”>

The preceding example says that RECTANGLE elements possess LENGTH and WIDTH
attributes, each of which has the default value 0px.

You can combine the two <!ATTLIST> tags into a single declaration like this:

<!ATTLIST RECTANGLE LENGTH CDATA “0px”
WIDTH CDATA “0px”>

This single declaration declares both the LENGTH and WIDTH attributes, each with
type CDATA and each with a default value of 0px. You can also use this syntax when
the attributes have different types or defaults, as shown below:

<!ATTLIST RECTANGLE LENGTH CDATA “15px”
WIDTH CDATA “34pt”>

Personally, I’m not very fond of this style. It seems excessively confusing and relies
too much on proper placement of extra whitespace for legibility (though the
whitespace is unimportant to the actual meaning of the tag). You will certainly
encounter this style in DTDs written by other people, however, so you need to
understand it.

Specifying Default Values for Attributes
Instead of specifying an explicit default attribute value like 0px, an attribute
declaration can require the author to provide a value, allow the value to be omitted
completely, or even always use the default value. These requirements are specified
with the three keywords #REQUIRED, #IMPLIED, and #FIXED, respectively.

#REQUIRED
You may not always have a good option for a default value. For example, when
writing a DTD for use on your intranet, you may want to require that all documents

Note

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 286

287Chapter 10 ✦ Attribute Declarations in DTDs

have at least one empty <AUTHOR/> tag. This tag is not normally rendered, but it
can identify the person who created the document. This tag can have NAME, EMAIL,
and EXTENSION attributes so the author may be contacted. For example:

<AUTHOR NAME=”Elliotte Rusty Harold”
EMAIL=”elharo@metalab.unc.edu” EXTENSION=”3459”/>

Instead of providing default values for these attributes, suppose you want to force
anyone posting a document on the intranet to identify themselves. While XML can’t
prevent someone from attributing authorship to “Luke Skywalker,” it can at least
require that authorship is attributed to someone by using #REQUIRED as the default
value. For example:

<!ELEMENT AUTHOR EMPTY>
<!ATTLIST AUTHOR NAME CDATA #REQUIRED>
<!ATTLIST AUTHOR EMAIL CDATA #REQUIRED>
<!ATTLIST AUTHOR EXTENSION CDATA #REQUIRED>

If the parser encounters an <AUTHOR/> tag that does not include one or more of
these attributes, it returns an error.

You might also want to use #REQUIRED to force authors to give their IMG elements
WIDTH, HEIGHT, and ALT attributes. For example:

<!ELEMENT IMG EMPTY>
<!ATTLIST IMG ALT CDATA #REQUIRED>
<!ATTLIST IMG WIDTH CDATA #REQUIRED>
<!ATTLIST IMG HEIGHT CDATA #REQUIRED>

Any attempt to omit these attributes (as all too many Web pages do) produces an
invalid document. The XML processor notices the error and informs the author of
the missing attributes.

#IMPLIED
Sometimes you may not have a good option for a default value, but you do not want
to require the author of the document to include a value, either. For example,
suppose some of the people posting documents to your intranet are offsite
freelancers who have email addresses but lack phone extensions. Therefore, you
don’t want to require them to include an extension attribute in their <AUTHOR/>
tags. For example:

<AUTHOR NAME=”Elliotte Rusty Harold”
EMAIL=”elharo@metalab.unc.edu” />

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 287

288 Part II ✦ Document Type Definitions

You still don’t want to provide a default value for the extension, but you do want to
enable authors to include such an attribute. In this case, use #IMPLIED as the
default value like this:

<!ELEMENT AUTHOR EMPTY>
<!ATTLIST AUTHOR NAME CDATA #REQUIRED>
<!ATTLIST AUTHOR EMAIL CDATA #REQUIRED>
<!ATTLIST AUTHOR EXTENSION CDATA #IMPLIED>

If the XML parser encounters an <AUTHOR/> tag without an EXTENSION attribute, it
informs the XML application that no value is available. The application can act on
this notification as it chooses. For example, if the application is feeding elements
into a SQL database where the attributes are mapped to fields, the application
would probably insert a null into the corresponding database field.

#FIXED
Finally, you may want to provide a default value for the attribute without allowing
the author to change it. For example, you may wish to specify an identical COMPANY
attribute of the AUTHOR element for anyone posting documents to your intranet like
this:

<AUTHOR NAME=”Elliotte Rusty Harold” COMPANY=”TIC”
EMAIL=”elharo@metalab.unc.edu” EXTENSION=”3459”/>

You can require that everyone use this value of the company by specifying the
default value as #FIXED, followed by the actual default. For example:

<!ELEMENT AUTHOR EMPTY>
<!ATTLIST AUTHOR NAME CDATA #REQUIRED>
<!ATTLIST AUTHOR EMAIL CDATA #REQUIRED>
<!ATTLIST AUTHOR EXTENSION CDATA #IMPLIED>
<!ATTLIST AUTHOR COMPANY CDATA #FIXED “TIC”>

Document authors are not required to actually include the fixed attribute in their
tags. If they don’t include the fixed attribute, the default value will be used. If they
do include the fixed attribute, however, they must use an identical value.
Otherwise, the parser will return an error.

Attribute Types
All preceding examples have CDATA type attributes. This is the most general type,
but there are nine other types permitted for attributes. Altogether the ten types are:

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 288

289Chapter 10 ✦ Attribute Declarations in DTDs

✦ CDATA

✦ Enumerated

✦ NMTOKEN

✦ NMTOKENS

✦ ID

✦ IDREF

✦ IDREFS

✦ ENTITY

✦ ENTITIES

✦ NOTATION

Nine of the preceding attributes are constants used in the type field, while
Enumerated is a special type that indicates the attribute must take its value from a
list of possible values. Let’s investigate each type in depth.

The CDATA Attribute Type
CDATA, the most general attribute type, means the attribute value may be any string
of text not containing a less-than sign (<) or quotation marks (“). These characters
may be inserted using the usual entity references (<, and ") or by their
Unicode values using character references. Furthermore, all raw ampersands
(&)-that is ampersands that do not begin a character or entity reference-must also
be escaped as &.

In fact, even if the value itself contains double quotes, they do not have to be
escaped. Instead, you may use single quotes to delimit the attributes, as in the
following example:

<RECTANGLE LENGTH=’7”’ WIDTH=’8.5”’/>

If the attribute value contains single and double quotes, the one not used to delimit
the value must be replaced with the entity references ' (apostrophe) and
" (double quote). For example:

<RECTANGLE LENGTH=’8'7”’ WIDTH=”10’6"”/>

The Enumerated Attribute Type
The enumerated type is not an XML keyword, but a list of possible values for the
attribute, separated by vertical bars. Each value must be a valid XML name. The

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 289

290 Part II ✦ Document Type Definitions

document author can choose any one member of the list as the value of the
attribute. The default value must be one of the values in the list.

For example, suppose you want an element to be visible or invisible. You may want
the element to have a VISIBLE attribute, which can only have the values TRUE or
FALSE. If that element is the simple P element, then the <!ATTLIST> declaration
would look as follows:

<!ATTLIST P VISIBLE (TRUE | FALSE) “TRUE”>

The preceding declaration says that a P element may or may not have a VISIBLE
attribute. If it does have a VISIBLE attribute, the value of that attribute must be
either TRUE or FALSE. If it does not have such an attribute, the value TRUE is
assumed. For example,

<P VISIBLE=”FALSE”>You can’t see me! Nyah! Nyah!</P>
<P VISIBLE=”TRUE”>You can see me.</P>
<P>You can see me too.</P>

By itself, this declaration is not a magic incantation that enables you to hide text. It
still relies on the application to understand that it shouldn’t display invisible
elements. Whether the element is shown or hidden would probably be set through
a style sheet rule applied to elements with VISIBLE attributes. For example,

<xsl:template match=”P[@VISIBLE=’FALSE’]”>
</xsl:template>

<xsl:template match=”P[@VISIBLE=’TRUE’]”>
<xsl:apply-templates/>

</xsl:template>

The NMTOKEN Attribute Type
The NMTOKEN attribute type restricts the value of the attribute to a valid XML name.
As discussed in Chapter 6, XML names must begin with a letter or an underscore
(_). Subsequent characters in the name may include letters, digits, underscores,
hyphens, and periods. They may not include whitespace. (The underscore often
substitutes for whitespace.) Technically, names may contain colons, but you
shouldn’t use this character because it’s reserved for use with namespaces.

The NMTOKEN attribute type proves useful when you’re using a programming
language to manipulate the XML data. It’s not a coincidence that—except for
allowing colons—the preceding rules match the rules for identifiers in Java,
JavaScript, and many other programming languages. For example, you could use
NMTOKEN to associate a particular Java class with an element. Then, you could use
Java’s reflection API to pass the data to a particular method in a particular class.

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 290

291Chapter 10 ✦ Attribute Declarations in DTDs

The NMTOKEN attribute type also helps when you need to pick from any large group
of names that aren’t specifically part of XML but meet XML’s name requirements.
The most significant of these requirements is the prohibition of whitespace. For
example, NMTOKEN could be used for an attribute whose value had to map to an 8.3
DOS file name. On the other hand, it wouldn’t work well for UNIX, Macintosh, or
Windows NT file-name attributes because those names often contain whitespace.

For example, suppose you want to require a state attribute in an <ADDRESS/> tag to
be a two-letter abbreviation. You cannot force this characteristic with a DTD, but
you can prevent people from entering “New York” or “Puerto Rico” with the
following <!ATTLIST> declaration:

<!ATTLIST ADDRESS STATE NMTOKEN #REQUIRED>

However, “California,” “Nevada,” and other single word states are still legal values.
Of course, you could simply use an enumerated list with several dozen two-letter
codes, but that approach results in more work than most people want to expend.
For that matter, do you even know the two-letter codes for all 50 U.S. states, all the
territories and possessions, all foreign military postings, and all Canadian
provinces? On the other hand, if you define this list once in a parameter entity
reference in a DTD file, you can reuse the file many times over.

The NMTOKENS Attribute Type
The NMTOKENS attribute type is a rare plural form of NMTOKEN. It enables the value
of the attribute to consist of multiple XML names, separated from each other by
whitespace. Generally, you can use NMTOKENS for the same reasons as NMTOKEN, but
only when multiple names are required.

For example, if you want to require multiple two-letter state codes for a state’s
attribute, you can use the following example:

<!ATTLIST ADDRESS STATES NMTOKENS #REQUIRED>

Then, you could have an address tag as follows:

<ADDRESS STATES=”MI NY LA CA”>

Unfortunately, if you apply this technique, you’re no longer ruling out states like
New York because each individual part of the state name qualifies as an NMTOKEN,
as shown below:

<ADDRESS STATES=”MI New York LA CA”>

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 291

292 Part II ✦ Document Type Definitions

The ID Attribute Type
An ID type attribute uniquely identifies the element in the document. Authoring
tools and other applications commonly use ID to help enumerate the elements of a
document without concern for their exact meaning or relationship to one another.

An attribute value of type ID must be a valid XML name-that is,it begins with a
letter and is composed of alphanumeric characters and the underscore without
whitespace. A particular name may not be used as an ID attribute of more than one
tag. Using the same ID twice in one document causes the parser to return an error.
Furthermore, each element may not have more than one attribute of type ID.

Typically, ID attributes exist solely for the convenience of programs that
manipulate the data. In many cases, multiple elements can be effectively identical
except for the value of an ID attribute. If you choose IDs in some predictable
fashion, a program can enumerate all the different elements or all the different
elements of one type in the document.

The ID type is incompatible with #FIXED. An attribute cannot be both fixed and
have ID type because a #FIXED attribute can only have a single value, while each
ID type attribute must have a different value. Most ID attributes use #REQUIRED, as
Listing 10-1 demonstrates.

Listing 10-1: A required ID attribute type

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (P*)>
<!ELEMENT P (#PCDATA)>
<!ATTLIST P PNUMBER ID #REQUIRED>

]>

<DOCUMENT>
<P PNUMBER=”p1”>The quick brown fox</P>
<P PNUMBER=”p2”>The quick brown fox</P>

</DOCUMENT>

The IDREF Attribute Type
The value of an attribute with the IDREF type is the ID of another element in the
document. For example, Listing 10-2 shows the IDREF and ID attributes used to
connect children to their parents.

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 292

293Chapter 10 ✦ Attribute Declarations in DTDs

Listing 10-2: family.xml

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (PERSON*)>
<!ELEMENT PERSON (#PCDATA)>
<!ATTLIST PERSON PNUMBER ID #REQUIRED>
<!ATTLIST PERSON FATHER IDREF #IMPLIED>
<!ATTLIST PERSON MOTHER IDREF #IMPLIED>

]>

<DOCUMENT>
<PERSON PNUMBER=”a1”>Susan</PERSON>
<PERSON PNUMBER=”a2”>Jack</PERSON>
<PERSON PNUMBER=”a3” MOTHER=”a1” FATHER=”a2”>Chelsea</PERSON>
<PERSON PNUMBER=”a4” MOTHER=”a1” FATHER=”a2”>David</PERSON>

</DOCUMENT>

You generally use this uncommon but crucial type when you need to establish
connections between elements that aren’t reflected in the tree structure of the
document. In Listing 10-2, each child is given FATHER and MOTHER attributes
containing the ID attributes of its father and mother.

You cannot easily and directly use an IDREF to link parents to their children in
Listing 10-2 because each parent has an indefinite number of children. As a
workaround, you can group all the children of the same parents into a FAMILY
element and link to the FAMILY. Even this approach falters in the face of half-
siblings who share only one parent. In short, IDREF works for many-to-one
relationships, but not for one-to-many relationships.

The ENTITY Attribute Type
An ENTITY type attribute enables you to link external binary data-that is, an
external unparsed general entity-into the document. The value of the ENTITY
attribute is the name of an unparsed general entity declared in the DTD, which links
to the external data.

The classic example of an ENTITY attribute is an image. The image consists of
binary data available from another URL. Provided the XML browser can support it,
you may include an image in an XML document with the following declarations in
your DTD:

<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE SOURCE ENTITY #REQUIRED>
<!ENTITY LOGO SYSTEM “logo.gif”>

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 293

294 Part II ✦ Document Type Definitions

Then, at the desired image location in the document, insert the following IMAGE tag:

<IMAGE SOURCE=”LOGO”/>

This approach is not a magic formula that all XML browsers automatically
understand. It is simply one technique browsers and other applications may or may
not adopt to embed non-XML data in documents.

This technique will be explored further in Chapter 11, Embedding Non-XML Data.

The ENTITIES Attribute Type
ENTITIES is a relatively rare plural form of ENTITY. An ENTITIES type attribute has
a value part that consists of multiple unparsed entity names separated by
whitespace. Each entity name refers to an external non-XML data source. One use
for this approach might be a slide show that rotates different pictures, as in the
following example:

<!ELEMENT SLIDESHOW EMPTY>
<!ATTLIST SLIDESHOW SOURCES ENTITIES #REQUIRED>
<!ENTITY PIC1 SYSTEM “cat.gif”>
<!ENTITY PIC2 SYSTEM “dog.gif”>
<!ENTITY PIC3 SYSTEM “cow.gif”>

Then, at the point in the document where you want the slide show to appear, insert
the following tag:

<SLIDESHOW SOURCES=”PIC1 PIC2 PIC3”>

Once again, this is not a universal formula that all (or even any) XML browsers
automatically understand, simply one method browsers and other applications may
or may not adopt to embed non-XML data in documents.

The NOTATION Attribute Type
The NOTATION attribute type specifies that an attribute’s value is the name of a
notation declared in the DTD. The default value of this attribute must also be the
name of a notation declared in the DTD. Notations will be introduced in the next
chapter. In brief, notations identify the format of non-XML data, for instance by
specifying a helper application for an unparsed entity.

Chapter 11, Embedding Non-XML Data, covers notations.Cross-
Reference

Cross-
Reference

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 294

295Chapter 10 ✦ Attribute Declarations in DTDs

For example, this PLAYER attribute of a SOUND element has type NOTATION, and a
default value of MP-the notation signifying a particular kind of sound file:

<!ATTLIST SOUND PLAYER NOTATION (MP) #REQUIRED>
<!NOTATION MP SYSTEM “mplay32.exe”>

You can also offer a choice of different notations. One use for this is to specify
different helper apps for different platforms. The browser can pick the one it has
available. In this case, the NOTATION keyword is followed by a set of parentheses
containing the list of allowed notation names separated by vertical bars. For
example:

<!NOTATION MP SYSTEM “mplay32.exe”>
<!NOTATION ST SYSTEM “soundtool”>
<!NOTATION SM SYSTEM “Sound Machine”>
<!ATTLIST SOUND PLAYER NOTATION (MP | SM | ST) #REQUIRED>

This says that the PLAYER attribute of the SOUND element may be set to MP, ST, or
SM. We’ll explore this further in the next chapter.

At first glance, this approach may appear inconsistent with the handling of other
list attributes like ENTITIES and NMTOKENS, but these two approaches are actu-
ally quite different. ENTITIES and NMTOKENS have a list of attributes in the actual
element in the document but only one value in the attribute declaration in the
DTD. NOTATION only has a single value in the attribute of the actual element in
the document, however. The list of possible values occurs in the attribute declara-
tion in the DTD.

Predefined Attributes
In a way, two attributes are predefined in XML. You must declare these attributes in
your DTD for each element to which they apply, but you should only use these
declared attributes for their intended purposes. Such attributes are identified by a
name that begins with xml:.

These two attributes are xml:space and xml:lang. The xml:space attribute
describes how whitespace is treated in the element. The xml:lang attribute
describes the language (and optionally, dialect and country) in which the element
is written.

xml:space
In HTML, whitespace is relatively insignificant. Although the difference between one
space and no space is significant, the difference between one space and two spaces,

Note

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 295

296 Part II ✦ Document Type Definitions

one space and a carriage return, or one space, three carriage returns, and 12 tabs is
not important. For text in which whitespace is significant—computer source code,
certain mainframe database reports, or the poetry of e. e. cummings, for example—
you can use a PRE element to specify a monospaced font and preservation of
whitespace.

XML, however, preserves whitespace by default. The XML processor passes all
whitespace characters to the application unchanged. The application usually
ignores the extra whitespace. However, the XML processor can tell the application
that certain elements contain significant whitespace that should be preserved. The
page author uses the xml:space attribute to indicate these elements to the
application.

If an element contains significant whitespace, the DTD should have an <!ATTLIST>
for the xml:space attribute. This attribute will have an enumerated type with the
two values, default and preserve, as shown in Listing 10-3.

Listing 10-3: Java source code with significant whitespace
encoded in XML

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE PROGRAM [
<!ELEMENT PROGRAM (#PCDATA)>
<!ATTLIST PROGRAM xml:space (default|preserve) ‘preserve’>

]>
<PROGRAM xml:space=”preserve”>public class AsciiTable {

public static void main (String[] args) {

for (int i = 0; i < 128; i++) {
System.out.println(i + “ “ + (char) i);

}

}

}
</PROGRAM>

All whitespace is passed to the application, regardless of whether xml:space’s
value is default or preserve. With a value of default, however, the application
does what it would normally do with extra whitespace. With a value of preserve,
the application treats the extra whitespace as significant.

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 296

297Chapter 10 ✦ Attribute Declarations in DTDs

Significance depends somewhat on the eventual destination of the data. For
instance, extra whitespace in Java source code is relevant to a source code editor
but not to a compiler.

Children of an element for which xml:space is defined are assumed to behave
similarly as their parent (either preserving or not preserving space), unless they
possess an xml:space attribute with a conflicting value.

xml:lang
The xml:lang attribute identifies the language in which the element’s content is
written. The value of this attribute can have type CDATA, NMTOKEN, or an
enumerated list. Ideally, each of these attributes values should be one of the two-
letter language codes defined by the original ISO-639 standard. The complete list of
codes can be found on the Web at
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt.

For instance, consider the two examples of the following sentence from Petronius’s
Satiricon in both Latin and English. A sentence tag encloses both sentences, but the
first sentence tag has an xml:lang attribute for Latin while the second has an
xml:lang attribute for English.

Latin:

<SENTENCE xml:lang=”la”>
Veniebamus in forum deficiente now die, in quo notavimus
frequentiam rerum venalium, non quidem pretiosarum sed tamen
quarum fidem male ambulantem obscuritas temporis
facillime tegeret.

</SENTENCE>

English:

<SENTENCE xml:lang=”en”>
We have come to the marketplace now when the day is failing,
where we have seen many things for sale, not for the
valuable goods but rather that the darkness of
the time may most easily conceal their shoddiness.

</SENTENCE>

While an English-speaking reader can easily tell which is the original text and which
is the translation, a computer can use the hint provided by the xml:lang attribute.
This distinction enables a spell checker to determine whether to check a particular
element and designate which dictionary to use. Search engines can inspect these
language attributes to determine whether to index a page and return matches
based on the user’s preferences.

Note

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 297

298 Part II ✦ Document Type Definitions

Too Many Languages, Not Enough Codes

XML remains a little behind the times in this area. The original ISO-639 standard language
codes were formed from two case-insensitive ASCII alphabetic characters. This standard
allows no more than 26 (26 or 676 different codes. More than 676 different languages are
spoken on Earth today (not even counting dead languages like Etruscan). In practice, the
reasonable codes are somewhat fewer than 676 because the language abbreviations
should have some relation to the name of the language.

ISO-639, part two, uses three-letter language codes, which should handle all languages
spoken on Earth. The XML standard specifically requires two-letter codes, however.

The language applies to the element and all its children until one of its children
declares a different language. The declaration of the SENTENCE element can appear
as follows:

<!ELEMENT SENTENCE (#PCDATA)>
<!ATTLIST SENTENCE xml:lang NMTOKEN “en”>

If no appropriate ISO code is available, you can use one of the codes registered with
the IANA, though currently IANA only adds four additional codes (listed in Table
10-2). You can find the most current list at http://www.isi.edu/in-
notes/iana/assignments/languages/tags.

Table 10-2
The IANA Language Codes

Code Language

no-bok Norwegian “Book language”

no-nyn Norwegian “New Norwegian”

i-navajo Navajo

i-mingo Mingo

For example:

<P xml:lang=”no-nyn”>

If neither the ISO nor the IANA has a code for the language you need (Klingon
perhaps?), you may define new language codes. These “x-codes” must begin with
the string x- or X- to identify them as user-defined, private use codes. For example,

<P xml:lang=”x-klingon”>

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 298

299Chapter 10 ✦ Attribute Declarations in DTDs

The value of the xml:lang attribute may include additional subcode segments,
separated from the primary language code by a hyphen. Most often, the first
subcode segment is a two-letter country code specified by ISO 3166. You can
retrieve the most current list of country codes from http://www.isi.edu/in-
notes/iana/assignments/country-codes. For example:

<P xml:lang=”en-US”>Put the body in the trunk of the car.</P>
<P xml:lang=”en-GB”>Put the body in the boot of the car.</P>

If the first subcode segment does not represent a two-letter ISO country code, it
should be a character set subcode for the language registered with the IANA, such
as csDECMCS, roman8, mac, cp037, or ebcdic-cp-ca. The current list can be found at
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets. For
example:

<P xml:lang=”en-mac”>

The final possibility is that the first subcode is another x-code that begins with x-
or X-. For example,

<P xml:lang=”en-x-tic”>

By convention, language codes are written in lowercase and country codes are
written in uppercase. However, this is merely a convention. This is one of the few
parts of XML that is case-insensitive, because of its heritage in the case-insensitive
ISO standard.

Like all attributes used in DTDs for valid documents, the xml:lang attribute must
be specifically declared for those elements to which it directly applies. (It indirectly
applies to children of elements that have specified xml:lang attributes, but these
children do not require separate declaration.)

You may not want to permit arbitrary values for xml:lang. The permissible values
are also valid XML names, so the attribute is commonly given the NMTOKEN type.
This type restricts the value of the attribute to a valid XML name. For example,

<!ELEMENT P (#PCDATA)>
<!ATTLIST P xml:lang NMTOKEN #IMPLIED “en”>

Alternately, if only a few languages or dialects are permitted, you can use an
enumerated type. For example, the following DTD says that the P element may be
either English or Latin.

<!ELEMENT P (#PCDATA)>
<!ATTLIST P xml:lang (en | la) “en”>

You can use a CDATA type attribute, but there’s little reason to. Using NMTOKEN or an
enumerated type helps catch some potential errors.

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 299

300 Part II ✦ Document Type Definitions

A DTD for Attribute-Based Baseball Statistics
Chapter 5 developed a well-formed XML document for the 1998 Major League
Season that used attributes to store the YEAR of a SEASON, the NAME of leagues,
divisions, and teams, the CITY where a team plays, and the detailed statistics of
individual players. Listing 10-4, below, presents a shorter version of Listing 5-1. It is
a complete XML document with two leagues, six divisions, six teams, and two
players. It serves to refresh your memory of which elements belong where and with
which attributes.

Listing 10-4: A complete XML document

<?xml version=”1.0” standalone=”yes”?>
<SEASON YEAR=”1998”>
<LEAGUE NAME=”National League”>
<DIVISION NAME=”East”>
<TEAM CITY=”Atlanta” NAME=”Braves”>
<PLAYER GIVEN_NAME=”Marty” SURNAME=”Malloy”
POSITION=”Second Base” GAMES=”11” GAMES_STARTED=”8”
AT_BATS=”28” RUNS=”3” HITS=”5” DOUBLES=”1”
TRIPLES=”0” HOME_RUNS=”1” RBI=”1” STEALS=”0”
CAUGHT_STEALING=”0” SACRIFICE_HITS=”0”
SACRIFICE_FLIES=”0” ERRORS=”0” WALKS=”2”
STRUCK_OUT=”2” HIT_BY_PITCH=”0” />
<PLAYER GIVEN_NAME=”Tom” SURNAME=”Glavine”
POSITION=”Starting Pitcher” GAMES=”33”
GAMES_STARTED=”33” WINS=”20” LOSSES=”6” SAVES=”0”
COMPLETE_GAMES=”4” SHUTOUTS=”3” ERA=”2.47”
INNINGS=”229.1” HOME_RUNS_AGAINST=”13”
RUNS_AGAINST=”67” EARNED_RUNS=”63” HIT_BATTER=”2”
WILD_PITCHES=”3” BALK=”0” WALKED_BATTER=”74”
STRUCK_OUT_BATTER=”157” />

</TEAM>
</DIVISION>
<DIVISION NAME=”Central”>
<TEAM CITY=”Chicago” NAME=”Cubs”>
</TEAM>

</DIVISION>
<DIVISION NAME=”West”>
<TEAM CITY=”San Francisco” NAME=”Giants”>
</TEAM>

</DIVISION>
</LEAGUE>
<LEAGUE NAME=”American League”>
<DIVISION NAME=”East”>
<TEAM CITY=”New York” NAME=”Yankees”>
</TEAM>

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 300

301Chapter 10 ✦ Attribute Declarations in DTDs

</DIVISION>
<DIVISION NAME=”Central”>
<TEAM CITY=”Minnesota” NAME=”Twins”>
</TEAM>

</DIVISION>
<DIVISION NAME=”West”>
<TEAM CITY=”Oakland” NAME=”Athletics”>
</TEAM>

</DIVISION>
</LEAGUE>

</SEASON>

In order to make this document valid and well-formed, you need to provide a DTD.
This DTD must declare both the elements and the attributes used in Listing 10-4.
The element declarations resemble the previous ones, except that there are fewer
of them because most of the information has been moved into attributes:

<!ELEMENT SEASON (LEAGUE, LEAGUE)>
<!ELEMENT LEAGUE (DIVISION, DIVISION, DIVISION)>
<!ELEMENT DIVISION (TEAM+)>
<!ELEMENT TEAM (PLAYER*)>
<!ELEMENT PLAYER EMPTY>

Declaring SEASON Attributes in the DTD
The SEASON element has a single attribute, YEAR. Although some semantic
constraints determine what is and is not a year (1998 is a year; March 31 is not) the
DTD doesn’t enforce these. Thus, the best approach declares that the YEAR
attribute has the most general attribute type, CDATA. Furthermore, we want all
seasons to have a year, so we’ll make the YEAR attribute required.

<!ATTLIST SEASON YEAR CDATA #REQUIRED>

Although you really can’t restrict the form of the text authors enter in YEAR
attributes, you can at least provide a comment that shows what’s expected. For
example, it may be a good idea to specify that four digit years are required.

<!ATTLIST SEASON YEAR CDATA #REQUIRED> <!— e.g. 1998 —>
<!— DO NOT USE TWO DIGIT YEARS like 98, 99, 00!! —>

Declaring LEAGUE and DIVISION Attributes in the DTD
Next, consider LEAGUE and DIVISION. Each of these has a single NAME attribute.
Again, the natural type is CDATA and the attribute will be required. Since these are

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 301

302 Part II ✦ Document Type Definitions

two separate NAME attributes for two different elements, two separate <!ATTLIST>
declarations are required.

<!ATTLIST LEAGUE NAME CDATA #REQUIRED>
<!ATTLIST DIVISION NAME CDATA #REQUIRED>

A comment may help here to show document authors the expected form; for
instance, whether or not to include the words League and Division as part of the
name.

<!ATTLIST LEAGUE NAME CDATA #REQUIRED>
<!— e.g. “National League” —>

<!ATTLIST DIVISION NAME CDATA #REQUIRED>
<!— e.g. “East” —>

Declaring TEAM Attributes in the DTD
A TEAM has both a NAME and a CITY. Each of these is CDATA and each is required:

<!ATTLIST TEAM NAME CDATA #REQUIRED>
<!ATTLIST TEAM CITY CDATA #REQUIRED>

A comment may help to establish what isn’t obvious to all; for instance, that the
CITY attribute may actually be the name of a state in a few cases.

<!ATTLIST TEAM NAME CDATA #REQUIRED>
<!ATTLIST TEAM CITY CDATA #REQUIRED>
<!— e.g. “San Diego” as in “San Diego Padres”

or “Texas” as in “Texas Rangers” —>

Alternately, you can declare both attributes in a single <!ATTLIST> declaration:

<!ATTLIST TEAM NAME CDATA #REQUIRED
CITY CDATA #REQUIRED>

Declaring PLAYER Attributes in the DTD
The PLAYER element boasts the most attributes. GIVEN_NAME and SURNAME, the
first two, are simply CDATA and required:

<!ATTLIST PLAYER GIVEN_NAME CDATA #REQUIRED>
<!ATTLIST PLAYER SURNAME CDATA #REQUIRED>

The next PLAYER attribute is POSITION. Since baseball positions are fairly standard,
you might use the enumerated attribute type here. However “First Base,” “Second

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 302

303Chapter 10 ✦ Attribute Declarations in DTDs

Base,” “Third Base,” “Starting Pitcher,” and “Relief Pitcher” all contain whitespace
and are therefore not valid XML names. Consequently, the only attribute type that
works is CDATA. There is no reasonable default value for the position so we make
this attribute required as well.

<!ATTLIST PLAYER POSITION CDATA #REQUIRED>

Next come the various statistics: GAMES, GAMES_STARTED, AT_BATS, RUNS, HITS,
WINS, LOSSES, SAVES, SHUTOUTS, and so forth. Each should be a number; but as
XML has no data typing mechanism, we simply declare them as CDATA. Since not all
players have valid values for each of these, let’s declare each one implied rather
than required.

<!ATTLIST PLAYER GAMES CDATA #IMPLIED>
<!ATTLIST PLAYER GAMES_STARTED CDATA #IMPLIED>

<!— Batting Statistics —>
<!ATTLIST PLAYER AT_BATS CDATA #IMPLIED>
<!ATTLIST PLAYER RUNS CDATA #IMPLIED>
<!ATTLIST PLAYER HITS CDATA #IMPLIED>
<!ATTLIST PLAYER DOUBLES CDATA #IMPLIED>
<!ATTLIST PLAYER TRIPLES CDATA #IMPLIED>
<!ATTLIST PLAYER HOME_RUNS CDATA #IMPLIED>
<!ATTLIST PLAYER RBI CDATA #IMPLIED>
<!ATTLIST PLAYER STEALS CDATA #IMPLIED>
<!ATTLIST PLAYER CAUGHT_STEALING CDATA #IMPLIED>
<!ATTLIST PLAYER SACRIFICE_HITS CDATA #IMPLIED>
<!ATTLIST PLAYER SACRIFICE_FLIES CDATA #IMPLIED>
<!ATTLIST PLAYER ERRORS CDATA #IMPLIED>
<!ATTLIST PLAYER WALKS CDATA #IMPLIED>
<!ATTLIST PLAYER STRUCK_OUT CDATA #IMPLIED>
<!ATTLIST PLAYER HIT_BY_PITCH CDATA #IMPLIED>

<!— Pitching Statistics —>
<!ATTLIST PLAYER WINS CDATA #IMPLIED>
<!ATTLIST PLAYER LOSSES CDATA #IMPLIED>
<!ATTLIST PLAYER SAVES CDATA #IMPLIED>
<!ATTLIST PLAYER COMPLETE_GAMES CDATA #IMPLIED>
<!ATTLIST PLAYER SHUTOUTS CDATA #IMPLIED>
<!ATTLIST PLAYER ERA CDATA #IMPLIED>
<!ATTLIST PLAYER INNINGS CDATA #IMPLIED>
<!ATTLIST PLAYER HOME_RUNS_AGAINST CDATA #IMPLIED>
<!ATTLIST PLAYER RUNS_AGAINST CDATA #IMPLIED>
<!ATTLIST PLAYER EARNED_RUNS CDATA #IMPLIED>
<!ATTLIST PLAYER HIT_BATTER CDATA #IMPLIED>
<!ATTLIST PLAYER WILD_PITCHES CDATA #IMPLIED>
<!ATTLIST PLAYER BALK CDATA #IMPLIED>
<!ATTLIST PLAYER WALKED_BATTER CDATA #IMPLIED>
<!ATTLIST PLAYER STRUCK_OUT_BATTER CDATA #IMPLIED>

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 303

304 Part II ✦ Document Type Definitions

If you prefer, you can combine all the possible attributes of PLAYER into one
monstrous <!ATTLIST> declaration:

<!ATTLIST PLAYER
GIVEN_NAME CDATA #REQUIRED
SURNAME CDATA #REQUIRED
POSITION CDATA #REQUIRED
GAMES CDATA #IMPLIED
GAMES_STARTED CDATA #IMPLIED
AT_BATS CDATA #IMPLIED
RUNS CDATA #IMPLIED
HITS CDATA #IMPLIED
DOUBLES CDATA #IMPLIED
TRIPLES CDATA #IMPLIED
HOME_RUNS CDATA #IMPLIED
RBI CDATA #IMPLIED
STEALS CDATA #IMPLIED
CAUGHT_STEALING CDATA #IMPLIED
SACRIFICE_HITS CDATA #IMPLIED
SACRIFICE_FLIES CDATA #IMPLIED
ERRORS CDATA #IMPLIED
WALKS CDATA #IMPLIED
STRUCK_OUT CDATA #IMPLIED
HIT_BY_PITCH CDATA #IMPLIED

WINS CDATA #IMPLIED
LOSSES CDATA #IMPLIED
SAVES CDATA #IMPLIED
COMPLETE_GAMES CDATA #IMPLIED
SHUTOUTS CDATA #IMPLIED
ERA CDATA #IMPLIED
INNINGS CDATA #IMPLIED
HOME_RUNS_AGAINST CDATA #IMPLIED
RUNS_AGAINST CDATA #IMPLIED
EARNED_RUNS CDATA #IMPLIED
HIT_BATTER CDATA #IMPLIED
WILD_PITCHES CDATA #IMPLIED
BALK CDATA #IMPLIED
WALKED_BATTER CDATA #IMPLIED
STRUCK_OUT_BATTER CDATA #IMPLIED>

One disadvantage of this approach is that it makes it impossible to include even
simple comments next to the individual attributes.

The Complete DTD for the Baseball Statistics Example
Listing 10-5 shows the complete attribute-based baseball DTD.

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 304

305Chapter 10 ✦ Attribute Declarations in DTDs

Listing 10-5: The complete DTD for baseball statistics that
uses attributes for most of the information

<!ELEMENT SEASON (LEAGUE, LEAGUE)>
<!ELEMENT LEAGUE (DIVISION, DIVISION, DIVISION)>
<!ELEMENT DIVISION (TEAM+)>
<!ELEMENT TEAM (PLAYER*)>
<!ELEMENT PLAYER EMPTY>

<!ATTLIST SEASON YEAR CDATA #REQUIRED>
<!ATTLIST LEAGUE NAME CDATA #REQUIRED>
<!ATTLIST DIVISION NAME CDATA #REQUIRED>
<!ATTLIST TEAM NAME CDATA #REQUIRED

CITY CDATA #REQUIRED>

<!ATTLIST PLAYER GIVEN_NAME CDATA #REQUIRED>
<!ATTLIST PLAYER SURNAME CDATA #REQUIRED>
<!ATTLIST PLAYER POSITION CDATA #REQUIRED>
<!ATTLIST PLAYER GAMES CDATA #REQUIRED>
<!ATTLIST PLAYER GAMES_STARTED CDATA #REQUIRED>

<!— Batting Statistics —>
<!ATTLIST PLAYER AT_BATS CDATA #IMPLIED>
<!ATTLIST PLAYER RUNS CDATA #IMPLIED>
<!ATTLIST PLAYER HITS CDATA #IMPLIED>
<!ATTLIST PLAYER DOUBLES CDATA #IMPLIED>
<!ATTLIST PLAYER TRIPLES CDATA #IMPLIED>
<!ATTLIST PLAYER HOME_RUNS CDATA #IMPLIED>
<!ATTLIST PLAYER RBI CDATA #IMPLIED>
<!ATTLIST PLAYER STEALS CDATA #IMPLIED>
<!ATTLIST PLAYER CAUGHT_STEALING CDATA #IMPLIED>
<!ATTLIST PLAYER SACRIFICE_HITS CDATA #IMPLIED>
<!ATTLIST PLAYER SACRIFICE_FLIES CDATA #IMPLIED>
<!ATTLIST PLAYER ERRORS CDATA #IMPLIED>
<!ATTLIST PLAYER WALKS CDATA #IMPLIED>
<!ATTLIST PLAYER STRUCK_OUT CDATA #IMPLIED>
<!ATTLIST PLAYER HIT_BY_PITCH CDATA #IMPLIED>

<!— Pitching Statistics —>
<!ATTLIST PLAYER WINS CDATA #IMPLIED>
<!ATTLIST PLAYER LOSSES CDATA #IMPLIED>
<!ATTLIST PLAYER SAVES CDATA #IMPLIED>
<!ATTLIST PLAYER COMPLETE_GAMES CDATA #IMPLIED>
<!ATTLIST PLAYER SHUTOUTS CDATA #IMPLIED>
<!ATTLIST PLAYER ERA CDATA #IMPLIED>
<!ATTLIST PLAYER INNINGS CDATA #IMPLIED>
<!ATTLIST PLAYER HOME_RUNS_AGAINST CDATA #IMPLIED>

Continued

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 305

306 Part II ✦ Document Type Definitions

Listing 10-5 (continued)

<!ATTLIST PLAYER RUNS_AGAINST CDATA #IMPLIED>
<!ATTLIST PLAYER EARNED_RUNS CDATA #IMPLIED>
<!ATTLIST PLAYER HIT_BATTER CDATA #IMPLIED>
<!ATTLIST PLAYER WILD_PITCHES CDATA #IMPLIED>
<!ATTLIST PLAYER BALK CDATA #IMPLIED>
<!ATTLIST PLAYER WALKED_BATTER CDATA #IMPLIED>
<!ATTLIST PLAYER STRUCK_OUT_BATTER CDATA #IMPLIED>

To attach the above to Listing 10-4, use the following prolog, assuming of course
that Example 10-5 is stored in a file called baseballattributes.dtd:

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE SEASON SYSTEM “baseballattributes.dtd” >

Summary
In this chapter, you learned how to declare attributes for elements in DTDs. In
particular, you learned the following concepts:

✦ Attributes are declared in an <!ATTLIST> tag in the DTD.

✦ One <!ATTLIST> tag can declare an indefinite number of attributes for a
single element.

✦ Attributes normally have default values, but this condition can change by
using the keywords #REQUIRED, #IMPLIED, or #FIXED.

✦ Ten attribute types can be declared in DTDs: CDATA, Enumerated, NMTOKEN,
NMTOKENS, ID, IDREF, IDREFS, ENTITY, ENTITIES, and NOTATION.

✦ The predefined xml:space attribute determines whether whitespace in an
element is significant.

✦ The predefined xml:lang attribute specifies the language in which an
element’s content appears.

In the next chapter, you learn how notations, processing instructions, and unparsed
external entities can be used to embed non-XML data in XML documents.

✦ ✦ ✦

3236-7 ch10.F.qc 6/29/99 1:07 PM Page 306

Embedding
Non-XML Data

Not all data in the world is XML. In fact, I’d venture to say
that most of the world’s accumulated data isn’t XML.

A heck of a lot is stored in plain text, HTML, and Microsoft
Word-to name just three common non-XML formats. And
while most of this data could at least in theory be rewritten
as XML—interest and resources permitting—not all of the
world’s data should be XML. Encoding images in XML, for
example, would be extremely inefficient.

XML provides three constructs generally used for working
with non-XML data: notations, unparsed external entities,
and processing instructions. Notations describe the format of
non-XML data. Unparsed external entities provide links to the
actual location of the non-XML data. Processing instructions
give information about how to view the data.

The material discussed in this chapter is very controversial.
Although everything I describe is part of the XML 1.0 speci-
fication, not everyone agrees that it should be. You can cer-
tainly write XML documents without using any notations or
unparsed external entities, and with only a few simple pro-
cessing instructions. You may want to skip over this chapter
at first, and return later if you discover a need for it.

Notations
The first problem you encounter when working with non-XML
data in an XML document is identifying the format of the data
and telling the XML application how to read and display the
non-XML data. For example, it would be inappropriate to try
to draw an MP3 sound file on the screen.

To a limited extent, you can solve this problem within a single
application by using only a fixed set of tags for particular

Caution

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Notations

Unparsed external
entities

Processing
instructions

Conditional sections
in DTDs

✦ ✦ ✦ ✦

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 307

308 Part II ✦ Document Type Definition

kinds of external entities. For instance, if all pictures are embedded through IMAGE
elements and all sounds via AUDIO elements, then it’s not hard to develop a browser
that knows how to handle those two elements. In essence, this is the approach that
HTML takes. However, this approach does prevent document authors from creating
new tags that more specifically describe their content; for example, a PERSON element
that happens to have a PHOTO attribute that points to a JPEG image of that person.

Furthermore, no application understands all possible file formats. Most Web
browsers can recognize and read GIF, JPEG, PNG-and perhaps a few other kinds of
image files-but they fail completely when faced with EPS files, TIFF files, FITS files,
or any of the hundreds of other common and uncommon image formats. The dialog
in Figure 11-1 is probably all too familiar.

Figure 11-1: What occurs when
Netscape Navigator doesn’t
recognize a file type

Ideally, you want documents to tell the application the format of the external entity
so you don’t have to rely on the application recognizing the file type by a magic
number or a potentially unreliable file name extension. Furthermore, you’d like to
give the application some hints about what program it can use to display the image
if it’s unable to do so itself.

Notations provide a partial (although not always well supported) solution to this
problem. Notations describe the format of non-XML data. A NOTATION declaration
in the DTD specifies a particular data type. The DTD declares notations at the same
level as elements, attributes, and entities. Each notation declaration contains a
name and an external identifier according to the following syntax:

<!NOTATION name SYSTEM “externalID”>

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 308

309Chapter 11 ✦ Embedding Non-XML Data

The name is an identifier for this particular format used in the document. The
externalID contains a human intelligible string that somehow identifies the
notation. For instance, you might use MIME types like those used in this notation
for GIF images:

<!NOTATION GIF SYSTEM “image/gif”>

You can also use a PUBLIC identifier instead of the SYSTEM identifier. To do this,
you must provide both a public ID and a URL. For example,

<!NOTATION GIF PUBLIC
“-//IETF//NONSGML Media Type image/gif//EN”
“http://www.isi.edu/in-notes/iana/assignments/media-

types/image/gif”>

There is a lot of debate about what exactly makes a good external identifier. MIME
types like image/gif or text/html are one possibility. Another suggestion is URLs or
other locators for standards documents like http://www.w3.org/TR/REC-
html40/. A third option is the name of an official international standard like ISO
8601 for representing dates and times. In some cases, an ISBN or Library of
Congress catalog number for the paper document where the standard is defined
might be more appropriate. And there are many more choices.

Which you choose may depend on the expected life span of your document. For
instance, if you use an unusual format, you don’t want to rely on a URL that
changes from month to month. If you expect your document to still spark interest
in 100 years, then you may want to consider which identifiers are likely to still
have meaning in 100 years and which are merely this decade’s technical
ephemera.

You can also use notations to describe data that does fit in an XML document. For
instance, consider this DATE element:

<DATE>05-07-06</DATE>

What day, exactly, does 05-07-06 represent? Is it May 7, 1906 C.E.? Or is it July 5,
1906 C.E.? The answer depends on whether you read this in the United States or
Europe. Maybe it’s even May 7, 2006 C.E. or July 5, 2006 C.E. Or perhaps what’s
meant is May 7, 6 C.E., during the reign of the Roman emperor Augustus in the West
and the Han dynasty in China. It’s also possible that date isn’t in the “Common Era”
at all but is given in the traditional Jewish, Muslim, or Chinese calendars. Without
more information, you cannot determine the true meaning.

To avoid confusion like this, ISO standard 8601 defines a precise means of
representing dates. In this scheme, July 5, 2006 C.E. is written as 20060705 or, in
XML, as follows:

<DATE>20060705</DATE>

Caution

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 309

310 Part II ✦ Document Type Definition

This format doesn’t match anybody’s expectations; it’s equally confusing to
everybody and thus has the advantage of being more or less culturally neutral
(though still biased toward the traditional Western calendar).

Notations are declared in the DTD and used in notation attributes to describe
the format of non-XML data embedded in an XML document. To continue with the
date example, Listing 11-1 defines two possible notations for dates in ISO 8601 and
conventional U.S. formats. Then, a required FORMAT attribute of type NOTATION is
added to each DATE element to describe the structure of the particular element.

Listing 11-1: DATE elements in an ISO 8601
and conventional U.S. formats

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE SCHEDULE [

<!NOTATION ISODATE SYSTEM
“http://www.iso.ch/cate/d15903.html”>

<!NOTATION USDATE SYSTEM
“http://es.rice.edu/ES/humsoc/Galileo/Things/gregorian_calendar
.html”>

<!ELEMENT SCHEDULE (APPOINTMENT*)>
<!ELEMENT APPOINTMENT (NOTE, DATE, TIME?)>

<!ELEMENT NOTE (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT TIME (#PCDATA)>

<!ATTLIST DATE FORMAT NOTATION (ISODATE | USDATE) #IMPLIED>

]>
<SCHEDULE>
<APPOINTMENT>
<NOTE>Deliver presents</NOTE>
<DATE FORMAT=”USDATE”>12-25-1999</DATE>

</APPOINTMENT>
<APPOINTMENT>
<NOTE>Party like it’s 1999</NOTE>
<DATE FORMAT=”ISODATE”>19991231</DATE>

</APPOINTMENT>
</SCHEDULE>

Notations can’t force authors to use the format described by the notation. For that
you need to use some sort of schema language in addition to basic XML—but it is
sufficient for simple uses where you trust authors to correctly describe their data.

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 310

311Chapter 11 ✦ Embedding Non-XML Data

Unparsed External Entities
XML is not an ideal format for all data, particularly non-text data. For instance, you
could store each pixel of a bitmap image as an XML element, as shown below:

<PIXEL X=”232” Y=”128” COLOR=”FF5E32” />

This is hardly a good idea, though. Anything remotely like this would cause your
image files to balloon to obscene proportions. Since you can’t encode all data in
XML, XML documents must be able to refer to data not currently XML and probably
never will be.

A typical Web page may include GIF and JPEG images, Java applets, ActiveX
controls, various kinds of sounds, and so forth. In XML, any block of non-XML
data is called an unparsed entity because the XML processor won’t attempt to
understand it. At most, it informs the application of the entity’s existence and
provides the application with the entity’s name and possibly (though not
necessarily) its content.

HTML pages embed non-HTML entities through a variety of custom tags. Pictures
are included with the tag whose SRC attribute provides the URL of the image
file. Applets are embedded via the <APPLET> tag whose CLASS and CODEBASE
attributes refer to the file and directory where the applet resides. The <OBJECT>
tag uses its codebase attribute to refer to the URI from where the object’s data is
found. In each case, a particular predefined tag represents a particular kind of
content. A predefined attribute contains the URL for that content.

XML applications can work like this, but they don’t have to. In fact, most don’t
unless they’re deliberately trying to maintain some level of backwards compatibility
with HTML. Instead, XML applications use an unparsed external entity to refer to the
content. Unparsed external entities provide links to the actual location of the non-
XML data. Then they use an ENTITY type attribute to associate that entity with a
particular element in the document.

Declaring Unparsed Entities
Recall from Chapter 9 that an external entity declaration looks something like this:

<!ENTITY SIG SYSTEM “http://metalab.unc.edu/xml/signature.xml”>

However, this form is only acceptable if the external entity the URL names is
more or less a well-formed XML document. If the external entity is not XML, then
you have to specify the entity’s type using the NDATA keyword. For example, to
associate the GIF file logo.gif with the name LOGO, you would place this ENTITY
declaration in the DTD:

<!ENTITY LOGO SYSTEM “logo.gif” NDATA GIF>

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 311

312 Part II ✦ Document Type Definition

The final word in the declaration, GIF in this example, must be the name of a
notation declared in the DTD. Notations associate a name like GIF with some sort
of external identifier for the format such as a MIME type, an ISO standard, or the
URL of a specification of the format. For example, the notation for GIF might look
like this:

<!NOTATION GIF SYSTEM “image/gif”>

As usual, you can use absolute or relative URLs for the external entity as
convenience dictates. For example,

<!ENTITY LOGO SYSTEM “http://metalab.unc.edu/xml/logo.gif”
NDATA GIF>

<!ENTITY LOGO SYSTEM “/xml/logo.gif” NDATA GIF>
<!ENTITY LOGO SYSTEM “../logo.gif” NDATA GIF>

Embedding Unparsed Entities
You cannot simply embed an unparsed entity at an arbitrary location in the
document using a general entity reference as you can with parsed entities. For
instance, Listing 11-2 is an invalid XML document because LOGO is an unparsed
entity. If LOGO were a parsed entity, this example would be valid.

Listing 11-2: An invalid XML document that tries to embed an
unparsed entity with a general entity reference

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT ANY>
<!ENTITY LOGO SYSTEM “http://metalab.unc.edu/xml/logo.gif”

NDATA GIF>
<!NOTATION GIF SYSTEM “image/gif”>

]>
<DOCUMENT>
&LOGO;

</DOCUMENT>

To embed unparsed entities, rather than using general entity references like
&LOGO;, you declare an element that serves as a placeholder for the unparsed
entity (IMAGE, for example). Then you declare an ENTITY type attribute for the
IMAGE element-SOURCE, for example-which provides only the name of the unparsed
entity. Listing 11-3 demonstrates.

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 312

313Chapter 11 ✦ Embedding Non-XML Data

Listing 11-3: A valid XML document that correctly
embeds an unparsed entity

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT ANY>
<!ENTITY LOGO SYSTEM “http://metalab.unc.edu/xml/logo.gif”

NDATA GIF>
<!NOTATION GIF SYSTEM “image/gif”>
<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE SOURCE ENTITY #REQUIRED>

]>
<DOCUMENT>
<IMAGE SOURCE=”LOGO” />

</DOCUMENT>

It is now up to the application reading the XML document to recognize the
unparsed entity and display it. Applications may not display the unparsed entity
(just as a Web browser may choose not to load images when the user has disabled
image loading).

These examples show empty elements as the containers for unparsed entities.
That’s not always necessary, however. For instance, imagine an XML-based
corporate ID system that a security guard uses to look up people entering a
building. The PERSON element might have NAME, PHONE, OFFICE, and EMPLOYEE_ID
children and a PHOTO ENTITY attribute. Listing 11-4 demonstrates.

Listing 11-4: A non-empty PERSON element
with a PHOTO ENTITY attribute

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE PERSON [
<!ELEMENT PERSON (NAME, EMPLOYEE_ID, PHONE, OFFICE)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT EMPLOYEE_ID (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT OFFICE (#PCDATA)>
<!NOTATION JPEG SYSTEM “image/jpg”>
<!ENTITY ROGER SYSTEM “rogers.jpg” NDATA JPEG>

Continued

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 313

314 Part II ✦ Document Type Definition

Listing 11-4 (continued)

<!ATTLIST PERSON PHOTO ENTITY #REQUIRED>

]>
<PERSON PHOTO=”ROGER”>
<NAME>Jim Rogers</NAME>
<EMPLOYEE_ID>4534</EMPLOYEE_ID>
<PHONE>X396</PHONE>
<OFFICE>RH 415A</OFFICE>

</PERSON>

This example may seem a little artificial. In practice, you’d be better advised to make
an empty PHOTO element with a SOURCE attribute a child of a PERSON element rather
than an attribute of PERSON. Furthermore, you’d probably separate the DTD into
external and internal subsets. The external subset, shown in Listing 11-5, declares
the elements, notations, and attributes. These are the parts likely to be shared
among many different documents. The entity, however, changes from document
to document. Thus, you can better place it in the internal DTD subset of each
document as shown in Listing 11-6.

Listing 11-5: The external DTD subset person.dtd

<!ELEMENT PERSON (NAME, EMPLOYEE_ID, PHONE, OFFICE, PHOTO)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT EMPLOYEE_ID (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT OFFICE (#PCDATA)>
<!ELEMENT PHOTO EMPTY>
<!NOTATION JPEG SYSTEM “image/jpeg”>
<!ATTLIST PHOTO SOURCE ENTITY #REQUIRED>

Listing 11-6: A document with a non-empty PERSON
element and an internal DTD subset

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE PERSON [

<!ENTITY % PERSON_DTD SYSTEM “person.dtd”>
%PERSON_DTD;
<!ENTITY ROGER SYSTEM “rogers.jpg” NDATA JPEG>

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 314

315Chapter 11 ✦ Embedding Non-XML Data

]>
<PERSON>
<NAME>Jim Rogers</NAME>
<EMPLOYEE_ID>4534</EMPLOYEE_ID>
<PHONE>X396</PHONE>
<OFFICE>RH 415A</OFFICE>
<PHOTO SOURCE=”ROGER”/>

</PERSON>

Embedding Multiple Unparsed Entities
On rare occasions, you may need to refer to more than one unparsed entity in a
single attribute, perhaps even an indefinite number. You can do this by declaring
an attribute of the entity placeholder to have type ENTITIES. An ENTITIES type
attribute has a value part that consists of multiple unparsed entity names separated
by white space. Each entity name refers to an external non-XML data source and
must be declared in the DTD. For example, you might use this to write a slide show
element that rotates different pictures. The DTD would require these declarations:

<!ELEMENT SLIDESHOW EMPTY>
<!ATTLIST SLIDESHOW SOURCES ENTITIES #REQUIRED>
<!NOTATION JPEG SYSTEM “image/jpeg”>
<!ENTITY CHARM SYSTEM “charm.jpg” NDATA JPEG>
<!ENTITY MARJORIE SYSTEM “marjorie.jpg” NDATA JPEG>
<!ENTITY POSSUM SYSTEM “possum.jpg” NDATA JPEG>
<!ENTITY BLUE SYSTEM “blue.jpg” NDATA JPEG>

Then, at the point in the document where you want the slide show to appear, you
insert the following tag:

<SLIDESHOW SOURCES=”CHARM MARJORIE POSSUM BLUE”>

Once again, I must emphasize that this is not a magic formula that all (or even any)
XML browsers automatically understand. It is simply one technique browsers and
other applications may or may not adopt to embed non-XML data in documents.

Processing Instructions
Comments often get abused to support proprietary extensions to HTML like
server side includes, browser-specific scripting languages, database templates,
and several dozen other items outside the purview of the HTML standard. The
advantage of using comments for these purposes is that other systems simply
ignore the extraneous data they don’t understand. The disadvantage of this

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 315

316 Part II ✦ Document Type Definition

approach is that a document stripped of its comments may no longer be the
same document, and that comments intended as mere documentation may be
unintentionally processed as input to these proprietary extensions. To avoid
this abuse of comments, XML provides the processing instruction — an explicit
mechanism for embedding information in a file intended for proprietary
applications rather than the XML parser or browser. Among other uses,
processing instructions can provide additional information about how to
view unparsed external entities.

A processing instruction is a string of text between <? and ?> marks. The only
required syntax for the text inside the processing instruction is that it must begin
with an XML name followed by white space followed by data. The XML name may
either be the actual name of the application (e.g., latex) or the name of a notation
in the DTD that points to the application (e.g., LATEX) where LATEX is declared like
this in the DTD:

<!NOTATION LATEX SYSTEM “/usr/local/bin/latex”>

It may even be a name that is recognized by an application with a different name.
The details tend to be very specific to the application for which the processing
instruction is intended. Indeed, most applications that rely on processing
instructions will impose more structure on the contents of a processing
instruction. For example, consider this processing instruction used in IBM’s
Bean Markup Language:

<?bmlpi register demos.calculator.EventSourceText2Int?>

The name of the application this instruction is intended for is bmlpi. The
data given to that application is the string register demos.calculator.
EventSourceText2Int, which happens to include the full package qualified
name of a Java class. This tells the application named bmlpi to use the Java class
demos.calculator.EventSourceText2Int to convert action events to integers.
If bmlpi encounters this proc-essing instruction while reading the document, it
will load the class demos.calculator.EventSourceText2Int and use it to
convert events to integers from that point on.

If this sounds fairly specific and detailed, that’s because it is. Processing
instructions are not part of the general structure of the document. They are
intended to provide extra, detailed information for particular applications, not for
every application that reads the document. If some other application encounters
this instruction while reading a document, it will simply ignore the instruction.

Processing instructions may be placed almost anywhere in an XML document
except inside a tag or a CDATA section. They may appear in the prolog or the

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 316

317Chapter 11 ✦ Embedding Non-XML Data

DTD, in the content of an element, or even after the closing document tag. Since
processing instructions are not elements, they do not affect the tree structure of
a document. You do not need to open or close processing instructions, or worry
about how they nest inside other elements. Processing instructions are not tags
and they do not delimit elements.

You’re already familiar with one example of processing instructions, the xml-
stylesheet processing instruction used to bind style sheets to documents:

<?xml-stylesheet type=”text/xsl” href=”baseball.xsl”?>

Although these examples appear in a document’s prolog, in general processing
instructions may appear anywhere in a document. You do not need to declare these
instructions as child elements of the element they are contained in because they’re
not elements.

Processing instructions that begin with the string xml are reserved for uses defined
in the XML standard. Otherwise, you are free to use any name and any string of text
inside a processing instruction other than the closing string ?>. For instance, the
following examples are all valid processing instructions:

<?gcc HelloWorld.c ?>
<?acrobat document=”passport.pdf”?>
<?Dave remember to replace this one?>

Remember an XML processor won’t necessarily do anything with these instruc-
tions. It merely passes them along to the application. The application decides what
to do with the instructions. Most applications simply ignore processing instructions
they don’t understand.

Sometimes knowing the type of an unparsed external entity is insufficient. You may
also need to know what program to run to view the entity and what parameters you
need to provide that program. You can use a processing instruction to provide this
information. Since processing instructions can contain fairly arbitrary data, it’s
relatively easy for them to contain instructions determining what action the
external program listed in the notation should take.

Such a processing instruction can range from simply the name of a program that
can view the file to several kilobytes of configuration information. The application
and the document author must of course use the same means of determining which
processing instructions belong with which unparsed external entities. Listing 11-7
shows one scheme that uses a processing instruction and a PDF notation to try to
pass the PDF version of a physics paper to Acrobat Reader for display.

Note

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 317

318 Part II ✦ Document Type Definition

Listing 11-7: Embedding a PDF document in XML

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE PAPER [

<!NOTATION PDF PUBLIC
“-//IETF//NONSGML Media Type application/pdf//EN”
“http://www.isi.edu/in-notes/iana/assignments/media-

types/application/pdf”>

<!ELEMENT PAPER (TITLE, AUTHOR+, JOURNAL, DATE_RECEIVED,
VOLUME, ISSUE, PAGES)>

<!ATTLIST PAPER CONTENTS ENTITY #IMPLIED>
<!ENTITY PRLTAO000081000024005270000001 SYSTEM

“http://ojps.aip.org/journal_cgi/getpdf?KEY=PRLTAO&cvips=PR
LTAO000081000024005270000001”

NDATA PDF>

<!ELEMENT AUTHOR (#PCDATA)>
<!ELEMENT JOURNAL (#PCDATA)>
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT DATE_RECEIVED (#PCDATA)>
<!ELEMENT VOLUME (#PCDATA)>
<!ELEMENT ISSUE (#PCDATA)>
<!ELEMENT PAGES (#PCDATA)>

]>

<?PDF acroread?>
<PAPER CONTENTS=”PRLTAO000081000024005270000001”>
<TITLE>Do Naked Singularities Generically Occur in

Generalized Theories of Gravity?</TITLE>
<AUTHOR>Kengo Maeda</AUTHOR>
<AUTHOR>Takashi Torii</AUTHOR>
<AUTHOR>Makoto Narita</AUTHOR>
<JOURNAL>Physical Review Letters</JOURNAL>
<DATE_RECEIVED>19 August 1998</DATE_RECEIVED>
<VOLUME>81</VOLUME>
<ISSUE>24</ISSUE>
<PAGES>5270-5273</PAGES>

</PAPER>

As always, you have to remember that not everyprocessor will treat this example in
the way intended. In fact, most won’t. However, this is one possible scheme for how
an application might support PDF files and other non-XML media types.

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 318

319Chapter 11 ✦ Embedding Non-XML Data

Conditional Sections in DTDs
When developing DTDs or documents, you may need to comment out parts of the
DTD not yet reflected in the documents. In addition to using comments directly, you
can omit a particular group of declarations in the DTD by wrapping it in an IGNORE
directive. The syntax follows:

<![IGNORE
declarations that are ignored

]]>

As usual, white space doesn’t really affect the syntax, but you should keep the
opening <![IGNORE and the closing]]> on separate lines for easy viewing.

You can ignore any declaration or combination of declarations — elements, entities,
attributes, or even other IGNORE blocks — but you must ignore entire declarations.
The IGNORE construct must completely enclose the entire declarations it removes
from the DTD. You cannot ignore a piece of a declaration (such as the NDATA GIF
in an unparsed entity declaration).

You can also specify that a particular section of declarations is included — that is,
not ignored. The syntax for the INCLUDE directive is just like the IGNORE directive
but with a different keyword:

<![INCLUDE
declarations that are included

]]>

When an INCLUDE is inside an IGNORE, the INCLUDE and its declarations are
ignored. When an IGNORE is inside an INCLUDE, the declarations inside the IGNORE
are still ignored. In other words, an INCLUDE never overrides an IGNORE.

Given these conditions, you may wonder why INCLUDE even exists. No DTD would
change if all INCLUDE blocks were simply removed, leaving only their contents.
INCLUDE appears to be completely extraneous. However, there is one neat trick
with parameter entity references and both IGNORE and INCLUDE that you can’t do
with IGNORE alone. First, define a parameter entity reference as follows:

<!ENTITY % fulldtd “IGNORE”>

You can ignore elements by wrapping them in the following construct:

<![%fulldtd;
declarations

]]>

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 319

320 Part II ✦ Document Type Definition

The %fulldtd; parameter entity reference evaluates to IGNORE, so the
declarations are ignored. Now, suppose you make the one word edit to change
fulldtd from IGNORE to INCLUDE as follows:

<!ENTITY % fulldtd “INCLUDE”>

Immediately, all the IGNORE blocks convert to INCLUDE blocks. In effect, you have a
one-line switch to turn blocks on or off.

In this example, I’ve only used one switch, fulldtd. You can use this switch in
multiple IGNORE/INCLUDE blocks in the DTD. You can also have different groups of
IGNORE/INCLUDE blocks that you switch on or off based on different conditions.

You’ll find this capability particularly useful when designing DTDs for inclusion in
other DTDs. The ultimate DTD can change the behavior of the DTDs it embeds by
changing the value of the parameter entity switch.

Summary
In this chapter, you learned how to integrate your XML documents with non XML
data through notations, unparsed external entities, and processing instructions. In
particular, you learned the following concepts:

✦ Notations describe the type of non-XML data.

✦ Unparsed external entities are storage units containing non-XML text or
binary data.

✦ Unparsed external entities are included in documents using ENTITY or
ENTITIES attributes.

✦ Processing instructions contain instructions passed along unchanged from
the XML processor to the ultimate application.

✦ INCLUDE and IGNORE blocks specify that the enclosed declarations of the DTD
are or are not (respectively) to be considered when parsing the document.

You’ll see a lot more examples of documents with DTDs over the next several parts
of this book, but as far as basic syntax and usage goes, this chapter concludes the
exploration of DTDs. In Part III, we begin discussion of style languages for XML,
beginning in the next chapter with Cascading Style Sheets, Level 1.

✦ ✦ ✦

3236-7 ch11.F.qc 6/29/99 1:07 PM Page 320

Cascading Style
Sheets Level 1

CSS is a very simple and straightforward language for
applying styles such as bold and Helvetica to particular

XML elements. Most of the styles CSS supports are familiar
from any conventional word processor. For example, you
can choose the font, the font weight, the font size, the
background color, the spacing of various elements, the
borders around elements, and more. However, rather than
being stored as part of the document itself, all the style
information is placed in a separate document called a style
sheet. One XML document can be formatted in many
different ways just by changing the style sheet. Different
style sheets can be designed for different purposes — for
print, the Web, presentations, and for other uses — all with
the styles appropriate for the specific medium, and all
without changing any of the content in the document itself.

What Is CSS?
Cascading Style Sheets (referred to as CSS from now on) were
introduced in 1996 as a standard means of adding information
about style properties such as fonts and borders to HTML
documents. However, CSS actually works better with XML
than with HTML because HTML is burdened with backwards-
compatibility between the CSS tags and the HTML tags. For
instance, properly supporting the CSS nowrap property
requires eliminating the non-standard but frequently used
NOWRAP element in HTML. Because XML elements don’t have
any predefined formatting, they don’t restrict which CSS styles
can be applied to which elements.

A CSS style sheet is a list of rules. Each rule gives the names of
the elements it applies to and the styles it wants to apply to
those elements. For example, consider Listing 12-1, a CSS style

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is CSS?

How to attach style
sheets to documents

How to select
elements

Inheritance of
parent’s font size

The cascade process

Comments in CSS
style sheets

CSS units

Block, inline, and
list-item elements

Font properties

The color property

Background
properties

Text properties

Box properties

✦ ✦ ✦ ✦

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 323

324 Part III ✦ Style Languages

sheet for poems. This style sheet has five rules. Each rule has a selector — the
name of the element to which it applies — and a list of properties to apply to
instances of that element. The first rule says that the contents of the POEM element
should be displayed in a block by itself (display: block). The second rule says
that the contents of the TITLE element should be displayed in a block by itself
(display: block) in 16-point (font-size: 16pt) bold type (font-weight:
bold). The third rule says that the POET element should be displayed in a block by
itself (display: block) and should be set off from what follows it by 10 pixels
(margin-bottom: 10px). The fourth rule is the same as the third rule except that
it applies to STANZA elements. Finally, the fifth rule simply states that VERSE
elements are also displayed in their own block.

Listing 12-1: A CSS style sheet for poems

POEM { display: block }
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10px }
STANZA { display: block; margin-bottom: 10px }
VERSE { display: block }

In 1998, the W3C published a revised and expanded specification for CSS called CSS
Level 2 (CSS2). At the same time, they renamed the original CSS to CSS Level 1
(CSS1). CSS2 is mostly a superset of CSS1, with a few minor exceptions, which I’ll
note as we encounter them. In other words, CSS2 is CSS1 plus aural style sheets,
media types, attribute selectors, and other new features. Consequently, almost
everything said in this chapter applies to both CSS1 and CSS2. CSS2 will be covered
in the next chapter as an extension to CSS1.

Parts of CSS Level 1 are supported by Netscape Navigator 4.0 and Internet Explorer
4.0 and 5.0. Unfortunately, they often aren’t the same parts. Mozilla 5.0 is supposed
to provide no-uncompromising support for CSS Level 1 and most of CSS Level 2.
Internet Explorer 5.0 does a better job than Internet Explorer 4.0 but it’s still
missing some major pieces, especially in regards to the box model and pseudo-
elements. I’ll try to point out areas in which one or the other browser has a
particularly nasty problem.

Attaching Style Sheets to Documents
To really make sense out of the style sheet in Listing 12-1, you have to give it an
XML document to play with. Listing 12-2 is a poem from Walt Whitman’s classic
book of poetry, Leaves of Grass, marked up in XML. The second line is the <?xml-
stylesheet?> processing instruction that instructs the Web browser loading this
document to apply the style sheet found in the file poem.css to this document.
Figure 12-1 shows this document loaded into an early alpha of Mozilla.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 324

325Chapter 12 ✦ Cascading Style Sheets Level 1

Listing 12-2: Darest Thou Now O Soul marked up in XML

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”poem.css”?>
<POEM>

<TITLE>Darest Thou Now O Soul</TITLE>
<POET>Walt Whitman</POET>

<STANZA>
<VERSE>Darest thou now O soul,</VERSE>
<VERSE>Walk out with me toward the unknown region,</VERSE>
<VERSE>Where neither ground is for the feet nor

any path to follow?</VERSE>
</STANZA>
<STANZA>
<VERSE>No map there, nor guide,</VERSE>
<VERSE>Nor voice sounding, nor touch of

human hand,</VERSE>
<VERSE>Nor face with blooming flesh, nor lips,

are in that land.</VERSE>
</STANZA>
<STANZA>
<VERSE>I know it not O soul,</VERSE>
<VERSE>Nor dost thou, all is blank before us,</VERSE>
<VERSE>All waits undream’d of in that region,

that inaccessible land.</VERSE>
</STANZA>
<STANZA>
<VERSE>Till when the ties loosen,</VERSE>
<VERSE>All but the ties eternal, Time and Space,</VERSE>
<VERSE>Nor darkness, gravitation, sense,

nor any bounds bounding us.</VERSE>
</STANZA>
<STANZA>
<VERSE>Then we burst forth, we float,</VERSE>
<VERSE>In Time and Space O soul,

prepared for them,</VERSE>
<VERSE>Equal, equipt at last, (O joy! O fruit of all!)

them to fulfil O soul.</VERSE>
</STANZA>

</POEM>

The type attribute in the <?xml-stylesheet?> processing instruction is the
MIME type of the style sheet you’re using. Its value is text/css for CSS and
text/xsl for XSL.

CSS Level 2 is discussed in Chapter 13. XSL is covered in Chapters 14 and 15.Cross-
Reference

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 325

326 Part III ✦ Style Languages

Figure 12-1: Darest Thou Now O Soul as rendered by Mozilla

The value of the href attribute in the <?xml-stylesheet?> processing instruction
is a URL, often relative, where the style sheet is found. If the style sheet can’t be
found, the Web browser will probably use its default style sheet though some
browsers may report an error instead.

You can apply the same style sheet to many documents. Indeed, you generally will.
Thus, it’s common to put your style sheets in some central location on your Web
server where all of your documents can refer to them; a convenient location is the
styles directory at the root level of the Web server.

<?xml-stylesheet type=”text/css” href=”/styles/poem.css”?>

You might even use an absolute URL to a style sheet on another Web site, though of
course this does leave your site dependent on the status of the external Web site.

<?xml-stylesheet type=”text/css”
href=”http://metalab.unc.edu/xml/styles/poem.css”?>

You can even use multiple <?xml-stylesheet?> processing instructions to pull in
rules from different style sheets. For example:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”/styles/poem.css”?>
<?xml-stylesheet type=”text/css”

href=”http://metalab.unc.edu/xml/styles/poem.css”?>
<POEM>
...

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 326

327Chapter 12 ✦ Cascading Style Sheets Level 1

CSS with HTML versus CSS with XML

Although the focus of this book is on XML, CSS style sheets also work with HTML documents.
The main differences between CSS with HTML and CSS with XML are:

1. The elements you can attach a rule to are limited to standard HTML elements like P,
PRE, LI, DIV, and SPAN.

2. HTML browsers don’t recognize processing instructions, so style sheets are attached
to HTML documents using LINK tags in the HEAD element. Furthermore, per-
document style rules can be included in the HEAD in a STYLE element. For example:

<LINK REL=STYLESHEET TYPE=”text/css” HREF=”/styles/poem.css” >
<STYLE TYPE=”text/css”>
PRE { color: red }

</STYLE>

3. HTML browsers don’t render CSS properties as faithfully as XML browsers because
of the legacy formatting of elements. Tables are notoriously problematic in this
respect.

Style sheets are more or less orthogonal to DTDs. A document with a style sheet
may or may not have a DTD and a document with a DTD may or may not have a
style sheet. However, DTDs do often serve as convenient lists of the elements that
you need to provide style rules for.

In this and the next several chapters, most of the examples will use documents
that are well-formed, but not valid. The lack of DTDs will make the examples
shorter and the relevant parts more obvious. However in practice, most of the doc-
uments you attach style sheets to will probably be valid documents with DTDs.

Selection of Elements
The part of a CSS rule that specifies which elements it applies to is called a selector.
The most common kind of selector is simply the name of an element; for instance
TITLE in this rule:

TITLE { display: block; font-size: 16pt; font-weight: bold }

However, selectors can also specify multiple elements, elements with a particular
CLASS or ID attribute and elements that appear in particular contexts relative to
other elements.

One thing you cannot do in CSS Level 1 is select elements with particular attribute
names or values other than the predefined CLASS and ID attributes. To do this,
you have to use CSS Level 2 or XSL.

Note

Note

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 327

328 Part III ✦ Style Languages

Grouping Selectors
If you want to apply one set of properties to multiple elements, you can include all
the elements in the selector separated by commas. For instance, in Listing 12-1
POET and STANZA were both styled as block display with a 10-pixel margin. You can
combine these two rules like this:

POET, STANZA { display: block; margin-bottom: 10px }

Furthermore, more than one rule can apply style to a particular element. So you
can combine some standard properties into a rule with many selectors, then use
more specific rules to apply custom formatting to selected elements. For instance,
in Listing 12-1 all the elements were listed as block display. This can be combined
into one rule while additional formatting for the POET, STANZA, and TITLE elements
is contained in separate rules, like this:

POEM, VERSE, TITLE, POET, STANZA { display: block }
POET, STANZA { margin-bottom: 10px }
TITLE {font-size: 16pt; font-weight: bold }

Pseudo-Elements
CSS1 supports two pseudo-elements that can address parts of the document that
aren’t normally identified as separate elements, but nonetheless often need
separate styles. These are the first line and the first letter of an element.

The early betas of Internet Explorer 5.0 and earlier versions of Internet Explorer do
not support these pseudo-elements. The early beta of Mozilla 5.0 does support
them, but only for HTML.

Addressing the First Letter
The most common reason to format the first letter of an element separately from
the rest of the element is to insert a drop cap as shown in Figure 12-2. This is
accomplished by writing a rule that is addressed with the element name, followed
by :first-letter. For example:

CHAPTER:first-letter { font-size: 300%;
float: left; vertical-align: text-top }

As you may notice in Figure 12-2, the “drop” part of the drop cap (float: left;
vertical-align: text-top) does not yet seem to work in either the early
betas of Mozilla 5.0 or Internet Explorer 5.0, though the size of the initial letter can
be adjusted.

Caution

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 328

329Chapter 12 ✦ Cascading Style Sheets Level 1

Figure 12-2: A drop cap on the first-letter pseudo element with
small caps used on the first-line pseudo-element

Addressing the First Line
The first line of an element is also often formatted differently than the remainder of
the text of the element. For instance, it may be printed in small caps instead of
normal body text as shown in Figure 12-2. You can attach the :first-line selector
to the name of an element to create a rule that only applies to the first line of the
element. For example,

CHAPTER:first-line { font-variant: small-caps }

Exactly what this pseudo-element selects is relative to the current layout. If the
window is larger and there are more words in the first line, then more words will be
in small caps. If the window is made smaller or the font gets larger so the text
wraps differently and fewer words are on the first line, then the words that are
wrapped to the next line are no longer in small caps. The determination of which
characters comprise the first-line pseudo-element is deferred until the
document is actually displayed.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 329

330 Part III ✦ Style Languages

Pseudo-Classes
Sometimes you may want to style two elements of the same type differently. For
example, one paragraph may be bold while another has normal weight. To do this,
you can add a CLASS attribute to one of the elements, then write a rule for the
elements in a given CLASS.

For example, consider a bibliography that contains many CITATION elements. A
sample is shown in Listing 12-3. Now suppose you want to color all citations of the
work of Alan Turing blue, while leaving the other citations untouched. To do this
you have to add a CLASS attribute with a specific value —TURING works well — to
the elements to be colored.

Listing 12-3: A bibliography in XML with three CITATION
elements

<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”biblio.css”?>
<BIBLIOGRAPHY>
<CITATION CLASS=”HOFSTADTER” ID=”C1”>

<AUTHOR>Hofstadter, Douglas</AUTHOR>.
“<TITLE>How Might Analogy, the Core of Human Thinking,
Be Understood By Computers?</TITLE>”

<JOURNAL>Scientific American</JOURNAL>,
<MONTH>September</MONTH>
<YEAR>1981</YEAR>
<PAGES>18-30</PAGES>

</CITATION>
<CITATION CLASS=”TURING” ID=”C2”>
<AUTHOR>Turing, Alan M.</AUTHOR>
“<TITLE>On Computable Numbers,
With an Application to the Entscheidungs-problem</TITLE>”

<JOURNAL>
Proceedings of the London Mathematical Society</JOURNAL>,

<SERIES>Series 2</SERIES>,
<VOLUME>42</VOLUME>
(<YEAR>1936</YEAR>):
<PAGES>230-65</PAGES>.

</CITATION>
<CITATION CLASS=”TURING” ID=”C3”>
<AUTHOR>Turing, Alan M.</AUTHOR>
“<TITLE>Computing Machinery & Intelligence</TITLE>”
<JOURNAL>Mind</JOURNAL>
<VOLUME>59</VOLUME>
(<MONTH>October</MONTH>
<YEAR>1950</YEAR>):
<PAGES>433-60</PAGES>

</CITATION>
</BIBLIOGRAPHY>

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 330

331Chapter 12 ✦ Cascading Style Sheets Level 1

One of the more annoying aspects of CSS Level 1 is that it makes mixed content
more necessary. There’s a lot of punctuation in Listing 12-3 that is not really part of
the content; for example the parentheses placed around the YEAR element and
the quotation marks around the TITLE. These are presentation elements that
should be part of the content instead. CSS Level 2 allows extra text such as punc-
tuation to be inserted before and after elements.

The style sheet in Listing 12-4 uses a CLASS selector to color elements in the
TURING class blue.

CLASS attributes are supported by IE5 but not by Mozilla as of the milestone 3
release. Mozilla will probably support CLASS attributes by the time it’s officially
released.

Listing 12-4: A style sheet that colors elements in the
TURING class blue

BIBLIOGRAPHY { display: block }
CITATION.TURING { color: blue }
CITATION { display: block }
JOURNAL { font-style: italic }

In a valid document, the CLASS attribute must be declared as a possible attribute of
the styled elements. For example, here’s a DTD for the bibliography of Listing 12-3:

<!ELEMENT BIBLIOGRAPHY (CITATION*)>
<!ATTLIST CITATION CLASS CDATA #IMPLIED>
<!ATTLIST CITATION ID ID #REQUIRED>

<!ELEMENT CITATION ANY>
<!ELEMENT AUTHOR (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT JOURNAL (#PCDATA)>
<!ELEMENT MONTH (#PCDATA)>
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT SERIES (#PCDATA)>
<!ELEMENT VOLUME (#PCDATA)>
<!ELEMENT PAGES (#PCDATA)>

In general, I do not recommend this approach. You should, if possible, attempt to
add additional element markup to the document rather than relying on CLASS
attributes. However, CLASS attributes may be necessary when the information
you’re selecting does not conveniently map to particular elements.

Note

Caution

Note

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 331

332 Part III ✦ Style Languages

Selection by ID
Sometimes, a unique element needs a unique style. You need a rule that applies to
exactly that one element. For instance, suppose you want to make one element in a
list bold to really emphasize it in contrast to its siblings. In this case, you can write
a rule that applies to the ID attribute of the element. The selector is the name of the
element, followed by a # and the value of the ID attribute.

For example, Listing 12-5 is a style sheet that selects the CITATION element from
the bibliography in Listing 12-3 with the ID C3 and makes it, and only it, bold. Other
CITATION elements appear with the default weight. All CITATION elements are
displayed in block fashion and all JOURNAL elements are italicized.

Listing 12-5: A style sheet that makes the CITATION element
with ID C3 bold

BIBLIOGRAPHY { display: block }
CITATION#C3 { font-weight: bold }
CITATION { display: block }
JOURNAL { font-style: italic }

ID selectors are supported by IE5, and by Mozilla for HTML elements, but not XML
elements as of the milestone 3 release. Mozilla will probably fully support ID
selectors by the time it’s officially released.

Contextual Selectors
Often, the formatting of an element depends on its parent element. You can write
rules that only apply to elements found inside a named parent. To do this, prefix
the name of the parent element to the name of the styled element.

For example, a CODE element inside a PRE element may be rendered in 12-point
Courier. However, if the body text of the document is written in 10-point Times, a
CODE element that’s inline with other body text may need to be rendered in 10-point
Courier. The following rules accomplish exactly that:

BODY { font-family: Times, serif; font-size: 10pt }
CODE { font-family: Courier, monospaced; font-size: 10pt }
PRE { font-size: 12pt }
PRE CODE { font-size: 12pt }

This says that inside the BODY element, the font is 10-point Times. However, inside a
CODE element the font changes to Courier, still 10-point. However, if the CODE
element is inside a PRE element then the font grows to 12 points.

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 332

333Chapter 12 ✦ Cascading Style Sheets Level 1

You can expand this to look at the parent of the parent, the parent of the parent of the
parent, and so forth. For example, the following rule says that a NUMBER element inside
a YEAR element inside a DATE element should be rendered in a monospaced font:

DATE YEAR NUMBER { font-family: Courier, monospaced }

In practice, this level of specificity is rarely needed. In cases in which it does seem
to be needed, you can often rewrite your style sheet to rely more on inheritance,
cascades, and relative units, and less on the precise specification of formatting.

STYLE Attributes
When hand-authoring documents, it’s not uncommon to want to apply a particu-
lar style one time to a particular element without editing the style sheet for the
document. Indeed, you may want to override some standard default style sheet
for the document that you can’t change. You can do this by attaching a STYLE
attribute to the element. The value of this attribute is a semicolon-separated list
of style properties for the element. For example, this CITATION uses a STYLE
attribute to make itself bold:

<CITATION CLASS=”TURING” ID=”C3” STYLE=”font-weight: bold”>
<AUTHOR>Turing, Alan M.</AUTHOR>
“<TITLE>Computing Machinery & Intelligence</TITLE>”
<JOURNAL>Mind</JOURNAL>
<VOLUME>59</VOLUME>
(<MONTH>October</MONTH>
<YEAR>1950</YEAR>):
<PAGES>433-60</PAGES>

</CITATION>

If the properties defined in a STYLE attribute conflict with the properties defined in
the style sheet, then the properties defined in the attribute take precedence.

Avoid using STYLE attributes if at all possible. Your documents will be much
cleaner and more maintainable if you keep all style information in separate style
sheets. Nonetheless, there are times when STYLE attributes are too quick and
convenient to ignore.

Again, if you use this approach in a valid document, you will need to declare the
STYLE attribute in an ATTLIST declaration for the element you’re styling. For
example:

<!ELEMENT CITATION ANY>
<!ATTLIST CITATION CLASS CDATA #IMPLIED>
<!ATTLIST CITATION ID ID #REQUIRED>
<!ATTLIST CITATION STYLE CDATA #IMPLIED>

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 333

334 Part III ✦ Style Languages

STYLE attributes are supported by IE5, and by Mozilla for HTML elements, but not
XML elements as of the milestone 3 release. Mozilla will probably fully support
STYLE attributes by the time it’s officially released.

Inheritance
CSS does not require that rules be specifically defined for each possible property
of each element in a document. For instance, if there is not a rule that specifies the
font size of an element, then the element inherits the font size of its parent. If there
is not a rule that specifies the color of an element, then the element inherits the
color of its parent. The same is true of most CSS properties. In fact, the only
properties that aren’t inherited are the background and box properties.

For example, consider these rules:

P { font-weight: bold;
font-size: 24pt;
font-family: sans-serif}

BOOK { font-style: italic; font-family: serif}

Now consider this XML fragment:

<P>
Michael Willhoite’s <BOOK>Daddy’s Roommate</BOOK> is
the #10 most frequently banned book in the U.S. in the 1990s.

</P>

Although the BOOK element has not been specifically assigned a font-weight or a
font-size, it will be rendered in 24-point bold because it is a child of the P
element. It will also be italicized because that is specified in its own rule. BOOK
inherits the font-weight and font-size of its parent P. If later in the document a
BOOK element appears in the context of some other element, then it will inherit the
font-weight and font-size of that element.

The font-family is a little trickier because both P and BOOK declare conflicting
values for this property. Inside the BOOK element, the font-family declared by
BOOK takes precedence. Outside the BOOK element, P’s font-family is used.
Therefore, “Daddy’s Roommate” is drawn in a serif font, while “most frequently
banned book” is drawn in a sans serif font.

Often you want the child elements to inherit formatting from their parents.
Therefore, it’s important not to over-specify the formatting of any element. For
instance, suppose I had declared that BOOK was written in 12-point font like this:

BOOK { font-style: italic; font-family: serif; font-size: 12pt}

Then the example would be rendered as shown in Figure 12-3:

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 334

335Chapter 12 ✦ Cascading Style Sheets Level 1

Figure 12-3: The BOOK written in a 12-point font size

You could fix this with a special rule that uses a contextual selector to pick out
BOOK elements inside P elements, but it’s easier to simply inherit the parent’s
font-size.

One way to avoid problems like this, while retaining some control over the size of
individual elements is to use relative units like ems and ex’s instead of absolute
units like points, picas, inches, centimeters, and millimeters. An em is the width
of the letter m in the current font. An ex is the height of the letter x in the current
font. If the font gets bigger, so does everything measured in ems and ex’s.

A similar option that’s available for some properties is to use percentage units. For
example, the following rule sets the font size of the FOOTNOTE_NUMBER element to
80 percent of the font size of the parent element. If the parent element’s font size
increases or decreases, FOOTNOTE_NUMBER’s font size scales similarly.

FOOTNOTE_NUMBER { font-size: 80% }

Exactly what the percentage is a percentage of varies from property to property. In the
vertical-align property, the percentage is of the line height of the element itself.
However in a margin property, a percentage is a percentage of the element’s width.

Cascades
It is possible to attach more than one style sheet to a document. For instance, a
browser may have a default style sheet which is added to the one the designer
provides for the page. In such a case, it’s possible that there will be multiple rules
that apply to one element, and these rules may conflict. Thus, it’s important to
determine in which order the rules are applied. This process is called a cascade,
and is where cascading style sheets get their name.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 335

336 Part III ✦ Style Languages

There are several ways a CSS style sheet can be attached to an XML document:

1. The <?xml-stylesheet?> processing instruction can be included in the XML
document.

2. The style sheet itself may import other style sheets using @import.

3. The user may specify a style sheet for the document using mechanisms inside
their browser.

4. The browser provides default styles for most properties.

The @import Directive
Style sheets may contain @import directives that load style sheets stored in other
files. An absolute or relative URL is used to identify the style sheets. For example,

@import url(http://www.w3.org/basicstyles.css);
@import url(/styles/baseball.css);

These @import directives must appear at the beginning of the style sheet, before
any rules. Rules in the importing style sheet always override those in the imported
style sheets. The imported style sheets cascade in the order they’re imported.
Cycles (for example poem.css imports stanza.css which imports poem.css) are
prohibited.

The !important Declaration
In CSS1, author rules override reader rules unless the reader attaches an
!important declaration to the property. For example, the following rule says that
the TITLE element should be colored blue even if the author of the document
requested a different color. On the other hand, the font-family should be serif
only if the author rules don’t disagree.

TITLE { color: blue !important font-family: serif}

However, author rules may also be declared important. In such a case, the author
rule overrides the reader rule.

This is a very bad idea. Readers should always have the option to choose the way
they view something. It simply isn’t possible to write one style sheet that’s appropri-
ate for people using color and black-and-white monitors, the seeing and the sight-
impaired, people browsing on 21-inch monitors, television sets, and PDAs. Too
many Web designers vastly over-specify their styles, only to produce pages that are
completely unreadable on systems that aren’t exactly like their own. Fortunately,
CSS2 reverses this precedence so that reader rules have the ultimate say.

Note

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 336

337Chapter 12 ✦ Cascading Style Sheets Level 1

Cascade Order
Styles are chosen from the available style rules for an element. In general, more
specific rules win. For instance, consider this fragment:

<OUEVRE>
<PLAY ID=”x02” CLASS=”WILDE”>
The Importance of Being Earnest

</PLAY>
</OUEVRE>

The most specific rules are preferred. Thus, one that selected the PLAY element by
its ID would be preferred to one that selected the PLAY by its CLASS. A rule that
selected the PLAY by its CLASS would be preferred to one that selected PLAY
elements contained in OUEVRE elements. Finally, if none of those applied, a generic
PLAY rule would be selected. If no selector matches, the value inherited from the
parent element is used. If there is no value inherited from the parent element, the
default value is used.

If there is more than one rule at a given level of specificity, the cascading order is
resolved in the following order of preference:

1. Author declarations marked important.

2. Reader declarations marked important.

3. Author declarations not marked important.

4. Reader declarations not marked important.

5. The latest rule in the style sheet.

Try to avoid depending on cascading order. It’s rarely a mistake to specify as little
style as possible and let the reader/browser preferences take control.

Comments in CSS Style Sheets
CSS style sheets can include comments. CSS comments are like C’s /* */
comments, not like <!— —> XML and HTML comments. Listing 12-6 demonstrates.
This style sheet doesn’t merely apply style rules to elements. It also describes, in
English, the results those style rules are supposed to achieve.

Tip

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 337

338 Part III ✦ Style Languages

Listing 12-6: A style sheet for poems with comments

/* Work around a Mozilla bug */
POEM { display:block }

/* Make the title look like an H1 header */
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10 }

/* Put a blank line in-between stanzas,
only a line break between verses */

STANZA { display: block; margin-bottom: 10 }
VERSE { display: block }

CSS isn’t nearly as convoluted as XML DTDs, Java, C, or Perl, so comments aren’t
quite as necessary as they are in other languages. However, it’s rarely a bad idea to
include comments. They can only help someone who’s trying to make sense out of
a style sheet you wrote and who is unable to ask you directly.

CSS Units
CSS properties have names and values. Table 12-1 lists some of these property
names and some of their values.

The names are all CSS keywords. However, the values are much more diverse.
Some of them are keywords like the none in display: none or the solid in
border-style: solid. Other values are numbers with units like the 0.5in in
margin-top: 0.5in or the 12pt in font-size: 12pt. Still other values are URLs
like the http://www.idgbooks.com/images/paper.gif in background-image:
url(http://www.idgbooks.com/images/paper.gif) or RGB colors like the
#CC0033 in color: #CC0033. Different properties permit different values. However,
there are only four different kinds of values a property may take on. These are:

1. length

2. URL

3. color

4. keyword

Keywords vary from property to property, but the other kinds of values are the
same from property to property. That is, a length is a length is a length regardless
of which property it’s the value of. If you know how to specify the length of a

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 338

339Chapter 12 ✦ Cascading Style Sheets Level 1

border, you also know how to specify the length of a margin and a padding and an
image. This reuse of syntax makes working with different properties much easier.

Table 12-1
Sample Property Names and Values

Name Value

display none

font-style italic

margin-top 0.5in

font-size 12pt

border-style solid

color #CC0033

background-color white

background-image url(http://www.idgbooks.com/
images/paper.gif)

list-style-image url(/images/redbullet.png)

line-height 120%

Length values
In CSS, a length is a scalar measure used for width, height, font-size, word and letter
spacing, text indentation, line height, margins, padding, border widths, and many
other properties. Lengths may be specified in three ways:

1. Absolute units

2. Relative units

3. Percentages

Absolute Units of Length
Absolute units of length are something of a misnomer because there’s really no
such thing as an absolute unit of length on a computer screen. Changing a monitor
resolution from 640 to 480 to 1600 by 1200 changes the length of everything on your
screen, inches and centimeters included. Nonetheless, CSS supports five “absolute”
units of length that at least don’t change from one font to the next. These are listed
in Table 12-2.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 339

340 Part III ✦ Style Languages

Table 12-2
Absolute Units of Length

Inch (in) Centimeters Millimeters Points Picas
(cm) (mm) (pt) (pc)

Inch 1.0 2.54 25.4 72 6

Centimeters 0.3937 1 10 28.3464 4.7244

Millimeters 0.03937 0.1 1.0 2.83464 0.47244

Points 0.01389 0.0352806 0.352806 1.0 0.83333

Picas 0.16667 0.4233 4.233 12 1.0

Lengths are given as a number followed by the abbreviation for one of these units:

Inches in

Centimeters cm

Millimeters mm

Points pt

Picas pc

The number may have a decimal point (for example margin-top: 0.3in). Some
properties allow negative values like -0.5in, but not all do; and even those that
do often place limits on how negative a length can be. It’s best to avoid negative
lengths for maximum cross-browser compatibility.

Relative Units of Length
CSS also supports three relative units for lengths. These are:

1. em: the width of the letter m in the current font

2. ex: the height of the letter x in the current font

3. px: the size of a pixel (assumes square pixels; all common modern displays
use square pixels though some older PC monitors, mostly now consigned to
the rubbage bin, do not)

For example, this rule sets the left and right borders of the PULLQUOTE element to
twice the width of the letter m in the current font and the top and bottom borders
to one and a half times the height of the letter x in the current font:

PULLQUOTE { border-right-width: 2em; border-left-width: 2em;
border-top-width: 1.5ex; border-bottom-width: 1.5ex }

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 340

341Chapter 12 ✦ Cascading Style Sheets Level 1

The normal purpose of using ems and ex’s is to set a width that’s appropriate for
a given font, without necessarily knowing how big the font is. For instance in the
above rule, the font size is not known so the exact width of the borders is not known
either. It can be determined at display time by comparison with the m and the x in
the current font. Larger font sizes will have correspondingly larger ems and ex’s.

Lengths in pixels are relative to the height and width of a (presumably square) pixel
on the monitor. Widths and heights of images are often given in pixels.

Pixel measurements are generally not a good idea. First, the size of a pixel varies
widely with resolution. Most power users set their monitors at much too high a
resolution, which makes the pixels far too small for legibility.

Secondly, within the next ten years, 200 and even 300 dpi monitors will become
common, finally breaking away from the rough 72-pixels-per-inch (give or take 28
pixels) de facto standard that’s prevailed since the first Macintosh in 1984.
Documents that specify measurements in nonscreen-based units like ems, ex’s,
points, picas, and inches will be able to make the transition. However, documents
that use pixel level specification will become illegibly small when viewed on high-
resolution monitors.

Percentage Units of Length
Finally, lengths can be specified as a percentage of something. Generally, this is a
percentage of the current value of a property. For instance, if the font-size of a
STANZA element is 12 points, and the font-size of the VERSE the STANZA contains is
set to 150 percent, then the font-size of the VERSE will be 18 points.

URL Values
Three CSS properties can have URL values: background-image, list-style-
image, and the shorthand property list-style. Furthermore, as you’ve already
seen, the @import rule uses URL values. Literal URLs are placed inside url(). All
forms of relative and absolute URLs are allowed. For example:

DOC { background-image: url (http://www.mysite.com/bg.gif) }
LETTER { background-image: url(/images/paper.gif) }
SOFTWARE { background-image: url(../images/screenshot.gif)}
GAME { background-image: url(currentposition.gif)}

You can enclose the URL in single or double quotes, though nothing is gained by
doing so. For example:

DOC { background-image: url(“http://www.mysite.com/bg.gif”) }
LETTER { background-image: url(“/images/paper.gif”) }
SOFTWARE { background-image: url(‘../images/screenshot.gif’)}
GAME { background-image: url(‘currentposition.gif’)}

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 341

342 Part III ✦ Style Languages

Parentheses, commas, whitespace characters, single quotes (‘) and double quotes
(“) appearing in a URL must be escaped with a backslash: ‘\(‘, ‘\)’, ‘\,’. Any
parentheses, apostrophes, whitespace, or quotation marks that appear inside the
URL (uncommon except perhaps for the space character) should be replaced by
URL standard % escapes. That is:

space %20

, %2C

‘ %27

“ %22

(%2B

) %2C

CSS defines its own backslash escapes for these characters (\(, \), \,, \’, and
\”), but these only add an additional layer of confusion.

Color Values
One of the most widely adopted uses of CSS over traditional HTML is its ability to
apply foreground and background colors to almost any element on a page. Properties
that take on color values include color, background-color, and border-color.

CSS provides four ways to specify color: by name, by hexadecimal components, by
integer components, and by percentages. Defining color by name is the simplest.
CSS understands these 16 color names adopted from the Windows VGA palette:

✦ aqua

✦ black

✦ blue

✦ fuchsia

✦ gray

✦ green

✦ lime

✦ maroon

Note

✦ navy

✦ olive

✦ purple

✦ red

✦ silver

✦ teal

✦ white

✦ yellow

Of course, the typical color monitor can display several million more colors. These
can be specified by providing values for the red, green, and blue (RGB) components
of the color. Since CSS assumes a 24-bit color model, each of these primary colors is
assigned 8 bits. An 8-bit unsigned integer is a number between 0 and 255. This
number may be given in either decimal RGB or hexadecimal RGB. Alternately, it

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 342

343Chapter 12 ✦ Cascading Style Sheets Level 1

may be given as a percentage RGB between 0% (0) and 100% (255). Table 12-3 lists
some of the possible colors and their decimal, hexadecimal, and percentage RGBs.

Table 12-3
CSS Sample Colors

Color Decimal RGB Hexadecimal RGB Percentage RGB

Pure red rgb(255,0,0) #FF0000 rgb(100%, 0%, 0%)

Pure blue rgb(0,0,255) #0000FF rgb(0%, 0%, 0%)

Pure green rgb(0,255,0) #00FF00 rgb(0%, 100%, 0%)

White rgb(255,255,255) #FFFFFF rgb(100%, 100%, 100%)

Black rgb(0,0,0) #000000 rgb(0%, 0%, 0%)

Light violet rgb(255,204,255) #FFCCFF rgb(100%, 80%, 100%)

Medium gray rgb(153,153,153) #999999 rgb(60%, 60%, 60%)

Brown rgb(153,102,51) #996633 rgb(60%, 40%, 20%)

Pink rgb(255,204,204) #FFCCCC rgb(100%, 80%, 80%)

Orange rgb(255,204,204) #FFCC00 rgb(100%, 80%, 80%)

Many people still use 256 color monitors. Furthermore, some colors are distinctly
different on Macs and PCs. The most reliable colors are the 16 named colors.

The next most reliable colors are those formed using only the hexadecimal com-
ponents 00, 33, 66, 99, CC, and FF (0, 51, 102, 153, 204, 255 in decimal RGBs; 0%,
20%, 40%, 60%, 80%, 100% in percentage units). For instance, 33FFCC is a
“browser-safe” color because the red component is made from two threes, the
green from two F’s, and the blue from two C’s.

If you specify a hexadecimal RGB color using only three digits, CSS duplicates
them; for example, #FC0 is really #FFCC00 and #963 is really #996633.

Keyword Values
Keywords are the most variable of the four kinds of values a CSS property may
take on. They are not generally the same from property to property, but similar
properties generally support similar keywords. For instance, the value of border-
left-style can be any one of the keywords none, dotted, dashed, solid, double,
groove, ridge, inset, or outset. The border-right-style, border-top-style,
border-bottom-style, and border-style properties can also assume one of the
values none, dotted, dashed, solid, double, groove, ridge, inset, or outset.
The individual keywords will be discussed in the sections about the individual
properties.

Tip

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 343

344 Part III ✦ Style Languages

Block, Inline, and List Item Elements
From the perspective of CSS Level 1 all elements are either block-level elements,
inline elements, list items, or invisible. (CSS Level 2 adds a few more possibilities.)
The type of a given element is set by its display property. This property has four
possible values given by keywords:

block

inline

list-item

none

In CSS Level 1, the default value of the display property is block which means
that the item appears in its own box and is separated from other elements in
some fashion. However, in CSS Level 2 the default has changed to inline which
means that the contents of the element are simply placed sequentially in the text
after the previous element. Most Web browsers use the CSS 2 default (inline)
rather the CSS 1 default (block).

In HTML, EM, STRONG, B, I, and A are all inline elements. As another example, you
can think of EM, STRONG, B, I, and A in this paragraph as inline code elements. They
aren’t separated out from the rest of the text.

Block-level elements are separated from other block-level elements, generally by
breaking the line. In HTML P, BLOCKQUOTE, H1 through H6, and HR are all examples
of block-level elements. The paragraphs you see on this page are all block-level
elements. Block-level elements may contain inline elements and other block-level
elements, but inline elements should only contain other inline elements, not block-
level elements.

List item elements are block-level elements with a list-item marker preceding them.
In HTML, LI is a list-item element. List items are discussed further in the following
section.

Finally, elements with their display property set to none are invisible and not
rendered on the screen. Nor do they affect the position of other visible elements on
the page. In HTML, TITLE, META, and HEAD would have a display property of none.
In XML, display: none is often useful for meta-information in elements.

Consider Listing 12-7, a synopsis of William Shakespeare’s Twelfth Night. It contains
the following elements:

SYNOPSIS ACT_NUMBER

TITLE SCENE_NUMBER

ACT LOCATION

SCENE CHARACTER

Note

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 344

345Chapter 12 ✦ Cascading Style Sheets Level 1

You can do a fair job of formatting this data using only display properties.
SYNOPSIS, TITLE, ACT, and SCENE are all block-level elements. ACT_NUMBER,
SCENE_NUMBER, LOCATION, and CHARACTER can remain inline elements. Listing
12-8 is a very simple style sheet that accomplishes this.

Listing 12-7: A synopsis of Shakespeare’s Twelfth Night in XML

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”12-8.css”?>
<SYNOPSIS>
<TITLE>Twelfth Night</TITLE>

<ACT>
<ACT_NUMBER>Act 1</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION>The sea-coast</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace.
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 5</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
</ACT>

<ACT>
<ACT_NUMBER>Act 2</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION>The sea-coast</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION>A street</LOCATION>

</SCENE>

Continued

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 345

346 Part III ✦ Style Languages

Listing 12-7 (continued)

<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace.
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 5</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<ACT_NUMBER>Act 3</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION>A street</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<ACT_NUMBER>Act 4</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s front yard
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 346

347Chapter 12 ✦ Cascading Style Sheets Level 1

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<ACT_NUMBER>Act 5</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s front yard
</LOCATION>

</SCENE>
</ACT>

</SYNOPSIS>

Listing 12-8: A very simple style sheet for the synopsis of a play

SYNOPSIS, TITLE, ACT, SCENE { display: block }

Figure 12-4 shows the synopsis of Twelfth Night loaded into Mozilla with the style
sheet of Listing 12-8. Notice that in Listing 12-8 it is not necessary to explicitly
specify that ACT_NUMBER, SCENE_NUMBER, LOCATION, and CHARACTER are all inline
elements. This is the default unless otherwise specified. The display property is
not inherited by children. Thus, just because SCENE is a block-level element does not
mean that its children SCENE_NUMBER and LOCATION are also block-level elements.

List Items
If you choose the list-item value for the display property, there are three
additional properties you can set. These properties affect how list items are
displayed. These are:

1. list-style-type

2. list-style-image

3. list-style-position

There’s also a shorthand list-style property that lets you set all three in a single
rule.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 347

348 Part III ✦ Style Languages

Internet Explorer 5.0 and Mozilla 5.0 milestone 3 do not yet support display:
list-item. Mozilla treats list items as simple block-level elements while Internet
Explorer does even worse by treating them as inline elements.

Figure 12-4: The synopsis of Twelfth Night as displayed in Mozilla 5.0

The list-style-type Property
The list-style-type property determines the nature of the bullet character in
front of each list item. The possibilities are:

disc

circle

square

decimal

lower-roman

upper-roman

lower-alpha

upper-alpha

none

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 348

349Chapter 12 ✦ Cascading Style Sheets Level 1

The default is disc. For example, the style sheet in Listing 12-9, which applies to
the synopsis in Listing 12-7 defines ACT and SCENE as list items. However, ACT is
given no bullet, and SCENE is given a square bullet.

Listing 12-9: A style sheet for a play synopsis that
uses list items

SYNOPSIS, TITLE { display: block }
ACT { display: list-item; list-style-type: none }
SCENE { display: list-item; list-style-type: square }

The list-style-image Property
Alternately, you can use a bitmapped image of your choice loaded from a file as the
bullet. To do this you set the list-style-image property to the URL of the image.
If both list-style-image and list-style-type are set, the list item will be
preceded by both the image and the bullet character. This is rare, however. Listing
12-10 uses a ♥ stored in the file heart.gif as the bullet before each scene (Twelfth
Night is a romantic comedy after all).

Listing 12-10: A style sheet for a play synopsis that uses the
list-style-image property

SYNOPSIS, TITLE { display: block }
ACT { display: list-item; list-style-type: none }
SCENE { display: list-item;

list-style-image: url(heart.gif); list-style-type: none }

The list-style-position Property
The list-style-position property specifies whether the bullet is drawn inside
or outside the text of the list item. The legal values are inside and outside. The
default is outside. The difference is only obvious when the text wraps onto more
than one line. This is inside:

• If music be the food of love, play on/Give me excess of it, that, surfeiting,/The
appetite may sicken, and so die./That strain again! it had a dying fall:

This is outside:

• If music be the food of love, play on/Give me excess of it, that, surfeiting,/The
appetite may sicken, and so die./That strain again! it had a dying fall:

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 349

350 Part III ✦ Style Languages

The list-style Shorthand Property
Finally, the list-style property is a short hand that allows you to set all three of
the above-described properties at once. For example, this rule says that a SCENE is
displayed inside with a heart image and no bullet:

SCENE { display: list-item;
list-style: none inside url(heart.gif) }

The whitespace Property
The white-space property determines how significant whitespace (spaces, tabs,
line breaks) within an element is. The allowable values are:

normal

pre

nowrap

The default value, normal, simply means that runs of whitespace are condensed
to a single space and words are wrapped to fit on the screen or page. This is the
normal treatment of whitespace in both HTML and XML.

The pre value acts like the PRE (preformatted) element in HTML. All whitespace
in the input document is considered significant and faithfully reproduced on the
output device. It may be accompanied by a shift to a monospaced font. This would
be useful for much computer source code or some poetry. Listing 12-11 is a poem,
The Altar, by George Herbert in which spacing is important. In this poem, the lines
form the shape of the poem’s subject.

Listing 12-11: The Altar in XML

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”12-12.css”?>
<POEM>

<TITLE>The Altar</TITLE>
<POET>George Herbert</POET>

<VERSE> A broken ALTAR, Lord, thy servant rears,</VERSE>
<VERSE> Made of a heart, and cemented with tears:</VERSE>
<VERSE> Whose parts are as thy hand did frame;</VERSE>
<VERSE> No workman’s tool hath touched the same.</VERSE>
<VERSE> No workman’s tool hath touched the same.</VERSE>
<VERSE> A HEART alone</VERSE>
<VERSE> Is such a stone,</VERSE>
<VERSE> As nothing but</VERSE>
<VERSE> Thy power doth cut.</VERSE>
<VERSE> Wherefore each part</VERSE>

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 350

351Chapter 12 ✦ Cascading Style Sheets Level 1

<VERSE> Of my hard heart</VERSE>
<VERSE> Meets in this frame,</VERSE>
<VERSE> To praise thy name:</VERSE>
<VERSE> That if I chance to hold my peace,</VERSE>
<VERSE> These stones to praise thee may not cease.</VERSE>
<VERSE> O let thy blessed SACRIFICE be mine,</VERSE>
<VERSE> And sanctify this ALTAR to be thine.</VERSE>

</POEM>

Listing 12-12 is a style sheet that uses white-space: pre to preserve this form.
Figure 12-5 shows the result in Mozilla.

Figure 12-5: The Altar by George Herbert with white-space: pre

Internet Explorer 5.0 does not support white-space: pre.

Listing 12-12: A style sheet for whitespace-sensitive poetry

POEM { display: block }
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10px }
STANZA { display: block; margin-bottom: 10px }
VERSE { display: block;

white-space: pre; font-family: monospace }

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 351

352 Part III ✦ Style Languages

Finally, the nowrap value is a compromise that breaks lines exactly where there’s
an explicit break in the source text, but condenses other runs of space to a single
space. This might be useful when you’re trying to faithfully reproduce the line
breaks in a classical manuscript or some other poetry where the line breaks are
significant but the space between words isn’t.

Internet Explorer 5.0 and earlier do not properly support nowrap.

Font Properties
CSS Level 1 supports five basic font properties. These are:

1. font-family

2. font-style

3. font-variant

4. font-weight

5. font-size

Furthermore, there’s a font shorthand property that can set all five properties at
once.

The font-family Property
The value of the font-family property is a comma-separated list of font names
such as Helvetica, Times, Palatino, etc. Font names that include whitespace such as
“Times New Roman” should be enclosed in double quotes.

Names may also be one of the five generic names serif, sans-serif, cursive,
fantasy, and monospace. The browser replaces these names with a font of the
requested type installed on the local system. Table 12-4 demonstrates these fonts.

Table 12-4
Generic Fonts

Distinguishing
Name Typical Family Characteristic Example

Serif Times, Times Curlicues on the edges of The quick brown fox
New Roman, letters make serif text easier jumped over the lazy
Palatino to read in small body type. dog.

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 352

353Chapter 12 ✦ Cascading Style Sheets Level 1

Distinguishing
Name Typical Family Characteristic Example

sans-serif Geneva, Block type, often used in The quick brown fox
Helvetica, headlines. jumped over the lazy dog.
Verdana

Monospace Courier, Courier A typewriter like font in The quick brown fox
New, Monaco, which each character has jumped over the
American exactly the same width, lazy dog.
Typewriter commonly used for source

code and email.

Cursive ZapfChancery Script font, a simulation of The quick brown fox
handwriting. jumped over the lazy dog.

Fantasy Western, Critter Text with special effects; The quick brown fox

e.g. letters on fire, letters jumped over the lazy

formed by tumbling dog.

acrobats, letters made
from animals, etc.

Because there isn’t a guarantee that any given font will be available or appropriate
on a particular client system (10-point Times is practically illegible on a Macintosh,
much less a Palm Pilot), you’ll generally provide a comma-separated list of choices
for the font in the order of preference. The last choice in the list should always be
one of the generic names. However, even if you don’t specify a generic name and
the fonts you do specify aren’t available, the browser will pick something. It just
may not be anything like what you wanted.

For example, here are two rules that make the TITLE element Helvetica with a
fallback position of any sans serif font; and the rest of the elements Times with
fallback positions of Times New Roman, and any serif font.

TITLE { font-family: Helvetica, sans-serif }
SYNOPSIS { font-family: Times, “Times New Roman”, serif }

Figure 12-6 shows the synopsis loaded into Mozilla 5.0 after these two rules are
added to the style sheet of Listing 12-8. Not a great deal has changed since Figure
12-4 Times is commonly the default font. The most obvious difference is that the
title is now in Helvetica.

The font-family property is inherited by child elements. Thus by setting
SYNOPSIS’s font-family to Times, all the child elements are also set to Times
except for TITLE whose own font-family property overrides the one it inherits.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 353

354 Part III ✦ Style Languages

Figure 12-6: The synopsis of Twelfth Night with the title in Helvetica

The font-style Property
The font-style property has three values: normal, italic, and oblique. The
regular text you’re reading now is normal. The typical rendering of the HTML EM
element is italicized. Oblique text is very similar to italicized text. However, oblique
text is most commonly created by a computer following a simple algorithm to slant
normal text by a fixed amount. Italicized text generally uses a font hand designed to
look good in its slanted form.

This rule italicizes the SCENE_NUMBER:

SCENE_NUMBER { font-style: italic}

Figure 12-7 shows the synopsis loaded into Internet Explorer 5.0 after this rule is
added to the style sheet for the synopsis.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 354

355Chapter 12 ✦ Cascading Style Sheets Level 1

Figure 12-7: The synopsis of Twelfth Night with italic scene
numbers

The font-variant Property
The font-variant property has two possible values in CSS Level 1, normal and
small-caps. The default is normal. Setting font-variant to small-caps replaces
lowercase letters with capital letters in a smaller font size than the main body text.

You can get a very nice effect by combining the font-variant property with the
first-letter pseudo-element. For example, define the ACT_NUMBER element to
have the font-variant: small-caps. Next define the first letter of ACT_NUMBER
to have font-variant: normal. This produces act numbers that look like this:

ACT 1

Here are the rules:

ACT_NUMBER { font-variant: small-caps}
ACT_NUMBER:first-letter { font-variant: normal}

The second rule overrides the first, but only for the first letter of the act number.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 355

356 Part III ✦ Style Languages

The font-weight Property
The font-weight property determines how dark (bold) or light (narrow) the text
appears. There are 13 possible values of this property:

normal

bold

bolder

lighter

100

200

300

400

500

600

700

800

900

Weights range from 100 (the lightest) to 900 (the darkest). Intermediate, non-
century values like 850 are not allowed. Normal weight is 400. Bold is 700. The
bolder value makes an element bolder than its parent. The lighter value makes
an element less bold than its parent. However, there’s no guarantee that a
particular font has as many as nine separate levels of boldness.

Here’s a simple rule that makes the TITLE and ACT_NUMBER elements bold.

TITLE, ACT_NUMBER { font-weight: bold}

Figure 12-8 shows the results in the Mozilla viewer after this rule is added to the
style sheet for Listing 12-7.

The font-size Property
The font-size property determines the height and the width of a typical character
in the font. Larger sizes take up more space on the screen. The size may be
specified as a keyword, a value relative to the font size of the parent, a percentage
of the size of the parent element’s font size, or an absolute number.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 356

357Chapter 12 ✦ Cascading Style Sheets Level 1

Figure 12-8: The synopsis of Twelfth Night with bold title and
act numbers

Keyword
Absolute size keywords are:

xx-small

x-small

small

medium

large

x-large

xx-large

These keywords are the preferred way to set font sizes because they are still
relative to the base font size of the page. For instance, if the user has adjusted their
default font size to 20 points because they’re very near-sighted, all other values
here will scale accordingly.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 357

358 Part III ✦ Style Languages

In CSS1, each size is 1.5 times larger than the next smallest size. The default is
medium, so if a browser’s default is 12 points, then large type will be 18 points, x-
large type will be 27 points, and xx-large type will be 40.5 points. By contrast,
small type will be 8 points; x-small type will be 5.33 points, and xx-small will be
an almost certainly illegible 3.56 points.

Here’s the simple rule that makes the TITLE extra large:

TITLE { font-size: x-large }

Value Relative to Parent’s Font Size
You can also specify the size relative to the parent element as either larger or
smaller. For instance, in the following, the SCENE_NUMBER will have a size that is
smaller than the font size of its parent SCENE.

SCENE_NUMBER { font-size: smaller }

There’s no definitive rule for exactly how much smaller a smaller font will be or
how much larger a larger font will be. Generally, the browser will attempt to move
from medium to small, from small to x-small and so forth. The same is true (in the
other direction) for larger fonts. Thus, making a font larger should increase its size
by about 50 percent, and making a font smaller should decrease its size by about 33
percent, but browsers are free to fudge these values in order to match the available
font sizes.

Percentage of Parent Element’s Font Size
If these options aren’t precise enough, you can make finer adjustments by using a
percentage of the parent element’s font size. For example, this rule says that the
font used for a SCENE_NUMBER is 50% of the size of the font for the SCENE.

SCENE_NUMBER { font-size: 50% }

Absolute Length Value
Finally, you can give a font size as an absolute length. Although you can use pixels,
centimeters, or inches, the most common unit when measuring fonts is points. For
example, this rule sets the default font-size for the SYNOPSIS element and its
children to 14 points.

SYNOPSIS { font-size: 14pt }

I strongly urge you not to use absolute units to describe font sizes. It’s extremely dif-
ficult (I’d argue impossible) to pick a font size that’s legible across all the different
platforms on which your page might be viewed, ranging from PDAs to the Sony
Jumbotron in Times Square. Even when restricting themselves to standard personal
computers, most designers usually pick a font that’s too small. Any text that’s
intended to be read on the screen should be at least 12 points, possibly more.

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 358

359Chapter 12 ✦ Cascading Style Sheets Level 1

Figure 12-9 shows the results in Mozilla after these rules are added to the style
sheet for Listing 12-7. The text of the scenes is not really bolder. It’s just bigger. In
any case, it’s a lot easier to read.

Figure 12-09: The synopsis of Twelfth Night with varied font sizes

The font Shorthand Property
The font property is a shorthand property that allows the font style, variant,
weight, size, and family to be set with one rule. For example, here are two rules for
the TITLE and SCENE_NUMBER elements that combine the six separate rules of the
previous section:

TITLE { font: bold x-large Helvetica, sans-serif }
SCENE_NUMBER { font: italic smaller serif }

Values must be given in the following order:

1. One each of style, variant, and weight, in any order, any of which may be
omitted

2. Size, which may not be omitted

3. Optionally a forward slash (/) and a line height

4. Family, which may not be omitted

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 359

360 Part III ✦ Style Languages

If this sounds complicated and hard to remember, that’s because it is. I certainly
can’t remember the exact details for the order of these properties without looking
it up. I prefer to just use the individual properties one at a time. It’s questionable
whether shorthand properties like this really save any time.

Listing 12-13 is the style sheet for the synopsis with all the rules devised so far,
using the font shorthand properties. However, since a font property is exactly
equivalent to the sum of the individual properties it represents, there’s no change
to the rendered document.

Listing 12-13: A style sheet for the synopsis with font
shorthand

SYNOPSIS, TITLE, ACT, SCENE { display: block }
SCENENUMBER { font: italic smaller serif }
TITLE { font: bold x-large Helvetica, sans-serif }
SYNOPSIS { font: 14pt Times, “Times New Roman”, serif }
ACTNUMBER { font-variant: small-caps}
ACTNUMBER:first-letter { font-variant: normal}
ACTNUMBER { font-weight: bold}

The Color Property
CSS allows you to assign colors to almost any element on a page with the color
property. The value of the color property may be one of 16 named color keywords,
or an RGB triple in decimal, hexadecimal, or percentages. For instance, the
following rules specify that all elements on the page are colored black except the
SCENE_NUMBER, which is colored blue:

SYNOPSIS { color: black }
SCENE_NUMBER { color: blue}

The color property is inherited by children. Thus, all elements in the synopsis
except for the SCENE_NUMBER elements will be colored black.

The following rules are all equivalent to the above two. I recommend using named
colors when possible, and browser-safe colors when not.

SYNOPSIS { color: #000000 }
SCENE_NUMBER { color: #0000FF}
SYNOPSIS { color: rgb(0, 0, 0) }
SCENE_NUMBER { color: rgb(0, 0, 255)}
SYNOPSIS { color: rgb(0%, 0%, 0%) }
SCENE_NUMBER { color: rgb(0%, 0%, 100%)}

Note

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 360

361Chapter 12 ✦ Cascading Style Sheets Level 1

Background Properties
The background of an element can be set to a color or an image. If it’s set to an
image, the image can be positioned differently relative to the content of the
element. This is accomplished with the following five basic properties:

1. background-color

2. background-image

3. background-repeat

4. background-attachment

5. background-position

Finally, there’s a background shorthand property that allows you to set some or all
of these five properties in one rule.

Fancy backgrounds are vastly overused on the Web today. Anything other than a
very light background color only makes your page harder to read and annoys
users. I list these properties here for completeness’ sake, but I strongly recom-
mend that you use them sparingly, if at all.

None of the background properties is inherited. Each child element must specify
the background it wants. However, it may appear as if background properties are
inherited because the default is for the background to be transparent. The
background of whatever element is drawn below an element will show through.
Most of the time this is the background of the parent element.

The background-color Property
The background-color property may be set to the same values as the color
property. However, rather than changing the color of the element’s contents, it
changes the color of the element’s background on top of which the contents are
drawn. For example, to draw a SIGN element with yellow text on a blue background,
you would use this rule:

SIGN { color: yellow; background-color: blue}

You can also set the background-color to the keyword transparent (the default)
which simply means that the background takes on the color or image of whatever
the element is laying on top of, generally the parent element.

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 361

362 Part III ✦ Style Languages

The background-image Property
The background-image property is either none (the default) or a URL (generally
relative) where a bitmapped image file can be found. If it’s a URL, then the browser
will load the image and use it as the background, much like the BACKGROUND
attribute of the BODY element in HTML. For example, here’s how you attach the file
party.gif (shown in Figure 12-10) as the background for an INVITATION element.

INVITATION { background-image: url(party.gif) }

Figure 12-10: The original, untiled, uncropped background
image for the party invitation in Listing 12-14

The image referenced by the background-image property is drawn underneath the
specified element, not underneath the browser pane like the BACKGROUND attribute
of HTML’s BODY element.

If the background image is associated with the root element, early betas of Mozilla
5.0 attach the background image to the entire document pane rather than to only
the element itself. For all non-root elements, however, the background image
applies only to the element it’s applied to. The CSS Level 1 specification is not
clear regarding whether or not this is acceptable behavior.

Background images will generally not be the exact same size as the contents of the
page. If the image is larger than the element’s box, the image will be cropped. If the
image is smaller than the element’s box, it will be tiled vertically and horizontally.
Figure 12-11 shows a background image that has tiled exactly far enough to cover
the underlying content. Note that the tiling takes place across the element, not
across the browser window. The XML file for this picture is in Listing 12-14.

Figure 12-11: A tiled background image

Note

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 362

363Chapter 12 ✦ Cascading Style Sheets Level 1

Listing 12-14: A party invitation in XML

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”party.css”?>
<INVITATION>
You’re invited to a party on December 31, 1999 to celebrate the
new millennium! You’re invited to a party on December 31, 1999
to celebrate the new millennium! You’re invited to a party on
December 31, 1999 to celebrate the new millennium! You’re
invited to a party on December 31, 1999 to celebrate the new
millennium! You’re invited to a party on December 31, 1999 to
celebrate the new millennium! You’re invited to a party on
December 31, 1999 to celebrate the new millennium! You’re
invited to a party on December 31, 1999 to celebrate the new
millennium! You’re invited to a party on December 31, 1999 to
celebrate the new millennium! You’re invited to a party on
December 31, 1999 to celebrate the new millennium! You’re
invited to a party on December 31, 1999 to celebrate the new
millennium! You’re invited to a party on December 31, 1999 to
celebrate the new millennium!
</INVITATION>

The background-repeat Property
The background-repeat property adjusts how background images are tiled across
the screen. You can specify that background images are not tiled or are only tiled
horizontally or vertically. Possible values for this property are:

repeat

repeat-x

repeat-y

no-repeat

For example, to only show a single party hat on the invitation you would set the
background-repeat of the INVITATION element to no-repeat. Figure 12-12 shows
the result. For example:

INVITATION { background-image: url(party.gif);
background-repeat: no-repeat }

To tile across but not down the page, set background-repeat to repeat-x, as
shown below. Figure 12-13 shows the background image tiled across but not down.

INVITATION { background-image: url(party.gif);
background-repeat: repeat-x }

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 363

364 Part III ✦ Style Languages

Figure 12-12: An untiled background image

Figure 12-13: A background image tiled across, but not down

To tile down but not across the page, set background-repeat to repeat-y, as
shown below. Figure 12-14 shows the result.

INVITATION { background-image: url(party.gif);
background-repeat: repeat-y }

The background-attachment Property
In HTML, the background image is attached to the document. When the document is
scrolled, the background image scrolls with it. With the background-attachment
property, you can specify that the background be attached to the window or pane
instead. Possible values are scroll and fixed. The default is scroll; that is, the
background is attached to the document rather than the window.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 364

365Chapter 12 ✦ Cascading Style Sheets Level 1

Figure 12-14: A background image tiled down
but not across

However, with background-attachment set to fixed, the document scrolls but
the background image doesn’t. This might be useful in conjunction with an image
that’s big enough for a typical browser window but not big enough to be a backdrop
for a large document when you don’t want to tile the image. You would code this:

DOCUMENT { background-attachment: fixed;
background-repeat: no-repeat }

Neither IE5 nor Mozilla supports fixed background images. This feature may be
added in later releases. (The CSS1 spec does not require browsers to support fixed
backgrounds.)

The background-position Property
By default, the upper-left corner of a background image is aligned with the upper-
left corner of the element it’s attached to. (See Figure 12-12 for an example.) Most of
the time this is exactly what you want. However, for those rare times when you
want something else, the background-position property allows you to move the
background relative to the element.

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 365

366 Part III ✦ Style Languages

You can specify the offset using percentages of the width and height of the parent
element, using absolute lengths, or using two of these six keywords:

top

center

bottom

left

center

right

Percentages of Parent Element’s Width and Height
Percentages enable you to pin different parts of the background to the
corresponding part of the element. The x coordinate is given as a percentage
ranging from 0% (left-hand side) to 100% (right-hand side). The y coordinate is
given as a percentage ranging from 0% (top) to 100% (bottom). For example, this
rule places the upper-right corner of the image in the upper-right corner of the
INVITATION element. Figure 12-15 shows the result.

INVITATION { background-image: url(party.gif);
background-repeat: no-repeat;
background-position: 100% 0% }

Figure 12-15: A background image aligned with the upper-right
corner of the content

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 366

367Chapter 12 ✦ Cascading Style Sheets Level 1

Absolute Lengths
Absolute lengths position the upper-left corner of the background in an absolute
position in the element. The next rule places the upper-left corner of the
background image party.gif one centimeter to the right and two centimeters below
the upper-left corner of the element. Figure 12-16 shows the result.

INVITATION { background-image: url(party.gif);
background-repeat: no-repeat;
background-position: 1cm 2cm }

Figure 12-16: A background image 1.0 cm to the right and 2.0
cm below the left-hand corner of the element

Keywords
The top left and left top keywords are the same as 0% 0%. The top, top
center, and center top are the same as 50% 0%. The right top and top right
keywords are the same as 100% 0%. The left, left center, and center left
keywords are the same as 0% 50%. The center and center center keywords are
the same as 50% 50%. The right, right center, and center right keywords are
the same as 100% 50%. The bottom left and left bottom keywords are the same
as 0% 100%. The bottom, bottom center, and center bottom mean the same as
50% 100%. The bottom right and right bottom keywords are the same as 100%
100%. Figure 12-17 associates these with individual positions on an element box.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 367

368 Part III ✦ Style Languages

Figure 12-17: Relative positioning of background images

For instance, for our running invitation example, the best effect is achieved by
pinning the centers together, as shown in Figure 12-18. Here’s the necessary rule:

INVITATION { background-image: url(party.gif);
background-repeat: no-repeat;
background-position: center center }

Figure 12-18: An untiled background image pinned to the
center of the INVITATION element

top left
left top
0% 0%

top
top center
center top

50% 0%

top right
right top
100% 0%

left
center left
left center

0% 50%

center
center center

50% 50%

bottom left
left bottom
0% 100%

bottom right
right bottom
100% 100%

right
center right
right center
100% 50%

bottom
bottom center
center bottom

50% 100%

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 368

369Chapter 12 ✦ Cascading Style Sheets Level 1

If the background-attachment property has the value fixed, then the image is
placed relative to the windowpane instead of the element.

The Background Shorthand Property
The background property is shorthand for setting the background-color,
background-image, background-repeat, background-attachment, and
background-position properties in a single rule. For example, to set
background-color to white, background-image to party.gif, background-
repeat to no-repeat, and background-attachment to fixed in the INVITATION
element, you can use this rule:

INVITATION { background: url(party.gif) white no-repeat fixed }

This means exactly the same thing as this longer but more legible rule:

INVITATION { background-image: url(party.gif);
background-color: white;
background-repeat: no-repeat;
background-attachment: fixed }

When using the background shorthand property, values for any or all of the five
properties may be given in any order. However, none may occur more than once.
For example, the upper-right corner alignment rule used for Figure 12-16 could have
been written like this instead:

INVITATION { background: url(party.gif) no-repeat 100% 0% }

Text Properties
There are eight properties affecting the appearance of text, irrespective of font.
These are:

1. word-spacing

2. letter-spacing

3. text-decoration

4. vertical-align

5. text-transform

6. text-align

7. text-indent

8. line-height

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 369

370 Part III ✦ Style Languages

The word-spacing Property
The word-spacing property expands the text by adding additional space between
words. A negative value removes space between words. The only reason I can think
of to alter the word spacing on a Web page is if you are a student laboring under
tight page-count limits who wants to make a paper look bigger or smaller than it is.

Desktop publishers love adjusting these kinds of properties. The problem is that all
the rules they’ve learned about how and when to adjust spacing are based on ink
on paper, and really don’t work when transferred to the medium of electrons on
phosphorus (a typical CRT monitor). You’re almost always better off letting the
browser make decisions about word and letter spacing for you.

If, on the other hand, your target medium is ink on paper, then there’s a little more
to be gained by adjusting these properties. The main difference is that with ink on
paper you control the delivery medium. You know exactly how big the fonts are,
how wide and high the display is, how many dots per inch are being used, and so
forth. On the Web, you simply don’t have enough information about the output
medium available to control everything at this level of detail.

To change this from the default value of normal, you set a length for the property.
For example,

INVITATION { word-spacing: 1em }

Browsers are not required to respect this property, especially if it interferes with
other properties like align: justified. Internet Explorer 5.0 does not support
word-spacing, but Mozilla does, as shown in Figure 12-19.

Figure 12-19: The INVITATION element with one em of word spacing

Note

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 370

371Chapter 12 ✦ Cascading Style Sheets Level 1

The letter-spacing Property
The letter-spacing property enables you to expand the text by adding additional
space between letters. You can make the value negative to remove space between
letters. Again, the only reason I can think of to do this on a Web page is to make a
paper look bigger or smaller than it really is to meet a length requirement.

To change this from the default value of normal, you set a length for the property.
For example:

INVITATION { letter-spacing: 0.3em }

Since justification works by adjusting the amount of space between letters,
changing the letter spacing manually prevents the browser from justifying text.

Browsers are not required to respect this property, especially if it interferes with
other properties like align: justified. However both Internet Explorer and
Mozilla do, as shown in Figure 12-20.

Figure 12-20: The INVITATION element with 0.3em letter spacing

The text-decoration Property
The text-decoration property may have one of the following five values:

none

underline

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 371

372 Part III ✦ Style Languages

overline

line-through

blink

Except for none, the default, these values are not mutually exclusive. You may for
example, specify that a paragraph is underlined, overlined, struck through, and
blinking. (I do not, however, recommend that you do this.)

Browsers are not required to support blinking text. This is a good thing.

For example, the next rule specifies that CHARACTER elements are underlined.
Figure 12-21 shows the result of applying this rule to the synopsis of Twelfth Night in
Listing 12-7.

CHARACTER { text-decoration: underline }

Figure 12-21: The synopsis of Twelfth Night with underlined
characters

The vertical-align Property
The vertical-align property specifies how an inline element is positioned
relative to the baseline of the text. Valid values are:

baseline

sub

super

top

Note

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 372

373Chapter 12 ✦ Cascading Style Sheets Level 1

text-top

middle

bottom

text-bottom

You can also use a percentage of the line height of the element. The default is
baseline which lines up the baseline of the element with the baseline of its parent.

The sub value makes the element a subscript. The super value makes the element
a superscript. The text-top value aligns the top of the element with the top of the
parent element’s font. The middle value aligns the vertical midpoint of the element
with the baseline of the parent plus half the x-height. The text-bottom value aligns
the bottom of the element with the bottom of the parent element’s font.

The top value aligns the top of the element with the tallest letter or element on the
line. The bottom value aligns the bottom of the element with the bottom of the
lowest letter or element on the line. The exact alignment changes as the height of
the tallest or lowest letter changes.

For example, the rule for a footnote number might look like this one that
superscripts the number and decreases its size by 20 percent.

FOOTNOTE_NUMBER { vertical-align: super; font-size: 80% }

The text-transform Property
The text-transform property lets you to specify that the text should be rendered
in all uppercase, all lowercase, or with initial letters capitalized. This is useful in
headlines, for example. The valid values are:

capitalize

uppercase

lowercase

none

Capitalization Makes Only The First Letter Of Every Word Uppercase Like This
Sentence. PLACING THE SENTENCE IN UPPERCASE, HOWEVER, MAKES EVERY
LETTER IN THE SENTENCE UPPERCASE. The following rule converts the TITLE
element in the Twelfth Night synopsis to uppercase. Figure 12-22 shows the synopsis
after this rule has been applied.

TITLE { text-transform: uppercase }

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 373

374 Part III ✦ Style Languages

Figure 12-22: The TITLE in the synopsis is now uppercase.

The text-transform property is somewhat language-dependent since many
languages — Chinese, for example — don’t have any concept of an upper- and a
lowercase.

The text-align Property
The text-align property applies only to block-level elements. It specifies whether
the text in the block is to be aligned with the left-hand side, the right-hand side,
centered, or justified. The valid values are:

left

right

center

justify

The following rules center the TITLE element in the Twelfth Night synopsis and
justifies everything else. Figure 12-23 shows the synopsis after these rules have
been applied.

TITLE { text-align: center }
SYNOPSIS { text-align: justify }

Note

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 374

375Chapter 12 ✦ Cascading Style Sheets Level 1

Figure 12-23: The TITLE in the synopsis is centered and the rest
of the text is justified.

The text-indent Property
The text-indent property, which applies only to block-level elements, specifies
the indentation of the first line of a block with respect to the remaining lines of the
block and is given as either an absolute length or a percentage of the width of the
parent element. The value may be negative which produces a hanging indent.

To indent all the lines of an element, rather than just the first, you use the box
properties discussed in the next section to set an extra left margin on the element.

For example, the following rule indents the scenes in the synopsis by half an inch.
Figure 12-24 shows the synopsis after this rule has been applied.

SCENE { text-indent: 0.5in }

The line-height Property
The line-height property specifies the distance between the baselines of
successive lines. It can be given as an absolute number, an absolute length, or a
percentage of the font size. For instance, the following rule double-spaces the
SYNOPSIS element. Figure 12-25 shows the Twelfth Night synopsis after this rule has
been applied.

SYNOPSIS { line-height: 200% }

Tip

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 375

376 Part III ✦ Style Languages

Figure 12-24: The SCENE and its children in the synopsis
are all indented half an inch.

Figure 12-25: A double-spaced synopsis

Double-spacing isn’t particularly attractive though so I’ll remove it. In the next
section, some extra margins are added around individual elements to get a nicer
effect. Listing 12-15 summarizes the additions made in this section to the synopsis
style sheet (minus the double-spacing).

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 376

377Chapter 12 ✦ Cascading Style Sheets Level 1

Listing 12-15: The synopsis style sheet with text properties

SYNOPSIS, TITLE, ACT, SCENE { display: block }
SCENE_NUMBER { font: italic smaller serif }
TITLE { font: bold x-large Helvetica, sans-serif }
SYNOPSIS { font: 14pt Times, “Times New Roman”, serif }
ACT_NUMBER { font-variant: small-caps}
ACT_NUMBER:first-letter { font-variant: normal}
ACT_NUMBER { font-weight: bold}
CHARACTER { text-decoration: underline }
TITLE { text-transform: uppercase }
TITLE { text-align: center }
SYNOPSIS { text-align: justify }
SCENE { text-indent: 0.5in }

Box Properties
CSS describes a two-dimensional canvas on which output is drawn. The elements
drawn on this canvas are encased in imaginary rectangles called boxes. These
boxes are always oriented parallel to the edges of the canvas. Box properties
enable you to specify the width, height, margins, padding, borders, sizes, and
positions of the individual boxes. Figure 12-26 shows how these properties relate to
each other.

Figure 12-26: A CSS box with margin,
border, and padding

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 377

378 Part III ✦ Style Languages

Margin Properties
Margin properties specify the amount of space added to the box outside its border.
This may be set separately for the top, bottom, right and left margins using the
margin-top, margin-bottom, margin-right, and margin-left properties. Each
margin may be given as an absolute length or as a percentage of the size of the
parent element’s width. For example, you can add a little extra space between each
ACT element and the preceding element by setting ACT’s margin-top property to
1ex as the following rule and Figure 12-27 demonstrate.

ACT { margin-top: 1ex }

Figure 12-27: The top margin of the ACT element is larger

You can also set all four margins at once using the shorthand margin property. For
example, you can add extra whitespace around the entire Twelfth Night document
by setting the margin property for the root-level element (SYNOPSIS in this
example) as shown in the next rule. Figure 12-28 demonstrates.

SYNOPSIS { margin: 1cm 1cm 1cm 1cm }

In fact, this is the same as using a single value for margin, which CSS interprets as
being applicable to all four sides.

SYNOPSIS { margin: 1cm }

Given two margin values, the first applies to top and bottom, the second to right
and left. Given three margin values, the first applies to the top, the second to the
right and left, and the third to the bottom. It’s probably easier to just use the
separate margin-top, margin-bottom, margin-right, and margin-left
properties.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 378

379Chapter 12 ✦ Cascading Style Sheets Level 1

Figure 12-28: One centimeter of whitespace around the
entire synopsis

Border Properties
Most boxes won’t have borders. They are imaginary boxes that affect the layout of
their contents, but are probably not seen as boxes by the readers. However, you
can make a box visible by drawing lines around it using the border properties.
Border properties let you to specify the style, width, and color of the border.

Border Style
By default, no border is drawn around boxes regardless of the width and color of
the border. To make a border visible you must change the border-style property
of the box from its default value of none to one of these values:

dotted

dashed

solid

double

groove

ridge

inset

outset

The border-style property can have between one and four values. As with the
margin property, a single value applies to all four borders. Two values set top and
bottom borders to the first style, right and left borders to the second style. Three

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 379

380 Part III ✦ Style Languages

values set the top, right and left, and bottom border styles in that order. Four
values set each border in the order top, right, bottom, and left. For example, the
next rule surrounds the entire SYNOPSIS with a solid border. Figure 12-29 shows the
result in Internet Explorer 5.0. In this case, the border has the secondary effect of
making the margin more obvious. (Remember, the margin is outside the border.)

SYNOPSIS { border-style: solid }

Figure 12-29: A border around the synopsis

Internet Explorer 5.0 can only display solid borders. The other styles are all drawn
as simple, solid borders.

Border Width
There are four border-width properties for specifying the width of the borderline
along the top, bottom, right, and left edges of the box. These are:

1. border-top-width

2. border-right-width

3. border-bottom-width

4. border-left-width

Caution

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 380

381Chapter 12 ✦ Cascading Style Sheets Level 1

Each may be specified as an absolute length or as one of three keywords: thin,
medium, or thick. Border widths cannot be negative, but can be zero.

For example, to enclose the SYNOPSIS element in a one-pixel wide solid border (the
thinnest border any computer monitor can display), you could use the next rule to
set these four properties:

SYNOPSIS { border-style: solid;
border-top-width: 1px;
border-right-width: 1px;
border-bottom-width: 1px;
border-left-width: 1px }

If want to set all or several borders to the same width, it’s most convenient to use
the border-width shorthand property. This property can have between one and
four values. One value sets all four border widths. Two values set top and bottom
borders to the first value, right and left borders to the second value. Three values
set the top, right, and left, and bottom widths in that order. Four values set each
border in the order top, right, bottom, and left. For example, the following is
equivalent to the previous rule:

SYNOPSIS { border-style: solid; border-width: 1px }

Border Color
The border-color property sets the color of between one and four borders. A
single value sets all four border colors. Two values set top and bottom borders to
the first color, right and left borders to the second color. Three values set the top,
right and left, and bottom border colors in that order. Four values set each border
in the order top, right, bottom, and left. Valid values are any recognized color name
or RGB triplet. For example, to enclose the SYNOPSIS element in a one-pixel wide,
solid red border, you’d use this rule:

SYNOPSIS { border-style: solid;
border-width: 1px;
border-color: red }

Since this book is printed in black and white, I’ll spare you the picture.

Shorthand Border Properties
Five shorthand border properties let you set the width, style, and color of a border
with one rule. These are:

1. border-top

2. border-right

3. border-bottom

4. border-left

5. border

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 381

382 Part III ✦ Style Languages

For instance, the border-top property provides a width, style, and color for the
top border. The border-right, border-bottom, and border-left properties are
similar. Omitted properties are set to the value of the parent element. For example,
Figure 12-30 shows a two-pixel solid blue border (a horizontal rule if you will) below
each act. To achieve this, you would use this rule:

ACT { border-bottom: 2px solid blue }

Figure 12-30: A two-pixel, solid bottom border is similar
to HTML’s HR element.

The border property sets all four sides to the specified width, style, and height. For
example, this rule draws a three-pixel wide, solid, red border around a CHART
element.

CHART { border: 3pt solid red }

Padding Properties
The padding properties specify the amount of space on the inside of the border of
the box. The border of the box, if shown, falls between the margin and the padding.
Padding may be set separately for the top, bottom, right and left padding using the

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 382

383Chapter 12 ✦ Cascading Style Sheets Level 1

padding-top, padding-bottom, padding-right, and padding-left properties.
Each padding may be given as an absolute length or be a percentage of the size of
the parent element’s width. For example, you can set off the SYNOPSIS from its
border by setting its padding properties as shown in this rule.

SYNOPSIS { padding-bottom: 1em;
padding-top: 1em;
padding-right: 1em;
padding-left: 1em }

You can also set all four at once using the shorthand padding property. For
example, the following rule is the same as the previous one:

SYNOPSIS { padding: 1em 1em 1em 1em }

In fact, this is the same as using a single value for the padding property, which CSS
interprets as applying to all four sides.

SYNOPSIS { padding: 1em }

Given two padding values, the first applies to top and bottom, the second to right
and left. Given three padding values, the first applies to the top, the second to the
right and left, and the third to the bottom. It’s probably easier to use the separate
padding-top, padding-bottom, padding-right, and padding-left properties.

The blue borders below the acts in the synopsis seem a little too close, so let’s add
an ex of padding between the end of the act and the border with the padding-
bottom property, as shown in the following rule. Figure 12-31 shows the result.
Generally, it’s a good idea to use a little padding around borders to make the text
easier to read.

ACT { padding-bottom: 1ex }

Size Properties
A box can be forced to a given size using the width and height properties. The
contents of the box will be scaled as necessary to fit. Although you can use this
with text boxes, it’s more common and useful with replaced elements like images
and applets. The width and the height may be given as an absolute length, as a
percentage of the parent element’s height and width, or as the keyword auto (the
default) to indicate that the browser should use the real size. For example, this rule
tries to fit the entire SYNOPSIS element in a 3-inch by 3-inch square.

SYNOPSIS { padding: 1em; width: 3in; height: 3in }

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 383

384 Part III ✦ Style Languages

Figure 12-31: Padding makes borders easier on the eye

Figure 12-32 shows the result in Internet Explorer 5.0. When faced with an element
that’s simply bigger than its box allows, the Internet Explorer constrains the width
but expands the height. Mozilla lets the text flow outside the box, possibly
overlapping elements below. Browsers deal inconsistently and unpredictably with
content that won’t fit in a precisely sized box. Therefore, exact sizing is to be
eschewed in cross-browser Web design.

If the width is set to an absolute or relative unit, and the height is set to auto,
then the height will be adjusted proportionally to the width.

Positioning Properties
By default, block-level elements nested inside the same parent element follow each
other on the page. They do not line up side by side or wrap around each other. You
can change this with judicious use of the float and clear properties.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 384

385Chapter 12 ✦ Cascading Style Sheets Level 1

Figure 12-32: A three-inch high by three-inch wide synopsis
as viewed in Mozilla

The float Property
The float property, whose value is none by default, can be set to left or right. If
the value is left, then the element is moved to the left side of the page and the text
flows around it on the right. In HTML, this is how an IMG with ALIGN=”LEFT”
behaves. If the value is right, then the element is moved to the right side of the
page and the text flows around it on the left. In HTML, this is how an IMG with
ALIGN=”RIGHT” behaves.

There’s no standard way to embed images in XML files, so for this example we’ll
fake it with a background image and some judicious use of CSS properties. Listing
12-16 is a slightly revised party invitation with an empty IMAGE element. Listing
12-17 is a style sheet that sets the party.gif file as the background for IMAGE. It also
sets the width and height properties of IMAGE. Finally, it sets float to left. Figure
12-33 shows the result.

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 385

386 Part III ✦ Style Languages

Listing 12-16: A party invitation with an empty IMAGE
element

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”12-17.css”?>
<INVITATION>
<IMAGE />
<TEXT>
You’re invited to a party on December 31, 1999 to celebrate
the new millennium! You’re invited to a party on December 31,
1999 to celebrate the new millennium! You’re invited to a
party on December 31, 1999 to celebrate the new millennium!
You’re invited to a party on December 31, 1999 to celebrate
the new millennium! You’re invited to a party on December 31,
1999 to celebrate the new millennium! You’re invited to a
party on December 31, 1999 to celebrate the new millennium!
You’re invited to a party on December 31, 1999 to celebrate
the new millennium! You’re invited to a party on December 31,
1999 to celebrate the new millennium! You’re invited to a
party on December 31, 1999 to celebrate the new millennium!
You’re invited to a party on December 31, 1999 to celebrate
the new millennium! You’re invited to a party on December 31,
1999 to celebrate the new millennium!
</TEXT>

</INVITATION>

Listing 12-17: A style sheet that loads an IMAGE

INVITATION { display:block; }
IMAGE { background: url(party.gif) no-repeat center center;

width: 134px;
height: 196px;
float: left; }

TEXT { display: block }

The clear Property
The clear property specifies whether an element can have floating elements on its
sides. If it cannot, the element will be moved below any floating elements that
precede it. It’s related to the HTML <BR CLEAR=”ALL”> element. The possible
values are:

none right

left both

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 386

387Chapter 12 ✦ Cascading Style Sheets Level 1

Figure 12-33: The party invitation image floating on the left

The default value, none, causes floating elements to appear on both sides of the
element. The value left bans floating elements on the left-hand side of the element.
The value right bans floating elements on the right-hand side of the element. The
value both bans floating elements on the both sides of the element. For example,
suppose you add this rule to the style sheet of Listing 12-17:

TEXT { clear: left }

Now, although the IMAGE element wants to float on the left of TEXT, TEXT doesn’t
allow that as is shown in Figure 12-34. IMAGE is still on the left, but now TEXT is
pushed down below the image.

Figure 12-34: The party invitation image with the clear property
set to left

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 387

388 Part III ✦ Style Languages

Summary
In this chapter, you learned:

✦ CSS is a straightforward language for applying styles to the contents of
elements that works well with HTML and even better with XML.

✦ Selectors are a comma-separated list of the elements a rule applies to.

✦ CSS can apply rules to elements of a given type or elements with particular
CLASS or ID attributes.

✦ Many (though not all) CSS properties are inherited by the children of the
elements they apply to.

✦ If multiple rules apply to a single element, then the formatting properties
cascade in a sensible way.

✦ You can include C-like /* */ comments in a CSS style sheet.

✦ Lengths can be specified in relative or absolute units. Relative units are
preferred.

✦ The display property determines whether an element is block, inline, or a
list item.

✦ Font properties determine the font face, style, size, and weight of text.

✦ Color of elements is given in a 24-bit RGB space in either decimal,
hexadecimal, or as percentages.

✦ Background properties include color, image, image position, and image tiling.

✦ Text properties let you adjust line height, word spacing, letter spacing,
vertical and horizontal alignment, decoration, and capitalization.

✦ Box properties let you adjust the relative positions and spacing of elements
on the page, as well as wrapping borders around elements.

There are some limits to what CSS Level 1 can achieve. First, CSS1 can only attach
styles to content that already appears in the document. It cannot add content to
the document, even simple content like punctuation marks. Furthermore, it cannot
transform the content in any way such as sorting or reordering it. These needs are
addressed by XSL, the Extensible Style Language. Even from the perspective of
merely formatting content, CSS1 offers less than what you want. Most glaringly,
there’s no support for tables. And there are other, less-obvious deficiencies. CSS1
cannot handle right-to-left text like Hebrew and Arabic or vertical text such as
traditional Chinese. In the next chapter, we’ll delve into CSS Level 2, which
addresses these and other limitations of CSS1.

✦ ✦ ✦

3236-7 ch12.F.qc 6/29/99 1:08 PM Page 388

Cascading Style
Sheets Level 2

The Cascading Style Sheets Level 2 (CSS2) specification
was published by the W3C in 1998, surpassing CSS

Level 1 to make the formatting of XML and HTML documents
more powerful than ever. Of course, CSS2 fights the same
backwards-compatibility battles with HTML that CSS1 fought.
However, with XML, CSS2 can format content on both paper
and the Web almost as well as a desktop publishing program
like PageMaker or Quark XPress.

Most of the rules discussed here are not yet implemented
by the common browsers. Internet Explorer 5.0 and Mozilla
5.0 browsers should begin implementing some of these
styles, but full implementation is still some time away.

What’s New in CSS2?
CSS2 incorporates many features that Web developers and
designers have long requested from browser vendors. The
specification has more than doubled in size from CSS1, and is
not only a compilation of changes and new features, but a
redraft of the original specification. This makes this
specification a single source for all Cascading Style Sheet
syntax, semantics, and rules.

The complete CSS Level 2 specification is available on the
Web at http://www.w3.org/TR/REC-CSS2 and on the
CD in the specs/css2 folder. This is possibly the most read-
able specification document ever produced by the W3C
and is well worth rereading.

As with all new specifications it takes some time for the
popular software to support them fully, and CSS2 is no
exception. As you will discover while reading through this

On the
CD-ROM

Caution

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter:

What’s New in
CSS2?

Selecting elements

Formatting a page

Visual formatting

Boxes

Counters and
automatic numbering

Aural style sheets

✦ ✦ ✦ ✦

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 389

390 Part III ✦ Style Languages

chapter, both Internet Explorer 5.0 and Mozilla 5.0 are just starting to implement
these properties. The ones that have not yet been implemented have been noted
for your convenience.

The many new features of CSS2 enable you to more precisely select and format
elements in your document. New pseudo-classes and pseudo-elements enable you
to select the first child of an element, adjust an element when it receives focus, or
control the placement of other elements automatically around specified element
selections. Media types let you apply different styles to documents that will appear
in different media such as printed pages, computer monitors, and radio broadcasts.
Support for paged media like printouts and slide shows has been drastically
improved with much stronger control over page breaks. Elements can now be
formatted in tables as well as block and inline boxes. Sequences and lists can be
automatically numbered and indented. More support is provided for non-Western
languages like Arabic and Chinese. And for the first time you can apply aural styles
that specify not how a document is rendered, but rather how it is read. In addition,
CSS2 changes the implementation of some of CSS1’s features.

New Pseudo-classes
Pseudo-classes select elements that have something in common but do not
necessarily have the same type. The :hover pseudo-class, for example, refers to
whichever element the cursor is currently over, regardless of the element’s type.
CSS2 has seven new pseudo-classes, which are outlined below:

✦ :first-child: The :first-child pseudo-class selects the first child of an
element.

✦ :focus: The :focus pseudo-class selects the object that has the focus; that
is, the one into which input will go if the user types a key on the keyboard.

✦ :hover: The :hover pseudo-class selects a designated, but not activated
object.

✦ :lang: The :lang pseudo-class selects those elements written in a specific
language as identified by the xml:lang attribute.

✦ :first: The :first pseudo-class selects the first page of a document when it
is being printed.

✦ :left: The :left pseudo-class selects the left-hand pages (normally these
are the even-numbered pages) of a document printout, as if the hard copy
material were going to be in a book.

✦ :right: The :right pseudo-class selects the right-hand pages (normally
these are the odd-numbered pages) of a document printout, as if the hard
copy material were going to be bound.

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 390

391Chapter 13 ✦ Cascading Style Sheets Level 2

New Pseudo-Elements
Pseudo-elements identify specific elements by information other than what’s
readily available from the XML input. For example, in CSS1 and CSS2, :first-line
and :first-letter are pseudo-elements that select the first line and letter of an
element, even though these aren’t necessarily represented by any element.

CSS2 adds two new pseudo-elements, :after and :before. The :after pseudo-
element enables you to insert objects after the specified element. These objects can
be images, automatic counters, or text. The :before pseudo-element enables you
to insert objects before a specified element. These objects can also be images,
automatic counters, or text.

Media Types
CSS2 defines ten media types in which information is presented such as Braille,
computer displays, ink on paper, and television. CSS2 lets you specify different
styles for different media. For example, it’s more important to use larger fonts for
low-resolution computer displays than for 1200 dpi printing.

Paged Media
CSS2 provides control over page breaks and methods of identifying individual pages
in a document so that designers can format printed documents, without affecting
the appearance of the documents on screen.

Internationalization
As the Internet expands beyond the English- speaking world, more advances are
being made in supporting the thousands of languages spoken and written both
currently and throughout history. CSS2 adds support for Unicode and bi-directional
text so you can style Chinese and Hebrew as easily as English and French.

Visual Formatting Control
CSS2 adds more formatting properties to provide more precise control over the
objects that make up a document. You can now specify the absolute positions and
dimensions of elements. There are also more display styles to use when creating
elements. Shadows can be applied to text. Fonts and colors can be specified as “the
same as” a user interface element like a menu item or an icon label. You can change
the cursor shown when the pointer moves over different elements.

Tables
Improvements in the display property make it easy to treat XML elements as
table-like structures, better controlling their alignment.

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 391

392 Part III ✦ Style Languages

Generated Content
Automatically generated counters, numbering systems, and list markers enable
document authors to force applications to create information on the fly, as the
document is being rendered. Numbers can be recalculated on the fly whenever
a document changes, rather than having to be painstakingly inserted by hand.

Aural Style Sheets
In an effort to make information dispersal friendlier for all individuals, CSS2 has
incorporated specific properties that cover the features of a speech-synthesizing
system. These properties enable the document author to control the richness,
pitch, and other properties of the speaker’s voice for each element within the
document.

New Implementations
The CSS2 specification also changes the implementation of some features originally
included in CSS1. These include the cascade mechanism, pseudo-classes, and a
variety of other properties.

Pseudo-classes and Elements
The :link, :visited, and :active pseudo-classes no longer have to be
designated independently of each other, and can be used together.

Inheritance
In CSS1, only some properties were able to inherit values from their parents. In
CSS2, all properties can inherit their value from their parent element by setting the
value to the keyword inherit. When a property is inherited, the property takes on
the same value as the nearest parent element.

Because every property can have the value inherit, I will omit any explanation
of this value in the discussions of the individual properties that follow.

Cascade Mechanism
In CSS1 the !important designator can force an author’s style sheet to take
precedence over a reader’s style sheet. CSS2 reverses this precedence so that
reader preferences take precedence over author preferences. The default result,
when working with both author and reader style sheets, is that the user’s style
sheet overrides the author’s. However, if the author declares a property
!important, this adds more force to the specification, making it override the
reader’s style sheet. However, if the reader also declares a rule !important,
this overrides a !important declaration in the author’s style sheet. In other
words, the reader gets the last word.

Note

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 392

393Chapter 13 ✦ Cascading Style Sheets Level 2

Display Property
The default value of the display property is now inline rather than block.

Margins and Padding
In CSS1, some of the margin properties were ignored when other properties were
set, for example, margin-right would be ignored if both margin-left and width
were set. This decision was independent of the direction of the text and the align-
ment of the object. CSS2 makes the decision between altering the left or right
margin dependent on the direction of the text of the object.

Selecting Elements
Browsers that support CSS2, such as Internet Explorer and Mozilla, can more
specifically select an element or object to which a style rule is applied. Using CSS2
you can select elements based upon the pattern they create in the document tree,
by simply designating their element name, id, or through a combination of element
and attribute settings.

Pattern Matching
CSS2 pattern matching identifies specific elements in the document tree. The
syntax of the pattern-matching selector can be anything from a simple element
name to a complex system of contextual patterns like those shown in Table 13-1. An
element matches a pattern if it meets all of the requirements of the specified
pattern. In XML this includes case-sensitivity.

Table 13-1
CSS2 Selector Syntax for Pattern Matching

Syntax Meaning

* This is the universal selector, and matches any element.

X Matches any element by the name of “X”.

X Y Matches any element with the name “Y” that is a descendent of
an element with the name “X”. For example: all VERSE
descendents of SONNET elements.

X > Y Matches any “Y” element that is a child of an element “X”. For
example: all VERSE children of a STANZA element.

X:first-child Matches all “X” elements that are the first child of their parents.
For example: the first STANZA element in a SONNET element.

Continued

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 393

394 Part III ✦ Style Languages

Table 13-1 (continued)

Syntax Meaning

X:link Matches all “X” elements in a link whose target has not yet been
visited.

X:visited Matches all “X” elements in a link whose target has been visited.

X:active Matches all “X” elements that are currently selected.

X:hover Matches all “X” elements that currently have the mouse hovering
over them.

X:focus Matches all “X” elements that currently have the focus of the user
either through selection by a mouse, or by being ready to input
textual data.

X:lang(i) Matches all “X” elements that are designated to use the human
language i using the xml:lang attribute.

X + Y Matches all “Y” elements whose immediate sibling is an “X”
element. For example: a REFRAIN element that is immediately
preceded by a STANZA element.

X[attr] Matches all “X” elements with the “attr” attribute set, no matter
what the value of the attribute is. For example: an AUTHOR
element with a NAME attribute.

X[attr=”string”] Matches all “X” elements with whose “attr attribute has the
value “string”. For example: an AUTHOR element with the DATE
attribute with the value 19990723.

X[attr~=”string”] Matches any “X” element whose “attr” attribute is a space-
separated list of words of which one is “string”.

X[lang|=”langcode”] Matches all “X” elements with the “lang” attribute set to a specific
“langcode”.

X#myname Matches any “X” element whose id attribute has the value
“myname”.

The Universal Selector
The * symbol selects all elements in the document. This enables you to set default
styles for all elements. For example, this rule sets the default font to New York:

* { font-face: “New York” }

You can combine * with attribute, pseudo-class, and pseudo-element selectors to
apply styles to all elements with a specific attribute, attribute value, role, and so
forth. For example:

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 394

395Chapter 13 ✦ Cascading Style Sheets Level 2

*:before { content: “. “ counter(pgraph) “. “;
counter-increment: pgraph; /*Add 1 to pgraph*/

*[onmouseover] { text-decoration: blink }

If you are using the universal selector with just one other property specification,
the * can be omitted. For example,

before { content: “. “ counter(pgraph) “. “;
counter-increment: para }

[onmouseover] { text-decoration: blink }

Descendant and Child Selectors
You can select elements that are children or descendents of a specified type of
element with child and descendant selectors. For instance, you can select any
VERSE element that is contained within a SONNET element, or only those VERSE
elements that are direct children of a STANZA element. Consider Listing 13-1, which
shows Shakespeare’s 21st sonnet in XML.

Listing 13-1: Shakespeare’s 21st sonnet

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”shakespeare.css”?>

<SONNET>
<AUTHOR>William Shakespeare</AUTHOR>
<TITLE>Sonnet 21</TITLE>
<STANZA id=”st1”>
<VERSE>So is it not with me as with that Muse</VERSE>
<VERSE>Stirr’d by a painted beauty to his verse,</VERSE>
<VERSE>Who heaven itself for ornament doth use</VERSE>
<VERSE>And every fair with his fair doth rehearse;</VERSE>

</STANZA>
<STANZA id=”st2”>
<VERSE>Making a couplement of proud compare</VERSE>
<VERSE>With sun and moon, with earth and sea’s rich

gems,</VERSE>
<VERSE>With April’s first-born flowers, and all things

rare</VERSE>
<VERSE>That heaven’s air in this huge rondure hems.</VERSE>

</STANZA>
<STANZA id=”st3”>
<VERSE>O, let me, true in love, but truly write,</VERSE>
<VERSE>And then believe me, my love is as fair</VERSE>
<VERSE>As any mother’s child, though not so bright</VERSE>
<VERSE>As those gold candles fix’d in heaven’s air.</VERSE>

</STANZA>
<REFRAIN>

Continued

Tip

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 395

396 Part III ✦ Style Languages

Listing 13-1 (continued)

<VERSE>Let them say more that like of hearsay well,</VERSE>
<VERSE>I will not praise that purpose not to sell.</VERSE>

</REFRAIN>
</SONNET>

All VERSE elements are descendants of the SONNET element, but not immediate
children. Some VERSE elements are immediate children of STANZA elements and
some are immediate children of the REFRAIN element. Descendant selectors are
made up of two or more element designators separated by a space. A descendant
selector of the form SONNET VERSE matches a VERSE element that is an arbitrary
descendant of a SONNET element. In order to specify a specific layer of descendant,
you need to use the form SONNET * VERSE which forces the VERSE element to be at
least a grandchild, or lower descendent of the SONNET element.

To specify an immediate child element, you use the form STANZA > VERSE. This
applies the rule only to VERSE elements that are a direct child of a STANZA element,
and therefore won’t affect any VERSE children of a REFRAIN element.

You can combine both descendant and child selectors to find specific elements. For
example the following selector finds all VERSE elements that are the first child of a
REFRAIN element that is in turn a descendant of a SONNET element.

SONNET REFRAIN>VERSE:first { padding: “2cm” }

Applied to Listing 13-1, this rule selects the verse “Let them say more that like of
hearsay well,”.

Adjacent Sibling Selectors
Adjacent sibling selectors use a + sign between element designators to identify an
element that follows another element at the same level of the hierarchy. For
example, the following code selects all REFRAIN elements that share a parent with a
STANZA element and immediately follow the STANZA element.

STANZA+REFRAIN {color:red}

Attribute Selectors
Attribute selectors identify specific element/attribute combinations. Place the name
of the attribute being matched in square brackets after the name of the element.
For example, this rule turns all STANZA elements with a NUMBER attribute red:

STANZA[NUMBER] { color: red }

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 396

397Chapter 13 ✦ Cascading Style Sheets Level 2

This rule turns all STANZA elements that have a NUMBER attribute red, regardless of the
value of that attribute. This includes elements that have a default NUMBER attribute
provided by the DTD, but not STANZA elements that don’t have a NUMBER attribute.

To test attribute values, you use the same syntax you use to set an attribute value;
that is, the name followed by an equals sign, followed by the value in quotes. For
instance, to specify that only STANZA elements whose NUMBER attribute has the
value 3 should be turned red; you would use this rule:

STANZA [NUMBER=”3”] { color: red }

@rules
@rules do something other than select an element and apply some styles to it.
There are five of them:

1. @page: applies styles to a page (as opposed to elements on the page)

2. @import: embeds an external style sheet in the current style sheet

3. @media: groups style rules for attributes that should only be applied to one
kind of media

4. @font-face: describes a font used elsewhere in the style sheet

5. @charset: defines the character set used by the style sheet

@page
The @page rule selects the page box. Inside it the designer can specify the
dimensions, layout, orientation, and margins of individual pages. The page box is a
rectangular area, roughly the size of a printed page, which contains the page area and
the margin block. The page area contains the material to be displayed, and the edges
of the box provide a container in which page layout occurs between page breaks.
Unlike other boxes, page boxes do not have borders or padding, only margins.

The @page rule selects every page of a document. You can use one of the page
pseudo-class properties, :first, :left, or :right, to specify different properties
for various classes of pages.

Because the @page rule is unaware of the page’s content including its fonts, it can’t
understand measurements in ems and ex’s. All other units of measurement are
acceptable, including percentages. Percentages used on margin settings are a
percentage of the total page box. Margins can have negative values, which place
content outside of the area normally accessible by the application or printer. In
most cases, the information is simply truncated to the visible or printable area.

@import
The @import rule embeds a specified external styles sheet into an existing style
sheet. This enables you to build large style sheets from smaller, easier-to-

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 397

398 Part III ✦ Style Languages

understand pieces. Imported style sheets use a .css extension. For example, the
following rule imports the poetry.css file.

@import url(poetry.css);

@import rules may specify a media type following the name of the style sheet. If no
media type is specified, the @import rule is unconditional, and will be used for all
media types. For example, the following rule imports the printmedia.css file. The
declarations in this style sheet will only be applied to print media.

@import url(printmedia.css) print;

The next rule imports the continuous.css file that will be used for both computer
monitors and/or television display:

@import url(continuous.css) tv, screen;

Style sheets that are imported into other style sheets rank lower in the cascade
than the importing style sheet. For example, suppose shakespeare.css styles a
VERSE in the New York font while shakeprint.css styles a VERSE in the Times font. If
shakespeare.css imports shakeprint.css, then the verses will be styled in New York.
However, if shakeprint.css imports shakespeare.css, then verses will be styled in
Times.

@media
Many types of media are used to impart information to readers, and each media
type has its own customary styles and formats. You can’t very well have a speech
synthesizer reading Shakespeare in a monotone, now can you? And italics don’t
make much sense on a monospaced terminal.

CSS2 allows you to specify different styles for the same element displayed in
different media. For example, text is easier to read on the screen if it uses a sans
serif font, while text on paper is generally easiest to read if it is written in a serif
font. You can enclose style rules intended for only one medium in an @media rule
naming that medium. There can be as many @media rules in a document as there
are media types to specify. For example, these rules format a SONNET differently
depending on whether it’s being printed on paper or displayed on a screen.

@media print {
SONNET { font-size: 10pt; font-family: Times, serif }

}
@media screen {
SONNET { font-size: 12pt;

font-family: New York, Times New Roman, serif }
}
@media screen, print {
VERSE { line-height: 1.2 }

}

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 398

399Chapter 13 ✦ Cascading Style Sheets Level 2

The first two rules define styles specific to the print and screen media types
respectively. Since modern computer displays have much lower resolutions than
modern printers, it’s important to make the font larger on the screen than on the
printout and to choose a font that’s designed for the screen.

The third rule provides styles that apply to both of these media types. To designate
style instructions for multiple media types simultaneously, you simply list them
following the @media rule designator, separated by a comma.

Browsers that support CSS2 allow the document author to provide rules governing
how a document will be displayed for a particular type of media. For instance, it
would likely apply different rules when showing a document on the screen than
when sending it to a printer. CSS2 identifies ten media types. These are:

1. all all devices

2. aural (continuous, aural): speech synthesizers

3. braille (continuous, tactile): Braille tactile feedback devices for the sight
impaired

4. embossed (paged, tactile): paged Braille printers

5. handheld (visual): PDAs and other handheld devices such as Windows CE
palmtops, Newtons, and Palm Pilots.

6. print (paged, visual): all printed, opaque material

7. projection (paged, visual): presentation and slide shows, whether projected
directly from a computer or printed on transparencies

8. screen (continuous, visual): bitmapped, color computer displays

9. tty (continuous, visual): dumb terminals and old PC monitors that use a
fixed-pitch, monochromatic character grid

10. tv (aural/visual): television-type devices, i.e. low-resolution, analog display,
color

Browsing software does not have to support all of these types. In fact, I know of no
single device that does support all of these. However, style-sheet designers should
probably assume that readers will use any or all of these types of devices to view
their content.

Of course, the characteristics of individual media change over time. My first printer
was 144dpi, but such low-resolution printers should be relatively rare in the 21st

century. On the other hand, monitors will eventually reach resolutions of 300 dpi or
more; and color printing is rapidly becoming accessible to more and more users.

Some properties are only available with specific media types. For instance, the
pitch property only makes sense with the aural media type. CSS2 does not specify
an all-inclusive list of media types, although it does provide a list of current values
for the @media rule. These values are not case-sensitive.

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 399

400 Part III ✦ Style Languages

@font-face
The @font-face rule provides a description of a typeface used elsewhere in
the style sheet. It can provide the font’s name, a URL from which the font can be
downloaded, and detailed information about the metrics of the font that allow a
reasonable facsimile to be synthesized. The @font-face rule also controls how
the software selects the fonts for a document with author-specified fonts. You
can suggest identical font matching, intelligent font matching, synthesizing the
requested font, downloading the fonts from the server, or rendering the font.
These methods are described below:

✦ Identical Font Matching: The user’s software chooses the local system font
with the same family name. Fonts with the same name may not necessarily
match in appearance. The font the client is using could have originated from
a different source than the font located on the server.

✦ Intelligent Font Matching: The software chooses a font that is available on
the client system and is closest in appearance to the requested font. This is
not an exact match, but it should be close. The font is matched based on font
type, whether it uses serifs, its weight, the height of its capital letters, and
other font characteristics.

✦ Font Synthesis: The Web browser builds a font that closely resembles the
designated font, and shares its metrics. When a font is synthesized, it will
generally be a closer duplicate than a font found by matching. Synthesis
requires accurate substitution and position information in order for all the
font characteristics to be preserved.

✦ Font Download: The browsing software downloads the font from a specified
URL. The process is the same as downloading an image or sound to be
displayed with the current document. Users that download fonts will
experience delays similar to those that occur when downloading images.

✦ Font Rendering: The last alternative for managing fonts is progressive
rendering. This is a combination of downloading and matching which enables
the browser to create a temporary font so a document’s content can be read
while the original font downloads. After the “real” font has been downloaded,
it replaces the synthesized font in subsequent documents. To avoid having a
document rendered twice, your font description must contain the metric
information describing the font. The more complete a font’s metric informa-
tion, the less likely a document will need to be re-rendered once the download
is complete.

CSS2 enables the document author to specify which of these methods, if any, are
used when a designated font is not available on the reading system. The @font-
face rule provides a font description, created out of a series of font descriptors,
defining detailed information about the fonts to be used on the page. Each font
descriptor characterizes a specific piece of information about the font. This
description can include a URL for the font, the font family name, and the font size.

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 400

401Chapter 13 ✦ Cascading Style Sheets Level 2

Font descriptors are classified into three types:

✦ Those that provide a link between the style sheet usage of the font and its
description.

✦ Those that provide a URL for the location of the font or its pertinent
information.

✦ Those that provide character information for the font.

The @font-face rule applies only to the fonts specified within the style sheet. You
will need one @font-face specification for each font in the style sheet. For
example:

@font-face { font-family: “Comic Sans”;
src: url(http://metalab.unc.edu/xml/fonts/comicsans)}

@font-face { font-family: “Jester”; font-weight: bold;
font-style: italic}

TITLE { font-family: “Comic Sans”}
AUTHOR { font-family: “Jester”, serif}

As the software reads this style sheet, it will try to find a set of rules that specify
how each element should be rendered. The style sheet sets all TITLE elements to
the Comic Sans font family, at the same time it sets all AUTHOR elements to the
Jester font. A Web browsing application that supports CSS1 will search for the
Comic Sans and Jester font families. If it can’t find them, then it will use its default
text font for the Comic family, and the specified fall-back serif font for the Jester
family. The @font-face rule’s font descriptors will be ignored. CSS1 software will
be able to safely skip over this command without encountering an error.

Applications that support CSS2 will examine the @font-face rules in an attempt to
match a font description to the Comic Sans and Jester fonts. In the above example,
the browsing software will find a URL from which it can download the Comic Sans
font. If Comic Sans were found on the client system, the software would have used
that instead of downloading the font. In the case of Jester, the users software will
use one of the matching rules, or the synthesis rule to create a similar font from the
descriptors provided. If the Web browser could not find a matching @font-face
rule for the font family specified, it would have attempted to match the fonts using
the rules specified for CSS1.

CSS2 allows any font descriptor that is not recognized, or useful to the browser, to
be skipped. This provides a built-in means for increasing the descriptors in an
effort to improve the font substitution, matching, or synthesis rules being used.

@charset
There are three ways to specify the character set in which a style sheet is written,
and they take precedence in the following order:

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 401

402 Part III ✦ Style Languages

1. An HTTP “charset” parameter in a “Content-Type” field

2. The @charset rule

3. Attributes and properties associated with the document, such as HTML’s
charset attribute used with the LINK element

Each style sheet can contain a single @charset rule. The @charset rule must
appear at the very beginning of the document, and can not be preceded by any
other characters. The syntax for using @charset is:

@charset “character set name”

The character set name specified in this statement must be a name as described
in the IANA registry. You can see a partial list of character sets in Table 7-7 in
Chapter 7. To specify that a style sheet is written in Latin-1, you would write:

@charset “ISO-8859-1”

Character sets are discussed in great detail in Chapter 7, Foreign Languages and
non-Roman Text.

Pseudo Elements
Pseudo-elements are treated as elements in style sheets but are not necessarily
particular elements in the XML document. They are abstractions of certain parts of
the rendered document after application of the style sheet; for example, the first
line of a paragraph. Pseudo-elements are not case-sensitive, and may only appear
directly after the subject of a style-sheet selector. CSS2 introduces two new pseudo-
elements: :after and :before.

The :before and :after pseudo-elements select the location immediately before
and after the element that precedes them. The content property is used to put
data into this location. For example, this rule places the string ————— between
STANZA objects to help separate the stanzas. The line breaks are encoded as \A in
the string literal:

STANZA:after {content: “\A—————\A”}

As well as a literal string, you can use one of these four keywords as the value of
the content property:

1. open-quote

2. close-quote

3. no-open-quote

4. no-close-quote

Cross-
Reference

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 402

403Chapter 13 ✦ Cascading Style Sheets Level 2

The open-quote and close-quote keywords insert the appropriate quote
character for the current language and font (for example, “ or ‘). The no-open-
quote and no-close-quote keywords do not insert any characters, but increment
the level of nesting as if quotes were used. With each level of nesting, the quote
marks switch from double to single or vice versa.

You can also use the attr(X) function as the value of the content property to
insert the value of the X attribute before or after the identified element.

Finally, you can insert the current value of an automatic counter using either the
counter() or counters() function. This has two distinct forms: counter(name)
or counter(name, style). The default style is decimal.

Pseudo Classes
Pseudo-class selectors select elements based on aspects other than the name,
attributes or content of the element. For example, a pseudo-class may be based on
the position of the mouse, the object that has the focus, or whether an object is a
link. An element may repeatedly change its pseudo-classes as the reader interacts
with the document. Some pseudo-classes are mutually exclusive, but most can be
applied simultaneously to the same element, and can be placed anywhere within an
element selector. When pseudo-classes do conflict, the cascading order determines
which rules are activated.

:first-child
The :first-child pseudo-class selects the first child of the named element,
regardless of its type. For example, in Listing 13-1 the VERSE element whose
contents are “So is it not with me as with that Muse” would be the first child of the
STANZA element and would be designated by this rule:

STANZA:first-child {font-style: bold}

:link, :visited, :active
In CSS1 :link, :visited, and :active pseudo-classes are mutually exclusive. In
CSS2, :link and :visited are still mutually exclusive (as they logically have to
be), but you can use either of these in conjunction with :active. For example, the
following code fragment assumes the AUTHOR element has been designated as a
link, and alters the colors of the text depending upon the current state of the link. In
the following code fragment, an unvisited link is set to red, a visited link will be
displayed as gray, and an active link will be shown as lime green while the cursor is
being placed over it.

AUTHOR:link { color: “red” }
AUTHOR:visited { color: “gray” }
AUTHOR:active { color: “lime” }

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 403

404 Part III ✦ Style Languages

:hover
The :hover pseudo-class selects elements which the mouse or other pointing
device is pointing at, but without the mouse button depressed. For instance, this
rule colors the AUTHOR element red when the cursor is pointing at it:

AUTHOR:hover { color: “red” }

The AUTHOR element returns to its normal color when the cursor is no longer
pointing at it.

:focus
The :focus pseudo-class refers to the element that currently has the focus. An
element has the focus when it has been selected and is ready to receive some sort
of text input. The following rule makes the element with the focus bold.

:focus { text-style: “bold” }

:lang()
The :lang() pseudo-class selects elements with a specified language. In XML this
is generally done via the xml:lang attribute and/or the encoding attribute of the
XML declaration. The following rule changes the direction of all VERSE elements
written in Hebrew to read right to left, rather than left to right:

VERSE:lang(he) {direction: “rtl” }

:right, :left, :first
The :right, :left, and :first pseudo-classes are only applied to the @page rule.
They enable you to specify different styles for the first page of a document, for the
left (generally even-numbered) pages of a document, and for the right (generally
odd-numbered) pages of a document. For example, these rules specify very large
margins:

@page:right { margin-top: 5cm;
margin-bottom: 5cm;
margin-left: 7cm;
margin-right: 5cm }

@page:left { margin-top: 5cm;
margin-bottom: 5cm;
margin-left: 5cm;
margin-right: 7cm }

@page:first { margin-top: 10cm;
margin-bottom: 10cm;
margin-left: 10cm;
margin-right: 10cm }

The only properties you can set in a rule for these pseudo-classes are the margin
properties.

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 404

405Chapter 13 ✦ Cascading Style Sheets Level 2

Formatting a Page
The @page selector refers to a page. It’s used to set properties that apply to the
page itself rather than an individual XML element on the page. Each page of a
document has a variety of properties applied to it, including the page size,
orientation, margins, and page breaks. These properties cascade to any element
placed on the page. Optional pseudo-classes can specify different properties for the
first page, right-facing pages, and left-facing pages.

CSS2 makes the reasonable assumption that pages are rectangular. Given that
assumption, a page can posses the box properties you’re familiar with from CSS1
including margins and size. However, a page box does not have borders or padding
since these would naturally fall outside the physical page.

Size Property
In an @page rule, the size property specifies the height and width of the page. You
can set the size as one or two absolute lengths or as one of the four keywords
auto, portrait, landscape, or inherit. If only one length is given, the page will
be a square. When both dimensions are given, the first is the width of the page; the
second is the height. For example,

@page { size: 8.5in 11in }

The auto setting automatically sizes to the target screen or sheet. landscape
forces the document to be formatted to fit the target page, but with long sides
horizontal. The portrait setting formats the document to fit the default target
page size, but with long sides vertical.

Margin Property
The margin property controls the margins of the page — the rectangular areas on
all four sides in which nothing is printed. This property is used as a shorthand for
setting the margin-top, margin-bottom, margin-right, and margin-left
properties separately. These properties are the same as they are for boxes in CSS1.
For example, this rule describes an 8.5 by 11 inch page with one-inch margins on all
sides.

@page { size: 8.5in 11in; margin: 1.0in }

Mark Property
CSS2 offers the mark property to make marks to appear on a page delineating where
the paper should be cut and/or how pages should be aligned. These marks appear
outside of the page box. A page box is simply the viewable area of the document
that can be affected by the @page rule. If you were to look at a printed 8 1/2" x11"

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 405

406 Part III ✦ Style Languages

piece of paper, the page box would be everything inside the printable region on that
paper, what we normally think of as the space inside the printer margins. The
software controls the rendering of the marks, which are only displayed on absolute
page boxes. Absolute page boxes cannot be moved, and are controlled by the
general margins of the page. Relative page boxes are aligned against a target page,
in most cases forcing the marks off the edge of the page. When aligning a relative
page box, you are essentially looking at the page in your mind’s eye, and using
margin and padding properties to move the printed area of that page about the
physical paper.

The mark property has four possible values—crop, cross, inherit, and none—
and can only be used with the @page element. Crop marks identify the cutting
edges of paper. Cross marks, also known as registration marks, are used to align
pages after printing. If set to none, no marks will be displayed on the document.
The following rule specifies a page with both crop and cross marks:

@page { mark: crop cross}

Page Property
As well as using the @page selector to specify page properties, you can attach page
properties to individual elements using the page property. To do this you write an
@page rule that specifies the page properties, give that @page rule a name, and then
use the name as the value of the page property of a normal element rule. For
example, these two rules together say that a SONNET will be printed in landscape
orientation.

@page rotated { size: landscape}
SONNET { page: rotated}

When using the page property, it’s possible for different sibling elements to specify
different page properties. If this happens, a page break will be inserted between the
elements. If a child uses a different page layout than its parent, the child’s layout
will take precedence. For instance, in the following example the two tables are
rendered on landscape pages, possibly on the same page if space allows. Because
of the layering of the elements in the document, the assignment of the rotated page
to the SONNET element is over ridden, and not used.

@page narrow { size: 9cm 18cm}
@page rotated { size: landscape}
STANZA { page: narrow}
SONNET { page: rotated}

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 406

407Chapter 13 ✦ Cascading Style Sheets Level 2

Page-Break Properties
The page-break-after property forces or prohibits the insertion of a page break
after the current object. The page-break-before property forces or prohibits the
insertion of a page break before the current object. The page-break-inside
property allows or prohibits the insertion of a page break inside the current object.
These can be used to keep together paragraphs of related text, headings and their
body text, images and their captions, or to keep complete tables on the same page.

When either of these properties is set to auto, a page break is neither forced nor
prohibited after the current box. A setting of always forces a page break. The
avoid setting prevents a page break from appearing. The left and right settings
force the insertion of either one or two page breaks as necessary in order to force
the next page to be either a left- or right-hand page. This is useful at the end of a
chapter in a book in which chapters generally start on right-hand pages, even if it
leaves blank pages.

The following rule inserts a page break before and after every SONNET element in a
document but not inside a sonnet so that each sonnet appears on its own page.

SONNET { page-break-before: always;
page-break-after: always;
page-break-inside: avoid }

Visual Formatting
CSS2 adds many new formatting features that provide more control over the layout
of your XML document. The display property has many new values that expand
on the basic block and inline types of CSS1. The cursor property enables you to
identify what sort of cursor to display over your object. You can control the height
and width of all object boxes. CSS2 also gives you the ability to modify your
document objects’ visibility, clipping size, color, font, text shadows, alignment, and
control how an object’s contents are dealt with if overflow should occur.

Display Property
The expansion of the display property in CSS2 provides more complete layout
options, most notably tables. In CSS2, there are 17 possible values of the display
property:

inline

block

list-item

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 407

408 Part III ✦ Style Languages

run-in

compact

marker

table

inline-table

table-row-group

table-header-group

table-footer-group

table-row

table-column-group

table-column

table-cell

table-caption

none

Block elements are drawn by breaking out space around the objects forcing buffer
of space around their contents. Inline elements work without setting aside separate
space. Table elements are various parts of a grid. Inline elements are like a word in
a sentence. Their position moves freely as text is added and deleted around them.
Block objects are more fixed and at most move up and down but not left and right
as content is added before and after it. Block items include such items as tables,
lists, and list items. Most display types are just modifications of the main block or
inline types.

Inline Objects
Inline object boxes are laid horizontally in a row starting from the top of the
containing box of the surrounding page or block element. Between these boxes the
variety of horizontal margins, borders, and padding spaces are implemented. You
can also align these types of boxes vertically in a variety of ways including
character baselines, box bottoms, or box tops.

In CSS1, the block value was the default display type of all objects, but that has
changed in CSS2. Elements are now automatically displayed as inline unless
otherwise designated.

Block Objects
Block objects are laid out vertically, one on top of the other. The first block is laid in
the top left corner of the containing block, then the second block is placed below it,
also flush against the left edge of the containing block. The vertical distance
between each block is defined by the individual block’s margin and padding
properties. For example, this rule identifies the VERSE, STANZA, and REFRAIN

Note

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 408

409Chapter 13 ✦ Cascading Style Sheets Level 2

elements as individual blocks. Figure 13-1 shows Listing 13-1 when this rule (and
only this rule) is applied. Note that the AUTHOR and the TITLE are on the same line
because they are inline by default. However, when a block element follows an inline
element, a line break is required after the block element.

VERSE, STANZA, REFRAIN { display: block }

Figure 13-1: When displayed as block elements, Shakespeare’s sonnet starts to take on a
more normal appearance.

None
The value of none forces the element to not generate a display box of any kind for
formatting the content of the element. In other words, the element will not have any
effect on the layout of the document. Child and other descendant elements don’t
generate boxes either, even if the display property is set for them. When display
is none, the box is not just invisible; it actually does not exist.

Compact and Run-in Values
The compact and run-in values of the display property identify an element as
either a block or an inline box depending on context. Properties used on items
declared as these types will be effective based upon their final rendered status. A
compact box is placed in the margin of the block box that follows it if it will fit. If
the box that follows it is not a block box, or the compact box will not fit in the
margin, then it is rendered simply as another block box.

The run-in value enables you to format normal block elements as the first inline
block of the next block element in the code. If the next element is not a block
element, then the run-in element is formatted as a block element.

Marker Value
Setting the display property to the marker value identifies a block that’s formed
by content generated in the style sheet rather than copied in from the XML
document. This value is only used with the :before and :after pseudo-elements
that have been attached to block-level elements.

Table Display Values
One of the most important new features in CSS2, especially for XML developers who
often create tabular structures with tags that look nothing like HTML’s table tags, is
support for table layout of elements. CSS2 adds support for styling elements as
parts of tables using these ten values of the display property:

1. table

2. inline-table

3. table-row-group

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 409

410 Part III ✦ Style Languages

4. table-header-group

5. table-footer-group

6. table-row

7. table-column-group

8. table-column

9. table-cell

10. table-caption

For example, setting the display property to table indicates that the selected
element is a block-level container for various smaller children that will be arranged
in a grid. The inline-table value forces the table to function as an inline object,
enabling text to float along its side, and for multiple tables to be placed side by
side. The table-caption value formats an element as a table caption. The table-
row-group, table-header-group, and table-footer-group values create
groups of data cells that work as a single row, as if it was defined using the table-
row value. The table-column-group creates a group of data cells that work as a
single column that was defined using the table-column value. XML elements that
appear in table cells have — naturally enough — a display property with the value
table-cell.

For example, if you were to configure a sonnet in a table-like structure, you might
set each STANZA and REFRAIN to be a table and each VERSE to be a table row. The
style sheet to create this effect might include these three rules:

STANZA { display: table }
REFRAIN { display: table }
VERSE { display: table-row }

Width and Height Properties
The default height of a box in which each element appears is calculated from the
combined height of the element’s contents. The default width of each element’s box
is calculated from the combined width of the element’s contents or the width of the
viewable area on the page or the screen. Inline elements and table elements that
contain text always have these automatically calculated dimensions. However, the
style-sheet designer can change these defaults for block-level elements and
replaced inline elements by specifying values for six properties:

1. min-width

2. max-width

3. min-height

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 410

411Chapter 13 ✦ Cascading Style Sheets Level 2

4. max-height

5. height

6. width

The min-height and min-width properties specify the smallest dimensions that
the object can be displayed with. The maximum properties are a maximum size for
the box regardless of the total size of its contents. The Web browser is free to
adjust the size of the box within these limits. However, if height and width are set,
then they determine exactly the size of the box.

STANZA { width: 100px;
Height: 100px }

Overflow Property
When the size of a box is precisely specified using the width and height
properties, it’s entirely possible that its contents may take up more area than the
box actually has. The overflow property controls how the excess content is dealt
with. This property can be set to one of four values:

1. auto

2. hidden

3. scroll

4. visible

If overflow is set to auto, scroll bars are added if necessary to enable the user to
see excess content. If overflow is set to hidden, the excess content is simply
truncated. If overflow is set to scroll, scroll bars are added whether there’s
overflow or not. Finally, if overflow is set to visible, the complete contents are
shown, if necessary by overriding the size constraints that were placed on the box.
Figure 13-2 shows the sonnet when the STANZA’s overflow property is set to scroll
with this rule:

STANZA { overflow: scroll }

The Shakespeare sonnet’s stanzas with scroll bars

Clip Property
The clip property identifies the portion of an object’s content that will be visible
when rendered by the user’s software. Generally the clipping region will match the
outside borders of the element’s box, but the region can be altered. This property
applies only to elements with an overflow attribute that is set to a value other
than visible.

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 411

412 Part III ✦ Style Languages

In CSS2, you can only clip to rectangular regions. Set the clip property to
rect(top, bottom, left, right) where top, bottom, left, right are the
offsets on each side. If the clipped object still exceeds the viewable area of the
browser’s window; the contents will be further clipped to fit in the window. The
following rule uses the clip property with a STANZA block element:

STANZA { clip: rect(5px, 5px, 5px, 5px);
overflow: auto }

Visibility Property
The visibility property controls whether the contents of an element are seen.
The four possible values of this property are:

1. visible

2. hidden

3. collapse

4. inherit

If visibility is set to visible, the contents of the box, including all borders are
shown. If visibility is set to hidden, the box’s contents borders are not seen.
Invisible boxes still take up space and affect the layout of the document. Setting
visibility to hidden is not the same as setting display to none.

If visibility is set to collapse, it is the same as hidden for any object, except a
table row or column. However, for table rows and columns, it completely hides (as
with display: none) the row or column.

Cursor Property
The cursor is the arrow/hand/insertion bar/other icon that indicates the position of
the pointer on the screen. A cursor is the visible representation of your mouse’s
logical position that is displayed on the viewable area of your computer monitor.
The cursor property specifies the cursor a user’s software should display when a
reader moves the mouse over a particular object. CSS2 allows these 16 cursor
values:

1. auto: the browser chooses a cursor based on the current context. This is the
default value

2. crosshair: a simple cross-hair cursor

3. default: the platform-dependent default cursor, usually an arrow

4. hand: a hand

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 412

413Chapter 13 ✦ Cascading Style Sheets Level 2

5. move: crossed arrows indicating something to be moved

6. e-resize: east-pointing arrow (up is north)

7. ne-resize: northeast-pointing arrow

8. nw-resize: northwest-pointing arrow

9. n-resize: north-pointing arrow

10. se-resize: southeast-pointing arrow

11. sw-resize: southwest-pointing arrow

12. s-resize: south-pointing arrow

13. w-resize: west-pointing arrow

14. text: I-beam

15. wait: stop watch, spinning beach ball, hourglass or other icon indicating the
passage of time

16. help: question mark

The following rule uses the cursor property to says that the hand cursor should be
used when the pointer is over a VERSE element.

VERSE { cursor: hand }

You can also use a custom cursor that’s loaded from an image file by giving a URL
for the image. Generally you’ll provide cursors in several formats in a comma-
separated list, the last of which is the name of a generic cursor. For example:

VERSE { cursor: url(“poetry.cur”), url(“poetry.gif”), text }

Color-Related Properties
CSS2 identifies colors as RGB values in the Standard Default Color Space for the
Internet (sRGB). The way these colors are represented varies from browser to
browser, but this specification provides an unambiguous and objectively measur-
able definition of a color’s appearance. Web browsers that conform to the standard
perform a gamma correction on the colors identified by the CSS2 specification.
sRGB identifies a display gamma of 2.2 under most viewing conditions. This means
that for most computer hardware, the colors given through CSS2 properties will
have to be adjusted for an effective display gamma of 2.2.

Only colors identified in CSS2 rules are affected. Colors used in images are
expected to carry their own color correction information.

Note

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 413

414 Part III ✦ Style Languages

Color Property
The color property specifies the foreground color for the text content of an
element. It may be given as a literal color name like red or an RGB value like
#CC0000. Color names (or values) include aqua, black, blue, fuchsia, gray,
green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow.

The following style rules apply color to three elements, using all three methods of
identifying color. It specifies the RGB hex value #FF0000 for AUTHOR elements, all
TITLE elements to appear in red, and all VERSE elements to appear in
rgb(255,0,0). These values are all red:

AUTHOR { color: #FF0000}
TITLE { color: red}
VERSE { color: rgb(255,0,0) }

Gamma Correction

At its most basic, gamma correction controls the brightness of images so they are displayed
accurately on computer screens. Images that have not been corrected can appear
bleached-out or too dark. In order to make gamma correction easier to understand, let’s
look at the images displayed on your computer screen.

Practically every computer monitor has a gamma of 2.5. This means that its intensity to volt-
age curve is roughly a function of the power 2.5. If you send your monitor a message for a
specific pixel to have an intensity of x, that pixel will automatically have an intensity of
x^2.5 applied to it. Because the range of voltage is between 0 and 1, this means that your
pixel’s intensity is lower than you wish. To correct this, the voltage to the monitor has to be
“gamma corrected.”

The easiest way to correct this problem is to increase the voltage before it gets to the mon-
itor. Since the relationship between the voltage and the brightness is known, the signal can
be adjusted to remove the effect of the monitor’s gamma. When this is done properly, the
computer display should accurately reflect the image input. Of course, when you are
gamma correcting an image, the light in your computer room, the brightness and contrast
settings on your monitor, and your personal taste will also play a role.

When attempting to do gamma correction for the Web, platform idiosyncrasies come into
play. Some UNIX workstations automatically correct for gamma variance on their video card,
as does the Macintosh, but most PCs do not. This means that an image that looks good on
a PC will be too light on a Mac; and when something looks good on a Mac, it will be too
dark on a PC. If you are placing colored images or text on the Internet, you can’t please all
of the people all of the time. Currently, none of the graphic formats used on the Web can
encode gamma correction information.

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 414

415Chapter 13 ✦ Cascading Style Sheets Level 2

System Colors
CSS2 enables you to specify colors by copying them from the user’s native GUI.
These system colors can be used with all color-related properties. Style rules based
on system colors take into account user preferences, and therefore offer some
advantages, including:

1. Pages that fit the user’s preferred look and feel.

2. Pages that are potentially more accessible for users with settings that might
be related to a disability.

Table 13-2 lists CSS2-system color keywords and their descriptions. Any of the color
properties can take on these values.

Table 13-2
Additional System Colors to Be Used with

All Color-related Properties

System Color-keywords Description

ActiveBorder Active window border.

ActiveCaption Active window caption.

AppWorkspace Background color of multiple document interface.

Background Desktop background.

ButtonFace Face color for three-dimensional display elements.

ButtonHighlight Dark shadow for three-dimensional display
elements (for edges facing away from the light
source).

ButtonShadow Shadow color for three-dimensional display
elements.

ButtonText Text on push buttons.

CaptionText Text in caption, size box, and scroll-bar arrow box.

GrayText Grayed (disabled) text. This color is set to #000 if
the current display driver does not support a solid
gray color.

Highlight Items selected in a control.

HighlightText Text of items selected in a control.

InactiveBorder Inactive window border.

Continued

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 415

416 Part III ✦ Style Languages

Table 13-2 (continued)

System Color-keywords Description

InactiveCaption Inactive window caption.

InactiveCaptionText Color of text in an inactive caption.

InfoBackground Background color for tooltip controls.

InfoText Text color for tooltip controls.

Menu Menu background.

MenuText Text in menus.

Scrollbar Scroll bar gray area.

ThreeDDarkShadow Dark shadow for three-dimensional display
elements.

ThreeDFace Face color for three-dimensional display elements.

ThreeDHighlight Highlight color for three-dimensional display
elements.

ThreeDLightShadow Light color for three-dimensional display elements
(for edges facing the light source).

ThreeDShadow Dark shadow for three-dimensional display
elements.

Window Window background.

WindowFrame Window frame.

WindowText Text in windows.

For example, the following style rule sets the foreground and background colors of
a VERSE to the same colors used for the foreground and background of the
browser’s window.

VERSE { color: WindowText; background-color: Window}

Font Properties
Font properties in CSS1 are fairly complete. CSS2 doesn’t add a lot to them. Changes
include:

✦ The addition of the font-size-adjust property

✦ The scaling factor between the different keyword font sizes (xx-small, x-
small small, medium, large, x-large, xx-large) is 1.2, not 1.5

✦ The font-stretch property can adjust the kerning

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 416

417Chapter 13 ✦ Cascading Style Sheets Level 2

font-size-adjust Property
The legibility of a font is generally less dependent upon the size of the font, than on
the value of its x-height. The aspect value of a font is the font-size divided by the x-
height. The higher this number, the more likely it is that a font will be legible when
the font is a small size. The lower the aspect value, the more likely it is that the font
will become illegible as it is shrunk. When browsers perform straightforward font
substitutions that rely solely on the font size, the likelihood that the resulting font
will be illegible is greatly increased. The font-size-adjust property controls the
aspect value of elements that preserve the x-height of the first choice font in the
substitute font when using the font-family property.

The Verdana and Times New Roman fonts provide a good example of this legibility
issue. Verdana has an aspect value of .58, while Times New Roman has an aspect
value of .46. Therefore, Verdana will remain legible at a smaller size than Times New
Roman, but may appear too large if substituted directly for Times New Roman at
the same font size.

If the value of the font-size-adjust property is none, the font’s x-height is not
preserved. If a number is specified, the value identifies the aspect value of the first-
choice font, and directs the software to scale the substitution font accordingly. This
system helps you force legibility across all platforms, and all supporting applica-
tions. The following rules use the font-size-adjust property to maintain
legibility of fonts while implementing a range of sizes.

VERSE { font-size-adjust: “.58”; }
font-family: “Verdana, Times New Roman,

Helvetica, Arial “ ; }
AUTHOR { font-size-adjust: “.46” }

font-family: “Times New Roman, Goudy Old Style,
serif, fantasy”; }

font stretch Property
The font-stretch property controls the kerning of a font; that is, the amount of
space found between two characters in the font. There are 12 legal keyword values
for this property:

1. normal

2. ultra-condensed

3. extra-condensed

4. condensed

5. semi-condensed

6. semi-expanded

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 417

418 Part III ✦ Style Languages

7. expanded

8. extra-expanded

9. ultra-expanded

10. wider

11. narrower

12. inherit

The default is normal. The values ultra-condensed through ultra-expanded are
organized from most condensed to least condensed. Each is a small change in the
horizontal spacing of the text. The values wider and narrower increase or
decrease the kerning, without increasing or decreasing it more past the ultra-
expanded or ultra-condensed level.

The following style sheet rules use a variety of kernings.

TITLE { font-stretch: “ultra-expanded” }
AUTHOR { font-stretch: “expanded” }
STANZA { font-stretch: “ultra-condensed” }
VERSE { font-stretch: “wider” }
REFRAIN VERSE { font-stretch: “narrower” }

The font Shorthand Property and System Fonts
In CSS1, the font property is a shorthand property that enables you to select font
style, variant, weight, size, and family with one rule. In CSS2, the font property may
also have one of these six keyword values that match all of a font’s properties to
the properties of particular elements of the browser user interface or the user’s
system:

1. caption: the font used for captioned controls like buttons

2. icon: the font that labels icons

3. menu: the font used in menus

4. message-box: the font used for display text in dialog boxes

5. small-caption: the font used for labels on small controls

6. status-bar: the font used in the browser status bar

For example this rule says that a SONNET element will be formatted with the same
font family, size, weight, and style as the font the browser uses in its status bar:

SONNET { font: status-bar }

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 418

419Chapter 13 ✦ Cascading Style Sheets Level 2

Text Shadow Property
The text-shadow property applies shadows to text. The value is a comma-
separated list of shadow effects to control the order, color, and dimensions of the
shadows that are overlaid on the text. Shadows do not extend the size of the block
containing the text, but may extend over the boundaries of the block. The stacking
level of the shadows is the same as the element itself.

The value of the text-shadow includes a signed length for the offset of the
shadow. It may also include a blur radius and a shadow color. The shadow offset
is specified with two signed lengths that specify how far out from the text the
shadow will extend. The first length specifies the horizontal distance from the
text; the second length specifies vertical depth of the shadow. If you apply a
negative value to the shadow offsets, the shadow will appear to the left and above
the text, rather than below and to the right. An optional third signed length
specifies the boundary of the blur effect. A fourth optional value specifies the
color of the shadow. For example,

TITLE { text-shadow: red –5pt –5pt –2pt }
AUTHOR { text-shadow: 5pt 4pt 3pt green }
VERSE { text-shadow: none }

Vertical Align Property
The vertical-align property controls the vertical alignment of text within an
inline box that is found within a block element. It’s most commonly used with table
cells. The eight possible alignment keyword values are:

1. baseline: aligns the baseline of the inline box with the baseline of the block box

2. sub: aligns the baseline of the inline box to the position for subscripts inside
the parent block box

3. super: raises the baseline of the inline box to the position for superscripts in
the parent’s box

4. top: aligns the top of the inline box with the top of the line

5. middle: aligns the midpoint of the inline box with the baseline of the block
box, plus half of the x-height of the block box

6. bottom: aligns the bottom of the inline box with the bottom of the line

7. text-top: aligns the top of the inline box with the top of the parent element’s
font

8. text-bottom: aligns the bottom of the inline box with the bottom of the
parent element’s font

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 419

420 Part III ✦ Style Languages

You can also set the vertical-align property to a percentage that raises
(positive value) or lowers (negative value) the box by the percentage of the line
height. A value of 0% is the same as the baseline keyword. Finally, you can set
vertical-align to a signed length that will raise or lower the box by the specified
distance. A value of 0cm is the same as the baseline keyword.

Boxes
When you are using CSS to format a document and its contents, you need to think
in terms of boxes with borders and dimensions that hold the contents of an ele-
ment. These boxes stack together and wrap around each other so that the contents
of each element are aligned in an orderly fashion, based on the rules of the style
sheets. CSS2 adds new outline properties for boxes, and enables boxes to be
positioned in absolute positions on a page, in another box, or in a window.

Outline Properties
CSS2 makes it possible to add outlines to objects. An outline is a lot like a border.
However, an outline is drawn over the box. Its width does not add to the width of
the box. Furthermore, if a CSS element is non-rectangular (unlikely), the outline
around it will also be non-rectangular. Since outlines are not necessarily rectang-
ular, you can not set the left, right, top, and bottom outline separately. You can
only affect the entire outline at once.

Outline Style Property
The outline-style property sets the style of the outline for the entire box. This
functions just like the border-style property in CSS1, and has the same 11
possible values with the same meanings:

1. none: no line

2. hidden: an invisible line that still takes up space

3. dotted: a dotted line

4. dashed: a dashed line

5. solid: a solid line

6. double: a double solid line

7. grooved: a line that appears to be drawn into the page

8. ridge: a line that appears to be coming out of the page

9. inset: the entire object (not just the outline line) appears pushed into the
document

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 420

421Chapter 13 ✦ Cascading Style Sheets Level 2

10. outset: the entire object (not just the outline line) appears to be pushed out
of the document

11. inherit: use the values of the parent

These three rules set the outline styles for the TITLE, AUTHOR, and REFRAIN
elements:

TITLE { outline-style: solid }
AUTHOR { outline-style: outset }
REFRAIN { outline-style: dashed }

Outline Width Property
The outline-width property works like the margin-width and border-width
properties discussed in Chapter 12. It sets the width of the outline of a box using
either an unsigned length or one of these three keywords:

1. thin: about 0.5 to 0.75 points

2. medium: about 1 point

3. thick: about 1.5 to 2 points

For example, this rule outlines the STANZA with a thick outline and the VERSE with a
thin one.

STANZA { outline: thick }
VERSE { outline: thin }

Outline Color Property
The outline-color property sets the color of the outline of an element’s box.
Generally, this is set to either a color name like red or an RGB color like #FF0000.
However, it may also have the keyword value invert which inverts the color of the
pixels on the screen. (Black becomes white, and vice versa.) For example:

TITLE { outline-color: #FFCCCC;
outline -style: inset;
outline-width: thick}

AUTHOR { outline-color: #FF33CC}
VERSE { outline-color: invert}

Outline Shorthand Property
The outline property is a shorthand property that sets the outline width, color,
and style for all four edges of a containing box. For example:

STANZA { outline: thin dashed red }
VERSE { outline: inset }

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 421

422 Part III ✦ Style Languages

Positioning Properties
CSS2 provides an astonishing amount of control over the position of each object in a
document. You can put specific objects or specific types of objects in layers. Each
layer can be moved independently of the other layers. The position property
determines how objects are arranged and can have one of these four keyword values:

1. static: the default layout

2. relative: objects are offset from their static positions

3. absolute: objects are placed at a specific position relative to the box they’re
contained in

4. fixed: objects are placed at a specific point in the window or on the page

Relative Positioning
As a document is laid out, the formatter chooses positions for items according to
the normal flow of the objects and text. This is essentially the default static
formatting of objects used by most document creators. After this has been
completed, the objects may be shifted relative to their current position. This
adjustment in an object’s position is known as relative positioning. By using relative
positioning, altering the position of an object has no effect on the objects following
it. Thus boxes can overlap, since relatively positioned boxes retain all of their
normal flow sizes and spacing.

You can generate a relatively positioned object by setting the position property to
relative. Its offset will be controlled by the left, right, top, and bottom
properties. By changing these properties with JavaScript you can even move
objects and layers on your documents. You can make images or text move, appear
and disappear, or change in mid-stream. For example, this rule moves the TITLE
element 50 pixels up and 65 pixels to the left from where it would normally be.

TITLE { position: relative; top: 50px; left: 65px}

Absolute Positioning
An absolutely positioned element is placed in reference to the block that contains
it. It establishes a new containing block for boxes it contains. The contents of
absolutely positioned elements do not flow around other boxes. This may cause
them to obscure the contents of other boxes displayed in the document. Absolutely
positioned elements have no impact on the flow of their following siblings, so
elements that follow an absolutely positioned one, act as if it were not there. For
example, this rule puts the top left corner of the AUTHOR element 60 pixels down
and 140 pixels to the right of the top left corner of the box it’s contained in.

AUTHOR { position: absolute; top: 60px; left: 140px }

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 422

423Chapter 13 ✦ Cascading Style Sheets Level 2

Fixed Positioning
Elements with fixed position are placed at coordinates relative to the window or
page on which they’re displayed. If you are viewing a document composed of
continuous media, the fixed box will not move when the document is scrolled. If the
fixed box is located on paged media, it will always appear at the end of each page.
This enables you to place a footer or header on a document, or a signature at the
end of a series of one-page letters. For example, this rule puts the top-left corner of
the REFRAIN element 300 pixels down and 140 pixels to the right of the top-left
corner of the window it’s displayed in or the page it’s printed on.

REFRAIN { position: fixed; top: 300px; left: 140px}

Stacking Elements with the Z-Index Property
The z-index property controls the stacking order of positioned boxes. To change
the default z-index value, you set z-index to an integer like 2. Objects with larger z-
index values are placed on top of objects with smaller z-index values. Whether the
objects on the bottom show through is a function of the background properties of
the object on top of them. If the backgrounds are transparent, at least some of
what’s below will probably show through.

Listing 13-2 is a style sheet that uses absolute positioning with a z-index to create
a multi-part overlay of the Shakespearean sonnet. The result is shown in Figure
13-3. It’s certainly not as nice as the version that merely allows the browser to lay
out the sonnet. Absolute positioning should be used with extreme care. I’d really
only recommend it for print media where you’ll be distributing the paper that
comes out of your printer rather than the electronic files.

Listing 13-2: Shakespeare’s sonnet with a z-index stylesheet

#st1 { position: absolute;
top: 160px;
left:200px;
height: 100px;
width:200px;
overflow: auto;
z-index: 2}

#st2 { position: absolute;
top: 210px;
left:50px;
height: 100px;
width:200px;
overflow: auto;
z-index: 3}

#st3 { position: absolute;
top: 210px;
left:250px;

Continued

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 423

424 Part III ✦ Style Languages

Listing 13-2 (continued)

height: 100px;
width:200px;
overflow: auto;
z-index: 4}

REFRAIN { position: absolute;
top: 300px;
left:200px;
height: 100px;
width:200px;
overflow: auto;
z-index: 5}

Using absolute positioning ordered by z-index, you can control the stacking order of
text boxes.

Counters and Automatic Numbering
CSS2 enables you to automatically generate some content. For instance, you can
use the style sheet to create outlines that are properly indented with different
numbering systems for each level of the outline.

The counter-increment property adds one to a counter. The content property
inserts the current value of a named counter by using either the counter(id) or
counter(id, list-style-type) functions as values. Finally, the counter-reset
property sets a counter back to 0.

For example, let’s suppose you want to number each VERSE in a poem starting from
one, but reset the counting in each new STANZA. and the REFRAIN. You can do that
with the following rules:

VERSE {counter-increment: verse-num}
STANZA {counter-reset: verse-num}
REFRAIN {counter-reset: verse-num}
VERSE:before {content: counter(verse-num) }

You can reset back to a number other than 0 by specifying the integer to reset to
after the counter name in counter-reset. For example, to reset the counter to -10:

VERSE {counter-reset: verse-num -10}

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 424

425Chapter 13 ✦ Cascading Style Sheets Level 2

You can also increment by an integer different than 1 by specifying it in counter-
increment after the counter name. For example,

VERSE {counter-increment: verse-num -1}

Finally, the content property can have more than one counter, and additional
content as well as counters. For instance, these rules number the verses in the form
1.1, 1.2, 1.3, ..., 2.1, 2.2, 2.3, ... where the first number indicates the stanza and the
second the verse:

VERSE {counter-increment: verse-num}
STANZA {counter-reset: verse-num}
STANZA {counter-increment: stanza-num}
REFRAIN {counter-reset: verse-num}
REFRAIN {counter-reset: stanza-num 0}
VERSE:before {content:

counter(stanza-num) “.” counter(verse-num) }

You’re not limited to European numerals either. You can pass a second argument to
the counter() function to specify a different number format. Available formats
include disc, circle, square, decimal, decimal-leading-zero, lower-roman,
upper-roman, lower-greek, lower-alpha, lower-latin, upper-alpha, upper-
latin, hebrew, armenian, georgian, cjk-ideographic, hiragana, katakana,
hiragana-iroha, and katakana-iroha. For example, to number the verses using
Japanese numeral in hiragana, you might write:

VERSE:before {content: counter(stanza-num, hiragana)
“.” counter(verse-num, hiragana) }

Aural Style Sheets
Visually impaired users already use special software to read Web pages. In the
future, such use is likely to expand to sighted people browsing the Web while
talking on cell phones, driving their cars, washing the dishes, and performing other
activities in which the eyes and hands have to be directed elsewhere. CSS2
supports new properties to describe how elements are read out loud as well as how
they’re printed or shown on a screen. The new properties are discussed in the
sections that follow. Listing 13-3 is an aural style sheet that identifies specific ways
to speak information found in common play-related XML elements.

Listing 13-3: An Aural style sheet for a play or sonnet

TITLE, AUTHOR, ACT, SCENE {
voice-family: narrator;
stress: 20;

Continued

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 425

426 Part III ✦ Style Languages

Listing 13-3 (continued)

richness: 90;
cue-before: url(“ping.au”)

}

.narrator { pause: 20ms;
cue-before: url(“pop.au”);
cue-after: url(“pop.au”);
azimuth: 30deg;
elevation: above }

ACT { pause: 30ms 40ms } /* pause-before: 30ms;
pause-after: 40ms */

SCENE { pause-after: 10ms } /* pause-after: 10ms */

SCENE { cue-before: url(“bell.aiff”);
cue-after: url(“dong.wav”) }

MOOD.sad { play-during: url(“violins.aiff”) }
MOOD.funereal { play-during: url(“harp.wav”) mix }
MOOD.quiet { play-during: none }

LINE.narrator { azimuth: behind } /* 180deg */
LINE.part.romeo { voice-family: romeo, male }
LINE.part.juliet { voice-family: juliet, female }
LINE.part.hercules { azimuth: center-left }
LINE.part.richard { azimuth: right }
LINE.part.carmen { volume: x-soft }
LINE.part.muse1 { elevation: 60deg }
LINE.part.muse2 { elevation: 30deg }
LINE.part.muse3 { elevation: level }

Speak Property
The speak property determines whether text will be rendered aurally and if so,
how. If speak has the value normal, text is spoken using the best available speech
synthesis. If speak has the value spell-out, the text is spelled out letter-by-letter,
which might be useful for unusual or foreign words a speech synthesizer probably
can’t handle. The default value is none (for example, just render the content
visually and forget about speech synthesis).

Volume Property
The volume property controls the average volume of the speaking voice of the
speech synthesizer. This is the median value of the analog wave of the voice, but

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 426

427Chapter 13 ✦ Cascading Style Sheets Level 2

it’s only an average. A highly inflected voice at a volume of 50 might peak at 75. The
minimum volume is 0. The maximum volume is 100. Percentage values can also be
used, as can any of these six keywords:

1. silent: no sound

2. x-soft: 0, the minimum audible volume

3. soft: about 25

4. medium: about 50

5. loud: about 75

6. x-loud: 100, the maximum comfortable hearing level

Pause Properties
Pauses are the aural equivalent of a comma. They can be used to provide drama, or
just to help separate one speaker’s voice from another’s. They’re set in CSS2 with
the pause, pause-before, and pause-after properties.

The pause-before property specifies the length of time the speech synthesizer
should pause before speaking an element’s contents. The pause-after property
specifies the length of time the speech synthesizer should pause after speaking an
element’s contents. These can be set as an absolute time or as a percentage of the
speech-rate property. The pause property is shorthand for setting both pause-
before and pause-after. When two values are supplied, the first is applied to
pause-before and the second is applied to pause-after. When only one value is
given, it applies to both properties. For example:

SCENE { pause-after: 10ms }

/* pause-before: 20ms; pause-after: 20ms */
.narrator { pause: 20ms }

/* pause-before: 30ms; pause-after: 40ms */
ACT { pause: 30ms 40ms }

Cue Properties
Cues are audible clues that alert the listener to a specific event that is about to
occur, or has just occurred. Each cue property specifies a URL for a sound file that
will be played before or after an element is spoken. The cue-before property plays
a sound before an element is read. The cue-after property plays a sound after an
element is read.

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 427

428 Part III ✦ Style Languages

The cue property is shorthand for setting both cue-before and cue-after. When
two values are supplied, the first is applied to cue-before and the second is
applied to cue-after. When only one value is given, it applies to both properties.
For example:

ACT, SCENE { cue-before: url(“ping.au”) }
.narrator { cue: url(“pop.au”) }
SCENE { cue-before: url(“bell.aiff”);

cue-after: url(“dong.wav”) }

Play-During Property
The play-during property specifies a sound to be played in the background while
an element’s content is spoken. The value of the property is URL to the sound file.
You can also add one or both of the keywords mix and repeat to the value. Mix
tells the speech synthesizer to mix in the parent’s play-during sound. The repeat
value tells the speech synthesizer to loop the sound continuously until the entire
element has been spoken. The default value is none.

Spatial Properties
The spatial properties specify where the sound should appear to be coming from.
For example, you can have a document read to you from 3 feet away in a ditch or
100 feet away on a cliff. This is of course limited by the capabilities of the speech
synthesizer and audio hardware. Since you can not predetermine the number and
location of speakers in use by the document reader, these properties simply
identify the desired end result. As the document author, you can’t really force the
sound to appear to be coming from any particular direction, anymore than you can
guarantee that a reader has a color monitor.

Azimuth Property
The azimuth property controls the horizontal angle from which the sound appears
to come. When you listen to audio through good stereo speakers, you seem to hear
a lateral sound stage. The azimuth property can be used with this type of stereo
system to create angles to the sound you hear. When you add a total surround-
sound system using either a binaural headphone or a 5-speaker home theatre
setup, the azimuth property becomes very noticeable.

The azimuth is specified as an angle between -360° and 360°. A value of 0deg means
that the sound is directly in front of the listener (as are -360deg and 360deg). A
value of 180deg means that the sound is directly behind the listener. (In CSS
terminology deg replaces the more common ° degree symbol.) Angles are counted
clockwise to the listener’s right. You can also use one of these nine keywords to
specify the azimuthal angle:

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 428

429Chapter 13 ✦ Cascading Style Sheets Level 2

1. center: 0deg

2. center-right: 20deg

3. right: 40deg

4. far-right: 60deg

5. right-side: 90deg

6. left-side: 270deg

7. far-left: 300deg

8. left: 320deg

9. center-left: 340deg

You can add the keyword behind to any of these values to set the position to
180deg minus the normal value. For example left behind is the same as 180deg -
320deg = -140deg or 220deg.

A value of leftwards moves the sound an additional 20 degrees to the left, relative
to the current angle. This is most easily understood as turning the sound counter-
clockwise. So even if the sound is already behind the listener, it will continue to
move “left” around the circle. A value of rightwards moves the sound an addi-
tional 20 degrees to the right (clockwise) from to the current angle.

Elevation Property
The elevation property controls the apparent height of the speaker above the
listener’s position. The elevation is specified as an angle between -90° and 90°. It
can also be given as one of these five keywords:

1. below -90deg

2. level 0deg

3. above 90deg

4. higher 10deg above the current elevation (useful with inheritance)

5. lower 10deg below the current elevation (useful with inheritance)

Voice Characteristics Properties
The individual characteristics of the synthesizer’s voice can be controlled by
adjusting the rate of speech, the voice-family used, the pitch, and the richness of
the voice.

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 429

430 Part III ✦ Style Languages

Speech Rate Property
The speech-rate property specifies the speaking rate of the speech synthesizer as
an approximate number of average sized words per minute. You can supply an
integer or one of these five keywords:

1. x-slow: 80 words per minutes

2. slow: 120 words per minute

3. medium: 180 to 200 words per minute

4. fast: 300 words per minute

5. x-fast: 500 words per minute

You can also use the keyword faster to add 40 words per minute to the rate of the
parent element or slower to subtract 40 words per minute from the rate of the
parent element.

Voice Family Property
The voice-family property is a comma-separated, prioritized list of voice-family
names that chooses the voice used for reading the text of the document. It’s like the
font-family property discussed in Chapter 12, but is regarding voices instead of
typefaces.

Generic voice values include male, female, and child. Specific names are as
diverse as font names and include Agnes, Bruce, Good News, Hysterical,
Victoria, Whisper, and many more. These names must be quoted if they do not
conform to syntax rules for identifiers, or if they consist of more than one word. For
example:

LINE.part.romeo { voice-family: Bruce, “Good News”, male }

Pitch Property
The pitch property specifies the frequency the speech synthesizer uses for a
particular type of object. To some degree this controls whether a voice sounds
male or female. However, it’s better to use an appropriate voice-family instead. The
value is given in hertz (cycles per second). Female voices are about 120Hz, while
typical male voices are in the ballpark of 200Hz. You can also use these keywords to
adjust the pitch:

1. x-low

2. low

3. medium

4. high

5. x-high

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 430

431Chapter 13 ✦ Cascading Style Sheets Level 2

The exact frequencies of these keywords depend on the user’s environment and
selected voice. However, x-low is always lower than low, which is always lower
than medium, and so forth.

Pitch Range Property
The pitch-range property specifies the acceptable variations in the speaker’s
average pitch as a number between 0 and 100. This controls the inflection and
variation of the voice used by the speech synthesizer. A value of 0 creates a flat,
monotone voice, while 50 is a normal voice, and values above 50 create an
exceptionally animated voice.

Stress Property
The stress property specifies the level of assertiveness or emphasis that’s used in
the speaking voice. The default is 50. The value and effect of this attribute has a
different effect in each language being spoken. When used with languages such as
English that stress sentence position, you can select primary, secondary, and
tertiary stress points to control the inflection that is applied to these areas of the
sentence.

Richness Property
The richness property specifies the “brightness” of the voice used by the speech
synthesizer. The richer the voice, the better its carrying capacity. Smooth voices
don’t carry far because their wave forms are not as deeply pitched as rich voices.
The value is a number between 1 and 100, with a default of 50. Higher values
produce voices that carry better, while lower values produce softer voices that are
easier to listen to.

Speech Properties
These properties control how the speech synthesizer interprets punctuation and
numbers. There are two such properties: speak-punctuation property and the
speak-numeral property.

Speak Punctuation Property
By default punctuation is spoken literally. A statement such as “The cat, Charm, ate
all of his food.” is read as “The cat comma Charm comma ate all of his food period”.
However, by setting the speak-punctuation property to none, none of the
punctuation will be spoken. It will, however, have pauses, as would a natural
speaking voice. For example, “The cat <pause> Charm <pause> ate all of his food
<silence>”.

Speak Numeral Property
By default numbers are spoken as a full string. For example, the number 102 would
be read “one hundred and two”. If, however, you set the speak-numeral property

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 431

432 Part III ✦ Style Languages

to digits, each number being will be spoken individually like “one zero two”. You
can return to the default by setting speak-numeral property to continuous. If
speak-numeral is set to none, numbers not will be spoken.

Summary
This chapter covered CSS2’s features and how to implement them. In this chapter,
you learned:

✦ CSS2 is mostly a superset of CSS1, though there are a few differences including
a default display type of inline instead of block.

✦ Internet Explorer 5 and Mozilla 5 have only marginally implemented CSS2, so
don’t expect a lot of its features to work flawlessly.

✦ CSS2 has expanded the various selectors that can apply specific properties to
particular elements including a universal selector, child selectors, descendant
selectors, and sibling selectors.

✦ New @rules have been developed to give document authors more control over
their printed documents, including @charset, @page, and @font-face.

✦ CSS2 has seven new pseudo-classes, including :first-child and :hover, to
select elements that have something in common, but do not necessarily have
the same type.

✦ CSS2 has two new pseudo-elements that let you insert content into the docu-
ment: :after and :before.

✦ CSS2 has increased the use of the display property, by incorporating values to
display elements as all the parts of a table, not at all (none), and as compact
or run-in objects.

✦ System colors and systems fonts enable you to create an interface on your
XML applications that more closely matches the main system settings on each
individual visitors computers.

✦ CSS2 adds aural properties for describing speech, volume, pausing, cues,
voice characteristics, and the specification of a sound to be played and where
it should be coming from, among other things.

As with CSS1, CSS2 still has many limitations, the most obvious of which is lack of
full support from Web browsers, but this should change with time. XSL is still by far
the most full-bodied style sheet language for use with XML documents. In the next
chapter, you will explore XSL transformations, and see how much farther they can
take you.

✦ ✦ ✦

3236-7 ch13.F.qc 6/29/99 1:08 PM Page 432

XSL
Transformations

The Extensible Style Language (XSL) includes both a
transformation language and a formatting language.

Each of these, naturally enough, is an XML application. The
transformation language provides elements that define rules
for how one XML document is transformed into another XML
document. The transformed XML document may use the
markup and DTD of the original document or it may use a
completely different set of tags. In particular, it may use the
tags defined by the second part of XSL, the formatting
objects. This chapter covers the transformation language
half of XSL.

What Is XSL?
The transformation and formatting halves of XSL can function
independently of each other. For instance, the transformation
language can transform an XML document into a well-formed
HTML file, and completely ignore the XSL formatting objects.
This is the style of XSL supported by Internet Explorer 5.0,
previewed in Chapter 5, and emphasized in this chapter.

Furthermore, it’s not absolutely required that a document
written in XSL formatting objects be produced by using the
transformation part of XSL on another XML document. For
example, it’s easy to imagine a converter written in Java that
reads TeX or PDF files and translates them into XSL formatting
objects (though no such converters exist as of May, 1999).

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding XSSL,
XSSL transformations,
and templates

Computing the value of
a node

Processing multiple
elements

Selecting nodes with
Expressions

Understanding the
default template rules

Deciding which output
to include

Copying the current
node

Counting nodes, sort-
ing output elements,
and inserting CDATA,
and < signs

Setting the mode
attribute

Defining and creating
named templates

Stripping and preserv-
ing whitespace

Changing output
based on input

Merging multiple style
sheets

✦ ✦ ✦ ✦

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 433

434 Part III ✦ Style Languages

In essence, XSL is two languages, not one. The first language is a transformation
language, the second a formatting language. The transformation language is useful
independently of the formatting language. Its ability to move data from one XML
representation to another makes it an important component of XML-based elec-
tronic commerce, electronic data interchange, metadata exchange, and any
application that needs to convert between different XML representations of the
same data. These uses are also united by their lack of concern with rendering
data on a display for humans to read. They are purely about moving data from
one computer system or program to another.

Consequently, many early implementations of XSL focus exclusively on the
transformation part and ignore the formatting objects. These are incomplete
implementations, but nonetheless useful. Not all data must ultimately be rendered
on a computer monitor or printed on paper.

Chapter 15, XSL Formatting Objects, covers the XSL formatting language.

A Word of Caution about XSL

XSL is still under development. The XSL language has changed radically in the past, and will
almost certainly change again in the future. This chapter is based on the April 21, 1999
(fourth) draft of the XSL specification. By the time you are reading this book, this draft of
XSL will probably have been superseded and the exact syntax of XSL will have changed. I’m
hopeful that this chapter won’t be too far removed from the actual specification.
Nonetheless, if you do encounter inconsistencies, you should compare the examples in this
book against the most current specification.

To make matters worse, no software yet implements all of the April 21, 1999 (fourth) draft
of the XSL specification, not even the transformation half. All products available now imple-
ment different subsets of the current draft. Furthermore, many products, including Internet
Explorer 5.0 and XT add elements not actually present in the current draft specification for
XSL. Finally, most products that attempt to implement at least part of XSL have non-trivial
bugs in those parts they do implement. Consequently, very few examples will work exactly
the same way in different software.

Eventually, of course, this should be straightened out as the standard evolves toward its
final incarnation, as vendors fix the bugs in their products and implement the unimple-
mented parts, and as more software is published that supports XSL. Until then you’re faced
with a choice: you can either work out on the bleeding edge with XSL in its current, incom-
plete, unfinished state and try to work around all the bugs and omissions you’ll encounter;
or you can stick with a more established technology like CSS until XSL becomes more solid.

Cross-
Reference

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 434

435Chapter 14 ✦ XSL Transformations

Overview of XSL Transformations
In an XSL transformation, an XSL processor reads both an XML document and an
XSL style sheet. Based on the instructions the processor finds in the XSL style
sheet, it outputs a new XML document.

Trees
As you learned in Chapter 6, every well-formed XML document is a tree. A tree is a
data structure composed of connected nodes beginning with a single node called
the root. The root connects to its child nodes, each of which may connect to zero
or more children of its own, and so forth. Nodes that have no children of their own
are called leaves. A diagram of tree looks much like a genealogical descendant chart
that lists the descendants of a single ancestor. The most useful property of a tree is
that each node and its children also form a tree. Thus, a tree is a hierarchical
structure of trees in which each tree is built out of smaller trees.

The nodes of an XML tree are the elements and their content. However, for the
purposes of XSL, attributes, namespaces, processing instructions, and comments
must also be counted as nodes. Furthermore, the root of the document must be
distinguished from the root element. Thus, XSL processors assume an XML tree
contains seven kinds of nodes. These are:

1. The root

2. Elements

3. Text

4. Attributes

5. Namespaces

6. Processing instructions

7. Comments

For example, consider the XML document in Listing 14-1. This shows a periodic
table of the elements that I’ll use as an example in this chapter. (More properly it
shows the first two elements of the periodic table.)

The complete periodic table appears on the CD-ROM in the file allelements.xml in
the examples/periodic_table directory.

The root PERIODIC_TABLE element contains ATOM child elements. Each ATOM
element houses a variety of child elements providing the atomic number, atomic
weight, symbol, boiling point, and so forth. A UNITS attribute specifies the units for
those elements that have units.

On the
CD-ROM

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 435

436 Part III ✦ Style Languages

ELEMENT would be a more appropriate choice here than ATOM. However, writing
about ELEMENT elements and trying to distinguish between chemical elements
and XML elements might create confusion. Thus, at least for the purposes of this
chapter, ATOM seemed like the more legible choice.

Listing 14-1: An XML periodic table with two elements,
hydrogen and helium

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”14-2.xsl”?>
<PERIODIC_TABLE>

<ATOM STATE=”GAS”>
<NAME>Hydrogen</NAME>
<SYMBOL>H</SYMBOL>
<ATOMIC_NUMBER>1</ATOMIC_NUMBER>
<ATOMIC_WEIGHT>1.00794</ATOMIC_WEIGHT>
<BOILING_POINT UNITS=”Kelvin”>20.28</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>13.81</MELTING_POINT>
<DENSITY UNITS=”grams/cubic centimeter”><!— At 300K —>
0.0899

</DENSITY>
</ATOM>

<ATOM STATE=”GAS”>
<NAME>Helium</NAME>
<SYMBOL>He</SYMBOL>
<ATOMIC_NUMBER>2</ATOMIC_NUMBER>
<ATOMIC_WEIGHT>4.0026</ATOMIC_WEIGHT>
<BOILING_POINT UNITS=”Kelvin”>4.216</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>0.95</MELTING_POINT>
<DENSITY UNITS=”grams/cubic centimeter”><!— At 300K —>
0.1785

</DENSITY>
</ATOM>

</PERIODIC_TABLE>

Figure 14-1 displays a diagram of this document as a tree. It begins at the top with
the root node (not the same as the root element!) which contains two child nodes,
the xml-stylesheet processing instruction and the root element PERIODIC_TABLE.
(The XML declaration is not visible to the XSL processor and is not included in
the tree the XSL processor operates on.) The PERIODIC_TABLE element contains
two child nodes, both ATOM elements. Each ATOM element has an attribute node
for its STATE attribute, and a variety of child element nodes. Each child element

Note

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 436

437Chapter 14 ✦ XSL Transformations

encompasses a node for its contents, as well as nodes for any attributes and
comments it possesses. Notice in particular that many nodes are something other
than elements. There are nodes for text, attributes, comments, and processing
instructions. Unlike CSS1, XSL is not limited to working only with whole elements. It
has a much more granular view of a document that enables you to base styles on
comments, attributes, processing instructions, and more.

Like the XML declaration, an internal DTD subset or DOCTYPE declaration is is not
part of the tree. However, it may have the effect of adding attribute nodes to some
elements through <!ATTLIST> declarations that use #FIXED or default attribute
values.

Figure 14-1: Listing 14-1 as a tree diagram

The XSL transformation language operates by transforming one XML tree into
another XML tree. The language contains operators for selecting particular nodes
from the tree, reordering the nodes, and outputting nodes. If one of these nodes
is an element node, then it may be an entire tree itself. Remember that all these
operators, both for input and output, are designed for operation on a tree. They
are not a general regular expression language for transforming arbitrary data.

XSL Style Sheet Documents
More precisely, an XSL transformation accepts as input a tree represented as an XML
document and produces as output a new tree, also represented as an XML document.
Consequently, the transformation part of XSL is also called the tree construction part.
Both the input and the output must be XML documents. You cannot use XSL to trans-
form to or from non-XML formats like PDF, TeX, Microsoft Word, PostScript, MIDI, or

MELTING_POINT

ATOM

NAME SYMBOL ATOMIC_NUMBER ATOMIC_WEIGHT

Root

PERIODIC_TABLE

HYDROGEN H 1 1.00794

DENSITY

13.81 0.1785UNITS="grams/cubic
centimeter"

STATE="GAS"

BOILING_POINT

20.28UNITS="Kelvin" UNITS="Kelvin" At 300K

<?xml-stylesheet type="text/xsl" href="14-2.xsl"?>

Note

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 437

438 Part III ✦ Style Languages

others. You can use XSL to transform XML to an intermediate format like TeXML, then
use additional, non-XSL software to transform that into the format you want. HTML
and SGML are borderline cases because they’re so close to XML. You can use XSL to
transform to or from HTML and SGML that meets XML’s well-formedness rules.
However, XSL cannot handle the wide variety of non-well-formed HTML and SGML
you’ll encounter on most Web sites and document production systems. The key thing
to remember is that XSL transformation language works for XML-to-XML conversions,
not for anything else.

An XSL document contains a list of template rules and other rules. A template rule
has a pattern specifying the trees it applies to and a template to be output when the
pattern is matched. When an XSL processor formats an XML document using an
XSL style sheet, it scans the XML document tree looking through each sub-tree in
turn. As each tree in the XML document is read, the processor compares it with the
pattern of each template rule in the style sheet. When the processor finds a tree
that matches a template rule’s pattern, it outputs the rule’s template. This template
generally includes some markup, some new data, and some data copied out of the
tree from the original XML document.

XSL uses XML to describe these rules, templates, and patterns. The XSL document
itself is an xsl:stylesheet element. Each template rule is an xsl:template ele-
ment. The pattern of the rule is the value of the match attribute of the xsl:template
element. The output template is the content of the xsl:template element. All
instructions in the template for doing things like selecting parts of the input tree to
include in the output tree are performed by one or another XSL element. These are
identified by the xsl: prefix on the element names. Elements that do not have an
xsl: prefix are part of the result tree.

More properly, all elements that are XSL instructions are part of the xsl name-
space. Namespaces are discussed in Chapter 18, Namespaces. Until then, all you
have to know is that the names of all XSL elements begin with xsl:.

Listing 14-2 shows a very simple XSL style sheet with two template rules. The first
template rule matches the root element PERIODIC_TABLE. It replaces this element
with an html element. The contents of the html element are the results of applying
the other templates in the document to the contents of the PERIODIC_TABLE
element.

The second template matches ATOM elements. It replaces each ATOM element in
the input document with a P element in the output document. The xsl:apply-
templates rule inserts the text of the matched source element into the output
document. Thus, the contents of a P element will be the text (but not the markup)
contained in the corresponding ATOM element. I further discuss the exact syntax
of these elements below.

Cross-
Reference

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 438

439Chapter 14 ✦ XSL Transformations

Listing 14-2: An XSL style sheet for the periodic table with
two template rules

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”PERIODIC_TABLE”>
<html>
<xsl:apply-templates/>

</html>
</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:apply-templates/>

</P>
</xsl:template>

</xsl:stylesheet>

Where Does the XML Transformation Happen?
There are three primary ways XML documents are transformed into other formats,
such as HTML, with an XSL style sheet:

1. The XML document and associated style sheet are both served to the client
(Web browser), which then transforms the document as specified by the style
sheet and presents it to the user.

2. The server applies an XSL style sheet to an XML document to transform it to
some other format (generally HTML) and sends the transformed document to
the client (Web browser).

3. A third program transforms the original XML document into some other format
(often HTML) before the document is placed on the server. Both server and
client only deal with the post-transform document.

Each of these three approaches uses different software, though they all use the
same XML documents and XSL style sheets. An ordinary Web server sending XML
documents to Internet Explorer 5.0 is an example of the first approach. A servlet-
compatible Web server using the IBM alphaWorks’ XML enabler exemplifies the
second approach. Using the command line XT program to transform XML docu-
ments to HTML documents, then placing the HTML documents on a Web server is
an example of the third approach. However, these all use (at least in theory) the
same XSL language.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 439

440 Part III ✦ Style Languages

In this chapter, I will emphasize the third approach, primarily because at the time
of this writing, specialized converter programs like James Clark’s XT or the IBM’s
LotusXSL provide the most complete and accurate implementation of the current
XSL specification. Furthermore, this provides the broadest compatibility with
legacy Web browsers and servers whereas the first approach requires a more
recent browser than most users use and the second approach requires special
Web server software. In practice, though, requiring a different server is not nearly
as onerous as requiring a particular client. You, yourself, can install your own
special server software, but you cannot rely on your visitors to install particular
client software.

How to Use XT
XT is a Java 1.1 character mode application. To use it, you’ll need to have a Java 1.1
compatible virtual machine installed such as Sun’s Java Development Kit (JDK) or
Java Runtime Environment (JRE), Apple’s Macintosh Runtime for Java 2.1 (MRJ), or
Microsoft’s virtual machine. You’ll also need to install a SAX compliant XML parser
like James Clark’s XP. This is also a Java application.

At the time of this writing, XT can be found at http://www.jclark.com/
xml/xt.html and . XP can be found at http://www.jclark.com/xml/xp/
index.html. These URLs are, of course, subject to change as time passes.
Indeed, there’s no guarantee that XT will be available when you read this.
However, although I use XT in this chapter, the examples should work with any XSL
processor that implements the tree construction part of the April 21, 1999 working
draft of the XSL specification. Another possibility is IBM alphaWorks’ LotusXSL,
available at http://www.alphaworks.ibm.com/tech/LotusXSL. The exam-
ples may or may not work with software that implements later drafts of XSL,
though I hope they’ll be close. I’ll post any updates on my own Web site at
http://metalab.unc.edu/xml/books/bible/.

The Java class containing the main method for XT is com.jclark.xsl.sax.Driver.
Assuming your Java CLASSPATH environment variable includes the xt.jar and sax.jar
files (both included in the XT distribution), you can run XT by typing the following at
the shell prompt or in a DOS window:

C:\> java
-Dcom.jclark.xsl.sax.parser=com.jclark.xml.sax.CommentDriver
com.jclark.xsl.sax.Driver 14-1.xml 14-2.xsl 14-3.html

This line runs the java interpreter, sets the com.jclark.xsl.sax.parser Java
environment variable to com.jclark.xml.sax.CommentDriver, which indicates
the fully qualified name of the Java class used to parse the input documents. This
class must be somewhere in your class path. Here I’ve used the XP parser, but any
SAX-compliant parser will do. Next comes the name of the Java class containing the
XT program’s main() method, com.jclark.xsl.sax.Driver. Finally, there are the
names of the input XML document (14-1.xml), the input XSL style sheet (14-2.xsl),
and the output HTML file (14-3.html). If the last argument is omitted, the
transformed document will be printed on the console.

Note

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 440

441Chapter 14 ✦ XSL Transformations

If you’re using Windows and have installed the Microsoft Java virtual machine, you
can use a stand-alone executable version of XT instead. This is a little easier to use
since it includes the XP parser and doesn’t require you to mess around with
CLASSPATH environment variables. With this program, you simply place the xt.exe
file in your path, and type:

C:\> xt 14-1.xml 14-2.xsl 14-3.html

Listing 14-2 transforms input documents to well-formed HTML files as discussed in
Chapter 6. However, you can transform from any XML application to any other as
long as you can write a style sheet to support the transformation. For example, you
can imagine a style sheet that transforms from VML documents to SVG documents:

% java
-Dcom.jclark.xsl.sax.parser=com.jclark.xml.sax.CommentDriver
com.jclark.xsl.sax.Driver pinktriangle.vml
VmlToSVG.xsl -out pinktriangle.svg

Most other command line XSL processors behave similarly, though of course they’ll
have different command line arguments and options. They may prove slightly easier
to use if they’re not written in Java since there won’t be any need to configure the
CLASSPATH.

Listing 14-3 shows the output of running Listing 14-1 through XT with the XSL style
sheet in Listing 14-2. Notice that XT does not attempt to clean up the HTML it
generates, which has a lot of whitespace. This is not important since ultimately you
want to view the file in a Web browser that trims whitespace. Figure 14-2 shows
Listing 14-3 loaded into Netscape Navigator 4.5. Since Listing 14-3 displays standard
HTML, you don’t need an XML-capable browser to view it.

Listing 14-3: The HTML produced by applying the style sheet
in Listing 14-2 to the XML in Listing 14-1

<html>

<P>
Hydrogen
H
1
1.00794
20.28
13.81

0.0899

</P>
Continued

Tip

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 441

442 Part III ✦ Style Languages

Listing 14-3 (continued)

<P>
Helium
He
2
4.0026
4.216
0.95

0.1785

</P>

</html>

Figure 14-2: The page produced by applying the XSL style
sheet in Listing 14-2 to the XML document in Listing 14-1

Direct Display of XML Files with XSL Style Sheets
Instead of preprocessing the XML file, you can send the client both the XML file, and
the XSL file that describes how to render it. The client is responsible for applying the
style sheet to the document and rendering it accordingly. This is more work for the
client, but places much less load on the server. In this case, the XSL style sheet must
transform the document into an XML application the client understands. HTML is a
likely choice, though in the future some browsers will likely work with XSL formatting
objects as well.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 442

443Chapter 14 ✦ XSL Transformations

Attaching an XSL style sheet to an XML document is easy. Simply insert an xml-
stylesheet processing instruction in the prolog immediately after the XML
declaration. This processing instruction should have a type attribute with the
value text/xsl and an href attribute whose value is a URL pointing to the style
sheet. For example:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”14-2.xsl”?>

This is also how you attach a CSS style sheet to a document. The only difference
here is that the type attribute has the value text/xsl instead of text/css.

Internet Explorer 5.0’s XSL support differs from the 4-21-1999 working draft in a
number of respects. First of all it expects that XSL elements are in the http://
www.w3.org/TR/WD-xsl namespace instead of the http://www.w3.org/XSL/
Transform/1.0 namespace, although the xsl prefix is still used. Secondly, it does
not implement the default rules for elements that match no template. Consequently,
you need to provide a template for each element in the hierarchy starting from the
root before trying to view a document in Internet Explorer. Listing 14-4 demon-
strates. The three rules match the root node, the root element PERIODIC_TABLE,
and the ATOM elements in that order. Figure 14-3 shows the XML document in Listing
14-1 loaded into Internet Explorer 5.0 with this style sheet.

Listing 14-4: The style sheet of Listing 14-2 adjusted to work
with Internet Explorer 5.0

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

<xsl:template match=”/”>
<html>
<xsl:apply-templates/>

</html>
</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

</xsl:stylesheet>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 443

444 Part III ✦ Style Languages

Figure 14-3: The page produced in Internet Explorer 5.0 by
applying the adjusted XSL style sheet in Listing 14-4 to the
XML document in Listing 14-1

Ideally, you would use the same XML document both for direct display and for pre-
rendering to HTML. Unfortunately, XT won’t accept the http://www.w3.org/
TR/WD-xsl namespace and IE5 won’t accept the http://www.w3.org/XSL/
Transform/1.0 namespace. Such is life on the bleeding edge as different proces-
sors play leapfrog in their support of various parts of the evolving XSL specification.

In the rest of this chapter, I will simply pre-render the file in HTML before loading it
into a Web browser.

XSL Templates
Template rules defined by the xsl:template element are the most important part
of the XSL style sheet. Each template rule is an xsl:template element. These
associate particular output with particular input. Each xsl:template element has
a match attribute that specifies which nodes of the input document the template is
instantiated for.

The content of the xsl:template element is the actual template to be instantiated.
A template may contain both text that will appear literally in the output document
and XSL instructions that copy data from the input XML document to the result.
Because all XSL instructions are in the xsl namespace (that is they all begin with
xsl:), it’s easy to distinguish between the elements that are literal data to be
copied to the output and XSL instructions. For example, here is a template that is
applied to the root node of the input tree:

<xsl:template match=”/”>
<html>
<head>
</head>
<body>
</body>

Caution

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 444

445Chapter 14 ✦ XSL Transformations

</html>
</xsl:template>

When the XSL processor reads the input document, the first node it sees is the root.
This rule matches that root node, and tells the XSL processor to emit this text:

<html>
<head>
</head>
<body>
</body>

</html>

This text is well-formed HTML. Since the XSL document is itself an XML document,
its contents—templates included—must be well-formed XML.

If you were to use the above rule, and only the above rule, in an XSL style sheet, the
output would be limited to the above six tags. (Actually they’re compressed to the
equivalent four tags <html><head/><body/></html>). That’s because no instruc-
tions in the rule tell the formatter to move down the tree and look for further
matches against the templates in the style sheet.

The xsl:apply-templates Element
To get beyond the root, you have to tell the formatting engine to process the
children of the root. In general, to include content in the child nodes, you have to
recursively process the nodes through the XML document. The element that does
this is xsl:apply-templates. By including xsl:apply-templates in the output
template, you tell the formatter to compare each child element of the matched
source element against the templates in the style sheet; and, if a match is found,
output the template for the matched node. The template for the matched node
may itself contain xsl:apply-templates elements to search for matches for its
children. When the formatting engine processes a node, the node is treated as a
complete tree. This is the advantage of the tree structure. Each part can be treated
the same way as the whole. For example, Listing 14-5 is an XSL style sheet that
uses the xsl:apply templates element to process the child nodes.

Listing 14-5: An XSL style sheet that recursively processes
the children of the root

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/”>
<html>

Continued

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 445

446 Part III ✦ Style Languages

Listing 14-5: (continued)

<xsl:apply-templates/>
</html>

</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<body>
<xsl:apply-templates/>

</body>
</xsl:template>

<xsl:template match=”ATOM”>
An Atom

</xsl:template>

</xsl:stylesheet>

When this style sheet is applied to Listing 14-1, here’s what happens:

1. The root node is compared with all template rules in the style sheet. It
matches the first one.

2. The <html> tag is written out.

3. The xsl:apply-templates element causes the formatting engine to process
the child nodes.

A. The first child of the root, the xml-stylesheet processing instruction,
is compared with the template rules. It doesn’t match any of them so no
output is generated.

B. The second child of the root, the root element PERIODIC_TABLE, is
compared with the template rules. It matches the second template rule.

C. The <body> tag is written out.

D. The xsl:apply-templates element in the body element causes the
formatting engine to process the child nodes of PERIODIC_TABLE.

a. The first child of the PERIODIC_TABLE element, that is the Hydrogen
ATOM element, is compared with the template rules. It matches the
third template rule.

b. The text “An Atom” is output.

c. The second child of the PERIODIC_TABLE element, that is the Helium
ATOM element, is compared with the template rules. It matches the
third template rule.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 446

447Chapter 14 ✦ XSL Transformations

d. The text “An Atom” is output.

E. The </body> tag is written out.

4. The </html> tag is written out.

5. Processing is complete.

The end result is:

<html><body>

An Atom

An Atom

</body></html>

The select Attribute
To replace the text “An Atom” with the name of the ATOM element as given by its
NAME child, you need to specify that templates should be applied to the NAME
children of the ATOM element. To choose a particular set of children instead of all
children you supply xsl:apply-templates with a select attribute designating
the children to be selected. In this example:

<xsl:template match=”ATOM”>
<xsl:apply-templates select=”NAME”/>

</xsl:template>

The select attribute uses the same kind of patterns as the match attribute of the
xsl:template element. For now, we’ll stick to simple names of elements; but in the
section on patterns for matching and selecting later in this chapter, we’ll explore
many more possibilities for both select and match. If no select attribute is
present, all child elements are selected.

The result of adding this rule to the style sheet of Listing 14-5 and applying it to
Listing 14-5 is this:

<html><head/><body>

Hydrogen

Helium

</body></html>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 447

448 Part III ✦ Style Languages

Computing the Value of a Node
with xsl:value-of

The xsl:value-of element copies the value of a node in the input document into
the output document. The select attribute of the xsl:value-of element specifies
which node’s value is being taken.

For example, suppose you want to replace the literal text “An Atom” with the name
of the ATOM element as given by the contents of its NAME child. You can replace An
Atom with <xsl:value-of select=”NAME”/> like this:

<xsl:template match=”ATOM”>
<xsl:value-of select=”NAME”/>

</xsl:template>

Then, when you apply the style sheet to Listing 14-1, this text is generated:

<html><head/><body>

Hydrogen

Helium

</body></html>

The item whose value is selected, the NAME element in this example, is relative to
the source node. The source node is the item matched by the template, the par-
ticular ATOM element in this example. Thus, when the Hydrogen ATOM is matched
by <xsl:template match=”ATOM”>, the Hydrogen ATOM’s NAME is selected by
xsl:value-of. When the Helium ATOM is matched by <xsl:template match=
”ATOM”>, the Helium ATOM’s NAME is selected by xsl:value-of.

The value of a node is always a string, possibly an empty string. The exact contents
of this string depend on the type of the node. The most common type of node is ele-
ment, and the value of an element node is particularly simple. It’s the concatenation
of all the parsed character data (but not markup!) between the element’s start tag
and end tag. For example,the first ATOM element in Listing 14-1 is as follows:

<ATOM STATE=”GAS”>
<NAME>Hydrogen</NAME>
<SYMBOL>H</SYMBOL>
<ATOMIC_NUMBER>1</ATOMIC_NUMBER>
<ATOMIC_WEIGHT>1.00794</ATOMIC_WEIGHT>
<OXIDATION_STATES>1</OXIDATION_STATES>
<BOILING_POINT UNITS=”Kelvin”>20.28</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>13.81</MELTING_POINT>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 448

449Chapter 14 ✦ XSL Transformations

<DENSITY UNITS=”grams/cubic centimeter”><!— At 300K —>
0.0899

</DENSITY>
</ATOM>

The value of this element is shown below:

Hydrogen
H
1
1.00794
1
20.28
13.81

0.0899

I calculated that, just by stripping out all the tags and comments. Everything else
including whitespace was left intact. The values of the other six node types are
calculated similarly, mostly in obvious ways. Table 14-1 summarizes.

Table 14-1
Values of Nodes

Node Type Value

Root the value of the root element

Element the concatenation of all parsed character data contained in the
element, including character data in any of the descendants of
the element

Text the text of the node; essentially the node itself

Attribute the normalized attribute value as specified by Section 3.3.3 of
the XML 1.0 recommendation; basically the attribute value after
entities are resolved and leading and trailing whitespace is
stripped; does not include the name of the attribute, the equals
sign, or the quotation marks

Namespace the URI for the namespace

Processing instruction the value of the processing instruction; does not include the
processing instruction name, <? or ?>

Comment the text of the comment, <!— and —> not included

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 449

450 Part III ✦ Style Languages

Processing Multiple Elements
with xsl:for-each

The xsl:value-of element should only be used in contexts where it is unambiguous
as to which node’s value is being taken. If there are multiple possible items that could
be selected, then only the first one will be chosen. For instance, this is a poor rule
because a typical PERIODIC_TABLE element contains more than one ATOM.:

<xsl:template match=”PERIODIC_TABLE”>
<xsl:value-of select=”ATOM”/>

</xsl:template>

There are two ways of processing multiple elements in turn. The first you’ve already
seen. Simply use xsl:apply-templates with a select attribute that chooses the
particular elements you want to include, like this:

<xsl:template match=”PERIODIC_TABLE”>
<xsl:apply-templates select=”ATOM”/>

</xsl:template>

<xsl:template match=”ATOM”>
<xsl:value-of select=”.”/>

</xsl:template>

The select=”.” in the second template tells the formatter to take the value of the
matched element, ATOM in this example.

The second option is xsl:for-each. The xsl:for-each element processes each
element chosen by its select attribute in turn. However, no additional template is
required. For example:

<xsl:template match=”PERIODIC_TABLE”>
<xsl:for-each select=”ATOM”>
<xsl:value-of select=”.”/>

</xsl:for-each>
</xsl:template>

If the select attribute is omitted, then all children of the source node (PERIODIC_
TABLE in this example) are processed.

<xsl:template match=”PERIODIC_TABLE”>
<xsl:for-each>
<xsl:value-of select=”ATOM”/>

</xsl:for-each>
</xsl:template>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 450

451Chapter 14 ✦ XSL Transformations

Patterns for Matching Nodes
The match attribute of the xsl:template element supports a complex syntax that
allows you to express exactly which nodes you do and do not want to match. The
select attribute of xsl:apply-templates, xsl:value-of, xsl:for-each,
xsl:copy-of, and xsl:sort supports an even more powerful superset of this
syntax that allows you to express exactly which nodes you do and do not want to
select. Various patterns for matching and selecting nodes are discussed below.

Matching the Root Node
In order that the output document be well-formed, the first thing output from an
XSL transformation should be the output document’s root element. Consequently,
XSL style sheets generally start with a rule that applies to the root node. To specify
the root node in a rule, you give its match attribute the value “/”. For example:

<xsl:template match=”/”>
<html>
<xsl:apply-templates/>

</html>
</xsl:template>

This rule applies to the root node and only the root node of the input tree. When
the root node is read, the tag <html> is output, the children of the root node are
processed, then the </html> tag is output. This rule overrides the default rule for
the root node. Listing 14-6 shows a style sheet with a single rule that applies to the
root node.

Listing 14-6: An XSL style sheet with one rule for the root
node

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/”>
<html>
<head>
<title>Atomic Number vs. Atomic Weight</title>

</head>
<body>
<table>
Atom data will go here

Continued

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 451

452 Part III ✦ Style Languages

Listing 14-6: (continued)

</table>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

Since this style sheet only provides a rule for the root node, and since that rule’s
template does not specify any further processing of child nodes, only literal output,
what you see in the template is all that will be inserted in the result document. In
other words, the result of applying the style sheet in Listing 14-6 to Listing 14-1 (or
any other well-formed XML document) is this:

<html><head><title>Atomic Number vs. Atomic
Weight</title></head><body><table>

Atom data will go here
</table></body></html>

Matching Element Names
As previously mentioned, the most basic pattern contains a single element name
which matches all elements with that name. For example, this template matches
ATOM elements and marks their ATOMIC_NUMBER children bold:

<xsl:template match=”ATOM”>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</xsl:template>

Listing 14-7 demonstrates a style sheet that expands on Listing 14-6. First, an xsl:
apply-templates element is included in the template of the rule for the root node.
This rule uses a select attribute to ensure that only PERIODIC_TABLE elements
get processed.

Secondly, a rule that only applies to PERIODIC_TABLE elements is created using
match=”PERIODIC_TABLE”. This rule sets up the header for the table, then applies
templates to form the body of the table from ATOM elements.

Finally, the ATOM rule specifically selects the ATOM element’s NAME, ATOMIC_
NUMBER, and ATOMIC_WEIGHT child elements with <xsl:apply-templates
select=”NAME”/>, <xsl:apply-templates select=”ATOMIC_NUMBER”/>, and
<xsl:apply-templates select=”ATOMIC_WEIGHT”/>. These are wrapped up
inside HTML’s tr and td elements so that the end result is a table of atomic
numbers matched to atomic weights. Figure 14-4 shows the output of applying

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 452

453Chapter 14 ✦ XSL Transformations

the style sheet in Listing 14-7 to the complete periodic table document displayed
in Netscape Navigator 4.5.

One thing you may wish to note about this style sheet: the exact order of the
NAME, ATOMIC_NUMBER, and ATOMIC_WEIGHT elements in the input document is
irrelevant. They appear in the output in the order they were selected; that is, first
number, then weight. Conversely, the individual atoms are sorted in alphabetical
order as they appear in the input document. Later, you’ll see how to use an
xsl:sort element to change that so you can arrange the atoms in the more
conventional atomic number order.

Listing 14-7: Templates applied to specific classes of element
with select

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/”>
<html>
<head>
<title>Atomic Number vs. Atomic Weight</title>

</head>
<body>
<xsl:apply-templates select=”PERIODIC_TABLE”/>

</body>
</html>

</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<h1>Atomic Number vs. Atomic Weight</h1>
<table>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<xsl:apply-templates select=”ATOM”/>

</table>
</xsl:template>

<xsl:template match=”ATOM”>
<tr>
<td><xsl:value-of select=”NAME”/></td>
<td><xsl:value-of select=”ATOMIC_NUMBER”/></td>
<td><xsl:value-of select=”ATOMIC_WEIGHT”/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 453

454 Part III ✦ Style Languages

Figure 14-4: A table showing atomic number vs. atomic weight
in Netscape Navigator 4.5

Matching Children with /
You’re not limited to the children of the current node in match attributes. You can
use the / symbol to match specified hierarchies of elements. Used alone, the /
symbol refers to the root node. However, you can use it between two names to
indicate that the second is the child of the first. For example, ATOM/NAME refers to
NAME elements that are children of ATOM elements.

In xsl:template elements this enables you to match only some of the elements
of a given kind. For example, this template rule marks SYMBOL elements that are
children of ATOM elements strong. It does nothing to SYMBOL elements that are not
direct children of ATOM elements.

<xsl:template match=”ATOM/SYMBOL”>
<xsl:value-of select=”.”/>

</xsl:template>

Remember that this rule selects SYMBOL elements that are children of ATOM ele-
ments, not ATOM elements that have SYMBOL children. In other words, the . in
<xsl:value-of select=”.”/> refers to the SYMBOL and not to the ATOM.

Caution

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 454

455Chapter 14 ✦ XSL Transformations

You can specify deeper matches by stringing patterns together. For example,
PERIODIC_TABLE/ATOM/NAME selects NAME elements whose parent is an ATOM
element, whose parent is a PERIODIC_TABLE element.

You can also use the * wild card to substitute for an arbitrary element name in a
hierarchy. For example, this template rule applies to all SYMBOL elements that are
grandchildren of a PERIODIC_TABLE element.

<xsl:template match=”PERIODIC_TABLE/*/SYMBOL”>
<xsl:value-of select=”.”/>

</xsl:template>

Finally, as you saw above, a / by itself selects the root node of the document. For
example, this rule applies to all PERIODIC_TABLE elements that are root elements
of the document:

<xsl:template match=”/PERIODIC_TABLE”>
<html><xsl:apply-templates/></html>

</xsl:template>

While / refers to the root node, /* refers to the root element, whatever it is. For
example,

<xsl:template match=”/*”>
<html>
<head>
<title>Atomic Number vs. Atomic Weight</title>

</head>
<body>
<xsl:apply-templates/>

</body>
</html>

</xsl:template>

Matching Descendants with //
Sometimes, especially with an uneven hierarchy, you may find it easier to bypass
intermediate nodes and simply select all the elements of a given type whether
they’re immediate children, grandchildren, great-grandchildren, or what have you.
The double slash, //, refers to a descendant element at an arbitrary level. For
example, this template rule applies to all NAME descendants of PERIODIC_TABLE,
no matter how deep:

<xsl:template match=”PERIODIC_TABLE//NAME”>
<i><xsl:value-of select=”.”/></i>

</xsl:template>

The periodic table example is fairly shallow, but this trick becomes more important
in deeper hierarchies, especially when an element can contain other elements of its
type (for example, an ATOM contains an ATOM).

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 455

456 Part III ✦ Style Languages

The // operator at the beginning of a pattern selects any descendant of the root
node. For example, this template rule processes all ATOMIC_NUMBER elements while
completely ignoring their location:

<xsl:template match=”//ATOMIC_NUMBER”>
<i><xsl:value-of select=”.”/></i>

</xsl:template>

Matching by ID
You may want to apply a particular style to a particular single element without
changing all other elements of that type. The simplest way to do that in XSL is to
attach a style to the element’s ID attribute. This is done with the id() selector
which contains the ID value in single quotes. For example, this rule makes the
element with the ID e47 bold:

<xsl:template match=”id(‘e47’)”>
<xsl:value-of select=”.”/>

</xsl:template>

This assumes of course that the elements you want to select in this fashion have an
attribute declared as type ID in the source document’s DTD. Usually this isn’t the
case, however. For one thing, many documents do not have DTDs. They’re merely
well-formed, not valid. And even if they have a DTD, there’s no guarantee that any
element has an ID type attribute. You can use the xsl:key element in the style sheet
to declare that particular attributes in the input document should be treated as IDs.

Matching Attributes with @
As you already saw back in Chapter 5, the @ sign matches against attributes and
selects nodes according to attribute names. Simply prefix the attribute you want to
select with the @ sign. For example, Listing 14-8 shows a style sheet that outputs a
table of atomic number vs. melting point. Not only is the value of the MELTING_
POINT element written out, but also the value of its UNITS attribute. This is selected
by <xsl:value-of select=”@UNITS”/>.

Listing 14-8: An XSL style sheet that selects the UNITS
attribute with @

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/PERIODIC_TABLE”>
<html>
<body>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 456

457Chapter 14 ✦ XSL Transformations

<h1>Atomic Number vs. Melting Point</h1>
<table>
<th>Element</th>
<th>Atomic Number</th>
<th>Melting Point</th>
<xsl:apply-templates/>

</table>
</body>

</html>
</xsl:template>

<xsl:template match=”ATOM”>
<tr>
<td><xsl:value-of select=”NAME”/></td>
<td><xsl:value-of select=”ATOMIC_NUMBER”/></td>
<td><xsl:apply-templates select=”MELTING_POINT”/></td>

</tr>
</xsl:template>

<xsl:template match=”MELTING_POINT”>
<xsl:value-of select=”.”/>
<xsl:value-of select=”@UNITS”/>

</xsl:template>

</xsl:stylesheet>

Recall that the value of an attribute node is simply the string value of the attribute.
Once you apply the style sheet in Listing 14-8, ATOM elements come out formatted
like this:

<tr><td>Hydrogen</td><td>1</td><td>13.81Kelvin</td></tr>

<tr><td>Helium</td><td>2</td><td>0.95Kelvin</td></tr>

You can combine attributes with elements using the various hierarchy operators.
For example, BOILING_POINT/@UNITS refers to the UNITS attribute of a BOILING_
POINT element. ATOM/*/@UNITS matches any UNITS attribute of a child element of
an ATOM element. This is especially helpful when matching against attributes in
template rules. You must remember that what’s being matched is the attribute
node, not the element that contains it. It’s a very common mistake to implicitly
confuse the attribute node with the element node that contains it. For example,
consider this rule, which attempts to apply templates to all child elements that
have UNITS attributes:

<xsl:template match=”ATOM”>
<xsl:apply-templates select=”@UNITS”/>

</xsl:template>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 457

458 Part III ✦ Style Languages

What it actually does is apply templates to the non-existent UNITS attributes of
ATOM elements.

You can also use the * to select all attributes of an element, for example BOILING_
POINT/@* to select all attributes of BOILING_POINT elements.

Matching Comments with comment()
Most of the time you should simply ignore comments in XML documents. Making
comments an essential part of a document is a very bad idea. Nonetheless, XSL
does provide a means to select a comment if you absolutely have to.

To select a comment, use the pattern comment(). Although this pattern has
function-like parentheses, it never actually takes any arguments. You cannot
easily distinguish between different comments. For example, recall that a
DENSITY element looks like this:

<DENSITY UNITS=”grams/cubic centimeter”><!— At 300K —>
6.51

</DENSITY>

This template rule not only outputs the value of the density and the units; it also
prints the conditions under whichthe density is measured:

<xsl:template match=”DENSITY”>
<xsl:value-of select=”.”/>
<xsl:value-of select=”@UNITS”/>
<xsl:apply-templates select=”comment()”/>

</xsl:template>

The only reason Listing 14-1 uses a comment to specify conditions instead of an
attribute or element is precisely for this example. In practice, you should never put
important information in comments. The only real reason XSL ever allows you to
select comments is so a style sheet can transform from one markup language to
another while leaving the comments intact. Any other use indicates a poorly
designed original document. The following rule matches all comments, and copies
them back out again using the xsl:comment element.

<xsl:template match=”comment()”>
<xsl:comment><xsl:value-of select=”.”/></xsl:comment>

</xsl:template>

Note, however, that the default rules used to apply templates do not apply to com-
ments. Thus, if you want this rule to be activated when a comment is encountered,
you’ll need to include an xsl:apply-templates element that selects comments
wherever comments may be found.

You can use the hierarchy operators to select particular comments. For example,
this rule matches comments that occur inside DENSITY elements:

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 458

459Chapter 14 ✦ XSL Transformations

<xsl:template match=”DENSITY/comment()”>
<xsl:comment><xsl:value-of select=”.”/></xsl:comment>

</xsl:template>

Matching Processing Instructions with pi()
When it comes to writing structured, intelligible, maintainable XML, processing
instructions aren’t much better than comments. However, there are some
necessary uses for them including attaching style sheets to documents.

The pi() function selects processing instructions. The argument to pi() is a quoted
string giving the name of the processing instruction to select. If you do not include an
argument, the first processing instruction child of the current node is matched.
However, you can use hierarchy operators. For example, this rule matches the first
processing instruction child of the root node (most likely the xml-stylesheet
processing instruction). The xsl:pi element inserts a processing instruction with
the specified name and value in the output document.

<xsl:template match=”/pi()”>
<xsl:pi name=”xml-stylesheet”>
type=”text/xsl” value=”auto.xsl”

</xsl:pi>
</xsl:template/>

This rule also matches the xml-stylesheet processing instruction, but by its name:

<xsl:template match=”pi(‘xml-stylesheet’)”>
<xsl:pi name=”xml-stylesheet”>
<xsl:value-of select=”.”/>

</xsl:pi>
</xsl:template/>

In fact, one of the main reasons for distinguishing between the root element and the
root node is so that processing instructions from the prolog can be read and pro-
cessed. Although the xml-stylesheet processing instruction uses a name=value
syntax, XSL does not consider these to be attributes because processing instructions
are not elements. The value of a processing instruction is simply everything between
the whitespace following its name and the closing ?>.

The default rules used to apply templates do not match processing instructions.
Thus, if you want this rule to be activated when the xml-stylesheet processing
instruction is encountered, you’ll need to include an xsl:apply-templates
element that matches it in the appropriate place. For example, this template rule
for the root node does apply templates to processing instructions:

<xsl:template match=”/”>
<xsl:apply-templates select=”pi()”/>
<xsl:apply-templates select=”*”/>

</xsl:template>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 459

460 Part III ✦ Style Languages

Matching Text Nodes with text()
Text nodes generally get ignored as nodes, though their values are included as part
of the value of a selected element. However, the text() operator does enable you
to specifically select the text child of an element. Despite the parentheses, this
operator takes no arguments. For example:

<xsl:template match=”SYMBOL”>
<xsl:value-of select=”text()”/>

</xsl:template>

The main reason this operator exists is for the default rules. XSL processors must
provide the following default rule whether the author specifies it or not:

<xsl:template match=”text()”>
<xsl:value-of select=”.”/>

</xsl:template>

This means that whenever a template is applied to a text node, the text of the node
is output. If you do not want the default behavior, you can override it. For example,
including the following empty template rule in your style sheet will prevent text
nodes from being output unless specifically matched by another rule.

<xsl:template match=”text()”>
</xsl:template>

Using the Or Operator |
The vertical bar (|) allows a template rule to match multiple patterns. If a node
matches one pattern or the other, it will activate the template. For example, this
template rule matches both ATOMIC_NUMBER and ATOMIC_WEIGHT elements:

<xsl:template match=”ATOMIC_NUMBER|ATOMIC_WEIGHT”>
<xsl:apply-templates/>

</xsl:template>

You can include whitespace around the | if that makes the code clearer. For example,

<xsl:template match=”ATOMIC_NUMBER | ATOMIC_WEIGHT”>
<xsl:apply-templates/>

</xsl:template>

You can also use more than two patterns in sequence. For example, this template
rule applies to ATOMIC_NUMBER, ATOMIC_WEIGHT, and SYMBOL elements (that is, it
matches ATOMIC_NUMBER, ATOMIC_WEIGHT and SYMBOL elements):

<xsl:template match=”ATOMIC_NUMBER | ATOMIC_WEIGHT | SYMBOL”>
<xsl:apply-templates/>

</xsl:template>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 460

461Chapter 14 ✦ XSL Transformations

The / operator is evaluated before the | operator. Thus, the following template rule
selects an ATOMIC_NUMBER child of an ATOM, or an ATOMIC_WEIGHT of unspecified
parentage, not an ATOMIC_NUMBER child of an ATOM or an ATOMIC_WEIGHT child of
an ATOM.

<xsl:template match=”ATOM/ATOMIC_NUMBER|ATOMIC_WEIGHT”>
<xsl:apply-templates/>

</xsl:template>

Testing with []
So far, we’ve merely tested for the presence of various nodes. However, you can test
for more details about the nodes that match a pattern using []. You can perform
many different tests including:

✦ Whether an element contains a given child, attribute, or other node

✦ Whether the value of an attribute is a given string

✦ Whether the value of an element matches a string

✦ What position a given node occupies in the hierarchy

For example, seaborgium, element 106, has only been created in microscopic
quantities. Even its most long-lived isotope has a half-life of only 20 seconds. With
such a hard-to-create, short-lived element, it’s virtually impossible to measure the
density, melting point, or other bulk properties. Consequently, the periodic table
document omits the elements describing the bulk properties of seaborgium and
similar atoms as a result of unavailable data. If you want to create a table of atomic
number vs. melting point, you should omit those elements with unknown melting
points. To do this, you can specify a match against ATOM elements that have
MELTING_POINT children like this:

<xsl:template match=”ATOM[MELTING_POINT]”>
<tr>
<td><xsl:value-of select=”NAME”/></td>
<td><xsl:value-of select=”MELTING_POINT”/></td>

</tr>
</xsl:template>

Note here, that it is the ATOM element being matched, not the MELTING_POINT
element as in the case of ATOM/MELTING_POINT.

The test brackets can contain more than simply a child element name. In fact, they
can contain any select expression. (Select expressions are a superset of match
patterns that will be discussed in the next section.) If the specified element has a
child matching that expression, it is considered to match the total pattern. For
example, this template rule matches ATOM elements with NAME or SYMBOL children.

<xsl:template match=”ATOM[NAME | SYMBOL]”>
</xsl:template>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 461

462 Part III ✦ Style Languages

This template rule uses a * to match any element that contains a NAME child:

<xsl:template match=”*[NAME]”>
</xsl:template>

This template rule matches ATOM elements with a DENSITY child that has a UNITS
attribute:

<xsl:template match=”ATOM[DENSITY/@UNITS]”>
</xsl:template>

To revisit an earlier example, to correctly find all child elements that have UNITS
attributes, use * to find all elements and [@UNITS] to winnow those down to the
ones with UNITS attributes, like this:

<xsl:template match=”ATOM”>
<xsl:apply-templates select=”*[@UNITS]”/>

</xsl:template>

One type of pattern testing that proves especially useful is string equality. An equals
sign (=) can test whether the value of a node identically matches a given string. For
example, this template finds the ATOM element that contains an ATOMIC_NUMBER
element whose contents include the string 10 (Neon).

<xsl:template match=”ATOM[ATOMIC_NUMBER=’10’]”>
This is Neon!

</xsl:template>

Testing against element content may seem extremely tricky because of the need to
get the value exactly right, including whitespace. You may find it easier to test against
attribute values since those are less likely to contain insignificant whitespace. For
example, the style sheet in Listing 14-9 applies templates only to those ATOM elements
whose STATE attribute value is the three letters GAS.

Listing 14-9: An XSL style sheet that selects only those
ATOM elements whose STATE attribute has the
value GAS

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”PERIODIC_TABLE”>
<html>
<head><title>Gases</title></head>
<body>
<xsl:apply-templates select=”ATOM[@STATESTATE=’GAS’]”/>

</body>
</html>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 462

463Chapter 14 ✦ XSL Transformations

</xsl:template>

<xsl:template match=”ATOM”>
<P><xsl:value-of select=”.”/></P>

</xsl:template>

</xsl:stylesheet>

You can use other XSL expressions (discussed in the next section) for more
complex matches. For example, you can select all elements whose names begin
with “A” or all elements with an atomic number less than 100.

Expressions for Selecting Nodes
The select attribute is used in xsl:apply-templates, xsl:value-of, xsl:for-
each, xsl:copy-of, and xsl:sort to specify exactly which nodes are operated on.
The value of this attribute is an expression. Expressions are a superset of the match
patterns discussed in the last section. That is, all match patterns are select
expressions, but not all select expressions are match patterns. Recall that match
patterns enable you to match nodes by element name, child elements, descendants,
and attributes, as well by making simple tests on these items. Select expressions
allow you to select nodes through all these criteria but also by referring to parent
elements, sibling elements, and making much more complicated tests. Furthermore,
expressions aren’t limited to producing merely a list of nodes, but can also produce
booleans, numbers, and strings.

Node Axes
Expressions are not limited to specifying the children and descendants of the
current node. XSL provides a number of axes you can use to select from different
parts of the tree relative to the current node (generally the node that the template
matches). Table 14-2 summarizes these axes and their meanings.

Table 14-2
Expression Axes

Axis Selects From

from-ancestors() the parent of the current node, the parent of the parent of
the current node, the parent of the parent of the parent
of the current node, and so forth back to the root node

Continued

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 463

464 Part III ✦ Style Languages

Table 14-2 (continued)

Axis Selects From

from-ancestors- the ancestors of the current node and the current node itself
or-self()

from-attributes() the attributes of the current node

from-children() the immediate children of the current node

from-descendants() the children of the current node, the children of the children
of the current node, and so forth

from-descendants- the current node itself and its descendants
or-self()

from-following() all nodes that start after the end of the current node

from-following- all nodes that start after the end of the current node and
siblings() have the same parent as the current node

from-parent() the single parent node of the current node

from-preceding() all nodes that start before the start of the current node

from-preceding- all nodes that start before the start of the current node and
siblings() have the same parent as the current node

from-self() the current node

The from-following and from-preceding axes are on the questionable side.
They may not be included in the final release of XSL. If they are included, their
exact meaning may change.

These axes serve as functions that select from the set of nodes indicated in the
second column of Table 14-2. The parentheses contain a select expression to
further winnow down this node list. For example, they may contain the name of the
element to be selected as in the following template rule:

<xsl:template match=”ATOM”>
<tr>
<td>
<xsl:value-of select=”from-children(NAME)”/>

</td>
<td>
<xsl:value-of select=”from-children(ATOMIC_NUMBER)”/>

</td>
<td>
<xsl:value-of select=”from-children(ATOMIC_WEIGHT)”/>

</td>
</tr>

</xsl:template>

Caution

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 464

465Chapter 14 ✦ XSL Transformations

The template rule matches ATOM elements. When an ATOM element is matched, a
NAME element, an ATOMIC_NUMBER element, and an ATOMIC_WEIGHT element are all
selected from the children of that matched ATOM element and output as table cells.
(If there’s one more than one of these desired elements — for example, three NAME
elements — then only the first one is selected.)

The from-children() axis doesn’t let you do anything you can’t do with element
names alone. In fact select=”ATOMIC_WEIGHT” is just an abbreviated form of
select=”from-children(ATOMIC_WEIGHT)”. However, the other axes are a little
more interesting.

Referring to the parent element is illegal in match patterns, but not in select expres-
sions. To refer to the parent, you use the from-parent() axis. For example, this
rule outputs the value of atoms that have a BOILING_POINT child:

<xsl:template match=”ATOM/BOILING_POINT”>
<P><xsl:value-of select=”from-parent(ATOM)”/></P>

</xsl:template>

Here the BOILING_POINT child element is matched, but the ATOM parent element is
output.

Some radioactive atoms like polonium have half-lives so short that bulk properties
like the boiling point and melting point can’t be measured. Therefore, not all ATOM
elements will necessarily have BOILING_POINT child elements. The above rule
would allow you to only output those elements that actually have boiling points.
Expanding on this example, Listing 14-10 matches the MELTING_POINT elements but
actually outputs the parent ATOM element using from-parent(ATOM).

Listing 14-10: A style sheet that outputs only those elements
with known melting points

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/”>
<html>
<body>
<xsl:apply-templates select=”PERIODIC_TABLE”/>

</body>
</html>

</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<h1>Elements with known Melting Points</h1>

Continued

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 465

466 Part III ✦ Style Languages

Listing 14-10: (continued)

<xsl:apply-templates select=”//MELTING_POINT”/>
</xsl:template>

<xsl:template match=”MELTING_POINT”>
<p>
<xsl:value-of select=”from-parent(ATOM)”/>

</p>
</xsl:template>

</xsl:stylesheet>

Once in awhile, you may need to select the nearest ancestor of an element with a
given type. The from-ancestors() function does this. For example, this rule inserts
the value of the nearest PERIODIC_TABLE element that contains the matched SYMBOL
element.

<xsl:template match=”SYMBOL”>
<xsl:value-of select=”from-ancestors(PERIODIC_TABLE)”/>

</xsl:template>

The from-ancestors-or-self() function behaves like the from-ancestors()
function except that if the current node matches the type of the argument, then it
will be returned instead of the actual ancestor. For example, this rule matches all
elements. If the matched element is a PERIODIC_TABLE, then that very
PERIODIC_TABLE is selected in xsl:value-of.

<xsl:template match=”*”>
<xsl:value-of select=”from-ancestors-or-self(PERIODIC_TABLE)”/>
</xsl:template>

Node Types
As well as the name of a node and the wild card, the arguments to a from-axis()
function may be one of these four node-type functions:

✦ comment()

✦ text()

✦ pi()

✦ node()

The comment() node type selects a comment node. The text() node type selects
a text node. The pi() node type selects a processing instruction node, and the
node() node type selects any type of node. (The * wild card only selects element

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 466

467Chapter 14 ✦ XSL Transformations

nodes.) The pi() node type can also contain an optional argument specifying the
name of the processing instruction to select.

For example, this rule wraps the value of a matched ATOM element in a P element
using from-self() with the node() node type:

<xsl:template match=”ATOM”>
<P><xsl:value-of select=”from-self(node())”/></P>

</xsl:template>

Here, selecting from-self(node()) is not the same as selecting ATOM. The next
rule tries to take the value of the ATOM child of an ATOM element. This is not the
value of the matched ATOM element, but rather the value of a different ATOM element
that’s a child of the matched ATOM element:

<xsl:template match=”ATOM”>
<P><xsl:value-of select=”ATOM”/></P>

</xsl:template>

Hierarchy Operators
You can use the / and // operators to string select expressions together. For
example, Listing 14-11 prints a table of element names, atomic numbers, and melting
points for only those elements that have melting points. It does this by selecting
the parent of the MELTING_POINT element, then finding that parent’s NAME and
ATOMIC_NUMBER children with select=”from-parent(*)/from-children(NAME)”.

Listing 14-11: A table of melting point versus atomic number

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/PERIODIC_TABLE”>
<html>
<body>
<h1>Atomic Number vs. Melting Point</h1>
<table>
<th>Element</th>
<th>Atomic Number</th>
<th>Melting Point</th>
<xsl:apply-templates select=”from-children(ATOM)”/>

</table>
</body>

</html>
</xsl:template>

<xsl:template match=”ATOM”>

Continued

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 467

468 Part III ✦ Style Languages

Listing 14-11 (continued)

<xsl:apply-templates
select=”from-children(MELTING_POINT)”/>

</xsl:template>

<xsl:template match=”MELTING_POINT”>
<tr>
<td>
<xsl:value-of
select=”from-parent(*)/from-children(NAME)”/>

</td>
<td>
<xsl:value-of
select=”from-parent(*)/from-children(ATOMIC_NUMBER)”/>
</td>
<td>
<xsl:value-of select=”from-self(*)”/>
<xsl:value-of select=”from-attributes(UNITS)”/>

</td>
</tr>

</xsl:template>

</xsl:stylesheet>

This is not the only way to solve the problem. Another possibility would be to use
the from-preceding-siblings() and from-following-siblings() axes or
both if the relative location (preceding or following) is uncertain. The necessary
template rule for the MELTING_POINT element would look like this:

<xsl:template match=”MELTING_POINT”>
<tr>
<td>
<xsl:value-of
select=”from-preceding-siblings(NAME)

| from-following-siblings(NAME)”/>
</td>
<td>
<xsl:value-of
select=”from-preceding-siblings(ATOMIC_NUMBER)

| from-following-siblings(ATOMIC_NUMBER)”/>
</td>
<td>
<xsl:value-of select=”from-self(*)”/>
<xsl:value-of select=”from-attributes(UNITS)”/>

</td>
</tr>

</xsl:template>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 468

469Chapter 14 ✦ XSL Transformations

Abbreviated Syntax
The various from-axis() functions in Table 14-2 are a bit too wordy for
comfortable typing. XSL also defines an abbreviated syntax that can substitute for
the most common of these axes and is more used in practice. Table 14-3 shows the
full and abbreviated equivalents.

Table 14-3
Abbreviated Syntax for Select Expressions

Abbreviation Full

. from-self(node())

.. from-parent(node())

name from-children(name)

@name from-attributes(name)

// /from-descendants-or-self(node())/

Listing 14-12 demonstrates by rewriting Listing 14-11 using the abbreviated syntax.
The output produced by the two style sheets is exactly the same, however.

Listing 14-12: A table of melting point versus atomic number
using the abbreviated syntax

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/PERIODIC_TABLE”>
<html>
<body>
<h1>Atomic Number vs. Melting Point</h1>
<table>
<th>Element</th>
<th>Atomic Number</th>
<th>Melting Point</th>
<xsl:apply-templates select=”ATOM”/>

</table>
</body>

</html>
</xsl:template>

Continued

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 469

470 Part III ✦ Style Languages

Listing 14-12 (continued)

<xsl:template match=”ATOM”>
<xsl:apply-templates
select=”MELTING_POINT”/>

</xsl:template>

<xsl:template match=”MELTING_POINT”>
<tr>
<td>
<xsl:value-of
select=”../NAME”/>

</td>
<td>
<xsl:value-of
select=”../ATOMIC_NUMBER”/>
</td>
<td>
<xsl:value-of select=”.”/>
<xsl:value-of select=”@UNITS”/>

</td>
</tr>

</xsl:template>

</xsl:stylesheet>

Match patterns can only use the abbreviated syntax (and not all of that). The full
syntax using the from-axis() functions of Table 14-2 is restricted to select
expressions.

Expression Types
Every expression evaluates to a single value. For example, the expression 3 + 2
evaluates to the value 5. The expression used above all evaluated to node sets.
However, there are five types of expressions in XSL. These are:

✦ Node-sets

✦ Booleans

✦ Numbers

✦ Strings

✦ Result tree fragments

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 470

471Chapter 14 ✦ XSL Transformations

Node Sets
A node set is a list of nodes from the input document. The from-axis() functions
in Table 14-2 all return a node set containing the node they match. Which nodes are
in the node set one of these functions returns depends on the current node (also
known as the context node), the argument to the function, and of course, which
function it is.

Programmers accustomed to object-oriented languages like Java and C++ can
think of the current node as the object which invokes the function; that is, in
a.doSomething(b, c) the current node is a. However, in XSL the current node
is always implicit; that is, it’s written more like doSomething(b, c) as might be
done in the file where a’s class is defined.

For example, the expression select=”from-children(ATOM)” returns a node
set that contains both ATOM elements in that document when the current node is
the PERIODIC_TABLE element of Example 14-1. The expression select=”from-
children(ATOM)”/from-children(“NAME”) returns a node set containing the
two element nodes <NAME>Hydrogen</NAME> and <NAME>Helium</NAME> when
the context node is the PERIODIC_TABLE element of Example 14-1.

The context node is a member of the context node list. The context node list is
that group of elements that all match the same rule at the same time, generally as
a result of one xsl:apply-templates or xsl:for-each call. For instance, when
Listing 14-12 is applied to Listing 14-1, the ATOM template is invoked twice, first for
the hydrogen atom, second for the helium atom. The first time it’s invoked, the
context node is the hydrogen ATOM element. The second time it’s invoked, the
context node is the helium ATOM element. However, both times the context node
list is the set containing both the helium and hydrogen ATOM elements.

Table 14-4 lists a number of functions that operate on node-sets, either as arguments
or as the context node.

Table 14-4
Functions That Operate on Node Sets

Function Return Type Returns

position() number The position of the context node in the context
node list. The first node in the list has position 1.

last() number The number of nodes in the context node set.

count(node-set) number The number of nodes in node-set.

Continued

Tip

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 471

472 Part III ✦ Style Languages

Table 14-4 (continued)

Function Return Type Returns

id(string) node set A node set containing the single element
anywhere in the same document whose ID is
string; or the empty set if no element has the
specified ID.

idref(node-set) node set A node set containing all of the elements in the
document whose ID is one of the tokens
(separated by whitespace) in the values of the
nodes in the argument node-set.

key(string name, node set A node set containing all nodes in this document
string value) that have a key with the specified value. Keys are

set with the top-level xsl:key element.

keyref(string name, node set A node set containing all nodes in this document
node set values) that have a key whose value is the same as the

value of one of the nodes in the second
argument.

doc(string URI) node set A node set in the document or portion referred
to by the URI; the nodes are chosen from the
named anchor or XPointer used by the URI. If
there is no named anchor or Xpointer, then the
root element of the named document is in the
node set. Relative URIs are relative to the
current node in the input document.

docref(node set) node set A node set containing all the nodes (in one or
more documents) referred to by the URIs that
are the value of the node set argument.

local-part string The local part (everything after the namespace
(node set) prefix) of the first node in the node set

argument; can be used without any arguments
to get the local part of the context node.

namespace(node set) string The URI of the namespace of the first node in
the node set; can be used without any
arguments to get the URI of the namespace of
the context node; returns an empty string if the
node is in the default namespace.

qname(node set) string The qualified name (both prefix and local part)
of the first node in the node set argument;
can be used without any argument to get the
qualified name of the context node.

generate-id string A unique identifier for the first node in the argu-
(node set) ment node set; can be used without any

argument to generate an ID for the context node.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 472

473Chapter 14 ✦ XSL Transformations

Chapter 18, Namespaces, discusses namespace URIs, prefixes, and local parts.

The doc() and docref() functions are a little hazy, especially if their URIs refer
to only fragments of a node or data that is not well-formed XML. The details
remain to be cleaned up in a future version of the XSL specification.

If an argument of the wrong type is passed to one of these functions, then XSL will
attempt to convert that argument to the correct type; for instance, by converting
the number 12 to the string “12”. However, no arguments may be converted to
node sets.

The position() function can be used to count elements. Listing 14-13 is a style
sheet that prefixes the name of each atom’s name with its position in the document
using <xsl:value-of select=”position()”/>.

Listing 14-13: A style sheet that numbers the atoms in the
order they appear in the document

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The Elements</TITLE></HEAD>
<BODY>
<xsl:apply-templates select=”ATOM”/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:value-of select=”position()”/>.
<xsl:value-of select=”NAME”/>

</P>
</xsl:template>

</xsl:stylesheet>

When this style sheet is applied to Listing 14-1, the output is this:

<HTML><HEAD><TITLE>The Elements</TITLE></HEAD><BODY><P>1.
Hydrogen</P><P>2.
Helium</P></BODY></HTML>

Caution

Cross-
Reference

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 473

474 Part III ✦ Style Languages

Booleans
A Boolean has one of two values, true or false. XSL allows any kind of data to be
transformed into a Boolean. This is often done implicitly when a string or a number
or a node set is used where a Boolean is expected, as in the test attribute of an
xsl:if element. These conversions can also be performed by the boolean() func-
tion which converts an argument of any type (or the context node if no argument is
provided) to a Boolean according to these rules:

✦ a number is false if it’s zero or NaN (a special symbol meaning “Not a
Number”, used for the result of dividing by zero and similar illegal
operations), true otherwise

✦ an empty node set is false; all other node sets are true

✦ an empty result fragment is false; all other result fragments are true

✦ a zero length string is false; all other strings are true

Booleans are also produced as the result of expressions involving these operators:

= equality

< less-than (really <)

> greater-than

<= less-than or equal to (really <=)

>= greater-than or equal to

The < sign is illegal in attribute values. Consequently, it must be replaced by <
even when used as the less-than operator.

These operators are most commonly used in predicate tests to determine whether
a rule is invoked. A select expression can contain not only a pattern that selects
certain nodes, but also a predicate that further filters the list of nodes selected. For
example, from-children(ATOM) selects all the ATOM children of the current node.
However, from-children(ATOM[position()=1]) selects only the first ATOM child
of the current node. [position()=1] is a predicate on the node test ATOM that
returns a Boolean result, true if the position of the current node is equal to one,
false otherwise. Each node test can have any number of predicates. However, more
than one is unusual.

For example, this template rule applies to the first ATOM element in the periodic
table, but not to subsequent ones, by testing whether or not the position of the
element equals 1.

<xsl:template match=”PERIODIC_TABLE/ATOM[position()=1]”>
<xsl:value-of select=”.”/>

</xsl:template>

Caution

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 474

475Chapter 14 ✦ XSL Transformations

This template rule applies to all ATOM elements that are not the first child element
of the PERIODIC_TABLE by testing whether the position is greater than 1:

<xsl:template match=”PERIODIC_TABLE/ATOM[position()>1]”>
<xsl:value-of select=”.”/>

</xsl:template>

The keywords and and or logically combine two Boolean expressions according to
the normal rules of logic. For example, suppose you want to apply a template to an
ATOMIC_NUMBER element that is both the first and last child of its parent element;
that is; it is the only element of its parent. This template rule uses and to
accomplish that:

<xsl:template
match=”ATOMIC_NUMBER[position()=1 and position()=last()]”>
<xsl:value-of select=”.”/>

</xsl:template>

This template rule applies to both the first and last ATOM elements in their parent
by matching when the position is 1 or when the position is last:

<xsl:template match=”ATOM[position()=1 or position()=last()]”>
<xsl:value-of select=”.”/>

</xsl:template>

This is logical or, so it will also match if both conditions are true. That is, it will
match an ATOM that is both the first and last child of its parent

There is no not keyword in XSL, but there is a not() function. You can reverse the
sense of an operation by enclosing it in not(). For example, this template rule
selects all ATOM elements that are not the first child of their parents:

<xsl:template match=”ATOM[not(position()=1)]”>
<xsl:value-of select=”.”/>

</xsl:template>

This template rule selects all ATOM elements that are neither the first nor last ATOM
child of their parent:

<xsl:template match =
“ATOM[not(position()=1 or position()=last())]”>
<xsl:value-of select=”.”/>

</xsl:template>

There is no exclusive or operator. However, one can be formed by judicious use of
not() and, and or. For example, this rule selects those ATOM elements that are
either the first or last child, but not both

<xsl:template
match=”ATOM[(position()=1 or position()=last())

and not(position()=1 and position()=last())]”>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 475

476 Part III ✦ Style Languages

<xsl:value-of select=”.”/>
</xsl:template>

There are three remaining functions that return Booleans:

✦ true() always returns true

✦ false() always returns false

✦ lang(code) returns true if the current node has the same language (as given
by the xml:lang attribute) as the code argument.

Numbers
XSL numbers are 64-bit IEEE floating-point doubles. Even numbers like 42 or -7000
that look like integers are stored as doubles. Non-number values like strings and
Booleans are converted to numbers as necessary, or by the number() function
using these rules:

✦ Booleans are 1 if true; 0 if false.

✦ A string is trimmed of leading and trailing whitespace; then converted to a
number in the fashion you would expect; for example, the string “12” is
converted to the number 12. If the string cannot be interpreted as a number,
then it is converted to 0.

✦ Node sets and result fragments are converted to strings; then the string is
converted to a number.

For example, this rule only outputs the non-naturally occurring trans-uranium
elements; those with atomic numbers greater than 92, which is the atomic number
of uranium. The node set produced by ATOMIC_NUMBER is implicitly converted to
the string value of the current ATOMIC_NUMBER node. This string is then converted
into a number.

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The TransUranium Elements</TITLE></HEAD>
<BODY>
<xsl:apply-templates select=”ATOM[ATOMIC_NUMBER>92]”/>

</BODY>
</HTML>

</xsl:template>

XSL provides the standard four arithmetic operators:

✦ + for addition

✦ - for subtraction

✦ * for multiplication

✦ div for division (the more common / is already used for other purposes in XSL)

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 476

477Chapter 14 ✦ XSL Transformations

For example, <xsl:value-of select=”2+2”/> inserts the string “4” into the
output document. These operations are more commonly used as part of a test. For
example, this rule selects those elements whose atomic weight is more than twice
the atomic number:

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<BODY>
<H1>High Atomic Weight to Atomic Number Ratios</H1>
<xsl:apply-templates
select=”ATOM[ATOMIC_WEIGHT > 2 * ATOMIC_NUMBER]”/>

</BODY>
</HTML>

</xsl:template>

This template actually prints the ratio of atomic weight to atomic number:

<xsl:template match=”ATOM”>
<p>
<xsl:value-of select=”NAME”/>
<xsl:value-of select=”ATOMIC_WEIGHT div ATOMIC_NUMBER”/>

</p>
</xsl:template>

XSL also provides two less-familiar binary operators:

✦ mod for taking the remainder of two numbers

✦ quo for dividing two numbers, then truncating the fractional part to produce
an integer

XSL also includes four functions that operate on numbers:

floor() returns the greatest integer smaller than the number

ceiling() returns the smallest integer greater than the number

round() rounds the number to the nearest integer

sum() returns the sum of its arguments

For example, this template rule estimates the number of neutrons in an atom by
subtracting the atomic number (the number of protons) from the atomic weight
(the weighted average over the natural distribution of isotopes of the of number of
neutrons plus the number of protons) and rounding to the nearest integer:

<xsl:template match=”ATOM”>
<p>
<xsl:value-of select=”NAME”/>
<xsl:value-of
select=”round(ATOMIC_WEIGHT - ATOMIC_NUMBER)”/>

</p>
</xsl:template>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 477

478 Part III ✦ Style Languages

This rule calculates the average atomic weight of all the atoms in the table by
addining all the atomic weights, and then dividing by the number of atoms:

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<BODY>
<H1>Average Atomic Weight</H1>
<xsl:value-of
select=”sum(from-descendants(ATOMIC_WEIGHT))

div count(from-descendants(ATOMIC_WEIGHT))”/>
</BODY>

</HTML>
</xsl:template>

Strings
A string is a sequence of Unicode characters. Other data types can be converted to
strings using the string() function according to these rules:

✦ Node sets are converted by concatenating the values of the nodes in the set.
The values of the nodes in the set are calculated as by the xsl:value-of
element according to the rules given in Table 14-1.

✦ Result tree fragments are converted by acting as if they’re contained in a single
element, and then taking the value of that imaginary element. Again, the value
of this element is calculated as by the xsl:value-of element according to the
rules given in Table 14-1. That is, all the result tree fragment’s text (but not
markup) is concatenated.

✦ A number is converted to a European-style number string like “-12” or
“3.1415292”.

✦ Boolean false is converted to the English word “false”. Boolean true is
converted to the English word “true”.

Besides string(), XSL contains seven functions that operate on strings. These are
summarized in Table 14-5.

Table 14-5
Functions That Operate on Strings

Function Return Type Returns

starts-with(main_string, Boolean true if main_string starts with
prefix_string) prefix_string, false otherwise.

contains(containing_string, Boolean true if the contained_string is
contained_string) part of the containing_string;

false otherwise

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 478

479Chapter 14 ✦ XSL Transformations

Function Return Type Returns

substring-before(string, string the part of the string from the
marker-string) beginning of the string up to (but

not including) the first occurrence of
marker-string

substring-after(string, string the part of the string from the end
marker-string) of the first occurrence of marker-

string to the end of string

normalize(string) string the string after leading and
trailing whitespace is stripped and
runs of whitespace are replaced with
a single space; if the argument is
omitted the string value of the
context node is normalized

translate(string, replaced_ string returns string with occurrences of
text, replacement_text) characters in replaced_text

replaced by the corresponding
characters from replacement_
text

concat(string1, string returns the concatenation of as
string2, ...) many strings as are passed as

arguments in the order they were
passed

format-number(number, string returns the string form of number
format-string, formatted according to the specified
locale-string) format-string in the locale

specified by locale-string as if
by Java 1.1’s java.text.
DecimalFormat class (see http:
//java.sun.com/products/
jdk/1.1/docs/api/java.
text.DecimalFormat. html)

Result Tree Fragments
A result tree fragment is a portion of an XML document that is not a complete node
or set of nodes. For instance, using the doc() function with a URI that points into
the middle of an element might produce a result tree fragment. Result functions
may also be returned by some extension functions (functions unique to a particular
XSL implementation or installation).

Since result tree fragments aren’t well-formed XML, you can’t do much with them.
In fact, the only allowed operations are to convert them to a string or a Boolean
using string() and boolean() respectively.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 479

480 Part III ✦ Style Languages

The Default Template Rules
Having to carefully map the hierarchy of an XML document in an XSL style sheet may
be inconvenient. This is especially true if the document does not follow a stable,
predictable order like the periodic table but rather throws elements together willy-
nilly like many Web pages. In those cases, you should have general rules that can find
an element and apply templates to it regardless of where it appears in the source
document.

To make this process easier, XSL defines two default template rules implicitly
included in all style sheets. The first default rule recursively descends the element
tree, applying templates to the children of all elements. This guarantees that all
template rules that apply to elements will be instantiated. The second default rule
applies to text nodes, copying their value onto the output stream. Together these
two rules mean that even a blank XSL style sheet with no elements will still produce
the raw character data of the input XML document as output.

The Default Rule for Elements
The first default rule applies to element nodes of any type or the root node:

<xsl:template match=”*|/”>
<xsl:apply-templates/>

</xsl:template>

*|/ is XSL shorthand for “any element node or the root node”. The purpose of this
rule is to ensure that all elements are recursively processed even if they aren’t
reached by following the explicit rules. That is, unless another rule overrides this
one (especially for the root element) all element nodes will be processed.

However, once an explicit rule for any parent of an element is present, this rule will
not be activated for the child elements unless the template rule for the parent has an
xsl:apply-templates child. For instance, you can stop all processing by matching
the root element and neither applying templates nor using xsl:for-each to process
the children like this:

<xsl:template match=”/”>
</xsl:template>

The Default Rule for Text Nodes
Exceptionally observant readers may have noted several of the examples seem to
have output the contents of some elements without actually taking the value of the
element they were outputting! These contents were provided by XSL’s default rule
for text nodes that occur as element content. This rule is:

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 480

481Chapter 14 ✦ XSL Transformations

<xsl:template match=”text()”>
<xsl:value-of select=”.”/>

</xsl:template>

This rule matches all text nodes (match=”text()”) and outputs the value of the
text node (<xsl:value-of select=”.”/>). In other words, it copies the text from
the input to the output.

This rule ensures that at the very least an element’s text is output, even if no rule
specifically matches it. Another rule can override this one for specific elements
where you want either more or less than the text content of an element.

Implication of the Two Default Rules
Together, the two default rules imply that applying an empty style sheet with only
an xsl:stylesheet element but no children (such as Listing 14-14) to an XML
document will copy all the #PCDATA out of the elements in the input to the output.
However, this method produces no markup. These are, however, extremely low
priority rules. Consequently, any other matches take precedence over these two.

Listing 14-14: An empty XML style sheet

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

</xsl:stylesheet>

One of the most common sources of confusion about XSL in Internet Explorer 5.0
is that it does not provide either of these default rules. You have to make sure that
you explicitly match any node whose contents (including descendants) you want
to output.

Deciding What Output to Include
It’s often necessary to defer decisions about what markup to emit until the input
document has been read. For instance, you may want to change the contents of a
FILENAME element into the HREF attribute of an A element, or replace one element
type in the input with several different element types in the output depending on
the value of one of its attributes. This is accomplished by using of xsl:element,
xsl:attribute, xsl:pi, xsl:comment, and xsl:text elements. XSL instructions

Caution

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 481

482 Part III ✦ Style Languages

are used in the contents of these elements and attribute value templates are used
in the attribute values of these elements to vary their output.

Using Attribute Value Templates
Attribute value templates copy data from element content in the input to attribute
values in the style sheet. From there, it can be written to the output. For example,
suppose you want to convert the periodic table into empty ATOM elements with this
attribute-based form:

<ATOM NAME=”Vanadium”
ATOMIC_WEIGHT=”50.9415”
ATOMIC_NUMBER=”23”
OXIDATION_STATES=”5, 4, 3, 2”
BOILING_POINT=”3650K”
MELTING_POINT=”2163K”
SYMBOL=”V”
DENSITY=”6.11 grams/cubic centimeter”

/>

To do this, you’ll need to extract the contents of elements in the input document
and place those in attribute values in the output document. The first thing you’re
likely to attempt is something like this:

<xsl:template match=”ATOM”>
<ATOM NAME=”<xsl:value-of select=’NAME’/>”
ATOMIC_WEIGHT=”<xsl:value-of select=’ATOMIC_WEIGHT’/>”
ATOMIC_NUMBER=”<xsl:value-of select=’ATOMIC_NUMBER’/>”

/>

</xsl:template>But this is malformed XML. You can’t use the < character inside an
attribute value. Furthermore, it’s extremely difficult to write software that can parse
this in its most general case.

Instead, inside attribute values, data enclosed in curly braces {} takes the place of
the xsl:value-of element. The correct way to write the above is like this:

<xsl:template match=”ATOM”>
<ATOM NAME=”{NAME}/>”
ATOMIC_WEIGHT=”{ATOMIC_WEIGHT}/>”
ATOMIC_NUMBER=”{ATOMIC_NUMBER}/>”

/>
</xsl:template>

In the output, {NAME} is replaced by the value of the NAME child element of the
current node. {ATOMIC_WEIGHT} is replaced by the value of the ATOMIC_WEIGHT
child element of the current node. {ATOMIC_NUMBER} is replaced by the value of
the ATOMIC_NUMBER child element, and so on.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 482

483Chapter 14 ✦ XSL Transformations

Attribute value templates can have more complicated patterns than merely an ele-
ment name. In fact, you can use any of the string expressions discussed earlier in an
attribute value template. For example, this template rule selects DENSITY elements
in the form used in Listing 14-1.

<xsl:template match=”DENSITY”>
<BULK_PROPERTY
NAME=”DENSITY”
ATOM=”{../NAME}”
VALUE=”{.}”
UNITS=”{@UNITS}”

/>
</xsl:template>

It converts them into BULK_PROPERTY elements that look like this:

<BULK_PROPERTY NAME=”DENSITY” ATOM=”Helium” VALUE=”
0.1785

“ UNITS=”grams/cubic centimeter”/>

Attribute values are not limited to a single attribute value template. You can combine
an attribute value template with literal data or with other attribute value templates.
For example, this template rule matches ATOM elements and replaces them with their
name formatted as a link to a file in the format H.html, He.html, and so on. The file
name is derived from the attribute value template {SYMBOL} while the literal data
provides the period and extension.

<xsl:template match=”ATOM”>

<xsl:value-of select=”NAME”/>

</xsl:template>

More than one attribute value template can be included in an attribute value. For
example, this template rule includes the density units as part of the VALUE attribute
rather than making them a separate attribute:

<xsl:template match=”DENSITY”>
<BULK_PROPERTY
NAME=”DENSITY”
ATOM=”{../NAME}”
VALUE=”{.} {@UNITS}”

/>
</xsl:template>

You can use attribute value templates in the value of most attributes in an XSL style
sheet. This is particularly important in xsl:element, xsl:attribute, and xsl:pi
elements where attribute value templates allow the designer to defer the decision
about exactly what element, attribute, or processing instruction appears in the

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 483

484 Part III ✦ Style Languages

output until the input document is read. You cannot use attribute value templates
as the value of a select or match attribute, an xmlns attribute, an attribute that
provides the name of another XSL instruction element, or an attribute of a top-level
element (one that’s an immediate child of xsl:stylesheet).

Chapter 18, Namespaces, discusses xmlns attributes.

Inserting Elements into the Output with xsl:element
Elements usually get inserted into the output document simply by using the literal
elements themselves. For instance, to insert a P element you merely type <P> and
</P> at the appropriate points in the style sheet. However, occasionally you need
to use details from the input to determine which element to place in the output.
This might happen, for example, when making a transformation from a source
vocabulary that uses attributes for information to an output vocabulary that uses
elements for the same information.

The xsl:element element inserts an element into the output document. The name
of the element is given by an attribute value template in the name attribute of xsl:
element. The contents of the element derive from the contents of the xsl:element
element which may include xsl:attribute, xsl:pi, and xsl:comment instruc-
tions (all discussed below) to insert these items.

For example, suppose you want to replace the ATOM elements with GAS, LIQUID,
and SOLID elements, depending on the value of the STATESTATE attribute. Using
xsl:element, a single rule can do this by converting the value of the STATESTATE
attribute to an element name. This is how it works:

<xsl:template match=”ATOM”>
<xsl:element name=”{@STATESTATE}”>
<NAME><xsl:value-of select=”NAME”/></NAME>
<!— rules for other children —>

</xsl:element>
</xsl:template>

By using more complicated attribute value templates, you can perform most
calculations you might need.

Inserting Attributes into the Output with xsl:attribute
You can include attributes in the output document simply by using the literal
attributes themselves. For instance, to insert a DIV element with an ALIGN attribute
bearing the value CENTER, you merely type <DIV ALIGN=”CENTER”> and </DIV> at
the appropriate points in the style sheet. However, you frequently have to rely on

Cross-
Reference

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 484

485Chapter 14 ✦ XSL Transformations

data you read from the input to determine an attribute value and sometimes even
to determine the attribute name.

For example, suppose you want a style sheet that selects atom names and formats
them as links to files named H.html, He.html, Li.html, and so forth like this:

Hydrogen
Helium
Lithium

Each different element in the input will have a different value for the HREF attribute.
The xsl:attribute element calculates an attribute name and value and inserts it
into the output. Each xsl:attribute element is a child of either an xsl:element
element or a literal element. The attribute calculated by xsl:attribute will be
attached to the element calculated by its parent in the output. The name of the
attribute is specified by the name attribute of the xsl:attribute element. The
value of the attribute is given by the contents of the xsl:attribute element. For
example, this template rule produces the output shown above:

<xsl:template match=”ATOM”>
<A>
<xsl:attribute name=”HREF”>
<xsl:value-of select=”SYMBOL”/>.html

</xsl:attribute>
<xsl:value-of select=”NAME”/>

</xsl:template>

All xsl:attribute elements must come before any other content of their parent
element. You can’t add an attribute to an element after you’ve already started
writing out its contents. For example, this template is illegal:

<xsl:template match=”ATOM”>
<A>
<xsl:value-of select=”NAME”/>
<xsl:attribute name=”HREF”>
<xsl:value-of select=”SYMBOL”/>.html

</xsl:attribute>

</xsl:template>

Defining Attribute Sets
You often need to apply the same group of attributes to many different elements, of
either the same or different classes. For instance, you might want to apply a style
attribute to each cell in an HTML table. To make this simpler, you can define one or
more attributes as members of an attribute set at the top level of the style sheet with
xsl:attribute-set, then include that attribute set in an element with xsl:use.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 485

486 Part III ✦ Style Languages

For example, this xsl:attribute-set element defines an element named
cellstyle with a font-family attribute of New York, Times New Roman, Times,
serif and a font-size attribute of 12pt.

<xsl:attribute-set name=”cellstyle”>
<xsl:attribute name=”font-family”>
New York, Times New Roman, Times, serif

</xsl:attribute>
<xsl:attribute name=”font-size”>12pt</xsl:attribute>

</xsl:attribute-set>

This template rule then applies those attributes to td elements in the output. As
with xsl:attribute, the xsl:use element that inserts the attribute set must come
before any content that’s to be added as a child of td.

<xsl:template match=”ATOM”>
<tr>
<td>
<xsl:use attribute-set=”cellstyle”/>
<xsl:value-of select=”NAME”/>

</td>
<td>
<xsl:use attribute-set=”cellstyle”/>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</td>
</tr>

</xsl:template>

If an element uses more than one attribute set, then all attributes from all the sets
are applied to the element. If more than one attribute set defines the same attribute
with different values, then the one from the more important set is used. A style
sheet in which multiple attribute sets of the same importance define the same
attribute is in error.

Generating Processing Instructions with xsl:pi
The xsl:pi element places a processing instruction in the output document. The
target of the processing instruction is specified by a required name attribute. The
contents of the xsl:pi element become the contents of the processing instruction.
For example, this rule replaces PROGRAM elements with a gcc processing instruction:

<xsl:template select=”PROGRAM”>
<xsl:pi name=”gcc”> -O4</xsl:pi>

</xsl:template>

PROGRAM elements in the input are replaced by this processing instruction in the
output:

<?gcc -O4?>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 486

487Chapter 14 ✦ XSL Transformations

The contents of the xsl:pi element can include xsl:value-of elements and
xsl:apply-templates elements provided the result of these instructions is pure
text. For example,

<xsl:template select=”PROGRAM”>
<xsl:pi name=”gcc”>-O4 <xsl:value-of select=”NAME”/></xsl:pi>

</xsl:template>

One common use for xsl:pi is to insert the XML declaration when generating XML
from XML (even though the XML declaration is technically not a processing
instruction). For example:

<xsl:pi name=”xml”>version=”1.0” standalone=”yes”</xsl:pi>

The xsl:pi element may not contain xsl:element and other instructions that
produce elements and attributes in the result. Furthermore, xsl:pi may not
include any instructions or literal text that inserts a ?> in the output since that
would prematurely end the processing instruction.

Generating Comments with xsl:comment
The xsl:comment element inserts a comment in the output document. It has no
attributes. Its contents are the text of the comment. For example,

<xsl:template select=”ATOM”>
<xsl:comment>There was an atom here once.</xsl:comment>

</xsl:template>

This rule replaces ATOM nodes with this output:

<!—There was an atom here once.—>

The contents of the xsl:comment element can include xsl:value-of elements
and xsl:apply-templates elements provided the result of these instructions is
pure text. It may not contain xsl:element and other instructions that produce
elements and attributes in the result. Furthermore, xsl:comment may not include
any instructions or literal text that inserts a double hyphen in the comment. This
would result in a malformed comment in the output, which is forbidden.

Generating Text with xsl:text
The xsl:text element inserts its contents into the output document as literal text.
For example, this rule replaces each ATOM element with the string “There was an
atom here once.”

<xsl:template select=”ATOM”>
<xsl:text>There was an atom here once.</xsl:text>

</xsl:template>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 487

488 Part III ✦ Style Languages

The xsl:text element isn’t much used because most of the time it’s easier to
simply type the text. However, xsl:text does have one advantage. It preserves
whitespace exactly. This is useful when dealing with poetry, computer source code,
or other information where whitespace is significant.

Copying the Current Node with xsl:copy
The xsl:copy element copies the source node into the output. Child elements,
attributes, and other content are not automatically copied. However, the contents
of the xsl:copy element are an xsl:template element that can select these things
to be copied as well. This is often useful when transforming a document from one
markup vocabulary to the same or a closely related markup vocabulary. For exam-
ple, this template rule strips the attributes and child elements off an atom and
replaces it with the value of its contents:

<xsl:template match=”ATOM”>
<xsl:copy>
<xsl:apply-templates/>

</xsl:copy>
</xsl:template>

One useful template xsl:copy makes possible is the identity transformation; that is,
a transformation from a document into itself. Such a transformation looks like this:

<xsl:template match=”*|@*|comment()|pi()|text()”>
<xsl:copy>
<xsl:apply-templates select=”*|@*|comment()|pi()|text()”/>

</xsl:copy>
</xsl:template>

You can adjust the identity transformation a little to produce similar documents.
For example, Listing 14-15 is a style sheet that strips comments from a document,
leaving the document otherwise untouched. It resulted from leaving the comment()
node out of the match and select attribute values in the identity transformation.

Listing 14-15: An XSL style sheet that strips comments
from a document

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”*|@*|pi()|text()”>
<xsl:copy>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 488

489Chapter 14 ✦ XSL Transformations

<xsl:apply-templates select=”*|@*|pi()|text()”/>
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

xsl:copy only copies the source node. You can copy other nodes, possibly more
than one of them, using xsl:copy-of. The select attribute of xsl:copy-of chooses
the nodes to be copied. For example, Listing 14-16 is a stylesheet that uses xsl:
copy-of to strip out elements without melting points from the periodic table by
copying only ATOM elements that have MELTING_POINT children.

Listing 14-16: A stylesheet that copies only ATOM elements
that have MELTING_POINT children

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/PERIODIC_TABLE”>
<PERIODIC_TABLE>
<xsl:apply-templates select=”ATOM”/>

</PERIODIC_TABLE>
</xsl:template>

<xsl:template match=”ATOM”>
<xsl:apply-templates
select=”MELTING_POINT”/>

</xsl:template>

<xsl:template match=”MELTING_POINT”>
<xsl:copy-of select=”..”>

<xsl:apply-templates select=”*|@*|pi()|text()”/>
</xsl:copy-of>

</xsl:template>

<xsl:template match=”*|@*|pi()|text()”>
<xsl:copy>
<xsl:apply-templates select=”*|@*|pi()|text()”/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 489

490 Part III ✦ Style Languages

This is an example of an XSL transformation from a source vocabulary to the same
vocabulary. Unlike most of the examples in this chapter, it does not transform to
well-formed HTML.

Counting Nodes with xsl:number
The xsl:number element inserts a formatted integer into the output document.
The value of the integer is given by rounding the number calculated by the expr
attribute to the nearest integer, then formatting it according to the value of the
format attribute. Reasonable defaults are provided for both these attributes. For
example, consider the style sheet for the ATOM elements in Listing 14-17.

Listing 14-17: An XSL style sheet that counts atoms

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”PERIODIC_TABLE”>
<html>
<head><title>The Elements</title></head>
<body>
<table>
<xsl:apply-templates select=”ATOM”/>

</table>
</body>

</html>
</xsl:template>

<xsl:template match=”ATOM”>
<tr>
<td><xsl:number expr=”position()”/></td>
<td><xsl:value-of select=”NAME”/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

When this style sheet is applied to Listing 14-1, the output appears like this:

<html><head><title>The
Elements</title></head><body><table><tr><td>1</td><td>Hydrogen<
/td></tr>

Note

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 490

491Chapter 14 ✦ XSL Transformations

<tr><td>2</td><td>Helium</td></tr>
</table></body></html>

Hydrogen gets number 1 because it is the first ATOM element in its parent. Helium
gets number 2 because it is the second ATOM element in its parent. (That these are
the atomic numbers of hydrogen and helium is a side effect of Listing 14-1 being
arranged in order of atomic number.)

Default Numbers
If you use the expr attribute to calculate the number, that’s all you need. However,
if the expr attribute is omitted, then the position of the current node in the source
tree is used as the number. However, this default can be adjusted using these three
attributes:

✦ level

✦ count

✦ from

These three attributes are a holdover from previous drafts of XSL that did not sup-
port the more complex expressions now possible. If they seem at all confusing to
you, I recommend that you ignore them and use expr instead.

The level Attribute
By default, with no expr attribute, xsl:number counts sibling nodes of the source
node. For instance, if the ATOMIC_NUMBER elements were numbered instead of ATOM
elements, none would have a number higher than 1 because an ATOM never has
more than one ATOMIC_NUMBER child. Although the document contains more than
one ATOMIC_NUMBER element, these are not siblings.

Setting the level attribute of xsl:number to any counts all of the elements of the
same kind as the current node in the document. This includes not just the ones that
may match the current rule, but all elements of the right type. Even if you select
only the atomic numbers of the gases, for example, the solids and liquids would
still count, even if they weren’t output. Consider, these rules:

<xsl:template match=”ATOM”>
<xsl:apply-templates select=”NAME”/>

</xsl:template>

<xsl:template match=”NAME”>
<td><xsl:number level=”any”/></td>
<td><xsl:value-of select=”.”/></td>

</xsl:template>

Caution

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 491

492 Part III ✦ Style Languages

Since level is set to any, they produce output that doesn’t start from 1 with each
new NAME element like this:

<td>1</td><td>Hydrogen</td>

<td>2</td><td>Helium</td>

If you remove the level attribute or set it to its default value of single, then the
output would look like this:

<td>1</td><td>Hydrogen</td>

<td>1</td><td>Helium</td>

A slightly less useful option sets the level attribute of xsl:number to multi to
specify that both the siblings of the current node and its ancestors (but not their
children that aren’t siblings of the current node) should be counted.

The count Attribute
By default, with no expr attribute, only elements of the same type as the element
of the current node get counted. However, you can set the count attribute of xsl:
number to a select expression that specifies what to count. For instance, this rule
applies numbers all the child elements of an ATOM:

<xsl:template match=”ATOM/*”>
<td><xsl:number count=”*”/></td>
<td><xsl:value-of select=”.”/></td>

</xsl:template>

The output from applying this rule looks like this:

<td>1</td><td>Helium</td>
<td>2</td><td>He</td>
<td>3</td><td>2</td>
<td>4</td><td>4.0026</td>
<td>5</td><td>1</td>
<td>6</td><td>4.216</td>
<td>7</td><td>0.95</td>
<td>8</td><td>
0.1785

</td>

The from Attribute
The from attribute contains a select expression that specifies which element the
counting begins with in the input tree. However, the counting still begins from one,
not two or ten or some other number. The from attribute only changes which
element is considered to be the first element.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 492

493Chapter 14 ✦ XSL Transformations

Number to String Conversion
Until now, I’ve implicitly assumed that numbers looked like 1, 2, 3, and so on; that
is, a European numeral starting from 1 and counting by 1. However, that’s not the
only possibility. For instance, the pages of the preface and other front matter of
books often appear in small Roman numerals like i, ii, iii, iv, and so on. And different
countries use different conventions to group the digits, separate the integer and
fractional parts of a real number, and represent the symbols for the various digits.
These are all adjustable through five attributes of xsl:number:

✦ format

✦ letter-value

✦ digit-group-sep

✦ n-digits-per-group

✦ sequence-src

The format Attribute
You can adjust the numbering style used by xsl:number using the format attribute.
This attribute generally has one of the following values:

✦ i: produces the sequence of lowercase Roman numerals i, ii. iii, iv, v, vi, ...

✦ I: produces the sequence of uppercase Roman numerals I, II, III, IV, V, VI, ...

✦ a: produces the sequence of lowercase letters a, b, c, d, e, f, ...

✦ A: produces the sequence of uppercase letters A, B, C, D, E, F, ...

For example, this rule numbers the atoms with capital Roman numerals:

<xsl:template match=”ATOM”>
<P>
<xsl:number expr=”position()” format=”I”/>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

You can adjust the number (or letter) at which counting starts by changing the
value of the format attribute. For example, to start numbering at 5, set format=
”5”. To start numbering at iii, set format=”iii”.

You can also specify decimal numbering with leading zeroes by including the
number of leading zeroes you want in the format attribute. For instance, setting
format=”01”, produces the sequence 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12,
You might find this useful when lining numbers up in columns.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 493

494 Part III ✦ Style Languages

The letter-value Attribute
The letter-value attribute distinguishes between letters interpreted as numbers
and letters interpreted as letters. For instance, if you want to use format=”I” to
start the sequence I, J, K, L, M, N, ... instead of I, II, III, IV, V, VI, ... you would set the
letter-value attribute to the keyword alphabetic. The keyword other specifies
a numeric sequence. For example,

<xsl:template match=”ATOM”>
<P>
<xsl:number expr=”position()”

format=”I” letter-value=”alphabetic”/>
<xsl:value-of select=”.”/>
</P>

</xsl:template>

Group Separator Attributes
In the United States, we tend to write large numbers with commas grouping every
three digits like 4,567,302,000. However, in many languages and countries, a period
or a space separates the groups instead; for instance, 4.567.302.000 or 4 567 302
000. Furthermore, in some countries it’s customary to group large numbers every
four digits instead of every three; for example, 4,5673,0000. If you’re dealing with
very long lists that may contain a thousand or more items, you need to worry about
these issues.

The digit-group-sep attribute specifies the grouping separator used between
groups of digits. The n-digits-per-group attribute specifies the number of digits
used in a group. Generally, you’d make these attributes contingent on the language.
For example,

<xsl:number digit-group-sep=” “/>

The sequence-src Attribute
Finally, if you want to use an unusual order (for example, a list of date strings like
1-1-1999, 1-2-1999, 1-3-1999, ... or a list that jumps by tens like 10, 20, 30, 40, ...) you
can store this list (separated by whitespace) in a separate document. The
sequence-src attribute has a value representing the relative or absolute URL of
this document. For example,

<xsl:number sequence-src=”1999.txt”/>

Sorting Output Elements
The xsl:sort element sorts the output elements into a different order than they
appear in the input. An xsl:sort element appears as a child of an xsl:apply-

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 494

495Chapter 14 ✦ XSL Transformations

templates element or xsl:for-each element. The select attribute of the xsl:
sort element defines the key used to sort the elements’ output by xsl:apply-
templates or xsl:for-each.

By default, sorting is performed in alphabetical order of the keys. If more than one
xsl:sort element is present in a given xsl:apply-templates or xsl:for-each
element, then the output sorts first by the first key, then by the second key, and so
on. If any elements still compare equally, they output in the order they appear in
the source document.

For example, suppose you have a file full of ATOM elements arranged alphabetically.
To sort by atomic number, you can use the style sheet in Listing 14-18.

Listing 14-18: An XSL style sheet that sorts by atomic number

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”PERIODIC_TABLE”>
<html>
<head>
<title>Atomic Number vs. Atomic Weight</title>

</head>
<body>
<h1>Atomic Number vs. Atomic Weight</h1>
<table>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<xsl:apply-templates>
<xsl:sort select=”ATOMIC_NUMBER”/>

</xsl:apply-templates>
</table>

</body>
</html>

</xsl:template>

<xsl:template match=”ATOM”>
<tr>
<td><xsl:apply-templates select=”NAME”/></td>
<td><xsl:apply-templates select=”ATOMIC_NUMBER”/></td>
<td><xsl:apply-templates select=”ATOMIC_WEIGHT”/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 495

496 Part III ✦ Style Languages

Figure 14-5 shows the results that display the limits of alphabetical sorting. Hydrogen,
atomic number 1, is the first element. However, the second element is not helium,
atomic number 2, but rather neon, atomic number 10. Although 10 sorts after 9
numerically, alphabetically 10 falls before 2.

Figure 14-5: Atoms alphabetically sorted by atomic number

You can, however, adjust the order of the sort by setting the optional data-type
attribute to the value number. For example,

<xsl:sort data-type=”number” select=”ATOMIC_NUMBER”/>

Figure 14-6 shows the elements sorted properly.

You can change the order of the sort from the default ascending order to descend-
ing by setting the order attribute to descending like this:

<xsl:sort order=”descending”
sort=”number”
select=”ATOMIC_NUMBER”/>

This sorts the elements from the largest atomic number to the smallest so that
hydrogen now appears last in the list.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 496

497Chapter 14 ✦ XSL Transformations

Figure 14-6: Atoms numerically sorted by atomic number

Alphabetical sorting naturally depends on the alphabet. The lang attribute can set
the language of the keys. The value of this attribute should be an ISO 639 language
code like en for English.

These are the same values supported by the xml:lang attribute discussed in
Chapter 10, Attribute Declarations in DTDs.

Finally, you can set the case-order attribute to one of the two values upper-
first or lower-first to specify whether uppercase letters sort before lowercase
letters or vice versa. The default depends on the language.

CDATA and < Signs
Standard XSL contains no means to insert raw, unescaped < characters that are not
part of a tag into the output. Raw less-than signs make the output document mal-
formed, something XSL does not allow. Instead, if you use a character reference like
< or the entity reference < to insert the < character, the formatter will
insert < or perhaps <.

Cross-
Reference

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 497

498 Part III ✦ Style Languages

This only really becomes important when you’re embedding JavaScript into a page
because JavaScript uses the < character to mean numerical less than rather than
the start of the tag. Furthermore, JavaScript implementations do not allow the <
character to be replaced with the HTML entity <.

You can insert raw, unescaped > and >= signs into the output, however. Consequently,
if your output needs to contain JavaScript that makes numerical comparisons, you
can rewrite a less-than comparison as a greater-than-or-equal-to comparison by
reversing the order of the operands. You can rewrite a less-than-or-equal-to compari-
son as a greater-than comparison. For example, here’s a few lines of JavaScript code
I use in a lot of my Web pages:

if (location.host.tolowercase().indexof(“sunsite”) < 0) {
location.href=”http://metalab.unc.edu/xml/”;

}

These lines are malformed because of the less-than sign in the first two lines. How-
ever, these lines are completely equivalent to these lines:

if (0 > location.host.tolowercase().indexof(“sunsite”)) {
location.href=”http://metalab.unc.edu/xml/”;

}

If you have multiple tests combined with Boolean operators, you may need to change
logical ands to logical ors as well. For example, these two lines of JavaScript effetively
test whether the location of the page is not on metalab and not on sunsite:

if (location.host.toLowerCase().indexOf(“metalab”) < 0
&& location.host.tolowercase().indexof(“sunsite”) < 0) {

location.href=”http://metalab.unc.edu/xml/”;
}

These lines are malformed because of the less-than signs in the first two lines.
However, these lines which test whether the page is on metalab or sunsite are
completely equivalent:

if (0 > location.host.toLowerCase().indexOf(“metalab”)
|| 0 > location.host.tolowercase().indexof(“sunsite”)) {

location.href=”http://metalab.unc.edu/xml/”;
}

You can also place the offending JavaScript in a separate document, and link to it
from the SCRIPT element’s SRC attribute. However, this is unreliable prior to
Internet Explorer 4 and Netscape Navigator 3.

CDATA sections are not allowed in output for reasons of simplicity. A CDATA
section can always be replaced by an equivalent collection of character data with

Tip

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 498

499Chapter 14 ✦ XSL Transformations

Unicode escapes for problem characters like < and &. CDATA sections are purely a
convenience for humans writing XML files by hand. Computer programs like XSL
formatters don’t need them.

The XSL formatter included in Internet Explorer 5.0 does support a non-standard
xsl:cdata element for inserting CDATA sections into the output. However, it’s
unlikely that this will be added to standard XSL, and it may even be removed from
later releases of Internet Explorer.

Modes
Sometimes you want to include the same content from the source document in the
output document multiple times. That’s easy to do by simply applying templates
multiple times, once in each place where you want the data to appear. However,
suppose you want the data to be formatted differently in different locations? That’s
a little trickier.

For example, suppose you want the output of processing the periodic table to be a
series of 100 links to more detailed descriptions of the individual atoms. In this
case, the output document would start like this:

Actinium
Aluminum
Americium
Antimony
Argon
...

Later in the document, the actual atom description would appear, formatted like this:

<H3>Aluminum</H3><P>
Aluminum
26.98154
13
3
2740
933.5
Al

2.7

</P>

This sort of application is common anytime you automatically generate a
hypertext table of contents or index. The NAME of the atom must be formatted

Note

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 499

500 Part III ✦ Style Languages

differently in the table of contents than in the body of the document. You need
two different rules that both apply to the ATOM element at different places in
the document. The solution is to give each of the different rules a mode attribute.
Then you can choose which template to apply by setting the mode attribute of the
xsl:apply-templates element. Listing 14-19 demonstrates.

Listing 14-19: An XSL stylesheet that uses modes to format the
same data differently in two different places

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The Elements</TITLE></HEAD>
<BODY>

<H2>Table of Contents</H2>

<xsl:apply-templates select=”ATOM” mode=”toc”/>

<H2>The Elements</H2>
<xsl:apply-templates select=”ATOM” mode=”full”/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match=”ATOM” mode=”toc”>
<A>
<xsl:attribute name=”HREF”>#<xsl:value-of
select=”SYMBOL”/></xsl:attribute>

<xsl:value-of select=”NAME”/>

</xsl:template>

<xsl:template match=”ATOM” mode=”full”>
<H3><A>
<xsl:attribute name=”NAME”>
<xsl:value-of select=”SYMBOL”/>

</xsl:attribute>
<xsl:value-of select=”NAME”/>

</H3>
<P>
<xsl:value-of select=”.”/>

</P>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 500

501Chapter 14 ✦ XSL Transformations

</xsl:template>

</xsl:stylesheet>

Defining Constants with xsl:variable
Named constants help clean up code. They can replace commonly used boiler-
plate text with a simple name and reference. They can also make it easy to adjust
boilerplate text that appears in multiple locations by simply changing the con-
stant definition.

The xsl:variable element defines a named string for use elsewhere in the style
sheet via an attribute value template. The xsl:variable element is an empty ele-
ment that appears as a direct child of xsl:stylesheet. It has a single attribute,
name, which provides a name by which the variable can be referred to. The con-
tents of the xsl:variable element provides the replacement text. For example,
this xsl:variable element defines a variable with the name copy99 and the
value Copyright 1999 Elliotte Rusty Harold:

<xsl:variable name=”copy99”>
Copyright 1999 Elliotte Rusty Harold

</xsl:variable>

To access the value of this variable, you prefix a dollar sign to the name of the
variable. To insert this in an attribute, use an attribute value template. For example:

<BLOCK COPYRIGHT=”{$copy99}”>
</BLOCK >

You can use xsl:value-of to insert the variable’s replacement text into the output
document as text:

<xsl:value-of select=”$copy99”/>

The contents of the xsl:variable can contain markup including other XSL
instructions. This means that you can calculate the value of a variable based on
other information, including the value of other variables. However, a variable may
not refer to itself recursively, either directly or indirectly. For instance, the follow-
ing example is in error:

<xsl:variable name=”GNU”>
<xsl:value-of select=”$GNU”/>’s not Unix

</xsl:variable>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 501

502 Part III ✦ Style Languages

Similarly, two variables may not refer to each other in a circular fashion like this:

<xsl:variable name=”Thing1”>
Thing1 loves <xsl:value-of select=”$Thing2”/>

</xsl:variable>

<xsl:variable name=”Thing2”>
Thing2 loves <xsl:value-of select=”$Thing1”/>

</xsl:variable>

Named Templates
Variables are limited to basic text and markup. XSL provides a more powerful
macro facility that can wrap standard markup and text around changing data. For
example, suppose you want an atom’s atomic number, atomic weight, and other key
values format as a table cell in small, bold type Times in blue. In other words, you
want the output to look like this:

<td>

52

</td>

You can certainly include all that in a template rule like this:

<xsl:template match=”ATOMIC_NUMBER”>
<td>

<xsl:value-of select=”.”/>

</td>
</xsl:template>

This markup can repeat as the template of other rules, or as a part of the template
used in other rules. When the detailed markup grows more complex and when it
appears in several different places in a style sheet, you may elect to turn it into a
named template. Named templates resemble variables. However, they enable you
to include data from the place where the template is applied, rather than merely
inserting fixed text.

The xsl:template element can have a name attribute by which it can be explicitly
invoked, even when it isn’t applied indirectly. For example, this shows a sample
named template for the above pattern:

<xsl:template name=”ATOM_CELL”>
<td>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 502

503Chapter 14 ✦ XSL Transformations

<xsl:value-of select=”.”/>

</td>
</xsl:template>

The <xsl:value-of select=”.”/> element in the middle of the macro will be
replaced by the contents of the current node from which this template was called.

The xsl:call-template element appears in the contents of a template rule. It has
a required name argument that names the template it will call. When processed, the
xsl:call-template element is replaced by the contents of the xsl:template
element it names. For example, we can now rewrite the ATOMIC_NUMBER rule like
this using the xsl:call-template element to call the ATOM_CELL named template:

<xsl:template match=”ATOMIC_NUMBER”>
<xsl:call-template name=”ATOM_CELL”/>

</xsl:template>

This fairly simple example only saves a few lines of code, but the more complicated
the template, and the more times it’s reused, the greater the reduction in complex-
ity of the style sheet. Named templates also have the advantage, like variables, of
factoring out common patterns in the style sheet so you can edit them as one. For
instance, if you decide to change the color of atomic number, atomic weight, and
other key values from blue to red, you only need to change it once in the named
template. You do not have to change it in each separate template rule. This facili-
tates greater consistency of style in the long run.

Parameters
Each separate invocation of a named template can pass parameters to the
template to customize its output. In the xsl:template element, the parameters
are represented as xsl:param-variable child elements. In the xsl:call-
template element, parameters are represented as xsl:param child elements.

For example, suppose you want to also include a link to a particular file for each
atom cell. The output should look something like this:

<td>

52

</td>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 503

504 Part III ✦ Style Languages

The trick is that the value of the href attribute has to be passed in from the point
where the template is invoked because it changes for each separate invocation of
the template. For example, atomic weights will have to format like this:

<td>

4.0026

</td>

The template that supports this looks like this:

<xsl:template name=”ATOM_CELL”>
<xsl:param-variable name=”file”>
index.html
</xsl:param-variable>
<td>

<xsl:value-of select=”.”/>

</td>
</xsl:template>

The name attribute of the xsl:param-variable element gives the parameter a
name (important if there are multiple arguments) and the contents of the xsl:
param-variable element supplies a default value for this parameter to be used if
the invocation doesn’t provide a value. (This can also be given as a string expres-
sion using an expr attribute, exactly like xsl:variable.)

When this template is called, an xsl:param child of the xsl:call-template
element provides the value of the parameter using its name attribute to identify
the parameter and its contents to provide a value for the parameter. For example:

<xsl:template match=”ATOMIC_NUMBER”>
<xsl:call-template macro=”ATOM_CELL”>
<xsl:param name=”file”>atomic_number.html</xsl:param>
<xsl:value-of select=”.”/>

</xsl:call-template>
</xsl:template>

Again, this is a fairly simple example. However, much more complex named
templates exist. For instance, you could define header and footer macros for pages
on a Web site for importing by many different style sheets, each of which would
only have to change a few parameters for the name of the page author, the title of
the page, and the copyright date.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 504

505Chapter 14 ✦ XSL Transformations

Stripping and Preserving Whitespace
You may have noticed that all the examples of output up till now have been
formatted a little strangely. The reason the examples appeared strange is that the
source document needed to break long lines across multiple lines to fit between
the margins of this book. Unfortunately, the extra whitespace added to the input
document carried over into the output document. For a computer, the details of
insignificant whitespace aren’t important, but for a person they can be distracting.

The default behavior for text nodes like the content of an ATOMIC_NUMBER or
DENSITY element is to preserve all whitespace. A typical DENSITY element looks
like this:

<DENSITY UNITS=”grams/cubic centimeter”><!— At 300K —>
7.9

</DENSITY>

When its value is taken the leading and trailing whitespace is included, like this,
even though it’s really only there to help fit on this printed page and isn’t at all
significant:

7.9

However, there is one exception. If the text node contains only whitespace, no
other text, then the space is considered insignificant and stripped. But there is
one exception to the exception: if the text has an ancestor with an xml:space
attribute with the value preserve, then it is not stripped unless a closer
ancestor contains an xml: space attribute with the value default. (This is
really simpler than it sounds. All this says is that you can ignore text nodes that
contain only whitespace unless they’re specifically set to have significant
whitespace. Otherwise whitespace is preserved.)

If none of the elements in the document should preserve whitespace, then you can
set the default-space attribute of the xsl:stylesheet element to strip and all
leading and trailing whitespace will be removed from text nodes before they’re
output. This is the easiest solution for the periodic table problem. For example:

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”
default-space=”strip”>

If you don’t want to strip space from all elements, you can use xsl:strip-space
elements to identify the specific elements in the input document whose whitespace
should be considered insignificant and not copied to the output document. The
element attribute identifies the element whose excess space should be trimmed.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 505

506 Part III ✦ Style Languages

For example, these rules could be added to the periodic table style sheet to avoid
excess whitespace:

<xsl:strip-space element=”DENSITY”/>
<xsl:strip-space element=”BOILING_POINT”/>
<xsl:strip-space element=”MELTING_POINT”/>

The xsl:preserve-space element is the opposite of the xsl:strip-space
element. Its element attribute names an element whose whitespace should be
preserved. For example:

<xsl:preserve-space element=”ATOM”/>

Whitespace in the style sheet itself (as opposed to whitespace in the input XML
document) is not considered significant and is reduced to a single space by default.
You can avoid this behavior only by enclosing the literal whitespace in an
xsl:text element. For example:

<xsl:template select=”ATOM”>
<xsl:text> This is indented exactly five spaces.</xsl:text>
</xsl:template>

One final trick you can play with whitespace is to attach an indent-result attribute
to the root xsl:stylesheet element. If this attribute has the value yes, then the
processor is allowed to inset (but not remove) extra whitespace into the output to
try to “pretty-print” the output. This may include indentation and line breaks. For
example:

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”
indent-result=”yes”>
<!— usual templates and such go here... —>

</xsl:stylesheet>

If you’re generating HTML, specifying indent-result=”yes” can only make the
output more readable. The default value of indent-result is no because other,
non-HTML output formats may consider whitespace more significant.

Making Choices
XSL provides two elements that allow you to change the output based on the input.
The xsl:if element either does or does not output a given fragment of XML
depending on what patterns are present in the input. The xsl:choose element
picks one of several possible XML fragments depending on what patterns are
present in the input. Most of what you can do with xsl:if and xsl:choose can
also be done by suitable application of templates. However, sometimes the solution
with xsl:if or xsl:choose is simpler and more obvious.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 506

507Chapter 14 ✦ XSL Transformations

xsl:if
The xsl:if element provides a simple facility for changing the output based on a
pattern. The test attribute of xsl:if contains a select expression that evaluates to
a Boolean. If the expression is true, the contents of the xsl:if element are output.
Otherwise, they’re not. For example, this template writes out the names of all ATOM
elements. A comma and a space is added after all except the last element in the list.

<xsl:template match=”ATOM”>
<xsl:value-of select=”NAME”/>
<xsl:if test=”not(position()=last())”>, </xsl:if>

</xsl:template>

This ensures that the list looks like “Hydrogen, Helium” and not “Hydrogen, Helium”.

There are no xsl:else or xsl:else-if elements. The xsl:choose element pro-
vides this functionality.

xsl:choose
The xsl:choose element selects one of several possible outputs depending on
several possible conditions. Each condition and its associated output template is
provided by an xsl:when child element. The test attribute of the xsl:when
element is a select expression with a Boolean value. If multiple conditions are true,
only the first true one is instantiated. If none of the xsl:when elements are true,
the contents of the xsl:otherwise child elements are instantiated. For example,
this rule changes the color of the output based on whether the STATE attribute of
the ATOM element is SOLID, LIQUID, or GAS:

<xsl:template match=”ATOM”>
<xsl:choose>
<xsl:when test=”@STATE=’SOLID’”>
<P style=”color:black”>
<xsl:value-of select=”.”/>

</P>
</xsl:when>
<xsl:when test=”@STATE=’LIQUID’”>
<P style=”color:blue”>
<xsl:value-of select=”.”/>

</P>
</xsl:when>
<xsl:when test=”@STATE=’GAS’”>
<P style=”color:red”>
<xsl:value-of select=”.”/>

</P>
</xsl:when>
<xsl:other>
<P style=”color:green”>
<xsl:value-of select=”.”/>

</P>

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 507

508 Part III ✦ Style Languages

</xsl:other>
</xsl:choose>

</xsl:template>

Merging Multiple Style Sheets
A single XML document may use many different markup vocabularies described in
many different DTDs. You may also wish to use different standard style sheets for
those different vocabularies. However, you’ll also want style rules for particular
documents as well. The xsl:import and xsl:include elements enable you to
merge multiple style sheets so that you can organize and reuse style sheets for
different vocabularies and purposes.

Import with xsl:import
The xsl:import element is a top level element whose href attribute provides the
URI of a style sheet to import. All xsl:import elements must appear before any
other top level elements in the xsl:stylesheet root element. For example, these
xsl:import elements import the style sheets genealogy.xsl and standards.xsl.

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>
<xsl:import href=”genealogy.xsl”/>
<xsl:import href=”standards.xsl”/>
<!— other child elements follow —>

</xsl:stylesheet>

Rules in the imported style sheets may conflict with rules in the importing style
sheet. If so, rules in the importing style sheet take precedence. If two rules in
different imported style sheets conflict, then the last one imported (standards.xsl
above) takes precedence.

The xsl:apply-imports elements is a slight variant of xsl:apply-templates
that only uses imported rules. It does not use any rules from the importing style
sheet. This allows access to imported rules that would otherwise be overridden by
rules in the importing style sheet. Other than the name, it has identical syntax to
xsl:apply-templates. The only behavioral difference is that it only matches
template rules in imported style sheets.

Inclusion with xsl:include
The xsl:include element is a top level element that copies another style sheet
into the current style sheet at the point where it occurs. (More precisely, it copies
the contents of the xsl-stylesheet element in the remote document into the
current document.) Its href attribute provides the URI of the style sheet to include.
An xsl:include element can occur anywhere at the top level after the last
xsl:import element.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 508

509Chapter 14 ✦ XSL Transformations

Unlike rules included by xsl:import elements, rules included by xsl:include
elements have the same precedence in the including style sheet that they would
have if they were copied and pasted from one stylesheet to the other. As far as the
formatting engine is concerned, there is no difference between an included rule and
a rule that’s physically present.

Embed Style Sheets in Documents with xsl:stylesheet
You can directly include an XSL style sheet in the XML document it applies to. I
don’t recommend this in practice, and browsers and formatting engines are not
required to support it. Nonetheless, a few might. To do this, the xsl:stylesheet
element must appear as a child of the document element, rather than as a root
element itself. It would have an id attribute giving it a unique name, and this id
attribute would appear as the value of the href attribute in the xml-stylesheet
processing instruction, following the anchor identifier #. Listing 14-20
demonstrates:

Listing 14-20: An XSL style sheet embedded
in an XML document

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”#id(mystyle)”?>
<PERIODIC_TABLE>

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”
id=”mystyle”>

<xsl:template match=”/”>
<html>
<xsl:apply-templates/>

</html>
</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

</xsl:stylesheet>

Continued

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 509

510 Part III ✦ Style Languages

Listing 14-20 (continued)

<ATOM>
<NAME>Actinium</NAME>
<ATOMIC_WEIGHT>227</ATOMIC_WEIGHT>
<ATOMIC_NUMBER>89</ATOMIC_NUMBER>
<OXIDATION_STATES>3</OXIDATION_STATES>
<BOILING_POINT UNITS=”Kelvin”>3470</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>1324</MELTING_POINT>
<SYMBOL>Ac</SYMBOL>
<DENSITY UNITS=”grams/cubic centimeter”><!— At 300K —>
10.07

</DENSITY>
<ELECTRONEGATIVITY>1.1</ELECTRONEGATIVITY>
<ATOMIC_RADIUS UNITS=”Angstroms”>1.88</ATOMIC_RADIUS>

</ATOM>

</PERIODIC_TABLE>

Summary
In this chapter, you learned about XSL transformations. In particular, you learned
the following:

✦ The Extensible Style Language (XSL) comprises two separate XML applica-
tions for transforming and formatting XML documents.

✦ An XSL transformation applies rules to a tree read from an XML document to
transform it into an output tree written as an XML document.

✦ An XSL template rule is an xsl:template element with a match attribute.
Nodes in the input tree are compared against the patterns of the match
attributes of the different template elements. When a match is found, the
contents of the template are output.

✦ The value of a node is a pure text (no markup) string containing the contents
of the node. This can be calculated by the xsl:value-of element.

✦ You can process multiple elements in two ways: the xsl: apply templates
element and the xsl:for each element.

✦ The value of the match attribute of the xsl:template element is a match
pattern specifying which nodes the template matches.

✦ Select expressions are a superset of the match attribute used by the select
attribute of xsl:apply-templates, xsl:value-of, xsl:for-each,
xsl:copy-of, and xsl:sort and various other elements.

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 510

511Chapter 14 ✦ XSL Transformations

✦ Two default rules apply templates to element nodes and take the value of
text nodes.

✦ The xsl:element, xsl:attribute, xsl:pi, xsl:comment, and xsl:text
elements can output elements, attributes, processing instructions, comments,
and text calculated from data in the input document.

✦ The xsl:attribute-set element defines a common group of attributes
that can be applied to multiple elements in different templates with the
xsl:use element.

✦ The xsl:copy element copies the current input node into the output.

✦ The xsl:number element inserts the number specified by its expr
attribute into the output using a specified number format given by the
format attribute.

✦ The xsl:sort element can reorder the input nodes before copying them to
the output.

✦ XSL cannot output CDATA sections or unescaped < signs.

✦ Modes can apply different templates to the same element from different
locations in the style sheet.

✦ The xsl:variable element defines named constants that can clarify
your code.

✦ Named templates help you reuse common template code.

✦ Whitespace is maintained by default unless an xsl:strip-space element or
xml:space attribute says otherwise.

✦ The xsl:if element produces output if, and only if, its test attribute is true.

✦ The xsl:choose element outputs the template of the first one of its xsl:when
children whose test attribute is true, or the template of its xsl:default
element if no xsl:when element has a true test attribute.

✦ The xsl:import and xsl:include elements merge rules from different
style sheets.

In the next chapter, we’ll take up the second half of XSL: the formatting objects
vocabulary. Formatting objects are an extremely powerful way of specifying the
precise layout you want your pages to have. XSL transformations are used to
transform an XML document into an XSL formatting object document.

✦ ✦ ✦

3236-7 ch14.F.qc 6/30/99 2:42 PM Page 511

XSL Formatting
Objects

The second half of the Extensible Style Language (XSL) is
the formatting language. This is an XML application used

to describe how content should be rendered when presented
to a reader. Generally, a style sheet uses the XSL transforma-
tion language to transform an XML document into a new XML
document that uses the XSL formatting objects vocabulary.
While many hope that Web browsers will one day know how
to directly display data marked up with XSL formatting objects,
for now an additional step is necessary in which the output
document is further transformed into some other format such
as PDF.

Overview of the XSL
Formatting Language

XSL formatting objects provide a more sophisticated visual
layout model than HTML+CSS (even CSS2). Formatting
supported by XSL formatting objects but not supported by
HTML+CSS includes non-Western layout, footnotes, margin
notes, page numbers in cross references, and more. In
particular, while CSS is primarily intended for use on the Web,
XSL formatting objects are designed for more general use. You
should, for instance, be able to write an XSL style sheet that
uses formatting objects to lay out an entire printed book. A
different style sheet should be able to transform the same
XML document into a Web site.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
XSL formatting
language

Formatting objects
and their properties

Formatting and
styling pages

Inserting rules in text

Embedding graphics
in a rendered
document

Linking to URI targets

Inserting lists in text

Replacing characters

Using sequences

Footnotes

Floats

Understanding how
to use the XSL
formatting properties

✦ ✦ ✦ ✦

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 513

514 Part III ✦ Style Languages

A Word of Caution about the XSL Formatting Language

XSL is still under development. The XSL language has changed radically in the past, and will
change again in the future. This chapter is based on the April 21, 1999 (fourth) draft of the
XSL specification. By the time you are reading this book, this draft of XSL will probably have
been superseded and the exact syntax of XSL will have changed. The formatting objects part
of the specification is, if anything, even less complete than the transformation language
specification. If you do encounter something that doesn’t seem to work quite right, you
should compare the examples in this book against the most current specification.

To make matters worse, no software implements all of the April 21, 1999 draft of the XSL
specification, even just the formatting objects half. In fact, so far there’s exactly one partial
implementation of XSL formatting objects, James Tauber’s FOP, which converts XML docu-
ments using the XSL formatting objects into PDF. There are no Web browsers that can dis-
play a document written with XSL formatting objects.

Eventually, of course, this should be straightened out as the standard evolves toward its
final incarnation and more vendors implement XSL formatting objects. Until then, you’re
faced with a choice: You can either work out on the bleeding edge with XSL in its current,
incomplete, unfinished state and try to work around all the bugs and omissions you’ll
encounter, or stick with a more established technology, such as CSS, until XSL is more solid.

Formatting Objects and Their Properties
There are exactly 51 XSL formatting object elements. Of the 51 elements, most
signify various kinds of rectangular areas. Most of the rest are containers for
rectangular areas and spaces. In alphabetical order, these formatting objects are:

✦ bidi-override

✦ block

✦ character

✦ display-graphic

✦ display-included-container

✦ display-rule

✦ display-sequence

✦ first-line-marker

✦ float

✦ flow

✦ footnote

✦ footnote-citation

✦ inline-graphic

✦ inline-included-container

✦ inline-rule

✦ inline-sequence

✦ layout-master-set

✦ list-block

✦ list-item

✦ list-item-body

✦ list-item-label

✦ multi-case

✦ multi-properties

✦ multi-property-set

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 514

515Chapter 15 ✦ XSL Formatting Objects

✦ multi-switch

✦ multi-toggle

✦ page-number

✦ page-number-citation

✦ page-sequence

✦ region-after

✦ region-before

✦ region-body

✦ region-end

✦ region-start

✦ root

✦ sequence-specification

✦ sequence-specifier-alternating

✦ sequence-specifier-repeating

✦ sequence-specifier-single

✦ simple-link

✦ simple-page-master

✦ static-content

✦ table

✦ table-and-caption

✦ table-body

✦ table-caption

✦ table-cell

✦ table-column

✦ table-footer

✦ table-header

✦ table-row

The XSL formatting model is based on rectangular boxes called areas that can
contain text, empty space, or other formatting objects. As with CSS boxes, each
area has borders and padding on each of its sides, although CSS margins are
replaced by XSL indents. An XSL formatter reads the formatting objects to
determine which areas to place where on the page. Many formatting objects
produce single areas (at least most of the time), but due to page breaks, word
wrapping, hyphenation, and other aspects of fitting a potentially infinite amount of
text into a finite area, some formatting objects do occasionally generate more than
one area.

A box that contains space is not the same as a box that contains whitespace char-
acters. A box containing empty space refers to a physical blank area on the page or
screen, for example the margins on the left and right sides of this page. This is not
the same as the space characters between the words on this page.

The formatting objects differ primarily in what they contain. For example, the
list-item-label formatting object is a box that contains a bullet, a number, or
another indicator placed in front of a list item. A list-item-body formatting
object is a box that contains the text, sans label, of the list item. And a list-item
formatting object is a box that contains both the list-item-label and list-item
formatting objects.

Note

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 515

516 Part III ✦ Style Languages

The formatting objects are further divided into four different kinds of rectangular
areas:

1. area containers

2. block areas

3. line areas

4. inline-areas

These form a rough hierarchy. Area containers contain other smaller area
containers and block areas. Block areas contain other block areas, line areas, and
content. Line areas contain inline areas. Inline areas contain other inline areas and
content. More specifically:

✦ An area container is the highest-level container in XSL. It can be positioned at
precise coordinates inside the area that contains it. It can contain either other,
smaller area containers or a sequence of block areas and display spaces. You
can think of a page of this book as an area container that contains five other
area containers: the header, the main body of the page, the footer, and the left
and right margins. (In this example, the margin areas contain no content.)
Formatting objects that produce area containers include region-body,
region-before, region-after, region-start, and region-end.

✦ A block area represents a block-level element such as a paragraph or a list
item. Although block areas may contain other block areas, there should
always be a line break before the start and after the end of each block area. A
block area, rather than being precisely positioned by coordinates, is placed
sequentially in the area that contains it. As other block areas are added and
deleted before it or within it, the block area’s position shifts as necessary to
make room. A block area may contain line areas, display spaces, and other
block areas that are sequentially arranged in the containing block area. A
block area also may contain a single graphic image. Formatting objects that
produce block areas include block, display-graphic, display-link,
display-rule, and list-block.

✦ A line area represents a line of text inside a block. For example, each separate
line in this list item is a line area. Line areas can contain inline areas and inline
spaces. There are no formatting objects that correspond to line areas. Instead,
the formatting engine calculates the line areas as it decides how to wrap lines
inside block areas.

✦ Inline areas are parts of a line such as a single character, a footnote reference,
or a mathematical equation. Inline areas can contain other inline areas and
inline spaces. Formatting objects that produce inline areas include
character, inline-graphic, inline-link, inline-rule, inline-
sequence and page-number.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 516

517Chapter 15 ✦ XSL Formatting Objects

The fo Namespace
XML elements for XSL formatting objects are placed in the http://www.w3.org/
XSL/Format/1.0 namespace with this declaration in an XSL stylesheet:

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/TR/WD-xsl”
xmlns:fo=”http://www.w3.org/XSL/Format/1.0”
result-ns=”fo”>

About 99 times out of 100, the chosen prefix is fo. Consequently, you almost always
see the following elements with the fo prefix in this form:

✦ fo:bidi-override

✦ fo:block

✦ fo:character

✦ fo:display-graphic

✦ fo:display-included-container

✦ fo:display-rule

✦ fo:display-sequence

✦ fo:first-line-marker

✦ fo:float

✦ fo:flow

✦ fo:footnote

✦ fo:footnote-citation

✦ fo:inline-graphic

✦ fo:inline-included-container

✦ fo:inline-rule

✦ fo:inline-sequence

✦ fo:layout-master-set

✦ fo:list-block

✦ fo:list-item

✦ fo:list-item-body

✦ fo:list-item-label

✦ fo:multi-case

✦ fo:multi-properties

✦ fo:multi-property-set

✦ fo:multi-switch

✦ fo:multi-toggle

✦ fo:page-number

✦ fo:page-number-citation

✦ fo:page-sequence

✦ fo:region-after

✦ fo:region-before

✦ fo:region-body

✦ fo:region-end

✦ fo:region-start

✦ fo:root

✦ fo:sequence-specification

✦ fo:sequence-specifier-
alternating

✦ fo:sequence-specifier-
repeating

✦ fo:sequence-specifier-
single

✦ fo:simple-link

✦ fo:simple-page-master

✦ fo:static-content

✦ fo:table

✦ fo:table-and-caption

✦ fo:table-body

✦ fo:table-caption

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 517

518 Part III ✦ Style Languages

✦ fo:table-cell

✦ fo:table-column

✦ fo:table-footer

✦ fo:table-header

✦ fo:table-row

In this chapter, I will use the fo prefix without further comment.

Namespaces are discussed in Chapter 18, Namespaces. Until then, all you have to
know is that the names of all XSL formatting object elements begin with fo:.

Formatting Properties
When taken as a whole, the various formatting objects in an XSL document specify
the order in which content is to be placed on pages. However, all the details of
formatting including but not limited to page size, element size, font, color, and a lot
more are specified by XSL properties. These formatting properties are represented
as attributes on the individual formatting object elements.

The details of many of these properties should be familiar from CSS. Work is
ongoing to ensure that CSS and XSL use the same names to mean the same things.
For example, the CSS property font-family means the same thing as the XSL
font-family property; and although the syntax for assigning values to properties
is different in CSS and XSL, the syntax of the values themselves is exactly the same.
To indicate that the fo:block element is formatted in some approximation of
Times, you might use this CSS rule:

fo:block {font-family: New York, Times New Roman, Times, serif}

The XSL equivalent is to include a font-family attribute in the fo:block start tag
in this way:

<fo:block
font-family=”New York, Times New Roman, Times, serif”>

Although this is superficially different, the style name (font-family) and the style
value (New York, Times New Roman, Times, serif) are exactly the same. CSS’s
font-family property is specified as a list of font names, separated by commas,
and in order from first choice to last choice. XSL’s font-family property is
specified as a list of font names, separated by commas, and in order from first
choice to last choice. Both CSS and XSL understand the keyword serif to mean an
arbitrary serif font.

As of the fourth draft of the XSL draft specification on which this chapter is based,
complete synchronization between equivalent CSS and XSL properties isn’t quite
finished. This should be cleaned up in the next draft.

Note

Cross-
Reference

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 518

519Chapter 15 ✦ XSL Formatting Objects

Of course, XSL formatting objects support many properties that have no CSS
equivalent, such as font-size-adjust, ligature, character, and hyphenation-
keep. You need to learn these to take full advantage of XSL. The standard XSL
properties follow:

✦ auto-restore

✦ azimuth

✦ background

✦ background-attachment

✦ background-color

✦ background-image

✦ background-position

✦ background-repeat

✦ border

✦ border-after-color

✦ border-after-style

✦ border-after-width

✦ border-before-color

✦ border-before-style

✦ border-before-width

✦ border-bottom

✦ border-bottom-color

✦ border-bottom-style

✦ border-bottom-width

✦ border-collapse

✦ border-color

✦ border-end-color

✦ border-end-style

✦ border-end-width

✦ border-left

✦ border-left-color

✦ border-left-style

✦ border-left-width

✦ border-right

✦ border-right-color

✦ border-right-style

✦ border-right-width

✦ border-spacing

✦ border-start-color

✦ border-start-style

✦ border-start-width

✦ border-style

✦ border-top

✦ border-top-color

✦ border-top-style

✦ border-top-width

✦ border-width

✦ bottom

✦ break-after

✦ break-before

✦ caption-side

✦

✦ cell-height

✦ character

✦ clear

✦ clip

✦ color

✦ column-count

✦ column-gap

✦ column-number

✦ column-width

✦ country

✦ cue

✦ cue-after

✦ cue-before

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 519

520 Part III ✦ Style Languages

✦ digit-group-sep

✦ direction

✦ elevation

✦ empty-cells

✦ end-indent

✦ ends-row

✦ extent

✦ external-destination

✦ float

✦ flow-name

✦ font

✦ font-family

✦ font-height-override-
after

✦ font-height-override-
before

✦ font-size

✦ font-size-adjust

✦ font-stretch

✦ font-style

✦ font-variant

✦ font-weight

✦ format

✦ height

✦ href

✦ hyphenate

✦ hyphenation-char

✦ hyphenation-keep

✦ hyphenation-ladder-
count

✦ hyphenation-push-
char-count

✦ hyphenation-remain-
char-count

✦ id

✦ indicate-destination

✦ inhibit-line-breaks

✦ initial

✦ initial-page-number

✦ internal-destination

✦ keep-with-next

✦ keep-with-previous

✦ language

✦ last-line-end-indent

✦ left

✦ length

✦ letter-spacing

✦ letter-value

✦ line-height

✦ line-height-shift-
adjustment

✦ line-stacking-
strategy

✦ margin

✦ margin-bottom

✦ margin-left

✦ margin-right

✦ margin-top

✦ max-height

✦ max-width

✦ may-break-after-row

✦ may-break-before-row

✦ min-height

✦ min-width

✦ name

✦ n-columns-repeated

✦ n-columns-spanned

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 520

521Chapter 15 ✦ XSL Formatting Objects

✦ n-digits-per-group

✦ n-rows-spanned

✦ orphans

✦ overflow

✦ padding

✦ padding-after

✦ padding-before

✦ padding-bottom

✦ padding-end

✦ padding-left

✦ padding-right

✦ padding-start

✦ padding-top

✦ page-break-inside

✦ page-height

✦ page-master-blank-
even

✦ page-master-even

✦ page-master-first

✦ page-master-last-even

✦ page-master-last-odd

✦ page-master-name

✦ page-master-odd

✦ page-master-repeating

✦ page-width

✦ pause

✦ pause-after

✦ pause-before

✦ pitch

✦ pitch-range

✦ play-during

✦ position

✦ precedence

✦ provisional-distance-
between-starts

✦ provisional-label-
separation

✦ reference-orientation

✦ ref-id

✦ richness

✦ right

✦ row-height

✦ rule-orientation

✦ rule-style

✦ rule-thickness

✦ scale

✦ score-spaces

✦ script

✦ sequence-src

✦ show-destination

✦ size

✦ space-above-
destination-block

✦ space-above-
destination-start

✦ space-after

✦ space-before

✦ space-between-list-
rows

✦ space-end

✦ space-start

✦ span

✦ speak

✦ speak-header

✦ speak-numeral

✦ speak-punctuation

✦ speech-rate

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 521

522 Part III ✦ Style Languages

✦ start-indent

✦ starts-row

✦ state

✦ stress

✦ switch-to

✦ table-height

✦ table-layout

✦ table-omit-middle-
footer

✦ table-omit-middle-
header

✦ table-width

✦ text-align

✦ text-align-last

✦ text-decoration

✦ text-indent

✦ text-shadow

✦ text-transform

✦ title

✦ top

✦ vertical-align

✦ visibility

✦ voice-family

✦ volume

✦ white-space-treatment

✦ widows

✦ width

✦ word-spacing

✦ wrap-option

✦ writing-mode

✦ z-index

Transforming to Formatting Objects
XSL formatting objects are a complete XML vocabulary used to arrange elements
on a page. A document that uses XSL formatting objects is simply a well-formed
XML document that uses this vocabulary. That means it has an XML declaration, a
root element, child elements, and so forth. It must adhere to all the well-formedness
rules of any XML document, or formatters will not accept it. By convention, a file
that contains XSL formatting objects has the three-letter suffix .fob. However, it
might have the suffix .xml because it also is a well-formed XML file.

Listing 15-1 is a simple document marked up using XSL formatting objects. The root
of the document is fo:root. This element contains a fo:layout-master-set and
a fo:page-sequence. The fo:layout-master-set element contains fo:simple-
page-master child elements. Each fo:simple-page-master describes a kind of
page on which content will be placed. Here there’s only one very simple page, but
more complex documents can have different master pages for first, right, and left,
body pages, front matter, back matter, and more; each with a potentially different
set of margins, page numbering, and other features.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 522

523Chapter 15 ✦ XSL Formatting Objects

Content is placed on copies of the master page using a fo:page-sequence. The
fo:page-sequence contains a fo:sequence-specification specifying the order
in which the different master pages should be used. Next, it contains a fo:flow
child that holds the actual content to be placed on the master pages in the
specified sequence. The content here is given as two The fo:block children each
have a font-size property of 20 points and a font-family property of serif.

Listing 15-1: A simple document using the XSL formatting
object vocabulary

<fo:root xmlns:fo=”http://www.w3.org/XSL/Format/1.0”>

<fo:layout-master-set>
<fo:simple-page-master page-master-name=”only”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence>

<fo:sequence-specification>
<fo:sequence-specifier-single page-master-name=”only”/>

</fo:sequence-specification>

<fo:flow>
<fo:block font-size=”20pt” font-family=”serif”>
Hydrogen

</fo:block>
<fo:block font-size=”20pt” font-family=”serif”>
Helium

</fo:block>
</fo:flow>

</fo:page-sequence>

</fo:root>

Although you could write a document such as the one in Listing 15-1 by hand, that
would lose all the benefits of content-format independence achieved by XML.
Normally you write an XSL style sheet that uses the XSL transformation vocabulary
to transform the source document into the formatting object vocabulary. Listing
15-2 is the XSL style sheet that produced Listing 15-1 by transforming the previous
chapter’s Listing 14-1.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 523

524 Part III ✦ Style Languages

Listing 15-2: A transformation from a source vocabulary to
XSL formatting objects

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”
xmlns:fo=”http://www.w3.org/XSL/Format/1.0”
result-ns=”fo” indent-result=”yes”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/XSL/Format/1.0”>

<fo:layout-master-set>
<fo:simple-page-master page-master-name=”only”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence>

<fo:sequence-specification>
<fo:sequence-specifier-single

page-master-name=”only”/>
</fo:sequence-specification>

<fo:flow>

<xsl:apply-templates select=”//ATOM”/>
</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block font-size=”20pt” font-family=”serif”>
<xsl:value-of select=”NAME”/>

</fo:block>
</xsl:template>

</xsl:stylesheet>

Using FOP
At the time of this writing, no browser can directly display XML documents
transformed into XSL formatting objects. There is only one piece of software that
can work with a file marked up with XSL formatting objects, James Tauber’s FOP.
FOP is a free Java program that converts FO (formatting object) documents to

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 524

525Chapter 15 ✦ XSL Formatting Objects

Adobe Acrobat PDF files. You can download the latest version of FOP at
http://www.jtauber.com/fop/.

At the time of this writing, the available version of FOP is 0.6.0, which incompletely
supports a subset of the formatting objects and properties in the fourth draft of
XSL. FOP is a Java program that should run on any platform with a reasonably
compatible Java 1.1 virtual machine. To install it, just place the fop.jar archive in
your CLASSPATH. The com.jtauber.fop.FOP class contains the main() method
for this program. Run it from the command line with arguments specifying the input
and output files. For example:

C:\XML\BIBLE\15>java com.jtauber.fop.FOP 15-1.fob 15-1.pdf
James Tauber’s FOP 0.6.0
auto page-height: using 11in
auto page-width: using 8in
successfully read and parsed 15-1.fob
laying out page 1...
done page 1.
successfully wrote 15-1.pdf

Here 15-1.fob is the input XML file that uses the formatting object vocabulary.
15-1.pdf is the output PDF file that can be displayed and printed by Adobe Acrobat
or other programs that read PDF files.

Although PDF files are themselves ASCII text, this isn’t a book about PostScript, so
there’s nothing to be gained by showing you the exact output of the above
command. If you’re curious, open the PDF file in any text editor. Instead, Figure 15-1
shows the rendered file displayed in Netscape Navigator using the Acrobat plug-in.

Figure 15-1: The PDF file displayed in Netscape Navigator

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 525

526 Part III ✦ Style Languages

PDF files are not the only or even the primary eventual destination format for
XML documents styled with XSL formatting objects. Certainly, one would hope
that Web browsers will directly support XSL formatting objects in the not-too-
distant future. For now, PDF files are the only available format, so that’s what I
show in this chapter. Eventually there should be more software that can read and
display these files.

Page Layout
The root element of a formatting objects file is fo:root. This element contains one
fo:layout-master-set element and zero or more fo:page-sequence elements.
The fo:root element generally has an xmlns:fo attribute with the value
http://www.w3.org/XSL/Format/1.0 and may (though it generally does not)
have an id attribute. The fo:root element exists just to declare the namespace
and be the document root. It has no direct affect on page layout or formatting.

Master Pages
The fo:layout-master-set element is a container for all the different master
pages used by the document. Simple page masters are similar in purpose to Quark
XPress master pages or PowerPoint slide masters. Each defines a general layout for
a page including its margins, the sizes of the header, footer, body area of the page,
and so forth. Each actual page in the rendered document is based on one master
page, and inherits certain properties like margins, page numbering, and layout from
that master page.

Simple Page Masters
Each master page is represented by a fo:simple-page-master element. A
fo:layout-master-set may contain one or more of these. A fo:simple-page-
master element defines the layout of a page including the size of its before region,
body region, after region, end region, and start region. Figure 15-2 shows the typical
layout of these parts. The body is everything in the middle that’s left over.

Figure 15-2: The layout of the parts
of a simple page of English text

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 526

527Chapter 15 ✦ XSL Formatting Objects

In normal English text, the end region is the right side of the page and the start
region is the left side of the page. This is reversed in Hebrew or Arabic text,
because these languages read from right to left. In almost all modern languages,
the before region is the header and the after region is the footer, but this could be
reversed in a language that wrote from bottom to top.

The designer sets the size of the body (center) region, header, footer, end region,
and start region as well as the distances between them using the appropriate region
child elements. These are:

✦ fo:region-before

✦ fo:region-after

✦ fo:region-body

✦ fo:region-start

✦ fo:region-end

Each of the five regions of a simple page master may be filled with content from a
fo:flow or fo:static-content element.

The simple-page-master element generally has three main attributes:

1. page-master-name: the name of this page master that page sequences will
use to select the master page a particular page will be based on

2. page-height: the height of the page

3. page-width: the width of the page

The page-height and page-width can be subsumed into a single shorthand size
property. If they are not provided, then the formatter chooses a reasonable default
based on the media being used (e.g. 8.5” by 11”).

For example, here is a fo:layout-master-set containing two fo:simple-page-
master elements, one for even (left) pages and one for odd (right) pages. Both
specify an 8.5-by-11-inch page size. Both have top and bottom margins of 0.5 inches.
Each has an inner margin of 0.5 inches and an outer margin of 1 inch, as is common
for facing pages.

<fo:layout-master-set>
<fo:simple-page-master page-master-name=”even”

height=”8.5in” width=”11in”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”1.0in” margin-right=”0.5in”>
<fo:region-body/>

</fo:simple-page-master>

Note

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 527

528 Part III ✦ Style Languages

<fo:simple-page-master page-master-name=”odd”
height=”8.5in” width=”11in”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”1.0in”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

Other attributes commonly applied to page masters include:

✦ Attributes that affect the margins of the page: margin-bottom, margin-left,
margin-right, margin-top, margin

✦ Attributes that affect the direction of the writing on the page: writing-mode,
reference-orientation

Region Properties
The five regions (before, after, body, start, end) share the same basic
properties. These include:

✦ Attributes that determine how content that overflows the borders of the
region is handled: clip, overflow

✦ Attribute that determine how the content is wrapped in columns: column-
count, which isthe number of columns in the region, and column-gap, which
is the distance between columns

✦ Attributes that affect the background of the region: background,
background-attachment, background-color, background-image,
background-repeat, background-position

✦ Attributes that affect the border of the region: border-before-color,
border-before-style, border-before-width, border-after-color,
border-after-style, border-after-width, border-start-color,
border-start-style, border-start-width, border-end-color, border-
end-style, border-end-width, border-top-color, border-top-style,
border-top-width, border-bottom-color, border-bottom-style,
border-bottom-width, border-left-color, border-left-style, border-
left-width, border-right-color, border-right-style,
border-right-width, border, border-top, border-bottom, border-left,
border-right, border-color, border-style, border-width

✦ Attributes that affect the padding of the region: padding-bottom, padding-
left, padding-right, padding-top, padding-bottom, padding-start,
padding-end, padding-before, padding-after, padding

✦ Attributes that affect the margins of the region: margin-bottom, margin-
left, margin-right, margin-top, margin, margin, space-before,
space-after, start-indent, end-indent

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 528

529Chapter 15 ✦ XSL Formatting Objects

✦ Attributes that affect the direction of the writing in the region: writing-mode,
reference-orientation

Most of these properties should be familiar from the CSS properties of the same
name. Reasonable defaults are picked for all these values if they’re not explicitly
set. By adjusting them, you affect the overall layout of the page.

Additionally, the four outer regions (before, after, start, and end but not body) have
an extent property that determines the size of the region. The size of the body is
determined by whatever’s left over in the middle after the other four regions are
accounted for.

For example, here is a fo:layout-master-set that makes all outer regions one
inch. Each region is given a two-pixel black border. Furthermore, the page itself has
a half-inch margin on all sides.

<fo:layout-master-set>
<fo:simple-page-master page-master-name=”only”

height=”8.5in” width=”11in”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”1.0in” margin-right=”0.5in”>

<fo:region-start extent=”1.0in”
border-color=”black” border-width=”2px”/>

<fo:region-before extent=”1.0in”
border-color=”black” border-width=”2px”/>

<fo:region-body
border-color=”black” border-width=”2px”/>

<fo:region-end extent=”1.0in”
border-color=”black” border-width=”2px”/>

<fo:region-after extent=”1.0in”
border-color=”black” border-width=”2px”/>

</fo:simple-page-master>
</fo:layout-master-set>

The body pages based on this page master will be 5.5 inches wide and 8 inches
high. That’s calculated by subtracting the size of everything else on the page from
the size of the page.

Page Sequences
As well as a fo:layout-master-set, each formatting object document will
generally contain one or more fo:page-sequence elements. Each page sequence
contains three things in the following order:

✦ One fo:sequence-specification element defining the order in which the
master pages are used

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 529

530 Part III ✦ Style Languages

✦ Zero or more fo:static-content elements containing text to be placed on
every page

✦ One fo:flow element containing data to be placed on each page in turn

The main difference between a fo:flow and a fo:static-content is that text
from the flow isn’t placed on more than one page, whereas the static content is. For
example, the lines you’re reading now are flow content that only appear on this
page, whereas the part and chapter titles at the top of the page are static content
that is repeated from page to page.

The fo:sequence-specification provides a list of the master pages for this
sequence. Each page in the sequence has an associated page master that defines
how the page will look. Listing 15-1 only used a single master page, but it is not
uncommon to have more; for instance, one for the first page of a chapter, one for all
the subsequent left-hand pages, and one for all the subsequent right-hand pages.
For instance, there might be one simple page master for a table of contents, another
for body text, and a third for the index. In this case, there is one page sequence
each for the table of contents, the body text, and the index.

The fo:flow element contains, in order, the elements to be placed on the page. As
each page fills up with elements from the flow, a new page is created with the next
master layout in the sequence specification for the elements that remain in the flow.

The fo:static-content element contains information to be placed on each page.
For instance, it may place the title of the book in the header of each page. Static
content can be adjusted depending on the master page. For instance, the part title
may be placed on left-hand pages, and the chapter title on right-hand pages. The
fo:static-content element can also be used for items like page numbers that
have to be calculated from page to page when the same calculation is repeated. In
other words, what is static is not the text, but the calculation that produces the text.

Sequence Specifications
The fo:sequence-specification element lists the order in which particular
master pages will be instantiated using one or more of these three child elements:

✦ fo:sequence-specifier-single

✦ fo:sequence-specifier-alternating

✦ fo:sequence-specifier-repeating

Each of these child elements has attributes that determine which master pages are
used when. The simplest is fo:sequence-specifier-single whose page-
master-name attribute identifies the master page to be instantiated. For example,
this fo:sequence-specification element says that all content must be placed on
a single instance of the master page named letter:

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 530

531Chapter 15 ✦ XSL Formatting Objects

<fo:sequence-specification>
<fo:sequence-specifier-single page-master-name=”letter”/>

</fo:sequence-specification>

If there’s more content than will fit on a single page, then the extra content is either
truncated or scrolled, depending on the values of the clip and overflow attributes
of the various regions where the content is placed. However, no more than one page
will be created. Now consider this sequence specification:

<fo:sequence-specification>
<fo:sequence-specifier-single page-master-name=”letter”/>
<fo:sequence-specifier-single page-master-name=”letter”/>

</fo:sequence-specification>

This provides for up to pages, each based on the letter page master. If the first page
fills up, a second will be created. If that page fills up, then content will be truncated
or scrolled.

The same technique can be used to apply different master pages. For example, this
sequence specification bases the first page on the master page named letter1 and
the second on the master page named letter2:

<fo:sequence-specification>
<fo:sequence-specifier-single page-master-name=”letter1”/>
<fo:sequence-specifier-single page-master-name=”letter2”/>

</fo:sequence-specification>

Of course, most of the time you don’t know in advance exactly how many pages
there will be. The fo:sequence-specifier-alternating and fo:sequence-
specifier-repeating elements let you specify that as many pages as necessary
will be used to hold the content. The fo:sequence-specifier-repeating
element specifies one master page for the first page and a second master page for
all subsequent pages. The fo:sequence-specifier-alternating element
specifies up to six different master pages for the first page, even pages with
content, odd pages with content, blank even pages, last even pages, and last odd
pages.

For example, this sequence specifier says that the first page output should use the
master page named letter first, but that all subsequent pages should use the master
page named letter:

<fo:sequence-specification>
<fo:sequence-specifier-repeating
page-master-first=”letter_first”
page-master-repeating=”letter”

/>
</fo:sequence-specification>

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 531

532 Part III ✦ Style Languages

If the total content overflows the first page, it will be placed on a second page. If it
overflows the second page, a third page will be created. As many pages as needed
to hold all the content will be constructed.

At the time of this writing, it has not yet been decided whether or not page-
master-first and page-master-repeating are both required. However, if
you only have a single master page, you can certainly reuse it as the value for both
page-master-first and page-master-repeating like this:

<fo:sequence-specification>
<fo:sequence-specifier-repeating
page-master-first=”letter”
page-master-repeating=”letter”

/>
</fo:sequence-specification>

The fo:sequence-specifier-alternating element is designed more for a
chapter of a printed book in which the first and last pages, as well as the even and
odd pages, traditionally have different margins, headers, and footers. This element
has attributes that allow you to specify master pages for all these different pages.
For example:

<fo:sequence-specification>
<fo:sequence-specifier-repeating
page-master-first=”chapter_first”
page-master-even=”chapter_even”
page-master-blank-even=”chapter_blank”
page-master-odd=”chapter_odd”
page-master-last-even=”chapter_last_even”
page-master-last-odd=”chapter_last_odd”
page-master-repeating=”letter”

/>
</fo:sequence-specification>

If the above attributes seem a little asymmetrical — for instance, there’s no page-
master-blank-odd attribute — that’s because traditional publishing is asymmet-
rical. If you look carefully at the pages of this book, and indeed at almost any other
book you own, you’ll notice that the odd-numbered pages are always on the right,
the even-numbered pages on the left, and that chapters always begin on a right-
hand page. Chapters can end on either right-hand (odd) or left-hand (even)
pages, but if they do end on an odd page, then a blank even page is inserted so
the next chapter begins on an odd page.

Flows
The fo:flow object holds the actual content which will be placed on the instances
of the master pages specified by the sequence specification. This content is
composed of a sequence of fo:block, fo:display-graphic, fo:display-link,
fo:display-rule, and other block-level elements. In this section, we’ll stick to
basic fo:block elements, which are roughly equivalent to HTML’s DIV elements.
Later in this chapter, we’ll see a lot more block-level elements a flow can contain.

Note

Tip

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 532

533Chapter 15 ✦ XSL Formatting Objects

For example, here is a basic flow containing the names of several atoms, each in its
own block:

<fo:flow name=”xsl-body”>
<fo:block>Actinium</fo:block>
<fo:block>Aluminum</fo:block>
<fo:block>Americium</fo:block>

</fo:flow>

The name attribute of the fo:flow, here with the value xsl-body, specifies which
of the five regions of the page this flow’s content will be placed in. The allowed
values are:

✦ xsl-body

✦ xsl-after

✦ xsl-before

✦ xsl-start

✦ xsl-end

For example, a flow for the header (in left-to-right, top-to-bottom English text) has
a flow-name value of xsl-before. Here is a flow for a footer:

<fo:flow id=”q2” flow-name=”xsl-after”>
<fo:block>

The XML Bible
Chapter 15: XSL Formatting Objects

</fo:block>
</fo:flow>

Static Content
Whereas each piece of the content of a fo:flow element appears on one page, each
piece of the content of a fo:static-content element appears on every page; a
header or a footer for example. You do not have to use fo:static-content
elements, but if you do use them, they must appear before all the fo:flow
elements in the page sequence.

fo:static-content elements have the same attributes and contents as a
fo:flow. However, because a fo:static-content cannot break its contents
across multiple pages, if necessary, it will generally have less content than a
fo:flow. For example, here is a fo:static-content for a header:

<fo:static-content id=”sc2” flow-name=”xsl-before”>
<fo:block>

The XML Bible
Chapter 15: XSL Formatting Objects

</fo:block>
</fo:static-content>

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 533

534 Part III ✦ Style Languages

Page Numbering
Besides the usual id attribute that any formatting object element can have,
fo:page-sequence element has six optional attributes that define page numbering
for the sequence. These are:

✦ initial-page-number

✦ format

✦ letter-value

✦ digit-group-sep

✦ n-digits-per-group

✦ sequence-src

The initial-page-number attribute defines the number of the first page in this
sequence. The most likely value for this attribute is 1, but it could be a larger
number if the previous pages are in a different file. The remaining five attributes
have exactly the same syntax and meaning as when used as attributes of the
xsl:number element from the XSL transformation language.

The xsl:number element and the format, letter-value, digit-group-sep,
n-digits-per-group, sequence-src attributes are discussed in the “Number
to String Conversion” section in Chapter 14, XSL Transformations.

The fo:page-number formatting object is an empty inline element that inserts the
number of the current page. The formatter is responsible for determining what that
number is. This element has only a single attribute, id. Otherwise, you wrap
fo:page-number in a fo:inline-sequence, fo:block, or similar element to apply
font properties and the like to it. For example, this footer uses fo:static-content
and fo:page-number to put the page number at the bottom of every page:

<fo:static-content id=”sc2” flow-name=”xsl-after”>
<fo:block>

<fo:page-number/>
</fo:block>

</fo:static-content>

This page sequence specifies that the page number uses small Roman numerals and
begins counting from ten.

<fo:page-sequence initial-page-number=”10” format=”i”>

<!— sequence specification —>

<fo:static-content flow-name=”xsl-after”>
<fo:block text-align-last=”centered” font-size=”10pt”>
<fo:page-number/>

</fo:block>
</fo:static-content>

Cross-
Reference

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 534

535Chapter 15 ✦ XSL Formatting Objects

<!— flows —>

</fo:page-sequence>

Content
The content (as opposed to markup) of an XSL formatting objects document is
mostly text. Additionally, external images can be linked to in a fashion similar to the
IMG element of HTML. This content is stored in several kinds of elements including:

✦ Block-level formatting objects

✦ Inline formatting objects

✦ Table formatting objects

✦ Out-of-line formatting objects

All of these different kinds of elements will be descendants of either a fo:flow or a
fo:static-content element. They are never placed directly on page masters or
page sequences.

Block-level Formatting Objects
A block-level formatting object is drawn as a rectangular area separated by a line
break and possibly extra whitespace from any content that precedes or follows it.
Blocks may contain other blocks, in which case the contained blocks also are
separated from the containing block by a line break and perhaps extra whitespace.
Block-level formatting objects include:

✦ fo:block

✦ fo:display-graphic

✦ fo:display-rule

✦ fo:display-included-container

✦ fo:display-sequence

✦ fo:list

✦ fo:list-item

The fo:block element is the XSL equivalent of display: block in CSS or DIV in
HTML. Blocks may be contained in fo:flow elements, other fo:block elements,
and fo:static-content elements. fo:block elements may contain other
fo:block elements, other block-level elements such as fo:display-graphic and
fo:display-rule, and inline elements such as fo:inline-sequence and
fo:page-number. They may also contain raw text. For example:

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 535

536 Part III ✦ Style Languages

<fo:block>
<fo:inline-sequence font-style=”italic”>
The XML Bible

</fo:inline-sequence>
Page <fo:page-number/>
<fo:inline-sequence>

Chapter 15: XSL Formatting Objects
</fo:inline-sequence>

</fo:block>

The fo:block elements generally have attributes for both area properties and text
formatting properties. The text formatting properties are inherited by any child
elements of the block unless overridden. Allowed properties include:

✦ alignment properties: text-align and text-align-last

✦ aural properties: azimuth, cue, cue-after, cue-before, elevation, pause,
pause-after, pause-before, pitch, pitch-range, play-during,
richness, speak, speak-header, speak-numeral, speak-punctuation,
speech-rate, stress, voice-family, and volume

✦ background properties: background, background-attachment,
background-color, background-image, background-position, and
background-repeat

✦ border properties: border-before-color, border-before-style, border-
before-width, border-after-color, border-after-style,
border-after-width, border-start-color, border-start-style,
border-start-width, border-end-color, border-end-style, border-
end-width, border-top-color, border-top-style, border-top-width,
border-bottom-color, border-bottom-style, border-bottom-width,
border-left-color, border-left-style, border-left-width, border-
right-color, border-right-style, border-right-width, border,
border-top, border-bottom, border-left, border-right, border-color,
border-style, and border-width

✦ break properties: page-break-inside, widows, orphans, and wrap-option

✦ color properties: color

✦ column properties: span

✦ font properties: font-family, system-font, font-size, font-size-
adjust, font-stretch, font-style, font-variant, font-weight, and
font

✦ hyphenation properties: country, hyphenate, hyphenation-char,
hyphenation-push-char-count, hyphenation-remain-char-count,
language, script, hyphenation-keep, and hyphenation-ladder-count

✦ indentation properties: text-indent and last-line-end-indent

✦ layering property: z-index

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 536

537Chapter 15 ✦ XSL Formatting Objects

✦ line-height properties: line-height, line-height-shift-adjustment and,
line-stacking-strategy

✦ margin properties: margin-bottom, margin-left, margin-right, margin-
top, margin, margin, space-before, space-after, start-indent, and
end-indent

✦ padding properties: padding-top, padding-bottom, padding-left,
padding-right, padding-before, padding-after, padding-start, and
padding-end

✦ position properties: position, top, bottom, right, and left

✦ text direction properties: writing-mode

✦ visibility property: visibility

✦ whitespace properties: white-space-treatment

Most of these are familiar from CSS. The rest will be discussed below. The other
block-level elements have very similar property lists.

Inline Formatting Objects
An inline formatting object is drawn as a rectangular area that may contain text or
other inline areas. Inline areas are most commonly arranged in lines running from
left to right. When a line fills up, a new line is started below the previous one.
However, the exact order in which inline elements are placed depends on the
writing mode. For example, when working in Hebrew or Arabic, it makes sense to
first place inline elements on the left and then fill to the right. Inline formatting
objects include:

✦ fo:bidi-override

✦ fo:character

✦ fo:first-line-marker

✦ fo:inline-graphic

✦ fo:inline-included-container

✦ fo:inline-rule

✦ fo:inline-sequence

✦ fo:list-item-body

✦ fo:list-item-label

✦ fo:page-number

✦ fo:page-number-citation

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 537

538 Part III ✦ Style Languages

Table-formatting Objects
The table formatting objects designed are the XSL equivalents of CSS2 table
properties. However, tables do work somewhat more naturally in XSL than in CSS.
For the most part, an individual table is a block-level object, while the parts of the
table aren’t really either inline or block level. However, an entire table can be
turned into an inline object by wrapping it in a fo:inline-included-container.

There are nine XSL table-formatting objects:

✦ fo:table-and-caption

✦ fo:table

✦ fo:table-caption

✦ fo:table-column

✦ fo:table-header

✦ fo:table-footer

✦ fo:table-body

✦ fo:table-row

✦ fo:table-cell

The root of a table is not a fo:table, but rather a fo:table-and-caption which
contains a fo:table and a fo:caption. The fo:table contains a fo:table-header,
fo:table-body, and fo:table-footer. The table body contains fo:table-row
elements which are divided up into fo:table-cell elements.

Out-of-line Formatting Objects
There are three out-of-line formatting objects:

✦ fo:float

✦ fo:footnote

✦ fo:footnote-citation

Out-of-line formatting objects “borrow” space from existing inline or block objects.
On the page, they do not necessarily appear between the same elements they
appeared between in the input formatting object XML tree.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 538

539Chapter 15 ✦ XSL Formatting Objects

Rules
A rule is a horizontal line inserted into text. XSL has two kinds of horizontal lines.
The fo:display-rule formatting object is a block-level element that creates a
horizontal line such as that produced by HTML’s <HR> tag. The fo:inline-rule
formatting object element is similar to the fo:display-rule element. However, as
the name suggests, fo:inline-rule is an inline element instead of a block-level
element. Thus, it may appear in the middle of a line of text and does not imply a line
break. For example, this is a display rule:

__

However, this __________________ is an inline rule.

Both the fo:inline-rule and fo:display-rule elements have six primary
attributes that describe them:

1. length: the length of the line, such as 12pc or 5in

2. rule-orientation: escapement, horizontal, line-progression, or
vertical

3. rule-style: exact values remain to be determined at the time of this writing

4. rule-thickness: the thickness of the line, such as 1px or 0.1cm

5. vertical-align: baseline, bottom, middle, sub, super, text-bottom,
text-top, top, or a length or percentage of the line height

6. color: the color of the line, such as pink or #FFCCCC

For example, this is a green block-level rule that’s 7.5 inches long and 2 points thick:

<fo:display-rule length=”7.5in”
line-thickness=”2pt” color=”#00FF00”/>

Additionally, the fo:display-rule can have most of the usual attributes of a
block-level element like those describing margins and padding, and a fo:inline-
rule can have the usual attributes of an inline element like line-height. The
exceptions are those attributes that are directly related to text, like font-family.
Obviously, these attributes make no sense for a rule.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 539

540 Part III ✦ Style Languages

Graphics
XSL provides two means of embedding pictures in a rendered document. The
fo:display-graphic element inserts a block-level graphic. The fo:inline-
graphic element inserts an inline graphic. These two elements provide the
equivalent of an HTML IMG tag. Six attributes describe the picture:

1. href: the URI of the image file

2. min-height: the minimum vertical height of the image

3. min-width: the minimum horizontal width of the image

4. max-height: the maximum vertical height of the image

5. max-width: the maximum horizontal width of the image

6. scale: with a value max, expand the graphic to the size of max-height and
max-width; with the value max-uniform, expand the graphic by the same
amount in the vertical and horizontal directions to either the max-height or
max-width, whichever comes first; with the value a single real number,
multiply both height and width by that number; with the value two real
numbers, multiply width by the first and height by the second

For example, consider this standard HTML IMG element:

<IMG SRC=”logo.gif” WIDTH=”100” HEIGHT=”100”
ALIGN=”right” ALT=”alt text” BORDER=”0”>

The fo:display-graphic element equivalent looks like this:

<fo:display-graphic image=”logo.gif”
height=”100px” width=”100px” />

Links
For online presentations only, XSL provides the fo:simple-link element.
Assuming a Web browser-style user interface, clicking anywhere on the contents of
a link element jumps to the link target. This element can act as either a block-level
or inline link depending on what it contains. The link behavior is controlled by
these six attributes:

✦ external-destination

✦ internal-destination

✦ indicate-destination

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 540

541Chapter 15 ✦ XSL Formatting Objects

✦ show-destination

✦ space-above-destination-block

✦ space-above-destination-start

A link to a remote document target specifies the URI through the value of the
external-destination attribute. The document at this URI should be loaded
when the link is activated. In GUI environments, the link most likely is activated by
clicking on the link contents. For example:

<fo:block> Be sure to visit the
<fo:simple-link
external-destination=”http://metalab.unc.edu/xml/”>
Cafe con Leche Web site!

</fo:simple-link>
</fo:block>

You can also link to another node in the same document by using the internal-
destination attribute. The value of this attribute is not a URI, but rather the ID of
the element you’re linking to. You should not specify both the internal and external
destination for one link.

The other four attributes affect the appearance and behavior of the link. The
indicate-destination attribute has a Boolean value (true or false, false by
default) that specifies whether, when the linked item is loaded it should somehow
be distinguished from non-linked parts of the same document. For example, if you
follow a link to one ATOM element in a table of 100 atoms, the specific atom you
were connecting to might be in bold face while the other atoms would be in normal
type. The exact details are system dependent.

The show-destination attribute has two possible values, replace (the default)
and new. With a value of replace, when a link is followed it replaces the existing
document in the same window. With a value of new, when a link is followed, the
targeted document is opened in a new window.

When a browser follows an HTML link into the middle of a document, generally the
specific linked element is positioned at the tippy-top of the window. The space-
above-destination-start and space-above-destination-block attributes let
you specify that the browser should position the linked element further down in
the window by leaving a certain amount of space (not empty space, it will generally
contain the content preceding the linked element) above the linked item.

In addition, the link may have an usual property such as color that will be inherited
by the link’s contents. This allows you to format content that’s in a link differently
from content that’s not; for example, by underlining all links. However, XSL
formatting objects do not provide a means to distinguish between visited,
unvisited, and active links, unlike CSS and HTML which do.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 541

542 Part III ✦ Style Languages

Lists
The fo:list-block formatting object element describes a block-level list element.
(There are no inline lists.) A list may or may not be bulleted, numbered, indented,
or otherwise formatted. Each fo:list-block element contains either a series of
fo:list-item elements or fo:list-item-label fo:list-item-body pairs. (It
cannot contain both.) A fo:list-item must contain a fo:list-item-label and a
fo:list-item-body. The fo:list-item-label contains the bullet, number, or
other label for the list item. The fo:list-item-body contains the actual content of
the list item. To summarize, a fo:list-block contains fo:list-item elements.
Each fo:list-item contains a fo:list-item-label and fo:list-item-body.
However, the fo:list-item elements can be omitted. For example:

<fo:list-block>
<fo:list-item>
<fo:list-item-label>*</fo:list-item-label>
<fo:list-item-body>Actinium</fo:list-item-body>

</fo:list-item>
<fo:list-item>
<fo:list-item-label>*</fo:list-item-label>
<fo:list-item-body>Aluminum</fo:list-item-body>

</fo:list-item>
</fo:list-block>

Or, with the fo:list-item tags removed:

<fo:list-block>
<fo:list-item-label>*</fo:list-item-label>
<fo:list-item-body>Actinium</fo:list-item-body>
<fo:list-item-label>*</fo:list-item-label>
<fo:list-item-body>Aluminum</fo:list-item-body>

</fo:list-block>

The fo:list-block element has three special attributes:

1. provisional-label-separation: the distance between the list item label
and the list item body, given as a triplet of maximum;minimum;optimum, such
as 2cm;0.5cm;1cm.

2. provisional-distance-between-starts: the distance between the start
edge of the list item label and the start edge of the list item body.

3. space-between-list-rows: vertical distance between successive list items,
given as a triplet of maximum;minimum;optimum, such as 36pt;4pt;12pt.

The fo:list-item element has the standard block-level properties for
backgrounds, position, aural rendering, borders, padding, margins, line and page
breaking.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 542

543Chapter 15 ✦ XSL Formatting Objects

Tables
The fundamental table element in XSL is a fo:table-and-caption. This is a block-
level object. However, it can be turned into an inline object by wrapping it in a
fo:inline-included-container or an out-of-line object by wrapping it in a
fo:float. The table model is quite close to HTML’s. Table 15-1 shows the
equivalence between HTML 4.0 table elements and XSL formatting objects:

Table 15-1
HTML Tables versus XSL Formatting Object Tables

HTML Element XSL FO Element

TABLE fo:table-and-caption

no equivalent fo:table

CAPTION fo:table-caption

COL fo:table-column

COLGROUP no equivalent

THEAD fo:table-header

TBODY fo:table-body

TFOOT fo:table-footer

TD fo:table-cell

TR fo:table-row

The fo:table-and-caption contains an optional fo:caption element and one
fo:table element. The caption can contain any block-level elements you care to
place in the caption. By default, captions are placed before the table, but this can
be adjusted by setting the caption-side property of the table-and-caption
element to one of these eight values:

✦ before

✦ after

✦ start

✦ end

✦ top

✦ bottom

✦ left

✦ right

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 543

544 Part III ✦ Style Languages

For example, here’s a table with a caption on the bottom:

<fo:table-and-caption caption-side=”bottom”>
<fo:table-caption>
<fo:block font-weight=”bold”

font-family=”Helvetica, Arial, sans”
font-size=”12pt”>

Table 15-1: HTML Tables vs. XSL Formatting Object Tables
</fo:block>

</fo:table-caption>
<fo:table>
<!— table contents go here —>

</fo:table>
</fo:table-and-caption>

The fo:table element contains an optional fo:table-column, fo:table-header,
an optional fo:table-footer, and one or more fo:table-body elements. The
fo:table-body is divided into fo:table-row elements. Each fo:table-row is
divided into fo:table-cell elements. The fo:table-header and fo:table-
footer can either be divided into fo:table-cell or fo:table-row elements. For
example, here’s a simple table that matches the first three rows of Table 15-1:

<fo:table>
<fo:table-header>
<fo:table-cell>
<fo:block font-family=”Helvetica, Arial, sans”

font-size=”11pt” font-weight=”bold”>
HTML Element

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block font-family=”Helvetica, Arial, sans”

font-size=”11pt” font-weight=”bold”>
XSL FO Element

</fo:block>
</fo:table-cell>

</fo:table-header>
<fo:table-body>
<fo:table-row>
<fo:table-cell>
<fo:block font-family=”Courier, monospace”>
TABLE

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block font-family=”Courier, monospace”>
fo:table-and-caption

</fo:block>
</fo:table-cell>

</fo:table-row>
<fo:table-row>
<fo:table-cell>
<fo:block>no equivalent</fo:block>

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 544

545Chapter 15 ✦ XSL Formatting Objects

</fo:table-cell>
<fo:table-cell>
<fo:block font-family=”Courier, monospace”>
fo:table

</fo:block>
</fo:table-cell>

</fo:table-row>
</fo:table-body>

</fo:table>

Table cells can span multiple rows and columns by setting the n-columns-spanned
and/or n-rows-spanned attributes to an integer giving the number of rows or
columns to span. The optional column-number attribute can change which column
the spanning begins in. The default is the current column.

Borders can be drawn around table parts using the normal border properties which
we’ll discuss later. The empty-cells attribute has the value show or hide, show if
borders are to be drawn around cells with no content, hide if not. The default is show.

Most table parts do not use the standard width and height properties. Instead, they
have equivalent attributes. Any or all of these may be omitted, in which case the
formatter will simply size everything as it sees fit:

✦ table: table-width, table-height

✦ table-caption: caption-width, height determined automatically by the
formatter

✦ table-row: row-height, width determined by contents

✦ table-cell: cell-height, column-number, column-width, n-columns-
spanned, n-rows-spanned

The fo:table-row element has optional may-break-after-row and may-break-
before-row attributes with the values yes or no that determine whether a page
break is allowed before and after the row. The defaults are both yes.

When a long table extends across multiple pages, the header and footer are
sometimes repeated on each page. You can specify this behavior with the table-
omit-middle-header and table-omit-middle-footer attributes of the
fo:table element. The value yes indicates that the header or footer is to be
repeated from page to page. The value no indicates that it is not. The default is no.

The optional fo:table-column element is an empty element that specifies values
for all cells in a particular column. The cells it applies to are identified by the
column-number attribute. fo:table-column does not actually contain any cells. A
fo:table-column can apply properties to more than one consecutive column by
setting the n-columns-spanned property to an integer greater than one. The most
common property to set in a fo:table-column is column-width (a signed length)
but the standard border, padding, and background properties (discussed below)
can also be set.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 545

546 Part III ✦ Style Languages

Characters
The fo:character formatting object replaces a particular character or string of
characters in the input with a different character in the output. You might use this
to translate between the American decimal point and the French decimal comma,
for example. The character attribute specifies what replacement character to use.
For example, this template rule substitutes * for the characters in a PASSWORD
element:

<xsl:template match=”PASSWORD”>
<fo:character character=”*”>
<xsl:value-of select=”.”/>

</fo:character>
</xsl:template>

However, this use is rare. The main purpose of the fo:character element is so
that formatting engines can treat each character and glyph as its own element. If
you’re not writing a formatting engine, you probably can ignore this element.

Sequences
Sequences have no particular effect on the layout of either inline or block-level
boxes. They’re simply elements on which you can hang formatting attributes such
as font-style or text-indent for application to the sequence’s children.

The fo:display-sequence formatting object element is a container that groups
block-level objects together. In fact, it can only hold block-level elements such as
fo:display-graphic and fo:block. It cannot contain inline elements or raw text.

The fo:inline-sequence formatting object element is a container that groups
inline objects together. It cannot contain block-level elements. For example, you can
use inline-sequence elements to add style to various parts of the footer, like this:

<fo:flow id=”q2” flow-name=”xsl-after”>
<fo:block font-style=”bold” font-size=”10pt”

font-family=”Arial, Helvetica, sans”>
<fo:inline-sequence font-style=”italic”

text-align=”start”>
The XML Bible

</fo:inline-sequence>
<fo:inline-sequence text-align=”centered”>
Page <fo:page-number/>

</fo:inline-sequence>
<fo:inline-sequence text-align=”right”>
Chapter 15: XSL Formatting Objects

</fo:inline-sequence>
</fo:block>

</fo:flow>

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 546

547Chapter 15 ✦ XSL Formatting Objects

Footnotes
The fo:footnote element represents a footnote. The author places the
fo:footnote element in the flow exactly where the footnote reference like 1 or *
will occur. The fo:footnote element contains both a fo:footnote-reference
and a block-level element containing the text of the footnote. However, only the
footnote reference is inserted inline. The formatter places the note text in the after
region (generally the footer) of the page.

For example, this footnote uses an asterisk as a footnote marker and refers to
“JavaBeans, Elliotte Rusty Harold (IDG Books, Foster City, 1998), p. 147”. Standard
XSL properties like font-size and vertical-align are used to format both the
note marker and the text in the customary fashion.

<fo:footnote>
<fo:footnote-reference
font-size=”smaller” vertical-align=”super”>
*

</fo:footnote-reference>
<fo:block font-size=”smaller”>
<fo:inline-sequence
font-size=”smaller” vertical-align=”super”>
*

</fo:inline-sequence>
<fo:inline-sequence
font-style=”italic”>JavaBeans</fo:inline-sequence>,
Elliotte Rusty Harold
(IDG Books, Foster City, 1998), p. 147

</fo:block>
</fo:footnote>

The formatting objects vocabulary doesn’t provide any means of automatically
numbering and citing footnotes, but this can be done by judicious use of
xsl:number in the transformation stylesheet. XSL transformations also make end
notes easy as well.

Floats
A fo:float produces a floating box anchored to the top of the region where it
occurs. A fo:float is most commonly used for graphics, charts, tables, or other
out–of-line content that needs to appear somewhere on the page, but exactly where
it appears in not particularly important. For example, here is a the code for a
floating graphic with a caption embedded in the middle of a paragraph:

<fo:block>
Although PDF files are themselves ASCII text,
this isn’t a book about PostScript, so there’s
nothing to be gained by showing you the exact

Tip

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 547

548 Part III ✦ Style Languages

output of the above command. If you’re curious,
open the PDF file in any text editor.
Instead, Figure 15-1
<fo:float>
<fo:display-graphic
image=”3236-7fg1501.jpg”
height=”485px” width=”623px” />

<fo:block font-family=”Helvetica, sans”>
<fo:inline-sequence font-weight=”bold”>
Figure 15-1:

</fo:inline-sequence>
The PDF file displayed in Netscape Navigator

</fo:block>
</fo:float>
shows the rendered file displayed in
Netscape Navigator using the Acrobat plug-in.

</fo:block>

The formatter makes a best effort to place the graphic somewhere on the same
page where the content surrounding the fo:float appears, though this is not
always possible, in which case it moves the object to the subsequent page. Within
these limits, it’s free to place it anywhere on that page.

XSL Formatting Properties
By themselves, formatting objects say relatively little about how content is
formatted. They merely put content in abstract boxes, which are placed in
particular parts of a page. Attributes on the various formatting objects determine
how the content in those boxes is styled.

As already mentioned, there are about 200 separate formatting properties. Not all
properties can be attached to all elements. For instance, there isn’t much point to
specifying the font-style of a fo:display-graphic. Most properties, however,
can be applied to more than one kind of formatting object element. (The few that
can’t, such as href and provisional-label-separation, are discussed above
with the formatting objects they apply to.) When a property is common to multiple
formatting objects, it shares the same syntax and meaning across the objects. For
example, you use identical code to format the fo:list-label in 14-point Times
bold as you do to format a fo:block in 14-point Times bold.

Many of the XSL properties are similar to CSS properties. The value of a CSS font-
family property is the same as the value of an XSL font-family attribute. If
you’ve read about CSS in Chapters 12 and 13, you’re already more than half finished
learning XSL properties.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 548

549Chapter 15 ✦ XSL Formatting Objects

Units and Data Types
The value of an XSL formatting property may be a keyword such as auto, italic,
or transparent; or it may be a literal value such as true, 5px, -5.0cm, or
http://www.w3.org/index.html. Literal values in XSL are given as one of 24 data
types, which are listed in Table 15-2.

Table 15-2
Formatting Property Data Types

Data Type Definition Examples

Name An XML name token. q1
copyright

ID A unique XML name token. q1
copyright

IDREF A name token that matches the ID of an q1
element in the document. copyright

Boolean Either the string “true” or the string “false”. true
false

Char A single, non-whitespace Unicode character. A
_

Signed Integer A sequence of digits, optionally prefixed by 0

a plus or minus sign. -28
+1000000000

Unsigned Integer A sequence of digits. 0
28
1000000000

Positive Integer A sequence of digits that includes 28
at least one nonzero digit. 1000000000

Signed Real A floating point number in the format +0.879
sign-digits-period-digits. Exponential -31.14
notation is not supported. The + is optional 2.71828
for positive numbers.

Unsigned Real A non-negative floating point number in 0.0
the format digits-period-digits. Exponential 31.14
notation is not supported. 2.71828

Positive Real A positive floating point number in the 0.01
format digits-period-digits. Exponential 31.14
notation is not supported. 2.71828

Continued

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 549

550 Part III ✦ Style Languages

Table 15-2 (continued)

Data Type Definition Examples

Signed Length A signed integer or signed real 5px
followed by a unit. -0.5in

Unsigned Length An unsigned integer or unsigned real 10px
number followed by a unit. 0.5cm

Positive Length A positive integer or positive real 10px
number followed by a unit. 1pc

Percent A signed real number that must be 100.0
divided by 100 to get its actual value. -43.2

0.0

Space Specifier Minimum length semicolon maximum 0px;72px;12px;
length semicolon optimal length semicolon force;discard
precedence semicolon conditionality.

Limit Specifier Minimum length semicolon 0px;72px
maximum length.

Color A named color or a hexadecimal triple white
in the form #RRGGBB. #FFFFFF

URI A Uniform Resource Identifier; http://www.w3
in practice, a URL. .org/index.html

/index.html
/
../index.html

Language An ISO 639 language code. en
la

Font Name The name of a font, either actual Times New Roman
or symbolic. serif

Font List Font names separated by commas Times New Roman,
and possibly whitespace. Times, serif

Enumeration An XML enumeration. (airplane |
train | car |
horse)

String Any sequence of characters. Fred
Lucy and Ethel
Castles don’t
have phones.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 550

551Chapter 15 ✦ XSL Formatting Objects

Informational Properties
There are two informational properties, which can be applied to any formatting
object. However, neither has a direct affect on the formatting. In essence, these are
non-formatting properties.

The id Property
The first such property is id. This is an XML ID-type attribute. The value of this
property must, therefore, be an XML name that’s unique within the style sheet and
within the output formatting object document. The last requirement is a little tricky
since it’s possible that one template rule in the stylesheet may generate several
hundred elements in the output document. The generate-id() function of XSL
transformations can be useful here.

The language Property
The second such property is language. This specifies the language of the content
contained in this element. Generally, the value of this property is an ISO 639
language code such as en (English) or la (Latin). It may also be the keyword none
or use-document. The latter means to simply use the language of the input as
specified by the xml:lang attribute. For example, consider the first verse of
Caesar’s Gallic Wars:

<fo:block id=”verse1.1.1” language=”la”>
Gallia est omnis divisa in partes tres,
quarum unam incolunt Belgae, aliam Aquitani,
tertiam qui ipsorum lingua Celtae, nostra Galli appellantur

</fo:block>

Although the language property has no direct effect on formatting, it may have an
indirect effect if the formatter selects layout algorithms depending on the language.
For instance, the formatter may use different default writing modes for Arabic and
English text. This carries over into determination of the start and end regions, and
the inline progression direction.

Paragraph Properties
Paragraph properties are styles that normally are thought of as applying to an
entire block of text in a traditional word processor, though perhaps block-level text
properties are more appropriate here. For example, indentation is a paragraph
property, because you can indent a paragraph but you can’t indent a single word
separate from its enclosing paragraph.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 551

552 Part III ✦ Style Languages

Break Properties
The break properties specify where page breaks are and are not allowed. There are
five loosely related break properties:

✦ keep-with-next

✦ keep-with-previous

✦ break-before

✦ break-after

✦ inhibit-line-breaks

The keep-with-next and keep-with-previous properties are Booleans that
specify whether the formatting object should remain in the same parent-formatting
object as the next and previous formatting objects, respectively. This has the effect
of keeping two formatting objects on the same page, but it’s more strict than that.

The break-before property inserts a break before the formatting object starts.
Possible things to break include column, page, odd-page and even-page. The
value may also be none or auto-page. The break-after property inserts a break
after the formatting object finishes. The same values are used as for break-before.
For example, this template rule ensures that each SONNET of sufficiently small size
prints on a page of its own:

<xsl:template match=”SONNET”>
<fo:block break-before=”page” break-after=”page”>
<xsl:apply-templates/>

</fo:block>
</xsl:template>

Finally, the inhibit-line-breaks property is a Boolean that can be set to true to
indicate that not even a line break is allowed, much less a page break.

Hyphenation Properties
The hyphenation properties determine whether hyphenation is allowed and how it
should be used. This applies only to soft or “optional” hyphens such as the ones
sometimes used to break long words at the end of a line. It does not apply to hard
hyphens such as the ones in the word mother-in-law, though these hyphens may affect
where soft hyphens are allowed. There are six hyphenation properties. They are:

✦ hyphenate: automatic hyphenation is allowed only if this Boolean property
has the value true

✦ hyphenation-char: the Unicode character used to hyphenate words, such as
- in English

✦ hyphenation-keep: one of the four keywords (column, none, page, spread)
that specify whether hyphenation is allowed at the end of a facing page pair
or column

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 552

553Chapter 15 ✦ XSL Formatting Objects

✦ hyphenation-ladder-count: an unsigned integer that specifies the
maximum number of hyphenated lines that may appear in a row

✦ hyphenation-push-char-count: an unsigned integer that specifies the
minimum number of characters that must follow an automatically inserted
hyphen. (Short syllables look bad in isolation.)

✦ hyphenation-remain-char-count: an unsigned integer specifying the
minimum number of characters that must precede an automatically inserted
hyphen

Hyphenation also depends on the language and script in use. Thus, the following
three properties have particular impact here:

✦ country

✦ language

✦ script

For example:

<fo:block hyphenate=true
hyphenation-char=”-”
hyphenation-keep=”none”
hyphenation-ladder-count=”2”
hyphenation-push-char-count=”4”
hyphenation-remain-char-count=”4” >

some content...
</fo:block>

XSL does not specify a syllable-breaking algorithm to determine where a soft
hyphen may be applied. Even with these properties allowing hyphenation, it’s still
completely up to the formatter to figure out how to hyphenate individual words.

The vertical-align Property
The vertical-align property determines the vertical position of a formatting
object on its line. It is identical in behavior to the CSS2 propety of the same name.
There are eight possible keyword values for this property:

1. baseline: align the baseline of the box with the baseline of the line box

2. sub: align the baseline of the box with the baseline of subscripts inside the
line box

3. super: raise the baseline of the box to the baseline of superscripts in the line
box

4. top: align the top of box with the top of the line box

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 553

554 Part III ✦ Style Languages

5. middle: align the midpoint of the box with the baseline of the line box, plus
half the x-height of the line box

6. bottom: align the bottom of the box with the bottom of the line box

7. text-top: align the top of the box with the top of the font

8. text-bottom: align the bottom of the box with the bottom of the font

You can also set vertical-align to a signed length that raises or lowers the box
by the specified distance from the baseline.

Indentation Properties
The four indent properties start-indent, end-indent, text-indent and last-
line-end-indent specify how far lines are indented from the edge of the text. The
start-indent property offsets all lines from the start edge (left edge in English).
The end-indent property offsets all lines from the end edge (right edge in English).
The text-indent property offsets only the first line from the start edge. The last-
line-end-indent property offsets only the last line from the start edge. Values are
given as a signed length. Using a positive value for start-indent and a negative
value for text-indent creates hanging indents. For example, a standard paragraph
with 0.5-inch, first-line indent might be formatted this way:

<fo:block text-indent=”0.5in”>
The first line of this paragraph is indented

</fo:block>

A block quote with a 1-inch indent on all lines on both sides is formatted like this:

<fo:block start-indent=”1.0in” end-indent=”1.0in”>
This text is offset one inch from both edges.

</fo:block>

Character Properties
Character properties describe the qualities of individual characters, although they
can apply to elements that contain characters such as fo:block and fo:list-
item-body elements. These include color, font, style, weight, and similar
properties.

The color Property
The color property sets the foreground color of the contents using the same
syntax as the CSS color property. For example, this colors the text “Lions and
tigers and bears, oh my!” pink:

<fo:inline-sequence color=”#FFCCCC”>
Lions and tigers and bears, oh my!

</fo:inline-sequence>

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 554

555Chapter 15 ✦ XSL Formatting Objects

Font Properties
Any formatting object that holds text can have a wide range of font properties.
Most of these are familiar from CSS, including:

✦ font-family: a list of font names in order of preference

✦ font-size: a signed length

✦ font-size-adjust: the preferred ratio between the x-height and size of a
font, specified as an unsigned real number or none

✦ font-stretch: the “width” of a font, given as one of the keywords
condensed, expanded, extra-condensed, extra-expanded, narrower,
normal, semi-condensed, semi-expanded, ultra-condensed, ultra-
expanded, or wider

✦ font-style: the style of font specified as one of the keywords italic,
normal, oblique, reverse-normal, or reverse-oblique

✦ font-variant: either normal or small-caps

✦ font-weight the thickness of the strokes that draw the font, given as one of
the keywords 100, 200, 300, 400, 500, 600, 700, 800, 900, bold, bolder,
lighter, normal

The text-transform Property
The text-transform property defines how text is capitalized, and is identical to
the CSS property of the same name. The four possible values are:

✦ none: don’t; change the case (the default)

✦ capitalize: make the first letter of each word uppercase and all subsequent
letters lowercase

✦ uppercase: make all characters uppercase

✦ lowercase: make all characters lowercase

This property is somewhat language specific. (Chinese, for example, doesn’t have
separate upper and lower cases.) Formatters are free to ignore the case recom-
mendations when they’re applied to non-Latin-1 text.

The text-shadow Property
The text-shadow property applies a shadow to text. This is similar to a
background color, but differs in that the shadow attaches to the text itself rather
than the box containing the text. The value of text-shadow can be the keyword
none or a named or RGB color. For example:

<fo:inline-seqence text-shadow=”FFFF66”>
This sentence is yellow.

</fo:inline-sequence>

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 555

556 Part III ✦ Style Languages

The text-decoration Property
The text-decoration property is identical to the CSS2 text-decoration property. It
has these five possible values:

✦ none

✦ underline

✦ overline

✦ line-through

✦ blink

The default is none.

The score-space Property
Scoring is a catchall word for underlining, line-through, double strike-through, and
so forth. The score-space property determines whether whitespace is scored. For
example, if score-spaces is true, an underlined sentence looks like this. If score-
spaces is false, an underlined sentence looks like this.

Sentence Properties
Sentence properties apply to groups of characters, that is, a property that makes
sense only for more than one letter at a time, such as the space between letters or
words.

Letter Spacing Properties
Kerning of text is a slippery measure of how much space separates two characters.
It’s not an absolute number. Most formatters adjust the space between letters
based on local necessity, especially in justified text. Furthermore, high-quality fonts
use different amounts of space between different glyphs. However, you can make
text looser or tighter overall.

The letter-spacing property adds additional space between each pair of glyphs,
beyond that provided by the kerning. It’s given as a signed length specifying the
desired amount of extra space to add. For example:

<fo:block letter-spacing=”1.5px”>
This is fairly loose text

</fo:block>

You can make the length negative to tighten up the text. Formatters, however, will
generally impose limits on how much extra space they allow to be added to, or
removed from, the space between letters.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 556

557Chapter 15 ✦ XSL Formatting Objects

Word Spacing Properties
The word-spacing property adjusts the amount of space between words.
Otherwise, it behaves much like the letter spacing properties. The value is a signed
length giving the amount of extra space to add between two words. For example:

<fo:block word-spacing=”0.3cm”>
This is pretty loose text.

</fo:block>

Line Spacing Properties
An XSL formatting engine divides block areas into line areas. You cannot create line
areas directly from XSL. However, with these five properties you can affect how
they’re vertically spaced:

✦ line-height: the minimum height of a line

✦ line-height-shift-adjustment: consider-shifts if subscripts and
superscripts should expand the height of a line, disregard-shifts if they
shouldn’t

✦ line-stacking-strategy: line-height (the CSS model and the default);
font-height (make the line as tall as the font height after addition of font-
height-override-before and font-height-override-after); or
max-height (distance between the maximum ascender height and maximum
descender depth)

✦ font-height-override-after: a signed length specifying additional vertical
space added after each line; can also be the keyword use-font-metrics (the
default) to indicate that this depends on the font

✦ font-height-override-before: a signed length specifying the minimum
additional vertical space added before each line; can also be the keyword
use-font-metrics (the default) to indicate that this depends on the font

The line height also depends to a large extent on the size of the font in which the
line is drawn. Larger font sizes will naturally have taller lines. For example, the
following opening paragraph from Mary Wollstonecraft’s Of the Rights of Woman is
effectively double-spaced:

<fo:block font-size=”12pt” line-height=”24pt”>
In the present state of society it appears necessary to go
back to first principles in search of the most simple truths,
and to dispute with some prevailing prejudice every inch of
ground. To clear my way, I must be allowed to ask some plain
questions, and the answers will probably appear as
unequivocal as the axioms on which reasoning is built;
though, when entangled with various motives of action, they
are formally contradicted, either by the words or conduct
of men.

</fo:block>

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 557

558 Part III ✦ Style Languages

Text Alignment Properties
The text-align and text-align-last properties specify how the inline content
is horizontally aligned within its box. The six possible values are:

1. start: left aligned in right-to-left scripts

2. centered: centered

3. end: right aligned in right-to-left scripts

4. justify: expanded with extra space as necessary to fill out the line

5. page-inside: align with the inside edge of the page, that is, the right edge on
the left page of two facing pages or the left edge on the right page of two
facing pages

6. page-outside: align with the outside edge of the page, that is, the left edge
on the left page of two facing pages or the right edge on the right page of two
facing pages

The text-align-last property enables you to specify a different value for the last
line in a block. This is especially important for justified text, where the last line
often doesn’t have enough words to be attractively justified. The possible values
are start, end, justified, and relative. The relative value uses the same
value as the text-align property unless text-align is justified, in which case
the last line will align with the start edge instead.

Whitespace Property
The whitespace-treatment property specifies what the formatting engine should
do with whitespace that’s still present after the original source document is
transformed into formatting objects. There are three possible values:

1. preserve: leave the whitespace as it is

2. collapse: collapse all whitespace to a single space

3. ignore: throw away leading and trailing whitespace

My preference is to preserve all whitespace that’s still left after transformation. If
it’s insignificant, it’s easy for the transformation process to throw it away using
xsl:strip-space.

The wrap-option Property
The wrap-option property determines how text that’s too long to fit on a line is
handled. This property has two possible keyword values:

1. wrap: soft wrap the text to the next line

2. no-wrap: do not wrap the text

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 558

559Chapter 15 ✦ XSL Formatting Objects

Area Properties
Area properties are applied to boxes. These may be either block-level or inline
boxes. Each of these boxes has:

✦ a background

✦ margins

✦ borders

✦ padding

✦ a size

Background Properties
The background properties are basically identical to the CSS1 background
properties. There are five:

✦ The background-color property specifies the color of the box’s background.
Its value is either a color or the keyword transparent.

✦ The background-image property gives the URI of an image to be used as a
background. The value can be the keyword none.

✦ The background-attachment property specifies whether the background
image is attached to the window or the document. Its value is one of the two
keywords fixed or scroll.

✦ The background-position property specifies how a background image is
placed in the box. Possible values include center, left, right, bottom,
middle, top, or a coordinate.

✦ The background-repeat property specifies how and whether a background
image is tiled if it is smaller than its box. Possible values include repeat, no-
repeat, repeat-x, and repeat-y.

The following block shows the use of the background-image, background-
position, background-repeat, and background-color properties:

<fo:block background-image=”/bg/paper.gif”
background-position=”0,0”
background-repeat=”repeat”
background-color=”white”>

Two strings walk into a bar...
</fo:block>

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 559

560 Part III ✦ Style Languages

Border Properties
The border properties describe the appearance of a border around the box. They
are mostly the same as the CSS border properties. However, as well as border-
XXX-bottom, border-XXX-top, border-XXX-left, and border-XXX-right
properties, the XSL versions also have border-XXX-before, border-XXX-after,
border-XXX-start, and border-XXX-end versions. There are 31 border
properties in all. These are:

✦ color: border-color, border-before-color, border-after-color,
border-start-color, border-end-color, border-top-color, border-
bottom-color, border-left-color, border-right-color. The default
border color is black.

✦ width: border-width, border-before-width, border-after-width,
border-start-width, border-end-width, border-top-width, border-
bottom-width, border-left-width, border-right-width.

✦ style: border-style, border-before-style, border-after-style,
border-start-style, border-end-style, border-top-style, border-
bottom-style, border-left-style, border-right-style

✦ shorthand properties: border, border-top, border-bottom, border-left,
border-right, border-color, border-style, border-width

For example, this draws a 2-pixel-wide blue box around a block:

<fo:block border-before-color=”blue” border-before-width=”2px”
border-after-color=”blue” border-after-width=”2px”
border-start-color=”blue” border-start-width=”2px”
border-end-color=”blue” border-end-width=”2px”>

Two strings walk into a bar...
</fo:block>

Padding Properties
The padding properties specify the amount of space between the border of the box
and the contents of the box. The border of the box, if shown, falls between the margin
and the padding. The padding properties are mostly the same as the CSS padding
properties. However, as well as padding-bottom, padding-top, padding-left, and
padding-right properties the XSL versions also have padding-before, padding-
after, padding-start, and padding-end versions. Thus, in total there are eight
padding properties, each of which has a signed length for a value. These are:

✦ padding-after

✦ padding-before

✦ padding-bottom

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 560

561Chapter 15 ✦ XSL Formatting Objects

✦ padding-end

✦ padding-left

✦ padding-start

✦ padding-right

✦ padding-top

For example, this block has 0.5 centimeters of padding on all sides:

<fo:block padding-before=”0.5cm” padding-after=”0.5cm”
padding-start=”0.5cm” padding-end=”0.5cm”>

Two strings walk into a bar...
</fo:block>

Margin Properties for Blocks
There are five margin properties , each of whose value is given as an unsigned
length. These are:

✦ margin-top

✦ margin-bottom

✦ margin-left

✦ margin-right

✦ margin

However, these properties are only here for compatibility with CSS. In general it’s
recommended that you use the following properties instead, which fit better into
the XSL formatting model:

✦ space-before

✦ space-after

✦ start-indent

✦ end-indent

The space-before and space-after properties are exactly equivalent to the
margin-top and margin-bottom properties respectively. The start-indent
property is equivalent to the sum of padding-left, border-left-width, and
margin-left. The end-indent property is equivalent to the sum of padding-
right, border-right-width, and margin-right. Figure 15-3 should make this
clearer.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 561

562 Part III ✦ Style Languages

Figure 15-3: Padding, indents, borders,
and space before and after for an XSL box

For example, this block has 0.5 centimeters of margin at its start and end sides:

<fo:block start-indent=”0.5cm” end-indent=”0.5cm”>
Two strings walk into a bar...

</fo:block>

Margin Properties for Inline Boxes
There are two margin properties that apply only to inline elements. These are:

✦ space-end

✦ space-start

Their values are space specifiers that give a range of extra space to be added before
and after the element. The actual spaces may be smaller or larger. Because the
space is not part of the box itself, one box’s end space can be part of the next box’s
start space.

A space specifier provides a range of values including a minimum, maximum, and
optimum value. The formatter is free to pick from within this range to fit the
constraints of the page. Furthermore, a space specifier includes values for
precedence and conditionality. All five of these are separated by semicolons.

The precedence can either be an integer or the keyword force. The precedence
determines what happens when the space-end of one inline area conflicts with the
space-start of the next. The area with higher precedence wins. The default
precedence is 0.

The conditionality is one of two keywords: discard or retain. These keywords
determine what happens to extra space at the end of a line. The default is to
discard it.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 562

563Chapter 15 ✦ XSL Formatting Objects

Contents Height and Width Properties
There are four properties that specify the height and width of the content area of a
box as unsigned lengths. These are:

✦ height

✦ width

✦ max-height

✦ max-width

These do not specify the total width and height of the box, which also include the
margins, padding, and borders. This is only the width and height of the content
area. As well as an unsigned length, the height and width properties may be set to
the keyword auto, which chooses the height and width based on the amount of
content in the box. However, in no case are the height and width larger than the
values specified by the max-height and max-width properties. For example:

<fo:block height=”2in” width=”2in”>
Two strings walk into a bar...

</fo:block>

The overflow Properties
The overflow property determines what happens if there’s too much content to fit
within a box of a specified size. This may be an explicit specification using the size
properties or an implicit specification based on page size or other constraints.
There are four possibilities, each represented by a keyword:

1. auto: use scrollbars if there is overflow; don’t use them if there isn’t

2. hidden: don’t show any content that runs outside the box

3. scroll: attach scrollbars to the box so the reader can scroll to the additional
content

4. visible: the complete contents are shown, if necessary, by overriding the
size constraints on the box

The clip property specifies the shape of the clipping region if the overflow
property does not have the value visible. The default clipping region is simply the
box itself. However, you can change this by specifying a particular rectangle like this:

clip=rect(top_offset right_offset bottom_offset left_offset)

Here top_offset, right_offset, bottom_offset, and left_offset are signed
lengths giving the offsets of the clipping region from the top, right, bottom, and left
sides of the box. This allows you to make the clipping region smaller than the box
itself.

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 563

564 Part III ✦ Style Languages

The reference-orientation Property
The reference-orientation property enables you to specify that the content of a
box is rotated in 90@@dg increments relative to its normal orientation. The only
valid values are 90@@dg increments, which are measured counterclockwise, that is
0, 90, 180, and 270. You can also specify -90, -180, and -270. For example, here’s a
90@@dg rotation:

<fo:block reference-orientation=”90”>
Bottom to Top

</fo:block>

Writing Mode Properties
The writing mode specifies the direction of text in the box. This has important
implications for the ordering of formatting objects in the box. Most of the time,
speakers of English and other Western languages assume a left-to-right, top-to-
bottom writing mode, such as this:

A B C D E F G
H I J K L M N
O P Q R S T U
V W X Y Z

However, in the Hebrew- and Arabic-speaking worlds, a right-to-left, top-to-bottom
ordering such as this one seems more natural:

G F E D C B A
N M L K J I H
U T S R Q P O
Z Y X W V

In Taiwan, a top-to-bottom, right-to-left order is most comfortable:

A E I M Q U Y
B F J N R V Z
C G K O S W
D H L P T X

In the XSL formatting language, the writing mode doesn’t just affect text. It also
affects how objects in a flow or sequence are laid out, how wrapping is performed,
and more. You’ve already noticed that many properties are organized in start, end,
before, and after variations instead of left, right, top, and bottom. Specifying style
rules in terms of start, end, before, and after, instead of left, right, top, and bottom,
produces more robust, localizable style sheets.

The writing-mode property specifies the writing mode for an area. This property
can have one of the same 14 keyword values. These are:

1. bt-lr: bottom-to-top, left-to-right

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 564

565Chapter 15 ✦ XSL Formatting Objects

2. bt-rl: bottom-to-top, right-to-left

3. lr-alternating-rl-bt: left-to-right lines alternating with right-to-left lines,
bottom-to-top

4. lr-alternating-rl-tb: left-to-right lines alternating with right-to-left lines,
top-to-bottom

5. lr-bt: left-to-right, bottom-to-top

6. lr-inverting-rl-bt: left to right, then move up to the next line and go right
to left (that is, snake up the page like a backward S)

7. lr-inverting-rl-tb: left to right, then move down to the next line and go
right to left (that is, snake down the page like a backward S)

8. lr-tb: left to right, top to bottom

9. rl-bt: right to left, bottom to top

10. rl-tb: right to left, top to bottom

11. tb-lr: top to bottom, left to right

12. tb-rl: top to bottom, right to left

13. tb-rl-in-rl-pairs: top to bottom, right to left

14. use-page-writing-mode: whatever writing mode the page on which this
object appears uses; the default

Orphans and Widows
To a typesetter, an orphan is a single line of a paragraph at the bottom of a page.
A widow is a single line of a paragraph at the top of a page. Good typesetters move
an extra line from the previous page or to the next page as necessary to avoid
orphans and widows. You can adjust the number of lines considered to be an
orphan by setting the orphans property to an unsigned integer. You can adjust
the number of lines considered to be a widow by setting the widows property
to an unsigned integer. For instance, if you want to make sure that every partial
paragraph at the end of a page has at least three lines, set the orphans property
to 3. For example:

<fo:simple-page-master page-master-name=”even”
orphans=”3” page-height=”8.5in” page-width=”11in”

/>

Aural Properties
XSL supports the full collection of CSS2 aural stylesheet properties including:

✦ azimuth

✦ cue

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 565

566 Part III ✦ Style Languages

✦ cue-after

✦ cue-before

✦ elevation

✦ pause

✦ pause-after

✦ pause-before

✦ pitch

✦ pitch-range

✦ play-during

✦ richness

✦ speak

✦ speak-header

✦ speak-numeral

✦ speak-punctuation

✦ speech-rate

✦ stress

✦ voice-family

✦ volume

The aural style sheet properties are discussed in the last section of Chapter 13,
Cascading Style Sheets Level 2. They have exactly the same semantics and syntax
in XSL formatting objects as they do in CSS2.

Summary
In this chapter, you learned about the XSL formatting language in detail. In
particular, you learned:

✦ An XSL transformation is performed to turn an XML source document into a
new XML document marked up in the XSL formatting object vocabulary.

✦ Most XSL formatting objects generate one or more rectangular areas. Page
areas contain block areas. Block areas contain block areas and line areas. Line
areas contain inline areas. Inline areas contain other inline areas and
character areas.

✦ The root element of a formatting object document is fo:root. This contains
fo:layout-master-set elements and fo:page-sequence elements.

Cross-
Reference

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 566

567Chapter 15 ✦ XSL Formatting Objects

✦ The fo:layout-master-set elements contain one or more fo:simple-
page-master elements, each of which defines the layout of a particular kind
of page by dividing it into five regions (before, after, start, end, and body), and
assigning properties to each one.

✦ The fo:page-sequence elements contains one fo:sequence-specifier
element, zero or more fo:static-content elements, and one fo:flow
element. The contents of the fo:flow are copied onto instances of the master
pages in the order specified by the fo:sequence-specifier element. The
contents of the fo:static-content elements are copied onto every page
that’s created.

✦ The fo:display-rule element produces a block-level horizontal line. The
fo:inline-rule element produces an inline horizontal line.

✦ The fo:display-graphic element loads an image from a URL and displays it
in a block. The fo:inline-graphic element loads an image from a URL and
displays it inline.

✦ The fo:simple-link element creates a hypertext link to a URL that’s
displayed in a block.

✦ A list is a block-level element created by a fo:list-block element. It
contains block-level fo:list-item elements. Each fo:list-item contains a
fo:list-item-label and fo:list-item-body.

✦ The fo:page-number element inserts the current page number.

✦ The fo:character element replaces a particular character or string of
characters in the input with a different character in the output.

✦ The fo:display-sequence and fo:inline-sequence elements are
containers used to attach properties to the text and areas they contain.

✦ The fo:footnote element inserts an out-of-line footnote and an inline
footnote reference into the page.

✦ The fo:float element inserts an out-of-line block-level element like a figure
or a pullquote onto the page.

✦ There are more than 200 separate XSL formatting properties, many of which
are identical to CSS properties of the same name. These are attached to XSL
formatting object elements as attributes.

The next chapter introduces XLinks, a more powerful linking syntax than the stan-
dard HTML A element hyperlinks or XSL’s fo:display-link and fo:inline-link.

✦ ✦ ✦

3236-7 ch15.F.qc 6/29/99 1:09 PM Page 567

XLinks

X LL (eXtensible Linking Language) is divided into two
parts, XLinks and XPointers. XLink, the XML Linking

Language, defines how one document links to another
document. XPointer, the XML Pointer Language, defines how
individual parts of a document are addressed. XLinks point to
a URI (in practice, a URL) that specifies a particular resource.
This URL may include an XPointer part that more specifically
identifies the desired part or section of the targeted resource
or document. This chapter explores XLinks. The next chapter
explores XPointers.

XLinks versus HTML Links
The Web conquered the more established gopher protocol for
one main reason: It was possible to embed hypertext links in
documents. These links could embed images or let the user
to jump from inside one document to another document or
another part of the same document. To the extent that XML
is rendered into other formats such as HTML for viewing,
the same syntax HTML uses for linking can be used in XML
documents. Alternate syntaxes can be converted into
HTML syntax using XSL, as you saw in several examples
in Chapter 14.

However, HTML linking has limits. For one thing, URLs
are mostly limited to pointing out a single document. More
granularity than that, such as linking to the third sentence of
the 17th paragraph in a document, requires you to manually
insert named anchors in the targeted file. It can’t be done
without write access to the document to which you’re linking.

Furthermore, HTML links don’t maintain any sense of history
or relations between documents. Although browsers may track
the path you’ve followed through a series of documents, such
tracking isn’t very reliable. From inside the HTML, there’s no
way to know from where a reader came. Links are purely one
way. The linking document knows to whom it’s linking, but not
vice versa.

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

XLinks versus
HTML links

Simple links

Extended links

Out-of-line links

Extended link groups

How to rename
XLink attributes

✦ ✦ ✦ ✦

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 571

572 Part IV ✦ Supplemental Technologies

XLL is a proposal for more powerful links between documents. It’s designed
especially for use with XML documents, but some parts can be used with HTML
files as well. XLL achieves everything possible with HTML’s URL-based hyperlinks
and anchors. Beyond this, however, it supports multidirectional links where the
links run in more than one direction. Any element can become a link, not just the
A element. Links do not even have to be stored in the same file as the documents
they link. Furthermore, the XPointer part (described in the next chapter) allows
links to arbitrary positions in an XML document. These features make XLL
more suitable not only for new uses, but for things that can be done only with
considerable effort in HTML, such as cross-references, footnotes, end notes,
interlinked data, and more.

I should warn you that at the time of this writing (spring, 1999), XLL is still undergo-
ing significant development and modification. Although it is beginning to stabilize,
some bits and pieces likely will change by the time you read this.

Furthermore, there are no general-purpose applications that support arbitrary
XLinks. That’s because XLinks have a much broader base of applicability than
HTML links. XLinks are not just used for hypertext connections and embedding
images in documents. They can be used by any custom application that needs to
establish connections between documents and parts of documents, for any rea-
son. Thus, even when XLinks are fully implemented in browsers they may not
always be blue underlined text that you click to jump to another page. They can be
that, but they can also be both more and less, depending on your needs.

Simple Links
In HTML, a link is defined with the <A> tag. However, just as XML is more flexible
with tags that describe elements, it is more flexible with tags that refer to external
resources. In XML, almost any tag can be a link. Elements that include links are
called linking elements.

Linking elements are identified by an xlink:form attribute with either the value
simple or extended. Furthermore, each linking element contains an href attribute
whose value is the URI of the resource being linked to. For example, these are three
linking elements:

<FOOTNOTE xlink:form=”simple” href=”footnote7.xml”>7</FOOTNOTE>
<COMPOSER xlink:form=”simple” inline=”true”

href=”http://www.users.interport.net/~beand/”>
Beth Anderson

</COMPOSER>
<IMAGE xlink:form=”simple” href=”logo.gif”/>

Notice that the elements have semantic names that describe the content they
contain rather than how the elements behave. The information that these elements
are links is included in the attributes of the tags.

Caution

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 572

573Chapter 16 ✦ XLinks

These three examples are simple XLinks. Simple XLinks are similar to standard
HTML links and are likely to be supported by application software before the more
complex (and more powerful) extended links, so I’ll begin with them. Extended links
are discussed in the next section.

In the FOOTNOTE example above, the link target attribute’s name is href. Its value
is the relative URL footnote7.xml. The protocol, host, and directory of this
document are taken from the protocol, host, and directory of the document in
which this link appears.

In the COMPOSER example above, the link target attribute’s name is href. The value
of the href attribute is the absolute URL http://www.users.interport.net/~beand/In
the third example above, which is IMAGE, the link target attribute’s name is href.
The value of the href attribute is the relative URL logo.gif. Again, the protocol,
host, and directory of this document are taken from the protocol, host, and
directory of the document in which this link appears.

If your document has a DTD, these attributes must be declared like any other. For
example, DTD declarations of the FOOTNOTE, COMPOSER, and IMAGE elements might
look like this:

<!ELEMENT FOOTNOTE (#PCDATA)>
<!ATTLIST FOOTNOTE

xlink:form CDATA #FIXED “simple”
href CDATA #REQUIRED

>
<!ELEMENT COMPOSER (#PCDATA)>
<!ATTLIST COMPOSER

xlink:form CDATA #FIXED “simple”
href CDATA #REQUIRED

>
<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE

xlink:form CDATA #FIXED “simple”
href CDATA #REQUIRED

>

With these declarations, the xlink:form attribute has a fixed value. Therefore it
does not need to be included in the instances of the elements, which you may now
write more compactly like this:

<FOOTNOTE href=”footnote7.xml”>7</FOOTNOTE>
<COMPOSER href=”http://www.users.interport.net/~beand/”>
Beth Anderson

</COMPOSER>
<IMAGE href=”logo.gif”/>

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 573

574 Part IV ✦ Supplemental Technologies

Making an element a link element doesn’t impose any restriction on other attributes
or contents of an element. A link element may contain arbitrary children or other
attributes, always subject to the restrictions of the DTD, of course. For example,
here’s a more realistic declaration of the IMAGE element. Note that most of the
attributes don’t have anything to do with linking.

<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE

xlink:form CDATA #FIXED “simple”
href CDATA #REQUIRED
ALT CDATA #REQUIRED
HEIGHT CDATA #REQUIRED
WIDTH CDATA #REQUIRED

>

Descriptions of the Local Resource
A linking element may contain optional content-role and content-title
elements that provide extra information and further describe the purpose of the
link inside the document in which it appears. For example:

<AUTHOR href=”http://www.macfaq.com/personal.html”
content-title=”author of the page”
content-role=”whom to contact for questions about this page”>
Elliotte Rusty Harold

</AUTHOR>

The content-role and content-title attributes describe the local resource —
that is, the contents of the link element, which is Elliotte Rusty Harold in this
example. These attributes, however, do not describe the remote resource, which
is the document at http://www.macfaq.com/personal.html in this example.
Thus, this example says that Elliotte Rusty Harold has the title “author of the page”
and the role “whom to contact for questions about this page.” This does not neces-
sarily have any relation to the document that is found at http://www.macfaq.
com/personal.html.

The content-title attribute is generally used by an application reading the XML
to show a bit of extra information to the user, perhaps in the browser’s status bar
or via a tool tip, when the user moves the mouse over the linked element. However,
the application is not required to show this information to the user. It simply may
do so if it chooses.

The content-role attribute indicates the purpose of the linked element in the
document. The content-role attribute is similar to a processing instruction in
that it’s intended to pass data to the application reading the XML. It has no real
purpose as XML, though, and applications are free to ignore it.

Like all other attributes, content-title and content-role should be declared
in the DTD for all elements to which they belong. For example, this is a reasonable
declaration for the above AUTHOR element:

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 574

575Chapter 16 ✦ XLinks

<!ELEMENT AUTHOR (#PCDATA)>
<!ATTLIST AUTHOR

xlink:form CDATA #FIXED “simple”
href CDATA #REQUIRED
content-title CDATA #IMPLIED
content-role CDATA #IMPLIED

>

Descriptions of the Remote Resource
The link element may contain optional role and title attributes that describe the
remote resource, that is, the document or other resource to which the link points.
For example:

<AUTHOR href=”http://www.macfaq.com/personal.html”
title=”Elliotte Rusty Harold’s personal home page”
role=”further information about the author of this page”
content-title=”author of the page”
content-role=”whom to contact for questions about this page”>
Elliotte Rusty Harold

</AUTHOR>

The role and title attributes describe the remote resource, not the local element.
The remote resource in the above example is the document at http://www.macfaq.
com/personal.html. Thus, the above example says that the page at http://www.
macfaq.com/personal.html has the title “Elliotte Rusty Harold’s personal home
page” and the role “further information about the author of this page.” It is not
uncommon, though it’s not required, for the title to be the same as the contents
of the TITLE element of the page to which you are linking.

The application reading the XML might use these two attributes to show extra
information to the user. However, the application is not required to show this
information to the user or do anything with it.

The role attribute indicates the purpose of the remote resource (the one to which
it’s linked) in the linking document (the one from which it’s linked). For example, it
might distinguish between footnotes, endnotes, and citations.

As with all other attributes, the title and role attributes should be declared in
the DTD for all the elements to which they belong. For example, this is a reasonable
declaration for the above author element:

<!ELEMENT AUTHOR (#PCDATA)>
<!ATTLIST AUTHOR

xlink:form CDATA #FIXED “simple”
href CDATA #REQUIRED
content-title CDATA #IMPLIED
content-role CDATA #IMPLIED
title CDATA #IMPLIED
role CDATA #IMPLIED

>

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 575

576 Part IV ✦ Supplemental Technologies

Link Behavior
Link elements can contain three more optional attributes that suggest to applications
how the remote resource is associated with the current page. These are:

1. show

2. actuate

3. behavior

The show attribute suggests how the content should be displayed when the link is
activated, for example, by opening a new window to hold the content. The actuate
attribute suggests whether the link should be traversed automatically or whether
a specific user request is required. The behavior attribute can provide detailed
information to the application about exactly how the link is to be traversed, such
as a time delay before the link is traversed. These are all application dependent,
however, and applications are free to ignore the suggestions.

The show Attribute
The show attribute has three legal values: replace, new, and embed.

With a value of replace when the link is activated (generally by clicking on it, at
least in GUI browsers), the target of the link replaces the current document in the
same window. This is the default behavior of HTML links. For example:

<COMPOSER href=”http://www.users.interport.net/~beand/”
show=”replace”>

Beth Anderson
</COMPOSER>

With a value of new, activating the link opens a new window in which the targeted
resource is displayed. This is similar to the behavior of HTML links when the
target attribute is set to _blank. For example:

<WEBSITE href=”http://www.quackwatch.com/” show=”new”>
Check this out, but don’t leave our site completely!

</WEBSITE>

Readers do not expect a new window to open after clicking a link. They expect that
when they click a link, the new page will load into the current window, unless they
specifically ask for the link to open in a new window.

Some companies are so self-important that they find it impossible to believe that
any user would ever want to leave their sites. Thus they “help” the readers by
opening new windows. Most of the time this only serves to confuse and annoy.
Don’t change the behavior users expect without a very good reason. The thin hope
that a reader might spend an additional two seconds on your site or view one
more page and see one more ad is not a good reason.

Caution

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 576

577Chapter 16 ✦ XLinks

With a value of embed, activating the link inserts the targeted resource into
the existing document. Exactly what this means is application dependent.
However, you can imagine it being used to provide client-side includes for
Web pages. For example, this element, rather than directly including individ-
ual elements for the members of a family, copies them out of the separate files
ThomasCorwinAnderson.xml, LeAnahDeMintEnglish.xml, JohnJayAnderson.xml,
and SamuelEnglishAnderson.xml.

<FAMILY ID=”f732”>
<HUSBAND href=”ThomasCorwinAnderson.xml” show=”embed”/>
<WIFE href=”LeAnahDeMintEnglish.xml” show=”embed”/>
<CHILD href=”JohnJayAnderson.xml” show=”embed”/>
<CHILD href=”SamuelEnglishAnderson.xml” show=”embed”/>

</FAMILY>

The result, after the links are traversed and their contents embedded in the FAMILY
element, is something like this:

<FAMILY ID=”f732”>
<PERSON ID=”p1035” SEX=”M”>
<NAME>
<GIVEN>Thomas Corwin</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<DATE>24 Aug 1845</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>18 Sep 1889</DATE>

</DEATH>
</PERSON>
<PERSON ID=”p1098” SEX=”F”>
<NAME>
<GIVEN>LeAnah (Lee Anna, Annie) DeMint</GIVEN>
<SURNAME>English</SURNAME>

</NAME>
<BIRTH>
<PLACE>Louisville, KY</PLACE>
<DATE>1 Mar 1843</DATE>

</BIRTH>
<DEATH>
<PLACE>acute Bright’s disease, 504 E. Broadway</PLACE>
<DATE>31 Oct 1898</DATE>

</DEATH>
</PERSON>
<PERSON ID=”p1102” SEX=”M”>
<NAME>
<GIVEN>John Jay (Robin Adair)</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 577

578 Part IV ✦ Supplemental Technologies

<PLACE>Sideview</PLACE>
<DATE>13 May 1873</DATE>

</BIRTH>
<DEATH>
<DATE>18 Sep 1889 </DATE>

</DEATH>
</PERSON>
<PERSON ID=”p37” SEX=”M”>
<NAME>
<GIVEN>Samuel English</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>Sideview</PLACE>
<DATE>25 Aug 1871</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>10 Nov 1919</DATE>

</DEATH>
</PERSON>

</FAMILY>

Although each of these PERSON elements exists in a separate file, the complete
FAMILY element is treated as though it was in one file.

Like all attributes in valid documents, the show attribute must be declared in a
<!ATTLIST> declaration for the DTD’s link element. For example:

<!ELEMENT WEBSITE (#PCDATA)>
<!ATTLIST WEBSITE

xlink:form CDATA #FIXED “simple”
href CDATA #REQUIRED
show (new | replace | embed) “new”

>

The actuate Attribute
A link element’s actuate attribute has two possible values: user and auto. The
value user, the default, specifies that the link is to be traversed only when and if
the user requests it. On the other hand, if the link element’s actuate attribute is set
to auto, the link is traversed any time one of the other targeted resources of the
same link element is traversed. This is useful for link groups (discussed below).

Like all attributes in valid documents, the actuate attribute must be declared in
the DTD in a <!ATTLIST> declaration for the link elements in which it appears. For
example:

<!ELEMENT WEBSITE (#PCDATA)>
<!ATTLIST WEBSITE

xlink:form CDATA #FIXED “simple”
href CDATA #REQUIRED

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 578

579Chapter 16 ✦ XLinks

show (new | replace | embed) “new”
actuate (user | auto) “user”

>

The behavior Attribute
The behavior attribute is used to pass arbitrary data in an arbitrary format to the
application reading the data. The application is expected to use this data to make
additional determinations about how the link behaves. For example, if you want
to specify that the sound file fanfare.au play when a link is traversed, you might
write this:

<COMPOSER xlink:form=”simple”
href=”http://www.users.interport.net/~beand/”
behavior=”sound: fanfare.au”>
Beth Anderson

</COMPOSER>

A Shortcut for the DTD

Because the attribute names and types are standardized, if you have more than one link ele-
ment in a document, often it’s convenient to make the attribute declarations a parameter
entity reference and simply repeat that in the declaration of each linking element. For example:

<!ENTITY % link-attributes
“xlink:form CDATA #FIXED ‘simple’
href CDATA #REQUIRED
behavior CDATA #IMPLIED
content-role CDATA #IMPLIED
content-title CDATA #IMPLIED
role CDATA #IMPLIED
title CDATA #IMPLIED
show (new | replace | embed) ‘new’
actuate (user | auto) ‘user’
behavior CDATA #IMPLIED”

>
<!ELEMENT COMPOSER (#PCDATA)>
<!ATTLIST COMPOSER

%link-attributes;
>
<!ELEMENT AUTHOR (#PCDATA)>
<!ATTLIST AUTHOR

%link-attributes;
>
<!ELEMENT WEBSITE (#PCDATA)>
<!ATTLIST WEBSITE

%link-attributes;
>

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 579

580 Part IV ✦ Supplemental Technologies

However, this requires that the application reading the XML file understand that
a behavior attribute with the value sound: fanfare.au means the sound file
fanfare.au should play when the link is traversed. Most, probably all, applications
don’t understand this. However, they may use the behavior attribute as a
convenient place to store nonstandard information they do understand.

As with all attributes in valid documents, the behavior attribute must be declared in
the DTD for the link elements in which it appears. For example, the above COMPOSER
element could be declared this way:

<!ELEMENT COMPOSER (#PCDATA)>
<!ATTLIST COMPOSER

xlink:form CDATA #FIXED “simple”
href CDATA #REQUIRED
behavior CDATA #IMPLIED

>

Extended Links
Simple links behave more or less like the standard links you’re accustomed to from
HTML. Each contains a single local resource and a reference to a single remote
resource. The local resource is the link element’s contents. The remote resource is
the link’s target.

Extended links, however, go substantially beyond what you can do with an HTML
link to include multidirectional links between many documents and out-of-line links.
Extended links are identified by an xlink:form attribute with the value extended,
like this:

<WEBSITE xlink:form=”extended”>

The first capability of extended links is to point to more than one target. To allow
this, extended links store the targets in child locator elements of the linking
element rather than in a single href attribute of the linking element as simple
links do. For example:

<WEBSITE xlink:form=”extended”>Cafe au Lait
<locator href=”http://metalab.unc.edu/javafaq/”>
North Carolina

</locator>
<locator
href=”http://sunsite.univie.ac.at/jcca/mirrors/javafaq/”>
Austria

</locator>
<locator href=”http://sunsite.icm.edu.pl/java-corner/faq/”>
Poland

</locator>
<locator href=”http://sunsite.uakom.sk/javafaq/”>

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 580

581Chapter 16 ✦ XLinks

Slovakia
</locator>
<locator href=”http://sunsite.cnlab-switch.ch/javafaq/”>
Switzerland

</locator>
</WEBSITE>

Both the linking element itself, WEBSITE, in this example, and the individual
locator children may have attributes. The linking element only has attributes
that apply to the entire link andthe local resource, such as content-title and
content-role. The locator elements have attributes that apply to the particular
remote resource to which they link, such as role and title. For example:

<WEBSITE xlink:form=”extended” content-title=”Cafe au Lait”
content-role=”Java news”>

<locator href=”http://metalab.unc.edu/javafaq/”
title=”Cafe au Lait” role=”.us”/>

<locator
href=”http://sunsite.univie.ac.at/jcca/mirrors/javafaq/”
title=”Cafe au Lait” role=”.at”/>

<locator href=”http://sunsite.icm.edu.pl/java-corner/faq/”
title=”Cafe au Lait” role=”.pl”/>

<locator href=”http://sunsite.uakom.sk/javafaq/”
title=”Cafe au Lait” role=”.sk”/>

<locator href=”http://sunsite.cnlab-switch.ch/javafaq/”
title=”Cafe au Lait” role=”.ch”/>

</WEBSITE>

The actuate, behavior, and show attributes, if present, belong to the individual
locator elements.

In some cases, as in the above example, where the individual locators point to
mirror copies of the same page, remote resource attributes for individual locator
elements may be the same across the linking element. In this case, you can use
remote resource attributes in the linking element itself. These attributes apply to
each of the locator children that does not declare a conflicting value for the same
attribute. For example:

<WEBSITE xlink:form=”extended” content-title=”Cafe au Lait”
content-role=”Java news” title=”Cafe au Lait”>
<locator href=”http://metalab.unc.edu/javafaq/” role=”.us”/>
<locator
href=”http://sunsite.univie.ac.at/jcca/mirrors/javafaq/”
role=”.at”/>

<locator href=”http://sunsite.icm.edu.pl/java-corner/faq/”
role=”.pl”/>

<locator href=”http://sunsite.uakom.sk/javafaq/” role=”.sk”/>
<locator href=”http://sunsite.cnlab-switch.ch/javafaq/”
role=”.ch”/>

</WEBSITE>

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 581

582 Part IV ✦ Supplemental Technologies

Another Shortcut for the DTD

If you have many link and locator elements, it may be advantageous to define the com-
mon attributes in parameter entities in the DTD, which you can reuse in different elements.
For example:

<!ENTITY % remote-resource-semantics.att
“role CDATA #IMPLIED
title CDATA #IMPLIED
show (embed|replace|new) #IMPLIED ‘replace’
actuate (auto|user) #IMPLIED ‘user’
behavior CDATA #IMPLIED”

>

<!ENTITY % local-resource-semantics.att
“content-title CDATA #IMPLIED
content-role CDATA #IMPLIED”

>

<!ENTITY % locator.att
“href CDATA #REQUIRED”

>

<!ENTITY % link-semantics.att
“inline (true|false) ‘true’
role CDATA #IMPLIED”

>

<!ELEMENT WEBSITE (locator*) >
<!ATTLIST WEBSITE

xlink:form CDATA #FIXED “extended”
%local-resource-semantics.att;

>

<!ELEMENT locator EMPTY>
<!ATTLIST locator

xlink:form CDATA #FIXED “locator”
%locator.att;
%link-semantics.att;

>

As always, in valid documents, the link elements and all their possible attributes
must be declared in the DTD. For example, the following declares the WEBSITE
and locator elements used in the above examples, as well as their attributes:

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 582

583Chapter 16 ✦ XLinks

<!ELEMENT WEBSITE (locator*) >
<!ATTLIST WEBSITE

xlink:form CDATA #FIXED “extended”
content-title CDATA #IMPLIED
content-role CDATA #IMPLIED
title CDATA #IMPLIED

>
<!ELEMENT locator EMPTY>
<!ATTLIST locator

xlink:form CDATA #FIXED “locator”
href CDATA #REQUIRED
role CDATA #IMPLIED

>

Out-of-Line Links
The links considered so far, both simple and extended, are inline links. Inline links,
such as the familiar A element from HTML, use the contents of the link element as
part of the document that contains the link. It is shown to the reader.

XLinks can also be out-of-line. An out-of-line link may not be present in any of
the documents it connects. Instead, the links are stored in a separate linking
document. For example, this might be useful to maintain a slide show where
each slide requires next and previous links. By changing the order of the slides
in the linking document, you can change the targets of the previous and next
links on each page without having to edit the slides themselves.

To mark a link as out-of-line, provide an inline attribute with the value false.
For example, the following simple, out-of-line link describes a Web site using an
empty element. An empty element has no content; in the case of a link it has no
local resource. Therefore, it should not have content-role or content-title
attributes that describe the local resource. It may have, as in this example, role
and title attributes that describe the remote resource.

<WEBSITE xlink:form=”simple” inline=”false”
href=”http://metalab.unc.edu/xml/”
title = “Cafe con Leche” role=”XML News”/>

Because all the links you’ve seen until now were inline links, they implicitly had
inline attributes with the value true, the default.

Simple out-of-line links, as in the above example, are relatively rare. Much more
common and useful are out-of-line extended links, as shown below:

<WEBSITE xlink:form=”extended” inline=”false”>
<locator href=”http://metalab.unc.edu/javafaq/” role=”.us”/>

Note

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 583

584 Part IV ✦ Supplemental Technologies

<locator
href=”http://sunsite.univie.ac.at/jcca/mirrors/javafaq/”
role=”.at”/>

<locator href=”http://sunsite.icm.edu.pl/java-corner/faq/”
role=”.pl”/>

<locator href=”http://sunsite.uakom.sk/javafaq/” role=”.sk”/>
<locator href=”http://sunsite.cnlab-switch.ch/javafaq/”
role=”.ch”/>

</WEBSITE>

Something such as this might be stored in a separate file on a Web server in a
known location where browsers can find and query it to determine the nearest
mirror of a page they’re looking for. The out-of-line-ness, however, is that this
element does not appear in the document from which the link is activated.

This expands the abstraction of style sheets into the linking domain. A style sheet
is completely separate from the document it describes and yet provides rules
that modify how the document is presented to the reader. A linking document
containing out-of-line links is separated from the documents it connects, yet it
provides the necessary links to the reader. This has several advantages, including
keeping more presentation-oriented markup separate from the document and
allowing the linking of read-only documents.

Style sheets are much farther along than out-of-line links. There currently is no
general proposal for how you attach “link sheets” to XML documents, much less
how you decide which individual elements in a document are associated with
which links.

One obvious choice is to add an <?xml-linksheet?> processing instruction to
a document’s prolog to specify where the links are found. The link sheet itself
could use something akin to XSL select patterns to map links to individual XML
elements. The selectors could even become the value of the locator element’s
role attribute.

Extended Link Groups
An extended link group element contains a list of links that connect a particular
group of documents. Each document in the group is targeted by means of an
extended link document element. It is the application’s responsibility to understand
how to activate and understand the connections between the group members.

I feel compelled to note that application support for link groups is at best hypo-
thetical at the time of this writing. Although I can show you how to write such links,
their actual implementation and support likely is some time away. Some of the
details remain to be defined and likely will be implemented in vendor-specific fash-
ions, at least initially. Still, they hold the promise of enabling more sophisticated
linking than can be achieved with HTML.

Caution

Caution

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 584

585Chapter 16 ✦ XLinks

An Example
For example, I’ve put the notes for a Java course I teach on my Web site. Figure 16-1
shows the introductory page. This particular course consists of 13 classes, each of
which contains between 30 and 60 individual pages of notes. A table of contents is
then provided for each class. Each of the several hundred pages making up the
entire site has links to the previous document, the next document, and the table of
contents (Top link) for the week, as shown in Figure 16-2. Putting it all together, this
amounts to more than a thousand interconnections among this set of documents.

Figure 16-1: The introductory page for my class Web site
shows 13 weeks of lecture notes

The possible interconnections grow exponentially with the number of documents.
Every time a single document is moved, renamed, or divided into smaller pieces,
the links need to be adjusted on that page, on the page before it and after it in the
set, and on the table of contents for the week. Quite frankly, this is a lot more work
than it should be, and it tends to discourage necessary modifications and updates
to the course notes.

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 585

586 Part IV ✦ Supplemental Technologies

Figure 16-2: One page of lecture notes displaying the
Previous, Next, and Top links

The sensible thing to do, if HTML supported it, would be to store the connections
in a separate document. Reorganization of the pages then could be performed by
editing that one document. HTML links don’t support this, but XLinks do. Instead
of storing the links inline in HTML files, they can be stored out-of-line in group
elements. For example:

<COURSE xlink:form=”group”>
<CLASS xlink:form=”document” href=”week1/index.xml”/>
<CLASS xlink:form=”document” href=”week2/index.xml”/>
<CLASS xlink:form=”document” href=”week3/index.xml”/>
<CLASS xlink:form=”document” href=”week4/index.xml”/>
<CLASS xlink:form=”document” href=”week5/index.xml”/>
<CLASS xlink:form=”document” href=”week6/index.xml”/>
<CLASS xlink:form=”document” href=”week7/index.xml”/>
<CLASS xlink:form=”document” href=”week8/index.xml”/>
<CLASS xlink:form=”document” href=”week9/index.xml”/>
<CLASS xlink:form=”document” href=”week10/index.xml”/>
<CLASS xlink:form=”document” href=”week11/index.xml”/>
<CLASS xlink:form=”document” href=”week12/index.xml”/>
<CLASS xlink:form=”document” href=”week13/index.xml”/>

</COURSE>

This defines the COURSE element as an extended link group, which consists of 13
extended link document elements, the CLASS elements.

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 586

587Chapter 16 ✦ XLinks

The steps Attribute
One thing an application may choose to do with a link group is preload all the
documents in the link group. These documents may contain link groups of their
own. For example, each of the CLASS elements above refers to one of the site’s table
of contents pages for a specific week, as shown in Figure 16-3. These documents
could then load. For example, the file week6/index.xml could contain this link group:

<CLASS xlink:form=”group”>
<SLIDE xlink:form=”document” href=”01.xml”/>
<SLIDE xlink:form=”document” href=”02.html”/>
<SLIDE xlink:form=”document” href=”06.html”/>
<SLIDE xlink:form=”document” href=”12.html”/>
<SLIDE xlink:form=”document” href=”13.html”/>
<SLIDE xlink:form=”document” href=”16.html”/>
<SLIDE xlink:form=”document” href=”17.html”/>
<SLIDE xlink:form=”document” href=”19.html”/>
<SLIDE xlink:form=”document” href=”21.html”/>
<SLIDE xlink:form=”document” href=”22.html”/>
<SLIDE xlink:form=”document” href=”24.html”/>

</CLASS >

Figure 16-3: A table-of-contents page showing the first
week’s lecture notes

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 587

588 Part IV ✦ Supplemental Technologies

Now suppose one of these documents refers back to the original document. This
might trigger an infinite regression, with the same documents repeatedly loading
until the application runs out of memory. To prevent this, the group element may
contain a steps attribute that specifies the number of levels to recursively follow
link groups. For example, to specify that preloading shouldn’t go deeper than three
levels from the current document, write:

<group xlink:form=”group” steps=”3”>

To be honest, I’m not sure how important this is. It’s not hard for an application to
note when it’s already followed a document and not process the document a sec-
ond time. I suspect it is better to place the requirement for preventing recursion
with the XML processor rather than the page author.

The steps attribute can be used to limit the amount of preloading that occurs. For
instance, in the class notes example, it’s unlikely that any person is going to read
the entire set of course notes in one sitting, though perhaps he or she may want to
print or copy all of them. In any case, by setting the steps attribute to 1, you can
limit the depth of the traversal to simply the named pages rather than the several
hundred pages in the course.

As always, these elements and their attributes must be declared in the DTD of any
valid document in which they appear. In practice, the xlink:form attribute is fixed
so that it need not be included in instances of the element. For example:

<!ELEMENT CLASS (document*)>
<!ATTLIST CLASS

xlink:form CDATA #FIXED “group”
steps CDATA #IMPLIED

>
<!ELEMENT SLIDE EMPTY>
<!ATTLIST SLIDE

xlink:form CDATA #FIXED “document”
href CDATA #REQUIRED

>

Renaming XLink Attributes
XLinks are built around the ten attributes discussed in the previous sections. They
are listed below.

xlink:form
href
steps
title
role
content-title
content-role
show

Note

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 588

589Chapter 16 ✦ XLinks

actuate
behavior

It is far from inconceivable that one or more of these attributes will already be used
as an attribute name in a particular XML application. The title attribute seems
particularly likely to be taken. The only one that really shouldn’t be used for other
purposes is xlink:form.

The XLink specification anticipates this problem and allows you to rename
the XLink attributes to something more convenient using the xml:attributes
attribute. This attribute is declared in an <!ATTLIST> declaration in the DTD as a
fixed attribute with type CDATA and a value that’s a whitespace-separated list of
pairs of standard names and new names.

This is exactly the problem that namespaces (discussed in Chapter 18) were
designed to solve. I would not be surprised to see this entire mechanism deleted
in a future draft of XLL and replaced with a simple namespace prefix such as
xlink:.

For example, the link elements shown in this chapter look a little funny because the
standard names are all lowercase while this book’s convention is all uppercase. It’s
easy enough to change the XLink attributes to uppercase with a declaration such
as this:

<!ELEMENT WEBSITE (#PCDATA)>
<!ATTLIST WEBSITE

xlink:form CDATA #FIXED “simple”
xml:attributes CDATA #FIXED

“href HREF show SHOW actuate ACTUATE”
HREF CDATA #REQUIRED
SHOW CDATA (new | replace | embed) “new”
ACTUATE CDATA (user | auto) user

>

Now you can rewrite the WEBSITE example in this more congruous form:

<WEBSITE HREF=”http://www.microsoft.com/” SHOW=”new”>
Check this out, but don’t leave our site completely!

</WEBSITE>

The above ATTLIST declaration only changes the attributes of the WEBSITE
element. If you want to change them the same way in multiple other examples,
the easiest approach is to use a parameter entity:

<!ENTITY LINK_ATTS
‘xlink:form CDATA #FIXED “simple”
xml:attributes CDATA #FIXED

“href HREF show SHOW actuate ACTUATE”
HREF CDATA #REQUIRED
SHOW CDATA (new | replace | embed) “new”
ACTUATE CDATA (user | auto) “user”’

Note

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 589

590 Part IV ✦ Supplemental Technologies

>

<!ELEMENT WEBSITE (#PCDATA)>
<!ATTLIST WEBSITE %LINK_ATTS;>

<!ELEMENT COMPOSER (#PCDATA)>
<!ATTLIST COMPOSER %LINK_ATTS;>

<!ELEMENT FOOTNOTE (#PCDATA)>
<!ATTLIST FOOTNOTE %LINK_ATTS;>

Summary
In this chapter, you learned about XLinks. In particular you learned:

✦ XLinks can do everything HTML links can do and quite a bit more, but they
aren’t supported by current applications.

✦ Simple links behave much like HTML links, but they are not restricted to a
single <A> tag.

✦ Link elements are identified by xlink:form and href attributes.

✦ Link elements can describe the local resource with content-title and
content-role attributes.

✦ Link elements can describe the remote resource they’re linking to with title
and role attributes.

✦ Link elements can use the show attribute to tell the application how the
content should be displayed when the link is activated, for example, by
opening a new window.

✦ Link elements can use the behavior attribute to provide the application with
detailed, application dependent information about exactly how the link is to
be traversed.

✦ Link elements can use the actuate attribute to tell the application whether
the link should be traversed without a specific user request.

✦ Extended links can include more than a single URI in a linking element.
Currently, it’s left to the application to decide how to choose between
different alternatives.

✦ An extended link group element contains a list of links that connect a
particular group of documents.

✦ You can use the xml:attributes attribute in the DTD to rename the standard
XLink attributes such as href and title.

In the next chapter you see how XPointers can be used to link not only to remote
documents, but to very specific elements in remote documents.

✦ ✦ ✦

3236-7 ch16.F.qc 6/29/99 1:09 PM Page 590

XPointers

XPointer, the XML Pointer Language, defines an
addressing scheme for individual parts of an XML

document. XLinks point to a URI (in practice, a URL) that
specifies a particular resource. The URI may include an
XPointer part that more specifically identifies the desired part
or element of the targeted resource or document. This chapter
discusses XPointers.

This chapter is based on the March 3, 1998 working draft of
the XPointer specification. The broad picture presented
here is likely to be correct but the details are subject to
change. You can find the latest working draft at http://
www.w3.org/TR/WD-xptr.

Why Use XPointers?
URLs are simple and easy to use, but they’re also quite
limited. For one thing, a URL only points at a single, complete
document. More granularity than that, such as linking to the
third sentence of the 17th paragraph in a document, requires
the author of the targeted document to manually insert named
anchors at the targeted location. The author of the document
doing the linking can’t do this unless he or she also has write
access to the document being linked to.Even if the author
doing the linking can insert named anchors into the targeted
document, it’s almost always inconvenient.

It would be more useful to be able to link to a particular
element or group of elements on a page without having to
change the document you’re linking to. For example, given
a large page such as the complete baseball statistics of
Chapters 4 and 5, you might want to link to only one team or
one player. There are several parts to this problem. The first
part is addressing the individual elements. This is the part
that XPointers solve. XPointers allow you to target a given
element by number, name, type, or relation to other elements
in the document.

Caution

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Why use XPointers?

XPointer examples

Absolute location
terms

Relative location
terms

Relative location
term arguments

String location terms

The origin absolute
location term

Purpose of spans

✦ ✦ ✦ ✦

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 591

592 Part IV ✦ Supplemental Technologies

The second part of the problem is the protocol by which a browser asks a Web server
to send only part of a document rather than the whole thing. This is an area of active
research and speculation. More work is needed. XPointers do little to solve this
problem, except for providing a foundation on which such systems can build. For
instance, the best effort to date are the so-called “byte range extensions to HTTP”
available in HTTP 1.1. So far these have not achieved widespread adoption, mostly
because Web authors aren’t comfortable specifying a byte range in a document.
Furthermore, byte ranges are extremely fragile. Trivial edits to a document, even
simple reformatting, can destroy byte range links. HTTP 1.1 does allow other range
units besides raw bytes (for example, XML elements), but does not require Web
servers or browsers to support such units. Much work remains to be done.

The third part of the problem is making sure that the retrieved document makes
sense without the rest of the document to go along with it. In the context of XML,
this effectively means the linked part is well-formed or perhaps valid. This is a
tricky proposition, because most XML documents, especially ones with nontrivial
prologs, don’t decompose well. Again, XPointers don’t address this. The W3C XML
Fragment Working Group is addressing this issue, but the work is only just
beginning.

For the moment, therefore, an XPointer can be used as an index into a complete
document, the whole of which is loaded and then positioned at the location
identified by the XPointer. In the long-term, extensions to both XML, XLink, HTTP,
and other protocols may allow more sophisticated uses of XPointers. For instance,
you might be able to quote a remote document by including only an XLink with an
XPointer to the paragraph you want to quote, rather than retyping the text of the
quote. You could include cross-references inside a document that automatically
update themselves as the document is revised. These uses, however, will have to
wait for the development of several next-generation technologies. For now, we must
be content with precisely identifying the part of a document we want to jump to
when following an XLink.

XPointer Examples
HTML links generally point to a particular document. Additional granularity, that is,
pointing to a particular section, chapter, or paragraph of a particular document, isn’t
well-supported. Provided you control both the linking and the linked document, you
can insert a named anchor into an HTML file at the position to which you want to
link. For example:

<H2>XPointers</H2>

You can then link to this particular position in the file by adding a # and the name
of the anchor into the link. For example, in a table of contents you might see:

XPointers

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 592

593Chapter 17 ✦ XPointers

In practice, this solution is kludgy. It’s not always possible to modify the target
document so the source can link to it. The target document may be on a different
server controlled by someone other than the author of the source document. And
the author of the target document may change or move it without notifying the
author of the source.

Furthermore, named anchors violate the separation of markup from content.
Placing a named anchor in a document says nothing about the document or its
content. It’s just a marker for other documents to refer to. It adds nothing to the
document’s own content.

XLinks allow much more sophisticated connections between documents through
the use of XPointers. An XPointer can refer to a particular element of a document;
to the first, second, or 17th such element; to the first element that’s a child of a
given element; and so on. XPointers provide extremely powerful connections
between documents. They do not require the targeted document to contain
additional markup just so its individual pieces can be linked to.

Furthermore, unlike HTML anchors, XPointers don’t point to just a single point in
a document. They can point to ranges or spans. Thus, you can use an XPointer to
select a particular part of a document, perhaps so it can be copied or loaded into
a program.

Here are a few examples of XPointers:

root()
id(dt-xmldecl)
descendant(2,termref)
following(,termdef,term,CDATA Section)
html(recent)
id(NT-extSubsetDecl)

Each of these selects a particular element in a document. The document is not
specified in the XPointer; rather, the XLink specifies the document. The XLinks
you saw in the previous chapter did not contain XPointers, but it isn’t hard to add
XPointers to them. Most of the time you simply append the XPointer to the URI
separated by a #, just as you do with named anchors in HTML. For example, the
above list of XPointers could be suffixed to URLs and come out looking like the
following:

http://www.w3.org/TR/1998/REC-xml-19980210.xml#root()
http://www.w3.org/TR/1998/REC-xml-19980210.xml#id(dt-xmldecl)
http://www.w3.org/TR/1998/REC-xml-
19980210.xml#descendant(2,termref)
http://www.w3.org/TR/1998/REC-xml-
19980210.xml#following(,termdef,term,CDATA Section)
http://www.w3.org/TR/1998/REC-xml-19980210.xml#id(NT-
extSubsetDecl)

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 593

594 Part IV ✦ Supplemental Technologies

Normally these are used as values of the href attribute of a locator element. For
example:

<locator
href=”http://www.w3.org/TR/1998/REC-xml-19980210.xml#root()”>
Extensible Markup Language (XML) 1.0

</locator>

You can use a vertical bar (|) instead of a # to indicate that you do not want the
entire document. Instead, you want only the part of the document referenced by
the XPointer. For example:

http://www.w3.org/TR/1998/REC-xml-19980210.xml|root()
http://www.w3.org/TR/1998/REC-xml-19980210.xml|id(dt-xmldecl)
http://www.w3.org/TR/1998/REC-xml-
19980210.xml|descendant(2,termref)
http://www.w3.org/TR/1998/REC-xml-
19980210.xml|following(,termdef,term,CDATA Section)
http://www.w3.org/TR/1998/REC-xml-19980210.xml|id(NT-
extSubsetDecl)

Whether the client is able to retrieve only a piece of the document is protocol
dependent. Most current Web browsers and servers aren’t able to handle the
sophisticated requests that these XPointers imply. However, this can be useful for
custom protocols that use XML as an underlying transport mechanism.

Absolute Location Terms
XPointers are built from location terms. Each location term specifies a point in the
targeted document, generally relative to some other well-known point such as the
start of the document or another location term. The type of location term is given
by a keyword such as id(), root(), or child().

Some location terms take arguments between the parentheses. To demonstrate the
point, it’s useful to have a concrete example in mind. Listing 17-1 is a simple, valid
document that should be self-explanatory. It contains information about two related
families and their members. The root element is FAMILYTREE. A FAMILYTREE can
contain PERSON and FAMILY elements. Each PERSON and FAMILY element has a
required ID attribute. Persons contain a name, birth date, and death date. Families
contain a husband, a wife, and zero or more children. The individual persons are
referred to from the family by reference to their IDs. Any child element may be
omitted from any element.

This XML application is revisited in Chapter 23, Designing a New XML Application.Cross-
Reference

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 594

595Chapter 17 ✦ XPointers

Listing 17-1: A family tree

<?xml version=”1.0”?>
<!DOCTYPE FAMILYTREE [

<!ELEMENT FAMILYTREE (PERSON | FAMILY)*>

<!— PERSON elements —>
<!ELEMENT PERSON (NAME*, BORN*, DIED*, SPOUSE*)>
<!ATTLIST PERSON
ID ID #REQUIRED
FATHER CDATA #IMPLIED
MOTHER CDATA #IMPLIED

>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT BORN (#PCDATA)>
<!ELEMENT DIED (#PCDATA)>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE IDREF IDREF #REQUIRED>

<!—FAMILY—>
<!ELEMENT FAMILY (HUSBAND?, WIFE?, CHILD*) >
<!ATTLIST FAMILY ID ID #REQUIRED>

<!ELEMENT HUSBAND EMPTY>
<!ATTLIST HUSBAND IDREF IDREF #REQUIRED>
<!ELEMENT WIFE EMPTY>
<!ATTLIST WIFE IDREF IDREF #REQUIRED>
<!ELEMENT CHILD EMPTY>
<!ATTLIST CHILD IDREF IDREF #REQUIRED>

]>
<FAMILYTREE>

<PERSON ID=”p1”>
<NAME>Domeniquette Celeste Baudean</NAME>
<BORN>11 Feb 1858</BORN>
<DIED>12 Apr 1898</DIED>
<SPOUSE IDREF=”p2”/>

</PERSON>

<PERSON ID=”p2”>
<NAME>Jean Francois Bellau</NAME>
<SPOUSE IDREF=”p1”/>

</PERSON>

<PERSON ID=”p3” FATHER=”p2” MOTHER=”p1”>
<NAME>Elodie Bellau</NAME>
<BORN>11 Feb 1858</BORN>

Continued

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 595

596 Part IV ✦ Supplemental Technologies

Listing 17-1 (continued)

<DIED>12 Apr 1898</DIED>
<SPOUSE IDREF=”p4”/>

</PERSON>

<PERSON ID=”p4” FATHER=”p2” MOTHER=”p1”>
<NAME>John P. Muller</NAME>
<SPOUSE IDREF=”p3”/>

</PERSON>

<PERSON ID=”p7”>
<NAME>Adolf Eno</NAME>
<SPOUSE IDREF=”p6”/>

</PERSON>

<PERSON ID=”p6” FATHER=”p2” MOTHER=”p1”>
<NAME>Maria Bellau</NAME>
<SPOUSE IDREF=”p7”/>

</PERSON>

<PERSON ID=”p5” FATHER=”p2” MOTHER=”p1”>
<NAME>Eugene Bellau</NAME>

</PERSON>

<PERSON ID=”p8” FATHER=”p2” MOTHER=”p1”>
<NAME>Louise Pauline Bellau</NAME>
<BORN>29 Oct 1868</BORN>
<DIED>11 May 1879</DIED>
<SPOUSE IDREF=”p9”/>

</PERSON>

<PERSON ID=”p9”>
<NAME>Charles Walter Harold</NAME>
<BORN>about 1861</BORN>
<DIED>about 1938</DIED>
<SPOUSE IDREF=”p8”/>

</PERSON>

<PERSON ID=”p10” FATHER=”p2” MOTHER=”p1”>
<NAME>Victor Joseph Bellau</NAME>
<SPOUSE IDREF=”p11”/>

</PERSON>

<PERSON ID=”p11”>
<NAME>Ellen Gilmore</NAME>
<SPOUSE IDREF=”p10”/>

</PERSON>

<PERSON ID=”p12” FATHER=”p2” MOTHER=”p1”>
<NAME>Honore Bellau</NAME>

</PERSON>

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 596

597Chapter 17 ✦ XPointers

<FAMILY ID=”f1”>
<HUSBAND IDREF=”p2”/>
<WIFE IDREF=”p1”/>
<CHILD IDREF=”p3”/>
<CHILD IDREF=”p5”/>
<CHILD IDREF=”p6”/>
<CHILD IDREF=”p8”/>
<CHILD IDREF=”p10”/>
<CHILD IDREF=”p12”/>

</FAMILY>

<FAMILY ID=”f2”>
<HUSBAND IDREF=”p7”/>
<WIFE IDREF=”p6”/>

</FAMILY>

</FAMILYTREE>

In sections that follow, this document is assumed to be present at the URL
http://www.theharolds.com/genealogy.xml. This isn’t a real URL, but the
emphasis here is on selecting individual parts of a document rather than a
document as a whole.

id()
The id() location term is one of the simplest and most useful location terms. It
selects the element in the document that has an ID type attribute with a specified
value. For example, consider the URI http://www.theharolds.com/genealogy.
xml#id(p12). If you look back at Listing 17-1, you find this element:

<PERSON ID=”p12” FATHER=”p2” MOTHER=”p1”>
<NAME>Honore Bellau</NAME>

</PERSON>

Because ID type attributes are unique, you know there aren’t other elements
that match this XPointer. Therefore, http://www.theharolds.com/genealogy.
xml#id(p12) must refer to Honore Bellau’s PERSON element. Note that the XPointer
selects the entire element to which it refers, including all its children, not just the
start tag.

The disadvantage of the id() location term is that it requires assistance from the
targeted document. If the element you want to point to does not have an ID type
attribute, you’re out of luck. If other elements in the document have ID type
attributes, you may be able to point to one of them and use a relative XPointer
(discussed in the next section) to point to the one you really want. Nonetheless,
ID type attributes are best when you control both the targeted document and the
linking document, so you can ensure that the IDs match the links even as the
documents evolve and change over time.

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 597

598 Part IV ✦ Supplemental Technologies

In some cases, such as a document without a DTD, a targeted document may not
have any ID type attributes, although it may have attributes named ID. In this case,
the application may (or may not) try to guess which element you were pointing at.
Generally it selects the first element in the document with an attribute of any type
and a name whose value matches the requested ID. On the other hand, the
application is free not to select any element.

root()
The root() location term points to the root element of the document. It takes
no arguments. For example, the root element of the XML 1.0 specification at
http://www.w3.org/TR/REC-xml is spec. Thus, to select it you can use this URI:

http://www.w3.org/TR/REC-xml#root()

The root() location term is primarily useful in compound XPointers as a basis
from which to start. In fact, if no absolute location term is included in a compound
location term, root() is assumed. However, root() can also be used to select the
entire document in a URI that uses | to indicate that only a part is normally loaded.
For example:

http://www.w3.org/TR/1999/REC-xml-names-19990114/xml-
names.xml|root()

html()
The html() location term selects named anchors in HTML documents. It has
a single argument, the name of the anchor to which it refers. For example, the
following named anchor exists in the file http://metalab.unc.edu/xml/:

Quote of the Day

The XPointer that refers to this element is:

http://metalab.unc.edu/xml#html(quote)

The html() location term primarily exists for backwards compatibility, that is,
to allow XLinks to refer to HTML documents. Named anchors may be used in XML
documents, provided all attribute values are quoted, the A element and its
attributes are declared in the DTD, and all other well-formedness criteria are met. In
general, however, XML has better means than named anchors to identify locations.

Relative Location Terms
id, root, and html are absolute location terms. Absolute location terms can find
a particular element in a document regardless of what else is in the document.
However, more commonly you want to find the first element of a given type, the

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 598

599Chapter 17 ✦ XPointers

last element of a given type, the first child of a particular type, the next element
of a given type, all elements of a given type, or something similar. These tasks are
accomplished by attaching a relative location term to an absolute location term to
form a compound locator.

The most general XPointer is a single absolute location term followed by any
number of relative location terms. Each term in the list is relative to the one that
precedes it, except for the first absolute location term. Terms in the list are
separated by periods.

For example, look at the family tree document in Listing 17-1. This fragment selects
the first NAME element of the sixth PERSON element in the root element:

http://www.theharolds.com/genealogy.xml#root().child(6,PERSON).
child(1,NAME)

In this example, that’s <NAME>Maria Bellau</NAME>.

For another example, suppose you want to link to the NAME element of Domeniquette
Celeste Baudean. The easiest way to do this is to identify her PERSON element by its
ID, p1, then use the child() relative location term to refer to the first (and only)
NAME child element, like this:

http://www.theharolds.com/genealogy.xml#id(p1).child(1,NAME)

This URI says to look at the document http://www.theharolds.com/genealogy.
xml, find its root element, then find the element with the ID p1, then select its first
NAME child.

Although geneaology.xml includes ID attributes for most elements, and although
they are convenient, they are not required for linking into the document. You
can select any element in the document simply by counting down from the root
element. Because Maria Bellau’s the first person in the document, you can count
one PERSON down from the root, then count one NAME down from that. This URI
accomplishes that:

http://www.theharolds.com/genealogy.xml#root().child(1,
PERSON).child(1,NAME)

This URI says to look at the document http://www.theharolds.com/genealogy.
xml, find its root element, then find the first PERSON element that’s an immediate
child of the root element, and then find its first NAME element.

If no absolute location term is included in the XPointer, then root() is assumed.
For instance, the previous example could have been written more compactly,
like this:

http://www.theharolds.com/genealogy.xml#child(1,PERSON).child
(1,NAME)

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 599

600 Part IV ✦ Supplemental Technologies

You can compress this still further by omitting the second child location term
(though not its arguments). For example:

http://www.theharolds.com/genealogy.xml#child(1,PERSON).(1,NAME)

When the term is omitted this way, it is assumed to be the same as the previous
term. Because there’s no term in front of .(1, NAME), it’s assumed to be the same
as the previous one, child.

There are other powerful selection techniques, which are discussed below. In
fact, including child(), there are seven relative location terms. These are listed
in Table 17-1. Each serves to select a particular subset of the elements in the
document. For instance, the following relative location term selects from
elements that come after the source element. The preceding relative location
term selects from elements that come before the source element.

Table 17-1
Relative Location Terms

Term Meaning

child Selects from the immediate children of the source element

descendant Selects from any of the content or child elements of the source element

ancestor Selects from elements that contain the source element

preceding Selects from elements that precede the source element

following Selects from elements that follow the source element

psibling Selects from sibling elements that precede the source element

fsibling Selects from sibling elements that follow the source element

Because the relative location term alone is generally not enough to uniquely specify
which element is being pointed to, additional arguments are passed that further
specify the targeted element by instance number, node type, and attribute. The
possible arguments are the same for all seven relative location keywords. They are
explored in more detail in the “Relative Location Term Argument” section below.

child
The child relative location term selects from only the immediate children of the
source element. For example, consider this URI:

http://www.theharolds.com/genealogy.xml#root().child(6,NAME)

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 600

601Chapter 17 ✦ XPointers

This points nowhere because there are no NAME elements in the document that are
direct, immediate children of the root. There are a dozen NAME elements that are
indirect children. If you’d like to refer to these, you should use the descendant
relative locator element instead of child.

descendant
The descendant relative location term searches through all the descendants of the
source, not just the immediate children. For example, root().descendant(3,BORN)
selects the third BORN element encountered in a depth-first search of the document
tree. (Depth first is the order you get if you simply read through the XML document
from top to bottom.) In Listing 17-1, that selects Louise Pauline Bellau’s birthday,
<BORN>29 Oct 1868</BORN>.

ancestor
The ancestor relative location term searches through all the ancestors of the
source, starting with the nearest, until it finds the requested element. For example,
root().descendant(2,BORN).ancestor(1) selects the PERSON element, which
contains the second BORN element. In this example, it selects Elodie Bellau’s
PERSON element.

preceding
The preceding relative location term searches through all elements that occur
before the source element. The preceding locator element has no respect for
hierarchy. The first time it encounters an element’s start tag, end tag, or empty
tag, it counts that element. For example, consider this rule:

root().descendant(3,BORN).preceding(5)

This says go to Louise Pauline Bellau’s birthday, <BORN>29 Oct 1868</BORN>,
and then move back five elements. This lands on Maria Bellau’s PERSON element.

following
The following relative location term searches through all elements that occur
after the source element in the document. Like preceding, following has no
respect for hierarchy. The first time it encounters an element’s start tag, end tag,
or empty tag, it counts that element. For example, consider this rule:

root().descendant(2,BORN).following(5)

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 601

602 Part IV ✦ Supplemental Technologies

This says go to Elodie Bellau’s birthday, <BORN>11 Feb 1858</BORN>, and
then move forward five elements. This lands on John P. Muller’s NAME element,
<NAME>John P. Muller</NAME>, after passing through Elodie Bellau’s DIED
element, Elodie Bellau’s SPOUSE element, Elodie Bellau’s PERSON element, and
John P. Muller’s PERSON element, in this order.

psibling
The psibling relative location term selects the element that precedes the source
element in the same parent element. For example, root().descendant(2,
BORN).psibling(1) selects Elodie Bellau’s NAME element, <NAME>Elodie
Bellau</NAME>. root().descendant(2, BORN).psibling(2) doesn’t point to
anything because there’s only one sibling of Elodie Bellau’s NAME element before it.

fsibling
The fsibling relative location term selects the element that follows the source
element in the same parent element. For example, root().descendant(2,born).
fsibling(1) selects Elodie Bellau’s DIED element, <DIED>12 Apr 1898</DIED>.
root().descendant(2,born).fsibling(3) doesn’t point to anything because
there are only two sibling elements following Elodie Bellau’s NAME element.

Relative Location Term Arguments
Each relative location term begins at a particular place in the document called the
location source. Generally the location source is indicated by an absolute location
term (or the root if no absolute term is specified). You then search forward or
backward in the document for the first match that meets specified criteria.

Criteria are given as a list of arguments to the relative location term. These may
include the number of elements to search forward or backward, the type of thing to
search (element, comment, processing instruction, and so on), and/or the value of
an attribute to search. These are given in this order:

1. number

2. type

3. attribute

The number is a positive or negative integer that counts forward or backward
from the location source. The type is the kind of thing to count, and the attribute is
a list of attribute names and values to match. A relative location term can have a
number; a number and a type; or a number, a type, and an attribute list.

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 602

603Chapter 17 ✦ XPointers

The arguments that are present are separated by commas and no whitespace. For
example:

child(1,PERSON,FATHER,p2)

The no-whitespace requirement is unusual. It exists so that XPointers can easily be
attached to the ends of URLs. For example:

http://www.theharolds.com/genealogy.xml#child(1,PERSON,FATHER,p2)

If whitespace were allowed, the URLs would have to be x-form-www-url-encoded,
like this:

http://www.theharolds.com/genealogy.xml#child(1,%20PERSON,
%20FATHER,%20p2)

For the most part, the same syntax applies to all seven relative location terms.

Selection by Number
The simplest form of selection is by number. The first argument to a relative
location term is the index of the node you’re pointing at. Positive numbers count
forward in the document. Negative numbers count backward. You also can use the
all keyword to point to all nodes that match the condition.

Number Forward
For instance, in Listing 17-1 the FAMILYTREE element is the root. It has 14 immediate
children, 12 PERSON elements, and two FAMILY elements. In order, they are:

http://www.theharolds.com/genealogy.xml#root().child(1)
http://www.theharolds.com/genealogy.xml#root().child(2)
http://www.theharolds.com/genealogy.xml#root().child(3)
http://www.theharolds.com/genealogy.xml#root().child(4)
http://www.theharolds.com/genealogy.xml#root().child(5)
http://www.theharolds.com/genealogy.xml#root().child(6)
http://www.theharolds.com/genealogy.xml#root().child(7)
http://www.theharolds.com/genealogy.xml#root().child(8)
http://www.theharolds.com/genealogy.xml#root().child(9)
http://www.theharolds.com/genealogy.xml#root().child(10)
http://www.theharolds.com/genealogy.xml#root().child(11)
http://www.theharolds.com/genealogy.xml#root().child(12)
http://www.theharolds.com/genealogy.xml#root().child(13)
http://www.theharolds.com/genealogy.xml#root().child(14)

Greater numbers, such as http://www.theharolds.com/genealogy.
xml#root().child(15), don’t point anywhere. They’re just dangling URLs.

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 603

604 Part IV ✦ Supplemental Technologies

To count all elements in the document, not just the immediate children of the
root, you can use descendant instead of child. Table 17-2 shows the first four
descendant XPointers for Listing 17-1, and what they point to. Note especially that
root().descendant(1) points to the entire first PERSON element, including its
children, and not just the PERSON start tag.

Table 17-2
The First Four Descendants of the Root

XPointer Points To

root().descendant(1) <PERSON ID=”p1”>

<NAME>Domeniquette Celeste
Baudean</NAME>

<BORN>11 Feb 1858</BORN>

<DIED>12 Apr 1898</DIED>

<SPOUSE IDREF=”p2”/>

</PERSON>

root().descendant(2) <NAME>Domeniquette Celeste Baudean</NAME>

root().descendant(3) <BORN>11 Feb 1858</BORN>

root().descendant(4) <DIED>12 Apr 1898</DIED>

Number Backward
Negative numbers enable you to move backward from the current element to the item
you’re pointing at. In the case of child and descendant, they count backward from
the end tag of the element rather than forward from the start tag. For example, this
XPointer selects the element that immediately precedes the element with the ID f1:

http://www.theharolds.com/genealogy.xml#id(f1).following(-1)

In this example, that’s the PERSON element for Honore Bellau. In general, however,
your links will be clearer if you avoid negative numbers when possible and use an
alternate selector. For example, this selects the same element:

http://www.theharolds.com/genealogy.xml#id(f1).preceding(1)

In tree-oriented selectors such as child and descendant, negative numbers
indicate that you should count from the end of the parent rather than the
beginning. For example, this points at the last PERSON element in the document:

http://www.theharolds.com/genealogy.xml#root().child(-1,person)

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 604

605Chapter 17 ✦ XPointers

This points at the penultimate PERSON element in the document:

http://www.theharolds.com/genealogy.xml#root().child(-2,person)

Table 17-3 shows the last four descendant XPointers for Listing 17-1, and what they
point to. Note that the order in which the elements are entered is now established
by the end tags rather than the start tags.

Table 17-3
The Last Four Descendants of the Root

XPointer Points To

root().descendant(1) <FAMILY ID=”f2”>

<HUSBAND IDREF=”p7”/>

<WIFE IDREF=”p6”/>

</FAMILY>

root().descendant(2) <WIFE IDREF=”p6”/>

root().descendant(3) <HUSBAND IDREF=”p7”/>

root().descendant(4) <FAMILY ID=”f1”>

<HUSBAND IDREF=”p2”/>

<WIFE IDREF=”p1”/>

<CHILD IDREF=”p3”/>

<CHILD IDREF=”p5”/>

<CHILD IDREF=”p6”/>

<CHILD IDREF=”p8”/>

<CHILD IDREF=”p10”/>

<CHILD IDREF=”p12”/>

</FAMILY>

all
As well as specifying a number to select, you can use the keyword all. This points
to all nodes that match a condition. For example, this rule refers to all children of
the element with ID f1:

http://www.theharolds.com/genealogy.xml#id(f1).child(all)

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 605

606 Part IV ✦ Supplemental Technologies

In other words, this points to:

<HUSBAND IDREF=”p2”/>
<WIFE IDREF=”p1”/>
<CHILD IDREF=”p3”/>
<CHILD IDREF=”p5”/>
<CHILD IDREF=”p6”/>
<CHILD IDREF=”p8”/>
<CHILD IDREF=”p10”/>
<CHILD IDREF=”p12”/>

Selection by Node Type
The above rules chose particular elements in the document. However, sometimes
you want to select the fifth WIFE or the third PERSON while ignoring elements of
other types. Selecting these by instance number alone is prone to error if the
document changes. The addition or deletion of a single element in the wrong place
can misalign all links that rely only on instance numbers.

Occasionally you may want to select processing instructions, comments, CDATA
sections, or particular raw text in a document. You can accomplish this by adding a
second argument to the relative location term — after the number — that specifies
which nodes you’re counting and (implicitly) which you’re ignoring. This can be the
name of the element you want to point to or one of six keywords listed in Table 17-4.

Table 17-4
Possible Second Arguments for Relative Location Terms

Type Match

#element Any element

#pi Any processing instruction

#comment Any comment

#text Any nonmarkup character data

#cdata CDATA sections

#all All of the above

Name Elements with the specified name

Most selection rules include the type of the element sought. You’ve already seen
examples where root().child(6, PERSON) selects the sixth PERSON child of
root. This may refer to the wrong individual if a PERSON element is added or
deleted, but at least it is a PERSON element instead of something else like a FAMILY.

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 606

607Chapter 17 ✦ XPointers

You can also specify just a type and omit the instance number (though not the
comma). For example, this URI selects all PERSON elements in the document
regardless of position:

http://www.theharolds.com/genealogy.xml#root().child(,PERSON)

Pay special attention to the orphaned comma in front of PERSON. It is required by
the BNF grammar in the current version of the XPointer specification. Its presence
makes it slightly easier for programs to parse the XPointer, even if it makes it
harder for humans to read the XPointer.

Exactly what the application does when all PERSON elements are targeted is up to the
application. In general, something more complex than merely loading the document
and positioning it at the targeted element is suggested, since there is more than one
targeted element. If the application uses this fragment to decide which parts of a
document to load, then it loads all the elements of the specified type.

However, this is unusual. Most of the time, selection by type is only used to further
restrict the elements selected until only a single one remains targeted.

Name
The most common use for the second argument to a relative location term is to
provide a name for the element type. For instance, suppose you want to point
to the first FAMILY element that’s a child of the root element, but you don’t know
how it’s intermixed with PERSON elements. This rule accomplishes that:

http://www.theharolds.com/genealogy.xml#root().child(1,FAMILY)

This is particularly powerful when you chain selection rules. For example, this
points to the second CHILD element of the first FAMILY element:

http://www.theharolds.com/genealogy.xml#root().child(1,FAMILY).
child(2,CHILD)

In fact, it’s more common to specify the type of the element you’re selecting than
not to specify it. This is especially true for relative location terms that don’t respect
hierarchy such as following and preceding.

#element
If no second argument is specified, then elements are matched, but processing
instructions, comments, CDATA sections, character data, and so forth are not
matched. You can replicate this behavior with the keyword #element as the
second argument. For example, these two URIs are the same:

http://www.theharolds.com/genealogy.xml#id(f2).preceding(1)
http://www.theharolds.com/genealogy.xml#id(f2).preceding
(1,#element)

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 607

608 Part IV ✦ Supplemental Technologies

The main reason to use #element is so you can then use a third argument to match
against attributes.

#text
The #text argument selects raw text inside an element. It’s most commonly used
with mixed content. For example, consider this CITATION element from Listing 12-3
in Chapter 12:

<CITATION CLASS=”TURING” ID=”C2”>
<AUTHOR>Turing, Alan M.</AUTHOR>
“<TITLE>On Computable Numbers,
With an Application to the Entscheidungs-problem</TITLE>”

<JOURNAL>
Proceedings of the London Mathematical Society</JOURNAL>,

<SERIES>Series 2</SERIES>,
<VOLUME>42</VOLUME>
(<YEAR>1936</YEAR>):
<PAGES>230-65</PAGES>.

</CITATION>

The following XPointer refers to the quotation mark before the TITLE element.

id(C2).child(2,#text)

The first text node in this fragment is the whitespace between <CITATION
CLASS=”TURING” ID=”C2”> and <AUTHOR>. Technically, this XPointer refers to all
text between </AUTHOR> and <TITLE>, including the whitespace and not just the
quotation mark.

XPointers that point to text nodes are tricky. I recommend you avoid them if possi-
ble, just as you should avoid mixed content. Of course, you may not always be
able to, especially if you need to point to parts of documents written by other
authors who don’t follow this best practice.

Because character data does not contain child elements, further relative location
terms may not be attached to an XPointer that follows one that selects a text node.
Since character data does not have attributes, attribute arguments may not be used
after #text.

#cdata
The #cdata argument specifies that a CDATA section (more properly, the text of a
CDATA section) is to be selected. For example, this XPointer refers to the second
CDATA section in a document:

root().following(2,#cdata)

Caution

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 608

609Chapter 17 ✦ XPointers

Because CDATA sections cannot have children, further relative location terms may not
be attached to an XPointer that follows one that selects a CDATA section. Since CDATA
sections do not have attributes, attribute arguments may not be used after #cdata.

#pi
On rare occasions you may want to select a processing instruction rather than
an element. In this case, you can use #pi as the second argument to the location
term. For example, this XPointer selects the second processing instruction in the
document’s third BEAN element:

root().descendant(3,BEAN).child(2,#pi)

Because processing instructions do not contain attributes or elements, you cannot
add an additional relative location term after the first term that selects a processing
instruction. However, you can use a string() location term to select part of the
text of the processing instruction.

#comment
XPointers point to comments in much the same way they point to processing
instructions. The literal #comment is used as the second argument to the location
term. For example, this XPointer points to the third comment in Listing 17-1:

http://www.theharolds.com/genealogy.xml#descendant(3,#comment)

Because comments do not contain attributes or elements, you cannot add an
additional relative location term after the first term that selects a processing
instruction. You can use a string() location term to select part of the text of
the processing instruction.

#all
On very rare occasions, you may wish to select a particular node in a document
regardless of whether it’s an element, raw character data, a processing instruction,
a CDATA section, or a comment. The only reason I can think of to do this is if you’re
iterating through all nodes in the document or element. By using #all as the second
argument to a relative location term, you can ignore the type of the thing you’re
matching. For example, consider this fragment from Listing 12-3 in Chapter 12:

<CITATION CLASS=”TURING” ID=”C3”>
<AUTHOR>Turing, Alan M.</AUTHOR>
“<TITLE>Computing Machinery & Intelligence</TITLE>”
<JOURNAL>Mind</JOURNAL>
<VOLUME>59</VOLUME>
(<MONTH>October</MONTH>
<YEAR>1950</YEAR>):
<PAGES>433-60</PAGES>

</CITATION>

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 609

610 Part IV ✦ Supplemental Technologies

Table 17-5 lists four XPointers that simply count nodes down from the CITATION
element. It also lists what is pointed to by the XPointers.

Table 17-5
The First Four XPointer Nodes of the CITATION Element

XPointer Points To

id(C3).following(1,#all) the whitespace between <CITATION
CLASS=”TURING” ID=”C3”> and <AUTHOR>

id(C3).following(2,#all) <AUTHOR>Turing, Alan M.</AUTHOR>

id(C3).following(3,#all) Turing, Alan M.

id(C3).following(4,#all)

“

Selection by Attribute
You can add third and fourth arguments to relative location terms to point to
elements by attributes. The third argument is the attribute name. The fourth
argument is the attribute value. For example, to find the first PERSON element in
the document http://www.theharolds.com/genealogy.xml whose FATHER
attribute is Jean Francois Bellau (ID p2), you could write:

root().child(1,PERSON,FATHER,p2)

If you include a third argument, you must include a fourth argument. You can’t
match against an attribute name without also matching against an attribute value.
However, you can use an asterisk for either the name or the value to indicate that
anything matches. Setting the third argument to an asterisk (*) indicates that any
attribute name is allowed. For example, this XPointer selects all elements that have
an attribute value of p2 for any attribute:

root().child(all,#element,*,p2)

This rule selects the first PERSON element in the document that has an attribute
value of p2, regardless of whether that attribute appears as a FATHER, a MOTHER,
an ID, or something else.

root().child(1,PERSON,*,p2)

In Listing 17-1, this is Jean Francois Bellau’s PERSON element.

Setting the fourth argument to an asterisk (*) indicates that any value is allowed,
including a default value read from the ATTLIST declaration in the DTD. For

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 610

611Chapter 17 ✦ XPointers

example, this rule selects the first element in the document that has a FATHER
attribute:

root().child(1,#element,FATHER,*)

In Listing 17-1, this is Elodie Bellau’s PERSON element.

You can use #IMPLIED as the fourth argument to match against attributes that
don’t have a value, either directly specified or defaulted. For instance, this rule
finds the first PERSON element that doesn’t have a FATHER attribute:

root().child(1,PERSON,FATHER,#IMPLIED)

In Listing 17-1, this is Domeniquette Celeste Baudean’s PERSON element.

Attribute arguments only work on relative location terms that select an element.
You cannot use them when the second argument is #text, #cdata, #pi, or
#comment because these nodes do not have attributes.

String Location Terms
Selecting a particular element is almost always good enough for pointing into
well-formed XML documents. However, on occasion you need to point into non-XML
data or XML data in which large chunks of non-XML text is embedded via CDATA
sections, comments, processing instructions, or some other means. In these cases
you may need to refer to particular ranges of text in the document that don’t map
onto any particular markup element. You can use a string location term to do this.

A string location term points to an occurrence of a specified string. Unlike most
other location terms, a string location term can point to locations inside comments,
CDATA, and the like. For example, this fragment finds the first occurrence of the
string “Harold” in Listing 17-1:

http://www.theharolds.com/genealogy.xml#string(1,”Harold”)

This targets the position immediately preceding the H in Harold in Charles Walter
Harold’s NAME element. This is not the same as pointing at the entire NAME element
as an element-based selector would do.

You can add an optional third position argument to specify how many characters to
target to the right of the beginning of the matched string. For example, this targets
whatever immediately follows the first occurrence of the string “Harold” because
Harold has six letters:

http://www.theharolds.com/genealogy.xml#string(1,”Harold”,6)

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 611

612 Part IV ✦ Supplemental Technologies

An optional fourth argument specifies the number of characters to select. For
example, this URI selects the first occurrence of the entire string “Harold” in
Listing 17-1:

http://www.theharolds.com/genealogy.xml#string(1,”Harold”,1,6)

Use the empty string (“”) in a string location term to specify particular characters
in the document. For example, the following URI targets the 256th character in the
document. (To be precise, it targets the position between the 255th and 256th
element in the document.)

http://www.theharolds.com/genealogy.xml#string(256, “”)

When matching strings, case and whitespace are considered. Markup characters
are ignored.

Instead of requesting a particular instance of a particular string match, you can
ask for all of them by using the keyword all as the first argument. For example,
this rule selects all occurrences of the string “Bellau” in the document:

http://www.theharolds.com/genealogy.xml#string(all,”Bellau”)

This can result in a noncontiguous selection, which many applications may not
understand, so use this technique with caution.

The origin Absolute Location Term
The fourth absolute location term is origin. However, it’s only useful when used in
conjunction with one or more relative location terms. In intradocument links, that
is, links from one point in a document to another point in the same document, it’s
often necessary to refer to “the next element after this one,” or “the parent element
of this element.” The origin absolute location term refers to the current element
so that such references are possible.

Consider Listing 17-2, a simple slide show. In this example, origin().following
(1,SLIDE) refers to the next slide in the show. origin().preceding(1,SLIDE)
refers to the previous slide in the show. Presumably this would be used in
conjunction with a style sheet that showed one slide at a time.

Listing 17-2: A slide show

<?xml version=”1.0”?>
<SLIDESHOW>
<SLIDE>
<H1>Welcome to the slide show!</H1>
<BUTTON xml:link=”simple”

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 612

613Chapter 17 ✦ XPointers

href=”origin().following(1,SLIDE)”>
Next

</BUTTON>
</SLIDE>
<SLIDE>
<H1>This is the second slide</H1>
<BUTTON xml:link=”simple”

href=”origin().preceding(1,SLIDE)”>
Previous

</BUTTON>
<BUTTON xml:link=”simple”

href=”origin().following(1,SLIDE)”>
Next

</BUTTON>
</SLIDE>
<SLIDE>
<H1>This is the second slide</H1>
<BUTTON xml:link=”simple”

href=”origin().preceding(1,SLIDE)”>
Previous

</BUTTON>
<BUTTON xml:link=”simple”

href=”origin().following(1,SLIDE)”>
Next

</BUTTON>
</SLIDE>
<SLIDE>
<H1>This is the third slide</H1>
<BUTTON xml:link=”simple”

href=”origin().preceding(1,SLIDE)”>
Previous

</BUTTON>
<BUTTON xml:link=”simple”

href=”origin().following(1,SLIDE)”>
Next

</BUTTON>
</SLIDE>
...
<SLIDE>
<H1>This is the last slide</H1>
<BUTTON xml:link=”simple”

href=”origin().preceding(1,SLIDE)”>
Previous

</BUTTON>
</SLIDE>

</SLIDESHOW>

Generally, the origin() location term is only used in fully relative URIs in XLinks. If
any URI part is included, it must be the same as the URI of the current document.

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 613

614 Part IV ✦ Supplemental Technologies

Spanning a Range of Text
In some applications it may be important to specify a range of text rather than a
particular point in a document. This can be accomplished via a span. A span begins
at one XPointer and continues until another XPointer.

A span is indicated by the keyword span() used as a location term. However, the
arguments to span() are two location terms separated by a comma identifying the
beginning and end of the span. If these are relative location terms, then the term
preceding the span is the source for both terms.

For example, suppose you want to select everything between the first PERSON element
and the last PERSON element in genealogy.xml. This XPointer accomplishes that:

root().span(child(1,PERSON),child(-1,PERSON))

Summary
In this chapter you learned about XPointers. In particular you learned:

✦ XPointers refer to particular parts of or locations in XML documents.

✦ The id absolute location term points to an element with a specified value for
an ID type attribute.

✦ The root absolute location term points to the root element of an XML
document.

✦ The html absolute location term points to a named anchor in an HTML
document.

✦ Relative location terms can be chained to make more sophisticated
compound selectors. The term to which a term is relative is called the
location source.

✦ The child relative location term points to an immediate child of the location
source.

✦ The descendant relative location term points to any element contained in the
location source.

✦ The ancestor relative location term points to an element that contains the
location source.

✦ The preceding relative location term points to any element that comes
before the location source.

✦ The following relative location term points to any element following the
location source.

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 614

615Chapter 17 ✦ XPointers

✦ The psibling relative location term selects from sibling elements that
precede the target element.

✦ The fsibling relative location term selects from sibling elements that follow
the target element.

✦ Each relative location term has between one and four arguments: a number, a
type, an attribute name, and an attribute value.

✦ The first argument to a relative location term is a number determining the
relative position of the targeted node or the keyword all.

✦ The second argument to a relative location term determines the type of the
targeted node and may be the name of the element or one of the keywords
#element, #pi, #comment, #text, #cdata, #all.

✦ The third argument to a relative location term determines the name of the
attribute possessed by the targeted node.

✦ The fourth argument to a relative location term determines the value of an
attribute of the targeted node.

✦ The string location term points to a specified block of text in the location
source.

✦ The origin absolute location term points to the current element.

✦ Spans refer to a range of text instead of merely one particular element.

The next chapter explores namespaces. Namespaces use URIs as a means of sorting
out the elements in a document that’s formed from multiple XML applications.
For example, namespaces allow you to simultaneously use two different XML
vocabularies that define the same elements in incompatible ways.

✦ ✦ ✦

3236-7 ch17.F.qc 6/29/99 1:09 PM Page 615

Namespaces

No XML is an island. While you might find it useful to
write documents that use a single markup vocabulary,

(witness the baseball examples of Chapters 4 and 5) it’s even
more useful to mix and match tags from different XML appli-
cations. For example, you may want to include a BIOGRAPHY
element in each PLAYER element. Since the biography con-
sists basically of free-form, formatted text, it’s convenient to
write it in well-formed HTML without reinventing all the tags
for paragraphs, line breaks, list items, bold elements, and so
forth from scratch.

The problem, however, is that when mixing and matching tags
from different XML applications, you’re likely to find the same
tag used for two different things. Is a TITLE the title of a page
or the title of a book? Is an ADDRESS the mailing address of a
company or the email address of a Webmaster? Namespaces
disambiguate these instances by associating a URI with each
tag set, and attaching a prefix to each elementto indicate which
tag set it belongs to. Thus, you can have both BOOK:TITLE and
HTML:TITLE elements or POSTAL:ADDRESS and HTML:ADDRESS
elements instead of just one kind of TITLE. or ADDRESS. This
chapter shows you how to use namespaces.

What Is a Namespace?
XML enables developers to create their own markup languages
for their own projects. These languages can be shared with
individuals working on similar projects all over the world. One
specific example of this is XSL. XSL is itself an XML application
for styling XML documents. The XSL transformation language
must output arbitrary, well-formed XML, possibly including
XSL itself. Thus, you need a clear-cut means of distinguishing
between those XML elements that are XSL transformation
instructions and output XML elements, even if they have the
same names!

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is a
namespace?

Namespace syntax

Namespaces in DTDs

✦ ✦ ✦ ✦

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 617

618 Part IV ✦ Supplemental Technologies

Namespaces are the solution. They allow each element and attribute in a document
to be placed in a different namespace. The XML elements that comprise XSL trans-
formation instructions are placed in the http://www.w3.org/XSL/Transform/1.0
namespace. The XML elements that are part of the output can reside in some other
convenient namespace like http://www.w3.org/TR/REC-html40 or http://www.
w3.org/XSL/Format/1.0. The exact namespace isn’t even important as long as it’s
different.

If you’re familiar with the concept of namespaces as used in C++ and other pro-
gramming languages, you need to put aside your preconceptions before reading
further. XML namespaces are similar to, but not quite the same as the namespaces
used in programming. In particular, XML namespaces do not necessarily form a set
(a collection with no duplicates).

Listing 15-2, a transformation from a source vocabulary to XSL formatting objects,
initially appeared in Chapter 15, XSL Formatting Objects. It displays an XSL style
sheet that converts from input XML to XSL formatting objects. The formatting
engine distinguishes between elements that are XSL instructions and literal data
for the output by using namespaces. Any element in the http://www.w3.org/
XSL/Transform/1.0 namespace represents a transformation instruction. Any
element in the http://www.w3.org/XSL/Format/1.0 namespace comprises
part of the output.

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”
xmlns:fo=”http://www.w3.org/XSL/Format/1.0”
result-ns=”fo” indent-result=”yes”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/XSL/Format/1.0”>

<fo:layout-master-set>
<fo:simple-page-master page-master-name=”only”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence>

<fo:sequence-specification>
<fo:sequence-specifier-single page-master-name=”only”/>
</fo:sequence-specification>

<fo:flow>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

Caution

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 618

619Chapter 18 ✦ Namespaces

<xsl:template match=”ATOM”>
<fo:block font-size=”20pt” font-family=”serif”>
<xsl:value-of select=”NAME”/>

</fo:block>
</xsl:template>

</xsl:stylesheet>

More specifically, these elements exist in the http://www.w3.org/XSL/Transform/
1.0 namespace and are XSL instructions:

✦ stylesheet

✦ template

✦ apply-templates

✦ value-of

These elements, in the http://www.w3.org/XSL/Format/1.0 namespace, are XSL
formatting objects and part of the output:

✦ root

✦ layout-master-set

✦ simple-page-master

✦ region-body

✦ sequence-specification

✦ sequence-specifier-single

✦ page-sequence

✦ block

The four elements with the xsl prefix have the qualified names beginning with
the prefix:

✦ xsl:stylesheet

✦ xsl:template

✦ xsl:apply-templates

✦ xsl:value-of

However, their full names use the URL rather than the prefix:

✦ http://www.w3.org/XSL/Transform/1.0:stylesheet

✦ http://www.w3.org/XSL/Transform/1.0:template

✦ http://www.w3.org/XSL/Transform/1.0:apply-templates

✦ http://www.w3.org/XSL/Transform/1.0:value-of

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 619

620 Part IV ✦ Supplemental Technologies

In essence, the shorter qualified names are nicknames that are used only within the
document because URLs often contain characters like ~, %, and / that aren’t legal in
XML names. However, qualified names do make documents a little easier to type
and read.

Namespaces in an XML is an official W3C recommendation. The W3C considers it
complete, aside from possible minor errors and elucidations. Nonetheless, of all
the XML specifications from the W3C, this one is the most controversial. Many
people feel very strongly that this standard contains fundamental flaws. The main
objection argues that namespaces are, in practice, incompatible with DTDs and
validation. While I don’t have a strong opinion on this one way or the other, I do
question the wisdom of publishing a standard when nothing approaching a con-
sensus has been reached. Namespaces are a crucial part of many XML related
specifications such as XSL and XHTML, so you need to understand them.
Nonetheless, a lot of developers and authors have chosen to ignore this specifica-
tion for their own work.

Namespace Syntax
Namespaces have been crafted to layer on top of the XML 1.0 specification. An XML
1.0 processor that knows nothing about namespaces can still read a document that
uses namespaces, and will not find any errors. Documents that use namespaces do
not break existing XML parsers (at least ones that don’t check for validity); and
users don’t have to wait for notoriously unpunctual software companies to release
expensive upgrades before using namespaces.

Definition of Namespaces
Namespaces are defined using an xmlns:prefix attribute on the applicable
elements they apply to. prefix is replaced by the actual prefix used for the
namespace. The value of the attribute is the URI of the namespace. For example,
this xsl:stylesheet tag associates the prefix xsl with the URI http://www.
w3.org/XSL/Transform/1.0.

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

The xsl prefix can then be attached to the local element and attribute names within
the xsl:stylesheet element to identify them as belonging to the http://www.w3.
org/XSL/Transform/1.0 namespace. The prefix is separated from the local name
by a colon. Listing 14-2, a basic XSL style sheet for the periodic table, which was first
shown in Chapter 14, XSL Transformations, demonstrates by using the xsl prefix on
the stylesheet, template, and apply-templates elements.

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

Caution

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 620

621Chapter 18 ✦ Namespaces

<xsl:template match=”PERIODIC_TABLE”>
<html>
<xsl:apply-templates/>

</html>
</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:apply-templates/>

</P>
</xsl:template>

</xsl:stylesheet>

The URI that defines a namespace is purely formal. Its only purpose is to group and
disambiguate element and attribute names in the document. It does not necessarily
point to anything. In particular, there is no guarantee that the document at the URI
describes the syntax used in the document; or, for that matter, that any document
exists at the URI. Having said that, if there is a canonical URI for a particular XML
application, then that URI is a good choice for the namespace definition.

A namespace prefix can be any legal XML name that does not contain a colon. Recall
from Chapter 6, Well-Formed XML Documents, that a legal XML name must begin with
a letter or an underscore (_). Subsequent letters in the name may include letters,
digits, underscores, hyphens, and periods. They may not include whitespace.

There are two prefixes that are specifically disallowed, xml and xmlns. The xml
prefix is defined to refer to http://www.w3.org/XML/1998/namespace. The
xmlns prefix is used to bind elements to namespaces, and is therefore not avail-
able as a prefix to be bound to.

Other than disallowing the colon character in XML names (aside from its use in
separating prefixes and local names) namespaces have no direct effect on stan-
dard XML syntax. A document that uses namespaces must still be well-formed
when read by a processor that knows nothing about namespaces. If the document
is to be validated, then it must be validated without specifically considering the
namespaces. To an XML processor, a document that uses namespaces is just a
funny-looking document in which some of the element and attribute names may
have a single colon.

Namespaces do present problems for validation. If a DTD was written without
namespace prefixes, then it must be rewritten using the namespace prefixes
before it can be used to validate documents that use the prefixes. For example,
consider this element declaration:

<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>

You have to rewrite it like this if the elements are all given the bb namespace
prefix:

<!ELEMENT bb:DIVISION (bb:DIVISION_NAME, bb:TEAM+)>

Caution

Note

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 621

622 Part IV ✦ Supplemental Technologies

This means that you cannot use the same DTD for both documents with name-
spaces and documents without, even if they use essentially the same vocabulary.
In fact, you can’t even use the same DTD for documents that use the same tag sets
and namespaces, but different prefixes, because DTDs are tied to the actual pre-
fixes rather than the URIs of the namespaces.

Multiple Namespaces
Listing 14-2 did not actually place the HTML elements in a namespace, but that’s not
hard to do. Listing 18-1 demonstrates. Just as xsl is the conventional prefix for XSL
transformation instructions, html is the conventional prefix for HTML elements. In
this example, the xsl:stylesheet element declares two different namespaces, one
for XSL and one for HTML.

Listing 18-1: An XSL stylesheet that uses the http://www.w3.
org/TR/REC-html40 namespace for output

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”

xmlns:html=”http://www.w3.org/TR/REC-html40”>

<xsl:template match=”PERIODIC_TABLE”>
<html:html>
<xsl:apply-templates/>

</html:html>
</xsl:template>

<xsl:template match=”ATOM”>
<html:p>
<xsl:apply-templates/>

</html:p>
</xsl:template>

</xsl:stylesheet>

While it’s customary, and generally useful to place the xmlns attribute on the root
element, it can appear on other elements as well. In this case, the namespace prefix
is understood only within the element where it’s declared. Consider Listing 18-2.
The html prefix is legal only in the xsl:template element where it’s declared. It
can’t be applied in other template rules, unless they separately declare the html
namespace.

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 622

623Chapter 18 ✦ Namespaces

Listing 18-2: An XSL style sheet with the http://www.w3.org/
TR/REC-html40 namespace declared in the
template rules

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”PERIODIC_TABLE”
xmlns:html=”http://www.w3.org/TR/REC-html40”>

<html:html>
<xsl:apply-templates/>

</html:html>
</xsl:template>

<xsl:template match=”ATOM”>
<p>
<xsl:apply-templates/>

<p>
</xsl:template>

</xsl:stylesheet>

You can redefine a namespace in a child element. For example, consider the XSL
style sheet in Listing 18-3. Here, the xsl prefix appears in different elements to
refer to http://www.w3.org/XSL/Transform/1.0 and http://www.w3.org/
XSL/Format/1.0 alternately. Although every element has the prefix xsl, the XSL
transformation instructions and the XSL formatting objects still reside in different
namespaces because the meaning of the xsl prefix changes from element to
element.

Listing 18-3: Redefining the xsl prefix

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/”>
<xsl:root xmlns:xsl=”http://www.w3.org/XSL/Format/1.0”>

<xsl:layout-master-set>
<xsl:simple-page-master page-master-name=”only”>
<xsl:region-body/>

</xsl:simple-page-master>

Continued

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 623

624 Part IV ✦ Supplemental Technologies

Listing 18-3 (continued)

</xsl:layout-master-set>

<xsl:page-sequence>

<xsl:sequence-specification>
<xsl:sequence-specifier-single page-master-name=”only”/>
</xsl:sequence-specification>

<xsl:flow>
<xsl:apply-templates select=”//ATOM”/
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”/>

</xsl:flow>

</xsl:page-sequence>

</xsl:root>
</xsl:template>

<xsl:template match=”ATOM”>
<xsl:block font-size=”20pt” font-family=”serif”

xmlns:xsl=”http://www.w3.org/XSL/Format/1.0”>
<xsl:value-of select=”NAME”
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”/>

</xsl:block>
</xsl:template>

</xsl:stylesheet>

This is, however, needlessly confusing and I strongly recommend that you avoid it.
There are more than enough prefixes to go around, and almost no need to reuse
them within the same document. The main importance of this is if two different
documents from different authors that happen to reuse a similar prefix are being
combined. This is a good reason to avoid short prefixes like a, m, and x that are
likely to be reused for different purposes.

Attributes
Since attributes belong to particular elements, they’re more easily disambiguated
from similarly named attributes without namespaces. Consequently, it’s not nearly as
essential to add namespaces to attributes as to elements. For example, the April 21,
1999 working draft of the XSL specification requires that all XSL transformation ele-
ments fall in the http://www.w3.org/XSL/Transform/1.0 namespace. However,
it does not require that the attributes of these elements be in any particular name-
space. (In fact, it requires that they not be in any namespace.) Nonetheless, you
can attach namespace prefixes to attributes if necessary. For example, this PLAYER

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 624

625Chapter 18 ✦ Namespaces

element and all its attributes live in the http://metalab.unc.edu/xml/baseball
namespace.

<bb:PLAYER xmlns:bb=”http://metalab.unc.edu/xml/baseball”
bb:GIVEN_NAME=”Tom” bb:SURNAME=”Glavine”
bb:POSITION=”Starting Pitcher” bb:GAMES=”33”
bb:GAMES_STARTED=”33” bb:WINS=”20” bb:LOSSES=”6” bb:SAVES=”0”
bb:COMPLETE_GAMES=”4” bb:SHUT_OUTS=”3” bb:ERA=”2.47”
bb:INNINGS=”229.1” bb:HOME_RUNS_AGAINST=”13”
bb:RUNS_AGAINST=”67” bb:EARNED_RUNS=”63” bb:HIT_BATTER=”2”
bb:WILD_PITCHES=”3” bb:BALK=”0” bb:WALKED_BATTER=”74”
bb:STRUCK_OUT_BATTER=”157”/>

This might occasionally prove useful if you need to combine attributes from two
different XML applications on the same element.

It is possible (though mostly pointless) to associate the same namespace URI with
two different prefixes. There’s really no reason to do this. The only reason I bring it
up here is simply to warn you that it is the full name of the attribute that must satisfy
XML’s rules for an element not having more than one attribute with the same name.
For example, this is illegal because bb:GIVEN_NAME and baseball:GIVEN_NAME are
the same:

<bb:PLAYER xmlns:bb=”http://metalab.unc.edu/xml”
xmlns:baseball=”http://metalab.unc.edu/xml”

bb:GIVEN_NAME=”Hank” bb:SURNAME=”Aaron”
baseball:GIVEN_NAME=”Henry” />

On the other hand, the URI does not actually get checked to see what it points to.
The URIs http://metalab.unc.edu/xml/ and http://www.metalab.unc.edu/
xml/ point to the same page. However, this is legal:

<bb:PLAYER xmlns:bb=”http://metalab.unc.edu/xml”
xmlns:baseball=”http://www.metalab.unc.edu/xml”

bb:GIVEN_NAME=”Hank” bb:SURNAME=”Aaron”
baseball:GIVEN_NAME=”Henry” />

Default Namespaces
In long documents with a lot of markup, all in the same namespace, you might
find it inconvenient to add a prefix to each element name. You can attach a default
namespace to an element and its child elements using an xmlns attribute with no
prefix. The element itself, as well as all its children, are considered to be in the
defined namespace unless they possess an explicit prefix. For example, Listing
18-4 shows an XSL style sheet that does not prefix XSL transformation elements
with xsl as is customary.

Attributes are never in a default namespace. They must be explicitly prefixed.Note

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 625

626 Part IV ✦ Supplemental Technologies

Listing 18-4: An XSL stylesheet that uses default namespaces

<?xml version=”1.0”?>
<stylesheet
xmlns=”http://www.w3.org/XSL/Transform/1.0”
xmlns:fo=”http://www.w3.org/XSL/Format/1.0”
result-ns=”fo”>

<template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/XSL/Format/1.0”>

<fo:layout-master-set>
<fo:simple-page-master page-master-name=”only”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence>

<fo:sequence-specification>
<fo:sequence-specifier-single page-master-name=”only”/>
</fo:sequence-specification>

<fo:flow>
<apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</template>

<template match=”ATOM”>
<fo:block font-size=”20pt” font-family=”serif”>
<value-of select=”NAME”/>

</fo:block>
</template>

</stylesheet>

Perhaps the best use of default namespaces attaches a namespace to every element
in an existing document to which you’re now going to add tags from a different
language. For instance, if you place some MathML in an HTML document, you only
have to add prefixes to the MathML elements. You could put all the HTML elements
in the http://www.w3.org/TR/REC-html40 namespace simply by replacing the
<html> start tag with this tag:

<html xmlns=”http://www.w3.org/TR/REC-html40”>

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 626

627Chapter 18 ✦ Namespaces

You do not need to edit the rest of the file! The MathML tags you insert still need to
be in a separate namespace. However, as long as they aren’t mixed up with a lot of
HTML markup, you can simply declare an xmlns attribute on the root element of
the MathML. This defines a default namespace for the MathML elements that
override the default namespace of the document containing the MathML. Listing
18-5 demonstrates.

Listing 18-5: A MathML math element embedded in a well-
formed HTML document that uses namespaces

<?xml version=”1.0”?>
<html xmlns=”http://www.w3.org/TR/REC-html40”>
<head>
<title>Fiat Lux</title>
<meta name=”GENERATOR” content=”amaya V1.3b” />

</head>
<body>

<P>And God said,</P>

<math xmlns=”http://www.w3.org/TR/REC-MathML/”>
<mrow>
<msub>
<mi>δ</mi>
<mi>α</mi>

</msub>
<msup>
<mi>F</mi>
<mi>αβ</mi>

</msup>
<mi></mi>
<mo>=</mo>
<mi></mi>
<mfrac>
<mrow>
<mn>4</mn>
<mi>π</mi>

</mrow>
<mi>c</mi>

</mfrac>
<mi></mi>
<msup>
<mi>J</mi>
<mrow>
<mi>β</mi>
<mo></mo>

</mrow>
</msup>

Continued

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 627

628 Part IV ✦ Supplemental Technologies

Listing 18-5 (continued)

</mrow>
</math>

<P>and there was light</P>

</body>
</html>

Here, math, mrow, msub, mo, mi, mfrac, mn, and msup are all in the http://www.w3.
org/TR/REC-MathML/ namespace, even though the document that contains them
uses the http://www.w3.org/TR/REC-html40 namespace.

Namespaces in DTDs
Namespaces do not get any special exemptions from the normal rules of well-
formedness and validity. For a document that uses namespaces to be valid, the
xmlns attributes must be declared in the DTD for those elements to which they’re
attached. Furthermore, you must declare the elements and attributes using the
prefixes they use in the document. For instance, if a document uses a math:subset
element, then the DTD must declare a math:subset element, not merely a subset
element. (Of course, these rules do not apply to the merely well-formed documents
discussed thus far.) For example:

<!ELEMENT math:subset EMPTY>

Default attribute values and #IMPLIED attributes can help here. For example, this
ATTLIST declaration places every math:subset element in the http://www.w3.
org/TR/REC-MathML/ namespace unless specified otherwise in the document.

<!ATTLIST math:subset
xmlns:math “http://www.w3.org/TR/REC-MathML/” #IMPLIED>

When working with valid documents, default namespaces prove especially useful
since they don’t require you to add prefixes to all the elements. Adding prefixes
to elements from an XML application whose DTD doesn’t use prefixes will break
validity.

There are, however, clear limits to how far default namespaces will take you. In
particular, they are not sufficient to differentiate between two elements that use
an element name in incompatible ways. For example, if one DTD defines a HEAD as
containing a TITLE and a META element, and another DTD defines a HEAD as con-
taining #PCDATA, then you will have to use prefixes in the DTD and the document
to distinguish the two different HEAD elements.

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 628

629Chapter 18 ✦ Namespaces

Two different development efforts are underway that may (or may not) eventually
solve the problem of merging incompatible DTDs from different domains. XML
schemas may provide a more robust replacement for DTDs. XML fragments may
enable different documents to be combined with more distinction between which
parts come from where. However, neither of these is even close to finished. Conse-
quently, for now, merging incompatible DTDs will probably require you to rewrite
the DTD and your documents to use prefixes.

If you have a question about whether a document that uses namespaces is well-
formed or valid, forget everything you know about namespaces. Simply treat the
document as a normal XML document that happens to have some element and
attribute names that contain colons. The document is as well-formed and valid as
it is when you don’t consider namespaces.

Summary
This chapter explained how to work with namespaces. In particular, you learned:

✦ Namespaces distinguish between elements and attributes of the same name
from different XML applications.

✦ Namespaces are declared by an xmlns attribute whose value is the URI of the
namespace. The document referred to by this URI need not exist.

✦ The prefix associated with a namespace is the part of the name of the xmlns
attribute that follows the colon; for example xmlns:prefix.

✦ Prefixes are attached to all element and attribute names that belong to the
namespace identified by the prefix.

✦ If an xmlns attribute has no prefix, it establishes a default namespace for that
element and its child elements (but not for any attributes).

✦ DTDs must be written in such a fashion that a processor that knows nothing
about namespaces can still parse and validate the document.

The next chapter explores the Resource Description Framework, RDF, an XML
application for encoding meta-data and information structures.

✦ ✦ ✦

Tip

3236-7 ch18.F.qc 6/29/99 1:09 PM Page 629

The Resource
Description
Framework

The Resource Description Framework (RDF) is an XML
application for encoding metadata. In particular, it’s

well-suited for describing Web sites and pages so that search
engines can not only index them, but also understand what
they’re indexing. Once RDF and standard RDF vocabularies
become prevalent on the Web, searching can become finding.
This chapter discusses the RDF statements about resources,
basic and abbreviated RDF syntax, the use of containers to
group property values together, and RDF schemas.

What Is RDF?
Metadata is data about data, information about information.
For example, the text of a book is its data. The name of the
author, address of the publisher, copyright date, and so forth is
metadata about the book. Metadata has many uses on the Web,
including organizing, searching, filtering, and personalizing
Web sites. Accurate metadata should make it much easier to
find the Web sites you want while ignoring the Web sites you
don’t want.

In order for metadata to have these benefits, however, Web
sites, search engines, and directories must agree to use a
standard format for metadata. The Resource Description
Framework is a W3C-recommended XML application for
encoding, exchanging, and reusing structured metadata. RDF
vocabularies can describe rating systems, site maps, privacy
preferences, collaborative services, licensing restrictions,
and more.

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is RDF?

RDF statements

Basic RDF syntax

Abbreviated RDF
syntax

Containers

RDF schemas

✦ ✦ ✦ ✦

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 631

632 Part IV ✦ Supplemental Technologies

In general, metadata vocabularies must be customized for each individual knowledge
domain. However, RDF strives to create a convention that controls how the seman-
tics, syntax, and structure of metadata are formulated in the separate domains, so
that metadata formats developed for one domain can be merged with formats devel-
oped for a second domain and used in a third domain without losing any of the clarity
of the original statements. RDF is designed to make it easy for software to understand
enough about a Web site so that it can discover resources on a site, catalog the site’s
content, rate that content, figure out who owns the content and under what terms
and at what cost it may be used, and do other things a Web spider or intelligent agent
might want to do.

RDF Statements
An RDF document or element makes statements about resources. A statement says
that a certain resource has one or more properties. Each property has a type (that
is, a name) and a value. The value of a property may be a literal such as a string,
number, or date, or it may be another resource.

A statement can be thought of as a triple composed of three items: resource, prop-
erty type, and property value. For example, an RDF statement might say, “The book
The XML Bible (ISBN: 0-7645-3236-7) has the author Elliotte Rusty Harold.” Here the
resource is “The book The XML Bible (ISBN: 0-7645-3236-7),” and the author property
of this resource has the value “Elliotte Rusty Harold.” Figure 19-1 demonstrates a
common way of pictorially describing this RDF statement.

Figure 19-1: An RDF statement described in a picture

A resource can be anything that can have a Uniform Resource Identifier (URI). URIs
are a superset of the more common Uniform Resource Locators (URLs), but they can
also identify books, elements on a page, television shows, individual people, and
more. In the above example, an ISBN is used as a URI for a book. Thus, a resource
might be an entire Web site (http://www.norml.org/), a single Web page (http:
//www.mozilla.org/rdf/doc/index.html), a specific HTML or XML element on
a Web page identified with an XPointer (http://metalab.unc.edu/xml/ mail-
inglists.html#root().child(1,dt)), a book (urn:isbn:0764532367), a person
(mailto:elharo@metalab.unc.edu), or just about anything — as long as a URI can
be constructed for it. The only requirement for being a resource is a unique URI. This
URI does not have to be a URL; it can be something else, such as an ISBN.

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 632

633Chapter 19 ✦ The Resource Description Framework

Resources are described with properties. A property is a specific characteristic,
attribute, or relationship of a resource. Each property has a specific meaning that
can be identified by the property’s name and the associated schema. The schema
should be found at the URI used for the property’s namespace. The schema identi-
fies the values, or value ranges, that are permitted for the property, and the types
of resources it can describe.

Schemas are still in the development stages, so don’t be too surprised if you don’t
actually find a schema where one is supposed to be. Also note that a namespace
URI pointing to a schema is an RDF requirement, not a requirement of name-
spaces in general. In fact, the namespaces specification specifically denies any
such requirement.

RDF only defines an XML syntax for encoding these resource-property type-property
value triples in XML. It does not define the actual vocabularies used for describing
resources and properties. Eventually this need will need to be addressed as well, at
least if RDF is to be useful beyond a local intranet. Efforts are underway to produce
standard vocabularies for content rating (PICS 2.0), personal information (P3P), and
digital library catalogs (Dublin Core). Others can be invented as needed.

An RDF statement combines a specific resource with a named property and its value.
These three parts of the statement are called, respectively, the subject, the predicate,
and the object. The resource being described is the subject. The property used to
describe the resource is the predicate. And the value of the property is the state-
ment’s object.

Here’s a normal, human-readable statement:

Elliotte Rusty Harold is the creator of the Web site at the URL
http://metalab.unc.edu/xml/.

This same statement can be written in several other ways in English. For example:

The Web site at the URL http://metalab.unc.edu/xml/ has the creator Elliotte
Rusty Harold.

The Web site at the URL http://metalab.unc.edu/xml/ was created by Elliotte
Rusty Harold.

The creator of the Web site at the URL http://metalab.unc.edu/xml/ is Elliotte
Rusty Harold.

Elliotte Rusty Harold created the Web site at the URL http://metalab.unc.edu/xml/.

However, all five versions mean exactly the same thing. In each version, the subject
is the Web site at the URL http://metalab.unc.edu/xml/. The predicate is the
creator property. The object is the value of the creator property, Elliotte Rusty
Harold. Figure 19-2 diagrams this statement as RDF understands it.

Caution

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 633

634 Part IV ✦ Supplemental Technologies

Figure 19-2: The statement in diagram form

The RDF subject, object, and predicate do not correspond to the common use of
those terms in English grammar. Indeed, part of the purpose of RDF is to separate
the meaning of subject, object, predicate in an idea from their roles in any given
sentence since the same idea can be expressed in multiple sentences, in each of
which the grammatical subject, object, and predicate change places.

Basic RDF Syntax
The purpose of RDF is to take a meaningful statement such as “Elliotte Rusty Harold
is the creator of the Web site at the URL http://metalab.unc.edu/xml/” and
write it in a standard XML format that computers can parse.

The root Element
The root element of an RDF document is RDF. This and all other RDF elements are
normally placed in the http://www.w3.org/1999/02/22-rdf-syntax-ns#
namespace. (As strange as it looks, the # is not a typo. It’s there so that when the
element name is concatenated with the namespace, the result is a correct URL.)
This namespace is either given the prefix rdf or set as the default namespace. For
example, with an explicit prefix, an empty RDF element looks like this:

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
<!— rdf:Description elements will go here —>

</rdf:RDF>

With the default namespace, it looks like this:

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
<!— rdf:Description elements will go here —>

</RDF>

The Description Element
A RDF statement is serialized into XML encoded as a Description element. Each
property of the resource being described is a child element of the Description
element. The content of the child element is the value of the property. For example,

Note

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 634

635Chapter 19 ✦ The Resource Description Framework

Listing 19-1 translates the statement “Elliotte Rusty Harold created the Web site at
the URL http://metalab.unc.edu/xml/” into RDF.

Listing 19-1: The statement translated into RDF

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
<rdf:Description about=”http://metalab.unc.edu/xml/”>
<Creator>Elliotte Rusty Harold</Creator>

</rdf:Description>
</rdf:RDF>

This rdf:RDF element contains a single statement. The statement is encoded as an
rdf:Description element. The resource this statement is about (the subject) is
http://metalab.unc.edu/xml/. The predicate of this statement is the content of
the rdf:Description element, <Creator>Elliotte Rusty Harold</Creator>.
The object of this statement is the content of the Creator element, Elliotte
Rusty Harold. In short, the statement says that the resource at http://metalab.
unc.edu/xml/ has a Creator property whose value is the literal string Elliotte
Rusty Harold.

Namespaces
Namespaces are used to distinguish between RDF elements and elements in
property types and values. The http://www.w3.org/1999/02/22-rdf-syntax-
ns# namespace is often used for RDF elements, generally with an rdf prefix. In the
example above, the Creator element is in the default namespace. However, the
descriptions may (and should) come from a different, nondefault namespace. For
instance, the RDF element in Listing 19-2 uses the Dublin Core vocabulary and the
http://purl.org/DC/ namespace.

Listing 19-2: Elements from the Dublin Core vocabulary
are in the namespace

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/DC/”>
<rdf:Description about=”http://metalab.unc.edu/xml/”>
<dc:CREATOR>Elliotte Rusty Harold</dc:CREATOR>

</rdf:Description>
</rdf:RDF>

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 635

636 Part IV ✦ Supplemental Technologies

The Dublin Core

The Dublin Core (http://purl.org/dc/) is a collection of elements designed to help
researchers find electronic resources in a manner similar to using a library card catalog.
Dublin Core elements include basic cataloging information, in particular:

✦ TITLE: The name given to the resource.

✦ CREATOR: The person or organization that created most of the resource (the author
of a novel or the photographer who took a picture).

✦ SUBJECT: The topic of the resource.

✦ DESCRIPTION: A brief description of the resource, such as an abstract.

✦ PUBLISHER: The person or organization making the resource available (for example,
IDG Books, Claremont University, or Apple Computer).

✦ CONTRIBUTOR: A non-CREATOR who contributed to the resource (the illustrator or
editor of a novel).

✦ DATE: The date the resource was made available in its present form, generally in the
format YYYY-MM-DD, such as 1999-12-31.

✦ TYPE: The category of the resource for example Web page, short story, poem,
article, or photograph. Work is ongoing to produce a definitive list of acceptable
resource types.

✦ FORMAT: The format of the resource, such as PDF, HTML, or JPEG. Work is ongoing
to produce a definitive list of acceptable resource formats.

✦ IDENTIFIER: A unique string or number for the resource (as with a URL, a social
security number, or an ISBN).

✦ SOURCE: A string or number that uniquely identifies the work from which the
resource was derived. For instance, a Web page with the text of Jerome K. Jerome’s
19th century novel Three Men in a Boat might use this to specify the specific edition
from which text was scanned.

✦ LANGUAGE: The primary language in which the resource is written as ISO 639
language code.

✦ RIGHTS: Copyright and other intellectual property notices specifying the conditions
under which the resource may or may not be used.

Several other possible Dublin Core elements are in the experimental stage including RELA-
TION and COVERAGE. The Dublin Core is used throughout the examples in this chapter.
However, you are by no means limited to using only these elements. You are free to use dif-
ferent vocabularies and namespaces for properties as long as you put them in a namespace.

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 636

637Chapter 19 ✦ The Resource Description Framework

Multiple Properties and Statements
A single Description element can state more than one property about a resource.
For instance, what’s missing from the previous statement is the name of the site,
Cafe con Leche. A statement that includes this is, “Elliotte Rusty Harold is the
author of the Cafe con Leche Web site at the URL http://metalab.unc.edu/
xml/.” Rewritten in more stilted, RDF-like syntax, this becomes “The Web site at
the URL http://metalab.unc.edu/xml/ has the name Cafe con Leche and was
created by Elliotte Rusty Harold.” Figure 19-3 diagrams this statement. Listing 19-3
shows how to add the property name to the RDF serialization in a natural way as
simply one more child of rdf:Description, dc:TITLE.

Figure 19-3: A statement with multiple properties in diagram form

Listing 19-3: A statement with multiple properties in RDF
serialization form

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/DC/>

<rdf:Description about=”http://metalab.unc.edu/xml/>
<dc:CREATOR>Elliotte Rusty Harold</dc:CREATOR>
<dc:TITLE>Cafe con Leche</dc:TITLE>

</rdf:Description>

</rdf:RDF>

A single RDF element can contain any number of Description elements, allowing it
to make any number of statements. For example, suppose you want to make the
two separate statements “Elliotte Rusty Harold is the author of the Cafe con Leche
Web site at the URL http://metalab.unc.edu/xml/” and “Elliotte Rusty Harold is
the author of the Cafe au Lait Web site at the URL http://metalab.unc.edu/
javafaq/.” These are two statements about two different resources. Listing 19-4
shows how these are encoded in RDF.

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 637

638 Part IV ✦ Supplemental Technologies

Listing 19-4 Two separate statements encoded in RDF

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/DC/”>

<rdf:Description about=”http://metalab.unc.edu/xml/”>
<dc:CREATOR>Elliotte Rusty Harold</dc:CREATOR>
<dc:TITLE>Cafe con Leche</dc:TITLE>

</rdf:Description>

<rdf:Description about=”http://metalab.unc.edu/javafaq/”>
<dc:CREATOR>Elliotte Rusty Harold</dc:CREATOR>
<dc:TITLE>Cafe au Lait</dc:TITLE>

</rdf:Description>

</rdf:RDF>

Resource Valued Properties
A slightly more complicated example is the statement “The Cafe con Leche Web site
at the URL http://metalab.unc.edu/xml/ has the creator Elliotte Rusty Harold,
whose email address is elharo@metalab.unc.edu.” The email address is the key. It
provides a unique identifier for an individual, specifically the URL mailto:elharo@
metalab.unc.edu. Thus, the individual becomes a resource rather than simply a
literal. This resource is the value of the “created by” property of the http://
metalab.unc.edu/xml/ resource. Figure 19-4 diagrams this statement.

Figure 19-4: A statement with a resource valued property in diagram form

Encoding this statement in RDF is straightforward. Simply give the Creator ele-
ment a Description child that describes the mailto:elharo@metalab.unc.edu
resource, as in Listing 19-5.

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 638

639Chapter 19 ✦ The Resource Description Framework

Listing 19-5: A statement encoded in RDF with nested
Description elements

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#””
xmlns:dc=”http://www.purl.org/DC/”>

<Description about=”http://metalab.unc.edu/xml/”>
<dc:TITLE>Cafe con Leche</dc:TITLE>
<dc:CREATOR/>
<Description about=”mailto:elharo@metalab.unc.edu”>

<dc:TITLE>Elliotte Rusty Harold</dc:TITLE>
</Description>

</dc:CREATOR>
</Description>

</RDF>

There’s no limit to the depth to which descriptions can be nested, nor is there any
limit to the number of properties that can be applied to a Description element,
nested or unnested.

RDF also provides an alternate syntax in which Description elements are not
nested inside each other. Instead, the resource being described contains a resource
attribute that points to the URI of the Description element. For example, Listing
19-6 is an equivalent serialization of the statement “The Cafe con Leche Web site at
the URL http://metalab.unc.edu/xml/ has the creator Elliotte Rusty Harold,
whose email address is elharo@metalab.unc.edu.”

Listing 19-6: Descriptions by reference using the resource
attribute

<rdf:RDF
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://www.purl.org/DC/>

<rdf:Description about=”http://metalab.unc.edu/xml/”>
<dc:TITLE>Cafe con Leche</dc:TITLE>
<dc:CREATOR rdf:resource=”mailto:elharo@metalab.unc.edu”/>

</rdf:Description>

<rdf:Description about=””mailto:elharo@metalab.unc.edu”>
<dc:TITLE>Elliotte Rusty Harold</dc:TITLE>

</rdf:Description>

</rdf:RDF>

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 639

640 Part IV ✦ Supplemental Technologies

Although this syntax is harder for a human reader to parse, it doesn’t present any
significant difficulties to a computer program. The primary advantage is that it
allows the same property to be attached to multiple resources. For example, con-
sider the statement “Elliotte Rusty Harold, whose email address is elharo@
metalab.unc.edu, created both the Cafe con Leche Web site at the URL http://
metalab.unc.edu/xml/ and the Cafe au Lait Web site at the URL http://metalab.
unc.edu/javafaq/,” which is diagrammed in Figure 19-5. This is easily serialized,
as shown in Listing 19-7. The description of the resource mailto:elharo@metalab.
unc.edu does not have to be repeated.

Figure 19-5: The statement in diagram form

Listing 19-7: A statement with the same property attached to
multiple resources

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://www.purl.org/DC/”>

<rdf:Description about=”http://metalab.unc.edu/xml/”>
<dc:TITLE>Cafe con Leche</dc:TITLE>

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 640

641Chapter 19 ✦ The Resource Description Framework

<dc:CREATOR rdf:resource=”mailto:elharo@metalab.unc.edu”/>
</rdf:Description>

<rdf:Description about=”http://metalab.unc.edu/javafaq/”>
<dc:TITLE>Cafe au Lait</dc:TITLE>
<dc:CREATOR rdf:resource=”mailto:elharo@metalab.unc.edu”/>

</rdf:Description>

<rdf:Description about=”mailto:elharo@metalab.unc.edu”>
<dc:TITLE>Elliotte Rusty Harold</dc:TITLE>

</rdf:Description>

</rdf:RDF>

XML Valued Properties
Property values are most commonly either pure text or resources. However, they
may also contain well-formed XML markup that is not itself RDF markup. In this case,
the property element must have a parseType attribute with the value Literal, as
shown in Listing 19-8.

Listing 19-8: A literal property value that uses XML markup

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#
xmlns:dc=”http://www.purl.org/DC/
xmlns:nm=”http://www.metalab.unc.edu/xml/names/”>

<rdf:Description about=”http://metalab.unc.edu/xml/”>
<dc:CREATOR parseType=”Literal”>
<nm:FirstName>Elliotte</nm:FirstName>
<nm:MiddleName>Rusty</nm:MiddleName>
<nm:LastName>Harold</nm:LastName>

</dc:CREATOR>
</rdf:Description>

</rdf:RDF>

Without parseType=”Literal”, the value of a property must be a resource or
parsed character data only. It must not contain any embedded markup.

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 641

642 Part IV ✦ Supplemental Technologies

Abbreviated RDF Syntax
As well as the basic syntax used above, RDF also defines an abbreviated syntax that
uses attributes instead of parsed character data content. This is convenient when
RDF data is embedded in an HTML page, because a Web browser can simply ignore
the RDF tags without any affect on the rendered page. The two syntaxes are com-
pletely equivalent from the perspective of an RDF (as opposed to HTML) parser.

In abbreviated syntax, each property becomes an attribute of the Description
element. The name of the property is the name of the attribute. If the property has
a literal value, the value of the property is the value of the attribute. If the property
has a resource value, the value of the property is the URI of the resource, and a
separate Description element describes the resource. Because the Description
element no longer has a variety of child elements, it does not need a closing tag and
is written using normal empty element syntax.

The simple statement “Elliotte Rusty Harold created the Web site http://metalab.
unc.edu/xml/” is written in abbreviated form, like this:

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/DC/”>

<Description about=”http://metalab.unc.edu/xml/”
dc:CREATOR=”Elliotte Rusty Harold” />

</RDF>

The statement “Elliotte Rusty Harold created the Cafe con Leche Web site http://
metalab.unc.edu/xml/” is written in abbreviated form, like this:

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/DC/”>

<Description about=”http://metalab.unc.edu/xml/
dc:CREATOR=”Elliotte Rusty Harold”
dc:TITLE=”Cafe con Leche” />

</RDF>

Resource valued properties are trickier to abbreviate. The statement “The Cafe
con Leche Web site at the URL http://metalab.unc.edu/xml/ has the creator
Elliotte Rusty Harold, whose email address is elharo@metalab.unc.edu” can be
abbreviated like this:

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/DC/”>
<rdf:Description about=”http://metalab.unc.edu/xml/”

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 642

643Chapter 19 ✦ The Resource Description Framework

dc:TITLE=”Cafe con Leche>
<dc:CREATOR rdf:resource=”mailto:elharo@metalab.unc.edu”
dc:TITLE=”Elliotte Rusty Harold” />

</rdf:Description>
</rdf:RDF>

Here the Description element is nonempty because it has a Creator child. How-
ever, it still doesn’t contain any character data except white space.

Containers
When an RDF element describes a resource with multiple properties of the same
type, for example to say that a document was written by multiple people or to list
mirror sites where a Web page can be found, a container can group the property val-
ues. Every item in the group is a property value of the same type (property name).
This allows you to describe the group as a whole rather than merely describe indi-
vidual items in the container. RDF defines three types of container objects:

1. Bag: a group of unordered properties

2. Seq: a sequence (ordered list) of properties

3. Alt: a list of alternative properties from which a single one is chosen

The Bag container
A bag is a list of property values (resources and literals), in no particular order, all of
which share the same property name (type). This allows you to declare a property
that has more than one value, such as the authors of a book or the members of a
committee. A bag may contain duplicate values.

A bag of properties is represented by a Bag element. Each item in the bag is a li child
element of the Bag. The Bag itself is a child of the Description to which it applies.

For example, consider the statement “The Cafe con Leche Web site at http://
metalab.unc.edu/xml/ was created by Elliotte Rusty Harold to provide XML
news, XML mailing lists, XML conferences, and XML books.” This is diagrammed
in Figure 19-6. The four main subjects of the site can be collected in a Bag, as
shown in Listing 19-9.

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 643

644 Part IV ✦ Supplemental Technologies

Figure 19-6: The statement in diagram form

Listing 19-9: A bag with four members

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://www.purl.org/DC#”>

<rdf:Description about=”http://metalab.unc.edu/xml/”>
<dc:TITLE>Cafe con Leche</dc:TITLE>
<dc:CREATOR>Elliotte Rusty Harold</dc:CREATOR>
<dc:SUBJECT>
<rdf:Bag>
<rdf:li>XML News</rdf:li>
<rdf:li>XML Mailing lists</rdf:li>
<rdf:li>XML Conferences</rdf:li>
<rdf:li>XML Books</rdf:li>

</rdf:Bag>
</dc:SUBJECT>

</rdf:Description>

</rdf:RDF>

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 644

645Chapter 19 ✦ The Resource Description Framework

If the members of the bag are resources rather than literals, they’re identified with
a resource attribute. For example, Listing 19-10 provides a simple site map for Cafe
con Leche.

Listing 19-10: A simple site map for Cafe con Leche in a Bag

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://www.purl.org/DC#”>

<rdf:Description about=”http://metalab.unc.edu/xml/”>
<dc:TITLE>Cafe con Leche</dc:TITLE>
<dc:CREATOR>Elliotte Rusty Harold</dc:CREATOR>
<dc:SUBJECT>
<rdf:Bag>
<rdf:li
resource=”http://metalab.unc.edu/xml/news1999.html”/>

<rdf:li
resource=”http://metalab.unc.edu/xml/mailinglists.html/>
<rdf:li
resource=”http://metalab.unc.edu/xml/news1999.html”/>

<rdf:li
resource=”http://metalab.unc.edu/xml/tradeshows.html”/>

</rdf:Bag>
</dc:SUBJECT>

</rdf:Description>

<rdf:Description
about=”http://metalab.unc.edu/xml/news1999.html”>
<dc:TITLE>XML News from 1999</dc:TITLE>

</rdf:Description>

<rdf:Description
about=”http://metalab.unc.edu/xml/books.html”>
<dc:TITLE>XML Books</dc:TITLE>

</rdf:Description>

<rdf:Description
about=”http://metalab.unc.edu/xml/mailinglists.html”>
<dc:TITLE>XML Mailing Lists</dc:TITLE>

</rdf:Description>

<rdf:Description
about=”http://metalab.unc.edu/xml/tradeshows.html”>
<dc:TITLE>XML Trade Shows and Conferences</dc:TITLE>

</rdf:Description>

</rdf:RDF>

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 645

646 Part IV ✦ Supplemental Technologies

The Seq Container
A sequence container is similar to a bag container. However, it guarantees that the
order of the contents is maintained. Sequences are written exactly like bags, except
that the Seq element replaces the Bag element. For example, this sequence guaran-
tees that when the Subject is read out by an RDF parser, it comes out in the order
“XML News, XML Mailing Lists, XML Conferences, XML Books” and not some other
order such as “XML Books, XML Conferences, XML Mailing Lists, XML News.”

<dc:SUBJECT>
<rdf:Seq>
<rdf:li>XML News</rdf:li>
<rdf:li>XML Mailing lists</rdf:li>
<rdf:li>XML Conferences</rdf:li>
<rdf:li>XML Books</rdf:li>

</rdf:Seq>
</dc:SUBJECT>

In practice, maintaining the order of properties in a container is rarely important,
so sequences aren’t used as much as bags and alternatives.

The Alt Container
The Alt container includes one or more members from which a single one is picked.
For example, this might be used to describe the mirrors of a Web site. Consider the
statement “The Cafe au Lait Web site at http://metalab.unc.edu/javafaq/
created by Elliotte Rusty Harold is mirrored at Sunsite Austria (http://sunsite.
univie.ac.at/jcca/mirrors/javafaq/), Sunsite Slovakia (http://sunsite.
uakom.sk/javafaq/), Sunsite Sweden (http://sunsite.kth.se/javafaq/), and
Sunsite Switzerland (http://sunsite.cnlab-switch.ch/javafaq/).” Because
only one of these mirror sites is desired, they can be placed in an alternative list.
Listing 19-11 shows the RDF serialization.

Listing 19-11: Mirror sites of Cafe au Lait in a Seq

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://www.purl.org/DC#”>

<rdf:Description about=”http://metalab.unc.edu/xml/”>
<dc:TITLE>Cafe con Leche</dc:TITLE>
<dc:CREATOR>Elliotte Rusty Harold</dc:CREATOR>
<dc:PUBLISHER>
<rdf:Alt>
<rdf:li resource =

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 646

647Chapter 19 ✦ The Resource Description Framework

“http://sunsite.univie.ac.at/jcca/mirrors/javafaq/” />
<rdf:li resource =
“http://sunsite.kth.se/javafaq/” />
<rdf:li resource =
“http://sunsite.cnlab-switch.ch/javafaq/” />
<rdf:li resource =
“http://sunsite.uakom.sk/javafaq/” />

</rdf:Alt>
</dc:PUBLISHER>

</rdf:Description>

<rdf:Description
about=”http://sunsite.univie.ac.at/jcca/mirrors/javafaq/”>
<dc:PUBLISHER>Sunsite Austria</dc:PUBLISHER>

</rdf:Description>

<rdf:Description
about=”http://sunsite.uakom.sk/javafaq/”>
<dc:PUBLISHER>Sunsite Slovakia</dc:PUBLISHER>

</rdf:Description>

<rdf:Description
about=”http://sunsite.cnlab-switch.ch/javafaq/”>
<dc:PUBLISHER>Sunsite Switzerland</dc:PUBLISHER>

</rdf:Description>

<rdf:Description
about=”http://sunsite.kth.se/javafaq/”>
<dc:PUBLISHER>Sunsite Sweden</dc:PUBLISHER>

</rdf:Description>

</rdf:RDF>

Statements about Containers
Statements can be made about a container as a whole, separate from statements
about individual items in the container. You may want to say that a particular per-
son developed a Web site without implying that he or she personally wrote each
and every page on the site. Or perhaps you want to claim a copyright on a collec-
tion of links without claiming a copyright on the pages to which you’re linking.
(For example, the market values Yahoo’s collection of links and descriptions at
several hundred million dollars, even though Yahoo owns essentially none of the
pages to which it links.) In fact, the individual members of the container might
have different copyrights than the container itself. Figure 19-7 diagrams this.

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 647

648 Part IV ✦ Supplemental Technologies

Figure 19-7: A bag whose rights information is different than the rights information
of the individual members of the bag

To encode this in RDF, give the container (Bag, Seq, or Alt) an ID attribute.
Description elements with about attributes, whose value is a relative URL
pointing to the container ID, describe the container.

Listing 19-12: A description of a container encoded in RDF

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://www.purl.org/DC#”>

<rdf:Description
about=”http://metalab.unc.edu/xml/links.html”>

Copyright 1998-1999 Seybold Publications
and O'Reilly & Associates, Inc.

The W3C

Copyright 1997 W3C (MIT, INRIA, Keio)

XML.COM

XML.Info

James Tauber

Microsoft's XML Page

Copyright 1999 Microsoft Corporation

The SGML/XML Web Page

Copyright Robin Cover and OASIS,
1994-98

XML Exchange

CommerceNet

links Bag

http://www.w3.org/XML/

http://www.xml.com/

http://www.xmlinfo.com/

http://www.microsoft.com/xml/

http://www.oasis-open.org/cover/
xml.html

htto://www.xmlx.com/

title

rights

title

rights

title

creator

title

rights

title

rights

title

publisher

http://metalab.unc.edu/xml/links.html

XML Links Elliotte Rusty Harold

Copyright 1999
Elliotte Rusty Harold

subjecttitle creator

rights

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 648

649Chapter 19 ✦ The Resource Description Framework

<dc:TITLE>XML Links</dc:TITLE>
<dc:CREATOR>Elliotte Rusty Harold</dc:CREATOR>
<dc:SUBJECT>
<rdf:Bag ID=”links”>
<rdf:li resource=”http://www.w3.org/XML/”/>
<rdf:li resource=”http://www.xml.com/”/>
<rdf:li resource=”http://www.xmlinfo.com/”/>
<rdf:li resource=”http://www.microsoft.com/xml//>
<rdf:li
resource=”http://www.oasis-open.org/cover/xml.html”/>

<rdf:li resource=http://www.xmlx.com//>
</rdf:Bag>

</dc:SUBJECT>
</rdf:Description>

<rdf:Description about=”#links”>
<dc:RIGHTS>
Copyright 1999 Elliotte Rusty Harold

</dc:RIGHTS>
</rdf:Description>

<rdf:Description about=”http://www.w3.org/XML/”>
<dc:TITLE>The W3C</dc:TITLE>
<dc:RIGHTS>
Copyright 1997 W3C (MIT, INRIA, Keio)

</dc:RIGHTS>
</rdf:Description>

<rdf:Description about=”http://www.xml.com/”>
<dc:TITLE>xml.com</dc:TITLE>
<dc:RIGHTS>
Copyright 1998-1999 Seybold Publications
and O’Reilly & Associates, Inc.

</dc:RIGHTS>
</rdf:Description>

<rdf:Description about=”http://www.xmlinfo.com/”>
<dc:TITLE>XML Info</dc:TITLE>
<dc:CREATOR>James Tauber</dc:CREATOR>

</rdf:Description>

<rdf:Description about=”http://www.microsoft.com/xml/”>
<dc:TITLE>Microsoft’s XML Page</dc:TITLE>
<dc:RIGHTS>Copyright 1999 Microsoft Corporation</dc:RIGHTS>

</rdf:Description>

<rdf:Description
about=”http://www.oasis-open.org/cover/xml.html”>
<dc:TITLE>Robin Cover’s XML Web Page</dc:TITLE>
<dc:RIGHTS>
Copyright Robin Cover and OASIS, 1994-98

Continued

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 649

650 Part IV ✦ Supplemental Technologies

Listing 19-12 (continued)

</dc:RIGHTS>
</rdf:Description>

<rdf:Description about=”http://www.xmlx.com/”>
<dc:TITLE>XML Exchange</dc:TITLE>
<dc:PUBLISHER>CommerceNet</dc:PUBLISHER>

</rdf:Description>

</rdf:RDF>

Statements about Container Members
Sometimes you do want to make a statement about each member of a container, but
you don’t want to repeat the same description three or four times. For example, you
may want to specify that the title and creator of each of the mirror sites is Cafe au
Lait and Elliotte Rusty Harold, respectively, as shown in Figure 19-8.

Figure 19-8: Attaching the same description to each page in the bag

You can include an aboutEach attribute in the Bag, Seq, or Alt element whose value
is a name by which descriptions can be applied to all the members of the container.
For example, suppose you want to apply a copyright notice to each page in a Bag.
Listing 19-13 accomplishes this.

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 650

651Chapter 19 ✦ The Resource Description Framework

Listing 19-13: A description of each element in a Bag container

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#
xmlns:dc=”http://www.purl.org/DC#”>

<rdf:Description about=””http://metalab.unc.edu/xml/”>
<dc:TITLE>Cafe con Leche</dc:TITLE>
<dc:CREATOR>Elliotte Rusty Harold</dc:CREATOR>
<dc:SUBJECT>
<rdf:Bag aboutEach=”pages”>
<rdf:li
resource=”http://metalab.unc.edu/xml/news1999.html”/>

<rdf:li
resource=”http://metalab.unc.edu/xml/mailinglists.html”/>
<rdf:li
resource=”http://metalab.unc.edu/xml/news1999.html”/>

<rdf:li
resource=”http://metalab.unc.edu/xml/tradeshows.html”/>

</rdf:Bag>
</dc:SUBJECT>

</rdf:Description>

<rdf:Description aboutEach=”#pages”>
<dc:RIGHTS>
Copyright 1999 Elliotte Rusty Harold
Linking is permitted.
Mirroring requires explicit, prior permission.

</dc:RIGHTS>
</rdf:Description>

<rdf:Description
about=”http://metalab.unc.edu/xml/news1999.html>
<dc:TITLE>XML News from 1999</dc:TITLE>

</rdf:Description>

<rdf:Description
about=”http://metalab.unc.edu/xml/books.html”>
<dc:TITLE>XML Books</dc:TITLE>

</rdf:Description>

<rdf:Description
about=”http://metalab.unc.edu/xml/mailinglists.html”>
<dc:TITLE>XML Mailing Lists</dc:TITLE>

</rdf:Description>

<rdf:Description
about=”http://metalab.unc.edu/xml/tradeshows.html”>
<dc:TITLE>XML Trade Shows and Conferences</dc:TITLE>

</rdf:Description>

</rdf:RDF>

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 651

652 Part IV ✦ Supplemental Technologies

Statements about Implied Bags
Sometimes you want to make a statement about a group of resources that may or
may not be members of the same container. For example, suppose you want to spec-
ify that every page on the Web site http://www.macfaq.com is “Copyright 1999
Elliotte Rusty Harold.” You can do this with a Description element that applies to
all resources whose URI begins with the string “http://www.macfaq. com”. This
Description element must have an aboutEachPrefix attribute whose value is the
URI prefix of the resources to which the description applies. For example:

<rdf:Description aboutEachPrefix=”#http://www.macfaq.com”>
<dc:RIGHTS>Copyright 1999 Elliotte Rusty Harold</dc:RIGHTS>

</rdf:Description>

This Description element creates an implicit bag whose members are the resources
matching the prefix. These resources may or may not be members of other contain-
ers in the RDF file, and they may or may not be sibling elements. The members of this
implied bag are gathered from wherever they reside.

URI prefixes can be used to select only a subtree of a Web site. For example, this
description claims that all pages at metalab.unc.edu in the /xml hierarchy are
“Copyright 1999 Elliotte Rusty Harold”. However, it does not apply to other pages
outside that hierarchy such as http://metalab.unc.edu/id/asiasylum or
http://metalab.unc.edu/stats/.

<rdf:Description
aboutEachPrefix=”#http://metalab.unc.edu/xml/”>
<dc:RIGHTS>Copyright 1999 Elliotte Rusty Harold</dc:RIGHTS>

</rdf:Description>

For another example, take ISBNs assigned by publishers. All books from IDG Books
have an ISBN that begins 07645. Thus, this Description element creates an implicit
Bag containing only books published by IDG Books and assigns a Publisher
property to each member:

<rdf:Description aboutEachPrefix=”#urn:isbn:07645”>
<dc:PUBLISHER>IDG Books</dc:PUBLISHER>

</rdf:Description>

RDF Schemas
Although there’s no guarantee that a generic XML namespace URI points to anything
in particular, RDF is stricter than that. Any namespace URI used in RDF should point
to a schema for the vocabulary. The schema describes the semantics and allowed
syntax of a particular element. For instance, the schema may say that the contents

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 652

653Chapter 19 ✦ The Resource Description Framework

of a DATE element must be in the form 1999-12-31 and not in the form December
31, 1999. A schema may also make DTD-like statements, such as that each BOOK
element must contain one or more AUTHOR child elements.

Exactly how a schema makes statements such as this is a subject of debate. In
practice, current RDF schemas are mostly written in prose that human beings
read. For example, part of the Dublin Core “schema” is shown in Figure 19-10. (In
the long run, a more formal and complete schema for the Dublin Core is likely to
be developed.)

Figure 19-9: The Dublin Core schema

Eventually schemas will be written in a more formal syntax that computers can
understand. In particular, the W3C RDF Schema Working Group is attempting to
develop an RDF schema specification that writes RDF schema in RDF. This will
enable an RDF processor to validate a particular RDF document against the
schemas it uses. However, this work is far from finished as of spring, 1999. If
you’re curious about this work, you can retrieve the current draft of the RDF
schema specification from http://www.w3.org/TR/1998/WD-rdf-schema/.

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 653

654 Part IV ✦ Supplemental Technologies

Summary
This chapter covered RDF. In particular, you learned:

✦ The Resource Description Framework (RDF) is an XML application for struc-
tured metadata. Metadata is information about information.

✦ An RDF document or element makes statements about resources.

✦ Each statement specifies a resource, a property of that resource, and the
value of that property.

✦ A resource is anything that has a Uniform Resource Identifier (URI). URLs of
Web pages are just one form of URI.

✦ The value of a property may be plain text, another resource, or XML markup.

✦ The root element of an RDF document is RDF.

✦ An RDF element contains Description elements that make statements about
resources.

✦ Each Description element contains either a literal property or a resource
attribute whose value is the URI of the property value.

✦ RDF also defines an abbreviated syntax in which properties may be replaced
by attributes of the same name on the Description element.

✦ The Bag, Seq, and Alt elements provide containers for multiple resources.
Properties can be applied to the container as a whole, to the individual ele-
ments of the container, or both.

✦ The namespace URI for each vocabulary used in an RDF document should
point to a schema for the vocabulary.

The next chapter starts to explain a number of other XML applications. It begins
with an in-depth analysis of the Voyager HTML-in-XML DTD to help develop your
skills at reading DTDs written by others.

✦ ✦ ✦

3236-7 ch19.F.qc 6/29/99 1:09 PM Page 654

Reading
Document Type
Definitions

In an ideal world, every markup language created with
XML would come with copious documentation and

examples showing you the exact meaning and use of every
element and attribute. In practice, most DTD authors, like
most programmers, consider documentation an unpleasant
and unnecessary chore, one best left to tech writers if it’s
to be done at all. Not surprisingly, therefore, the DTD that
contains sufficient documentation is the exception, not the
rule. Consequently, it’s important to learn to read raw DTDs
written by others.

There’s a second good reason for learning to read DTDs. When
you read good DTDs, you can often learn tricks and
techniques that you can use in your own DTDs. For example,
no matter how much theory I may mumble about the proper
use of parameter entities for common attribute lists in DTDs,
nothing proves quite as effective for learning that as really
digging into a DTD that uses the technique. Reading other
designers’ DTDs teaches you by example how you can design
your own.

In this chapter, we’ll pick apart the modularized DTD for
XHTML from the W3C. This DTD is quite complex and
relatively well written. By studying it closely, you can pick up
a lot of good techniques for developing your own DTDs. We’ll
see what its designers did right, and a few things they did
wrong (IMHO). We’ll explore some different ways the same
thing could have been accomplished, and the advantages and
disadvantages of each. We will also look at some common
tricks in XML DTDs and techniques for developing your own
DTDs.

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The importance of
reading DTDs

What is XHTML?

The structure of the
XHTML DTDs

The XHTML Modules

The XHTML Entity
Sets

Simplified Subset
DTDs

Techniques to imitate

✦ ✦ ✦ ✦

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 657

658 Part V ✦ XML Applications

The Importance of Reading DTDs
Some XML applications are very precisely defined by standards documents.
MathML is one such application. It’s been the subject of several person-years of
work by a dedicated committee with representatives from across the computer
math industry. It’s been through several levels of peer review, and the committee’s
been quite responsive to problems discovered both in the language and in the
documentation of that language. Consequently, a full DTD is available accompanied
by an extensive informal specification.

Other XML applications are not as well documented. Microsoft, more or less,
completely created CDF, discussed in Chapter 21. CDF is documented informally on
Microsoft’s Site Builder Network in a set of poorly organized Web pages, but no
current DTD is available. Microsoft will probably update and add to CDF, but
exactly what the updates will be is more or less a mystery to everyone else in the
industry.

CML, the Chemical Markup Language invented by Peter Murray-Rust, is hardly
documented at all. It contains a DTD, but it leaves a lot to the imagination. For
instance, CML contains a bondArray element, but the only information about the
bondArray element is that it contains CDATA. There’s no further description of what
sort of data should appear in a bondArray element.

Other times, there may be both a DTD and a prose specification. Microsoft and
Marimba’s Open Software Description (OSD format) is one example. However, the
problem with prose specifications is that they leave pieces out. For instance, the
spec for OSD generally neglects to say how many of a given child element may
appear in a parent element or in what order. The DTD makes that clear. Conversely,
the DTD can’t really say that a SIZE attribute is given in the format KB-number.
That’s left to the prose part of the specification.

Actually, this sort of information could and should appear in a comment in the
DTD. The XML processor alone can’t validate against this restriction. That has to be
left to a higher layer of processing. In any case, simple comments can make the
DTD more intelligible for humans, if nothing else. Currently, OSD does not have a
solid DTD.

These are all examples of more or less public XML applications. However, many
corporations, government agencies, Web sites, and other organizations have
internal, private XML applications they use for their own documents. These are
even less likely to be well documented and well written than the public XML
applications. As an XML specialist, you may well find yourself trying to reverse
engineer a DTD originally written by someone long gone and grown primarily
through accretion of new elements over several years.

Note

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 658

659Chapter 20 ✦ Reading Document Type Definitions

Clearly, the more documentation you have for an XML application, and the better
the documentation is written, the easier it will be to learn and use that application.
However it’s an unfortunate fact of life that documentation is often an afterthought.
Often, the only thing you have to work with is a DTD. You’re reduced to reading the
DTD, trying to understand what it says, and writing test documents to validate to
try to figure out what is and isn’t permissible. Consequently, it’s important to be
able to read DTDs and transform them in your head to examples of permissible
markup.

In this chapter, you’ll explore the XHTML DTD from the W3C. This is actually one of
the better documented DTDs I’ve seen. However, in this chapter I’m going to
pretend that it isn’t. Instead of reading the prose specification, read the actual DTD
files. We’ll explore the techniques you can use to understand those DTDs, even in
the absence of a prose specification.

What Is XHTML?
XHTML is the W3C’s effort to rewrite HTML as strict XML. This requires tightening
up a lot of the looseness commonly associated with HTML. End tags are required
for elements that normally omit them like p and dt. Empty elements like hr must
end in /> instead of just >. Attribute values must be quoted. The names of all HTML
elements and attributes are standardized in lowercase.

XHTML goes one step further than merely requiring HTML documents to be well-
formed XML like that discussed in Chapter 6. It actually provides a DTD for HTML
you can use to validate your HTML documents. In fact, it provides three:

✦ The XHTML strict DTD for new HTML documents

✦ The XHTML loose DTD for converted old HTML documents that still use
deprecated tags like applet

✦ The XHTML frameset DTD for documents that use frames

You can use the one that best fits your site.

Why Validate HTML?
Valid documents aren’t absolutely required for HTML, but they do make it much
easier for browsers to properly understand and display documents. A valid HTML
document is far more likely to render correctly and predictably across many
different browsers than an invalid one.

Until recently, too much of the competition among browser vendors revolved
around just how much broken HTML they could make sense of. For instance,
Internet Explorer fills in a missing </table> end tag whereas Netscape Navigator

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 659

660 Part V ✦ XML Applications

does not. Consequently, many pages on Microsoft’s Web site (which were only
tested in Internet Explorer) contained missing </table> tags and could not be
viewed in Netscape Navigator. (I’ll leave it to the reader to decide whether or not
this was deliberate sabotage.) In any case, if Microsoft had required valid HTML on
its Web site, this would not have happened.

It is extremely difficult for even the largest Web shops to test their pages against
even a small fraction of the browsers that people actually use. Even testing the
latest versions of both Netscape Navigator and Internet Explorer is more than some
designers manage. While I won’t argue that you shouldn’t test your pages in as
many versions of as many browsers as possible in an ideal world, the reality is that
time and resources are finite. Validating HTML goes a long way toward ensuring
that your pages render reasonably in a broad spectrum of browsers.

Modularization of XHTML Working Draft
This chapter covers the April 6, 1999 working draft of the Modularized XHTML
specification, which is subject to change. The status of this version is, as given by
the W3C:

This document is a working draft of the W3C’s HTML Working Group. This
working draft may be updated, replaced or rendered obsolete by other W3C
documents at any time. It is inappropriate to use W3C Working Drafts as
reference material or to cite them as other than “work in progress.” This is
work in progress and does not imply endorsement by the W3C membership.

This document has been produced as part of the W3C HTML Activity. The
goals of the HTML Working Group (members only) are discussed in the HTML
Working Group charter (members only).

Currently, the latest draft is from April 6, 1999. You can download this particular
version from http://www.w3.org/TR/1999/xhtml-modularization-19990406.
That document contains many more details about XHTML and rewriting Web pages
in XML-compliant HTML. The most recent version is available on the Web at
http://www.w3.org/TR/xhtml-modularization. This chapter focuses on
reading the DTD for XHTML. The files I reproduce and discuss below are subject to
the W3C Document Notice, reproduced in the sidebar.

The Structure of the XHTML DTDs
HTML is a fairly complex XML application. As noted above, XHTML documents can
choose one of three DTDs. The three separate HTML DTDs discussed here are
divided into about 40 different files and over 2,000 lines of code. These files are
connected through parameter entities. By splitting the DTD into these different
files, it’s easier to understand the individual pieces. Furthermore, common pieces
can be shared among the three different versions of the XHTML DTD: strict, loose,
and frameset.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 660

661Chapter 20 ✦ Reading Document Type Definitions

Document Notice

Copyright (c) 1995-1999 World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio
University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/

Documents on the W3C site are provided by the copyright holders under the following
license. By obtaining, using and/or copying this document, or the W3C document from
which this statement is linked, you (the licensee) agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C docu-
ment from which this statement is linked, in any medium for any purpose and without fee
or royalty is hereby granted, provided that you include the following on ALL copies of the
document, or portions thereof, that you use:

1. A link or URL to the original W3C document.

2. The pre-existing copyright notice of the original author, if it doesn’t exist, a notice of
the form: “Copyright (c) World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio
University). All Rights Reserved. http://www.w3.org/Consortium/Legal/.”
(Hypertext is preferred, but a textual representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We
request that authorship attribution be provided in any software, documents, or other items
or products that you create pursuant to the implementation of the contents of this docu-
ment, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted pursuant to
this license.

THIS DOCUMENT IS PROVIDED “AS IS,” AND COPYRIGHT HOLDERS MAKE NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGE-
MENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFOR-
MANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity
pertaining to this document or its contents without specific, written prior permission. Title
to copyright in this document will at all times remain with copyright holders.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 661

662 Part V ✦ XML Applications

The three DTDs that can be used by your HTML in XML documents are listed
below:

1. The XHTML strict DTD for new HTML documents.

2. The XHTML loose DTD for converted old HTML documents that still use
deprecated tags like applet.

3. The XHTML frameset DTD for documents that use frames.

All three of these DTDs have this basic format:

1. Comment with title, copyright, namespace, formal public identifier, and other
information for people who use this DTD.

2. Revised parameter entity declarations that will override parameter entities
declared in the modules.

3. External parameter entity references to import the modules and entity sets.

XHTML Strict DTD
The XHTML strict DTD (XHTML1-s.dtd), shown in Listing 20-1, is for new HTML
documents that can easily conform to the most stringent requirements for XML
compatibility, and that do not need to use some of the older, less-well thought out
and deprecated elements from HTML like applet and basefont. It does not
support frames, and omits support for all presentational elements like font and
center.

Listing 20-1: XHTML1-s.dtd: the XHTML strict DTD

<!— .. —>
<!— XHTML 1.0 Strict DTD —>
<!— file: XHTML1-s.dtd
—>

<!— XHTML 1.0 Strict DTD

This is XHTML 1.0, an XML reformulation of HTML 4.0.

Copyright 1998-1999 World Wide Web Consortium
(Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved.

Permission to use, copy, modify and distribute the XHTML
1.0 DTD and its accompanying documentation for any purpose
and without fee is hereby granted in perpetuity, provided
that the above copyright notice and this paragraph appear
in all copies. The copyright holders make no representation

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 662

663Chapter 20 ✦ Reading Document Type Definitions

about the suitability of the DTD for any purpose.

It is provided “as is” without expressed or implied
warranty.

Author: Murray M. Altheim <altheim@eng.sun.com>
Revision: @(#)XHTML1-s.dtd 1.14 99/04/01 SMI

The XHTML 1.0 DTD is an XML variant based on the
W3C HTML 4.0 DTD:

Draft: $Date: 1999/04/02 14:27:27 $

Authors: Dave Raggett <dsr@w3.org>
Arnaud Le Hors <lehors@w3.org>
Ian Jacobs <ij@w3.org>

—>
<!— This is the driver file for version 1.0 of the XHTML

Strict DTD.

Please use this formal public identifier to identify it:

“-//W3C//DTD XHTML 1.0 Strict//EN”

Please use this URI to identify the default namespace:

“http://www.w3.org/TR/1999/REC-html-in-xml”

For example, if you are using XHTML 1.0 directly, use the FPI
in the DOCTYPE declaration, with the xmlns attribute on the
document element to identify the default namespace:

<?xml version=”1.0” ?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“XHTML1-s.dtd” >
<html xmlns=”http://www.w3.org/TR/1999/REC-html-in-xml”

xml:lang=”en” lang=”en” >
...
</html>

—>

<!— The version attribute has historically been a container
for the DTD’s public identifier (an FPI), but is unused
in Strict: —>

<!ENTITY % HTML.version “” >
<!ENTITY % Version.attrib “” >

<!— The xmlns attribute on <html> identifies the
default namespace to namespace-aware applications: —>

<!ENTITY % XHTML.ns “http://www.w3.org/TR/1999/REC-html-in-
xml” >

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 663

664 Part V ✦ XML Applications

Listing 20-1 (continued)

<!— reserved for future use with document profiles —>
<!ENTITY % XHTML.profile “” >

<!— used to ignore Transitional features within modules —>
<!ENTITY % XHTML.Transitional “IGNORE” >

<!— XHTML Base Architecture Module (optional) —>
<!ENTITY % XHTML1-arch.module “IGNORE” >
<![%XHTML1-arch.module;[
<!ENTITY % XHTML1-arch.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Base Architecture//EN”
“XHTML1-arch.mod” >

%XHTML1-arch.mod;
]]>

<!— Common Names Module —>
<!ENTITY % XHTML1-names.module “INCLUDE” >
<![%XHTML1-names.module;[
<!ENTITY % XHTML1-names.mod

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Common Names//EN”
“XHTML1-names.mod” >

%XHTML1-names.mod;
]]>

<!— Character Entities Module —>
<!ENTITY % XHTML1-charent.module “INCLUDE” >
<![%XHTML1-charent.module;[
<!ENTITY % XHTML1-charent.mod

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Character Entities//EN”
“XHTML1-charent.mod” >

%XHTML1-charent.mod;
]]>

<!— Intrinsic Events Module —>
<!ENTITY % XHTML1-events.module “INCLUDE” >
<![%XHTML1-events.module;[
<!ENTITY % XHTML1-events.mod

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Intrinsic Events//EN”
“XHTML1-events.mod” >

%XHTML1-events.mod;
]]>

<!— Common Attributes Module —>
<!ENTITY % XHTML1-attribs.module “INCLUDE” >
<![%XHTML1-attribs.module;[
<!ENTITY % align “” >
<!ENTITY % XHTML1-attribs.mod

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Common Attributes//EN”
“XHTML1-attribs.mod” >

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 664

665Chapter 20 ✦ Reading Document Type Definitions

%XHTML1-attribs.mod;
]]>

<!— Document Model Module —>
<!ENTITY % XHTML1-model.module “INCLUDE” >
<![%XHTML1-model.module;[
<!ENTITY % XHTML1-model.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Document Model//EN”
“XHTML1-model.mod” >

%XHTML1-model.mod;
]]>

<!— Inline Structural Module —>
<!ENTITY % XHTML1-inlstruct.module “INCLUDE” >
<![%XHTML1-inlstruct.module;[
<!ENTITY % XHTML1-inlstruct.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Structural//EN”
“XHTML1-inlstruct.mod” >

%XHTML1-inlstruct.mod;
]]>

<!— Inline Presentational Module —>
<!ENTITY % XHTML1-inlpres.module “INCLUDE” >
<![%XHTML1-inlpres.module;[
<!ENTITY % XHTML1-inlpres.mod
PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Presentational//EN”

“XHTML1-inlpres.mod” >
%XHTML1-inlpres.mod;
]]>

<!— Inline Phrasal Module —>
<!ENTITY % XHTML1-inlphras.module “INCLUDE” >
<![%XHTML1-inlphras.module;[
<!ENTITY % XHTML1-inlphras.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Phrasal//EN”
“XHTML1-inlphras.mod” >

%XHTML1-inlphras.mod;
]]>

<!— Block Structural Module —>
<!ENTITY % XHTML1-blkstruct.module “INCLUDE” >
<![%XHTML1-blkstruct.module;[
<!ENTITY % XHTML1-blkstruct.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block Structural//EN”
“XHTML1-blkstruct.mod” >

%XHTML1-blkstruct.mod;
]]>

<!— Block Presentational Module —>
<!ENTITY % XHTML1-blkpres.module “INCLUDE” >
<![%XHTML1-blkpres.module;[
<!ENTITY % XHTML1-blkpres.mod

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 665

666 Part V ✦ XML Applications

Listing 20-1 (continued)

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block
Presentational//EN”

“XHTML1-blkpres.mod” >
%XHTML1-blkpres.mod;
]]>

<!— Block Phrasal Module —>
<!ENTITY % XHTML1-blkphras.module “INCLUDE” >
<![%XHTML1-blkphras.module;[
<!ENTITY % XHTML1-blkphras.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block Phrasal//EN”
“XHTML1-blkphras.mod” >

%XHTML1-blkphras.mod;
]]>

<!— Scripting Module —>
<!ENTITY % XHTML1-script.module “INCLUDE” >
<![%XHTML1-script.module;[
<!ENTITY % XHTML1-script.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Scripting//EN”
“XHTML1-script.mod” >

%XHTML1-script.mod;
]]>

<!— Stylesheets Module —>
<!ENTITY % XHTML1-style.module “INCLUDE” >
<![%XHTML1-style.module;[
<!ENTITY % XHTML1-style.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Stylesheets//EN”
“XHTML1-style.mod” >

%XHTML1-style.mod;
]]>

<!— Image Module —>
<!ENTITY % XHTML1-image.module “INCLUDE” >
<![%XHTML1-image.module;[
<!ENTITY % XHTML1-image.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Images//EN”
“XHTML1-image.mod” >

%XHTML1-image.mod;
]]>

<!— Frames Module —>
<!ENTITY % XHTML1-frames.module “IGNORE” >
<![%XHTML1-frames.module;[
<!ENTITY % XHTML1-frames.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Frames//EN”
“XHTML1-frames.mod” >

%XHTML1-frames.mod;
]]>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 666

667Chapter 20 ✦ Reading Document Type Definitions

<!— Linking Module —>
<!ENTITY % XHTML1-linking.module “INCLUDE” >
<![%XHTML1-linking.module;[
<!ENTITY % XHTML1-linking.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Linking//EN”
“XHTML1-linking.mod” >

%XHTML1-linking.mod;
]]>

<!— Client-side Image Map Module —>
<!ENTITY % XHTML1-csismap.module “INCLUDE” >
<![%XHTML1-csismap.module;[
<!ENTITY % XHTML1-csismap.mod
PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Client-side Image Map//EN”

“XHTML1-csismap.mod” >
%XHTML1-csismap.mod;
]]>

<!— Object Element Module —>
<!ENTITY % XHTML1-object.module “INCLUDE” >
<![%XHTML1-object.module;[
<!ENTITY % XHTML1-object.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Object Element//EN”
“XHTML1-object.mod” >

%XHTML1-object.mod;
]]>

<!— Lists Module —>
<!ENTITY % XHTML1-list.module “INCLUDE” >
<![%XHTML1-list.module;[
<!ENTITY % XHTML1-list.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Lists//EN”
“XHTML1-list.mod” >

%XHTML1-list.mod;
]]>

<!— Forms Module —>
<!ENTITY % XHTML1-form.module “INCLUDE” >
<![%XHTML1-form.module;[
<!ENTITY % XHTML1-form.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Forms//EN”
“XHTML1-form.mod” >

%XHTML1-form.mod;
]]>

<!— Tables Module —>
<!ENTITY % XHTML1-table.module “INCLUDE” >
<![%XHTML1-table.module;[
<!ENTITY % XHTML1-table.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Tables//EN”
“XHTML1-table.mod” >

%XHTML1-table.mod;

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 667

668 Part V ✦ XML Applications

Listing 20-1 (continued)

]]>

<!— Document Metainformation Module —>
<!ENTITY % XHTML1-meta.module “INCLUDE” >
<![%XHTML1-meta.module;[
<!ENTITY % XHTML1-meta.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Metainformation//EN”
“XHTML1-meta.mod” >

%XHTML1-meta.mod;
]]>

<!— Document Structure Module —>
<!ENTITY % XHTML1-struct.module “INCLUDE” >
<![%XHTML1-struct.module;[
<!ENTITY % XHTML1-struct.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Document Structure//EN”
“XHTML1-struct.mod” >

%XHTML1-struct.mod;
]]>

<!— end of XHTML 1.0 Strict DTD —>
<!— .. —>

The file begins with a comment identifying which file this is, and a basic copyright
statement. That’s followed by these very important words:

Permission to use, copy, modify, and distribute the XHTML 1.0 DTD and its
accompanying documentation for any purpose and without fee is hereby
granted in perpetuity, provided that the above copyright notice and this
paragraph appear in all copies. The copyright holders make no representation
about the suitability of the DTD for any purpose.

A statement like this is very important for any DTD that you want to be broadly
adopted. In order for people outside your organization to use your DTD, they must
be allowed to copy it, put it on their Web servers, send it to other people with their
own documents, and do a variety of other things normally prohibited by copyright.
A simple statement like “Copyright 1999 XYZ Corp.” with no further elucidation
prevents many people from using your DTD.

Next comes a comment containing detailed information about how this DTD should
be used including its formal public identifier and preferred name. Also provided are
the preferred namespace and an example of how to begin a file that uses this DTD.
All of this is very useful to an author.

Formal public identifiers are discussed in Chapter 8, Document Type Definitions
and Validity.

Cross-
Reference

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 668

669Chapter 20 ✦ Reading Document Type Definitions

Next come several entity definitions that are mostly for compatibility with old or
future versions of this DTD. Finally, we get to the meat of the DTD: 24 external
parameter entity definitions and references that import the modules used to form
the complete DTD. Here’s the last one in the file:

<!— Document Structure Module —>
<!ENTITY % XHTML1-struct.module “INCLUDE” >
<![%XHTML1-struct.module;[
<!ENTITY % XHTML1-struct.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Document Structure//EN”
“XHTML1-struct.mod” >

%XHTML1-struct.mod;
]]>

All 24 follow the same basic structure:

1. A comment identifying the module to be imported.

2. A parameter entity declaration whose name is the name of the module to be
imported suffixed with .module and whose replacement text is either
INCLUDE or IGNORE.

3. An INCLUDE or IGNORE block; which one is determined by the value of the
parameter entity reference in the previous step.

4. An external parameter entity declaration for the module to be imported
suffixed with .mod, followed by an external parameter entity reference that
actually imports the module.

Removing the module-specific material, the structure looks like this:

<!— Module Name Module —>
<!ENTITY % XHTML1-module_abbreviation.module “INCLUDE” >
<![%XHTML1-module_abbreviation.module;[
<!ENTITY % XHTML1-module_abbreviation.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Module Name//EN”
“XHTML1-module_abbreviation.mod” >

%XHTML1-module_abbreviation.mod;
]]>

The way this is organized it is very easy to change, whether or not a particular
module is loaded simply by changing the value of one internal parameter entity
from INCLUDE to IGNORE or vice versa. The .module parameter entities act as
switches that turn particular declarations on or off.

XHTML Transitional DTD
The XHTML transitional DTD (XHTML1-t.dtd), also known as the loose DTD and
shown in Listing 20-2, is appropriate for HTML documents that have not fully made
the transition to HTML 4.0. These documents depend on now deprecated elements
like applet and center. It also adds support for presentational attributes like color
and bullet styles for list items replaced with CSS style sheets in strict HTML 4.0.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 669

670 Part V ✦ XML Applications

Listing 20-2: XHTML1-t.dtd: the XHTML transitional DTD

<!— .. —>
<!— XHTML 1.0 Transitional DTD
.. —>
<!— file: XHTML1-t.dtd
—>

<!— XHTML 1.0 Transitional DTD

This is XHTML 1.0, an XML reformulation of HTML 4.0.

Copyright 1998-1999 World Wide Web Consortium
(Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved.

Permission to use, copy, modify and distribute the XHTML
1.0 DTD and its accompanying documentation for any
purpose and without fee is hereby granted in perpetuity,
provided that the above copyright notice and this
paragraph appear in all copies. The copyright holders
make no representation about the suitability of the DTD
for any purpose.

It is provided “as is” without expressed or implied
warranty.

Author: Murray M. Altheim <altheim@eng.sun.com>
Revision: @(#)XHTML1-t.dtd 1.14 99/04/01 SMI

The XHTML 1.0 DTD is an XML variant based on the
W3C HTML 4.0 DTD:

Draft: $Date: 1999/04/02 14:27:27 $

Authors: Dave Raggett <dsr@w3.org>
Arnaud Le Hors <lehors@w3.org>
Ian Jacobs <ij@w3.org>

—>
<!— This is the driver file for version 1.0 of the

XHTML Transitional DTD.

Please use this formal public identifier to identify it:

“-//W3C//DTD XHTML 1.0 Transitional//EN”

Please use this URI to identify the default namespace:

“http://www.w3.org/TR/1999/REC-html-in-xml”

For example, if you are using XHTML 1.0 directly,

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 670

671Chapter 20 ✦ Reading Document Type Definitions

use the FPI in the DOCTYPE declaration, with the
xmlns attribute on the
document element to identify the default namespace:

<?xml version=”1.0” ?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“XHTML1-t.dtd” >
<html xmlns=”http://www.w3.org/TR/1999/REC-html-in-xml”

xml:lang=”en” lang=”en” >
...

</html>
—>

<!— The version attribute has historically been a container
for the DTD’s public identifier (an FPI): —>

<!ENTITY % HTML.version “-//W3C//DTD XHTML 1.0
Transitional//EN” >

<!— The xmlns attribute on <html> identifies the
default namespace to namespace-aware applications: —>

<!ENTITY % XHTML.ns “http://www.w3.org/TR/1999/REC-html-in-
xml” >

<!— reserved for future use with document profiles —>
<!ENTITY % XHTML.profile “” >

<!ENTITY % XHTML1-frames.module “IGNORE” >
<!ENTITY % XHTML.Transitional “INCLUDE” >

<!— XHTML Base Architecture Module (optional) —>
<!ENTITY % XHTML1-arch.module “IGNORE” >
<![%XHTML1-arch.module;[
<!ENTITY % XHTML1-arch.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Base Architecture//EN”
“XHTML1-arch.mod” >

%XHTML1-arch.mod;
]]>

<!— Common Names Module —>
<!ENTITY % XHTML1-names.module “INCLUDE” >
<![%XHTML1-names.module;[
<!ENTITY % XHTML1-names.mod

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Common Names//EN”
“XHTML1-names.mod” >

%XHTML1-names.mod;
]]>

<!— Character Entities Module —>
<!ENTITY % XHTML1-charent.module “INCLUDE” >
<![%XHTML1-charent.module;[
<!ENTITY % XHTML1-charent.mod

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 671

672 Part V ✦ XML Applications

Listing 20-2 (continued)

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Character Entities//EN”
“XHTML1-charent.mod” >

%XHTML1-charent.mod;
]]>

<!— Intrinsic Events Module —>
<!ENTITY % XHTML1-events.module “INCLUDE” >
<![%XHTML1-events.module;[
<!ENTITY % XHTML1-events.mod

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Intrinsic Events//EN”
“XHTML1-events.mod” >

%XHTML1-events.mod;
]]>

<!— Transitional Attributes Module —>
<!ENTITY % XHTML1-attribs-t.module “INCLUDE” >
<![%XHTML1-attribs-t.module;[
<!ENTITY % XHTML1-attribs-t.mod
PUBLIC “-//W3C//ENTITIES XHTML 1.0 Transitional Attributes//EN”

“XHTML1-attribs-t.mod” >
%XHTML1-attribs-t.mod;
]]>

<!— Transitional Document Model Module —>
<!ENTITY % XHTML1-model-t.module “INCLUDE” >
<![%XHTML1-model-t.module;[
<!ENTITY % XHTML1-model-t.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Transitional Document
Model//EN”

“XHTML1-model-t.mod” >
%XHTML1-model-t.mod;
]]>

<!— Inline Structural Module —>
<!ENTITY % XHTML1-inlstruct.module “INCLUDE” >
<![%XHTML1-inlstruct.module;[
<!ENTITY % XHTML1-inlstruct.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Structural//EN”
“XHTML1-inlstruct.mod” >

%XHTML1-inlstruct.mod;
]]>

<!— Inline Presentational Module —>
<!ENTITY % XHTML1-inlpres.module “INCLUDE” >
<![%XHTML1-inlpres.module;[
<!ENTITY % XHTML1-inlpres.mod
PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Presentational//EN”
“XHTML1-inlpres.mod” >

%XHTML1-inlpres.mod;
]]>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 672

673Chapter 20 ✦ Reading Document Type Definitions

<!— Inline Phrasal Module —>
<!ENTITY % XHTML1-inlphras.module “INCLUDE” >
<![%XHTML1-inlphras.module;[
<!ENTITY % XHTML1-inlphras.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Phrasal//EN”
“XHTML1-inlphras.mod” >

%XHTML1-inlphras.mod;
]]>

<!— Block Structural Module —>
<!ENTITY % XHTML1-blkstruct.module “INCLUDE” >
<![%XHTML1-blkstruct.module;[
<!ENTITY % XHTML1-blkstruct.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block Structural//EN”
“XHTML1-blkstruct.mod” >

%XHTML1-blkstruct.mod;
]]>

<!— Block Presentational Module —>
<!ENTITY % XHTML1-blkpres.module “INCLUDE” >
<![%XHTML1-blkpres.module;[
<!ENTITY % XHTML1-blkpres.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block Presentational//EN”
“XHTML1-blkpres.mod” >

%XHTML1-blkpres.mod;
]]>

<!— Block Phrasal Module —>
<!ENTITY % XHTML1-blkphras.module “INCLUDE” >
<![%XHTML1-blkphras.module;[
<!ENTITY % XHTML1-blkphras.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block Phrasal//EN”
“XHTML1-blkphras.mod” >

%XHTML1-blkphras.mod;
]]>

<!— Scripting Module —>
<!ENTITY % XHTML1-script.module “INCLUDE” >
<![%XHTML1-script.module;[
<!ENTITY % XHTML1-script.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Scripting//EN”
“XHTML1-script.mod” >

%XHTML1-script.mod;
]]>

<!— Stylesheets Module —>
<!ENTITY % XHTML1-style.module “INCLUDE” >
<![%XHTML1-style.module;[
<!ENTITY % XHTML1-style.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Stylesheets//EN”
“XHTML1-style.mod” >

%XHTML1-style.mod;

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 673

674 Part V ✦ XML Applications

Listing 20-2 (continued)

]]>

<!— Image Module —>
<!ENTITY % XHTML1-image.module “INCLUDE” >
<![%XHTML1-image.module;[
<!ENTITY % XHTML1-image.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Images//EN”
“XHTML1-image.mod” >

%XHTML1-image.mod;
]]>

<!— Frames Module —>
<![%XHTML1-frames.module;[
<!ENTITY % XHTML1-frames.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Frames//EN”
“XHTML1-frames.mod” >

%XHTML1-frames.mod;
]]>

<!— Linking Module —>
<!ENTITY % XHTML1-linking.module “INCLUDE” >
<![%XHTML1-linking.module;[
<!ENTITY % XHTML1-linking.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Linking//EN”
“XHTML1-linking.mod” >

%XHTML1-linking.mod;
]]>

<!— Client-side Image Map Module —>
<!ENTITY % XHTML1-csismap.module “INCLUDE” >
<![%XHTML1-csismap.module;[
<!ENTITY % XHTML1-csismap.mod
PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Client-side Image Map//EN”

“XHTML1-csismap.mod” >
%XHTML1-csismap.mod;
]]>

<!— Object Element Module —>
<!ENTITY % XHTML1-object.module “INCLUDE” >
<![%XHTML1-object.module;[
<!ENTITY % XHTML1-object.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Object Element//EN”
“XHTML1-object.mod” >

%XHTML1-object.mod;
]]>

<!— Java Applet Element Module —>
<!ENTITY % XHTML1-applet.module “INCLUDE” >
<![%XHTML1-applet.module;[
<!ENTITY % XHTML1-applet.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Java Applets//EN”

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 674

675Chapter 20 ✦ Reading Document Type Definitions

“XHTML1-applet.mod” >
%XHTML1-applet.mod;
]]>

<!— Lists Module —>
<!ENTITY % XHTML1-list.module “INCLUDE” >
<![%XHTML1-list.module;[
<!ENTITY % XHTML1-list.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Lists//EN”
“XHTML1-list.mod” >

%XHTML1-list.mod;
]]>

<!— Forms Module —>
<!ENTITY % XHTML1-form.module “INCLUDE” >
<![%XHTML1-form.module;[
<!ENTITY % XHTML1-form.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Forms//EN”
“XHTML1-form.mod” >

%XHTML1-form.mod;
]]>

<!— Tables Module —>
<!ENTITY % XHTML1-table.module “INCLUDE” >
<![%XHTML1-table.module;[
<!ENTITY % XHTML1-table.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Tables//EN”
“XHTML1-table.mod” >

%XHTML1-table.mod;
]]>

<!— Document Metainformation Module —>
<!ENTITY % XHTML1-meta.module “INCLUDE” >
<![%XHTML1-meta.module;[
<!ENTITY % XHTML1-meta.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Metainformation//EN”
“XHTML1-meta.mod” >

%XHTML1-meta.mod;
]]>

<!— Document Structure Module —>
<!ENTITY % XHTML1-struct.module “INCLUDE” >
<![%XHTML1-struct.module;[
<!ENTITY % XHTML1-struct.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Document Structure//EN”
“XHTML1-struct.mod” >

%XHTML1-struct.mod;
]]>

<!— end of XHTML 1.0 Transitional DTD
................................... —>
<!— .. —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 675

676 Part V ✦ XML Applications

This DTD is organized along the same lines as the strict DTD. First, comments tell
you how to use this DTD. Next come entity declarations that are important for the
imported modules, particularly XHTML.Transitional which is defined here as
INCLUDE. In the strict DTD this was defined as IGNORE. Thus, the individual
modules can use this to provide features that will only apply when the transitional
DTD is being used. Finally, the various modules are imported. The difference
between the strict and transitional DTDs lies in which modules are imported and
how the parameter entities are overridden. The transitional DTD supports a
superset of the strict DTD.

The XHTML Frameset DTD
The XHTML frameset DTD (XHTMl1-f.dtd), shown in Listing 20-3, is a superset of the
transitional DTD that adds support for frames.

Listing 20-3: XHTMl1-f.dtd: the Voyager loose DTD for
documents with frames

<!— .. —>
<!— XHTML 1.0 Frameset DTD
.. —>
<!— file: XHTMl1-f.dtd
—>

<!— XHTML 1.0 Frameset DTD

This is XHTML 1.0, an XML reformulation of HTML 4.0.

Copyright 1998-1999 World Wide Web Consortium
(Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved.

Permission to use, copy, modify and distribute the XHTML
1.0 DTD and its accompanying documentation for any
purpose and without fee is hereby granted in perpetuity,
provided that the above copyright notice and this
paragraph appear in all copies. The copyright holders
make no representation about the suitability of the DTD
for any purpose.

It is provided “as is” without expressed or implied
warranty.

Author: Murray M. Altheim <altheim@eng.sun.com>
Revision: @(#)XHTML1-f.dtd 1.17 99/04/01 SMI

The XHTML 1.0 DTD is an XML variant based on
the W3C HTML 4.0 DTD:

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 676

677Chapter 20 ✦ Reading Document Type Definitions

Draft: $Date: 1999/04/02 14:27:26 $

Authors: Dave Raggett <dsr@w3.org>
Arnaud Le Hors <lehors@w3.org>
Ian Jacobs <ij@w3.org>

—>
<!— This is the driver file for version 1.0 of

the XHTML Frameset DTD.

Please use this formal public identifier to identify it:

“-//W3C//DTD XHTML 1.0 Frameset//EN”

Please use this URI to identify the default namespace:

“http://www.w3.org/TR/1999/REC-html-in-xml”

For example, if you are using XHTML 1.0 directly, use the
FPI in the DOCTYPE declaration, with the xmlns attribute
on the document element to identify the default
namespace:

<?xml version=”1.0” ?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”

“XHTML1-f.dtd” >
<html xmlns=”http://www.w3.org/TR/1999/REC-html-in-xml”

xml:lang=”en” lang=”en” >
...
</html>

—>

<!— The version attribute has historically been a container
for the DTD’s public identifier (an FPI): —>

<!ENTITY % HTML.version “-//W3C//DTD XHTML 1.0 Frameset//EN” >

<!— The xmlns attribute on <html> identifies the
default namespace to namespace-aware applications: —>

<!ENTITY % XHTML.ns
“http://www.w3.org/TR/1999/REC-html-in-xml” >

<!— reserved for future use with document profiles —>
<!ENTITY % XHTML.profile “” >

<!ENTITY % XHTML1-frames.module “INCLUDE” >
<!ENTITY % XHTML.Transitional “INCLUDE” >

<!— declare and instantiate the XHTML Transitional DTD —>
<!ENTITY % XHTML1-t.dtd

PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 677

678 Part V ✦ XML Applications

Listing 20-3 (continued)

“XHTML1-t.dtd” >
%XHTML1-t.dtd;

<!— end of XHTML 1.0 Frameset DTD
....................................... —>
<!— .. —>

This DTD is organized differently than the previous two DTDs. Instead of repeating
all the definitions already in the transitional DTD, it simply imports that DTD using
the XHTML1-t.dtd external parameter entity. Before doing this, however, it defines
XHTML1-frames.module as INCLUDE. This entity was defined in the transitional
DTD as IGNORE. However, the definition given here takes precedence. This DTD
changes the meaning of the DTD it imports.

You could make a strict DTD that uses frames by importing the strict DTD instead
of the transitional DTD like this:

<!— declare and instantiate the XHTML Strict DTD —>
<!ENTITY % XHTML1-s.dtd

PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“XHTML1-s.dtd” >

%XHTML1-s.dtd;

Other DTDsAlthough, XHTML1-s.dtd, XHTML1-t.dtd and XHTML1-f.dtd are the three
main document types you can create with XHTML several other possibilities exist.
One is documented in XHTML1-m.dtd, a DTD that includes both HTML and MathML
(with a couple of changes needed to make MathML fully compatible with HTML).

There are also flat versions of the three main DTDs that use a single DTD file rather
than many separate modules. They don’t define different XML applications, and
they’re not as easy to follow as the modularized DTDs discussed here, but they are
easier to place on Web sites. These include:

✦ XHTML1-s-flat.dtd: a strict XHTML DTD in a single file

✦ XHTML1-t-flat.dtd: a transitional XHTML DTD in a single file

✦ XHTML1-f-flat.dtd: a transitional XHTML DTD with frame support in a
single file

In addition, as you’ll learn below, it’s possible to form your own DTDs that mix and
match pieces of standard HTML. You can include the parts you need and leave out
those you don’t. You can even mix these parts with DTDs of your own devising. But

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 678

679Chapter 20 ✦ Reading Document Type Definitions

before you can do this, you’ll need to take a closer look at the modules that are
available for use.

The XHTML Modules
XHTML divides HTML into 28 different modules. Each module is a DTD for a
particular related subset of HTML elements. Each module can be used
independently of the other modules. For example, you can add basic table support
to your own XML application by importing the table module into your DTD and
providing definitions for a few parameter entities like Inline and Flow that include
the elements of your vocabulary. The available modules include:

1. XHTML1-applet.mod

2. XHTML1-arch.mod

3. XHTML1-attribs-t.mod

4. XHTML1-attribs.mod

5. XHTML1-blkphras.mod

6. XHTML1-blkpres.mod

7. XHTML1-blkstruct.mod

8. XHTML1-charent.mod

9. XHTML1-csismap.mod

10. XHTML1-events.mod

11. XHTML1-form.mod

12. XHTML1-frames.mod

13. XHTML1-image.mod

14. XHTML1-inlphras.mod

15. XHTML1-inlpres.mod

16. XHTML1-inlstruct.mod

17. XHTML1-linking.mod

18. XHTML1-list.mod

19. XHTML1-tables.mod

20. XHTML1-meta.mod

21. XHTML1-model-t.mod

22. XHTML1-model.mod

23. XHTML1-names.mod

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 679

680 Part V ✦ XML Applications

24. XHTML1-object.mod

25. XHTML1-script.mod

26. XHTML1-struct.mod

27. XHTML1-style.mod

28. XHTML1-table.mod

The frameset DTD uses all 28 modules. The transitional DTD uses most of these
except the XHTML1-frames module, the XHTML1-arch module, the XHTML1-attribs
module, and the XHTML1-model module. The strict DTD only uses 22, omitting the
XHTML1-arch module, the XHTML1-attribs-t module, the XHTML1-frames module,
the XHTML1-applet module, and the XHTML1-model-t module.

The Common Names Module
The first module all three entities import is XHTML1-names.mod, the common
names module, shown in Listing 20-4.

Listing 20-4: XHTML1-names.mod: the XHTML module that
defines commonly used names

<!— .. —>
<!— XHTML 1.0 Document Common Names Module —>
<!— file: XHTML1-names.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-names.mod 1.16 99/04/01 SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Common Names//EN”
SYSTEM “XHTML1-names.mod”

Revisions:
1999-01-31 added URIs PE for multiple URI attribute values

... —>

<!— i. Common Names

defines the following common names, many of these imported
from other specifications and standards.

—>

<!— Imported Names —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 680

681Chapter 20 ✦ Reading Document Type Definitions

<!— media type, as per [RFC2045] —>
<!ENTITY % ContentType “CDATA” >

<!— comma-separated list of media types, as per [RFC2045] —>
<!ENTITY % ContentTypes “CDATA” >

<!— a character encoding, as per [RFC2045] —>
<!ENTITY % Charset “CDATA” >

<!— a space separated list of character encodings,
as per [RFC2045] —>

<!ENTITY % Charsets “CDATA” >

<!— date and time information. ISO date format —>
<!ENTITY % Datetime “CDATA” >

<!— a single character from [ISO10646] —>
<!ENTITY % Character “CDATA” >

<!— a language code, as per [RFC1766] —>
<!ENTITY % LanguageCode “NMTOKEN” >

<!— space-separated list of link types —>
<!ENTITY % LinkTypes “NMTOKENS” >

<!— single or comma-separated list of media descriptors —>
<!ENTITY % MediaDesc “CDATA” >

<!— one or more digits (NUMBER) —>
<!ENTITY % Number “CDATA” >

<!— a Uniform Resource Identifier, see [URI] —>
<!ENTITY % URI “CDATA” >

<!— a space-separated list of Uniform Resource Identifiers, see
[URI] —>
<!ENTITY % URIs “CDATA” >

<!— script expression —>
<!ENTITY % Script “CDATA” >

<!— style sheet data —>
<!ENTITY % StyleSheet “CDATA” >

<!ENTITY % Text “CDATA” >

<!—Length defined in strict DTD for cellpadding/cellspacing—>

<!— nn for pixels or nn% for percentage length —>
<!ENTITY % Length “CDATA” >

<!— pixel, percentage, or relative —>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 681

682 Part V ✦ XML Applications

Listing 20-4 (continued)

<!ENTITY % MultiLength “CDATA” >

<!— comma-separated list of MultiLength —>
<!ENTITY % MultiLengths “CDATA” >

<!— integer representing length in pixels —>
<!ENTITY % Pixels “CDATA” >

<!— render in this frame —>
<!ENTITY % FrameTarget “CDATA” >

<!— a color using sRGB: #RRGGBB as Hex values —>
<!ENTITY % Color “CDATA” >

<!— end of XHTML1-names.mod —>

DTDs aren’t optimized for human legibility, even when relatively well written like
this one — even less so when thrown together as is all too often the case. One of the
first things you can do to understand a DTD is to reorganize it in a less formal but
more legible fashion. Table 20-1 sorts the Imported Names section into a three-
column table corresponding to the parameter entity name, the parameter entity
value, and the comment associated with each parameter entity. This table form
makes it clearer that the primary responsibility of this module is to provide
parameter entities for use as element content models.

Table 20-1
Summary of Imported Names Section

Parameter Entity Name Parameter Entity Value Comment Associated with
Parameter Entity

ContentType CDATA Media type, as per [RFC2045]

ContentTypes CDATA Comma-separated list of media
types, as per [RFC2045]

Charset CDATA A character encoding, as per
[RFC2045]

Charsets CDATA A space-separated list of
character encodings, as per
[RFC2045]

Datetime CDATA Date and time information. ISO
date format

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 682

683Chapter 20 ✦ Reading Document Type Definitions

Parameter Entity Name Parameter Entity Value Comment Associated with
Parameter Entity

Character CDATA A single character from a single
character from [ISO10646]

LanguageCode CDATA A language code, as per
[RFC1766]

LinkTypes NMTOKENS Space-separated list of link types

MediaDesc CDATA Single or comma-separated list
of media descriptors

Number CDATA One or more digits (NUMBER)

URI CDATA A Uniform Resource Identifier,
see [URI]

URIs CDATA A space-separated list of
Uniform Resource Identifiers,
see [URI]

Script CDATA Script expression

StyleSheet CDATA Style sheet data

Text CDATA

Length CDATA nn for pixels or nn% for
percentage length

MultiLength CDATA Pixel, percentage, or relative

MultiLengths CDATA Comma-separated list of
MultiLength

Pixels CDATA Integer representing length in
pixels

FrameTarget CDATA Render in this frame

Color CDATA A color using sRGB: #RRGGBB
as Hex values

What really stands out in this summary table is the number of synonyms for CDATA.
In fact, all but one of these parameter entities is just a different synonym for CDATA.
Why is that? It’s certainly no easier to type %MultiLengths; than CDATA, even
ignoring the issue of how much time it takes to remember all of these different
parameter entities.

The answer is that although each of these parameter entity references resolves to
simply CDATA, the use of the more descriptive parameter entity names like

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 683

684 Part V ✦ XML Applications

Datetime, FrameTarget, or Length makes it more obvious to the reader of the
DTD exactly what should go in a particular element or attribute value. Furthermore,
the author of the DTD may look forward to a time when a schema language enables
more detailed requirements to impose on attribute values. It may, at some point in
the future, be possible to write declarations like this:

<!ATTLIST img
src URI #REQUIRED
alt String #REQUIRED
longdesc URI #IMPLIED
height Integer #IMPLIED
width Integer #IMPLIED
usemap URI #IMPLIED
ismap (ismap) #IMPLIED
author CDATA #IMPLIED
copyright CDATA #IMPLIED
>

In this case, rather than having to find and replace all the places in this rather long
DTD where CDATA is used as a length, a string, a URI, or an integer, the author can
simply change the declaration of the %Length;, %URI; and %Text; entity
references like this:

<!ENTITY % Length “Integer”>
<!ENTITY % URI “URI”>
<!ENTITY % Text “String”>

Almost certainly, whatever schema is eventually adopted for data-typing attributes
in XML will not look exactly like the one I mocked up here. But it will likely be able
to be integrated into the XHTML DTD very quickly, simply by adjusting a few of the
entity declarations in the main DTD without painstakingly editin 28 modules.

The Character Entities Module
The second module all three DTDs import is XHTML1-charent.mod, shown in
Listing 20-5. This module imports the DTDs that define entity sets for the standard
HTML entities like ©, , and α for hard-to-type characters. These
sets are:

✦ XHTML1-lat1.ent, characters 160 through 255 of Latin-1, Listing 20-30.

✦ XHTML1-symbol.ent, assorted useful characters and punctuation marks from
outside the Latin-1 set such as the Euro sign and the em dash, Listing 20-31.

✦ XHTML1-special.ent, the Greek alphabet and assorted symbols commonly
used for math like ∞ and ∫, Listing 20-32.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 684

685Chapter 20 ✦ Reading Document Type Definitions

Listing 20-5: XHTML1-charent.mod: the XHTML module that
defines commonly used entities

<!— .. —>
<!— XHTML 1.0 Character Entities Module
................................. —>
<!— file: XHTML1-charent.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-charent.mod 1.16 99/04/01
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Character Entities//EN”
SYSTEM “XHTML1-charent.mod”

Revisions: (none)
.. —>

<!— v. Character Entities for XHTML

declares the set of character entities for XHTML,
including Latin 1, symbol and special characters.

—>

<!— to exclude character entity declarations from a normalized
DTD, declare %XHTML1.ents; as “IGNORE” in the internal
subset of the dummy XHTML file used for normalization.

—>
<!ENTITY % XHTML1.ents “INCLUDE” >

<![%XHTML1.ents;[
<!ENTITY % XHTML1-lat1

PUBLIC “-//W3C//ENTITIES Latin 1//EN//XML”
“XHTML1-lat1.ent” >

%XHTML1-lat1;

<!ENTITY % XHTML1-symbol
PUBLIC “-//W3C//ENTITIES Symbols//EN//XML”

“XHTML1-symbol.ent” >
%XHTML1-symbol;

<!ENTITY % XHTML1-special
PUBLIC “-//W3C//ENTITIES Special//EN//XML”

“XHTML1-special.ent” >
%XHTML1-special;
]]>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 685

686 Part V ✦ XML Applications

Listing 20-5 (continued)

<!— end of XHTML1-charent.mod —>
Notice that a PUBLIC ID tries to load these entity sets. In
this case, the public ID may simply be understood by a Web
browser as referring to its standard HTML entity set. If not,
then the relative URL giving the name of the entity set can
find the necessary declarations.

The Intrinsic Events Module
The third module all three DTDs import is the intrinsic events module. This module
defines the attributes for different events that can occur to different elements, and
that can be scripted through JavaScript. It defines both a generic set of events that
will be used for most elements (the Events.attrib entity) and more specific event
attributes for particular elements like form, button, label, and input.

Listing 20-6: XHTML1-events.mod: the intrinsic events
module

<!— .. —>
<!— XHTML 1.0 Intrinsic Events Module —>
<!— file: XHTML1-events.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-events.mod 1.16 99/04/01
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Intrinsic Events//EN”
SYSTEM “XHTML1-events.mod”

Revisions:
#1999-01-14 transferred onfocus and onblur ATTLIST for ‘a’
from link module
#1999-04-01 transferred remaining events attributes from other
modules

... —>

<!— iv. Intrinsic Event Attributes

These are the event attributes defined in HTML 4.0,
Section 18.2.3 “Intrinsic Events”

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 686

687Chapter 20 ✦ Reading Document Type Definitions

“Note: Authors of HTML documents are advised that changes
are likely to occur in the realm of intrinsic events
(e.g., how scripts are bound to events). Research in this
realm is carried on by members of the W3C Document Object
Model Working Group (see the W3C Web site at
http://www.w3.org/ for more information).”

—>

<!ENTITY % Events.attrib
“onclick %Script; #IMPLIED
ondblclick %Script; #IMPLIED
onmousedown %Script; #IMPLIED
onmouseup %Script; #IMPLIED
onmouseover %Script; #IMPLIED
onmousemove %Script; #IMPLIED
onmouseout %Script; #IMPLIED
onkeypress %Script; #IMPLIED
onkeydown %Script; #IMPLIED
onkeyup %Script; #IMPLIED”

>

<!— additional attributes on anchor element —>

<!ATTLIST a
onfocus %Script; #IMPLIED
onblur %Script; #IMPLIED

>

<!— additional attributes on form element —>

<!ATTLIST form
onsubmit %Script; #IMPLIED
onreset %Script; #IMPLIED

>

<!— additional attributes on label element —>

<!ATTLIST label
onfocus %Script; #IMPLIED
onblur %Script; #IMPLIED

>

<!— additional attributes on input element —>

<!ATTLIST input
onfocus %Script; #IMPLIED
onblur %Script; #IMPLIED
onselect %Script; #IMPLIED
onchange %Script; #IMPLIED

>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 687

688 Part V ✦ XML Applications

Listing 20-6 (continued)

<!— additional attributes on select element —>

<!ATTLIST select
onfocus %Script; #IMPLIED
onblur %Script; #IMPLIED
onchange %Script; #IMPLIED

>

<!— additional attributes on textarea element —>

<!ATTLIST textarea
onfocus %Script; #IMPLIED
onblur %Script; #IMPLIED
onselect %Script; #IMPLIED
onchange %Script; #IMPLIED

>

<!— additional attributes on button element —>

<!ATTLIST button
onfocus %Script; #IMPLIED
onblur %Script; #IMPLIED

>

<!— additional attributes on body element —>

<!ATTLIST body
onload %Script; #IMPLIED
onunload %Script; #IMPLIED

>

<!— additional attributes on area element —>

<!ATTLIST area
onfocus %Script; #IMPLIED
onblur %Script; #IMPLIED

>

<!ENTITY % XHTML1-frames.module “IGNORE” >
<![%XHTML1-frames.module;[
<!— additional attributes on frameset element —>

<!ATTLIST frameset
onload %Script; #IMPLIED
onunload %Script; #IMPLIED

>
]]>

<!— end of XHTML1-events.mod —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 688

689Chapter 20 ✦ Reading Document Type Definitions

The values of the various attributes are all given as %Script;. This is a parameter
entity reference that was defined back in XHTML1-names.mod as being equivalent
to CDATA.

None of these elements have actually been defined yet. They will be declared in
modules that are yet to be imported

The Common Attributes Modules
The next module imported declares the attributes common to most elements like
id, class, style, and title. However, there are two different sets of these: one for
the strict DTD and one for the transitional DTD that also provides an align
attribute. XHTML1-s.dtd imports XHTML1-attribs.mod, shown in Listing 20-7.
XHTML1-t.dtd imports XHTML1-attribs-t.mod, shown in Listing 20-8. The .t stands
for “transitional”.

Listing 20-7: XHTML1-attribs.mod: the XHTML strict common
attributes module

<!— .. —>
<!— XHTML 1.0 Common Attributes Module —>
<!— file: XHTML1-attribs.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-attribs.mod 1.14 99/04/01
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Common Attributes//EN”
SYSTEM “XHTML1-attribs.mod”

Revisions:
1999-02-24 changed PE names for attribute classes to
*.attrib;

... —>

<!— ii. Common Attributes

This modules declares many of the common attributes for
the Strict DTD.

—>

<!ENTITY % Core.attrib

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 689

690 Part V ✦ XML Applications

Listing 20-7 (continued)

“id ID #IMPLIED
class CDATA #IMPLIED
style %StyleSheet; #IMPLIED
title %Text; #IMPLIED”

>

<!ENTITY % I18n.attrib
“lang %LanguageCode; #IMPLIED
xml:lang %LanguageCode; #IMPLIED
dir (ltr|rtl) #IMPLIED”

>

<!— HTML intrinsic event attributes declared previously —>
<!ENTITY % Events.attrib “” >

<!ENTITY % Common.attrib
“%Core.attrib;
%I18n.attrib;
%Events.attrib;” >

<!ENTITY % Align.attrib “” >

<!ENTITY % XLink.attribs “INCLUDE” >
<![%XLink.attribs;[
<!— XLink attributes for a simple ‘a’ style link —>

<!ENTITY % Alink.attrib
“xml:link CDATA #FIXED ‘simple’
role CDATA #IMPLIED
inline CDATA #FIXED ‘true’
content-role CDATA #IMPLIED
content-title CDATA #IMPLIED
show CDATA #FIXED ‘replace’
activate CDATA #FIXED ‘user’
behavior CDATA #IMPLIED”

>
]]>
<!ENTITY % Alink.attrib “” >

<!— end of XHTML1-attribs.mod —>

Listing 20-8: XHTML1-attribs-t.mod: the XHTML transitional
common attributes module

<!— ... —>
<!— XHTML 1.0 Transitional Attributes Module —>
<!— file: XHTML1-attribs-t.mod

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 690

691Chapter 20 ✦ Reading Document Type Definitions

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-attribs-t.mod 1.14 99/04/01
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Transitional
Attributes//EN”
SYSTEM “XHTML1-attribs-t.mod”

Revisions:
1999-01-24 changed PE names for attribute classes to
*.attrib;

.. —>

<!— ii(t). Common Transitional Attributes

This modules declares the same set of common attributes as
the Strict version, but additionally includes ATTLIST
declarations for the additional attribute specifications
found in the Transitional DTD.

—>

<!ENTITY % Core.attrib
“id ID #IMPLIED
class CDATA #IMPLIED
style %StyleSheet; #IMPLIED
title %Text; #IMPLIED”

>

<!ENTITY % I18n.attrib
“lang %LanguageCode; #IMPLIED
xml:lang %LanguageCode; #IMPLIED
dir (ltr|rtl) #IMPLIED”

>

<!— HTML intrinsic event attributes declared previously —>

<!ENTITY % Common.attrib
“%Core.attrib;
%I18n.attrib;
%Events.attrib;”

>

<!— horizontal text alignment —>
<!ENTITY % Align.attrib

“align (left|center|right|justify) #IMPLIED”
>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 691

692 Part V ✦ XML Applications

Listing 20-8 (continued)

<!— horizontal and vertical alignment —>
<!ENTITY % IAlign.attrib

“align (top|middle|bottom|left|right) #IMPLIED”
>

<!ENTITY % XLink.attribs “INCLUDE” >
<![%XLink.attribs;[
<!— XLink attributes for a simple anchor link —>

<!ENTITY % Alink.attrib
“xml:link CDATA #FIXED ‘simple’
role CDATA #IMPLIED
inline CDATA #FIXED ‘true’
content-role CDATA #IMPLIED
content-title CDATA #IMPLIED
show CDATA #FIXED ‘replace’
activate CDATA #FIXED ‘user’
behavior CDATA #IMPLIED”

>
]]>
<!ENTITY % Alink.attrib “” >

<!— end of XHTML1-attribs-t.mod —>

Aside from the align attributes (which are only included by the transitional DTD),
these two modules are very similar. They define parameter entities for attributes
(and groups of attributes) that can apply to any (or almost any) HTML element.
These parameter entities are used inside ATTLIST declarations in other modules.

To grasp this section, let’s use a different trick. Pretend we’re cheating on one of
those fast food restaurant menu mazes, and work backwards from the goal rather
than forwards from the start. Consider the Common.attrib entity:

<!ENTITY % Common.attrib
“%Core.attrib;
%I18n.attrib;
%Events.attrib;”

>

This entity sums up those attributes that apply to almost any element and will
serve as the first part of most ATTLIST declarations in the individual modules. For
example:

<!ATTLIST address
%Common.attrib;

>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 692

693Chapter 20 ✦ Reading Document Type Definitions

The last item in the declaration of Common.attrib is %Events.attrib;. This is
defined as an empty string in XHTML1-attribs.mod.

<!— HTML intrinsic event attributes declared previously —>
<!ENTITY % Events.attrib “” >

However, as the comment indicates, this can be overridden in the base DTD to
add attributes to the ones normally present. In particular, it was overridden in
Listing 20-6 like this:

<!ENTITY % Events.attrib
“onclick %Script; #IMPLIED
ondblclick %Script; #IMPLIED
onmousedown %Script; #IMPLIED
onmouseup %Script; #IMPLIED
onmouseover %Script; #IMPLIED
onmousemove %Script; #IMPLIED
onmouseout %Script; #IMPLIED
onkeypress %Script; #IMPLIED
onkeydown %Script; #IMPLIED
onkeyup %Script; #IMPLIED”

>

The %Script; parameter entity reference was defined in Listing 20-4, XHTML1-
names.mod as CDATA. Thus the replacement text of Common.attrib looks like this:

%Core.attrib;
%I18n.attrib;
onclick CDATA #IMPLIED
ondblclick CDATA #IMPLIED
onmousedown CDATA #IMPLIED
onmouseup CDATA #IMPLIED
onmouseover CDATA #IMPLIED
onmousemove CDATA #IMPLIED
onmouseout CDATA #IMPLIED
onkeypress CDATA #IMPLIED
onkeydown CDATA #IMPLIED
onkeyup CDATA #IMPLIED

The second to last item in the declaration of Common.attrib is %I18n.attrib;.
This is defined in the same module with this declaration:

<!ENTITY % I18n.attrib
“lang %LanguageCode; #IMPLIED
xml:lang %LanguageCode; #IMPLIED
dir (ltr|rtl) #IMPLIED”

>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 693

694 Part V ✦ XML Applications

The %LanguageCode;. parameter entity reference was also defined in XHTML1-
names.mod as an alias for CDATA. Including these, %Common.attrib; now expands to:

%Core.attrib;
lang CDATA; #IMPLIED
xml:lang CDATA #IMPLIED
dir (ltr|rtl) #IMPLIED
onclick CDATA #IMPLIED
ondblclick CDATA #IMPLIED
onmousedown CDATA #IMPLIED
onmouseup CDATA #IMPLIED
onmouseover CDATA #IMPLIED
onmousemove CDATA #IMPLIED
onmouseout CDATA #IMPLIED
onkeypress CDATA #IMPLIED
onkeydown CDATA #IMPLIED
onkeyup CDATA #IMPLIED

The last remaining parameter entity reference to expand is %Core.attrib;. This is
also declared in XHTML1-attribs.mod as:

<!ENTITY % Core.attrib
“id ID #IMPLIED
class CDATA #IMPLIED
style %StyleSheet; #IMPLIED
title %Text; #IMPLIED”

>

This declaration includes two more parameter entity references: %StyleSheet;
and %Text;. Each of these expands to CDATA., again from previous declarations in
XHTML1-names.mod. Thus, the final expansion of %Common.attrib; is:

id ID #IMPLIED
class CDATA #IMPLIED
style CDATA #IMPLIED
title CDATA #IMPLIED
lang CDATA #IMPLIED
xml:lang CDATA #IMPLIED
dir (ltr|rtl) #IMPLIED
onclick CDATA #IMPLIED
ondblclick CDATA #IMPLIED
onmousedown CDATA #IMPLIED
onmouseup CDATA #IMPLIED
onmouseover CDATA #IMPLIED
onmousemove CDATA #IMPLIED
onmouseout CDATA #IMPLIED
onkeypress CDATA #IMPLIED
onkeydown CDATA #IMPLIED
onkeyup CDATA #IMPLIED

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 694

695Chapter 20 ✦ Reading Document Type Definitions

I’ve been a little cavalier with whitespace in this example. The true expansion of
%Common.attrib; isn’t so nicely formatted. However, whitespace is insignificant
in declarations so this isn’t really important, and you should feel free to manually
adjust whitespace to line columns up or insert line breaks when manually expand-
ing a parameter entity reference to see what it says.

Thus, %Common.attrib; has subsumed most of the other material in this section.
You won’t see %Core.attrib; or %I18N.attrib; or %Events.attrib; often again
in later modules. They’re just like private methods in C++ that could be inlined but
aren’t solely for the sake of efficiency.

The XLink attributes are not subsumed into %Common.attrib;. That’s because
although many elements can possess the link attributes, many cannot. Thus, when
the XLink attributes are added to an element, you must use a separate parameter
entity reference, %Alink.attrib;.

The Document Model Module
The XHTML DTDs next import a module that declares entities for all the text flow
elements like p, div, and blockquote. These are the elements that form the basic
tree structure of a well-formed HTML document. Again, two separate modules are
provided; one for the strict DTD (Listing 20-9, XHTML1-model.mod) and one for the
transitional DTD (Listing 20-10, XHTML1-model-t.mod).

Listing 20-9: XHTML1-model.mod: the strict
document model module

<!— ... —>
<!— XHTML 1.0 Document Model Module —>
<!— file: XHTML1-model.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-model.mod 1.12 99/04/01 SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Document Model//EN”
SYSTEM “XHTML1-model.mod”

Revisions:
(none)
... —>

<!— iii. Document Model

Continued

Note

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 695

696 Part V ✦ XML Applications

Listing 20-9 (continued)

This modules declares entities describing all text flow
elements, excluding Transitional elements. This module
describes the groupings of elements that make up HTML’s
document model.

HTML has two basic content models:

%Inline.mix; character-level elements
%Block.mix; block-like elements, eg., paragraphs and

lists

The reserved word ‘#PCDATA’ (indicating a text string) is
now included explicitly with each element declaration, as
XML requires that the reserved word occur first in a
content model specification..

—>

<!— Miscellaneous Elements —>

<!— These elements are neither block nor inline, and can
essentially be used anywhere in the document body —>

<!ENTITY % Misc.class
“ins | del | script | noscript” >

<!— Inline Elements —>

<!ENTITY % Inlstruct.class
“bdo | br | span” >

<!ENTITY % Inlpres.class “tt | i | b | big | small | sub |
sup” >

<!ENTITY % Inlphras.class
“em | strong | dfn | code | samp | kbd | var | cite | abbr

| acronym | q” >

<!ENTITY % Inlspecial.class “a | img | object | map” >

<!ENTITY % Formctrl.class “input | select | textarea | label |
button” >

<!— %Inline.class; includes all inline elements, used as a
component in mixes —>

<!ENTITY % Inline.class
“%Inlstruct.class;
| %Inlpres.class;
| %Inlphras.class;
| %Inlspecial.class;

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 696

697Chapter 20 ✦ Reading Document Type Definitions

| %Formctrl.class;”
>

<!— %Inline.mix; includes all inline elements, including
%Misc.class; —>

<!ENTITY % Inline.mix
“%Inline.class;
| %Misc.class;”

>

<!— %Inline-noa.class; includes all non-anchor inlines,
used as a component in mixes —>

<!ENTITY % Inline-noa.class
“%Inlstruct.class;
| %Inlpres.class;
| %Inlphras.class;
| img | object | map
| %Formctrl.class;”

>

<!— %Inline-noa.mix; includes all non-anchor inlines —>

<!ENTITY % Inline-noa.mix
“%Inline-noa.class;
| %Misc.class;”

>

<!— Block Elements —>

<!— In the HTML 4.0 DTD, heading and list elements were
included in the %block; parameter entity. The
%Heading.class; and %List.class; parameter entities must
now be included explicitly on element declarations where
desired.

—>

<!— There are six levels of headings from H1 (the most
important) to H6 (the least important).

—>
<!ENTITY % Heading.class “h1 | h2 | h3 | h4 | h5 | h6” >

<!ENTITY % List.class “ul | ol | dl” >

<!ENTITY % Blkstruct.class “p | div” >

<!ENTITY % Blkpres.class “hr” >

<!ENTITY % Blkphras.class “pre | blockquote | address” >

<!ENTITY % Blkform.class “form | fieldset” >

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 697

698 Part V ✦ XML Applications

Listing 20-9 (continued)

<!ENTITY % Blkspecial.class “table” >

<!— %Block.class; includes all block elements,
used as an component in mixes —>

<!ENTITY % Block.class
“%Blkstruct.class;
| %Blkpres.class;
| %Blkphras.class;
| %Blkform.class;
| %Blkspecial.class;”

>

<!— %Block.mix; includes all block elements plus %Misc.class;
—>

<!ENTITY % Block.mix
“%Block.class;
| %Misc.class;”

>

<!— %Block-noform.class; includes all non-form block elements,
used as a component in mixes —>

<!ENTITY % Block-noform.class
“%Blkstruct.class;
| %Blkpres.class;
| %Blkphras.class;
| %Blkspecial.class;”

>

<!— %Block-noform.mix; includes all non-form block elements,
plus %Misc.class; —>

<!ENTITY % Block-noform.mix
“%Block-noform.class;
| %Misc.class;”

>

<!— All Content Elements —>

<!— %Flow.mix; includes all text content, block and inline —>

<!ENTITY % Flow.mix
“%Heading.class;
| %List.class;
| %Block.class;

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 698

699Chapter 20 ✦ Reading Document Type Definitions

| %Inline.class;
| %Misc.class;”

>

<!— end of XHTML1-model.mod —>

Listing 20-10: XHTML1-model-t.mod: the transitional
document model module

<!— .. —>
<!— XHTML 1.0 Transitional Text Markup Module —>
<!— file: XHTML1-model-t.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-model-t.mod 1.14 99/04/01
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Transitional Document
Model//EN” SYSTEM “XHTML1-model-t.mod”

Revisions:
#1999-01-14 rearranged forms and frames PEs, adding
%Blkform.class;

... —>

<!— iii(t). Transitional Document Model

This modules declares entities describing all text flow
elements, including Transitional elements. This module
describes the groupings of elements that make up HTML’s
document model.

HTML has two basic content models:

%Inline.mix; character-level elements
%Block.mix; block-like elements, eg., paragraphs and

lists

The reserved word ‘#PCDATA’ (indicating a text string) is
now included explicitly with each element declaration, as
XML requires that the reserved word occur first in a

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 699

700 Part V ✦ XML Applications

Listing 20-10 (continued)

content model specification..
—>

<!— Miscellaneous Elements
—>

<!— These elements are neither block nor inline, and can
essentially be used anywhere in the document body —>

<!ENTITY % Misc.class
“ins | del | script | noscript” >

<!— Inline Elements —>

<!ENTITY % Inlstruct.class
“bdo | br | span” >

<!ENTITY % Inlpres.class
“tt | i | b | u | s | strike | big | small | font | basefont

| sub | sup” >

<!ENTITY % Inlphras.class
“em | strong | dfn | code | samp | kbd | var | cite
| abbr | acronym | q” >

<![%XHTML1-frames.module;[
<!— %Inlspecial.class; includes iframe in Frameset DTD version
—>

<!ENTITY % Inlspecial.class “a | img | applet | object | map
| iframe”>

]]>

<!ENTITY % Inlspecial.class “a | img | applet | object | map”>

<!ENTITY % Formctrl.class “input | select | textarea | label
| button”>

<!— %Inline.class; includes all inline elements, used
as a component in mixes —>

<!ENTITY % Inline.class
“%Inlstruct.class;
| %Inlpres.class;
| %Inlphras.class;
| %Inlspecial.class;
| %Formctrl.class;”

>

<!— %Inline.mix; includes all inline elements,
including %Misc.class; —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 700

701Chapter 20 ✦ Reading Document Type Definitions

<!ENTITY % Inline.mix
“%Inline.class;
| %Misc.class;”

>

<!— %Inline-noa.class; includes all non-anchor inlines,
used as a component in mixes —>

<!ENTITY % Inline-noa.class
“%Inlstruct.class;
| %Inlpres.class;
| %Inlphras.class;
| img | applet | object | map
| %Formctrl.class;”

>

<!— %Inline-noa.mix; includes all non-anchor inlines —>

<!ENTITY % Inline-noa.mix
“%Inline-noa.class;
| %Misc.class;”

>

<!— Block Elements —>

<!— In the HTML 4.0 DTD, heading and list elements were
included in the %block; parameter entity. The
%Heading.class; and %List.class; parameter entities must
now be included explicitly on element declarations where
desired.

—>

<!— There are six levels of headings from h1 (the most
important)

to h6 (the least important).
—>
<!ENTITY % Heading.class “h1 | h2 | h3 | h4 | h5 | h6”>

<!ENTITY % List.class “ul | ol | dl | menu | dir” >

<!ENTITY % Blkstruct.class “p | div” >

<!ENTITY % Blkpres.class “center | hr” >

<!ENTITY % Blkphras.class “pre | blockquote | address” >

<!ENTITY % Blkform.class “form | fieldset” >

<![%XHTML1-frames.module;[
<!— Blkspecial.class includes noframes in Frameset DTD version
—>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 701

702 Part V ✦ XML Applications

Listing 20-10 (continued)

<!ENTITY % Blkspecial.class “noframes | table” >
]]>

<!ENTITY % Blkspecial.class “table” >

<!— %Block.class; includes all block elements,
used as an component in mixes —>

<!ENTITY % Block.class
“%Blkstruct.class;
| %Blkpres.class;
| %Blkphras.class;
| %Blkform.class;
| %Blkspecial.class;”

>

<!— %Block.mix; includes all block elements plus %Misc.class; —
>

<!ENTITY % Block.mix
“%Block.class;
| %Misc.class;”

>

<!— %Block-noform.class; includes all non-form block elements,
used as a component in mixes —>

<!ENTITY % Block-noform.class
“%Blkstruct.class;
| %Blkpres.class;
| %Blkphras.class;
| %Blkspecial.class;”

>

<!— %Block-noform.mix; includes all non-form block elements,
plus %Misc.class; —>

<!ENTITY % Block-noform.mix
“%Block-noform.class;
| %Misc.class;”

>

<!— All Content Elements —>

<!— %Flow.mix; includes all text content, block and inline —>

<!ENTITY % Flow.mix
“%Heading.class;
| %List.class;
| %Block.class;

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 702

703Chapter 20 ✦ Reading Document Type Definitions

| %Inline.class;
| %Misc.class;”

>

<!— end of XHTML1-model-t.mod —>

The elements themselves are notwhat’s declared in these two modules, but rather
entities that can be used in content models for these elements and the elements
that contain them. The actual element declarations come later.

These modules are divided into logical sections denoted by comments. The first is
the Miscellaneous Elements section. This defines the Misc.class parameter entity
for four elements that may appear as either inline or block elements:

<!ENTITY % Misc.class
“ins | del | script | noscript” >

Next, the Inline Elements section defines the inline elements of HTML, those ele-
ments that may not contain block level elements. Here the transitional and strict
DTDs differ in exactly which elements they include. However, they both divide
the inline elements into structural (Inlstruct.class), presentational (Inlpres.
class), phrasal (Inlphras.class), special (Inlspecial.class), and form
(Formctrl.class) classes. These intermediate parameter entities are combined
to form the Inline.class parameter entity which lists all the elements that may
appear as inline elements. Then %Inline.class; is combined with the previously
defined %Misc.class; parameter entity reference to create the Inline.mix
parameter entity that includes both inline and miscellaneous elements.

<!ENTITY % Inline.mix
“%Inline.class;
| %Misc.class;”

>

A similar parameter entity called Inline-noa.class is also defined. Here noa
stands for “no a element”. This one element is left out because it will be needed
elsewhere when the block-level entities are defined next. Including it here has the
potential to lead to ambiguous content models; not a major disaster but something
to be avoided if possible.

The Block Elements section lists the different kinds of block-level elements, and
defines parameter entities for each. This builds up in steps to the final
%Block.class; parameter entity reference, which lists all block-level elements and
%Flow.mix; which lists all block and inline elements.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 703

704 Part V ✦ XML Applications

Parameter entities are defined for headings h1 through h6 (Heading.class) and
lists (List.class). Block-level parameter entities include structural blocks p and
div (Blkstruct.class), presentational blocks, particularly hr, (Blkpres.class),
forms and fieldsets (Blkform.class), and tables (Blkspecial.class). These are
all combined in the Block.class parameter entity. This is merged with the Misc.
class parameter entity to form the Block.mix parameter entity that contains both
block-level and miscellaneous elements. Finally, Block-noform.class and a
Block-noform.mix entities are defined to be used when all block-level elements
,except forms, are desired.

The final Content Elements section defines Flow.mix, which pulls together all of
the above: block, inline, heading, list, and miscellaneous.

<!ENTITY % Flow.mix
“%Heading.class;
| %List.class;
| %Block.class;
| %Inline.class;
| %Misc.class;”

>

The Inline Structural Module
The next module, XHTML1-inlstruct.mod, shown in Listing 20-11, is used by both
the transitional and the strict DTDs to define the inline structural elements bdo, br,
del, ins, and span.

Listing 20-11: XHTML1-inlstruct.mod: the inline structural
module

<!— ... —>
<!— XHTML 1.0 Inline Phrasal Module —>
<!— file: XHTML1-inlstruct.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-inlstruct.mod 1.10 99/04/01
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Structural//EN”
SYSTEM “XHTML1-inlstruct.mod”

Revisions:
(none)
.. —

>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 704

705Chapter 20 ✦ Reading Document Type Definitions

<!— c1. Inline Structural

bdo, br, del, ins, span
—>

<!ENTITY % Bdo.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT bdo %Bdo.content; >
<!ATTLIST bdo

%Core.attrib;
lang %LanguageCode; #IMPLIED
dir (ltr|rtl) #REQUIRED

>

<!ENTITY % Br.content “EMPTY” >
<!ELEMENT br %Br.content; >
<!ATTLIST br

%Core.attrib;
>

<!ENTITY % Del.content “(#PCDATA | %Flow.mix;)*” >
<!ELEMENT del %Del.content; >
<!ATTLIST del

%Common.attrib;
cite %URI; #IMPLIED
datetime %Datetime; #IMPLIED

>

<!ENTITY % Ins.content “(#PCDATA | %Flow.mix;)*” >
<!ELEMENT ins %Ins.content; >
<!ATTLIST ins

%Common.attrib;
cite %URI; #IMPLIED
datetime %Datetime; #IMPLIED

>

<!ENTITY % Span.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT span %Span.content; >
<!ATTLIST span

%Common.attrib;
>

<!— end of XHTML1-inlstruct.mod —>

This module actually begins to use the parameter entities the last several modules
have defined. In particular, it defines the attributes of del, ins, and span as
%Common.attrib; and those of bdo and br as %Core.attrib. It also uses several

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 705

706 Part V ✦ XML Applications

of the CDATA aliases from XHTML1-names.mod; specifically, %LanguageCode;,
%URI; and %Datetime;.

Also note that the content models for elements are given as locally declared
entities. For example:

<!ENTITY % Span.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT span %Span.content; >

Why not simply declare them without the extra parameter entity reference like the
following?

<!ELEMENT span (#PCDATA | %Inline.mix;)* >

The reason is simple: using the parameter entity reference allows other modules to
override this content model. These aren’t necessarily the modules used here, but
modules from completely different XML applications that may be merged with the
XHTML modules.

Inline Presentational Module
The next module, XHTML1-inlpres.mod, shown in Listing 20-12, is used by both the
transitional and the strict DTDs to define the inline presentational elements b, big,
i, small, sub, sup, and tt.

Listing 20-12: XHTML1-inlpres.mod: the inline presentational
module

<!— .. —>
<!— XHTML 1.0 Inline Presentational Module —>
<!— file: XHTML1-inlpres.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-inlpres.mod 1.13 99/04/01
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline
Presentational//EN” SYSTEM “XHTML1-inlpres.mod”

Revisions:
(none)
... —>

<!— c3. Inline Presentational

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 706

707Chapter 20 ✦ Reading Document Type Definitions

b, big, i, small, sub, sup, tt

A conditional section includes additional declarations for
the Transitional DTD

basefont, font, s, strike, u
—>

<!ENTITY % B.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT b %B.content; >
<!ATTLIST b

%Common.attrib;
>

<!ENTITY % Big.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT big %Big.content; >
<!ATTLIST big

%Common.attrib;
>

<!ENTITY % I.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT i %I.content; >
<!ATTLIST i

%Common.attrib;
>

<!ENTITY % Small.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT small %Small.content; >
<!ATTLIST small

%Common.attrib;
>

<!ENTITY % Sub.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT sub %Sub.content; >
<!ATTLIST sub

%Common.attrib;
>

<!ENTITY % Sup.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT sup %Sup.content; >
<!ATTLIST sup

%Common.attrib;
>

<!ENTITY % Tt.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT tt %Tt.content; >
<!ATTLIST tt

%Common.attrib;
>

<![%XHTML.Transitional;[

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 707

708 Part V ✦ XML Applications

Listing 20-12 (continued)

<!ENTITY % Basefont.content “EMPTY” >
<!ELEMENT basefont %Basefont.content; >
<!ATTLIST basefont

id ID #IMPLIED
size CDATA #REQUIRED
color %Color; #IMPLIED
face CDATA #IMPLIED

>

<!ENTITY % Font.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT font %Font.content; >
<!ATTLIST font

%Core.attrib;
%I18n.attrib;
size CDATA #IMPLIED
color %Color; #IMPLIED
face CDATA #IMPLIED

>

<!ENTITY % S.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT s %S.content; >
<!ATTLIST s

%Common.attrib;
>

<!ENTITY % Strike.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT strike %Strike.content; >
<!ATTLIST strike

%Common.attrib;
>

<!ENTITY % U.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT u %U.content; >
<!ATTLIST u

%Common.attrib;
>

]]>

<!— end of XHTML1-inlpres.mod —>

There’s a neat trick in this file that defines the deprecated basefont, font, s,
strike, and u elements for the transitional DTD but not for the strict DTD. The

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 708

709Chapter 20 ✦ Reading Document Type Definitions

declarations for these elements and their attributes are all wrapped in this
construct:

<![%XHTML.Transitional;[
<!— basefont, font, s, strike, and u declarations —>

]]>

Recall that XHTML-t.dtd defined the parameter entity XHTML.Transitional as
INCLUDE but the XHTML-s.dtd defined it as IGNORE. Thus these declarations are
included by the transitional DTD and ignored by the strict one.

Inline Phrasal Module
The next module, XHTML1-inlphras.mod, shown in Listing 20-13, is used by both
the transitional and the strict DTDs to define the inline phrasal elements: abbr,
acronym, cite, code, dfn, em, kbd, q, samp, strong, and var.

Listing 20-13: XHTML1-inlphras.mod: the inline phrasal
module

<!— .. —>
<!— XHTML 1.0 Inline Phrasal Module —>
<!— file: XHTML1-inlphras.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-inlphras.mod 1.14 99/04/01
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Phrasal//EN”
SYSTEM “XHTML1-inlphras.mod”

Revisions:
#1999-01-29 moved bdo, br, del, ins, span to inline

structural module
... —>

<!— c2. Inline Phrasal

abbr, acronym, cite, code, dfn, em, kbd, q, samp,
strong, var
—>

<!ENTITY % Abbr.content “(#PCDATA | %Inline.mix;)*” >

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 709

710 Part V ✦ XML Applications

Listing 20-13 (continued)

<!ELEMENT abbr %Abbr.content; >
<!ATTLIST abbr

%Common.attrib;
>

<!ENTITY % Acronym.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT acronym %Acronym.content; >
<!ATTLIST acronym

%Common.attrib;
>

<!ENTITY % Cite.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT cite %Cite.content; >
<!ATTLIST cite

%Common.attrib;
>

<!ENTITY % Code.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT code %Code.content; >
<!ATTLIST code

%Common.attrib;
>

<!ENTITY % Dfn.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT dfn %Dfn.content; >
<!ATTLIST dfn

%Common.attrib;
>

<!ENTITY % Em.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT em %Em.content; >
<!ATTLIST em

%Common.attrib;
>

<!ENTITY % Kbd.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT kbd %Kbd.content; >
<!ATTLIST kbd

%Common.attrib;
>

<!ENTITY % Q.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT q %Q.content; >
<!ATTLIST q

%Common.attrib;
cite %URI; #IMPLIED

>

<!ENTITY % Samp.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT samp %Samp.content; >
<!ATTLIST samp

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 710

711Chapter 20 ✦ Reading Document Type Definitions

%Common.attrib;
>

<!ENTITY % Strong.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT strong %Strong.content; >
<!ATTLIST strong

%Common.attrib;
>

<!ENTITY % Var.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT var %Var.content; >
<!ATTLIST var

%Common.attrib;
>

<!— end of XHTML1-inlphras.mod —>

With the exception of q, all these inline elements in this module have identical
content models and identical attribute lists. They may all contain #PCDATA |
%Inline.mix; and they all have %Common.attrib; attributes. The q element can
have all of these, too. However, it may also have one additional optional attribute,
cite, which should contain a URI pointing to the source of the quotation.

This example demonstrates the power of the parameter entity approach
particularly well. Without parameter entity references, this module would appear
several times longer and several times less easy to grasp as a whole.

Block Structural Module
The next module, XHTML1-blkstruct.mod, shown in Listing 20-14, is a very simple
module used by both the transitional and the strict DTDs to define the p and the
div block-level structural elements.

Listing 20-14: XHTML1-blkstruct.mod: the inline phrasal
module

<!— .. —>
<!— XHTML 1.0 Block Structural Module —>
<!— file: XHTML1-blkstruct.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-blkstruct.mod 1.10 99/04/01
SMI

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 711

712 Part V ✦ XML Applications

Listing 20-14 (continued)

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block Structural//EN”
SYSTEM “XHTML1-blkstruct.mod”

Revisions:
(none)
.. —>

<!— b1. Block Structural

div, p
—>

<!ENTITY % Div.content “(#PCDATA | %Flow.mix;)*” >
<!ELEMENT div %Div.content; >
<!ATTLIST div

%Common.attrib;
%Align.attrib;

>

<!ENTITY % P.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT p %P.content; >
<!ATTLIST p

%Common.attrib;
>

<!— end of XHTML1-blkstruct.mod —>

Block-Presentational Module
The next module, XHTML1-blkpres.mod, shown in Listing 20-15, defines the hr
and the center block-level structural elements for both the transitional and the
strict DTDs.

Listing 20-15: XHTML1-blkpres.mod: the inline presentational
module

<!— .. —>
<!— XHTML 1.0 Block Presentational Module —>
<!— file: XHTML1-blkpres.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 712

713Chapter 20 ✦ Reading Document Type Definitions

Reserved. Revision: @(#)XHTML1-blkpres.mod 1.15 99/04/01
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block
Presentational//EN” SYSTEM “XHTML1-blkpres.mod”

Revisions:
1999-01-31 added I18n.attrib to hr (errata)

... —>

<!— b3. Block Presentational

hr

A conditional section includes additional declarations
for the Transitional DTD

center
—>

<!ENTITY % Hr.content “EMPTY” >
<!ELEMENT hr %Hr.content; >
<!ATTLIST hr

%Core.attrib;
%I18n.attrib;
%Events.attrib;

>

<![%XHTML.Transitional;[
<!ENTITY % Center.content “(#PCDATA | %Flow.mix;)*” >
<!ELEMENT center %Center.content; >
<!ATTLIST center

%Common.attrib;
>

<!— additional attributes on hr —>
<!ATTLIST hr

align (left|center|right) #IMPLIED
noshade (noshade) #IMPLIED
size %Pixels; #IMPLIED
width %Length; #IMPLIED

>
]]>

<!— end of XHTML1-blkpres.mod —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 713

714 Part V ✦ XML Applications

The center element is deprecated in HTML 4.0 so it’s placed in the <![%XHTML.
Transitional;[]]> region that will be included by the transitional DTD and
ignored by the strict DTD. The hr element is included by both. However, some
(but not all) of its attributes are deprecated in HTML 4.0. Consequently, it has
two ATTLIST declarations, one for the undeprecated attributes and one for the
deprecated attributes. The ATTLIST for the deprecated attributes is placed in the
<![%XHTML.Transitional;[]]> region so it will be ignored by the strict DTD.

Block-Phrasal Module
The next module, XHTML1-blkphras.mod, shown in Listing 20-16, is a very simple
module used by both the transitional and the strict DTDs to define the address,
blockquote, pre, h1, h2, h3, h4, h5, and h6 block-level phrasal elements.

Listing 20-16: XHTML1-blkphras.mod: the block-phrasal
module

<!— .. —>
<!— XHTML 1.0 Block Phrasal Module —>
<!— file: XHTML1-blkphras.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved. Revision: @(#)XHTML1-blkphras.mod 1.13 99/04/01
SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block Phrasal//EN”
SYSTEM “XHTML1-blkphras.mod”

Revisions:
1998-11-10 removed pre exclusions - content model

changed to mimic HTML 4.0
1999-01-29 moved div and p to block structural module

... —>

<!— b2. Block Phrasal

address, blockquote, pre, h1, h2, h3, h4, h5, h6
—>

<!ENTITY % Address.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT address %Address.content; >
<!ATTLIST address

%Common.attrib;
>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 714

715Chapter 20 ✦ Reading Document Type Definitions

<![%XHTML.Transitional;[
<!ENTITY % Blockquote.content “(%Flow.mix;)*” >
]]>
<!ENTITY % Blockquote.content

“(%Heading.class;
| %List.class;
| %Block.mix;)+”

>

<!ELEMENT blockquote %Blockquote.content; >
<!ATTLIST blockquote

%Common.attrib;
cite %URI; #IMPLIED

>

<!ENTITY % Pre.content
“(#PCDATA | tt | i | b
| %Inlstruct.class; | %Inlphras.class;
| a | script | map
| %Formctrl.class;)*”

>

<!ELEMENT pre %Pre.content; >
<!ATTLIST pre

%Common.attrib;
xml:space CDATA #FIXED “preserve”

>

<!— Heading Elements —>

<!ENTITY % Heading.content “(#PCDATA | %Inline.mix;)*” >

<!ELEMENT h1 %Heading.content; >
<!ATTLIST h1

%Common.attrib;
%Align.attrib;

>

<!ELEMENT h2 %Heading.content; >
<!ATTLIST h2

%Common.attrib;
%Align.attrib;

>

<!ELEMENT h3 %Heading.content; >
<!ATTLIST h3

%Common.attrib;
%Align.attrib;

>

<!ELEMENT h4 %Heading.content; >
<!ATTLIST h4

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 715

716 Part V ✦ XML Applications

Listing 20-16 (continued)

%Common.attrib;
%Align.attrib;

>

<!ELEMENT h5 %Heading.content; >
<!ATTLIST h5

%Common.attrib;
%Align.attrib;

>

<!ELEMENT h6 %Heading.content; >
<!ATTLIST h6

%Common.attrib;
%Align.attrib;

>

<!— end of XHTML1-blkphras.mod —>

Once again, the <![%XHTML.Transitional;[]]> region separates the
declarations for the strict DTD from those for the transitional DTD. Here it’s the
content model of the blockquote element that’s adjusted depending on which DTD
is being used in these lines:

<![%XHTML.Transitional;[
<!ENTITY % Blockquote.content “(%Flow.mix;)*” >
]]>
<!ENTITY % Blockquote.content

“(%Heading.class;
| %List.class;
| %Block.mix;)+”

>

The first definition of Blockquote.content is used only with the transitional DTD.
If it is included, it takes precedence over the second redefinition. However, with the
strict DTD, only the second definition is ever seen or used.

The Scripting Module
The next module, XHTML1-script.mod, shown in Listing 20-17, is a very simple
module used by both the transitional and the strict DTDs to define the script and
noscript elements.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 716

717Chapter 20 ✦ Reading Document Type Definitions

Listing 20-17: XHTML1-script.mod: the scripting module

<!— .. —>
<!— XHTML 1.0 Document Scripting Module —>
<!— file: XHTML1-script.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-script.mod 1.13 99/04/01 SMI

This DTD module is identified by the PUBLIC
and SYSTEM identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Scripting//EN”
SYSTEM “XHTML1-script.mod”

Revisions:
1999-01-30 added xml:space to script
1999-02-01 removed for and event attributes from script

.. —>

<!— d4. Scripting

script, noscript
—>

<!ENTITY % Script.content “(#PCDATA)” >
<!ELEMENT script %Script.content; >
<!ATTLIST script

charset %Charset; #IMPLIED
type %ContentType; #REQUIRED
src %URI; #IMPLIED
defer (defer) #IMPLIED
xml:space CDATA #FIXED ‘preserve’

>

<!ENTITY % Noscript.content
“(%Heading.class;
| %List.class;
| %Block.mix;)+”

>
<!ELEMENT noscript %Noscript.content; >
<!ATTLIST noscript

%Common.attrib;
>

<!— end of XHTML1-script.mod —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 717

718 Part V ✦ XML Applications

The Stylesheets Module
The next module, XHTML1-style.mod, shown in Listing 20-18, is a particularly
simple module used by both the transitional and the strict DTDs to define a single
element, style.

Listing 20-18: XHTML1-style.mod: the stylesheets module

<!— .. —>
<!— XHTML 1.0 Document Stylesheet Module —>
<!— file: XHTML1-style.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-style.mod 1.13 99/04/01 SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//DTD XHTML 1.0 Stylesheets//EN”
SYSTEM “XHTML1-style.mod”

Revisions:
1999-01-30 added xml:space to style

... —>

<!— d5. Stylesheets

style
—>

<!ENTITY % Style.content “(#PCDATA)” >
<!ELEMENT style %Style.content; >
<!ATTLIST style

%I18n.attrib;
type %ContentType; #REQUIRED
media %MediaDesc; #IMPLIED
title %Text; #IMPLIED
xml:space CDATA #FIXED ‘preserve’

>

<!— end of XHTML1-style.mod —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 718

719Chapter 20 ✦ Reading Document Type Definitions

The Image Module
The next module, XHTML1-image.mod, shown in Listing 20-19, is another
particularly simple module used by both the transitional and the strict DTDs to
define a single element, img.

Listing 20-19: XHTML1-image.mod: the image module

<!— .. —>
<!— XHTML 1.0 Images Module —>
<!— file: XHTML1-image.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-image.mod 1.15 99/04/01 SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Images//EN”
SYSTEM “XHTML1-image.mod”

Revisions:
1999-01-31 corrected transitional attributes (errata)

.. —>

<!— d3.1. Images

img
—>

<!— To avoid problems with text-only UAs as well as
to make image content understandable and navigable
to users of non-visual UAs, you need to provide
a description with ALT, and avoid server-side image maps

—>

<!ENTITY % Img.content “EMPTY” >
<!ELEMENT img %Img.content; >
<!ATTLIST img

%Common.attrib;
src %URI; #REQUIRED
alt %Text; #REQUIRED
longdesc %URI; #IMPLIED
height %Length; #IMPLIED
width %Length; #IMPLIED
usemap %URI; #IMPLIED
ismap (ismap) #IMPLIED

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 719

720 Part V ✦ XML Applications

Listing 20-19 (continued)

>

<!— USEMAP points to a MAP element which may be in this
document or an external document, although the latter is
not widely supported

—>

<![%XHTML.Transitional;[
<!— additional Transitional attributes —>
<!ATTLIST img

%IAlign.attrib;
border %Pixels; #IMPLIED
hspace %Pixels; #IMPLIED
vspace %Pixels; #IMPLIED

>
]]>

<!— end of XHTML1-image.mod —>

Note that the alt attribute is required on img. Omitting it produces a validity error.

The Frames Module
Next, both the strict and transitional DTDs conditionally import the frames module,
XHTML1-frames.mod shown in Listing 20-20. This module defines those elements
and attributes used on Web pages with frames. Specifically, it defines the frameset,
frame, noframes, and iframe elements and their associated attribute lists.

However, this import is wrapped in:

<![%XHTML1-frames.module;[
<!— frames declarations —>

]]>

Consequently, these imports only take place if %XHTML1-frames.module;
parameter entity reference evaluates to INCLUDE which it does only if the frameset
DTD is in use.

Listing 20-20: XHTML1-image.mod: the frames module

<!— ... —>
<!— XHTML 1.0 Frames Module —>
<!— file: XHTML1-frames.mod

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 720

721Chapter 20 ✦ Reading Document Type Definitions

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-frames.mod 1.15 99/04/01 SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Frames//EN”
SYSTEM “XHTML1-frames.mod”

Revisions:
#1999-01-14 transferred ‘target’ attribute on ‘a’ from linking
module

... —>

<!— a2. Frames

frame, frameset, iframe, noframes
—>

<!— The content model for HTML documents depends on whether
the HEAD is followed by a FRAMESET or BODY element. The
widespread omission of the BODY start tag makes it
impractical to define the content model without the use of
a conditional section.

—>

<!ENTITY % Frameset.content “((frameset | frame)+, noframes?
)” >
<!ELEMENT frameset %Frameset.content; >
<!ATTLIST frameset

%Core.attrib;
rows %MultiLengths; #IMPLIED
cols %MultiLengths; #IMPLIED

>

<!— reserved frame names start with “_” otherwise starts with
letter —>

<!ENTITY % Frame.content “EMPTY” >
<!ELEMENT frame %Frame.content; >
<!ATTLIST frame

%Core.attrib;
longdesc %URI; #IMPLIED
name CDATA #IMPLIED
src %URI; #IMPLIED
frameborder (1|0) ‘1’
marginwidth %Pixels; #IMPLIED
marginheight %Pixels; #IMPLIED
noresize (noresize) #IMPLIED
scrolling (yes|no|auto) ‘auto’

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 721

722 Part V ✦ XML Applications

Listing 20-20 (continued)

>

<!— Inline Frames —>

<!ENTITY % Iframe.content “(%Flow.mix;)*” >
<!ELEMENT iframe %Iframe.content; >
<!ATTLIST iframe

%Core.attrib;
longdesc %URI; #IMPLIED
name CDATA #IMPLIED
src %URI; #IMPLIED
frameborder (1|0) ‘1’
marginwidth %Pixels; #IMPLIED
marginheight %Pixels; #IMPLIED
scrolling (yes|no|auto) ‘auto’
%IAlign.attrib;
height %Length; #IMPLIED
width %Length; #IMPLIED

>

<!— changes to other declarations —>

<!— redefine content model for html element,
substituting frameset for body —>

<!ENTITY % Html.content “(head, frameset)” >

<!— alternate content container for non frame-based rendering
—>

<!ENTITY % Noframes.content “(body)”>
<!— in HTML 4.0 was “(body) -(noframes)”

exclusion on body —>
<!ELEMENT noframes %Noframes.content; >
<!ATTLIST noframes

%Common.attrib;
>

<!— add ‘target’ attribute to ‘a’ element —>
<!ATTLIST a

target %FrameTarget; #IMPLIED
>

<!— end of XHTML1-frames.mod —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 722

723Chapter 20 ✦ Reading Document Type Definitions

There’s not a lot to say about these declarations. There are no particularly
interesting tricks here you haven’t seen before, and adding frames to the DTD
doesn’t require overriding any previous parameter entities, at least not here. The
most unusual aspect of this particular module is that the name attribute of both
frame and iframe appears as CDATA rather than as some parameter entity
reference. The reason is that there aren’t any significant restrictions on frame
names other than that they be CDATA. An eventual schema language can’t add
anything to raw CDATA in this case.

The Linking Module
The next module imported by both strict and transitional DTDs, XHTML1-
image.mod, shown in Listing 20-21, is another simple module that defines the
linking elements a, base, and link.

Listing 20-21: XHTML1-image.mod: the linking module

<!— .. —>
<!— XHTML 1.0 Linking Module —>
<!— file: XHTML1-linking.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-linking.mod 1.13 99/04/01 SMI

This DTD module is identified by the PUBLIC
and SYSTEM identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Linking//EN”
SYSTEM “XHTML1-linking.mod”

Revisions:
1998-10-27 exclusion on ‘a’ within ‘a’ removed for XML
1998-11-15 moved shape and coords attributes on ‘a’ to

csismap module
1999-01-14 moved onfocus and onblur attributes on ‘a’ to

events module
................................. —>

<!— d2. Linking

a, base, link
—>

<!— Anchor Element —>

<!ENTITY % Shape “(rect|circle|poly|default)”>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 723

724 Part V ✦ XML Applications

Listing 20-21 (continued)

<!ENTITY % Coords “CDATA” >

<!ENTITY % A.content “(#PCDATA | %Inline-noa.mix;)*” >
<!ELEMENT a %A.content; >
<!ATTLIST a

%Common.attrib;
name CDATA #IMPLIED
href %URI; #IMPLIED
%Alink.attrib;
charset %Charset; #IMPLIED
type %ContentType; #IMPLIED
hreflang %LanguageCode; #IMPLIED
rel %LinkTypes; #IMPLIED
rev %LinkTypes; #IMPLIED
accesskey %Character; #IMPLIED
tabindex %Number; #IMPLIED

>

<!— Base Element —>

<!ENTITY % Base.content “EMPTY” >
<!ELEMENT base %Base.content; >
<!ATTLIST base

href %URI; #REQUIRED
>

<!— Link Element —>

<!— Relationship values can be used in principle:

a) for document specific toolbars/menus when used
with the LINK element in document head e.g.
start, contents, previous, next, index, end, help

b) to link to a separate style sheet (rel=stylesheet)
c) to make a link to a script (rel=script)
d) by stylesheets to control how collections of

html nodes are rendered into printed documents
e) to make a link to a printable version of this document

e.g. a postscript or pdf version
(rel=alternate media=print)

—>

<!ENTITY % Link.content “EMPTY” >
<!ELEMENT link %Link.content; >
<!ATTLIST link

%Common.attrib;
charset %Charset; #IMPLIED
href %URI; #IMPLIED
hreflang %LanguageCode; #IMPLIED
type %ContentType; #IMPLIED
rel %LinkTypes; #IMPLIED

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 724

725Chapter 20 ✦ Reading Document Type Definitions

rev %LinkTypes; #IMPLIED
media %MediaDesc; #IMPLIED

>

<!— end of XHTML1-linking.mod —>

The Client-side Image Map Module
The next module imported by both strict and transitional DTDs, XHTML1-
csismap.mod, shown in Listing 20-22, is another simple module that defines the
client-side image map elements map and area. The map element provides a client-
side image map and must contain one or more block-level elements, miscellaneous
elements, or area elements. The area element has an unusual, non-standard set of
attributes. This should not surprise you, though, because the area element is
unlike most other HTML elements. It’s the only HTML element that acts like a
vector graphic.

Listing 20-22: XHTML1-csismap.mod: the client-side image
map module

<!— .. —>
<!— XHTML 1.0 Client-side Image Map Module
.............................. —>
<!— file: XHTML1-csismap.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-csismap.mod 1.15 99/04/01 SMI

This DTD module is identified by the
PUBLIC and SYSTEM identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Client-side Image Maps//EN”
SYSTEM “XHTML1-csismap.mod”

Revisions:
1999-01-31 fixed map content model (errata)

.. —>

<!— d3.2. Client-side Image Maps

area, map
—>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 725

726 Part V ✦ XML Applications

Listing 20-22 (continued)

<!— These can be placed in the same document or grouped in a
separate document although this isn’t widely supported —>

<!ENTITY % Map.content
“((%Heading.class; | %List.class; | %Block.mix;) | area)+”>

<!ELEMENT map %Map.content; >
<!ATTLIST map

%Common.attrib;
name CDATA #REQUIRED

>

<!ENTITY % Area.content “EMPTY” >
<!ELEMENT area %Area.content; >
<!ATTLIST area

%Common.attrib;
href %URI; #IMPLIED
shape %Shape; ‘rect’
coords %Coords; #IMPLIED
nohref (nohref) #IMPLIED
alt %Text; #REQUIRED
tabindex %Number; #IMPLIED
accesskey %Character; #IMPLIED

>

<!— modify anchor (<a>) attribute definition list to
allow for client-side image maps —>

<!ATTLIST a
shape %Shape; ‘rect’
coords %Coords; #IMPLIED

>

<!— end of XHTML1-csismap.mod —>

The Object Element Module
The next module imported by both strict and transitional DTDs, XHTML1-
object.mod, shown in Listing 20-23, is another simple module that defines the
object and param elements used to embed non-HTML content such as Java
applets, ActiveX controls, and so forth in Web pages.

Listing 20-23: XHTML1-object.mod: the object module

<!— .. —>
<!— XHTML 1.0 External Inclusion Module
................................. —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 726

727Chapter 20 ✦ Reading Document Type Definitions

<!— file: XHTML1-object.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-object.mod 1.16 99/04/01 SMI

This DTD module is identified by the
PUBLIC and SYSTEM identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Object Element//EN”
SYSTEM “XHTML1-object.mod”

Revisions:
1999-01-31 changed object’s archive attr

to allow for multiple URIs
1999-01-31 corrected transitional attributes (errata)

.. —>

<!— d3.3. Objects

object, param

object is used to embed objects as part of HTML pages;
param elements should precede other content.

—>

<!ENTITY % Object.content “(%Flow.mix; | param)*” >
<!ELEMENT object %Object.content; >
<!ATTLIST object

%Common.attrib;
declare (declare) #IMPLIED
classid %URI; #IMPLIED
codebase %URI; #IMPLIED
data %URI; #IMPLIED
type %ContentType; #IMPLIED
codetype %ContentType; #IMPLIED
archive %URIs; #IMPLIED
standby %Text; #IMPLIED
height %Length; #IMPLIED
width %Length; #IMPLIED
usemap %URI; #IMPLIED
name CDATA #IMPLIED
tabindex %Number; #IMPLIED

>

<![%XHTML.Transitional;[
<!— additional Transitional attributes —>
<!ATTLIST object

%IAlign.attrib;
border %Pixels; #IMPLIED
hspace %Pixels; #IMPLIED

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 727

728 Part V ✦ XML Applications

Listing 20-23 (continued)

vspace %Pixels; #IMPLIED
>
]]>

<!ENTITY % Param.content “EMPTY” >
<!ELEMENT param %Param.content; >
<!ATTLIST param

id ID #IMPLIED
name CDATA #REQUIRED
value CDATA #IMPLIED
valuetype (data|ref|object) ‘data’
type %ContentType; #IMPLIED

>

<!— end of XHTML1-object.mod —>

Only two elements are declared; object and param. The content model for object
is spelled out using the Flow.mix and param entities. Also, note that the mixed-
content model of the object element requires a stricter declaration than is actually
provided. That’s the purpose of the comment “param elements should precede
other content”. However, a DTD can’t specify that param elements should precede
other content since mixed content requires that #PCDATA come first, and that a
choice be used instead of a sequence.

The Java Applet Element Module
The applet element was originally invented by Sun to embed Java applets in Web
pages. The next module imported only by the transitional DTD — XHTML1-
applet.mod, shown in Listing 20-24 — is another simple module that defines the
applet element. However, HTML 4.0 deprecates the applet element in favor of the
more generic object element which can embed not only applets, but also ActiveX
controls, images, Shockwave animations, QuickTime movies, and other forms of
active and multimedia content. Consequently, only the transitional XHTML DTD
uses the applet module.

Listing 20-24: XHTML1-applet.mod: the applet module

<!— .. —>
<!— XHTML 1.0 Draft Document Java Applet Module
......................... —>
<!— file: XHTML1-applet.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 728

729Chapter 20 ✦ Reading Document Type Definitions

Reserved.
Revision: @(#)XHTML1-applet.mod 1.14 99/04/01 SMI

This DTD module is identified by the
PUBLIC and SYSTEM identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML V1.0 Java Applets//EN”
SYSTEM “XHTML1-applet.mod”

Revisions:
(none)
... —>

<!— d4. Scripting

applet
—>

<!— One of code or object attributes must be present.
Place param elements before other content.

—>

<!ENTITY % Applet.content “(param | %Flow.mix;)*”>
<!ELEMENT applet %Applet.content; >
<!ATTLIST applet

%Core.attrib;
codebase %URI; #IMPLIED
archive CDATA #IMPLIED
code CDATA #IMPLIED
object CDATA #IMPLIED
alt %Text; #IMPLIED
name CDATA #IMPLIED
width %Length; #REQUIRED
height %Length; #REQUIRED
%IAlign.attrib;
hspace %Pixels; #IMPLIED
vspace %Pixels; #IMPLIED

>

<!— If the Object module that supplies the param element
declarations is not used, redeclare %Param.local.module;
as ‘INCLUDE’: —>

<!ENTITY % Param.local.module “IGNORE” >
<![%Param.local.module;[
<!ENTITY % Param.content “EMPTY”>
<!ELEMENT param %Param.content; >
<!ATTLIST param

id ID #IMPLIED
name CDATA #REQUIRED
value CDATA #IMPLIED
valuetype (data|ref|object) ‘data’
type %ContentType; #IMPLIED

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 729

730 Part V ✦ XML Applications

Listing 20-24 (continued)

>
]]>

<!— end of XHTML1-applet.mod —>

The content model and attribute list for applet essentially resembles object. The
param element that’s used to pass parameters to applets is declared in Listing 22-3,
XHTML1-object.mod. However, if for some reason that’s not imported as well, then
the Param.local.module entity can be redefined to INCLUDE instead of IGNORE,
and this DTD will declare param.

The Lists Module
The XHTML1-list.mod module, shown in Listing 20-25, operates in both DTDs and
defines the elements used in ordered, unordered, and definition lists.

Listing 20-25: XHTML1-list.mod: the Voyager module for lists

<!— ... —>
<!— XHTML 1.0 Lists Module
.. —>
<!— file: XHTML1-list.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-list.mod 1.13 99/04/01 SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Lists//EN”
SYSTEM “XHTML1-list.mod”

Revisions:
(none)
... —>

<!— a3. Lists

dl, dt, dd, ol, ul, li

A conditional section includes additional declarations for
the Transitional DTD

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 730

731Chapter 20 ✦ Reading Document Type Definitions

dir, menu
—>

<!— definition lists - DT for term, DD for its definition —>

<!ENTITY % Dl.content “(dt | dd)+” >
<!ELEMENT dl %Dl.content; >
<!ATTLIST dl

%Common.attrib;
>

<!ENTITY % Dt.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT dt %Dt.content; >
<!ATTLIST dt

%Common.attrib;
>

<!ENTITY % Dd.content “(#PCDATA | %Flow.mix;)*” >
<!ELEMENT dd %Dd.content; >
<!ATTLIST dd

%Common.attrib;
>

<!— Ordered Lists (ol) numbered styles —>

<!ENTITY % Ol.content “(li)+” >
<!ELEMENT ol %Ol.content; >
<!ATTLIST ol

%Common.attrib;
>

<!— Unordered Lists (ul) bullet styles —>

<!ENTITY % Ul.content “(li)+” >
<!ELEMENT ul %Ul.content; >
<!ATTLIST ul

%Common.attrib;
>

<!ENTITY % Li.content “(#PCDATA | %Flow.mix;)*” >
<!ELEMENT li %Li.content; >
<!ATTLIST li

%Common.attrib;
>

<![%XHTML.Transitional;[
<!— Ordered lists (ol) Numbering style

1 arabic numbers 1, 2, 3, ...
a lower alpha a, b, c, ...
A upper alpha A, B, C, ...
i lower roman i, ii, iii, ...

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 731

732 Part V ✦ XML Applications

Listing 20-25 (continued)

I upper roman I, II, III, ...

The style is applied to the sequence number which by
default is reset to 1 for the first list item in
an ordered list.

—>

<!ENTITY % OlStyle “CDATA” >

<!ATTLIST ol
type %OlStyle; #IMPLIED
compact (compact) #IMPLIED
start %Number; #IMPLIED

>

<!— Unordered Lists (ul) bullet styles —>
<!ENTITY % UlStyle “(disc|square|circle)” >

<!ATTLIST ul
type %UlStyle; #IMPLIED
compact (compact) #IMPLIED

>

<!ENTITY % Dir.content “(li)+” >
<!ELEMENT dir %Dir.content; >
<!ATTLIST dir

%Common.attrib;
compact (compact) #IMPLIED

>

<!ENTITY % Menu.content “(li)+” >
<!ELEMENT menu %Menu.content; >
<!ATTLIST menu

%Common.attrib;
compact (compact) #IMPLIED

>
]]>

<!— end of XHTML1-list.mod —>

You can define ordered and unordered lists much the same way. Each contains one
list element (ol or ul) which may contain one or more list items (li). Both ol and
ul elements may have the standard %Common.attrib; attributes of any HTML
element. The definition list resembles this except that dl dt pairs are used instead
of li list items.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 732

733Chapter 20 ✦ Reading Document Type Definitions

The Forms Module
The XHTML1-form.mod module — shown in Listing 20-26 and used in both DTDs —
covers the standard HTML form elements form, label, input, select, optgroup,
option, textarea, fieldset, legend, and button. This is a relatively complicated
module, reflecting the complexity of HTML forms.

Listing 20-26: XHTML1-form.mod: the XHTML forms module

<!— .. —>
<!— XHTML 1.0 Forms Module
.. —>
<!— file: XHTML1-form.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-form.mod 1.18 99/04/01 SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Forms//EN”
SYSTEM “XHTML1-form.mod”

Revisions:
1998-10-27 exclusion on form within form removed for XML
1998-11-10 changed button content model to mirror exclusions
1999-01-31 added ‘accept’ attribute on form (errata)

.. —>

<!— d7. Forms

form, label, input, select, optgroup, option, textarea,
fieldset, legend, button

—>

<![%XHTML.Transitional;[
<!ENTITY % Form.content

“(%Heading.class;
| %List.class;
| %Inline.class;
| %Block-noform.mix;
| fieldset)*”

>
]]>
<!ENTITY % Form.content

“(%Heading.class;
| %List.class;

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 733

734 Part V ✦ XML Applications

Listing 20-26 (continued)

| %Block-noform.mix;
| fieldset)+”

>

<!ELEMENT form %Form.content; >
<!ATTLIST form
%Common.attrib;
action %URI; #REQUIRED
method (get|post) ‘get’
enctype %ContentType; ‘application/x-www-form-urlencoded’
accept-charset %Charsets; #IMPLIED
accept %ContentTypes; #IMPLIED
>

<!— Each label must not contain more than ONE field —>

<!ENTITY % Label.content
“(#PCDATA
| %Inlstruct.class;
| %Inlpres.class;
| %Inlphras.class;
| %Inlspecial.class;
| input | select | textarea | button
| %Misc.class;)*”

>
<!ELEMENT label %Label.content; >
<!ATTLIST label

%Common.attrib;
for IDREF #IMPLIED
accesskey %Character; #IMPLIED

>

<!ENTITY % InputType.class
“(text | password | checkbox | radio | submit
| reset | file | hidden | image | button)”

>

<!— attribute name required for all but submit & reset —>

<!ENTITY % Input.content “EMPTY” >
<!ELEMENT input %Input.content; >
<!ATTLIST input

%Common.attrib;
type %InputType.class; ‘text’
name CDATA #IMPLIED
value CDATA #IMPLIED
checked (checked) #IMPLIED
disabled (disabled) #IMPLIED
readonly (readonly) #IMPLIED
size CDATA #IMPLIED
maxlength %Number; #IMPLIED

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 734

735Chapter 20 ✦ Reading Document Type Definitions

src %URI; #IMPLIED
alt CDATA #IMPLIED
usemap %URI; #IMPLIED
tabindex %Number; #IMPLIED
accesskey %Character; #IMPLIED
accept %ContentTypes; #IMPLIED

>

<!ENTITY % Select.content “(optgroup | option)+” >
<!ELEMENT select %Select.content; >
<!ATTLIST select

%Common.attrib;
name CDATA #IMPLIED
size %Number; #IMPLIED
multiple (multiple) #IMPLIED
disabled (disabled) #IMPLIED
tabindex %Number; #IMPLIED

>

<!ENTITY % Optgroup.content “(option)+” >
<!ELEMENT optgroup %Optgroup.content; >
<!ATTLIST optgroup

%Common.attrib;
disabled (disabled) #IMPLIED
label %Text; #REQUIRED

>

<!ENTITY % Option.content “(#PCDATA)” >
<!ELEMENT option %Option.content; >
<!ATTLIST option

%Common.attrib;
selected (selected) #IMPLIED
disabled (disabled) #IMPLIED
label %Text; #IMPLIED
value CDATA #IMPLIED

>

<!ENTITY % Textarea.content “(#PCDATA)” >
<!ELEMENT textarea %Textarea.content; >
<!ATTLIST textarea

%Common.attrib;
name CDATA #IMPLIED
rows %Number; #REQUIRED
cols %Number; #REQUIRED
disabled (disabled) #IMPLIED
readonly (readonly) #IMPLIED
tabindex %Number; #IMPLIED
accesskey %Character; #IMPLIED

>

<!— #PCDATA is to solve the mixed content problem, per
specification only whitespace is allowed there!

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 735

736 Part V ✦ XML Applications

Listing 20-26 (continued)

—>

<!ENTITY % Fieldset.content
“(#PCDATA | legend | %Flow.mix;)*” >

<!ELEMENT fieldset %Fieldset.content; >
<!ATTLIST fieldset

%Common.attrib;
>

<![%XHTML.Transitional;[
<!ENTITY % LegendAlign.attrib

“align (top|bottom|left|right) #IMPLIED” >
]]>
<!ENTITY % LegendAlign.attrib “” >

<!ENTITY % Legend.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT legend %Legend.content; >
<!ATTLIST legend

%Common.attrib;
accesskey %Character; #IMPLIED
%LegendAlign.attrib;

>

<!ENTITY % Button.content
“(#PCDATA
| %Heading.class;
| %List.class;
| %Inlpres.class;
| %Inlphras.class;
| %Block-noform.mix;
| img | object | map)*”

>
<!ELEMENT button %Button.content; >
<!ATTLIST button

%Common.attrib;
name CDATA #IMPLIED
value CDATA #IMPLIED
type (button|submit|reset) ‘submit’
disabled (disabled) #IMPLIED
tabindex %Number; #IMPLIED
accesskey %Character; #IMPLIED

>

<!— end of forms.mod —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 736

737Chapter 20 ✦ Reading Document Type Definitions

This module is starting to come close to the limits of DTDs. Several times you see
comments specifying restrictions that are difficult to impossible to include in the
declarations. For example, the comment that “attribute name required for all but
submit & reset” for input elements. You can specify that all input elements must
have a name attribute, or you can specify that all input elements may or may not
have a name attribute, but you cannot specify that some must have it while others
do not have to have it.

You might argue that this points more toward a deficiency in HTML forms than a
deficiency in DTDs, and perhaps you’d be right. After all, submit and reset buttons
certainly don’t have to be input elements. Still, you can witness several other
places in this module where the DTD begins to creak under its own weight. Perhaps
what’s really being demonstrated here is that XML and DTDs were designed for
display of static documents, not for heavy interactive use.

The Table Module
The XHTML1-table.mod module, shown in Listing 20-15 and used by both DTDs,
defines the elements used to lay out tables in HTML; specifically caption, col,
colgroup, table, tbody, td, tfoot, th, thead, and tr. Like form elements, most of
these elements should only appear inside a table element and consequently this
module runs somewhat longer since it can’t rely on elements defined previously,
and since many elements defined here don’t appear anywhere else.

Listing 20-27: XHTML1-table.mod: the XHTML tables module

<!— .. —>
<!— XHTML 1.0 Table Module
.. —>
<!— file: XHTML1-table.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-table.mod 1.15 99/04/01 SMI

This DTD module is identified by the
PUBLIC and SYSTEM identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Tables//EN”
SYSTEM “XHTML1-table.mod”

Revisions:
(none)
.. —>

<!— d6. HTML 4.0 Tables

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 737

738 Part V ✦ XML Applications

Listing 20-27 (continued)

caption, col, colgroup, table, tbody,
td, tfoot, th, thead, tr

A conditional section includes additional
declarations for the Transitional DTD

—>

<!— IETF HTML table standard, see [RFC1942] —>

<!— The border attribute sets the thickness of the frame
around the table. The default units are screen pixels.

The frame attribute specifies which parts of the frame
around the table should be rendered. The values are not
the same as CALS to avoid a name clash with the valign
attribute.

The value “border” is included for backwards compatibility
with <table border> which yields frame=border and
border=implied For <table border=”1”> you get border=”1”
and frame=”implied”. In this case, it is appropriate to
treat this as frame=border for backwards compatibility
with deployed browsers.

—>

<!ENTITY % TFrame
“(void|above|below|hsides|lhs|rhs|vsides|box|border)”>

<!— The rules attribute defines which rules to draw between
cells:

If rules is absent then assume:

“none” if border is absent or border=”0” otherwise “all”
—>

<!ENTITY % TRules “(none | groups | rows | cols | all)”>

<!— horizontal placement of table relative to document —>
<!ENTITY % TAlign “(left|center|right)”>

<!— horizontal alignment attributes for cell contents —>
<!ENTITY % CellHAlign.attrib

“align (left|center|right|justify|char) #IMPLIED
char %Character; #IMPLIED
charoff %Length; #IMPLIED”

>

<!— vertical alignment attributes for cell contents —>
<!ENTITY % CellVAlign.attrib

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 738

739Chapter 20 ✦ Reading Document Type Definitions

“valign (top|middle|bottom|baseline) #IMPLIED”
>

<!ENTITY % CaptionAlign “(top|bottom|left|right)”>

<!— Scope is simpler than axes attribute for common tables —>

<!ENTITY % Scope “(row|col|rowgroup|colgroup)” >

<!ENTITY % Table.content
“(caption?, (col* | colgroup*),
((thead?, tfoot?, tbody+) | (tr+)))”

>
<!ELEMENT table %Table.content; >
<!ATTLIST table

%Common.attrib;
summary %Text; #IMPLIED
width %Length; #IMPLIED
border %Pixels; #IMPLIED
frame %TFrame; #IMPLIED
rules %TRules; #IMPLIED
cellspacing %Length; #IMPLIED
cellpadding %Length; #IMPLIED
datapagesize CDATA #IMPLIED

>

<!ENTITY % Caption.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT caption %Caption.content; >
<!ATTLIST caption

%Common.attrib;
>

<!ENTITY % Thead.content “(tr)+” >
<!ELEMENT thead %Thead.content; >
<!— Use thead to duplicate headers when breaking table

across page boundaries, or for static headers when
TBODY sections are rendered in scrolling panel.

Use tfoot to duplicate footers when breaking table
across page boundaries, or for static footers when
TBODY sections are rendered in scrolling panel.

Use multiple tbody sections when rules are needed
between groups of table rows.

—>
<!ATTLIST thead

%Common.attrib;
%CellHAlign.attrib;
%CellVAlign.attrib;

>

<!ENTITY % Tfoot.content “(tr)+” >

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 739

740 Part V ✦ XML Applications

Listing 20-27 (continued)

<!ELEMENT tfoot %Tfoot.content; >
<!ATTLIST tfoot

%Common.attrib;
%CellHAlign.attrib;
%CellVAlign.attrib;

>

<!ENTITY % Tbody.content “(tr)+” >
<!ELEMENT tbody %Tbody.content; >
<!ATTLIST tbody

%Common.attrib;
%CellHAlign.attrib;
%CellVAlign.attrib;

>

<!ENTITY % Colgroup.content “(col)*” >
<!ELEMENT colgroup %Colgroup.content; >
<!— colgroup groups a set of col elements. It allows you to

group several semantically related columns together.
—>
<!ATTLIST colgroup

%Common.attrib;
span %Number; ‘1’
width %MultiLength; #IMPLIED
%CellHAlign.attrib;
%CellVAlign.attrib;

>

<!ENTITY % Col.content “EMPTY” >
<!ELEMENT col %Col.content; >
<!— col elements define the alignment properties for cells in

one or more columns.

The width attribute specifies the width of the columns, e.g.

width=”64” width in screen pixels
width=”0.5*” relative width of 0.5

The span attribute causes the attributes of one
col element to apply to more than one column.

—>
<!ATTLIST col

%Common.attrib;
span %Number; ‘1’
width %MultiLength; #IMPLIED
%CellHAlign.attrib;
%CellVAlign.attrib;

>

<!ENTITY % Tr.content “(th | td)+” >
<!ELEMENT tr %Tr.content; >

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 740

741Chapter 20 ✦ Reading Document Type Definitions

<!ATTLIST tr
%Common.attrib;
%CellHAlign.attrib;
%CellVAlign.attrib;

>

<!— th is for headers, td for data, but for cells
acting as both use td —>

<!ENTITY % Th.content “(#PCDATA | %Flow.mix;)*” >
<!ELEMENT th %Th.content; >
<!ATTLIST th

%Common.attrib;
abbr %Text; #IMPLIED
axis CDATA #IMPLIED
headers IDREFS #IMPLIED
scope %Scope; #IMPLIED
rowspan %Number; ‘1’
colspan %Number; ‘1’
%CellHAlign.attrib;
%CellVAlign.attrib;

>

<!ENTITY % Td.content “(#PCDATA | %Flow.mix;)*” >
<!ELEMENT td %Td.content; >
<!ATTLIST td

%Common.attrib;
abbr %Text; #IMPLIED
axis CDATA #IMPLIED
headers IDREFS #IMPLIED
scope %Scope; #IMPLIED
rowspan %Number; ‘1’
colspan %Number; ‘1’
%CellHAlign.attrib;
%CellVAlign.attrib;

>

<![%XHTML.Transitional;[
<!— additional Transitional attributes for XHTML tables:

(in XML, multiple ATTLIST declarations are merged)
—>

<!ATTLIST table
align %TAlign; #IMPLIED
bgcolor %Color; #IMPLIED

>

<!ATTLIST caption
align %CaptionAlign; #IMPLIED

>

<!ATTLIST tr

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 741

742 Part V ✦ XML Applications

Listing 20-27 (continued)

bgcolor %Color; #IMPLIED
>

<!ATTLIST th
nowrap (nowrap) #IMPLIED
bgcolor %Color; #IMPLIED
width %Pixels; #IMPLIED
height %Pixels; #IMPLIED

>

<!ATTLIST td
nowrap (nowrap) #IMPLIED
bgcolor %Color; #IMPLIED
width %Pixels; #IMPLIED
height %Pixels; #IMPLIED

>
]]>

<!— end of XHTML1-table.mod —>

The Meta Module
The next module is imported by both strict and transitional DTDs. XHTML1-
meta.mod, shown in Listing 20-28, gets its name by defining the meta element
placed in HTML head elements to provide keyword, authorship, abstract, and other
indexing information that’s mostly useful to Web robots. This module also defines
the title element Although the title is meta-information in some sense, I suspect
XHTML1-head.mod might be a better name here, except that the head element isn’t
defined here.

Listing 20-28: XHTML1-meta.mod: the XHTML meta module

<!— .. —>
<!— XHTML 1.0 Document Metainformation Module
........................... —>
<!— file: XHTML1-meta.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio), All Rights
Reserved.
Revision: @(#)XHTML1-meta.mod 1.14 99/04/01 SMI

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 742

743Chapter 20 ✦ Reading Document Type Definitions

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Metainformation//EN”
SYSTEM “XHTML1-meta.mod”

Revisions:
1998-11-11 title content model changed

- exclusions no longer necessary
1999-02-01 removed isindex

... —>

<!— d1. Meta Information

meta, title
—>

<!— The title element is not considered part of the flow of
text. It should be displayed, for example as the page
header or window title. Exactly one title is required per
document.

—>

<!ENTITY % Title.content “(#PCDATA)” >
<!ELEMENT title %Title.content; >
<!ATTLIST title

%I18n.attrib;
>

<!ENTITY % Meta.content “EMPTY” >
<!ELEMENT meta %Meta.content; >
<!ATTLIST meta

%I18n.attrib;
http-equiv NMTOKEN #IMPLIED
name NMTOKEN #IMPLIED
content CDATA #REQUIRED
scheme CDATA #IMPLIED

>

<!— end of XHTML1-meta.mod —>

The Structure Module
The final standard module takes all the previously defined elements, attributes, and
entities and puts them together in an HTML document. This is XHTML1-struct.mod,
shown in Listing 20-29. Specifically, it defines the html, head, and body elements.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 743

744 Part V ✦ XML Applications

Listing 20-29: XHTML1-struct.mod: the XHTML
structure module

<!— .. —>
<!— XHTML 1.0 Structure Module
.. —>
<!— file: XHTML1-struct.mod

This is XHTML 1.0, an XML reformulation of HTML 4.0.
Copyright 1998-1999 W3C (MIT, INRIA, Keio),
All Rights Reserved.
Revision: @(#)XHTML1-struct.mod 1.15 99/04/01 SMI

This DTD module is identified by the PUBLIC and SYSTEM
identifiers:

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Document Structure//EN”
SYSTEM “XHTML1-struct.mod”

Revisions:
1998-10-27 content model on head changed to

exclude multiple title or base
1998-11-11 ins and del inclusions on body removed,

added to indiv. elements
1998-11-15 added head element version attribute

(restoring from HTML 3.2)
1999-03-24 %Profile.attrib; unused,

but reserved for future use
.. —>

<!— a1. Document Structure

body, head, html
—>

<!ENTITY % Head-opts.mix “(script | style | meta | link |
object)*” >

<!ENTITY % Head.content “(title, base?, %Head-opts.mix;)” >

<!— reserved for future use with document profiles —>
<!ENTITY % Profile.attrib

“profile %URI; #FIXED
‘%XHTML.profile;’” >

<!ELEMENT head %Head.content; >
<!ATTLIST head

%I18n.attrib;
profile %URI; #IMPLIED

>

<![%XHTML.Transitional;[

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 744

745Chapter 20 ✦ Reading Document Type Definitions

<!— in Transitional, allow #PCDATA and inlines directly within
body —>

<!ENTITY % Body.content “(#PCDATA | %Flow.mix;)*” >
]]>
<!ENTITY % Body.content

“(%Heading.class;
| %List.class;
| %Block.class;
| %Misc.class;)+”

>

<!ELEMENT body %Body.content; >
<!ATTLIST body

%Common.attrib;
>

<![%XHTML.Transitional;[
<!— additional Transitional attributes on body —>

<!— There are also 16 widely known color names with their sRGB
values:

Black =#000000 Maroon =#800000 Green = #008000 Navy = #000080
Silver=#C0C0C0 Red =#FF0000 Lime = #00FF00 Blue = #0000FF
Gray =#808080 Purple =#800080 Olive = #808000 Teal = #008080
White =#FFFFFF Fuchsia=#FF00FF Yellow = #FFFF00 Aqua = #00FFFF
—>

<!ATTLIST body
bgcolor %Color; #IMPLIED
text %Color; #IMPLIED
link %Color; #IMPLIED
vlink %Color; #IMPLIED
alink %Color; #IMPLIED
background %URI; #IMPLIED

>
]]>

<!ENTITY % Html.content “(head, body)” >

<!—version and namespace attribute values defined in driver—>
<!ENTITY % Version.attrib

“version CDATA #FIXED ‘%HTML.version;’” >
<!ENTITY % Ns.attrib

“xmlns %URI; #FIXED ‘%XHTML.ns;’” >

<!ELEMENT html %Html.content; >
<!ATTLIST html

%I18n.attrib;
%Version.attrib;
%Ns.attrib;

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 745

746 Part V ✦ XML Applications

Listing 20-29 (continued)

>

<!— end of XHTML1-struct.mod —>

Non-Standard modules
There are a number of non-standard modules included in the XHTML distribution
that aren’t used as part of the main XHTML application and won’t be discussed
here, but may be useful as parts of your custom program. These include:

✦ XHTML1-form32.mod: HTML 3.2 forms (as opposed to the HTML 4.0 forms
used by XHTML)

✦ XHTML1-table32.mod: HTML 3.2 tables (as opposed to the HTML 4.0 tables
used by XHTML)

✦ XHTML1-math.mod: MathML with slight revisions to make it fully compatible
with XHTML

The XHTML Entity Sets
XML requires all entities to be declared (with the possible exception of the five
standard entity references <, >, ', ", &).The XHTML DTD
defines three entity sets declaring all entities commonly used in HTML:

1. XHTML1-lat1.ent, characters 160 through 255 of Latin-1, Listing 20-30.

2. XHTML1-symbol.ent, assorted useful characters and punctuation marks from
outside the Latin-1 set such as the Euro sign and the em dash, Listing 20-31.

3. XHTML1-special.ent, the Greek alphabet and assorted symbols commonly
used for math like ∞ and ∫, Listing 20-32.

Each of these entity sets is included in all versions of the XHTML DTD through the
XHTML1-chars.mod module. Each of these entity sets has the same basic format:

1. A comment containing basic title, usage, and copyright information.

2. Lots of general internal entity declarations. The value of each general entity is
given as a character reference to a Unicode character. Since no one can be
expected to remember the all 40,000 Unicode characters by number, a brief
textual description of the referenced character is given in a comment
following each entity declaration.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 746

747Chapter 20 ✦ Reading Document Type Definitions

The XHTML Latin-1 Entities
The XHTML1-lat1.ent file shown in Listing 20-30 declares entity references for the
upper half of the ISO 8859-1, Latin-1 character set.

Listing 20-30: XHTML1-lat1.ent: the XHTML entity set for the
upper half of ISO 8859-1, Latin-1

<!— XML-compatible ISO Latin 1 Character Entity Set for XHTML
1.0

Typical invocation:

<!ENTITY % XHTML1-lat1
PUBLIC “-//W3C//ENTITIES Latin 1//EN//XML”

“XHTML1-lat1.ent”>
%XHTML1-lat1;

Revision: @(#)XHTML1-lat1.ent 1.13 99/04/01 SMI

Portions (C) International Organization for
Standardization 1986 Permission to copy in any form is
granted for use with conforming SGML systems and
applications as defined in ISO 8879, provided this notice
is included in all copies.

—>
<!ENTITY nbsp “ ” ><!— no-break space=non-breaking space,

U+00A0 ISOnum —>
<!ENTITY iexcl “¡” ><!— inverted exclamation mark,

U+00A1 ISOnum —>
<!ENTITY cent “¢” ><!— cent sign,

U+00A2 ISOnum —>
<!ENTITY pound “£” ><!— pound sign,

U+00A3 ISOnum —>
<!ENTITY curren “¤” ><!— currency sign,

U+00A4 ISOnum —>
<!ENTITY yen “¥” ><!— yen sign = yuan sign,

U+00A5 ISOnum —>
<!ENTITY brvbar “¦” ><!— broken bar =broken vertical bar,

U+00A6 ISOnum —>
<!ENTITY sect “§” ><!— section sign,

U+00A7 ISOnum —>
<!ENTITY uml “¨” ><!— diaeresis = spacing diaeresis,

U+00A8 ISOdia —>
<!ENTITY copy “©” ><!— copyright sign,

U+00A9 ISOnum —>
<!ENTITY ordf “ª” ><!— feminine ordinal indicator,

U+00AA ISOnum —>
<!ENTITY laquo “«” ><!— left-pointing double angle

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 747

748 Part V ✦ XML Applications

Listing 20-30 (continued)

quotation mark = left pointing guillemet,
U+00AB ISOnum —>

<!ENTITY not “¬” ><!— not sign,
U+00AC ISOnum —>

<!ENTITY shy “­” ><!— soft hyphen = discretionary hyphen,
U+00AD ISOnum —>

<!ENTITY reg “®” ><!— registered sign
= registered trade mark sign,

U+00AE ISOnum —>
<!ENTITY macr “¯” ><!— macron = spacing macron

= overline = APL overbar,
U+00AF ISOdia —>

<!ENTITY deg “°” ><!— degree sign,
U+00B0 ISOnum —>

<!ENTITY plusmn “±” ><!— plus-minus sign
= plus-or-minus sign,

U+00B1 ISOnum —>
<!ENTITY sup2 “²” ><!— superscript two

= superscript digit two = squared,
U+00B2 ISOnum —>

<!ENTITY sup3 “³” ><!— superscript three
= superscript digit three = cubed,

U+00B3 ISOnum —>
<!ENTITY acute “´” ><!— acute accent = spacing acute,

U+00B4 ISOdia —>
<!ENTITY micro “µ” ><!— micro sign,

U+00B5 ISOnum —>
<!ENTITY para “¶” ><!— pilcrow sign = paragraph sign,

U+00B6 ISOnum —>
<!ENTITY middot “·” ><!— middle dot = Georgian comma

= Greek middle dot,
U+00B7 ISOnum —>

<!ENTITY cedil “¸” ><!— cedilla = spacing cedilla,
U+00B8 ISOdia —>

<!ENTITY sup1 “¹” ><!— superscript one
= superscript digit one,
U+00B9 ISOnum —>

<!ENTITY ordm “º” ><!— masculine ordinal indicator,
U+00BA ISOnum —>

<!ENTITY raquo “»” ><!— right-pointing
double angle quotation mark = right pointing guillemet,

U+00BB ISOnum —>
<!ENTITY frac14 “¼” ><!— vulgar fraction one quarter

= fraction one quarter,
U+00BC ISOnum —>

<!ENTITY frac12 “½” ><!— vulgar fraction one half
= fraction one half,
U+00BD ISOnum —>

<!ENTITY frac34 “¾” ><!— vulgar fraction three quarters
= fraction three quarters,
U+00BE ISOnum —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 748

749Chapter 20 ✦ Reading Document Type Definitions

<!ENTITY iquest “¿” ><!— inverted question mark
= turned question mark,
U+00BF ISOnum —>

<!ENTITY Agrave “À” ><!—latin capital letter A with grave
= latin capital letter A grave,

U+00C0 ISOlat1 —>
<!ENTITY Aacute “Á”><!—latin capital letter A with acute,

U+00C1 ISOlat1 —>
<!ENTITY Acirc “Â” ><!— latin capital letter A

with circumflex,
U+00C2 ISOlat1 —>

<!ENTITY Atilde “Ã”><!—latin capital letter A with tilde,
U+00C3 ISOlat1 —>

<!ENTITY Auml “Ä” ><!— latin capital letter A
with diaeresis,

U+00C4 ISOlat1 —>
<!ENTITY Aring “Å” ><!— latin capital letter A

with ring above
= latin capital letter A ring,

U+00C5 ISOlat1 —>
<!ENTITY AElig “Æ” ><!— latin capital letter AE

= latin capital ligature AE,
U+00C6 ISOlat1 —>

<!ENTITY Ccedil “Ç” ><!— latin capital letter C
with cedilla,

U+00C7 ISOlat1 —>
<!ENTITY Egrave “È”><!—latin capital letter E with grave,

U+00C8 ISOlat1 —>
<!ENTITY Eacute “É”><!—latin capital letter E with acute,

U+00C9 ISOlat1 —>
<!ENTITY Ecirc “Ê” ><!— latin capital letter E

with circumflex,
U+00CA ISOlat1 —>

<!ENTITY Euml “Ë” ><!— latin capital letter E with
diaeresis,

U+00CB ISOlat1 —>
<!ENTITY Igrave “Ì”><!—latin capital letter I with grave,

U+00CC ISOlat1 —>
<!ENTITY Iacute “Í”><!—latin capital letter I with acute,

U+00CD ISOlat1 —>
<!ENTITY Icirc “Î” ><!— latin capital letter I

with circumflex,
U+00CE ISOlat1 —>

<!ENTITY Iuml “Ï” ><!— latin capital letter I
with diaeresis,

U+00CF ISOlat1 —>
<!ENTITY ETH “Ð” ><!— latin capital letter ETH,

U+00D0 ISOlat1 —>
<!ENTITY Ntilde “Ñ”><!—latin capital letter N with tilde,

U+00D1 ISOlat1 —>
<!ENTITY Ograve “Ò”><!—latin capital letter O with grave,

U+00D2 ISOlat1 —>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 749

750 Part V ✦ XML Applications

Listing 20-30 (continued)

<!ENTITY Oacute “Ó”><!—latin capital letter O with acute,
U+00D3 ISOlat1 —>

<!ENTITY Ocirc “Ô” ><!— latin capital letter O
with circumflex,

U+00D4 ISOlat1 —>
<!ENTITY Otilde “Õ”><!—latin capital letter O with tilde,

U+00D5 ISOlat1 —>
<!ENTITY Ouml “Ö” ><!— latin capital letter O

with diaeresis,
U+00D6 ISOlat1 —>

<!ENTITY times “×” ><!— multiplication sign,
U+00D7 ISOnum —>

<!ENTITY Oslash “Ø”><!—latin capital letter O with stroke
= latin capital letter O slash,

U+00D8 ISOlat1 —>
<!ENTITY Ugrave “Ù”><!—latin capital letter U with grave,

U+00D9 ISOlat1 —>
<!ENTITY Uacute “Ú”><!—latin capital letter U with acute,

U+00DA ISOlat1 —>
<!ENTITY Ucirc “Û” ><!— latin capital letter U

with circumflex,
U+00DB ISOlat1 —>

<!ENTITY Uuml “Ü” ><!— latin capital letter U
with diaeresis,

U+00DC ISOlat1 —>
<!ENTITY Yacute “Ý”><!—latin capital letter Y with acute,

U+00DD ISOlat1 —>
<!ENTITY THORN “Þ” ><!— latin capital letter THORN,

U+00DE ISOlat1 —>
<!ENTITY szlig “ß” ><!— latin small letter sharp s

= ess-zed,
U+00DF ISOlat1 —>

<!ENTITY agrave “à” ><!— latin small letter a with grave
= latin small letter a grave,

U+00E0 ISOlat1 —>
<!ENTITY aacute “á” ><!— latin small letter a with acute,

U+00E1 ISOlat1 —>
<!ENTITY acirc “â” ><!— latin small letter a

with circumflex,
U+00E2 ISOlat1 —>

<!ENTITY atilde “ã” ><!— latin small letter a with tilde,
U+00E3 ISOlat1 —>

<!ENTITY auml “ä” ><!— latin small letter a
with diaeresis,

U+00E4 ISOlat1 —>
<!ENTITY aring “å” ><!— latin small letter a

with ring above
= latin small letter a ring,

U+00E5 ISOlat1 —>
<!ENTITY aelig “æ” ><!— latin small letter ae

= latin small ligature ae,

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 750

751Chapter 20 ✦ Reading Document Type Definitions

U+00E6 ISOlat1 —>
<!ENTITY ccedil “ç” ><!— latin small letter c

with cedilla,
U+00E7 ISOlat1 —>

<!ENTITY egrave “è” ><!— latin small letter e with grave,
U+00E8 ISOlat1 —>

<!ENTITY eacute “é” ><!— latin small letter e with acute,
U+00E9 ISOlat1 —>

<!ENTITY ecirc “ê” ><!— latin small letter e
with circumflex,

U+00EA ISOlat1 —>
<!ENTITY euml “ë” ><!— latin small letter e

with diaeresis,
U+00EB ISOlat1 —>

<!ENTITY igrave “ì” ><!— latin small letter i with grave,
U+00EC ISOlat1 —>

<!ENTITY iacute “í” ><!— latin small letter i with acute,
U+00ED ISOlat1 —>

<!ENTITY icirc “î” ><!— latin small letter i
with circumflex,

U+00EE ISOlat1 —>
<!ENTITY iuml “ï” ><!— latin small letter I

with diaeresis,
U+00EF ISOlat1 —>

<!ENTITY eth “ð” ><!— latin small letter eth,
U+00F0 ISOlat1 —>

<!ENTITY ntilde “ñ” ><!— latin small letter n with tilde,
U+00F1 ISOlat1 —>

<!ENTITY ograve “ò” ><!— latin small letter o with grave,
U+00F2 ISOlat1 —>

<!ENTITY oacute “ó” ><!— latin small letter o with acute,
U+00F3 ISOlat1 —>

<!ENTITY ocirc “ô” ><!— latin small letter o
with circumflex,

U+00F4 ISOlat1 —>
<!ENTITY otilde “õ” ><!— latin small letter o with tilde,

U+00F5 ISOlat1 —>
<!ENTITY ouml “ö” ><!— latin small letter o

with diaeresis,
U+00F6 ISOlat1 —>

<!ENTITY divide “÷” ><!— division sign,
U+00F7 ISOnum —>

<!ENTITY oslash “ø” ><!—latin small letter o with stroke,
= latin small letter o slash,

U+00F8 ISOlat1 —>
<!ENTITY ugrave “ù” ><!— latin small letter u with grave,

U+00F9 ISOlat1 —>
<!ENTITY uacute “ú” ><!— latin small letter u with acute,

U+00FA ISOlat1 —>
<!ENTITY ucirc “û” ><!— latin small letter u

with circumflex,

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 751

752 Part V ✦ XML Applications

Listing 20-30 (continued)

U+00FB ISOlat1 —>
<!ENTITY uuml “ü” ><!— latin small letter u

with diaeresis,
U+00FC ISOlat1 —>

<!ENTITY yacute “ý” ><!— latin small letter y with acute,
U+00FD ISOlat1 —>

<!ENTITY thorn “þ” ><!— latin small letter thorn with,
U+00FE ISOlat1 —>

<!ENTITY yuml “ÿ” ><!— latin small letter y
with diaeresis,

U+00FF ISOlat1 —>

The XHTML Special Character Entities
XHTML1-special.ent, shown in Listing 20-31, defines the general entities for an
assortment of characters not in Latin-1, but present in Unicode.

Listing 20-31: XHTML1-special.ent: the XHTML definitions for
a few character entities that don’t really fit
anywhere else

<!—
XML-compatible ISO Special Character Entity Set for XHTML 1.0

Typical invocation:

<!ENTITY % XHTML1-special
PUBLIC “-//W3C//ENTITIES Special//EN//XML”

“XHTML1-special.ent”>
%XHTML1-special;

Revision: @(#)XHTML1-special.ent 1.13 99/04/01 SMI

Portions (C) International Organization for
Standardization 1986: Permission to copy in any form is
granted for use with conforming SGML systems and
applications as defined in ISO 8879, provided this notice
is included in all copies.

—>

<!— Relevant ISO entity set is given unless names are newly
introduced. New names (i.e., not in ISO 8879 list) do not
clash with any existing ISO 8879 entity names. ISO 10646
character numbers are given for each character, in hex.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 752

753Chapter 20 ✦ Reading Document Type Definitions

CDATA values are decimal conversions of the ISO 10646
values and refer to the document character set. Names are
Unicode 2.0 names.

—>

<!— C0 Controls and Basic Latin —>
<!ENTITY quot “"”> <!— quotation mark = APL quote,

U+0022 ISOnum —>
<!ENTITY amp “&”> <!— ampersand, U+0026 ISOnum —>
<!ENTITY lt “<”> <!— less-than sign, U+003C ISOnum—>
<!ENTITY gt “>”> <!— greater-than sign, U+003E ISOnum—>

<!— Latin Extended-A —>
<!ENTITY OElig “Œ”> <!— latin capital ligature OE,

U+0152 ISOlat2 —>
<!ENTITY oelig “œ”> <!— latin small ligature oe,

U+0153 ISOlat2 —>
<!— ligature is a misnomer, this is a separate character

in some languages —>
<!ENTITY Scaron “Š”> <!— latin capital letter S

with caron,
U+0160 ISOlat2 —>

<!ENTITY scaron “š”> <!— latin small letter s
with caron,
U+0161 ISOlat2 —>

<!ENTITY Yuml “Ÿ”> <!— latin capital letter Y
with diaeresis,
U+0178 ISOlat2 —>

<!— Spacing Modifier Letters —>
<!ENTITY circ “ˆ”> <!— modifier letter

circumflex accent,
U+02C6 ISOpub —>

<!ENTITY tilde “˜”> <!— small tilde, U+02DC ISOdia —>

<!— General Punctuation —>
<!ENTITY ensp “ ”> <!— en space, U+2002 ISOpub —>
<!ENTITY emsp “ ”> <!— em space, U+2003 ISOpub —>
<!ENTITY thinsp “ ”> <!— thin space, U+2009 ISOpub —>
<!ENTITY zwnj “‌”> <!— zero width non-joiner,

U+200C NEW RFC 2070 —>
<!ENTITY zwj “‍”> <!— zero width joiner,

U+200D NEW RFC 2070 —>
<!ENTITY lrm “‎”> <!— left-to-right mark,

U+200E NEW RFC 2070 —>
<!ENTITY rlm “‏”> <!— right-to-left mark,

U+200F NEW RFC 2070 —>
<!ENTITY ndash “–”> <!— en dash, U+2013 ISOpub —>
<!ENTITY mdash “—”> <!— em dash, U+2014 ISOpub —>
<!ENTITY lsquo “‘”> <!— left single quotation mark,

U+2018 ISOnum —>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 753

754 Part V ✦ XML Applications

Listing 20-31 (continued)

<!ENTITY rsquo “’”> <!— right single quotation mark,
U+2019 ISOnum —>

<!ENTITY sbquo “‚”> <!— single low-9 quotation mark,
U+201A NEW —>

<!ENTITY ldquo ““”> <!— left double quotation mark,
U+201C ISOnum —>

<!ENTITY rdquo “””> <!— right double quotation mark,
U+201D ISOnum —>

<!ENTITY bdquo “„”> <!— double low-9 quotation mark,
U+201E NEW —>

<!ENTITY dagger “†”> <!— dagger, U+2020 ISOpub —>
<!ENTITY Dagger “‡”> <!— double dagger,

U+2021 ISOpub —>
<!ENTITY permil “‰”> <!— per mille sign,

U+2030 ISOtech —>
<!ENTITY lsaquo “‹”> <!— single left-pointing angle

quotation mark,
U+2039 ISO proposed —>

<!— lsaquo is proposed but not yet ISO standardized —>
<!ENTITY rsaquo “›”> <!— single right-pointing

angle quotation mark,
U+203A ISO proposed —>

<!— rsaquo is proposed but not yet ISO standardized —>
<!ENTITY euro “€”> <!— euro sign, U+20AC NEW —>

The XHTML Symbol Entities
XHTML1-symbol.ent, shown in Listing 20-32, defines the general entities for the
Greek alphabet and various mathematical symbols like the integral and square root
signs.

Listing 20-32: XHTML1-symbol.ent: the Voyager entity set for
mathematical symbols, including the Greek
alphabet

<!— XML-compatible ISO Mathematical, Greek and Symbolic
Character Entity Set for XHTML 1.0

Typical invocation:

<!ENTITY % XHTML1-symbol
PUBLIC “-//W3C//ENTITIES Symbols//EN//XML”

“XHTML1-symbol.ent”>
%XHTML1-symbol;

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 754

755Chapter 20 ✦ Reading Document Type Definitions

Revision: @(#)XHTML1-symbol.ent 1.13 99/04/01 SMI

Portions (C) International Organization for
Standardization 1986: Permission to copy in any form is
granted for use with conforming SGML systems and
applications as defined in ISO 8879, provided this notice
is included in all copies.

—>

<!— Relevant ISO entity set is given unless names are newly
introduced. New names (i.e., not in ISO 8879 list) do not
clash with any existing ISO 8879 entity names. ISO 10646
character numbers are given for each character, in hex.
CDATA values are decimal conversions of the ISO 10646
values and refer to the document character set. Names are
Unicode 2.0 names.

—>

<!— Latin Extended-B —>
<!ENTITY fnof “ƒ”> <!— latin small f with hook

= function
= florin, U+0192 ISOtech>

<!— Greek —>
<!ENTITY Alpha “Α” ><!— greek capital letter alpha,

U+0391 —>
<!ENTITY Beta “Β” ><!— greek capital letter beta,

U+0392 —>
<!ENTITY Gamma “Γ” ><!— greek capital letter gamma,

U+0393 ISOgrk3 —>
<!ENTITY Delta “Δ” ><!— greek capital letter delta,

U+0394 ISOgrk3 —>
<!ENTITY Epsilon “Ε” ><!— greek capital letter epsilon,

U+0395 —>
<!ENTITY Zeta “Ζ” ><!— greek capital letter zeta,

U+0396 —>
<!ENTITY Eta “Η” ><!— greek capital letter eta,

U+0397 —>
<!ENTITY Theta “Θ” ><!— greek capital letter theta,

U+0398 ISOgrk3 —>
<!ENTITY Iota “Ι” ><!— greek capital letter iota,

U+0399 —>
<!ENTITY Kappa “Κ” ><!— greek capital letter kappa,

U+039A —>
<!ENTITY Lambda “Λ” ><!— greek capital letter lambda,

U+039B ISOgrk3 —>
<!ENTITY Mu “Μ” ><!— greek capital letter mu,

U+039C —>
<!ENTITY Nu “Ν” ><!— greek capital letter nu,

U+039D —>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 755

756 Part V ✦ XML Applications

Listing 20-32 (continued)

<!ENTITY Xi “Ξ” ><!— greek capital letter xi,
U+039E ISOgrk3 —>

<!ENTITY Omicron “Ο” ><!— greek capital letter omicron,
U+039F —>

<!ENTITY Pi “Π” ><!— greek capital letter pi,
U+03A0 ISOgrk3 —>

<!ENTITY Rho “Ρ” ><!— greek capital letter rho,
U+03A1 —>

<!— there is no Sigmaf, and no U+03A2 character either —>
<!ENTITY Sigma “Σ” ><!— greek capital letter sigma,

U+03A3 ISOgrk3 —>
<!ENTITY Tau “Τ” ><!— greek capital letter tau,

U+03A4 —>
<!ENTITY Upsilon “Υ” ><!— greek capital letter upsilon,

U+03A5 ISOgrk3 —>
<!ENTITY Phi “Φ” ><!— greek capital letter phi,

U+03A6 ISOgrk3 —>
<!ENTITY Chi “Χ” ><!— greek capital letter chi,

U+03A7 —>
<!ENTITY Psi “Ψ” ><!— greek capital letter psi,

U+03A8 ISOgrk3 —>
<!ENTITY Omega “Ω” ><!— greek capital letter omega,

U+03A9 ISOgrk3 —>
<!ENTITY alpha “α” ><!— greek small letter alpha,

U+03B1 ISOgrk3 —>
<!ENTITY beta “β” ><!— greek small letter beta,

U+03B2 ISOgrk3 —>
<!ENTITY gamma “γ” ><!— greek small letter gamma,

U+03B3 ISOgrk3 —>
<!ENTITY delta “δ” ><!— greek small letter delta,

U+03B4 ISOgrk3 —>
<!ENTITY epsilon “ε” ><!— greek small letter epsilon,

U+03B5 ISOgrk3 —>
<!ENTITY zeta “ζ” ><!— greek small letter zeta,

U+03B6 ISOgrk3 —>
<!ENTITY eta “η” ><!— greek small letter eta, U+03B7

ISOgrk3 —>
<!ENTITY theta “θ” ><!— greek small letter theta,

U+03B8 ISOgrk3 —>
<!ENTITY iota “ι” ><!— greek small letter iota,

U+03B9 ISOgrk3 —>
<!ENTITY kappa “κ” ><!— greek small letter kappa,

U+03BA ISOgrk3 —>
<!ENTITY lambda “λ” ><!— greek small letter lambda,

U+03BB ISOgrk3 —>
<!ENTITY mu “μ” ><!— greek small letter mu, U+03BC

ISOgrk3 —>
<!ENTITY nu “ν” ><!— greek small letter nu, U+03BD

ISOgrk3 —>
<!ENTITY xi “ξ” ><!— greek small letter xi, U+03BE

ISOgrk3 —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 756

757Chapter 20 ✦ Reading Document Type Definitions

<!ENTITY omicron “ο” ><!— greek small letter omicron,
U+03BF NEW —>

<!ENTITY pi “π” ><!— greek small letter pi,
U+03C0 ISOgrk3 —>

<!ENTITY rho “ρ” ><!— greek small letter rho,
U+03C1 ISOgrk3 —>

<!ENTITY sigmaf “ς” ><!— greek small letter final
sigma, U+03C2 ISOgrk3 —>

<!ENTITY sigma “σ” ><!— greek small letter sigma,
U+03C3 ISOgrk3 —>

<!ENTITY tau “τ” ><!— greek small letter tau,
U+03C4 ISOgrk3 —>

<!ENTITY upsilon “υ” ><!— greek small letter upsilon,
U+03C5 ISOgrk3 —>

<!ENTITY phi “φ” ><!— greek small letter phi,
U+03C6 ISOgrk3 —>

<!ENTITY chi “χ” ><!— greek small letter chi,
U+03C7 ISOgrk3 —>

<!ENTITY psi “ψ” ><!— greek small letter psi,
U+03C8 ISOgrk3 —>

<!ENTITY omega “ω” ><!— greek small letter omega,
U+03C9 ISOgrk3 —>

<!ENTITY thetasym “ϑ” ><!— greek small letter theta
symbol, U+03D1 NEW —>

<!ENTITY upsih “ϒ” ><!— greek upsilon with hook
symbol, U+03D2 NEW —>

<!ENTITY piv “ϖ” ><!— greek pi symbol,
U+03D6 ISOgrk3 —>

<!— General Punctuation —>
<!ENTITY bull “•” ><!— bullet = black small circle,

U+2022 ISOpub —>
<!— bullet is NOT the same as bullet operator, U+2219 —>
<!ENTITY hellip “…” ><!— horizontal ellipsis

= three dot leader, U+2026 ISOpub —>
<!ENTITY prime “′” ><!— prime = minutes = feet,

U+2032 ISOtech —>
<!ENTITY Prime “″” ><!— double prime = seconds

= inches, U+2033 ISOtech —>
<!ENTITY oline “‾” ><!— overline = spacing overscore,

U+203E NEW —>
<!ENTITY frasl “⁄” ><!— fraction slash, U+2044 NEW—>

<!— Letterlike Symbols —>
<!ENTITY weierp “℘” ><!— script capital P = power set

= Weierstrass p, U+2118 ISOamso —>
<!ENTITY image “ℑ” ><!— blackletter capital I

= imaginary part, U+2111 ISOamso —>
<!ENTITY real “ℜ” ><!— blackletter capital R

= real part symbol, U+211C ISOamso —>
<!ENTITY trade “™” ><!— trade mark sign,

U+2122 ISOnum —>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 757

758 Part V ✦ XML Applications

Listing 20-32 (continued)

<!ENTITY alefsym “ℵ” ><!— alef symbol
= first transfinite cardinal, U+2135 NEW —>

<!— alef symbol is NOT the same as hebrew letter alef,
U+05D0 although the same glyph could be used to depict
both characters —>

<!— Arrows —>
<!ENTITY larr “←” ><!— leftwards arrow,

U+2190 ISOnum —>
<!ENTITY uarr “↑” ><!—upwards arrow, U+2191 ISOnum—>
<!ENTITY rarr “→” ><!— rightwards arrow,

U+2192 ISOnum —>
<!ENTITY darr “↓” ><!— downwards arrow,

U+2193 ISOnum —>
<!ENTITY harr “↔” ><!— left right arrow,

U+2194 ISOamsa —>
<!ENTITY crarr “↵” ><!— downwards arrow with corner

leftwards = carriage return, U+21B5 NEW —>
<!ENTITY lArr “⇐” ><!— leftwards double arrow,

U+21D0 ISOtech —>
<!— Unicode does not say that lArr is the same as the

‘is implied by’ arrow but also does not have any other
character for that function. So ? lArr can
be used for ‘is implied by’ as ISOtech suggests —>

<!ENTITY uArr “⇑” ><!— upwards double arrow,
U+21D1 ISOamsa —>

<!ENTITY rArr “⇒” ><!— rightwards double arrow,
U+21D2 ISOtech —>

<!— Unicode does not say this is the ‘implies’ character
but does not have another character with this function
so ? rArr can be used for ‘implies’ as ISOtech suggests —>

<!ENTITY dArr “⇓” ><!— downwards double arrow,
U+21D3 ISOamsa —>

<!ENTITY hArr “⇔” ><!— left right double arrow,
U+21D4 ISOamsa —>

<!— Mathematical Operators —>
<!ENTITY forall “∀” ><!— for all, U+2200 ISOtech —>
<!ENTITY part “∂” ><!— partial differential,

U+2202 ISOtech —>
<!ENTITY exist “∃”><!—there exists, U+2203 ISOtech—>
<!ENTITY empty “∅” ><!— empty set = null set

= diameter, U+2205 ISOamso —>
<!ENTITY nabla “∇” ><!— nabla = backward difference,

U+2207 ISOtech —>
<!ENTITY isin “∈” ><!— element of, U+2208 ISOtech—>
<!ENTITY notin “∉” ><!— not an element of,

U+2209 ISOtech —>
<!ENTITY ni “∋” ><!— contains as member,

U+220B ISOtech —>
<!— should there be a more memorable name than ‘ni’? —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 758

759Chapter 20 ✦ Reading Document Type Definitions

<!ENTITY prod “∏” ><!— n-ary product = product sign,
U+220F ISOamsb —>

<!— prod is NOT the same character as U+03A0 ‘greek capital
letter pi’ though the same glyph might be used for both—>

<!ENTITY sum “∑” ><!— n-ary sumation,
U+2211 ISOamsb —>

<!— sum is NOT the same character as U+03A3
‘greek capital letter sigma’ though the same glyph
might be used for both —>

<!ENTITY minus “−” ><!— minus sign, U+2212 ISOtech—>
<!ENTITY lowast “∗” ><!— asterisk operator,

U+2217 ISOtech —>
<!ENTITY radic “√” ><!— square root = radical sign,

U+221A ISOtech —>
<!ENTITY prop “∝” ><!— proportional to,

U+221D ISOtech —>
<!ENTITY infin “∞” ><!— infinity, U+221E ISOtech —>
<!ENTITY ang “∠” ><!— angle, U+2220 ISOamso —>
<!ENTITY and “∧” ><!— logical and = wedge,

U+2227 ISOtech —>
<!ENTITY or “∨” ><!— logical or = vee,

U+2228 ISOtech —>
<!ENTITY cap “∩” ><!— intersection = cap,

U+2229 ISOtech —>
<!ENTITY cup “∪” ><!—union = cup, U+222A ISOtech—>
<!ENTITY int “∫” ><!— integral, U+222B ISOtech —>
<!ENTITY there4 “∴” ><!— therefore, U+2234 ISOtech —>
<!ENTITY sim “∼” ><!— tilde operator

= varies with = similar to, U+223C ISOtech —>
<!— tilde operator is NOT the same character as the tilde,

U+007E, although the same glyph might be used to
represent both —>

<!ENTITY cong “≅” ><!— approximately equal to, U+2245
ISOtech —>
<!ENTITY asymp “≈” ><!— almost equal to

= asymptotic to, U+2248 ISOamsr —>
<!ENTITY ne “≠” ><!— not equal to,

U+2260 ISOtech —>
<!ENTITY equiv “≡” ><!— identical to,

U+2261 ISOtech —>
<!ENTITY le “≤” ><!— less-than or equal to,

U+2264 ISOtech —>
<!ENTITY ge “≥” ><!— greater-than or equal to,

U+2265 ISOtech —>
<!ENTITY sub “⊂” ><!— subset of, U+2282 ISOtech —>
<!ENTITY sup “⊃” ><!—superset of, U+2283 ISOtech—>
<!— note that nsup, ‘not a superset of, U+2283’ is not covered

by the Symbol font encoding and is not included. Should it
be, for symmetry? It is in ISOamsn —>

<!ENTITY nsub “⊄” ><!— not a subset of,
U+2284 ISOamsn —>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 759

760 Part V ✦ XML Applications

Listing 20-32 (continued)

<!ENTITY sube “⊆” ><!— subset of or equal to,
U+2286 ISOtech —>

<!ENTITY supe “⊇” ><!— superset of or equal to,
U+2287 ISOtech —>

<!ENTITY oplus “⊕” ><!— circled plus = direct sum,
U+2295 ISOamsb —>

<!ENTITY otimes “⊗” ><!— circled times
= vector product, U+2297 ISOamsb —>

<!ENTITY perp “⊥” ><!— up tack = orthogonal to
= perpendicular, U+22A5 ISOtech —>

<!ENTITY sdot “⋅” ><!— dot operator,
U+22C5 ISOamsb —>

<!— dot operator is NOT the same character as
U+00B7 middle dot —>

<!— Miscellaneous Technical —>
<!ENTITY lceil “⌈” ><!— left ceiling = apl upstile,

U+2308 ISOamsc —>
<!ENTITY rceil “⌉” ><!— right ceiling,

U+2309 ISOamsc —>
<!ENTITY lfloor “⌊” ><!— left floor = apl downstile,

U+230A ISOamsc —>
<!ENTITY rfloor “⌋” ><!— right floor,

U+230B ISOamsc —>
<!ENTITY lang “〈” ><!— left-pointing angle bracket

= bra, U+2329 ISOtech —>
<!— lang is NOT the same character as U+003C ‘less than’

or U+2039 ‘single left-pointing angle quotation mark’ —>
<!ENTITY rang “〉” ><!— right-pointing angle bracket

= ket, U+232A ISOtech —>
<!— rang is NOT the same character as U+003E ‘greater than’

or U+203A ‘single right-pointing angle quotation mark’ —>

<!— Geometric Shapes —>
<!ENTITY loz “◊” ><!— lozenge, U+25CA ISOpub —>

<!— Miscellaneous Symbols —>
<!ENTITY spades “♠” ><!— black spade suit,

U+2660 ISOpub —>
<!— black here seems to mean filled as opposed to hollow —>
<!ENTITY clubs “♣” ><!— black club suit = shamrock,

U+2663 ISOpub —>
<!ENTITY hearts “♥” ><!— black heart suit = valentine,

U+2665 ISOpub —>
<!ENTITY diams “♦” ><!— black diamond suit,

U+2666 ISOpub —>

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 760

761Chapter 20 ✦ Reading Document Type Definitions

Simplified Subset DTDs
Not all HTML-based systems need every piece of HTML. Depending on your needs,
you may well be able to omit forms, applets, images, image maps, and other
advanced, interactive features of HTML. For instance, returning to the baseball
examples of Part I, if you were to give each PLAYER a BIO element, you could use
simple HTML to include basic text with each player.

The key modules that you’ll probably want to include in any application you design
using XHTML are:

✦ XHTML1-attribs.mod

✦ XHTML1-blkphras.mod

✦ XHTML1-blkpres.mod

✦ XHTML1-blkstruct.mod

✦ XHTML1-charent.mod

✦ XHTML1-inlphras.mod

✦ XHTML1-inlpres.mod

✦ XHTML1-inlstruct.mod

✦ XHTML1-model.mod

✦ XHTML1-names.mod

In addition, it’s easy to mix in other modules to this basic set. For instance,
XHTML1-image for images or XHTML1-linking for hypertext. While you can link
these into your own DTDs using external parameter entity references (as you’ll see
an example of in Chapter 23), the simplest way to choose the parts you do and
don’t want is to copy either the transitional or strict DTD and IGNORE the parts you
don’t want. Listing 20-33 is a copy of the strict DTD (Listing 20-1) in which only the
modules listed above are included:

Listing 20-33: A core DTD that supports basic HTML

<!— .. —>
<!— Basic HTML for Player BIOs, based on XHTML 1.0 strict —>
<!— file: XHTML1-bb.dtd
—>

<!— This derived from
XHTML 1.0, an XML reformulation of HTML 4.0.

Copyright 1998-1999 World Wide Web Consortium

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 761

762 Part V ✦ XML Applications

Listing 20-33 (continued)

(Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved.

Permission to use, copy, modify and distribute the XHTML
1.0 DTD and its accompanying documentation for any purpose
and without fee is hereby granted in perpetuity, provided
that the above copyright notice and this paragraph appear
in all copies. The copyright holders make no representation
about the suitability of the DTD for any purpose.

It is provided “as is” without expressed or implied
warranty.

Original Author: Murray M. Altheim <altheim@eng.sun.com>
Original Revision: @(#)XHTML1-s.dtd 1.14 99/04/01 SMI

The DTD is an XML variant based on the
W3C HTML 4.0 DTD:

Draft: $Date: 1999/04/02 14:27:27 $

Authors: Dave Raggett <dsr@w3.org>
Arnaud Le Hors <lehors@w3.org>
Ian Jacobs <ij@w3.org>

—>

<!— The version attribute has historically been a container
for the DTD’s public identifier (an FPI), but is unused
in Strict: —>

<!ENTITY % HTML.version “” >
<!ENTITY % Version.attrib “” >

<!— The xmlns attribute on <html> identifies the
default namespace to namespace-aware applications: —>

<!ENTITY % XHTML.ns “http://www.w3.org/TR/1999/REC-html-in-
xml” >

<!— reserved for future use with document profiles —>
<!ENTITY % XHTML.profile “” >

<!— used to ignore Transitional features within modules —>
<!ENTITY % XHTML.Transitional “IGNORE” >

<!— XHTML Base Architecture Module (optional) —>
<!ENTITY % XHTML1-arch.module “IGNORE” >
<![%XHTML1-arch.module;[
<!ENTITY % XHTML1-arch.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Base Architecture//EN”

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 762

763Chapter 20 ✦ Reading Document Type Definitions

“XHTML1-arch.mod” >
%XHTML1-arch.mod;
]]>

<!— Common Names Module —>
<!ENTITY % XHTML1-names.module “INCLUDE” >
<![%XHTML1-names.module;[
<!ENTITY % XHTML1-names.mod

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Common Names//EN”
“XHTML1-names.mod” >

%XHTML1-names.mod;
]]>

<!— Character Entities Module —>
<!ENTITY % XHTML1-charent.module “INCLUDE” >
<![%XHTML1-charent.module;[
<!ENTITY % XHTML1-charent.mod

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Character Entities//EN”
“XHTML1-charent.mod” >

%XHTML1-charent.mod;
]]>

<!— Intrinsic Events Module —>
<!ENTITY % XHTML1-events.module “IGNORE” >
<![%XHTML1-events.module;[
<!ENTITY % XHTML1-events.mod

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Intrinsic Events//EN”
“XHTML1-events.mod” >

%XHTML1-events.mod;
]]>

<!— Common Attributes Module —>
<!ENTITY % XHTML1-attribs.module “INCLUDE” >
<![%XHTML1-attribs.module;[
<!ENTITY % align “” >
<!ENTITY % XHTML1-attribs.mod

PUBLIC “-//W3C//ENTITIES XHTML 1.0 Common Attributes//EN”
“XHTML1-attribs.mod” >

%XHTML1-attribs.mod;
]]>

<!— Document Model Module —>
<!ENTITY % XHTML1-model.module “INCLUDE” >
<![%XHTML1-model.module;[
<!ENTITY % XHTML1-model.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Document Model//EN”
“XHTML1-model.mod” >

%XHTML1-model.mod;
]]>

<!— Inline Structural Module —>
<!ENTITY % XHTML1-inlstruct.module “INCLUDE” >

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 763

764 Part V ✦ XML Applications

Listing 20-33 (continued)

<![%XHTML1-inlstruct.module;[
<!ENTITY % XHTML1-inlstruct.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Structural//EN”
“XHTML1-inlstruct.mod” >

%XHTML1-inlstruct.mod;
]]>

<!— Inline Presentational Module —>
<!ENTITY % XHTML1-inlpres.module “INCLUDE” >
<![%XHTML1-inlpres.module;[
<!ENTITY % XHTML1-inlpres.mod
PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Presentational//EN”

“XHTML1-inlpres.mod” >
%XHTML1-inlpres.mod;
]]>

<!— Inline Phrasal Module —>
<!ENTITY % XHTML1-inlphras.module “INCLUDE” >
<![%XHTML1-inlphras.module;[
<!ENTITY % XHTML1-inlphras.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Inline Phrasal//EN”
“XHTML1-inlphras.mod” >

%XHTML1-inlphras.mod;
]]>

<!— Block Structural Module —>
<!ENTITY % XHTML1-blkstruct.module “INCLUDE” >
<![%XHTML1-blkstruct.module;[
<!ENTITY % XHTML1-blkstruct.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block Structural//EN”
“XHTML1-blkstruct.mod” >

%XHTML1-blkstruct.mod;
]]>

<!— Block Presentational Module —>
<!ENTITY % XHTML1-blkpres.module “INCLUDE” >
<![%XHTML1-blkpres.module;[
<!ENTITY % XHTML1-blkpres.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block
Presentational//EN”

“XHTML1-blkpres.mod” >
%XHTML1-blkpres.mod;
]]>

<!— Block Phrasal Module —>
<!ENTITY % XHTML1-blkphras.module “INCLUDE” >
<![%XHTML1-blkphras.module;[
<!ENTITY % XHTML1-blkphras.mod

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 764

765Chapter 20 ✦ Reading Document Type Definitions

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Block Phrasal//EN”
“XHTML1-blkphras.mod” >

%XHTML1-blkphras.mod;
]]>

<!— Scripting Module —>
<!ENTITY % XHTML1-script.module “IGNORE” >
<![%XHTML1-script.module;[
<!ENTITY % XHTML1-script.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Scripting//EN”
“XHTML1-script.mod” >

%XHTML1-script.mod;
]]>

<!— Stylesheets Module —>
<!ENTITY % XHTML1-style.module “IGNORE” >
<![%XHTML1-style.module;[
<!ENTITY % XHTML1-style.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Stylesheets//EN”
“XHTML1-style.mod” >

%XHTML1-style.mod;
]]>

<!— Image Module —>
<!ENTITY % XHTML1-image.module “IGNORE” >
<![%XHTML1-image.module;[
<!ENTITY % XHTML1-image.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Images//EN”
“XHTML1-image.mod” >

%XHTML1-image.mod;
]]>

<!— Frames Module —>
<!ENTITY % XHTML1-frames.module “IGNORE” >
<![%XHTML1-frames.module;[
<!ENTITY % XHTML1-frames.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Frames//EN”
“XHTML1-frames.mod” >

%XHTML1-frames.mod;
]]>

<!— Linking Module —>
<!ENTITY % XHTML1-linking.module “IGNORE” >
<![%XHTML1-linking.module;[
<!ENTITY % XHTML1-linking.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Linking//EN”
“XHTML1-linking.mod” >

%XHTML1-linking.mod;
]]>

Continued

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 765

766 Part V ✦ XML Applications

Listing 20-33 (continued)

<!— Client-side Image Map Module —>
<!ENTITY % XHTML1-csismap.module “IGNORE” >
<![%XHTML1-csismap.module;[
<!ENTITY % XHTML1-csismap.mod
PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Client-side Image Map//EN”

“XHTML1-csismap.mod” >
%XHTML1-csismap.mod;
]]>

<!— Object Element Module —>
<!ENTITY % XHTML1-object.module “IGNORE” >
<![%XHTML1-object.module;[
<!ENTITY % XHTML1-object.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Object Element//EN”
“XHTML1-object.mod” >

%XHTML1-object.mod;
]]>

<!— Lists Module —>
<!ENTITY % XHTML1-list.module “IGNORE” >
<![%XHTML1-list.module;[
<!ENTITY % XHTML1-list.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Lists//EN”
“XHTML1-list.mod” >

%XHTML1-list.mod;
]]>

<!— Forms Module —>
<!ENTITY % XHTML1-form.module “IGNORE” >
<![%XHTML1-form.module;[
<!ENTITY % XHTML1-form.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Forms//EN”
“XHTML1-form.mod” >

%XHTML1-form.mod;
]]>

<!— Tables Module —>
<!ENTITY % XHTML1-table.module “IGNORE” >
<![%XHTML1-table.module;[
<!ENTITY % XHTML1-table.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Tables//EN”
“XHTML1-table.mod” >

%XHTML1-table.mod;
]]>

<!— Document Metainformation Module —>
<!ENTITY % XHTML1-meta.module “IGNORE” >
<![%XHTML1-meta.module;[

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 766

767Chapter 20 ✦ Reading Document Type Definitions

<!ENTITY % XHTML1-meta.mod
PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Metainformation//EN”

“XHTML1-meta.mod” >
%XHTML1-meta.mod;
]]>

<!— Document Structure Module —>
<!ENTITY % XHTML1-struct.module “IGNORE” >
<![%XHTML1-struct.module;[
<!ENTITY % XHTML1-struct.mod

PUBLIC “-//W3C//ELEMENTS XHTML 1.0 Document Structure//EN”
“XHTML1-struct.mod” >

%XHTML1-struct.mod;
]]>

<!— end of XHTML 1.0 Strict DTD —>
<!— .. —>

Aside from some changes to the comments at the top to indicate that this is a
derived version of the XHTML strict DTD, the only changes are the replacement of
INCLUDE by IGNORE in several parameter entity references like XHTML1-
struct.module.

It would also be possible to simply delete the unnecessary sections completely,
rather than simply ignoring them. However, this approach makes it very easy to
include them quickly if a need for them is discovered in the future.

You can’t call the resulting application HTML, but it does provide a neat way to add
basic hypertext structure to a more domain-specific DTD without going overboard
and pulling in the full multimedia smorgasbord that is HTML 4.0.

For example, by adding Listing 20-33 to the DTD for baseball players from Chapter
10, I could give each player a BIOGRAPHY element that contains basic HTML. The
declarations would look like this:

<!ENTITY % XHTML1-bb.dtd SYSTEM “XHTML1-bb.dtd”>

%XHTML1-bb.dtd;
<!ENTITY % BIOGRAPHY.content “(#PCDATA | %Flow.mix;)*” >
<ELEMENT BIOGRAPHY %BIOGRAPHY.content;>

This says that a BIOGRAPHY can contain anything an HTML block can contain as
defined by the XHTML modules used here. If you prefer, you can use any of the
other elements or content model entity references from the XHTML modules.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 767

768 Part V ✦ XML Applications

Copyright Notices in DTDs

If you’re designing a DTD solely for your use on your own Web site or for printed documen-
tation within a single company, feel free to place any copyright notice you want on it.
However, if you’re designing a DTD for an entire industry or area of study, please consider
any copyright notice very carefully. A simple, ordinary copyright notice like “Copyright 1999
Elliotte Rusty Harold” immediately makes the DTD unusable for many people because by
default it means the DTD can’t be copied onto a different Web server or into a new docu-
ment without explicit permission. While many people and companies will simply ignore
these restrictions (which the authors never intended anyway), I don’t think many people
will be comfortable relying on this in our overly litigious world.

The whole point of XML is to allow broad, standardized documents. To this end, any
markup language that’s created, whether described in a DTD, a DCD, a DDML
DocumentDef, or something else, must explicitly allow itself to be reused and reprinted
without prior permission. My preference is that these DTDs be placed in the public domain,
because it’s simplest and easiest to explain to lawyers. Open source works well too. Even a
copyright statement that allows reuse but not modification is adequate for many needs.

Therefore, I implore you to think very carefully about any copyright you place on a DTD. Ask
yourself, “What does this really say? What do I want people to do with this DTD? Does this
statement allow them to do that?” There’s very little to be gained by writing a DTD you hope
an industry will adopt, if you unintentionally prohibit the industry from adopting it.

(Although this book as a whole and its prose text is copyrighted, I am explicitly placing the
code examples I’ve written in the public domain. Please feel free to use any fragment of
code or an entire DTD in any way that you like, with or without credit.)

Techniques to Imitate
Pablo Picasso is often quoted as saying, “Good artists copy. Great artists steal.” As
you’ve already seen, part of the reason the XHTML DTD is so modular — broken up
into so many parts — is precisely so that you can steal from it. If you need basic
hypertext formatting as part of an XML application you’re developing, you really
don’t need to invent your own. You can simply import the necessary modules. This
has the added advantage that document authors who have to use your XML
application are likely already familiar with this markup from HTML. Nonetheless,
let’s go ahead and look at some techniques you can borrow from the XHTML DTD
for your own DTDs without out-and-out stealing the DTDs themselves.

Comments
The XHTML DTDs are profusely commented. Every single file has a comment that
gives a title, the relevant copyright notice, and an abstract of what’s in the file,
before there’s even one single declaration. Every section of the file is separated off
by a new comment that specifies the purpose of the section. And almost every

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 768

769Chapter 20 ✦ Reading Document Type Definitions

declaration features a comment discussing what that declaration means. This all
makes the file much easier to read and understand.

This still isn’t perfect, however. Many of the attribute declarations are not
sufficiently commented. For example, consider this declaration from XHTM1-
applet.mod:

<!ATTLIST applet
%Core.attrib;
codebase %URI; #IMPLIED
archive CDATA #IMPLIED
code CDATA #IMPLIED
object CDATA #IMPLIED
alt %Text; #IMPLIED
name CDATA #IMPLIED
width %Length; #REQUIRED
height %Length; #REQUIRED
%IAlign.attrib;
hspace %Pixels; #IMPLIED
vspace %Pixels; #IMPLIED

>

There’s no indication of what the value of all these attributes should be. An
additional comment like this would be helpful:

<!— ATTLIST applet
codebase the URI where of the directory from which the

applet is downloaded; defaults to the URI of the
document containing the applet tag

archive the name of the JAR file that contains the applet;
omitted if the applet isn’t stored in a JAR
archive

code the name of the main class of the applet
object the name of the serialized object that contains

the main applet class; must match the name of the
class in the applet attribute

alt text displayed if the applet cannot be located
name the name of the applet
width width of the applet in pixels
height height of the applet in pixels
align bottom, middle, top, left, or right

meaning the bottom, middle, or top of the applet
is aligned with the baseline or that the
applet floats to the left or the right

hspace number of pixels with which
to pad the left and right sides of the applet

vspace number of pixels with which
to pad the top and bottom of the applet

—>

Of course all this could be found out by reading the specification for HTML 4.0.
However, many times when complete documentation is left to a later, prose

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 769

770 Part V ✦ XML Applications

document, that prose document never gets written. It certainly doesn’t hurt to
include extra commentary when you’re actually writing the DTD for the first time.

Part of the problem is that restrictions on attribute values are not well expressed in
DTDs; for instance that the height and width must be integers. In the future, this
shortcoming may be addressed by a schema language layered on top of standard
XML syntax.

In cases of complicated attribute and element declarations, it’s also often useful to
provide an example in a comment. For instance:

<!—

<applet width=”500” height=”500”
codebase=”http://www.site.com/directory/subdirectory/”
archive=”MyApplet.jar”
code=”MyApplet.class”
object=”MyApplet.ser”
name=”FirstInstance”
align=”top”
hspace=”5”
vspace=”5”

>
<param name=”name1” value=”value1”/>
<param name=”name2” value=”value2”/>
Some text for browsers that don’t understand the
applet tag

</applet>

—>

Parameter Entities
The XHTML DTD makes extremely heavy use of both internal and external
parameter entities. Your DTDs can, too. There are many uses for parameter entities
that were demonstrated in the XHTML DTD. In summary, you can use them to:

✦ Break up long content models and attribute lists into manageable, related
pieces

✦ Standardize common sets of elements and attributes

✦ Enable different DTDs to change content models and attribute lists

✦ Better document content models

✦ Compress the DTD by reusing common sequences of text

✦ Split the DTD into individual, related modules

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 770

771Chapter 20 ✦ Reading Document Type Definitions

Break Up Long Content Models and Attribute
Lists into Manageable, Related Pieces
A typical HTML element like p can easily have 30 or more possible attributes and
dozens of potential children. Listing them all in a content model or attribute list will
simply overwhelm anyone trying to read a DTD. To the extent that related elements
and attributes can be grouped, it’s better to separate them into several parameter
entities. For example, here’s XHTML’s element declaration for p:

<!ELEMENT p %P.content; >

It uses only a single parameter entity reference, rather than the many separate
element names that the reference resolves into.

Here’s XHTML’s attribute list for p:

<!ATTLIST p
%Common.attrib;

>

It uses only one-parameter entities rather than the many separate attribute names
and content types they resolve into.

Standardize Common Sets of Elements and Attributes
When you’re dealing with 30 or more items in a list, it’s easy to miss one if you have
to keep repeating the list. For instance, almost all HTML elements can have these
attributes:

id class style title lang xml:lang dir onclick ondblclick
onmousedown onmouseup onmousemove onmouseout onkeypress
onkeydown onkeyup onclick ondblclick onmousedown onmouseup
onmouseover onmousemove onmouseout onkeypress onkeydown onkeyup

By combining them all into one %Common.attrib; parameter entity reference, you
avoid the chance of omitting or mis-typing one of them in an attribute list. If at any
point in the future, you want to add an attribute to this list, you can add it just by
adding it to the declaration of Common.attrib. You don’t have to add it to each of a
hundred or more element declarations.

Enable Different DTDs to Change Content Models and Attribute Lists
One of the neatest tricks with parameter entity references in XHTML is how they’re
used to customize three different DTDs from the same basic modules. The key is
that each customizable item, whether a content model or an attribute list, is given
as a parameter entity reference. Each DTD can then redefine the content model or
attribute list by redefining the parameter entity reference. This allows particular
DTDs to both add and remove items from content models and attribute lists.

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 771

772 Part V ✦ XML Applications

For example, in the XHTML1-table module, the caption element is defined like this:

<!ENTITY % Caption.content “(#PCDATA | %Inline.mix;)*” >
<!ELEMENT caption %Caption.content; >
<!ATTLIST caption

%Common.attrib;
>

Suppose your DTD requires that captions only contain unmarked-up PCDATA. Then
it is easy to place this entity definition in the file that imports XHTML1-table.mod:

<!ENTITY % Caption.content “(#PCDATA)” >

This will override the declaration in XHTML1-table.mod so that captions adhering
to your DTD can only include text and no mark up.

Better Document Content Models
One of the most unusual tricks the XHTML DTD plays with parameter entity
references is using them to replace the CDATA attribute type. Although
%ContentType;, %ContentTypes;, %Charset;, %Charsets;, %LanguageCode;,
%Character;, %Number;, %LinkTypes;, %MediaDesc;, and %URI;, are on one
level just synonyms for CDATA, on another level they make the attribute types a lot
more specific. CDATA can really mean almost anything. Using parameter entities in
this way goes a long way toward narrowing down and documenting the actual
meaning in a particular context. While such parameter entities can’t enforce their
meanings, simply documenting them is no small achievement.

Compress the DTD by Reusing Common Sequences of Text
The XHTML DTD occupies just about 80 kilobytes. That’s not a huge amount,
especially for applications that reside on a local drive or network, but it is non-
trivial for Internet applications. It would probably be three to five times larger if all
the parameter entity references were fully expanded.

Even more significant than the file size saving achieved by parameter entity refer-
ences are the savings in legibility. Short files are easier to read and comprehend.
A 600- kilobyte DTD, even broken up into 60-kilobyte chunks, would be too much
to ask document authors to read, especially given the turgid, non-English code
that makes up DTDs. (Let me put it this way: Of the much smaller modules in this
chapter, how many of them did you actually read from start to finish and how many
did you just skip over until the example was done? Any code module that’s longer
than a page is likely to thwart all but the most determined and conscientious
readers.)

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 772

773Chapter 20 ✦ Reading Document Type Definitions

Split the DTD into Individual, Related Modules
On a related note, splitting the DTD into several related modules makes it easier to
grasp overall. All the forms material is conveniently gathered in one place, as is all
the tables material, all the applet material, and so forth. Furthermore, this makes
the DTD easier to understand because you can take it one bite-sized piece at a time.

On the other hand, the interconnections between some of the modules do make
this a little more confusing than perhaps it needs to be. In order to truly understand
any one of the modules, you must understand the XHTML1-names.mod and
XHTML1-attribs.mod because these provide crucial definitions for entities used in
all the other modules. Furthermore, a module can only really be understood in the
context of either the strict, loose, or frameset DTD. So there are four files you need
to grasp before you can really start to get a handle on any one. Still, the clean
separation between modules is impressive, and recommends itself for imitation.

Summary
In this chapter, you learned:

✦ All writers learn by reading other writers’ work. XML writers should read
other XML writers’ work.

✦ The XHTML DTD is an XMLized version of HTML that comes in three flavors:
strict, loose, and frameset.

✦ The XHTML DTD divides HTML into 29 different modules and three entity
sets.

✦ You can never have too many comments in your DTDs, which make the file
much easier to read.

✦ Parameter entities are extremely powerful tools for building complex yet man-
ageable DTDs.

In the next chapter, we’ll explore another XML application, the Channel Definition
Format (CDF), used to push content to subscribers. Whereas we’ve concentrated
almost completely on the XHTML DTD in this chapter, CDF does not actually have a
published DTD, so we’ll take a very different approach to understanding it.

✦ ✦ ✦

3236-7 ch20.F.qc 6/29/99 1:13 PM Page 773

Pushing Web
Sites with CDF

This chapter covers Microsoft’s Channel Definition
Format (CDF), which is an XML application for defining

channels. A channel is a set of Web pages that can be pus-
hed to a subscriber automatically. A CDF document lists the
pages to be pushed, the means by and the frequency with
which they’re pushed, and similar information. Readers can
subscribe to channels using Internet Explorer 4.0 and later.
As well as Web pages, channels can use Dynamic HTML,
Java, and JavaScript to create interactive, continually upd-
ated stock tickers, sports score boxes, and the like. Subject
to security restrictions, channels can even push software
updates to registered users and install them automatically.

What Is CDF?
The Channel Definition Format (CDF) is an XML application
developed at Microsoft for defining channels. Channels enable
Web sites to automatically notify readers of changes to critical
information. This method is sometimes called Webcasting or
push. Currently, Internet Explorer is the only major browser
that implements CDF and broader adoption seems unlikely.
The W3C has not done more than formally acknowledge
receipt of the CDF specification, and they seem unlikely to do
more in the future.

A CDF file is an XML document, separate from, but linked to,
the HTML documents on a site. The CDF document defines the
parameters for a connection between the readers and the
content on the site. The data can be transferred through
push — sending notifications, or even entire Web sites to
registered readers — or through pull-readers choose to load
the page in their Web browser and get the update information.

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is CDF?

How channels
are created

Description of
the channel

Information update
schedules

Techniques for
precaching and
Web crawling

Reader access log

The BASE attribute

The LASTMOD
attribute

The USAGE element

✦ ✦ ✦ ✦

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 775

776 Part V ✦ XML Applications

You do not need to rewrite your site to take advantage of CDF. The CDF file is simply
an addition to the site. A link to a CDF file, generally found on a site’s home page
downloads a copy of the channel index to the reader’s machine. This places an icon
on the reader’s channel bar, which can be clicked to access the current contents of
the channel.

How Channels Are Created
To establish a channel, follow these three steps:

1. Decide what content to include in the channel.

2. Write the channel definition file that identifies this content.

3. Link from the home page of the Web site to the channel-definition file.

Determining Channel Content
Before you get bogged down in the nitty-gritty technical details of creating a
channel with CDF, you first have to decide what content belongs in the channel and
how it should be delivered.

Your first consideration when converting existing sites to channels is how many
and which pages to include. Human interface factors suggest that no channel
should have more than eight items for readers to choose from. Otherwise, readers
will become confused and have trouble finding what they need. However, channels
can be arranged hierarchically. Additional levels of content can be added as sub-
channels. For example, a newspaper channel might have sections for business,
science, entertainment, international news, national news, and local news. The
entertainment section might be divided into sub-channels for television, movies,
books, music, and art.

The organization and hierarchy you choose may or may not match the organization
and hierarchy of your existing Web site, just as the organization and hierarchy of
your Web site does not necessarily match the organization and hierarchy of the
files on the server hard drive. However, matching the hierarchy of the channel to
the hierarchy of the Web site will make the channel easier to maintain. Nonetheless,
you can certainly select particular pages out of the site and arrange them in a
hierarchy specific to the channel if it seems logical.

Your second consideration is the way new content will be delivered to subscribers.
When subscribing to a channel, readers are offered a choice from three options:

1. The channel can be added to the channel bar and subscribers can check in
when they feel like it.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 776

777Chapter 21 ✦ Pushing Web Sites with CDF

2. Subscribers can be notified of new content via email and then load the
channel when they feel like it.

3. The browser can periodically check the site for updates and download the
changed content automatically.

Your content should be designed to work well with whichever of these three
options the reader chooses.

Creating CDF Files and Documents
Once you’ve decided what content will be in your channel, and how that content
will be organized and delivered, you’re ready to write the CDF document that
implements these decisions. A CDF document contains identifying information
about the contents, schedule, and logos for the channel. All of this information is
marked up using a particular set of XML tags. The resulting document is a well-
formed XML file. This document will be placed on the Web server where clients can
download it.

While it would be almost trivial to design a DTD for CDF, and while I suspect
Microsoft has one internally, they have not yet published it for the current version
of CDF. A DTD for a much earlier and obsolete version of CDF can be found in a
W3C note at http://www.w3.org/TR/NOTE-CDFsubmit.html. However, this
really doesn’t come close to describing the current version of CDF. Consequently,
CDF documents can be at most well-formed, but not valid.

A CDF document begins with an XML declaration because a CDF document is an
XML document and follows the same rules as all XML documents. The root and
only required element of a CDF document is CHANNEL. The CHANNEL element must
have an HREF attribute that specifies the page being monitored for changes. The
root CHANNEL element usually identifies the key page in the channel. Listing 21-1 is a
simple CDF document that points to a page that is updated more or less daily.

Listing 21-1: The simplest possible CDF document for a page

<?xml version=”1.0”?>
<CHANNEL HREF=”http://metalab.unc.edu/xml/index.html”>
</CHANNEL>

Most Microsoft documentation for CDF is based on a pre-release of the XML spec-
ification that used the uppercase <?XML version=”1.0”?> instead of the now
current lowercase <?xml version=”1.0”?>. However, both case conventions
seem to work with Internet Explorer, so in this chapter I’ll use the lowercase xml
that conforms to standard XML usage.

Note

Note

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 777

778 Part V ✦ XML Applications

As well as the main page, most channels contain a collection of other
pages identified by ITEM children. Each ITEM has an HREF attribute
pointing to the page. Listing 21-2 demonstrates a channel that contains
a main page (http://metalab.unc.edu/xml/index.html) with three
individual sub-pages in ITEM elements. Channels are often shown in a
collapsible outline view that allows the user to show or hide the individual
items in the channel as they choose. Figure 21-1 shows this channel
expanded in Internet Explorer 5.0’s Favorites bar.

Listing 21-2: A CDF channel with ITEM children

<?xml version=”1.0”?>
<CHANNEL HREF=”http://metalab.unc.edu/xml/index.html”>
<ITEM HREF=”http://metalab.unc.edu/xml/books.html”>
</ITEM>
<ITEM HREF=”http://metalab.unc.edu/xml/tradeshows.html”>
</ITEM>
<ITEM HREF=”http://metalab.unc.edu/xml/mailinglists.html”>
</ITEM>

</CHANNEL>

Figure 21-1: The open Channels folder in Internet Explorer 5.0’s favorites bar with
three sub-pages displayedLinking the Web Page to the Channel

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 778

779Chapter 21 ✦ Pushing Web Sites with CDF

The third and final step is to make the CDF file available to the reader. To do this,
you provide a link from the Web page to the CDF file. The simplest way to
accomplish this is with a standard HTML A element that readers click to activate.
Generally, the contents of this element will be some text or an image asking the
reader to subscribe to the channel. For example:

Subscribe to Cafe con Leche

When the reader activates this link in a CDF-enabled browser (which is just a fancy
way of saying Internet Explorer 4.0 and later), the browser downloads the CDF file
named in the HREF attribute and adds the channel to its list of subscriptions. Other
browsers that don’t support CDF will probably ask the user to save the document
as shown in Figure 21-2.

Once the CDF file has been downloaded, the browser will ask the user how they
wish to be notified of future changes to the channel as shown in Figure 21-3. The
user has three choices:

1. The channel can be added to the browser and active desktop channel bars.
The subscriber must manually select the channel to get the update. This isn’t
all that different from a bookmark, except that when the user opens the
“channel mark,” all pages in the channel are refreshed rather than just one.

2. The browser periodically checks the channel for updates and notifies the
subscriber of any changes via email. The user must still choose to download
the new content.

3. The browser periodically checks the channel for updates and notifies the
subscriber of any changes via email. However, when a change is detected, the
browser automatically downloads and caches the new content so it’s
immediately available for the user to view, even if they aren’t connected to the
Internet when they check the channel site.

Listing 21-2 only makes the first choice available because this particular channel
doesn’t provide a schedule for update, but we’ll add that soon.

Figure 21-2: Netscape Navigator 5.0 does not
support CDF nor understand CDF files.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 779

780 Part V ✦ XML Applications

Figure 21-3: Internet Explorer 4.0 asks
the user to choose how they wish to be
notified of changes at the site.

Description of the Channel
The channel itself and each item in the channel can have a title, an abstract, and up
to three logos of different sizes. These are established by giving the CHANNEL and
ITEM elements TITLE, ABSTRACT, and LOGO children.

Title
The title of the channel is not the same as the title of the Web page. Rather, the
channel title appears in the channel guide, the channel list, and the channel bar, as
shown in Figure 21-1 where the title is http—metalab.unc.edu-xml-index (though the
subscriber did have the option to customize it by typing a different title as shown in
Figure 21-3). You can provide a more descriptive default title for each CHANNEL and
ITEM element by giving it a TITLE child. Each TITLE element can contain only
character data, no markup. Listing 21-3 adds titles to the individual pages in the
Cafe con Leche channel as well as to the channel itself. Figure 21-4 shows how this
affects the individual items in the channel list.

Listing 21-3: A CDF channel with titles

<?xml version=”1.0”?>
<CHANNEL HREF=”http://metalab.unc.edu/xml/index.html”>
<TITLE>Cafe con Leche</TITLE>
<ITEM HREF=”http://metalab.unc.edu/xml/books.html”>
<TITLE>Books about XML</TITLE>

</ITEM>
<ITEM HREF=”http://metalab.unc.edu/xml/tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>

</ITEM>
<ITEM HREF=”http://metalab.unc.edu/xml/mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>

</ITEM>
</CHANNEL>

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 780

781Chapter 21 ✦ Pushing Web Sites with CDF

Figure 21-4: Titles are shown in the channels bar and abstracts are shown in tool tips.

Abstract
Titles may be sufficient for a channel with a well-established brand like Disney or
MSNBC, but for the rest of us lesser lights in the news firmament it probably
doesn’t hurt to tell subscribers a little more about what they can expect to find at a
given site. To this end, each CHANNEL and ITEM element can contain a single
ABSTRACT child element. The ABSTRACT element should contain a short (200
characters or less) block of text describing the item or channel. Generally, this
description will appear in a tool-tip window as shown in Figure 21-4, which is based
on Listing 21-4.

Listing 21-4: A CDF channel with titles and abstracts

<?xml version=”1.0”?>
<CHANNEL HREF=”http://metalab.unc.edu/xml/index.html”>
<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>

Continued

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 781

782 Part V ✦ XML Applications

Listing 21-4 (continued)

<ITEM HREF=”http://metalab.unc.edu/xml/books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://metalab.unc.edu/xml/tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://metalab.unc.edu/xml/mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

Logos
CDF documents can specify logos for channels. These logos appear on the reader’s
machine; either on the desktop or in the browser’s channel list. Logos can be used
in a number of different ways within the channel: icons on the desktop, icons in the
program launcher, and logos in the channel guide and channel bar. Each CHANNEL
and ITEM element can have up to three logos: one for the desktop, one for the
program launcher, and one for the channel bar.

A particular logo is attached to a channel with the LOGO element. This element is a
child of the CHANNEL it represents. The HREF attribute of the LOGO element is an
absolute or relative URL where the graphic file containing the logo is found.
Internet Explorer supports GIF, JPEG, and ICO format images for logos — but not
animated GIFs. Because logos may appear against a whole range of colors and
patterns on the desktop, GIFs with a transparent background that limit themselves
to the Windows halftone palette work best.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 782

783Chapter 21 ✦ Pushing Web Sites with CDF

The LOGO element also has a required STYLE attribute that specifies the size of the
image. The value of the STYLE attribute must be one of the three keywords ICON,
IMAGE, or IMAGE-WIDE. These are different sizes of images, as given in Table 21-1.
Figure 21-5 shows the logos used for Cafe con Leche in the three different sizes.

Table 21-1
Values for the STYLE Attribute of the LOGO Element

Image Size Value Description

ICON A 16-pixel-wide by 16-pixel-high icon displayed in the file list
and in the channel bar next to the child elements in a
hierarchy, as shown in Figure 21-2.

IMAGE An 80-pixel-wide by 32-pixel-high image displayed in the
desktop channel bar.

IMAGE-WIDE A 194-pixel-wide by 32-pixel-high image displayed in the
browser’s channel bar. If a hierarchy of channels is nested
underneath, they appear when the reader clicks this logo, as
shown in Figure 21-3.

Figure 21-5: The Cafe con Leche channel
icons in three different sizes

When the content in the channel changes, the browser places a highlight gleam in
the upper-left corner of the logo image. This gleam hides anything in that corner.
Also, if a reader stretches the window width beyond the recommended 194 pixels,
the browser uses the top-right pixel to fill the expanded logo. Consequently you
need to pay special attention to the upper-left and right corners of the logo.

Information Update Schedules
The CHANNEL, TITLE, ABSTRACT, and LOGO elements are enough to build a working
channel, but all they provide is a visible connection that readers can use to pilot
themselves quickly to your site. However, you don’t have any means to push
content to the readers. Passive channels — that is, channels like Listings 21-1
through 21-5 that don’t have an explicit push schedule — don’t do very much.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 783

784 Part V ✦ XML Applications

Figure 21-6: The favorites bar now contains the Cafe con Leche icons instead of the
generic channel icon.

Listing 21-5 is a CDF document that provides various sizes of logos. Figure 21-6
shows the Internet Explorer 5.0 favorites bar with the new Cafe con Leche logo.

Listing 21-5: A CDF channel with various sizes of logos

<?xml version=”1.0”?>
<CHANNEL HREF=”http://metalab.unc.edu/xml/index.html”>
<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”cup_ICON.gif” STYLE=”ICON”/>
<LOGO HREF=”cup_IMAGE.gif” STYLE=”IMAGE”/>
<LOGO HREF=”cup_IMAGE-WIDE.gif” STYLE=”IMAGE-WIDE”/>
<ITEM HREF=”http://metalab.unc.edu/xml/books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 784

785Chapter 21 ✦ Pushing Web Sites with CDF

<ITEM HREF=”http://metalab.unc.edu/xml/tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://metalab.unc.edu/xml/mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

To actually push the contents to subscribers, you have to include scheduling
information for updates. You can schedule the entire channel as one or schedule
individual items in the channel separately. This is accomplished by adding a
SCHEDULE child element to the channel. For example:

<SCHEDULE STARTDATE=”1998-03-29” STOPDATE=”1999-03-29”
TIMEZONE=”-0500”>
<INTERVALTIME DAY=”7”/>
<EARLIESTTIME DAY=”1” HOUR=”0” MIN=”0”/>
<LATESTTIME DAY=”2” HOUR=”12” MIN=”0”/>

</SCHEDULE>

The SCHEDULE element has three attributes: STARTDATE, STOPDATE, and TIMEZONE.
The STARTDATE indicates when the schedule begins and STOPDATE indicates when
it ends. Target the period between your usual site overhauls. If you change the
structure of your Web site on a regular interval, use that interval. STARTDATE and
STOPDATE use the same date format: full numeric year, two-digit numeric month,
and two-digit day of month; for example 1999-12-31.

The TIMEZONE attribute shows the difference in hours between the server’s time
zone and Greenwich Mean Time. If the tag does not include the TIMEZONE attribute,
the scheduled update occurs according to the reader’s time zone — not the
server’s. In the continental U.S., Eastern Standard Time is -0500, Central Standard
Time is -0600, Mountain Standard Time is -0700, and Pacific Standard Time is -0800.
Hawaii and Alaska are -1000.

SCHEDULE can have between one and three child elements. INTERVALTIME is a
required, empty element that specifies how often the browser should check
the channel for updates (assuming the user has asked the browser to do so).
INTERVALTIME has DAY, HOUR, and MIN attributes. The DAY, HOUR, and MIN
attributes are added to calculate the amount of time that is allowed to elapse
between updates. As long as one is present, the other two can be omitted.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 785

786 Part V ✦ XML Applications

EARLIESTTIME and LATESTTIME are optional elements that specify times between
which the browser should check for updates. The updates and resulting server load
are distributed over the interval between the earliest and latest times. If you don’t
specify these, the browser simply checks in at its convenience. EARLIESTTIME and
LATESTTIME have DAY and HOUR attributes used to specify when updates take
place. DAY ranges from 1 (Sunday) to 7 (Saturday). HOUR ranges from 0 (midnight) to
23 (11:00 P.M.). For instance, the above example says that the browser should
update the channel once a week (INTERVALTIME DAY=”7”) between Sunday
midnight (EARLIESTTIME DAY=”1” HOUR=”0”) and noon Monday (LATESTTIME
DAY=”2” HOUR=”12”).

EARLIESTTIME and LATESTTIME may also have a TIMEZONE attribute that specifies
the time zone in which the earliest and latest times are calculated. If a time zone
isn’t specified, the reader’s time zone is used to determine the earliest and latest
times. To force the update to a particular time zone, include the optional TIMEZONE
attribute in the EARLIESTTIME and LATESTTIME tags. For example:

<EARLIESTTIME DAY=”1” HOUR=”0” TIMEZONE=”-0500”/>
<LATESTTIME DAY=”2” HOUR=”12” TIMEZONE=”-0500”/>

To push an update across a LAN, you can choose the day of the week
(for example, Sunday) and the time span (midnight to five in the morning).
All browsers update during that five-hour period. If you update across Internet
connections, your readers have to be connected to the Internet for the browser
to update the channel.

Listing 21-6 expands the Cafe con Leche channel to include scheduled updates.
Since content is updated almost daily INTERVALTIME is set to one day. Most
days the update takes place between 7:00 a.m. and 12:00 noon Eastern time.
Consequently, it sets EARLIESTTIME to 10:00 a.m. EST and LATESTTIME to
12:00 noon EST. There’s no particular start or end date for the changes to
this content, so the STARTDATE and STOPDATE attributes are omitted from
the schedule.

Listing 21-6: A CDF channel with scheduled updates

<?xml version=”1.0”?>
<CHANNEL HREF=”http://metalab.unc.edu/xml/index.html”>

<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”cup_ICON.gif” STYLE=”ICON”/>
<LOGO HREF=”cup_IMAGE.gif” STYLE=”IMAGE”/>
<LOGO HREF=”cup_IMAGE-WIDE.gif” STYLE=”IMAGE-WIDE”/>

<SCHEDULE TIMEZONE=”-0500”>

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 786

787Chapter 21 ✦ Pushing Web Sites with CDF

<INTERVALTIME DAY=”1”/>
<EARLIESTTIME HOUR=”10” TIMEZONE=”-0500”/>
<LATESTTIME HOUR=”12” TIMEZONE=”-0500”/>

</SCHEDULE>

<ITEM HREF=”http://metalab.unc.edu/xml/books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://metalab.unc.edu/xml/tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://metalab.unc.edu/xml/mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

Precaching and Web Crawling
If the subscriber has chosen to download the channel’s contents automatically
when they change, then the site owner has the option of allowing subscribers to
view the pages offline and even to download more than merely those pages
identified in the CDF document. In particular, you can allow the browser to spider
through your site, downloading additional pages between one and three levels deep
from the specified pages.

Precaching
By default, browsers precache the pages listed in a channel for offline browsing if
the user has requested that they do so. However, the author can prevent a page
from being precached by including a PRECACHE attribute in the CHANNEL or ITEM
element with the value NO. For example:

<CHANNEL PRECACHE=”NO”
HREF=”http://metalab.unc.edu/xml/index.html”>

...
</CHANNEL>

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 787

788 Part V ✦ XML Applications

If the value of PRECACHE is NO, then the content will not be precached regardless of
user settings. If the value of PRECACHE is YES (or there is no explicit PRECACHE
attribute) and the user requested precaching when they subscribed, then the
content will be downloaded automatically. However, if the user has not requested
precaching, then the site channel will not be precached regardless of the value of
the PRECACHE attribute.

When you design a channel, you must keep in mind that some readers will view
content offline almost exclusively. As a result, any links in the channel contents are
effectively dead. If you are pushing documents across an intranet, the cache option
doesn’t make a lot of sense, as you’ll be duplicating the same files on disks across
the corporation. If you are delivering content to readers who pay for online time,
you may want to organize it so that it can be cached and easily browsed offline.

Web Crawling
Browsers are not limited to loading only the Web pages specified in CHANNEL
and ITEM elements. If a CHANNEL or ITEM element has a LEVEL attribute with a
value higher than zero, the browser will Web crawl during updates. Web crawling
lets the browser collect more pages than are listed in the channel. For example,
if the page listed in a channel contains a number of links to related topics, it may
be easier to let the browser load them all rather than list them in individual ITEM
elements. If the site has a fairly even hierarchy, you can safely add a LEVEL attri-
bute to the top-most channel tag and allow the Web crawl to include all of the
pages at the subsequent levels. LEVEL can range from zero (the default) to three,
which indicates how far down into the link hierarchy you want the browser to
dig when caching the content. The hierarchy is the abstract hierarchy defined
by the document links, not the hierarchy defined by the directory structure of
files on the Web server. Framed pages are considered to be at the same level as
the frameset page, even though an additional link is required for the former.
The LEVEL attribute really only has meaning if precaching is enabled.

Listing 21-7 sets the LEVEL of the Cafe con Leche channel to 3. This goes deep
enough to reach every page on the site. Since the pages previously referenced in
ITEM children are only one level down from the main page, there’s not as much
need to list them separately. However, Web-crawling this deep may not be such a
good idea. Most of the pages on the site don’t change daily. Nonetheless, they’ll still
be checked each and every update.

Listing 21-7: A CDF channel that precaches three levels deep

<?xml version=”1.0”?>
<CHANNEL LEVEL=”3”

HREF=”http://metalab.unc.edu/xml/index.html”>

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 788

789Chapter 21 ✦ Pushing Web Sites with CDF

<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”logo_icon.gif” STYLE=”ICON”/>
<LOGO HREF=”corp_logo_regular.gif” STYLE=”IMAGE”/>
<LOGO HREF=”corp_logo_wide.gif” STYLE=”IMAGE-WIDE”/>

<SCHEDULE TIMEZONE=”-0500”>
<INTERVALTIME DAY=”1”/>
<EARLIESTTIME HOUR=”10” TIMEZONE=”-0500”/>
<LATESTTIME HOUR=”12” TIMEZONE=”-0500”/>

</SCHEDULE>

</CHANNEL>

Reader Access Log
One disadvantage to channels compared to traditional Web surfing is that the
server does not necessarily know which pages the surfer actually saw. This can be
important for tracking advertisements, among other things. Internet Explorer can
track the reader’s passage through a site cached offline, and report it back to the
Web server. However, the user always has the option to disable this behavior if they
feel it’s a privacy violation.

To collect statistics about the offline browsing of a site, you add LOG and
LOGTARGET child elements to the CHANNEL element. During a channel update, the
server sends the new channel contents to the browser while the browser sends the
log file to the server. The LOG element always has this form, though other possible
values of the VALUE attribute may be added in the future:

<LOG VALUE=”document:view”/>

The LOGTARGET element has an HREF attribute that identifies the URL it will be sent
to, a METHOD attribute that identifies the HTTP method like POST or PUT that will
be used to upload the log file, and a SCOPE attribute that has one of the three
values: ALL, ONLINE, or OFFLINE indicating which page views should be counted.
The LOGTARGET element may have a PURGETIME child with an HOUR attribute that
specifies the number of hours for which the logging information is considered valid.
It may also have any number of HTTP-EQUIV children used to set particular key-
value pairs in the HTTP MIME header. Listing 21-8 demonstrates a channel with a
reader-access log.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 789

790 Part V ✦ XML Applications

Listing 21-8: A CDF channel with log reporting

<?xml version=”1.0”?>
<CHANNEL HREF=”http://metalab.unc.edu/xml/index.html”>

<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”logo_icon.gif” STYLE=”ICON”/>
<LOGO HREF=”corp_logo_regular.gif” STYLE=”IMAGE”/>
<LOGO HREF=”corp_logo_wide.gif” STYLE=”IMAGE-WIDE”/>

<LOG VALUE=”document:view”/>
<LOGTARGET METHOD=”POST” SCOPE=”ALL”
HREF=”http://metalab.unc.edu/xml/cgi-bin/getstats.pl” >
<PURGETIME HOUR=”12”/>
<HTTP-EQUIV NAME=”ENCODING-TYPE” VALUE=”text”/>

</LOGTARGET>

<SCHEDULE TIMEZONE=”-0500”>
<INTERVALTIME DAY=”1”/>
<EARLIESTTIME HOUR=”10” TIMEZONE=”-0500”/>
<LATESTTIME HOUR=”12” TIMEZONE=”-0500”/>

</SCHEDULE>

<ITEM HREF=”http://metalab.unc.edu/xml/books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
<LOG VALUE=”document:view”/>

</ITEM>

<ITEM HREF=”http://metalab.unc.edu/xml/tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
<LOG VALUE=”document:view”/>

</ITEM>

<ITEM HREF=”http://metalab.unc.edu/xml/mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 790

791Chapter 21 ✦ Pushing Web Sites with CDF

Only elements with LOG children will be noted in the log file. For instance,
in Listing 21-8, hits to http://metalab.unc.edu/xml/index.html, http://
metalab.unc.edu/xml/books.html, and http://metalab.unc.edu/xml/
tradeshows.html will be logged. However hits to http://metalab.unc.edu/
xml/mailinglists.html will not be.

The CDF logging information is stored in the Extended File Log format used
by most modern Web servers. However, the Web server must be configured,
most commonly through a CGI program, to accept the log file the client sends
and merge it into the main server log.

The LOGTARGET element should appear as a child of the top-level CHANNEL tag, and
describes log file handling for all items it contains. However, each CHANNEL and
ITEM element that you want included in the log must include its own LOG child.

The BASE Attribute
The previous examples have all used absolute URLs for CHANNEL and ITEM
elements. However, absolute URLs are inconvenient. For one thing, they’re often
long and easy to mistype. For another, they make site maintenance difficult when
pages are moved from one directory to another, or from one site to another. You
can use relative URLs instead if you include a BASE attribute in the CHANNEL
element.

The value of the BASE attribute is a URL to which relative URLs in the channel
can be relative. For instance, if the BASE is set to “http://metalab.unc.edu/
xml/, then an HREF attribute can simply be “books.html” instead of “http://
metalab.unc.edu/xml/books.html”. Listing 21-9 demonstrates.

Listing 21-9: A CDF channel with a BASE attribute

<?xml version=”1.0”?>
<CHANNEL BASE=”http://metalab.unc.edu/xml/”>
<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”cup_ICON.gif” STYLE=”ICON”/>
<LOGO HREF=”cup_IMAGE.gif” STYLE=”IMAGE”/>
<LOGO HREF=”cup_IMAGE-WIDE.gif” STYLE=”IMAGE-WIDE”/>
<ITEM HREF=”books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML

Continued

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 791

792 Part V ✦ XML Applications

Listing 21-9 (continued)

with capsule reviews and ratings
</ABSTRACT>

</ITEM>

<ITEM HREF=”tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

Whichever location you use for the link to the content, you can use a relative URL
in the child elements if you specify a BASE attribute in the parent CHANNEL element.
The BASE attribute also changes the hierarchy display in Internet Explorer. The
base page will display in the browser window when child elements are not
associated with a page.

The LASTMOD Attribute
When a browser makes a request of a Web server, the server sends a MIME header
along with the requested file. This header includes various pieces of information
like the MIME type of the file, the length of the file, the current date and time, and
the time the file was last modified. For example:

HTTP/1.1 200 OK
Date: Wed, 27 Jun 1999 21:42:31 GMT
Server: Stronghold/2.4.1 Apache/1.3.3 C2NetEU/2409 (Unix)
Last-Modified: Tue, 20 Oct 1998 13:15:36 GMT
ETag: “4b94d-c70-362c8cf8”
Accept-Ranges: bytes
Content-Length: 3184
Connection: close
Content-Type: text/html

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 792

793Chapter 21 ✦ Pushing Web Sites with CDF

If a browser sends a HEAD request instead of the more common GET request, only
the header is returned. The browser can then inspect the Last-Modified header to
determine whether a previously loaded file from the channel needs to be reloaded
or not. However, although HEAD requests are quicker than GET requests, a lot of
them still eat up server resources.

To cut down on the load that frequent channel updates place on your server, you
can add LASTMOD attributes to all CHANNEL and ITEM tags. The browser will only
have to check back with the server for modification times for those items and
channels that don’t provide LASTMOD attributes.

The value of the LASTMOD attribute is a date and time in a year-month-dayThour:
minutes form like 2000-05-23T21:42-when the page referenced by the HREF attribute
was last changed. The browser detects and compares the LASTMOD date given in the
CDF file with the last modified date provided by the Web server. When the content
on the Web server has changed, the cache is updated with the current content. This
way the browser only needs to check one file, the CDF document, for modification
times rather than every file that’s part of the channel. Listing 21-10 demonstrates.

Listing 21-10: A CDF channel with LASTMOD attributes

<?xml version=”1.0”?>
<CHANNEL BASE=”http://metalab.unc.edu/xml/”

LASTMOD=”1999-01-27T12:16” >
<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”cup_ICON.gif” STYLE=”ICON”/>
<LOGO HREF=”cup_IMAGE.gif” STYLE=”IMAGE”/>
<LOGO HREF=”cup_IMAGE-WIDE.gif” STYLE=”IMAGE-WIDE”/>
<ITEM HREF=”books.html” LASTMOD=”1999-01-03T16:25”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

<ITEM HREF=”tradeshows.html” LASTMOD=”1999-01-10T11:40”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

Continued

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 793

794 Part V ✦ XML Applications

Listing 21-10 (continued)

</ABSTRACT>
</ITEM>

<ITEM HREF=”mailinglists.html” LASTMOD=”1999-01-06T10:50”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

In practice, this is way too much trouble to do manually, especially for frequently
changed documents (and the whole point of channels and push is that they
provide information that changes frequently). However, you might be able to
write the CDF document as a file full of server-side includes that automatically
incorporate LASTMOD values in the appropriate format or devise some other
programmatic solution rather than manually adjusting the LASTMOD attribute
every time you edit a file.

The USAGE Element
A CHANNEL or ITEM element may contain an optional USAGE child element that
extends the presence of the channel on the subscriber’s desktop. The meaning of
the USAGE element is determined by its VALUE attribute. Possible values for the
VALUE attribute are:

✦ Channel

✦ DesktopComponent

✦ Email

✦ NONE

✦ ScreenSaver

✦ SoftwareUpdate

Most of the time USAGE is an empty element. For example:

<USAGE VALUE=”ScreenSaver” />

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 794

795Chapter 21 ✦ Pushing Web Sites with CDF

The default value for USAGE is Channel. Items with channel usage appear in the
browser channel bar. All the CHANNEL and ITEM elements you’ve seen until now
have had Channel usage, even though they didn’t have an explicit usage element.
Other values for USAGE allow different user interfaces to the channel content.

DesktopComponent Value
Desktop components are small Web pages or images that are displayed directly on
the user’s desktop. Since a Web page can contain a Java applet, fancy DHTML, or an
ActiveX control, a desktop component can actually be a program (assuming the
subscriber has abandoned all semblance of caution and installed Active Desktop).

The desktop component is installed on the subscriber’s desktop with a separate
CDF document containing an ITEM element that points to the document to be
displayed on the user’s desktop. As well as the usual child elements, this ITEM must
contain a non-empty USAGE element whose VALUE is DesktopComponent. This
USAGE element may contain OPENAS, HEIGHT, WIDTH, and CANRESIZE children.

The VALUE attribute of the OPENAS element specifies the type of file at the location
in the ITEM element’s HREF attribute. This should either be HTML or Image. If no
OPENAS element is present, Internet Explorer assumes it is an HTML file.

The VALUE attributes of the HEIGHT and WIDTH elements specify the number of
pixels the item occupies on the desktop.

The VALUE attribute of the CANRESIZE element indicates whether the reader can
change the height and width of the component on the fly. Its possible values are
Yes and No. Yes is the default. You can also allow or disallow horizontal or vertical
resizing independently with CANRESIZEX and CANRESIZEY elements.

Listing 21-11 is a simple desktop component that displays a real time image of the
Sun as provided by the friendly folks at the National Solar Observatory in Sunspot,
New Mexico (http://vtt.sunspot.noao.edu/gifs/video/sunnow.jpg). The
image is 640 pixels high, 480 pixels wide, but resizable. The image is refreshed
every minute between 6:00 a.m. MST and 7:00 p.m. MST. (There’s no point
refreshing the image at night.)

Listing 21-11: A DesktopComponent channel

<?xml version=”1.0”?>
<CHANNEL HREF=”http://vtt.sunspot.noao.edu/sunpic.html”>
<TITLE>
Hydrogen Alpha Image of the Sun Desktop Component

</TITLE>
<ABSTRACT>

Continued

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 795

796 Part V ✦ XML Applications

Listing 21-11 (continued)

This desktop component shows a picture of the Sun
as it appears this very minute from the top of
Sacramento Peak in New Mexico. The picture is taken
in a single color at the wavelength of the Hydrogen
alpha light (6563 Angstroms) using a monochrome
camera which produces a greyscale image in
which the red light of Hydrogen alpha appears white.
</ABSTRACT>

<ITEM
HREF=”http://vtt.sunspot.noao.edu/gifs/video/sunnow.jpg”>
<TITLE>Hydrogen Alpha Image of the Sun</TITLE>

<SCHEDULE TIMEZONE=”-0700”>
<INTERVALTIME MIN=”1”/>
<EARLIESTTIME HOUR=”6”/>
<LATESTTIME HOUR=”19”/>

</SCHEDULE>

<USAGE VALUE=”DesktopComponent”>
<WIDTH VALUE=”640”/>
<HEIGHT VALUE=”480”/>
<CANRESIZE VALUE=”Yes”/>
<OPENAS VALUE=”Image”/>

</USAGE>
</ITEM>

</CHANNEL>

Email Value
Normally, when a browser notifies a subscriber of a change to channel content by
sending them email, it sends along the main page of the channel as the text of the
email message. However, you can specify that a different email message be sent by
including an ITEM in the channel whose USAGE element has the value email.

Listing 21-12 specifies that the file at http://metalab.unc.edu/xml/what-
snew.html will be used to notify subscribers of content changes. If the first
ITEM were not present, then http://metalab.unc.edu/xml/ from the CHANNEL
HREF attribute would be used instead. This gives you an opportunity to send a
briefer message specifying what has changed, rather than sending the entire
changed page. Often “What’s new” information is easier for readers to digest than
the entire page.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 796

797Chapter 21 ✦ Pushing Web Sites with CDF

Listing 21-12: A channel that emails a separate notification

<?xml version=”1.0”?>
<CHANNEL BASE=”http://metalab.unc.edu/xml/”>
<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”cup_ICON.gif” STYLE=”ICON”/>
<LOGO HREF=”cup_IMAGE.gif” STYLE=”IMAGE”/>
<LOGO HREF=”cup_IMAGE-WIDE.gif” STYLE=”IMAGE-WIDE”/>

<ITEM HREF=”whatsnews.html”>
<USAGE VALUE=”Email”/>

</ITEM>

<ITEM HREF=”books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

<ITEM HREF=”tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

NONE Value
Items whose USAGE value is NONE don’t appear anywhere; not in the channel bar,
not on the Active Desktop, not on the favorites menu, nowhere. However, such
items are precached and are thus more quickly available for applets and HTML
pages that refer to them later.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 797

798 Part V ✦ XML Applications

Precaching channel content is useful for including items — such as sound and video
clips — that you want to move to the reader’s machine for use by channel pages.
You can precache a single item or a series of items by defining a channel that
includes the set of precached items, as is demonstrated in this example:

<ITEM HREF=”welcome.wav”> <USAGE=”NONE”/> </ITEM>
<ITEM HREF=”spacemusic.au”> <USAGE=”NONE”/> </ITEM>

This example includes two sound files used at the site when the browser
downloads the channel contents for offline viewing. These two files won’t be
displayed in the channel bar, but if a file in the channel bar does use one of these
sound files, then it will be immediately available, already loaded when the page is
viewed offline. The reader won’t have to wait for them to be downloaded from a
remote Web site, an important consideration when dealing with relatively large
multimedia files.

ScreenSaver Value
Items whose USAGE value is ScreenSaver point to an HTML page to replace the
normal desktop after a user-specified period of inactivity. Generally, a screen saver
will be written as a completely separate CDF document from the normal channel,
and will require a separate download and install link. For example:

Download and install the Cafe con Leche Screen Saver!

Unless the subscriber has already selected the Channel Screen Saver as the system
screen saver in the Display control panel as shown in Figure 21-7, the browser will
ask the user whether they want to use the Channel Screen Saver or the currently
selected screen saver. Assuming they choose the Channel Screen Saver, the next
time the screen is saved, the document referenced in the screen saver channel will
be loaded and displayed. If the user has subscribed to more than one screen saver
channel, the browser will rotate through the subscribed screen saver channels
every 30 seconds. The user can change this interval and a few other options
(whether screen savers play sounds, for instance) using the screen saver settings in
the Display control panel.

Listing 21-13 is a simple screen saver channel. The actual document displayed when
the screen is saved is pointed to by the ITEM elements HREF attribute. This page
will generally make heavy use of DHTML, JavaScript, and other tricks to animate
the screen. A static screen saver page is a bad idea.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 798

799Chapter 21 ✦ Pushing Web Sites with CDF

Listing 21-13: A screen saver channel

<?xml version=”1.0”?>
<CHANNEL BASE=”http://metalab.unc.edu/xml/”>

<ITEM HREF=”http://metalab.unc.edu/screensaver.html”>
<USAGE VALUE=”ScreenSaver”/>

</ITEM>

</CHANNEL>

Figure 21-7: The Screen Saver tab of the
Display Properties control panel in Windows
NT 4.0

Two things you should keep in mind when designing screen savers:

1. Presumably the user is doing something else when the screen is saved. After
all, inactivity activates the screen saver. Therefore, don’t go overboard or
expect a lot of user attention or interaction with your screen saver.

2. Although almost no modern display really needs its screen saved, screen sav-
ers should save the screen nonetheless. Thus most of the screen should be
dark most of the time, and no pixel on the screen should ever be continuously
on. Most importantly, no pixel should continuously be one non-black color,
especially white.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 799

800 Part V ✦ XML Applications

SoftwareUpdate Value
The final possible value of the USAGE element is SoftwareUpdate. Channels aren’t
limited to delivering news and Web pages. They can send software updates too.
Software update channels can both notify users of updates to software and deliver
the product across the Internet. Given a sufficiently trusting (perhaps insufficiently
paranoid is more accurate) user, they can even automatically install the software.

To create a software push channel, write a CDF file with a root CHANNEL element
whose USAGE element has the value SoftwareUpdate. This channel can have a
title, abstract, logos, and schedule, just like any other channel. Listing 21-14 is a
fake software update channel.

Listing 21-14: A software update channel

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.whizzywriter.com/updates/2001.html”>
<TITLE>WhizzyWriter 2001 Update</TITLE>
<ABSTRACT>
WhizzyWriter 2001 offers the same kitchen sink approach
to word processing that WhizzyWriter 2000 was infamous for,
but now with tint control! plus many more six-legged
friends to delight and amuse! Don’t worry though. All the
old arthropods you’ve learned to love and adore in the
last 2000 versions are still here!

</ABSTRACT>

<USAGE VALUE=”SoftwareUpdate”/>
<SOFTPKG NAME=”WhizzyWriter 2001 with tint control 2.1EA3”
HREF=”http://www.whizzywriter.com/updates/2001.cab”
VERSION=”2001,0,d,3245” STYLE=”ActiveSetup”>

<!— other OSD elements can go here —>

</SOFTPKG>

</CHANNEL>

Besides the VALUE of the USAGE element, the key to a software update channel is
its SOFTPKG child element. The HREF attribute of the SOFTPKG element provides
a URL from which the software can be downloaded and installed. The URL should
point to a compressed archive of the software in Microsoft’s cabinet (CAB) format.
This archive must carry a digital signature from a certificate authority. Further-
more, it must also contain an OSD file describing the software update. OSD, the

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 800

801Chapter 21 ✦ Pushing Web Sites with CDF

Open Software Description format, is an XML application for describing software
updates invented by Microsoft and Marimba. The OSD file structure and language
is described on the Microsoft Web site at http://www.microsoft.com/stan-
dards/osd/.

OSD is covered briefly in Chapter 2, An Introduction to XML Applications.

The SOFTPKG element must also have a NAME attribute that contains up to 260
characters describing the application. For example, “WhizzyWriter 2100 with tint
control 2.1EA3”.

The SOFTPKG element must also have a STYLE attribute with one of two values —
ActiveSetup or MSICD (Microsoft Internet Component Download) which
determines how the software is downloaded and installed.

There are several optional attributes to SOFTPKG as well. The SOFTPKG element may
have a PRECACHE attribute with either the value Yes or No. This has the same
meaning as other PRECACHE attributes; that is, determining whether the package
will be downloaded before the user decides whether they want it. The VERSION
attribute is a comma-separated list of major, minor, custom, and build version
numbers such as “6,2,3,3124”. Finally, setting the AUTOINSTALL attribute to Yes tells
the browser to download the software package automatically as soon as the CDF
document is loaded. The value No instructs the browser to wait for a specific user
request and is the default if the AUTOINSTALL attribute is not included.

These child elements can go inside the SOFTPKG element:

✦ TITLE

✦ ABSTRACT

✦ LANGUAGE

✦ DEPENDENCY

✦ NATIVECODE

✦ IMPLEMENTATION

However these elements are not part of CDF. Rather they’re part of OSD.
(Technically SOFTPKG is too.) Consequently, I’ll only summarize them here:

✦ The TITLE element of the SOFTPKG uses the same options as the standard
CDF TITLE.

✦ The ABSTRACT element describes the software and is essentially the same as
the CDF ABSTRACT element.

✦ The LANGUAGE element defines the language supported by this update using a
VALUE attribute whose value is an ISO 639/RFC 1766 two-letter language code

Cross-
Reference

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 801

802 Part V ✦ XML Applications

such as EN for English. If multiple languages are supported, they’re separated
by semicolons.

✦ The DEPENDENCY element is empty with a single attribute, ACTION which may
take on one of two values —Assert or Install. Assert is the default and
means that the update will only be installed if the necessary CAB file is
already on the local computer. With a value of Install, the necessary files
will be downloaded from the server.

✦ The NATIVECODE element holds CODE child elements. Each CODE child element
points to the distribution files for a particular architecture such as Windows
98 on X86 or Windows NT on alpha.

✦ The IMPLEMENTATION element describes the configuration required for the
software package. If the requirements described in the implementation tag are
not found on the reader’s machine, the download and installation do not
proceed. The IMPLEMENTATION element is an optional element with child
elements CODEBASE, LANGUAGE, OS, and PROCESSOR.

The CODEBASE element has FILENAME and HREF attributes that say where
the files for the update can be found.

The LANGUAGE element is the same as the LANGUAGE element above.

The OS element has a VALUE attribute whose value is Mac, Win95, or
Winnt, thereby identifying the operating system required for the
software. This element can have an empty child element called
OSVERSION with a VALUE attribute that identifies the required release.

The PROCESSOR element is an empty element whose VALUE attribute can
have the value Alpha, MIPS, PPC, or x86. This describes the CPU
architecture the software supports.

For more details about OSD, you can see the reference at http://www.micro-
soft.com/workshop/delivery/osd/reference/reference.asp, or the
specification at http://www.microsoft.com/standards/osd/default.asp.

Summary
In this chapter, you learned:

✦ The Channel Definition Format (CDF) is an XML application used to describe
data pushed from Web sites to Web browsers.

✦ CDF files are XML files, although they customarily have the file name
extension .cdf instead of .xml. The root element of a CDF file is CHANNEL.

✦ Each CHANNEL element must contain an HREF attribute identifying the pushed
page.

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 802

803Chapter 21 ✦ Pushing Web Sites with CDF

✦ A CHANNEL element may contain additional ITEM child elements whose HREF
attributes contain URLs of additional pages to be pushed.

✦ Each CHANNEL and ITEM element may contain TITLE, ABSTRACT, and LOGO
children that describe the content of the page the element references.

✦ The SCHEDULE element specifies when and how often the browser should
check the server for updates.

✦ The LOG element identifies items whose viewing is reported back to the Web
server, though the subscriber can disable this reporting.

✦ The LOGTARGET element defines how logging information from a channel is
reported back to the server.

✦ The BASE attribute provides a starting point from which relative URLs in child
element HREF attributes can be calculated.

✦ The LASTMOD attribute specifies the last time a page was changed so the
browser can tell whether or not it needs to be downloaded.

✦ The USAGE attribute allows you to use Web pages as channels, precached
content, Active Desktop components, screen savers, and software updates.

The next chapter explores a completely different application of XML to vector
graphics — the Vector Markup Language (VML for short).

✦ ✦ ✦

3236-7 ch21.F.qc 6/29/99 1:13 PM Page 803

The Vector
Markup
Language

The Vector Markup Language (VML), the subject of this
chapter, is an XML application that combines vector

information with CSS markup to describe vector graphics that
can be embedded in Web pages in place of the bitmapped GIF
and JPEG images loaded by HTML’s IMG element. Vector
graphics take up less space and thus display much faster over
slow network connections than traditional GIF and JPEG
bitmap images. VML is supported by the various components
of Microsoft Office 2000 (Word, PowerPoint, Excel) as well as
by Internet Explorer 5.0. When you save a Word 2000,
PowerPoint 2000, or Excel 2000 document as HTML, graphics
created in those programs are converted to VML.

What Is VML?
VML elements represent shapes: rectangles, ovals, circles,
triangles, clouds, trapezoids, and so forth. Each shape is
described as a path formed from a series of connected lines
and curves. VML uses elements and attributes to describe the
outline, fill, position, and other properties of each shape.
Standard CSS properties can be applied to VML elements to
set their positions.

Listing 22-1 is an HTML document. Embedded in this HTML
file is the VML code to draw a five-pointed blue star and a red
circle. Figure 22-1 shows the document displayed in Internet
Explorer 5.0.

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is VML?

How to draw with a
keyboard

How to position VML
shapes with CSS
properties

VML in Microsoft
Office 2000

A quick look at SVG

✦ ✦ ✦ ✦

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 805

806 Part V ✦ XML Applications

Figure 22-1: An HTML document with embedded VML elements

Listing 22-1: An HTML document with VML code that draws a
five-pointed blue star and a red circle.

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>

<head>
<title>Example 22-1 from the XML Bible</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>

<body>
<h1>Example 22-1 from the XML Bible</h1>

<div>
<vml:oval
style=”width:200px; height: 200px”
stroke=”true”
strokecolor=”red”
strokeweight=”2”>

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 806

807Chapter 22 ✦ The Vector Markup Language

</vml:oval>

<vml:polyline
style=”width: 250px; height: 250px”
stroke=”false”
fill=”true”
fillcolor=”blue”
points=”8pt, 65pt, 72pt, 65pt, 92pt, 11pt, 112pt, 65pt,

174pt, 65pt, 122pt, 100pt, 142pt, 155pt, 92pt,
121pt, 42pt, 155pt, 60pt, 100pt”>

</vml:polyline>
</div>
<hr></hr>
Last Modified March 23, 1999

Copyright 1999

Elliotte Rusty Harold

</body>

</html>

Listing 22-1 obviously isn’t an ordinary HTML document, even though it contains
some standard HTML elements. First of all, the html root element declares the
namespace prefix vml as shorthand for urn:schemas-microsoft-com:vml. The
head element contains an object child with the id VMLRender. (VMLRender is a
program installed with IE5.) And there’s a CSS style rule that specifies that all
elements in the vml namespace (that is, all elements that begin with vml:) should
have the behavior property url(#VMLRender). This is a relative URL that happens
to point to the aforementioned object element. This tells the Web browser to pass
all elements that begin with vml: (the backslash in vml\: is used to ensure that the
: is treated as part of the element name rather than a selector separator) to the
object with the ID VMLRender for display.

The body element contains several of the usual HTML elements including div, h1,
hr, and a. However, it also contains vml:oval and vml:polyline elements. The
vml:oval element is set to have a red border (stroke) 2 pixels wide. Furthermore,
the style attribute sets the CSS width and height properties of this oval to 200
pixels each. These also set the width and height of the implicit rectangular box that
holds the oval. The vml:polyline element is set to be filled in blue. The CSS width
and height properties of this oval are set to 250 pixels each. A five-pointed star has
ten vertices. The points attribute provides 10 pairs of x-y coordinates, one for
each vertex.

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 807

808 Part V ✦ XML Applications

Drawing with a Keyboard
Drawing pictures with a keyboard is like hammering a nail into wood with a sponge.
Writing VML pictures by typing raw XML code in a text editor is not easy. I suggest
you start any attempts to program vector images with some graph paper, and draw
the images with a pencil the way you wish to see them on the screen. You can then
use the images from the graph paper to determine coordinates for various VML
elements like shape, oval, and polyline.

The shape Element
The fundamental VML element is shape. This describes an arbitrary closed curve
in two dimensions. Most shapes have a path that defines the outline of the shape.
The outline may or may not have a stroke with a particular color and width - that is,
the outline may or may not be visible. The shape may or may not be filled with a
particular color. For example, in Figure 22-1 the circle has a black stroke but no fill,
whereas the star has a blue fill but no stroke.

Most properties of a shape element can be defined by various attributes. Table 22-1
lists these. For example, here’s a shape element that draws an isosceles triangle.
The id attribute gives the shape a unique name. The coordsize attribute defines
the size of the local coordinate system. The style attribute uses CSS width and
height properties to specify the absolute width and height of the box that contains
the triangle. The path attribute provides data to the formulas child element that
calculates the exact outline of this particular triangle. And the fillcolor attribute
makes the entire triangle blue.

<vml:shape id=”_x0000_t5” coordsize=”21600,21600”
style=”width:200px; height: 200px” adj=”10800”
path=”m@0,0l0,21600,21600,21600xe” fillcolor=”blue”>
<vml:formulas>
<vml:f eqn=”val #0”/>
<vml:f eqn=”prod #0 1 2”/>
<vml:f eqn=”sum @1 10800 0”/>

</vml:formulas>
</vml:shape>

Don’t worry if it isn’t obvious to you that this is an isosceles triangle. In fact, I’d be
surprised if it were even obvious that this is a triangle. Most VML elements (including
this one) are drawn using a GUI, and only saved into VML form. Consequently, you
don’t need to know the detailed syntax of each and every VML element and attribute.
However, if you know a little, you can sometimes do some surprising tricks with the
VML file that may prove impossible with a graphical editor. For example, you can
search for all the blue elements, and change them to red.

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 808

809Chapter 22 ✦ The Vector Markup Language

Table 22-1
Attributes of the Shape Element

Attribute Default Value Description

id none a unique XML name for the element (same as any
other XML ID type attribute)

adj none input parameters for formulas child elements that
define the shape’s path

alt none alternate text shown if the shape can’t be drawn for
any reason; like the ALT attribute of HTML’s IMG
element

chromakey none a transparent background color for the shape which
anything behind the shape will show through; for
example red or #66FF33

class none the CSS class of the shape

coordorigin 0 0 local coordinate corner of the upper left-hand corner
of the shape’s box

coordsize 1000 1000 width and height of the shape’s box in the local
coordinate space

fill true whether the shape is filled

fillcolor white color the shape is filled with; for example red or
#66FF33

href none URL to jump to when the shape is clicked

opacity 1.0 transparency of shape as a floating point number
between 0.0 (invisible) and 1.0 (fully opaque)

path none commands that define the shape’s path

print true whether the shape should be printed when the page
is printed

stroke true whether the path (outline) of the shape should be
drawn

strokecolor black color used to draw the shape’s path

strokeweight 0.75pt width of the line used to draw the shape’s path

style none CSS properties applied to this shape

target none the name of the frame loaded when a frameset page
loads

title none name of the shape

type none a reference to the id of a shapetype element

v none command defining the path of shape

wrapcoords none specifies how tightly text wraps around a shape

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 809

810 Part V ✦ XML Applications

Some properties of shapes are more convenient to set with child elements rather
than attributes. Furthermore, using child elements allows for more detailed control
of some aspects of a shape. For instance, the above isosceles triangle required
three formulas to describe its path. Each of these was encapsulated in an vml:f
child element. By using attributes, only a single formula could have easily been
included. Table 22-2 lists the possible child elements of a shape. If a child element
conflicts with an attribute, then the value specified by the child element is used.

Table 22-2
Shape Child Elements

Element Description

path the edge of the shape

formulas formulas that specify the outline of the shape

handles visual controls used to alter the shape

fill how the path should be filled

stroke how to draw the path, if the artist wants something more
elaborate than a straight line and solid color

shadow the shadow effect for the shape

textbox the text that should appear inside of the shape

textpath the vector path used by the text

imagedata a picture rendered on top of the shape

line a straight line path

polyline a path defined by connecting the dots between specified points

curve a path defined by a cubic Bezier curve

rect a path defined by a rectangle of a specific height and width

roundrect a path defined by a rectangle with rounded corners of a
specific size

oval a path defined by an oval enclosed in a rectangle of a specific
height and width

arc a path defined by the arc of an angle between two points

image a bitmapped image loaded from an external source

Each of these child elements itself has a variety of attributes and child elements
used to define its appearance. For instance, line, one of the simplest, has from and
to attributes that define the starting and ending points of the line. The value of
each of these attributes is a 2-D coordinate in the local coordinate space like 0 5 or

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 810

811Chapter 22 ✦ The Vector Markup Language

32 10. You can read about the details in the Vector Markup Language submission
to the W3C or on the Microsoft Web site at http://www.microsoft.com/
standards/vml/.

Treat the VML specification with a pinch of salt. It contains a number of really obvi-
ous and quite a few not-so-obvious mistakes.

The line, polyline, curve, rect, roundrect, oval, arc, and image ele-
ments do not have to be children of shape. They can stand on their own.

The shapetype Element
The shapetype element defines a shape that can be reused multiple times, by
referencing it at a later point within a document using a shape element. The
shapetype element is identical in all ways to the shape element except that it
cannot be used to reference another shapetype element. This element is always
hidden. The shape element refers to the shapetype element using a type attribute
whose value is a relative URL pointing to the id of the shapetype element.

For example, Listing 22-2 includes a shapetype element that defines a blue
right triangle. It also includes three shape elements that merely reference this
shapetype. Thus there are three right triangles in Figure 22-2, even though it’s
only defined once. Each of these triangles has a different size as set in the individ-
ual shape elements even though they’re all calculated from the same formulas.

Listing 22-2: Multiple shape elements copy a single
shapetype

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>

<head>
<title>Example 22-2 from the XML Bible</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>

<body>
<h1>Example 22-2 from the XML Bible</h1>

<vml:shapetype id=”fred”

Continued

Note

Caution

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 811

812 Part V ✦ XML Applications

Listing 22-2 (continued)

coordsize=”21600,21600”
fillcolor=”blue”
path=”m@0,0l0,21600,21600,21600xe”>
<vml:formulas>
<vml:f eqn=”val #0”/>
<vml:f eqn=”prod #0 1 2”/>
<vml:f eqn=”sum @1 10800 0”/>

</vml:formulas>
</vml:shapetype>

<vml:shape type=”#fred” style=”width:50px; height:50px” />
<vml:shape type=”#fred” style=”width:100px; height:100px”/>
<vml:shape type=”#fred” style=”width:150px; height:150px”/>

<hr></hr>
Last Modified March 23, 1999

Copyright 1999

Elliotte Rusty Harold

</body>

</html>

Figure 22-2: Three triangle shapes copied from one shapetype element

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 812

813Chapter 22 ✦ The Vector Markup Language

When a shape element references a shapetype element, shape may duplicate
some of the attributes applied to the shapetype element. In this case, the values
associated with shape will override those of shapetype.

The group Element
The group top-level element combines shapes and other top-level elements. The
group has its own local coordinate space in which its child shapes are placed. This
entire collection of shapes can then be moved and positioned as a unit. The only
attributes the group can have are the core attributes that a shape can have (for ex-
ample, id, class, style, title, href, target, alt, coordorigin, and coordsize).
For example, suppose you need a shape that is a star inside a circle. You can create it
by combining an oval with a polyline in a group element like this:

<vml:group style=”width:6cm; height: 6cm”
coordorigin=”0 0” coordsize=”250 250”>
<vml:oval style =
“position:absolute; top: 15; left: 15; width:200; height: 200”

stroke=”true” strokecolor=”black” strokeweight=”2”
fill=”true” fillcolor=”red”>

</vml:oval>

<vml:polyline style =
“position:absolute; top:25; left: 25; width:200; height:200”
stroke=”true” strokecolor=”black” strokeweight=”5”
fill=”true” fillcolor=”blue”
points=”8, 65, 72, 65, 92, 11, 112, 65, 174, 65, 122,

100, 142, 155, 92, 121, 42, 155, 60, 100”>
</vml:polyline>

</vml:group>

The coordsize and coordorigin attributes define the local coordinate system of
the elements contained in the group. The coordsize attribute defines how many
units there are along the width of the containing block. The coordorigin attribute
defines the coordinate of the top left corner of the containing block.

This is an abstract system, not one based in any sort of physical units like inches,
pixels, or ems. The conversion between the local units and the global units depends
on the height and the width of the group. For example, in the above example the
group’s actual height and width is 6cm by 6cm, and its coordsize is 250 250. Thus,
each local unit is 0.024cm (6cm/250). As the height and width of the group change,
the sizes of the contents of the group scale proportionately.

Inside a group, all the CSS properties used to position VML like left and width are
given as non-dimensional numbers in the local coordinate space. In other words,
unlike normal CSS properties, they do not use units, and are only pure numbers, not
real lengths. For example, consider this group:

<vml:group style=”width: 400px; height: 400px”

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 813

814 Part V ✦ XML Applications

coordsize=”100,100”
coordorigin=”-50,-50”>

The containing block is 400 pixels wide by 400 pixels high. The coordsize property
specifies that there are 100 units both horizontally and vertically within this group.
Each of the local units is four pixels long. The coordinate system inside the contain-
ing block ranges from –50.0 to 50.0 along the x-axis and –50.0 to 50.0 along the y-axis
with 0.0, 0.0 right in the center of the rectangle. Shapes positioned outside this region
will not be truncated, but they are likely to fall on top of or beneath other elements
on the page. All children of the group are positioned and sized according to the
local coordinate system.

Positioning VML Shapes with
Cascading Style Sheet Properties

VML elements fit directly into the CSS Level 2 visual rendering model, exactly like
HTML elements. This means that each VML element is contained in an implicit box,
which positions at a certain point on the page. The following standard CSS
properties place the box at particular absolute or relative positions on the page:

✦ display

✦ position

✦ float

✦ clear

✦ height

✦ width

✦ top

✦ bottom

✦ left

✦ right

✦ border

✦ margin

✦ visibility

✦ z-index

Chapter 12, Cascading Stylesheets Level 1, and Chapter 13, Cascading Style
Sheets Level 2, discuss CSS.

Cross-
Reference

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 814

815Chapter 22 ✦ The Vector Markup Language

In addition to supporting the standard CSS2 visual-rendering model, VML adds four
new properties so shapes can be rotated, flipped, and positioned. These are:

✦ rotation

✦ flip

✦ center-x

✦ center-y

Personally, I think adding non-standard CSS properties to the style attribute is a
very bad idea. I would much prefer that these properties simply be additional
attributes on the various VML shape elements. The center-x and center-y
properties are particularly annoying because they do nothing the left and right
properties don’t already do.

VML elements use a style attribute to set these properties, just like HTML
elements. This has the same syntax as the HTML style attribute. For example, this
VML oval uses its style attribute to set its position, border, and margin properties:

<vml:oval style=”top: 15; left: 15; width:200; height: 100;
margin:10; border-style:solid; border-right-width: 2;
border-left-width: 2; border-top-width: 1.5;
border-bottom-width: 1.5”
stroke=”false” fill=”true” fillcolor=”green”>

</vml:oval>

VML shapes are positioned on the page using the CSS position, left, right,
width, and height properties. If the position property has the value absolute,
the invisible rectangular box that contains the shape is placed at particular
coordinates relative to the window that displays the shape, regardless of what else
appears on the page. This means that different shapes and HTML elements can
overlap. VML uses the z-index CSS property to layer the first (lowest) to the last
(highest) layer, with the latest elements obscuring the earlier elements. This allows
you to stack elements on top of each other to build intricate images for your Web
pages. If elements don’t have z-index properties, then elements that come later in
the document are placed on top of elements that come earlier in the document.

Listing 22-3 uses absolute positioning to place the blue star on top of the red circle,
which is itself on top of the h1 header and the signature block. Figure 22-3 shows
the result.

The default value of the position property is static, which simply means that
both HTML elements and VML shapes are laid out one after the other, each taking
as much space as it needs, but none laying on top of each other.

The position property can also be set to relative, which begins by placing the
box where it would normally be, and then offsetting it from that position by the
amount specified in the top, bottom, left, and right properties.

Note

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 815

816 Part V ✦ XML Applications

Figure 22-3: A blue star on top of a red circle on top of the body
of the page

Listing 22-3: VML code that draws a five-pointed blue star on
top of a red circle

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>

<head>
<title>Example 22-3 from the XML Bible</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>

<body>
<h1>Example 22-3 from the XML Bible</h1>

<div>
<vml:polyline
style=”position:absolute; top:0px; left:0px;

width: 250px; height: 250px; z-index: 1”
stroke=”false”
fill=”true”
fillcolor=”blue”

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 816

817Chapter 22 ✦ The Vector Markup Language

points=”8pt, 65pt, 72pt, 65pt, 92pt, 11pt, 112pt, 65pt,
174pt, 65pt, 122pt, 100pt, 142pt, 155pt, 92pt,
121pt, 42pt, 155pt, 60pt, 100pt”>

</vml:polyline>

<vml:oval style=”position:absolute; top:25px; left:25px;
width:200px; height: 200px; z-index: 0”

stroke=”false”
fill=”true”
fillcolor=”red”>

</vml:oval>

</div>
<hr></hr>
Last Modified March 23, 1999

Copyright 1999

Elliotte Rusty Harold

</body>

</html>

The rotation Property
The rotation property does not exist in standard CSS, but it can be used as a CSS
property of VML shapes. The value of the rotation property represents the
number of degrees a shape is rotated in a clockwise direction, about the center of
the shape. If a negative number is given, the object is rotated counterclockwise.
Degree values are specified in the format 45deg, 90deg, -30deg, and so forth.
Listing 22-4 rotates Listing 22-1’s star by 120 degrees. Figure 22-4 shows the result.

The flip Property
The flip property does not exist in standard CSS, but it can be used as a CSS
property of VML shapes. It flips a shape around either its x- or y-axis, or both. This
is given as a CSS property on the style attribute of a VML shape element. To flip
the y coordinates about the x-axis, set flip to y. To flip the x coordinates about the
y-axis, set flip to x. Listing 22-5 flips the shape about its x-axis. Figure 22-5 shows
the result.

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 817

818 Part V ✦ XML Applications

Figure 22-4: A star rotated by 120 degrees

Listing 22-4: A star rotated by 120 degrees

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>

<head>
<title>Example 22-4 from the XML Bible</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>

<body>
<h1>Example 22-4 from the XML Bible</h1>

<div>

<vml:polyline
style=”width: 250px; height: 250px; rotation: 120deg”
stroke=”true”
strokecolor=”black”
strokeweight=”5”

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 818

819Chapter 22 ✦ The Vector Markup Language

fill=”true”
fillcolor=”blue”
points=”8pt, 65pt, 72pt, 65pt, 92pt,11pt, 112pt, 65pt,

174pt, 65pt, 122pt,100pt, 142pt, 155pt, 92pt,
121pt, 42pt, 155pt, 60pt, 100pt, 8pt, 65pt”>

</vml:polyline>
</div>
<hr></hr>
Last Modified March 23, 1999

Copyright 1999

Elliotte Rusty Harold

</body>

</html>

Figure 22-5: The star flipped on its x-axis

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 819

820 Part V ✦ XML Applications

Listing 22-5: A star flipped about its x-axis

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>

<head>
<title>Example 22-5 from the XML Bible</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>

<body>
<h1>Example 22-5 from the XML Bible</h1>

<div>

<vml:polyline
style=”width: 250px; height: 250px; flip: y”
stroke=”true”
strokecolor=”black”
strokeweight=”5”
fill=”true”
fillcolor=”blue”
points=”8pt, 65pt, 72pt, 65pt, 92pt,11pt, 112pt, 65pt,

174pt, 65pt, 122pt,100pt, 142pt, 155pt, 92pt,
121pt, 42pt, 155pt, 60pt, 100pt, 8pt, 65pt”>

</vml:polyline>
</div>
<hr></hr>
Last Modified March 23, 1999

Copyright 1999

Elliotte Rusty Harold

</body>

</html>

The center-x and center-y Properties
The center-x and center-y properties locate the center of the block box that
contains the shape. These properties offer alternatives to the left and right CSS
properties and ultimately convey the same information. Because center-x and
left are alternatives for each other as are center-y and right, you should not
specify them both. If you employ both, then the value associated with center-x
and center-y is used.

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 820

821Chapter 22 ✦ The Vector Markup Language

VML in Office 2000
Microsoft Word, Excel, and PowerPoint support VML by converting graphics drawn
in these programs, into VML markup on HTML pages. In order to do this, you have
to set up the Office products correctly.

Settings
The settings are in essentially the same location in each of the Office components
that can create VML. To set VML as the default graphics type, you must perform the
following steps:

1. From within Microsoft PowerPoint/Word/Excel, open the Tools menu and
select Options.

2. Select the General tab.

3. Click the Web Options button.

4. Select the Pictures tab from the Web Options dialog window.

5. Check the option that reads: “Rely on VML for displaying graphics in
browsers,” as shown in Figures 22-6 (PowerPoint), 22-7 (Word), and 22-8
(Excel).

Figure 22-6: Setting VML as the default graphic type in PowerPoint

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 821

822 Part V ✦ XML Applications

6. Click the OK button on the Web Options window, then OK again on the main
program Options window, as shown in Figures 22-6, 22-7, and 22-8.
PowerPoint/Word/Excel is now configured to use VML graphics whenever you
save a presentation in Web format.

Figure 22-7: Setting VML as the default graphic type in Microsoft Word

Office 2000 will only export into VML those images you drew in their documents
using their drawing tools. This means that you cannot use PowerPoint or Word as a
conversion utility for other graphics that you have embedded in Office documents.

A Simple Graphics Demonstration of a House
Office 2000 may not have all the power of Adobe Illustrator or Corel Draw, but it does
make drawing simple graphics easy—much easier than drawing with the key-board
as shown previously. PowerPoint is the most graphically oriented of the Office com-
ponents, so let’s demonstrate by using PowerPoint to draw a little house. By employ-
ing the following steps, it’s as simple as drawing a few squares, circles, and triangles:

1. Open a new blank presentation from within PowerPoint using the File menu,
New option.

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 822

823Chapter 22 ✦ The Vector Markup Language

2. Select Blank Presentation, and then click OK.

3. In the New Slide window, select the slide with only a title bar at the top, as
shown in Figure 22-9, then click OK.

Figure 22-8: Setting VML as the default graphic type in Microsoft Excel

4. Click in the Title bar area, and give your slide a name, for example “My VML
House”.

5. On the drawing toolbar at the bottom of the window, click the Rectangle tool.
Use this tool to draw the foundation for the VML House.

6. On the drawing toolbar, click the AutoShapes button, select the Basic Shapes
option, and then the Isosceles triangle.

7. Draw a roof over the house.

8. Use the Oval and Rectangle tools to draw windows and doors on your house,
until your image looks something like the one shown in Figure 22-10.

9. Open the File menu, and select Save As Web Page. Type the name of the page,
for example “VMLHouse.html” then click the Save button.

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 823

824 Part V ✦ XML Applications

10. Close PowerPoint, and open the file you just created using Internet Explorer
5.0, or select Preview Web Page Preview from the File menu.

Figure 22-9: Selecting a template for our slide

Figure 22-11 shows the resulting Web page. The HTML and VML code created by
PowerPoint to display this slide is shown in Listing 22-6. As well as a lot of standard
HTML and VML code, you also see a number of elements in the urn:schemas-
microsoft-com:office:office and urn:schemas-microsoft-com:office:
powerpoint namespaces. These contain information that most Web browsers
won’t use, but that PowerPoint will if the HTML file is opened in PowerPoint. The
purpose of these elements is to allow a document to make a round trip from
PowerPoint to HTML and back again without losing anything along the way.

The VML house will only be shown in Internet Explorer 5.0 or later. Netscape
browsers will only see the embedded images, not the VML.

Note

Rectangle tool Oval tool

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 824

825Chapter 22 ✦ The Vector Markup Language

Figure 22-10: The VML House in PowerPoint 2000, ready for conversion into VML text

Figure 22-11: The VML House, shown as a Web page, in Internet Explorer 5.0

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 825

826 Part V ✦ XML Applications

Listing 22-6: The “Our VML House” PowerPoint slide converts
to an HTML file with embedded VML for use
on the Web

<html xmlns:v=”urn:schemas-microsoft-com:vml”
xmlns:o=”urn:schemas-microsoft-com:office:office”
xmlns:p=”urn:schemas-microsoft-com:office:powerpoint”
xmlns=”-//W3C//DTD HTML 4.0//EN”>

<head>
<meta http-equiv=Content-Type content=”text/html;

charset=windows-1252”>
<meta name=ProgId content=PowerPoint.Slide>
<meta name=Generator content=”Microsoft PowerPoint 9”>
<link id=Main-File rel=Main-File

href=”../Our%20VML%20House.htm”>
<link rel=Preview href=preview.wmf>

<!—[if !mso]>
<style>
v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
p\:* {behavior:url(#default#VML);}

. shape {behavior:url(#default#VML);}
v\:textbox {display:none;}

</style>
<![endif]—>
<title>Our VML House</title>
<meta name=Description content=”8-Mar-99: Our VML House”>
<link rel=Stylesheet href=”master03_stylesheet.css”>

<![if !ppt]>
<style media=print>
<!—.sld
{left:0px !important;
width:6.0in !important;
height:4.5in !important;
font-size:103% !important;}

—>
</style>
<script src=script.js>
</script>
<!—[if vml]>
<script>
g_vml = 1;
</script>

<![endif]—>
<script for=window event=onload>
<!—LoadSld(gId);
MakeSldVis(0);
//—>

</script>
<![endif]>

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 826

827Chapter 22 ✦ The Vector Markup Language

<o:shapelayout v:ext=”edit”>
<o:idmap v:ext=”edit” data=”2”/>

</o:shapelayout>
</head>

<body lang=EN-US style=’margin:0px;background-color:white’
onresize=”_RSW()”>

<div id=SlideObj class=sld
style=’position:absolute;top:0px;left:0px;

width:554px;height:415px;font-size:16px;
background-color:white;clip:
rect(0%, 101%, 101%, 0%);
visibility:hidden’>

<p:slide coordsize=”720,540”
colors=”#FFFFFF,#000000,#808080,#000000,#00CC99,#3333CC,

#CCCCFF,#B2B2B2”
masterhref=”master03.xml”>

<p:shaperange href=”master03.xml#_x0000_s1025”/>
<![if !ppt]>
<p:shaperange href=”master03.xml#_x0000_s1028”/>
<![if !vml]>
<img border=0

v:shapes=”_x0000_s1028”
src=”master03_image002.gif”
style=’position:absolute;top:91.08%;left:7.58%;

width:21.11%;height:6.98%’>
<![endif]>
<p:shaperange href=”master03.xml#_x0000_s1029”/>
<![if !vml]>
<img border=0

v:shapes=”_x0000_s1029”
src=”master03_image003.gif”
style=’position:absolute;top:91.08%;left:34.11%;

width:31.94%;height:6.98%’>
<![endif]>

<![endif]>
<v:rect id=”_x0000_s2063”

style=’position:absolute;left:438pt;top:3in;
width:42pt; height:78pt;mso-wrap-style:
none;v-text-anchor:middle’

fillcolor=”#0c9 [4]”
strokecolor=”black [1]”>

<v:fill color2=”white [0]”/>
<v:shadow color=”gray [2]”/>

</v:rect>
<p:shaperange href=”master03.xml#_x0000_m1026”/>
<v:shape id=”_x0000_s2050”

type=”#_x0000_m1026”
style=’position:absolute;left:54pt;top:48pt;

width:612pt; height:90pt’>
<v:fill o:detectmouseclick=”f”/>
<v:stroke o:forcedash=”f”/>

Continued

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 827

828 Part V ✦ XML Applications

Listing 22-6 (continued)

<o:lock v:ext=”edit” text=”f”/>
<p:placeholder type=”title”/>

</v:shape>
<v:rect id=”_x0000_s2051”

style=’position:absolute; left:246pt;top:330pt;
width:270pt;height:174pt;mso-wrap-style:none;
v-text-anchor:middle’

fillcolor=”red”
strokecolor=”black [1]”>

<v:shadow color=”gray [2]”/>
</v:rect>
<v:shapetype id=”_x0000_t5”

coordsize=”21600,21600”
o:spt=”5”
adj=”10800”
path=”m@0,0l0,21600,21600,21600xe”>

<v:stroke joinstyle=”miter”/>
<v:formulas>
<v:f eqn=”val #0”/>
<v:f eqn=”prod #0 1 2”/>
<v:f eqn=”sum @1 10800 0”/>

</v:formulas>
<v:path gradientshapeok=”t”

o:connecttype=”custom”
o:connectlocs=”@0,0;@1,10800;0,21600;10800,21600;

21600,21600;@2,10800”
textboxrect=”0,10800,10800,18000;

5400,10800,16200,18000;
10800,10800,21600,18000;
0,7200,7200,21600;
7200,7200,14400,21600;
14400,7200,21600,21600”/>

<v:handles>
<v:h position=”#0,topLeft” xrange=”0,21600”/>

</v:handles>
</v:shapetype>
<v:shape id=”_x0000_s2053”

type=”#_x0000_t5”
style=’position:absolute;left:3in;top:186pt;

width:324pt;height:2in;mso-wrap-style:none;
v-text-anchor:middle’

fillcolor=”#33c [5]”
strokecolor=”black [1]”>

<v:shadow color=”gray [2]”/>
</v:shape>
<v:oval id=”_x0000_s2054”

style=’position:absolute;left:336pt;top:246pt;
width:84pt;height:1in;mso-wrap-style:none;

v-text-anchor:middle’
fillcolor=”white [0]”
strokecolor=”black [1]”>

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 828

829Chapter 22 ✦ The Vector Markup Language

<v:shadow color=”gray [2]”/>
</v:oval>
<v:rect id=”_x0000_s2055”

style=’position:absolute;left:264pt;top:390pt;
width:66pt;height:66pt;mso-wrap-style:none;
v-text-anchor:middle’

fillcolor=”#6ff”
strokecolor=”black [1]”>

<v:shadow color=”gray [2]”/>
</v:rect>
<v:rect id=”_x0000_s2056”

style=’position:absolute;left:5in;top:390pt;
width:48pt;height:114pt;mso-wrap-style:none;
v-text-anchor:middle’

fillcolor=”black [1]”
strokecolor=”black [1]”>

<v:shadow color=”gray [2]”/>
</v:rect>
<v:rect id=”_x0000_s2057”

style=’position:absolute;left:6in;top:390pt;
width:66pt;height:66pt;mso-wrap-style:none;
v-text-anchor:middle’

fillcolor=”#6ff”
strokecolor=”black [1]”>

<v:shadow color=”gray [2]”/>
</v:rect>
<v:line id=”_x0000_s2058”

style=’position:absolute’
from=”300pt,390pt”
to=”300pt,456pt”
coordsize=”21600,21600”
strokecolor=”black [1]”>

<v:shadow color=”gray [2]”/>
</v:line>
<v:line id=”_x0000_s2059”

style=’position:absolute’
from=”264pt,420pt”
to=”330pt,420pt”
coordsize=”21600,21600”
strokecolor=”black [1]”>

<v:shadow color=”gray [2]”/>
</v:line>
<v:line id=”_x0000_s2060”

style=’position:absolute’
from=”468pt,390pt”
to=”468pt,456pt”
coordsize=”21600,21600”
strokecolor=”black [1]”>

<v:shadow color=”gray [2]”/>
</v:line>
<v:line id=”_x0000_s2061”

style=’position:absolute’

Continued

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 829

830 Part V ✦ XML Applications

Listing 22-6 (continued)

from=”6in,420pt”
to=”498pt,420pt”
coordsize=”21600,21600”
strokecolor=”black [1]”>

<v:shadow color=”gray [2]”/>
</v:line>
<v:oval id=”_x0000_s2062”

style=’position:absolute;left:390pt;top:444pt;
width:12pt;height:12pt;mso-wrap-style:none;
v-text-anchor:middle’

fillcolor=”yellow”
strokecolor=”black [1]”>

<v:shadow color=”gray [2]”/>
</v:oval>
<![if !vml]>
<img border=0

v:shapes=”_x0000_s2063,_x0000_s2050,_x0000_s2051,
_x0000_s2053,_x0000_s2054,_x0000_s2055,
_x0000_s2056,_x0000_s2057,_x0000_s2058,
_x0000_s2059,_x0000_s2060,_x0000_s2061,
_x0000_s2062”

src=”slide0001_image004.gif”
style=’position:absolute;top:8.91%;left:7.58%;

width:85.37%;height:84.81%’>
<![endif]>
<div v:shape=”_x0000_s2050” class=T

style=’position:absolute;top:13.01%;
left:8.48%;width:83.21%;height:9.15%’>

Our VML House
</div>
</p:slide>
</div>

</body>
</html>

A Quick Look at SVG
Let’s be honest about something here. VML may well be another Microsoft
technology that follows in the footsteps of ActiveX and Bob; that is, a technology,
which will be implemented by Microsoft and no one else. VML is not supported by
Netscape Navigator nor is it likely to be.

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 830

831Chapter 22 ✦ The Vector Markup Language

The W3C has received four different proposals for vector graphics in XML from a
wide variety of vendors. It’s formed the Scaleable Vector Graphics (SVG) working
group composed of representatives from all these vendors to develop a single
specification for an XML representation of Scalable Vector Graphics. When SVG is
complete it should provide everything VML provides plus a lot more including
animation, interactive elements, filters, clipping, masking, compositing, and pattern
fills. However, both a full SVG specification and software that implements the
specification is some time away. VML is here today.

The World Wide Web Consortium released the first working draft of SVG in February
of 1999, and revised that draft in April 1999. Compared to other working drafts, how-
ever, it is woefully incomplete. It’s really not much more than an outline of graphics
elements that need to be included, without any details about how exactly those
elements will be encoded in XML. I wouldn’t be surprised if this draft got pushed
out the door a little early to head off adoption of competing efforts like VML.

Microsoft has stated publicly that they intend to ignore any Web graphics efforts
except VML. However, they are represented on the SVG working group. Whether its
representatives actually participate or whether Microsoft’s name is only on the
masthead as a political gesture is unknown. In either case, SVG is a development
that we are all going to have to watch for the next few development cycles to see
where it is going, who is following, and who is leading.

Summary
In this chapter, we looked at developing VML graphics for use with Internet
Explorer 5.0. In addition to the general overview of VML, we specifically looked at:

✦ What VML can do for Web graphics.

✦ The various elements and attributes associated with VML shapes, and how to
use them to create the visual images that you need.

✦ How to configure Microsoft Office 2000 applications to use VML when creating
graphics for Web documents and presentations.

✦ How to draw VML figures using PowerPoint 2000.

✦ How SVG may affect Web graphics, and what could happen to VML as a result.

The last few chapters, this one included, have looked at a variety of XML
applications designed by third parties. In the next chapter, we will design a new
XML application from scratch that covers genealogy.

✦ ✦ ✦

3236-7 ch22.F.qc 6/29/99 1:13 PM Page 831

Designing a New
XML Application

The last several chapters discussed XML applications that
were already written by other people and showed you

how to use them. This chapter shows you how to develop an
XML application from scratch. In this chapter you see the
gradual development of an XML application and associated
DTDs for genealogical data.

Organization of the Data
When developing an XML application from scratch, you need
to organize, either in your head or on paper, the data you’re
describing. There are three basic steps in this process:

1. List the elements.

2. Identify the fundamental elements.

3. Relate the elements.

One of the easiest ways to start the process is to explore the
forms and reports that are already available from other
formats that describe this data. Genealogy is a fairly well-
established discipline, and genealogists have a fairly good
idea of what information is and is not useful and how it should
be arranged. This is often included in a family group sheet, a
sample of which is shown in Figure 23-1.

You’ll need to duplicate and organize the fields from the
standard reports in your DTD to the extent that they match
what you want to do. You can of course supplement or modify
them to fit your specific needs.

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Organization of the
data

The person DTD

The family DTD

The source DTD

The family tree

A style sheet for
family trees

✦ ✦ ✦ ✦

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 833

834 Part V ✦ XML Applications

Figure 23-1: A family group sheet

Object-oriented programmers will note many similarities between what’s de-
scribed in this section and the techniques they gather user requirements. This is
partly the result of my own experience and prejudices as an object-oriented pro-
grammer, but more of it is due to the similarity of the tasks involved. Gathering
user requirements for software is not that different from gathering user require-
ments for markup languages. Database designers may also notice a lot of similar-
ity between what’s done here and what they do when designing a new database.

Listing the Elements
The first step in developing DTDs for a domain is to decide what the elements are.
This isn’t hard. It mostly consists of brainstorming to determine what may appear
in the domain. As an exercise, write down everything you can think of that may be
genealogical information. To keep the problem manageable, include only genealo-
gical data. Assume you can use the XHTML DTD from Chapter 20 for standard text
information such as paragraphs, page titles, and so forth. Again, include only
elements that specifically apply to genealogy.

Don’t be shy. It’s easy to remove information later if there’s too much or something
doesn’t prove useful. At this stage, expect to have redundant elements or elements
you’ll throw away after further thought.

Note

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 834

835Chapter 23 ✦ Desiging a New XML Application

Here’s the list I came up with. Your list will almost certainly be at least a little
different. And of course you may have used different names for the same things.
That’s okay. There’s no one right answer (which is not to say that all answers are
created equal or that some answers aren’t better than others).

father

parent

baptism

note

aunt

mother

child

adoption

grave site

niece

person

baby

gender

source

grandparent

family

birthday

burial

surname

grandmother

son

death date

grandfather

given name

uncle

daughter

marriage

date

middle name

nephew

Identifying the Fundamental Elements
The list in the last section has effective duplicates and some elements that aren’t
really necessary. It is probably missing a few elements too, which you’ll discover as
you continue. This is normal. Developing an XML application is an iterative process
that takes some time before you feel comfortable with the result.

What you really need to do at this stage is determine the fundamental elements of
the domain. These are likely to be those elements that appear as immediate chil-
dren of the root, rather than contained in some other element. There are two real
possibilities here: family and person. Most of the other items in the list are either
characteristics of a person or family (occupation, birthday, marriage) or they’re a
kind of family or person (uncle, parent, baby).

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 835

836 Part V ✦ XML Applications

At this stage, most people’s instinct is to say that family is the only fundamental
element, and that families contain people. This is certainly consistent with the usage
of the terms parent and child to describe the relationships of XML elements (a usage
I eschew in this chapter to avoid confusion with the human parents and children
we’re modeling). For example, you might imagine that a family looks like this:

<FAMILY>
<HUSBAND>Samuel English Anderson</HUSBAND>
<WIFE>Cora Rucker McDaniel</WIFE>
<CHILD>Judson McDaniel Anderson</CHILD>
<CHILD>Thomas Corwin Anderson</CHILD>
<CHILD>Rodger French Anderson</CHILD>
<CHILD>Mary English Anderson</CHILD>

</FAMILY>

However, there’s a problem with this approach. A single person likely belongs to
more than one family. I am both the child of my parents and the husband of my
wife. That’s two different families. Perhaps you can think of this as one extended
family, but how far back does this go? Are my grandparents part of the same family?
My great-grandparents? My in-laws? Genealogists generally agree that for the
purposes of keeping records, a family is a mother, a father, and their children.

Of course, the real world isn’t even that simple. Some people have both adoptive
and biological parents. Many people have more than one spouse over a lifetime. My
father-in-law, Sidney Hart Anderson, was married 15 separate times to 12 different
women. Admittedly, Sidney is an extreme case. When he died, he was only four
marriages away from tying the world record for serial marriage. (Since then, former
Baptist minister Glynn Wolfe pushed the record to 28 consecutive marriages.)
Nonetheless, you do need to account for the likelihood that the same people belong
to different families.

The standard family group sheets used by the Mormons, a variation of which was
shown in Figure 23-1, account for this by repeating the same people and data on
different sheets. But for computer applications it’s better not to store the same
information more than once. Among other things, this avoids problems where data
stored in one place is updated while data stored in another is not. Instead, you can
make connections between different elements by using ID and IDREF attributes.

Thus it is not enough to have only a single fundamental family element. There must
be at least one other fundamental element, the person. Each person is unique. Each
has a single birthday, a single death date, most of the time (though not always) a
single name, and various other data. Families are composed of different collections
of persons. By defining the persons who make up a family, as well as their roles
inside the family, you define the family.

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 836

837Chapter 23 ✦ Desiging a New XML Application

We often think of our family as an extended family including grandparents, daugh-
ters-in-law, uncles, aunts, and cousins, and perhaps biologically unrelated individ-
uals who happen to live in the same house. However, in the context of genealogy,
a family is a single pair of parents and their children. In some cases the names of
these people may be unknown, and in many cases there may be no children or no
husband or wife (a single individual qualifies as a family of one). However, a fam-
ily does not include more distant relationships. A large part of genealogy is the
establishment of the actual biological or adoptive relationships between people.
It’s not uncommon to discover in the course of one’s research that the “Cousin
Puss” or “Aunt Moot” referred to in old letters was in fact no relation at all! Such
people should certainly be included in your records, but failure to keep their actual
connections straight can only lead to confusion farther down the road.

There’s one more key element that may or may not be a direct child of the root.
That’s the source for information. A source is like a bibliographical footnote,
specifying where each piece of information came from. The source may be a
magazine article such as “Blaise Pradel, Man At Arms, May/June 1987, p. 26–31”; a
book like “A Sesquicentennial History of Kentucky by Frederik A. Wallis & Hambleon
Tapp, 1945, The Historical Record Association, Hopkinsville, KY”; a family bible
such as “English-Demint Anderson Bible, currently held by Beth Anderson in
Brooklyn”; or simply word of mouth such as “Anne Sandusky, interview, 6-12-1995”.

Tracking the source for a particular datum is important because different sources
often disagree. It’s not uncommon to see birth and death dates that differ by a day
or a year, plus or minus. Less common but still too frequent are confusions between
parents and grandparents, aunts and cousins, names of particular people, and
more. When you uncover information that disputes information you’ve already
collected, it’s important to make a reasonable judgement about whether the new
information is more reliable than the old. Not all sources are reliable. In my own
research I’ve found a document claiming to trace my wife’s lineage back to Adam
and Eve through various English royalty from the Middle Ages, and assorted
biblical figures. Needless to say, I don’t take this particular source very seriously.

I can think of plausible reasons to make the source a child of the individual
elements it documents, but ultimately I think the source is not part of a person or a
family in the same way that a birth date or marriage date belongs to a particular
person. Rather, it is associated information that should be stored separately and
referenced through an ID. The main reason is that a single source such as an old
family bible may well contain data about many different elements. In keeping with
principles of data normalization, I’d prefer not to repeat the information about the
source more than once in the document. If you like, think of this as akin to using
end notes rather than footnotes.

Note

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 837

838 Part V ✦ XML Applications

Establishing Relationships Among the Elements
The third and final step before the actual writing of the DTD is to identify how the
different pieces of information you want to track are connected. You’ve determined
that the three fundamental elements are the person, the family, and the source.
Now you must decide what you want to include in these fundamental elements.

FAMILY
A family is generally composed of a husband, a wife, and zero or more children.
Either the husband or the wife is optional. If you wish to account for same-sex
marriages (something most genealogy software couldn’t do until recently), simply
require one or two parents or spouses without specifying gender. Gender may then
be included as an attribute of a person, which is where it probably belongs anyway.

Is there other information associated with a family, as opposed to individuals in the
family? I can think of one thing that is important to genealogists: marriage
information. The date and place a couple was married (if any) and the date and
place a couple was divorced (again, if any), are important information. Although
you could include such dates as part of each married individual, it really makes
sense to make it part of the family. Given that, a family looks something like this:

<FAMILY>
<MARRIAGE>
<DATE>...</DATE>
<PLACE>...</PLACE>

</MARRIAGE>
<DIVORCE>
<DATE>...</DATE>
<PLACE>...</PLACE>

</DIVORCE>
<HUSBAND>...</HUSBAND>
<WIFE>...</WIFE>
<CHILD>...</CHILD>
<CHILD>...</CHILD>
<CHILD>...</CHILD>

</FAMILY>

Information can be omitted if it isn’t relevant (such as a couple never divorced) or if
you don’t have it.

PERSON
The PERSON element is likely to be more complex. Let’s review the standard
information you’d want to store about a person:

✦ name

✦ birth

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 838

839Chapter 23 ✦ Desiging a New XML Application

✦ baptism

✦ death

✦ burial

✦ father

✦ mother

Of these, name, birth, death, and burial are likely to be elements contained inside a
person. Father and mother are likely to be attributes of the person that refer back
to the person elements for those people. Furthermore, a person needs an ID
attribute so he or she can be referred to by family and other person elements.

Father and mother seem to be borderline cases where you might get away with
using attributes, but there is the potential to run into trouble. Although everyone
has exactly one biological mother and one biological father, many people have
adoptive parents that may also need to be connected to the person.

Names are generally divided into family name and given name. This allows you to
do things like write a style sheet that boldfaces all people with the last name
“Harold”.

Birth, death, burial (and possibly baptism, sometimes a baptismal record is all
that’s available for an individual) can all be divided into a date (possibly including a
time) and a place. Again, the place may simply be CDATA or it can even be a full
address element. However, in practice, full street addresses a post office could
deliver to are not available. Much more common are partial names like “Mount
Sterling, Kentucky” or the name of an old family farm.

Dates can either be stored as CDATA or broken up into day, month, and year. In
general, it’s easier to break them into day, month, and year than to stick to a common
format for dates. On the other hand, allowing arbitrary text inside a date element also
allows for imprecise dates like “1919-20”, “before 1753”, or “about 1800”.

That may seem like everything, but we’ve left out one of the most interesting and
important pieces of all — notes. A note about a person may contain simple data like
“first Eagle Scout in Louisiana” or it may contain a complete story, like how Sam
Anderson was killed in the field. This may be personal information like religious
affiliation, or it may be medical information like which ancestors died of stomach
cancer. If you’ve got a special interest in particular information like religion or
medical history, you can make that a separate element of its own, but you should
still include some element that can hold arbitrary information of interest that you
dig up during your research.

There are other things you could include in a PERSON element, photographs for
instance, but for now I’ll stop here so this chapter is manageable. Let’s move on to
the SOURCE element.

Caution

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 839

840 Part V ✦ XML Applications

SOURCE
The third and final top-level element is SOURCE. A source is bibliographic
information that says where you learned a particular fact. It can be a standard
citation to a published article or book such as “Collin’s History of Kentucky, Volume
II, p. 325, 1840, 1875”. Sources like this have a lot of internal structure that could be
captured with elements like BOOK, AUTHOR, VOLUME, PAGE_RANGE, YEAR, and so
forth. Several efforts are currently underway to produce DTDs for generic
bibliographies.

However, sources in genealogy tend to be lot messier than in the typical term paper.
For instance, one of the most important sources in genealogy can be the family
bible with records of births, dates, and marriages. In such a case, it’s not the
edition, translation, or the publisher of the bible that’s important; it’s the individual
copy that resides in Aunt Doodie’s house. For another example, consider exactly
how you cite an obituary you found in a 50-year-old newspaper clipping in a
deceased relative’s purse. Chances are the information in the obituary is close to
accurate, but it’s not easy to figure out exactly what page of what newspaper on
what date it came from.

Since developing an XML application for bibliographies could easily be more than a
chapter of its own, and is a task best left to professional librarians, I will satisfy
myself with making the SOURCE element contain only character data. It will also
have an ID attribute in the form s1, s2, s3, and so forth, so that each source can be
referred to by different elements. Let’s move on to writing the DTD that documents
this XML application.

The Person DTD
By using external entity references, it’s possible to store individual people in
separate files, then pull them together into families and family trees later. So let’s
begin with a DTD that works for a single person. We’ll merge this into a DTD for
families and family trees in the next section.

To develop a DTD, it’s often useful to work backwards — that is, first write out the
XML markup you’d like to see using a real example or two, then write the DTD that
matches the data. I’m going to use my great-grandfather-in-law Samuel English
Anderson as an example, because I have enough information about him to serve as
a good example, and also because he’s been dead long enough that no one should
get upset over anything I say about him. (You’d be amazed at the scandals and
gossip you dig up when doing genealogical research.) Here’s the information I have
about Samuel English Anderson:

Name: Samuel English Anderson29, 43

Birth: 25 Aug 1871 Sideview

Death: 10 Nov 1919 Mt. Sterling, KY

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 840

841Chapter 23 ✦ Desiging a New XML Application

Father: Thomas Corwin Anderson (1845-1889)

Mother: LeAnah (Lee Anna, Annie) DeMint English (1843-1898)

Misc. Notes219

Samuel English Anderson was known in Montgomery County for his red hair
and the temper that went with it. He did once kill a man, but the court found
that it was in self defense.

He was shot by a farm worker whom he had fired the day before for smoking
in a tobacco barn. Hamp says this may have been self-defense, because he
threatened to kill the workers for smoking in the barn. He also claims that old-
time rumors say they mashed his head with a fence post. Beth heard he was
cut to death with machetes in the field, but Hamp says they wouldn’t be
cutting tobacco in November, only stripping it in the barn.

Now let’s reformat this into XML as shown in Listing 23-1:

Listing 23-1: An XML document for Samuel English Anderson

<?xml version=”1.0”?>
<!DOCTYPE PERSON SYSTEM “person.dtd”>
<PERSON ID=”p37” SEX=”M”>
<REFERENCE SOURCE=”s29”/>
<REFERENCE SOURCE=”s43”/>
<NAME>
<GIVEN>Samuel English</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>Sideview</PLACE>
<DATE>25 Aug 1871</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>10 Nov 1919</DATE>

</DEATH>
<SPOUSE PERSON=”p1099”/>
<SPOUSE PERSON=”p2660”/>
<FATHER PERSON=”p1035”/>
<MOTHER PERSON=”p1098”/>
<NOTE>
<REFERENCE SOURCE=”s219”/>
<body>
<p>
Samuel English Anderson was known in Montgomery County
for his red hair and the temper that went with it. He
did once kill a man, but the court
found that it was in self-defense.

Continued

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 841

842 Part V ✦ XML Applications

Listing 23-1 (continued)

</p>

<p>
He was shot by a farm worker whom he had
fired the day before for smoking in a tobacco barn.
Hamp says this may have been self-defense, because he
threatened to kill the workers for smoking in the barn.
He also says old-time rumors say they mashed his head
with a fence post. Beth heard he was cut to death with
machetes in the field, but Hamp says they wouldn’t be
cutting tobacco in November, only stripping it in the
barn.

</p>
</body>

</NOTE>
</PERSON>

The information about other people has been removed and replaced with
references to them. The ID numbers are provided by the database I use to store this
information (Reunion 5.0 for the Mac from Leister Productions). The end note
numbers become SOURCE attributes of REFERENCE elements. HTML-like tags are
used to mark up the note.

Now let’s see what a DTD for this would look like. The first element is PERSON. This
element may contain names, references, births, deaths, burials, baptisms, notes,
spouses, fathers, and mothers. I’m going to allow zero or more of each in any order.

<!ELEMENT PERSON (NAME | REFERENCE | BIRTH | DEATH | BURIAL
| BAPTISM | NOTE | SPOUSE | FATHER | MOTHER)*>

At first glance it may seem strange not to require a BIRTH or some of the other
elements. After all, everybody has exactly one birthday. However, keep in mind that
what’s being described here is more our knowledge of the person than the person
him or herself. You often know about a person without knowing the exact day or
even year they were born. Similarly, you may sometimes have conflicting sources
that give different values for birthdays or other information. Therefore, it may be
necessary to include extra data.

The PERSON element has two attributes, an ID, which we’ll require, and a SEX which
we’ll make optional. (Old records often contain children of unspecified gender,
sometimes named, sometimes not. Even photographs don’t always reveal gender,
especially when children who died very young are involved.)

<!ATTLIST PERSON
ID ID #REQUIRED
SEX (M | F) #IMPLIED>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 842

843Chapter 23 ✦ Desiging a New XML Application

Next the child elements must be declared. Four of them —BIRTH, DEATH, BURIAL,
and BAPTISM— consist of a place and a date, and are otherwise the same. This is a
good place for a parameter entity reference:

<!ENTITY % event “(REFERENCE*, PLACE?, DATE?)*”>
<!ELEMENT BIRTH %event;>
<!ELEMENT BAPTISM %event;>
<!ELEMENT DEATH %event;>
<!ELEMENT BURIAL %event;>

I’ve also added one or more optional REFERENCE element at the start, even though
this example doesn’t have a SOURCE for any event information. Sometimes, you’ll
have different sources for different pieces of information about a person. In fact I’ll
add REFERENCE elements as potential children of almost every element in the DTD.
I declare REFERENCE like this, along with a comment in case it isn’t obvious from
glancing over the DTD exactly what’s supposed to be found in the reference:

<!— The ID number of a REFERENCE element
that documents this entry —>

<!ELEMENT REFERENCE EMPTY>
<!ATTLIST REFERENCE SOURCE NMTOKEN #REQUIRED>

Here the SOURCE attribute merely contains the number of the corresponding
source. When actual SOURCE elements are added to the DTD below, this can become
the ID of the SOURCE element.

A PLACE contains only text. A DATE contains a date string. I decided against
requiring a separate year, date, and month to allow for less-certain dates that are
common in genealogy like “about 1876” or “sometime before 1920”.

<!ELEMENT PLACE (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>

The SPOUSE, FATHER, and MOTHER attributes each contain a link to the ID of a
PERSON element via a PERSON attribute. Again, this is a good opportunity to use a
parameter entity reference:

<!ENTITY % personref “PERSON NMTOKEN #REQUIRED”>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE %personref;>
<!ELEMENT FATHER EMPTY>
<!ATTLIST FATHER %personref;>
<!ELEMENT MOTHER EMPTY>
<!ATTLIST MOTHER %personref;>

Ideally, the PERSON attribute would have type IDREF. However, as long as the
person being identified may reside in another file, the best you can do is require a
name token type.

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 843

844 Part V ✦ XML Applications

The NAME element may contain any number of REFERENCE elements and zero or one
SURNAME and GIVEN elements. Each of these may contain text.

<!ELEMENT NAME (REFERENCE*, GIVEN?, SURNAME?)>
<!ELEMENT GIVEN (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>
The NOTE element may contain an arbitrary amount of text. Some
standard markup would be useful here. The easiest solution is
to adopt the XHTML DTD introduced in Chapter 20, Reading
Document Type Definitions. It’s not necessary to rewrite it
all. Simply use a parameter reference entity to import it.
We’ll allow each NOTE to contain zero or more REFERENCE
elements and a single body element.<!ENTITY % xhtml SYSTEM
“xhtml/XHTML1-s.dtd”>
%xhtml;
<!ELEMENT NOTE (REFERENCE*, body)>

Those three little lines get you the entire HTML 4.0 markup set. There’s no need to
invent your own. You can use the already familiar and well-supported HTML tag set.
I have left out the header, though that would be easy to include — just by replacing
body with html in the above. (I left it out because doing so also requires you to
include head and title elements, which seemed superfluous here.) This does
assume that the file XHTML1-s.dtd can be found at the relative URL xhtml/XHTML1-
s.dtd, though that’s easy to adjust if you want to put it somewhere else. You could
even use the absolute URL at the W3C Web site, http://www.w3.org/TR/xhtml-
modularization/DTD/XHTML1-s.dtd, though I prefer not to make my files
dependent on the availability of a Web site I don’t control. Listing 23-2 shows the
complete DTD.

Listing 23-2: person.dtd: The complete PERSON DTD

<!ELEMENT PERSON (NAME | REFERENCE | BIRTH | DEATH | BURIAL
| BAPTISM | NOTE | FATHER | MOTHER | SPOUSE)* >

<!ATTLIST PERSON ID ID #REQUIRED>

<!—M means male, F means female —>
<!ATTLIST PERSON SEX (M | F) #IMPLIED>

<!— The ID number of a SOURCE element that documents
this entry —>

<!ELEMENT REFERENCE EMPTY>
<!ENTITY % sourceref “SOURCE NMTOKEN #REQUIRED”>
<!ATTLIST REFERENCE %sourceref;>

<!ENTITY % event “(REFERENCE*, PLACE?, DATE?)”>
<!ELEMENT BIRTH %event;>
<!ELEMENT BAPTISM %event;>
<!ELEMENT DEATH %event;>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 844

845Chapter 23 ✦ Desiging a New XML Application

<!ELEMENT BURIAL %event;>

<!ELEMENT PLACE (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>

<!ENTITY % personref “PERSON NMTOKEN #REQUIRED”>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE %personref;>
<!ELEMENT FATHER EMPTY>
<!ATTLIST FATHER %personref;>
<!ELEMENT MOTHER EMPTY>
<!ATTLIST MOTHER %personref;>

<!ELEMENT NAME (GIVEN?, SURNAME?)>
<!ELEMENT GIVEN (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>

<!ENTITY % xhtml SYSTEM “xhtml/XHTML1-s.dtd”>
%xhtml;
<!ELEMENT NOTE (REFERENCE*, body)>

The Family DTD
The next step is to write a DTD for a family. Let’s begin with a sample family XML
document, as shown in Listing 23-3:

Listing 23-3: An XML document for Samuel English
Anderson’s family

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE FAMILY SYSTEM “family.dtd”>
<FAMILY>
<HUSBAND PERSON=”p37”/>
<WIFE PERSON=”p1099”/>
<CHILD PERSON=”p23”/>
<CHILD PERSON=”p36”/>
<CHILD PERSON=”p1033”/>
<CHILD PERSON=”p1034”/>
<MARRIAGE>
<PLACE>Cincinatti, OH</PLACE>
<DATE>15 Jul 1892</DATE>

</MARRIAGE>
</FAMILY>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 845

846 Part V ✦ XML Applications

All that’s needed here are references to the members of the family, not the actual
family members themselves. The reference PERSON IDs are once again provided
from the database where this information is stored. Their exact values aren’t
important as long as they’re reliably unique and stable.

Now that you’ve got a sample family, you have to prepare the DTD for all families,
like the one shown in Listing 23-4. Don’t forget to include items that are needed for
some families — even if not for this example — like a divorce. A parameter entity
reference will pull in the declarations from the person DTD of Listing 23-2.

Listing 23-4: family.dtd: A DTD that describes a family

<!ENTITY % person SYSTEM “person.dtd”>
%person;

<!ELEMENT FAMILY (REFERENCE*, HUSBAND?, WIFE?, CHILD*,
MARRIAGE*, DIVORCE*, NOTE*)>

<!ELEMENT HUSBAND EMPTY>
<!ATTLIST HUSBAND %personref;>
<!ELEMENT WIFE EMPTY>
<!ATTLIST WIFE %personref;>
<!ELEMENT CHILD EMPTY>
<!ATTLIST CHILD %personref;>
<!ELEMENT DIVORCE %event;>
<!ELEMENT MARRIAGE %event;>

I’m assuming no more than one HUSBAND or WIFE per FAMILY element. This is a
fairly standard assumption in genealogy, even in cultures where plural marriages
are common, because it helps to keep the children sorted out. When document-
ing genealogy in a polygamous society, the same HUSBAND may appear in multiple
FAMILY elements. When documenting genealogy in a polyandrous society, the same
WIFE may appear in multiple FAMILY elements. Aside from overlapping dates, this
is essentially the same procedure that’s followed when documenting serial mar-
riages. And of course there’s nothing in the DTD that actually requires people to be
married in order to have children (any more than there is anything in biology that
requires it).

Overall, this scheme is very flexible, much more so than if a FAMILY element had to
contain individual PERSON elements rather than merely pointers to them. That
would almost certainly require duplication of data across many different elements
and files. The only thing this DTD doesn’t handle well are same-sex marriages, and
that could easily be fixed by changing the FAMILY declaration to the following:

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 846

847Chapter 23 ✦ Desiging a New XML Application

<!ELEMENT FAMILY (((HUSBAND, WIFE) | (HUSBAND, HUSBAND?)
| (WIFE, WIFE?)), MARRIAGE*, DIVORCE*, CHILD*)>

Allowing multiple marriages and divorces in a single family may seem a little
strange, but it does happen. My mother-in-law married and divorced my father-in-
law three separate times. Remarriages to the same person aren’t common, but they
do happen.

The Source DTD
The third and final top-level element is SOURCE. I’m using a watered-down SOURCE
element with little internal structure. However, by storing the DTD in a separate file, it
would be easy to add structure to it later. Some typical SOURCE elements look like this:

<SOURCE ID=”s218”>Hamp Hoskins interview, 11-28-1996</SOURCE>
<SOURCE ID=”s29”>English-Demint Anderson Bible</SOURCE>
<SOURCE ID=”s43”>Anderson Bible</SOURCE>
<SOURCE ID=”s43”>
Letter from R. Foster Adams to Beth Anderson, 1972

</SOURCE>
<SOURCE ID=”s66”>
Collin’s History of Kentucky, Volume II, p.325, 1840, 1875

</SOURCE>

A SOURCE element probably has a lot of internal structure. Work is ongoing in
several places to produce a generic DTD for bibliographic information with ele-
ments for articles, authors, pages, publication dates, and more. However, this is
quite a complex topic when considered in its full generality, and as previously
mentioned, it doesn’t work quite the same for genealogy as it does for most fields.
The individual copy of a family bible or newspaper clipping with handwritten annota-
tions may be more significant than the more generic, standard author, title, publisher
data used in most bibliographies.

Because developing an XML application for bibliographies could easily be more
than a chapter of its own, and is a task best left to professional librarians, I will
satisfy myself with making the SOURCE element contain only character data. It will
also have an ID attribute in the form s1, s2, s3, and so forth, so that each source
can be referred to by different elements. Listing 23-5 shows the extremely simple
DTD for sources.

Listing 23-5: source.dtd: A simple SOURCE DTD

<!ELEMENT SOURCE (#PCDATA)>
<!ATTLIST SOURCE ID ID #REQUIRED>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 847

848 Part V ✦ XML Applications

The Family Tree DTD
It’s now possible to combine the various families, people, and sources into a single
grouping that includes everyone. I’ll call the root element of this document
FAMILY_TREE. It will include PERSON, FAMILY and SOURCE elements in no particular
order:

<!ELEMENT FAMILY_TREE (PERSON | FAMILY | SOURCE)*>

It’s not necessary to re-declare the PERSON, FAMILY and SOURCE elements and their
children. Instead, these can be imported by importing the family and source DTDs
with external parameter entity references. The family DTD then imports the person
DTD:

<!ENTITY % family SYSTEM “family.dtd”>
%family;
<!ENTITY % source SYSTEM “source.dtd”>
%source;

One thing you want to do at this point is switch from using NMTOKEN types for
spouses, parents, and references to actual ID types. This is because a FAMILY
element that’s part of a FAMILY_TREE should include all necessary PERSON
elements. You can do that by overriding the personref and sourceref parameter
entity declarations in the DTD for the family tree:

<!ENTITY % personref “PERSON IDREF #REQUIRED”>
<!ENTITY % sourceref “SOURCE IDREF #REQUIRED”>

That’s all you need. Everything else is contained in the imported person and family
DTDs. Listing 23-6 shows the family-tree DTD. Listing 23-7 shows a complete family
tree document that includes 11 people, three families, and seven sources.

Listing 23-6: familytree.dtd: The family-tree DTD

<!ENTITY % personref “PERSON IDREF #REQUIRED”>
<!ENTITY % sourceref “SOURCE IDREF #REQUIRED”>

<!ENTITY % family SYSTEM “family.dtd”>
%family;

<!ENTITY % source SYSTEM “source.dtd”>
%source;

<!ELEMENT FAMILY_TREE (SOURCE | PERSON | FAMILY)*>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 848

849Chapter 23 ✦ Desiging a New XML Application

Listing 23-7: An XML document of a complete family tree

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE FAMILY_TREE SYSTEM “familytree.dtd”>
<FAMILY_TREE>

<PERSON ID=”p23” SEX=”M”>
<REFERENCE SOURCE=”s44”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Judson McDaniel</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>Montgomery County, KY, 1893</PLACE>
<DATE>19 Jul 1894</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>27 Apr 1941</DATE>

</DEATH>
<NOTE><body>
<p>Agriculture College in Iowa</p>
<p>Farmer</p>
<p>32nd degree Mason</p>
<p>
He shot himself in the pond in the back of Sideview
when he found that he was terminally ill. It has also
been claimed that he was having money and wife
troubles. (He and Zelda did not get along and he was
embarrassed to have married her.) It has further been
claimed that this was part of the Anderson family
curse.

</p>
</body></NOTE>

</PERSON>

<PERSON ID=”p36” SEX=”F”>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Mary English</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>August 4, 1902?, Sideview, KY</PLACE>
<DATE>8 Apr 1902</DATE>

</BIRTH>
<DEATH>

Continued

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 849

850 Part V ✦ XML Applications

Listing 23-7 (continued)

<PLACE>Mt. Sterling, KY</PLACE>
<DATE>19 Dec 1972</DATE>

</DEATH>
</PERSON>

<PERSON ID=”p37” SEX=”M”>
<REFERENCE SOURCE=”s29”/>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p1035”/>
<MOTHER PERSON=”p1098”/>
<NAME>
<GIVEN>Samuel English</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>Sideview</PLACE>
<DATE>25 Aug 1871</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>10 Nov 1919</DATE>

</DEATH>
<NOTE>
<body>
<p>
Samuel English Anderson was known in Montgomery
County for his red hair and the temper that went
with it. He did once kill a man,
but the court found that it was in self-defense.

</p>

<p>
He was shot by a farm worker whom he had
fired the day before for smoking in a tobacco barn.
Hamp says this may have been self-defense, because he
threatened to kill the workers for smoking in the
barn. He also says old-time rumors say they mashed
his head with a fence post. Beth heard he was cut to
death with machetes in the field, but Hamp says they
wouldn’t be cutting tobacco in November, only
stripping it in the barn.

</p>
</body>

</NOTE>

</PERSON>

<PERSON ID=”p1033” SEX=”M”>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 850

851Chapter 23 ✦ Desiging a New XML Application

<NAME>
<GIVEN>Thomas Corwin</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<DATE>16 Jan 1898</DATE>

</BIRTH>
<DEATH>
<PLACE>Probably Australia</PLACE>

</DEATH>
<NOTE>
<body><p>

Corwin fought with his father and then left home.
His last letter was from Australia.

</p></body>
</NOTE>

</PERSON>

<PERSON ID=”p1034” SEX=”M”>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Rodger French</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<DATE>26 Nov 1899</DATE>

</BIRTH>
<DEATH>
<PLACE>Birmingham, AL</PLACE>

</DEATH>
<NOTE>
<body><p>
Killed when the car he was driving hit a pig in the
road; Despite the many suicides in the family, this is
the only known sowicide.

</p></body>
</NOTE>

</PERSON>

<PERSON ID=”p1035” SEX=”M”>
<NAME>
<GIVEN>Thomas Corwin</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<DATE>24 Aug 1845</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>18 Sep 1889</DATE>

Continued

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 851

852 Part V ✦ XML Applications

Listing 23-7 (continued)

</DEATH>
<NOTE>
<body>
<p>Yale 1869 (did not graduate)</p>
<p>Breeder of short horn cattle</p>
<p>He was named after an Ohio senator. The name Corwin
is from the Latin <i>corvinus</i> which means

<i>raven</i> and is akin to <i>corbin</i>/<i>corbet</i>.
In old French it was <i>cord</i> and in Middle English
<i>Corse</i> which meant <i>raven</i> or <i>cow</i>.
</p>
<p>Attended Annapolis for one year, possibly to
avoid service in the Civil War.</p>

<p>He farmed the old Mitchell farm
and became known as a leading short horn breeder.
He suffered from asthma and wanted to move to
Colorado in 1876 to avoid the Kentucky weather, but
he didn’t.
</p>

</body>
</NOTE>

</PERSON>

<PERSON ID=”p1098” SEX=”F”>
<REFERENCE SOURCE=”s29”/>
<NAME>
<GIVEN>LeAnah (Lee Anna, Annie) DeMint</GIVEN>
<SURNAME>English</SURNAME>

</NAME>
<BIRTH>
<PLACE>Louisville, KY</PLACE>
<DATE>1 Mar 1843</DATE>

</BIRTH>
<DEATH>
<REFERENCE SOURCE=”s16”/>
<PLACE>acute Bright’s disease, 504 E. Broadway</PLACE>
<DATE>31 Oct 1898</DATE>

</DEATH>
<NOTE>
<body>
<p>Writer (pseudonymously) for Louisville Herald</p>
<p>Ann or Annie was from Louisville. She wrote under

an assumed name for the Louisville Herald.</p>
</body>

</NOTE>
</PERSON>

<PERSON ID=”p1099” SEX=”F”>
<REFERENCE SOURCE=”s39”/>
<FATHER PERSON=”p1100”/>
<MOTHER PERSON=”p1101”/>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 852

853Chapter 23 ✦ Desiging a New XML Application

<NAME>
<GIVEN>Cora Rucker (Blevins?)</GIVEN>
<SURNAME>McDaniel</SURNAME>

</NAME>
<BIRTH>
<DATE>1 Aug 1873</DATE>

</BIRTH>
<DEATH>
<REFERENCE SOURCE=”s41”/>
<REFERENCE SOURCE=”s60”/>
<PLACE>Sideview, bronchial trouble TB</PLACE>
<DATE>21 Jul 1909</DATE>

</DEATH>
<NOTE>
<body>
<p>She was engaged to General Hood of the Confederacy,
but she was seeing Mr. Anderson on the side. A servant
was posted to keep Mr. Anderson away. However the girl
fell asleep, and Cora eloped with Mr. Anderson.</p>
</body>

</NOTE>
</PERSON>

<PERSON ID=”p1100” SEX=”M”>
<NAME>
<GIVEN>Judson</GIVEN>
<SURNAME>McDaniel</SURNAME>

</NAME>
<BIRTH>
<DATE>21 Feb 1834</DATE>

</BIRTH>
<DEATH>
<DATE>9 Dec 1905</DATE>

</DEATH>
</PERSON>

<PERSON ID=”p1101” SEX=”F”>
<NAME>
<GIVEN>Mary E.</GIVEN>
<SURNAME>Blevins</SURNAME>

</NAME>
<BIRTH>
<DATE>1847</DATE>

</BIRTH>
<DEATH>
<DATE>1886</DATE>

</DEATH>
<BURIAL>
<PLACE>Machpelah Cemetery, Mt. Sterling KY</PLACE>

</BURIAL>
</PERSON>

Continued

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 853

854 Part V ✦ XML Applications

Listing 23-7 (continued)

<PERSON ID=”p1102” SEX=”M”>
<REFERENCE SOURCE=”s29”/>
<NAME>
<GIVEN>John Jay (Robin Adair)</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<REFERENCE SOURCE=”s43”/>
<PLACE>Sideview</PLACE>
<DATE>13 May 1873</DATE>

</BIRTH>
<DEATH>
<DATE>18 Sep 1889 </DATE>

</DEATH>
<NOTE><body><p>
Died of flux. Rumored to have been killed by his brother.

</p></body></NOTE>
</PERSON>

<FAMILY ID=”f25”>
<HUSBAND PERSON=”p37”/>
<WIFE PERSON=”p1099”/>
<CHILD PERSON=”p23”/>
<CHILD PERSON=”p36”/>
<CHILD PERSON=”p1033”/>
<CHILD PERSON=”p1034”/>

</FAMILY>

<FAMILY ID=”f732”>
<HUSBAND PERSON=”p1035”/>
<WIFE PERSON=”p1098”/>
<CHILD PERSON=”p1102”/>
<CHILD PERSON=”p37”/>

</FAMILY>

<FAMILY ID=”f779”>
<HUSBAND PERSON=”p1102”/>

</FAMILY>

<SOURCE ID=”s16”>newspaper death notice in purse</SOURCE>
<SOURCE ID=”s29”>English-Demint Anderson Bible</SOURCE>
<SOURCE ID=”s39”>
Judson McDaniel & Mary E. Blevins Bible

</SOURCE>
<SOURCE ID=”s41”>
Cora McDaniel obituary, clipping from unknown newspaper

</SOURCE>
<SOURCE ID=”s43”>Anderson Bible</SOURCE>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 854

855Chapter 23 ✦ Desiging a New XML Application

<SOURCE ID=”s44”>
A Sesquicentenial History of Kentucky
Frederik A. Wallis & Hambleon Tapp, 1945,
The Historical Record Association, Hopkinsville, KY

</SOURCE>
<SOURCE ID=”s60”>
Interview with Ann Sandusky, May 1996

</SOURCE>

</FAMILY_TREE>

Designing a Style Sheet for Family Trees
The family tree document is organized as a data file rather than a narrative. To get a
reasonably pleasing view of the document, you’re going to need to reorder and
reorganize the contents before displaying them. CSS really isn’t powerful enough for
this task. Consequently, an XSL style sheet is called for.

It’s best to begin with the root node. Here the root node is merely replaced by the
standard html, head and body elements. Templates are applied to the FAMILY_TREE
root element to continue processing.

<xsl:template match=”/”>
<html>
<head>
<title>Family Tree</title>

</head>
<body>
<xsl:apply-templates select=”FAMILY_TREE”/>

</body>
</html>

</xsl:template>

The template rule for the FAMILY_TREE element divides the document into three
parts, one each for the families, people, and sources. Templates are applied to each
separately:

<xsl:template match=”FAMILY_TREE”>

<h1>Family Tree</h1>

<h2>Families</h2>
<xsl:apply-templates select=”FAMILY”/>

<h2>People</h2>
<xsl:apply-templates select=”PERSON”/>

<h2>Sources</h2>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 855

856 Part V ✦ XML Applications

<xsl:apply-templates select=”SOURCE”/>

</xsl:template>

The SOURCE rule is quite simple. Each source is wrapped in a li element. Further-
more, its ID is attached using the name attribute of the HTML a element. This allows
for cross-references directly to the source, as shown below:

<xsl:template match=”SOURCE”>

<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”.”/>

</xsl:element>

</xsl:template>

The PERSON element is much more complex so we’ll break it up into several tem-
plate rules. The PERSON template rule selects the individual parts, and formats
those that aren’t too complex. It applies templates to the rest. The name is placed
in an h3 header. This is surrounded with an HTML anchor whose name is the person’s
ID. The BIRTH, DEATH, BAPTISM, and BURIAL elements are formatted as list items,
as demonstrated below:

<xsl:template match=”PERSON”>

<h3>
<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”NAME”/>
</xsl:element>

</h3>

<xsl:if test=”BIRTH”>
Born: <xsl:value-of select=”BIRTH”/>

</xsl:if>
<xsl:if test=”DEATH”>
Died: <xsl:value-of select=”DEATH”/>

</xsl:if>
<xsl:if test=”BAPTISM”>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 856

857Chapter 23 ✦ Desiging a New XML Application

Baptism: <xsl:value-of select=”BAPTISM”/>
</xsl:if>
<xsl:if test=”BURIAL”>
Burial: <xsl:value-of select=”BURIAL”/>

</xsl:if>
<xsl:apply-templates select=”FATHER”/>
<xsl:apply-templates select=”MOTHER”/>

<p>
<xsl:apply-templates select=”NOTE”/>

</p>

</xsl:template>

The FATHER and MOTHER elements are also list items, but they need to be linked to
their respective people. These two template rules do that:

<xsl:template match=”FATHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>
#<xsl:value-of select=”@PERSON”/>

</xsl:attribute>
Father

</xsl:element>

</xsl:template>

<xsl:template match=”MOTHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>
#<xsl:value-of select=”@PERSON”/>

</xsl:attribute>
Mother

</xsl:element>

</xsl:template>

The final thing you need to do to format PERSON elements is to copy the contents of
the NOTE into the finished document. Since the body of the NOTE uses standard
HTML tags that don’t need to be changed, an xsl:copy element is useful. The first
of these rules copies the body element itself and its contents:

<xsl:template match=”body | body//*”>
<xsl:copy>
<xsl:apply-templates select=”*|@*|comment()|pi()|text()”/>
</xsl:copy>

</xsl:template>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 857

858 Part V ✦ XML Applications

The template rule for FAMILY elements will list the name and role of each member
of the family as a list item in an unordered list. Each member will be linked to the
description of that individual. The rules to do this look like the following:

<xsl:template match=”FAMILY”>

<xsl:apply-templates select=”HUSBAND”/>
<xsl:apply-templates select=”WIFE”/>
<xsl:apply-templates select=”CHILD”/>

</xsl:template>

<xsl:template match=”HUSBAND”>
Husband:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

<xsl:template match=”WIFE”>
Wife:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

<xsl:template match=”CHILD”>
Child:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

The trickiest thing about these rules is the insertion of data from one element
(the PERSON) in a template for different elements (HUSBAND, WIFE, CHILD). The
ID of the PERSON stored in the HUSBAND/WIFE/CHILD’s PERSON attribute is used
to locate the right PERSON element; then its NAME child is selected.

Listing 23-8 is the finished family tree style sheet. Figure 23-2 shows the document
after it’s been converted into HTML and loaded into Netscape Navigator.

Listing 23-8: The complete family tree style sheet

<?xml version=”1.0”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”/”>
<html>
<head>
<title>Family Tree</title>

</head>
<body>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 858

859Chapter 23 ✦ Desiging a New XML Application

<xsl:apply-templates select=”FAMILY_TREE”/>
</body>

</html>
</xsl:template>

<xsl:template match=”FAMILY_TREE”>

<h1>Family Tree</h1>

<h2>Families</h2>
<xsl:apply-templates select=”FAMILY”/>

<h2>People</h2>
<xsl:apply-templates select=”PERSON”/>

<h2>Sources</h2>

<xsl:apply-templates select=”SOURCE”/>

</xsl:template>

<xsl:template match=”PERSON”>

<h3>
<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”NAME”/>
</xsl:element>

</h3>

<xsl:if test=”BIRTH”>
Born: <xsl:value-of select=”BIRTH”/>

</xsl:if>
<xsl:if test=”DEATH”>
Died: <xsl:value-of select=”DEATH”/>

</xsl:if>
<xsl:if test=”BAPTISM”>
Baptism: <xsl:value-of select=”BAPTISM”/>

</xsl:if>
<xsl:if test=”BURIAL”>
Burial: <xsl:value-of select=”BURIAL”/>

</xsl:if>
<xsl:apply-templates select=”FATHER”/>
<xsl:apply-templates select=”MOTHER”/>

<p>
<xsl:apply-templates select=”NOTE”/>

Continued

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 859

860 Part V ✦ XML Applications

Listing 23-8 (continued)

</p>

</xsl:template>

<xsl:template match=”FATHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>
#<xsl:value-of select=”@PERSON”/>

</xsl:attribute>
Father

</xsl:element>

</xsl:template>

<xsl:template match=”MOTHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>
#<xsl:value-of select=”@PERSON”/>

</xsl:attribute>
Mother

</xsl:element>

</xsl:template>

<xsl:template match=”body | body//*”>
<xsl:copy>
<xsl:apply-templates

select=”*|@*|comment()|pi()|text()”/>
</xsl:copy>

</xsl:template>

<xsl:template match=”SOURCE”>

<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”.”/>

</xsl:element>

</xsl:template>

<xsl:template match=”FAMILY”>

<xsl:apply-templates select=”HUSBAND”/>
<xsl:apply-templates select=”WIFE”/>
<xsl:apply-templates select=”CHILD”/>

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 860

861Chapter 23 ✦ Desiging a New XML Application

</xsl:template>

<xsl:template match=”HUSBAND”>
Husband:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

<xsl:template match=”WIFE”>
Wife:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

<xsl:template match=”CHILD”>
Child:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

</xsl:stylesheet>

Figure 23-2: The family tree after conversion to HTML

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 861

862 Part V ✦ XML Applications

Summary
In this chapter, you saw an XML application for genealogy developed from scratch.
Along the way you have learned:

✦ Always begin a new XML application by considering the domain you’re
describing.

✦ Try to identify the fundamental elements of the domain. Everything else is
likely to either be contained in or be an attribute of one of these.

✦ Try to avoid including the same data in more than one place. Use ID and
IDREF attributes to establish pointers from one element to another.

✦ Be sure to consider special cases. Don’t base your entire design on the most
obvious cases.

✦ Use parameter entities to merge the DTDs for each piece of the XML applica-
tion into one complete DTD.

This concludes the main body of XML Bible. Go forth and write your own XML
applications! The next several parts provide a variety of useful reference
information and the official XML 1.0 Specification.

✦ ✦ ✦

3236-7 ch23.F.qc 6/29/99 1:13 PM Page 862

XML Reference
Material

This appendix contains XML reference material. It is
divided into three main parts:

1. XML BNF Grammar

2. Well-Formedness Constraints

3. Validity Constraints

The XML BNF grammar reference section shows you how to
read a BNF Grammar and includes the BNF rules for XML 1.0
and examples of the XML 1.0 productions. The well-
formedness constraints reference section explains what a
well-formedness constraint is and lists the productions
associated with the well-formedness constraints. The validity
constraints reference section explains what a validity
constraint is and lists and explains all of the validity
constraints in the XML 1.0 Standard.

XML BNF Grammar
According to the XML 1.0 specification, an XML document is
well-formed if:

1. Taken as a whole it matches the production labeled
document.

2. It meets all the well-formedness constraints given in this
specification.

3. Each of the parsed entities which is referenced directly
or indirectly within the document is well-formed.

This section is designed to help you understand the first of
those requirements and more quickly determine whether your
documents meet that requirement.

AAA P P E N D I X

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 863

864 Appendixes

Reading a BNF Grammar
BNF is an abbreviation for Backus-Naur-Form. BNF grammars are an outgrowth of
compiler theory. A BNF grammar defines what is and is not a syntactically correct
program or, in the case of XML, a syntactically correct document. It is possible to
compare a document to a BNF grammar and determine precisely whether it does or
does not meet the conditions of that grammar. There are no borderline cases. BNF
grammars, properly written, have the advantage of leaving no room for
interpretation. The advantage of this should be obvious to anyone who’s had to
struggle with HTML documents that display in one browser but not in another.

Technically, XML uses an Extended-Backus-Naur-Form grammar, which adds a few
pieces not normally found in traditional, compiler-oriented BNF grammars.

Syntactical correctness is a necessary but not sufficient condition for XML
documents. A document may strictly adhere to the BNF grammar, and yet fail to be
well-formed or valid. For a document to be well-formed, it must also meet all the
well-formedness constraints of the XML 1.0 specification. Well-formedness is the
minimum level a document may achieve to be parsed. To be valid, a document
must also meet all the validity constraints of the XML 1.0 specification. The well-
formedness and validity constraints are discussed in the next two sections of this
appendix, respectively.

BNF Grammar Parts
A BNF grammar has three parts:

1. A set of literal strings called terminals. For example, CDATA, </, <, >,
#REQUIRED, and <!ENTITY are all terminals used in the XML 1.0 specification.

2. A set of non-terminals to ultimately be replaced by terminals.

3. A list of productions or rules that map non-terminals onto particular
sequences of terminals and other non-terminals, including one specially
identified as the start or document production.

If you’re not a compiler theorist, that list probably could have been written in
ancient Etruscan and made about as much sense. Let’s see if we can make things
clearer with a simple example, before we dive into the complexities of the XML 1.0
grammar.

Consider strings composed of non-negative integers added to or subtracted from
each other, like these:

9+8+1+2+3
8-1-2-4-5
9+8-9-0+5+3
4
4+3

Note

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 864

865Appendix A ✦ XML Reference Material

Notice a few things that are not in the list, and that we want to forbid in our
grammar:

✦ Any character except the digits 0 through 9 and the plus and the minus signs

✦ Whitespace

✦ A string that begins with a + or a -

✦ Numbers less than 0 or greater than 9

✦ The empty string

Here’s a BNF grammar that defines precisely those strings we want, and none of
those we don’t want:

[1] string ::= digit
[2] digit ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’

| ‘8’ | ‘9’
[3] string ::= string ‘+’ digit
[3] string ::= string ‘-’ digit

Suppose you want to determine whether the string “9+3-2” satisfies this grammar.
You begin by looking at the first production. This says that a string is the nonterm-
inal digit. So you move to Production [2] which defines digit. Indeed 9 is one of the
terminals listed as a digit. Thus the string “9” is a legitimate string. Production [3]
says that a string followed by the plus sign and another digit is also a legitimate
string. Thus “9+3” satisfies the grammar. Furthermore, it itself is a string. Production
[4] says that a string followed by the minus sign and another digit is a legitimate
string. Thus “9+3-2” is a legitimate string and satisfies the grammar.

Now consider the string “-9+1”. By Production [1] a string must begin with a digit.
This string doesn’t begin with a digit, so it’s illegal.

The XML 1.0 grammar is much larger and more complicated than this simple
grammar. The next section lists its 89 productions. The following section elaborates
on each of these productions in detail.

BNF Symbols
In XML’s EBNF grammar the following basic symbols are used on the right-hand
sides of productions:

#xN N is a hexadecimal integer, and #xN is the Unicode
character with the number N

[a-zA-Z] matches any character in the specified range

[#xN-#xN] matches any character in the specified range where N is
the hexadecimal value of a Unicode character

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 865

866 Appendixes

[^a-z] matches any character not in the specified range

[^#xN-#xN] matches any character not in the specified range where
N is the hexadecimal value of a Unicode character

[^abc] matches any character not in the list

[^#xN#xN#xN] matches any character whose value is not in the list

‘string’ matches the literal string inside the single quotes

“string” matches the literal string inside the double quotes

These nine basic patterns may be grouped to match more complex expressions:

(contents) the contents of the parentheses are treated as a unit

A? matches zero or one occurrences of A

A B matches A followed by B

A | B matches A or B but not both

A - B matches any string that matches A and does not match B

A+ matches one or more occurrences of A

A* matches zero or more occurrences of A

The XML specification also uses three forms you probably won’t encounter in non-
XML-related specifications:

/* text of comment */ This is a comment, and any text inside the
comment is ignored.

[WFC: name] This names a well-formedness constraint
associated with this production that documents
must meet in order to qualify as well-formed.
Well-formedness constraints will be found in the
specification, but are not encapsulated in the
BNF grammar.

[VC: name] This names a validity constraint associated with
this production that documents must meet in
order to qualify as valid. Validity constraints will
be found in the specification, but are not
encapsulated in the BNF grammar.

The BNF Rules for XML 1.0
The complete BNF grammar for XML is given in the XML 1.0 specification, which
you’ll find in Appendix B of this book. However, if you’re merely trying to match up
your markup against productions in the grammar, it can be inconvenient to flip
through the pages hunting for the necessary rules. For that purpose, the BNF rules
and only the BNF rules for XML 1.0 are reproduced here.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 866

867Appendix A ✦ XML Reference Material

Document
[1] document ::= prolog element Misc*

Character Range
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD]

| [#x10000-#x10FFFF]

White Space
[3] S ::= (#x20 | #x9 | #xD | #xA)+

Names and Tokens
[4] NameChar ::= Letter | Digit | ‘.’ | ‘-’ | ‘_’ | ‘:’

| CombiningChar | Extender
[5] Name ::= (Letter | ‘_’ | ‘:’) (NameChar)*
[6] Names ::= Name (S Name)*
[7] Nmtoken ::= (NameChar)+
[8] Nmtokens ::= Nmtoken (S Nmtoken)*

Literals
[9] EntityValue ::= ‘“‘ ([^%&”] | PEReference | Reference)*

‘“‘ | “‘“ ([^%&’] | PEReference
| Reference)* “‘“

[10] AttValue ::= ‘“‘ ([^<&”] | Reference)* ‘“‘
| “‘“ ([^<&’] | Reference)* “‘“

[11] SystemLiteral ::= (‘“‘ [^”]* ‘“‘) | (“‘“ [^’]* “‘“)
[12] PubidLiteral ::= ‘“‘ PubidChar* ‘“‘

| “‘“ (PubidChar - “‘“)* “‘“
[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9]

| [-’()+,./:=?;!*#@$_%]

Character Data
[14] CharData ::= [^<&]* - ([^<&]* ‘]]>’ [^<&]*)

Comments
[15] Comment ::= ‘<!—’ ((Char - ‘-’)

| (‘-’ (Char - ‘-’)))* ‘—>’

Processing Instructions
[16] PI ::= ‘<?’ PITarget

(S (Char* - (Char* ‘?>’ Char*)))? ‘?>’
[17] PITarget ::= Name - ((‘X’ | ‘x’) (‘M’ | ‘m’) (‘L’ | ‘l’))

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 867

868 Appendixes

CDATA Sections
[18] CDSect ::= CDStart CData CDEnd
[19] CDStart ::= ‘<![CDATA[‘
[20] CData ::= (Char* - (Char* ‘]]>’ Char*))
[21] CDEnd ::= ‘]]>’

Prolog
[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= ‘<?xml’ VersionInfo EncodingDecl? SDDecl?

S? ‘?>’
[24] VersionInfo ::= S ‘version’ Eq (‘ VersionNum ‘

| “ VersionNum “)
[25] Eq ::= S? ‘=’ S?
[26] VersionNum ::= ([a-zA-Z0-9_.:] | ‘-’)+
[27] Misc ::= Comment | PI | S

Document Type Definition
[28] doctypedecl ::= ‘<!DOCTYPE’ S Name (S ExternalID)?

S? (‘[‘ (markupdecl | PEReference
| S)* ‘]’ S?)? ‘>’
[VC: Root Element Type]

[29] markupdecl ::= elementdecl | AttlistDecl
| EntityDecl | NotationDecl | PI
| Comment
[VC: Proper Declaration/PE Nesting]
[WFC: PEs in Internal Subset]

External Subset
[30] extSubset ::= TextDecl? extSubsetDecl
[31] extSubsetDecl ::= (markupdecl | conditionalSect |
PEReference | S)*

Standalone Document Declaration
[32] SDDecl ::= S ‘standalone’ Eq ((“‘“ (‘yes’ | ‘no’)

“‘“) | (‘“‘ (‘yes’ | ‘no’) ‘“‘))
[VC: Standalone Document Declaration]

Language Identification
[33] LanguageID ::= Langcode (‘-’ Subcode)*
[34] Langcode ::= ISO639Code | IanaCode | UserCode
[35] ISO639Code ::= ([a-z] | [A-Z]) ([a-z] | [A-Z])
[36] IanaCode ::= (‘i’ | ‘I’) ‘-’ ([a-z] | [A-Z])+
[37] UserCode ::= (‘x’ | ‘X’) ‘-’ ([a-z] | [A-Z])+
[38] Subcode ::= ([a-z] | [A-Z])+

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 868

869Appendix A ✦ XML Reference Material

Element
[39] element ::= EmptyElemTag | STag content ETag

[WFC: Element Type Match]
[VC: Element Valid]

Start tag
[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’

[WFC: Unique Att Spec]
[41] Attribute ::= Name Eq AttValue

[VC: Attribute Value Type]
[WFC: No External Entity References]
[WFC: No < in Attribute Values]

End Tag
[42] ETag ::= ‘</’ Name S? ‘>’

Content of Elements
[43] content ::= (element | CharData | Reference | CDSect

| PI | Comment)*

Tags for Empty Elements
[44] EmptyElemTag ::= ‘<’ Name (S Attribute)* S? ‘/>’

[WFC: Unique Att Spec]

Element Type Declaration
[45] elementdecl ::= ‘<!ELEMENT’ S Name S contentspec S? ‘>’

[VC: Unique Element Type Declaration]
[46] contentspec ::= ‘EMPTY’ | ‘ANY’ | Mixed | children

Element-content Models
[47] children ::= (choice | seq) (‘?’ | ‘*’ | ‘+’)?
[48] cp ::= (Name | choice | seq) (‘?’ | ‘*’ | ‘+’)?
[49] choice ::= ‘(‘ S? cp (S? ‘|’ S? cp)* S? ‘)’

[VC: Proper Group/PE Nesting]
[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’

[VC: Proper Group/PE Nesting]

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 869

870 Appendixes

Mixed-content Declaration
[51] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘|’ S? Name)* S? ‘)*’

| ‘(‘ S? ‘#PCDATA’ S? ‘)’
[VC: Proper Group/PE Nesting]
[VC: No Duplicate Types]

Attribute-list Declaration
[52] AttlistDecl ::= ‘<!ATTLIST’ S Name AttDef* S? ‘>’
[53] AttDef ::= S Name S AttType S DefaultDecl

Attribute Types
[54] AttType ::= StringType | TokenizedType | EnumeratedType
[55] StringType ::= ‘CDATA’
[56] TokenizedType ::= ‘ID’ | ‘IDREF’ | ‘IDREFS’ | ‘ENTITY’

| ‘ENTITIES’ | ‘NMTOKEN’ | ‘NMTOKENS’
[VC: ID]
[VC: One ID per Element Type]
[VC: ID Attribute Default]
[VC: IDREF]
[VC: Entity Name]
[VC: Name Token]

Enumerated Attribute Types
[57] EnumeratedType ::= NotationType | Enumeration
[58] NotationType ::= ‘NOTATION’ S ‘(‘ S? Name (S? ‘|’ S?

Name)* S? ‘)’
[VC: Notation Attributes]

[59] Enumeration ::= ‘(‘ S? Nmtoken (S? ‘|’ S? Nmtoken)*
S? ‘)’

[VC: Enumeration]

Attribute Defaults
[60] DefaultDecl ::= ‘#REQUIRED’ | ‘#IMPLIED’

| ((‘#FIXED’ S)? AttValue)
[VC: Required Attribute]
[VC: Attribute Default Legal]
[WFC: No < in Attribute Values]
[VC: Fixed Attribute Default]

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 870

871Appendix A ✦ XML Reference Material

Conditional Section
[61] conditionalSect ::= includeSect | ignoreSect
[62] includeSect ::= ‘<![‘ S? ‘INCLUDE’ S? ‘[‘

extSubsetDecl ‘]]>’
[63] ignoreSect ::= ‘<![‘ S? ‘IGNORE’ S? ‘[‘

ignoreSectContents* ‘]]>’
[64] ignoreSectContents ::= Ignore (‘<![‘ ignoreSectContents

‘]]>’ Ignore)*
[65] Ignore ::= Char* - (Char* (‘<![‘ | ‘]]>’) Char*)

Character Reference
[66] CharRef ::= ‘&#’ [0-9]+ ‘;’ | ‘&#x’ [0-9a-fA-F]+ ‘;’

[WFC: Legal Character]

Entity Reference
[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= ‘&’ Name ‘;’

[WFC: Entity Declared]
[VC: Entity Declared]
[WFC: Parsed Entity]
[WFC: No Recursion]

[69] PEReference ::= ‘%’ Name ‘;’
[VC: Entity Declared]
[WFC: No Recursion]
[WFC: In DTD]

Entity Declaration
[70] EntityDecl ::= GEDecl | PEDecl
[71] GEDecl ::= ‘<!ENTITY’ S Name S EntityDef S? ‘>’
[72] PEDecl ::= ‘<!ENTITY’ S ‘%’ S Name S PEDef S? ‘>’
[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)
[74] PEDef ::= EntityValue | ExternalID

External Entity Declaration
[75] ExternalID ::= ‘SYSTEM’ S SystemLiteral

| ‘PUBLIC’ S PubidLiteral S SystemLiteral
[76] NDataDecl ::= S ‘NDATA’ S Name

[VC: Notation Declared]

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 871

872 Appendixes

Text Declaration
[77] TextDecl ::= ‘<?xml’ VersionInfo? EncodingDecl S? ‘?>’

Well-formed External Parsed Entity
[78] extParsedEnt ::= TextDecl? content
[79] extPE ::= TextDecl? extSubsetDecl

Encoding Declaration
[80] EncodingDecl ::= S ‘encoding’ Eq (‘“‘ EncName ‘“‘

| “‘“ EncName “‘“)
[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | ‘-’)*

Notation Declarations
[82] NotationDecl ::= ‘<!NOTATION’ S Name S (ExternalID

| PublicID) S? ‘>’
[83] PublicID ::= ‘PUBLIC’ S PubidLiteral

Characters
[84] Letter ::= BaseChar | Ideographic
[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A]

| [#x00C0-#x00D6] | [#x00D8-#x00F6]
| [#x00F8-#x00FF] | [#x0100-#x0131]
| [#x0134-#x013E] | [#x0141-#x0148]
| [#x014A-#x017E] | [#x0180-#x01C3]
| [#x01CD-#x01F0] | [#x01F4-#x01F5]
| [#x01FA-#x0217] | [#x0250-#x02A8]
| [#x02BB-#x02C1] | #x0386 | [#x0388-#x038A]
| #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE]
| [#x03D0-#x03D6] | #x03DA | #x03DC | #x03DE
| #x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C]
| [#x040E-#x044F] | [#x0451-#x045C]
| [#x045E-#x0481] | [#x0490-#x04C4]
| [#x04C7-#x04C8] | [#x04CB-#x04CC]
| [#x04D0-#x04EB] | [#x04EE-#x04F5]
| [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559
| [#x0561-#x0586] | [#x05D0-#x05EA]
| [#x05F0-#x05F2] | [#x0621-#x063A]
| [#x0641-#x064A] | [#x0671-#x06B7]
| [#x06BA-#x06BE] | [#x06C0-#x06CE]
| [#x06D0-#x06D3] | #x06D5 | [#x06E5-#x06E6]
| [#x0905-#x0939] | #x093D | [#x0958-#x0961]
| [#x0985-#x098C] | [#x098F-#x0990]
| [#x0993-#x09A8] | [#x09AA-#x09B0]
| #x09B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD]
| [#x09DF-#x09E1] | [#x09F0-#x09F1]
| [#x0A05-#x0A0A] | [#x0A0F-#x0A10]

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 872

873Appendix A ✦ XML Reference Material

| [#x0A13-#x0A28] | [#x0A2A-#x0A30]
| [#x0A32-#x0A33] | [#x0A35-#x0A36]
| [#x0A38-#x0A39] | [#x0A59-#x0A5C]
| #x0A5E | [#x0A72-#x0A74] | [#x0A85-#x0A8B]
| #x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8]
| [#x0AAA-#x0AB0] | [#x0AB2-#x0AB3]
| [#x0AB5-#x0AB9] | #x0ABD | #x0AE0
| [#x0B05-#x0B0C] | [#x0B0F-#x0B10]
| [#x0B13-#x0B28] | [#x0B2A-#x0B30]
| [#x0B32-#x0B33] | [#x0B36-#x0B39]
| #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61]
| [#x0B85-#x0B8A] | [#x0B8E-#x0B90]
| [#x0B92-#x0B95] | [#x0B99-#x0B9A] | #x0B9C
| [#x0B9E-#x0B9F] | [#x0BA3-#x0BA4]
| [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5]
| [#x0BB7-#x0BB9] | [#x0C05-#x0C0C]
| [#x0C0E-#x0C10] | [#x0C12-#x0C28]
| [#x0C2A-#x0C33] | [#x0C35-#x0C39]
| [#x0C60-#x0C61] | [#x0C85-#x0C8C]
| [#x0C8E-#x0C90] | [#x0C92-#x0CA8]
| [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE
| [#x0CE0-#x0CE1] | [#x0D05-#x0D0C]
| [#x0D0E-#x0D10] | [#x0D12-#x0D28]
| [#x0D2A-#x0D39] | [#x0D60-#x0D61]
| [#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33]
| [#x0E40-#x0E45] | [#x0E81-#x0E82] | #x0E84
| [#x0E87-#x0E88] | #x0E8A | #x0E8D
| [#x0E94-#x0E97] | [#x0E99-#x0E9F]
| [#x0EA1-#x0EA3] | #x0EA5 | #x0EA7
| [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0
| [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4]
| [#x0F40-#x0F47] | [#x0F49-#x0F69]
| [#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100
| [#x1102-#x1103] | [#x1105-#x1107] | #x1109
| [#x110B-#x110C] | [#x110E-#x1112] | #x113C
| #x113E | #x1140 | #x114C | #x114E | #x1150
| [#x1154-#x1155] | #x1159 | [#x115F-#x1161]
| #x1163 | #x1165 | #x1167 | #x1169
| [#x116D-#x116E] | [#x1172-#x1173] | #x1175
| #x119E | #x11A8 | #x11AB | [#x11AE-#x11AF]
| [#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2]
| #x11EB | #x11F0 | #x11F9 | [#x1E00-#x1E9B]
| [#x1EA0-#x1EF9] | [#x1F00-#x1F15]
| [#x1F18-#x1F1D] | [#x1F20-#x1F45]
| [#x1F48-#x1F4D] | [#x1F50-#x1F57] | #x1F59
| #x1F5B | #x1F5D | [#x1F5F-#x1F7D]
| [#x1F80-#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE
| [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC]
| [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB]
| [#x1FE0-#x1FEC] | [#x1FF2-#x1FF4]
| [#x1FF6-#x1FFC] | #x2126 | [#x212A-#x212B]

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 873

874 Appendixes

| #x212E | [#x2180-#x2182] | [#x3041-#x3094]
| [#x30A1-#x30FA] | [#x3105-#x312C]
| [#xAC00-#xD7A3]

[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007
| [#x3021-#x3029]

[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361]
| [#x0483-#x0486] | [#x0591-#x05A1]
| [#x05A3-#x05B9] | [#x05BB-#x05BD]
| #x05BF | [#x05C1-#x05C2] | #x05C4
| [#x064B-#x0652] | #x0670
| [#x06D6-#x06DC] | [#x06DD-#x06DF]
| [#x06E0-#x06E4] | [#x06E7-#x06E8]
| [#x06EA-#x06ED] | [#x0901-#x0903]
| #x093C | [#x093E-#x094C] | #x094D
| [#x0951-#x0954] | [#x0962-#x0963]
| [#x0981-#x0983] | #x09BC | #x09BE
| #x09BF | [#x09C0-#x09C4]
| [#x09C7-#x09C8] | [#x09CB-#x09CD]
| #x09D7 | [#x09E2-#x09E3] | #x0A02
| #x0A3C | #x0A3E | #x0A3F
| [#x0A40-#x0A42] | [#x0A47-#x0A48]
| [#x0A4B-#x0A4D] | [#x0A70-#x0A71]
| [#x0A81-#x0A83] | #x0ABC
| [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9]
| [#x0ACB-#x0ACD] | [#x0B01-#x0B03]
| #x0B3C | [#x0B3E-#x0B43]
| [#x0B47-#x0B48] | [#x0B4B-#x0B4D]
| [#x0B56-#x0B57] | [#x0B82-#x0B83]
| [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8]
| [#x0BCA-#x0BCD] | #x0BD7
| [#x0C01-#x0C03] | [#x0C3E-#x0C44]
| [#x0C46-#x0C48] | [#x0C4A-#x0C4D]
| [#x0C55-#x0C56] | [#x0C82-#x0C83]
| [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8]
| [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6]
| [#x0D02-#x0D03] | [#x0D3E-#x0D43]
| [#x0D46-#x0D48] | [#x0D4A-#x0D4D]
| #x0D57 | #x0E31 | [#x0E34-#x0E3A]
| [#x0E47-#x0E4E] | #x0EB1
| [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC]
| [#x0EC8-#x0ECD] | [#x0F18-#x0F19]
| #x0F35 | #x0F37 | #x0F39 | #x0F3E
| #x0F3F | [#x0F71-#x0F84]
| [#x0F86-#x0F8B] | [#x0F90-#x0F95]
| #x0F97 | [#x0F99-#x0FAD]
| [#x0FB1-#x0FB7] | #x0FB9
| [#x20D0-#x20DC] | #x20E1
| [#x302A-#x302F] | #x3099 | #x309A

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669]
| [#x06F0-#x06F9] | [#x0966-#x096F]
| [#x09E6-#x09EF] | [#x0A66-#x0A6F]

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 874

875Appendix A ✦ XML Reference Material

| [#x0AE6-#x0AEF] | [#x0B66-#x0B6F]
| [#x0BE7-#x0BEF] | [#x0C66-#x0C6F]
| [#x0CE6-#x0CEF] | [#x0D66-#x0D6F]
| [#x0E50-#x0E59] | [#x0ED0-#x0ED9]
| [#x0F20-#x0F29]

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387
| #x0640 | #x0E46 | #x0EC6 | #x3005
| [#x3031-#x3035] | [#x309D-#x309E]
| [#x30FC-#x30FE]

Examples of the XML 1.0 Productions
This section shows you some instances of the productions to give you a better idea
of what each one means.

Document
[1] document ::= prolog element Misc*

This rule says that an XML document is composed of a prolog (Production [22]),
followed by a single root element (Production [39]), followed by any number of
miscellaneous items (Production [27]). In other words, a typical structure looks like
this:

<?xml version=”1.0”?>
<!— a DTD might go here —>
<ROOT_ELEMENT>
Content

</ROOT_ELEMENT>
<!— comments can go here —>
<?Reader, processing instructions can also go here?>

In practice, it’s rare for anything to follow the close of the root element.

Production [1] rules out documents with more than one element as a root. For
example,

<?xml version=”1.0”?>
<ELEMENT1>
Content

</ELEMENT1>
<ELEMENT2>
Content

</ELEMENT2>
<ELEMENT1>
Content

</ELEMENT1>

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 875

876 Appendixes

Character Range
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-
#x10FFFF]

Production [2] defines the subset of Unicode characters which may appear in an
XML document. The main items of interest here are the characters not included.
Specifically, these are the non-printing ASCII control characters of which the most
common are the bell, vertical tab, and formfeed; the surrogates block from #xD800
to #xDFFF, and the non-character #xFFFE.The control characters are not needed in
XML and may cause problems in files displayed on old terminals or passed through
old terminal servers and software.

The surrogates block will eventually be used to extend Unicode to support over
one million different characters. However, none of these million plus are currently
defined, and XML parsers are not allowed to support them.

The non-character #xFFFE is not defined in Unicode. Its appearance, especially at
the start of a document, should indicate that you’re reading the document with the
wrong byte order; that is little endian instead of big endian or vice versa.

Whitespace
[3] S ::= (#x20 | #x9 | #xD | #xA)+

Production [3] defines whitespace as a run of one or more space characters (#x20),
the horizontal tab (#x9), the carriage return (#xD), and the linefeed (#xA). Because
of the +, 20 of these characters in a row are treated exactly the same as one.

Other ASCII whitespace characters like the vertical tab (#xB) are prohibited by
production [2]. Other non-ASCII, Unicode whitespace characters like the non-
breaking space (#A0) are not considered whitespace for the purposes of XML.

Names and Tokens
[4] NameChar ::= Letter | Digit | ‘.’ | ‘-’ | ‘_’ | ‘:’ | CombiningChar | Extender

Production [4] defines the characters that may appear in an XML name. XML names
may only contain letters, digits, periods, hyphens, underscores, colons, combining
characters, (Production [87]) and extenders (Production [89]).

[5] Name ::= (Letter | ‘_’ | ‘:’) (NameChar)*

Production [5] says an XML name must begin with a letter, an underscore, or a
colon. It may not begin with a digit, a period, or a hyphen. Subsequent characters in
an XML name may include any XML name character (Production [4]) including
digits, periods, and hyphens. The following are acceptable XML names:

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 876

877Appendix A ✦ XML Reference Material

airplane
text.encoding
r
SEAT
Pilot
Pilot1
OscarWilde
BOOK_TITLE
:TITLE
_8ball

These are not acceptable XML names:

air plane
.encoding
-r
Wilde,Oscar
BOOK TITLE
8ball
AHA!

[6] Names ::= Name (S Name)*

Production [6] defines a group of names as one or more XML names (Production
[5]) separated by whitespace. This is a valid group of XML names:

BOOK AUTHOR TITLE PAGE EDITOR CHAPTER

This is not a valid group of XML names:

BOOK, AUTHOR, TITLE, PAGE, EDITOR, CHAPTER

[7] Nmtoken ::= (NameChar)+

Production [7] defines a name token as any sequence of one or more name
characters. Unlike an XML name, a name token has no restrictions on what the first
character is as long as it is a valid name character (Production [4]). In other words,
XML name tokens may begin with a digit, a period, or a hyphen while an XML name
may not. All valid XML names are valid XML name tokens, but not all valid name
tokens are valid XML names.

The following are acceptable name tokens:

airplane
text.encoding
r
SEAT

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 877

878 Appendixes

Pilot
Pilot1
OscarWilde
BOOK_TITLE
:TITLE
_8ball

.encoding
-r
8ball

The following are not acceptable name tokens:

air plane
Wilde,Oscar
BOOK TITLE
AHA!

[8] Nmtokens ::= Nmtoken (S Nmtoken)*

Production [8] says a group of name tokens is one or more XML name tokens
(Production [7]) separated by whitespace. This is a valid group of XML name
tokens:

1POTATO 2POTATO 3POTATO 4POTATO

This is not a valid group of XML name tokens:

1POTATO, 2POTATO, 3POTATO, 4POTATO

Literals
[9] EntityValue ::= ‘“‘ ([^%&”] | PEReference | Reference)* ‘“‘ | “‘“ ([^%&’] |
PEReference | Reference)* “‘“

Production [9] defines an entity value as any string of characters enclosed in
double quotes or single quotes except for %, &, and the quote character (single or
double) used to delimit the string. % and & may be used, however, if and only
they’re the start of a parameter entity reference (Production [69]), general entity
reference (Production [67]) or character reference. If you really need to include %
and & in your entity values, you can escape them with the character references
% and &, respectively.

These are legal entity values:

“This is an entity value”
‘This is an entity value’
“75% off”
“Ben & Jerry’s New York Super Fudge Chunk Ice Cream”

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 878

879Appendix A ✦ XML Reference Material

These are not legal entity values:

“This is an entity value’
‘This is an entity value”
“75% off”
“Ben & Jerry’s New York Super Fudge Chunk Ice Cream”
‘Ben & Jerry’s New York Su

[10] AttValue ::= ‘“‘ ([^<&”] | Reference)* ‘“‘ | “‘“ ([^<&’] | Reference)* “‘“

Production [10] says that an attribute value may consist of any characters except,
<, &, and “ enclosed in double quotes or any characters except <, &, and ‘ enclosed
in single quotes. The & may appear, however, only if it’s used as the start of a
reference (Production [67]) (either general or character).

These are legal attribute values:

“This is an attribute value”
‘This is an attribute value’
‘#FFCC33’
“75% off”
“Ben & Jerry’s New York Super Fudge Chunk Ice Cream”
“i < j”

These are not legal attribute values:

“This is an attribute value’
‘This is an attribute value”
“Ben & Jerry’s New York Super Fudge Chunk Ice Cream”
‘Ben & Jerry’s New York Super Fudge Chunk Ice Cream’
“i < j”

[11] SystemLiteral ::= (‘“‘ [^”]* ‘“‘) | (“‘“ [^’]* “‘“)

Production [11] defines a system literal as any string of text that does not contain
the double quote mark enclosed in double quotes. Alternately, a system literal may
be any string of text that does not contain the single quote mark enclosed in single
quotes. These are grammatical system literals:

“test”
“ Hello there! “
‘ Hello
there!’

“Embedded markup is <OK/> in system literals”

These are ungrammatical system literals:

“ He said, “Get out of here!””
‘Bailey’s Cove’

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 879

880 Appendixes

[12] PubidLiteral ::= ‘“‘ PubidChar* ‘“‘ | “‘“ (PubidChar - “‘“)* “‘“

Production [12] says that a public ID literal is either zero or more public ID
characters (Production [13]) enclosed in double quotes or zero or more public ID
characters except the single quote mark enclosed in single quotes.

These are grammatical public ID literals:

“-//IETF//NONSGML Media Type application/pdf//EN”
‘-//IETF//NONSGML Media Type application/pdf//EN’
“-//W3C//DTD XHTML 1.0 Strict + Math//EN”

These are ungrammatical public ID literals:

“{-//IETF//NONSGML Media Type application/pdf//EN}”
“-//IETF//NONSGML Media Type application/π__//GR}”

[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-’()+,./:=?;!*#@$_%]

Production [13] lists the permissible public ID characters, essentially, the ASCII
space, carriage return, and linefeed, the letters a through z and A through Z, the
digits 0 through 9, and the punctuation characters -’()+,./:=?;!*#@$_%.

Character Data
[14] CharData ::= [^<&]* - ([^<&]* ‘]]>’ [^<&]*)

Production [14] defines character data as any number of characters except for <
and &. Furthermore the CDEnd string]]> may not appear as part of the character
data. Character data may contain as few as zero characters.

Comments
[15] Comment ::= ‘<!—’ ((Char - ‘-’) | (‘-’ (Char - ‘-’)))* ‘—>’

Production [15] defines a comment as any string of text enclosed between <!— and
—> marks with the single exception of the double hyphen —. These are all valid
comments:

<!—Hello—>
<!—Hello there!—>
<!— Hello there! —>
<!— Hello

there! —>
<!—<Hello/> <there/>!—>
<!—<Hello/> </there>!—>

This is not a legal comment:

<!— Hello—there! —>

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 880

881Appendix A ✦ XML Reference Material

Processing Instructions
[16] PI ::= ‘<?’ PITarget (S (Char* - (Char* ‘?>’ Char*)))? ‘?>’

Production [16] says that a processing instruction starts with the literal <?,
followed by the name of the processing instruction target (Production [17]),
optionally followed by whitespace followed by any number of characters except ?>.
Finally, the literal ?> closes the processing instruction.

These are all legal processing instructions:

<?gcc version=”2.7.2” options=”-O4”?>
<?Terri Do you think this is a good example?>

These are not legal processing instructions:

<? I have to remember to fix this next part?>
<?Terri This is a good example!>

[17] PITarget ::= Name - ((‘X’ | ‘x’) (‘M’ | ‘m’) (‘L’ | ‘l’))

Production [17] says that a processing instruction target may be any XML name
(Production [5]) except the string XML (in any combination of case). Thus, these
are all acceptable processing instruction targets:

gcc
acrobat
Acrobat
Joshua
Acrobat_301
xml-stylesheet
XML_Whizzy_Writer_2000

These are not acceptable processing instruction targets:

xml
XML
xmL

CDATA Sections
[18] CDSect ::= CDStart CData CDEnd

Production [18] states that a CData section is composed of a CDStart (Production
[19]), CData (Production [20]), and a CDEnd (Production [21]) in that order.

[19] CDStart ::= ‘<![CDATA[‘

Production [19] defines a CDStart as the literal string <![CDATA[and nothing else.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 881

882 Appendixes

[20] CData ::= (Char* - (Char* ‘]]>’ Char*))

Production [20] says that a CData section may contain absolutely any characters
except the CDEnd string]]>.

[21] CDEnd ::= ‘]]>’

Production [21] defines a CDEnd as the literal string]]> and nothing else.

These are correct CDATA sections:

<![CDATA[The < character starts a tag in XML]]>
<![CDATA[CDATA sections begin with the literal <![CDATA[]]>

This is not a legal CDATA section:

<![CDATA[
The three characters]]> terminate a CDATA section

]]>

Prolog
[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?

Production [22] says that a prolog consists of an optional XML declaration,
followed by zero or more miscellaneous items (Production [27]), followed by an
optional document type declaration (Production [28]), followed by zero or more
miscellaneous items. For instance, this is a legal prolog:

<?xml version=”1.0”?>

This is also a legal prolog:

<?xml version=”1.0” standalone=”yes”?>
<?xml:stylesheet type=”text/css” href=”greeting.css”?>
<!DOCTYPE greeting [
<!ELEMENT greeting (#PCDATA)>

]>

This is also a legal prolog:

<!—This strange document really doesn’t have anything
in its prolog! —>

This is not a legal prolog because a comment precedes the XML declaration:

<!—This is from the example in Chapter 8 —>
<?xml version=”1.0” standalone=”yes”?>

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 882

883Appendix A ✦ XML Reference Material

<?xml:stylesheet type=”text/css” href=”greeting.css”?>
<!DOCTYPE greeting [
<!ELEMENT greeting (#PCDATA)>

]>

[23] XMLDecl ::= ‘<?xml’ VersionInfo EncodingDecl? SDDecl? S? ‘?>’

Production [23] defines an XML declaration as the literal string <?xml followed by a
mandatory version info string (Production [24]), optionally followed by an
encoding declaration (Production [80]), optionally followed by a standalone
document declaration (Production [32]), optionally followed by whitespace,
followed by the literal string ?>. These are legal XML declarations:

<?xml version=”1.0”?>
<?xml version=”1.0” encoding=”Big5”?>
<?xml version=”1.0” encoding=”ISO-8859-1” standalone=”yes”?>
<?xml version=”1.0” standalone=”no”? >
<?xml version=”1.0” encoding=”ISO-8859-5”?>

These are not legal XML declarations:

<?xml?>
<?xml encoding=”Big5”?>
<?xml version=”1.0” standalone=”yes”? encoding=”ISO-8859-1” >
<?xml version=”1.0” standalone=”no”? styles=”poems.css”>

[24] VersionInfo ::= S ‘version’ Eq (‘ VersionNum ‘ | “ VersionNum “)

Production [24] defines the version info string as whitespace followed by the literal
string version, followed by an equals sign (Production [25]), followed by a version
number enclosed in either single or double quotes. These are legal version info
strings:

version=”1.0”
version=’1.0’
version = ‘1.0’

These are ungrammatical version info strings:

version=’1.0”
“1.0”=version

[25] Eq ::= S? ‘=’ S?

Production [25] defines the string Eq in the grammar as a stand-in for the equals
sign (=) in documents. Whitespace (Production [3]) may or may not appear on
either side of the equals sign.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 883

884 Appendixes

[26] VersionNum ::= ([a-zA-Z0-9_.:] | ‘-’)+

Production [26] says that a version number consists of one or more of the letters a
through z, the capital letters A through Z, the underscore, the period, and the
hyphen. The following are grammatically correct version numbers:

1.0
1.x
1.1.3
1.5EA2
v1.5
EA_B

The following are ungrammatical version numbers:

version 1.5
1,5
1!1
1 5 3
v 1.5
_

The only version number currently used in XML documents is 1.0. This production
might as well read:

VersionNum ::= “1.0”

[27] Misc ::= Comment | PI | S

Production [27] defines miscellaneous items in an XML document include
comments (Production [15]), processing instructions (Production [16]), and
whitespace (Production [3]).

Document Type Definition
[28] doctypedecl ::= ‘<!DOCTYPE’ S Name (S ExternalID)? S? (‘[‘ (markupdecl |
PEReference | S)* ‘]’ S?)? ‘>’

Production [28] says that a document type declaration consists of the literal string
<!DOCTYPE, followed by whitespace (Production [3]), followed by an XML name
(Production [5]), optionally followed by whitespace and an external ID (Production
[75]), optionally followed by more whitespace, followed by a left square bracket
([), followed by zero or more markup declarations (Production [29]), parameter
entity references (Production [69]), and whitespace, followed by a right square
bracket (]) and whitespace, followed by a closing angle bracket.

Note

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 884

885Appendix A ✦ XML Reference Material

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl | NotationDecl | PI |
Comment

Production [29] says that a markup declaration may be either an element
declaration (Production [45]), an attribute list declaration (Production [52]), an
entity declaration (Production [70]), a notation declaration (Production [82]), a
processing instruction (Production [16]), or a comment (Production [15]).

External Subset
[30] extSubset ::= TextDecl? extSubsetDecl

Production [30] says that an external subset consists of an optional text declaration
(Production [77]), followed by an external subset declaration (Production [31]).
Note that external subsets are merged into the document from the files they reside
in before the syntax is checked against the BNF grammar.

[31] extSubsetDecl ::= (markupdecl | conditionalSect | PEReference | S)*

Production [31] says the external subset declaration contains any number of
markup declarations (Production [29]), conditional sections (Production [61]),
parameter entity references (Production [69]), and whitespace in any order. In
essence, the external subset can contain anything the internal DTD can contain.

Standalone Document Declaration
[32] SDDecl ::= S ‘standalone’ Eq ((“‘“ (‘yes’ | ‘no’) “‘“) | (‘“‘ (‘yes’ | ‘no’) ‘“‘))

Production [32] says that the standalone document declaration consists of the
literal standalone, followed by an equals sign (which may be surrounded by
whitespace), followed by one of the two values yes or no enclosed in single or
double quotes. Legal standalone document declarations include:

standalone=”yes”
standalone=”no”
standalone=’yes’
standalone=’no’
standalone=“yes”
standalone=“no”

Language Identification
[33] LanguageID ::= Langcode (‘-’ Subcode)*

Production [33] defines a language ID as a language code (Production [34]),
followed by zero or more hyphens and subcodes (Production [38]).

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 885

886 Appendixes

[34] Langcode ::= ISO639Code | IanaCode | UserCode

Production [34] defines a language code as either an ISO 639 code (Production
[35]), an IANA code (Production [36]), or a user code (Production [37]).

[35] ISO639Code ::= ([a-z] | [A-Z]) ([a-z] | [A-Z])

Production [35] defines an ISO 639 code as exactly two small letters from the
English alphabet. There are exactly 2704 (52 _ 52) grammatical ISO 639 codes
including:

en
fr
jp
EN
jP
Fr

There are an infinite number of strings that aren’t grammatical ISO 639 codes
including:

English
French
Japanese

[36] IanaCode ::= (‘i’ | ‘I’) ‘-’ ([a-z] | [A-Z])+

Production [36] defines an IANA code as the small or capital letter I followed by a
hyphen, followed by one or more letters from the English alphabet. These are
grammatical IANA codes:

i-no-bok
i-no-nyn
i-navajo
i-mingo

These are not grammatical IANA codes:

no-bok
no-nyn
navajo
mingo
i-_______

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 886

887Appendix A ✦ XML Reference Material

[37] UserCode ::= (‘x’ | ‘X’) ‘-’ ([a-z] | [A-Z])+

Production [37] defines a user code as the small or capital letter X followed by a
hyphen, followed by one or more letters from the English alphabet. These are
grammatical user codes:

x-klingon
X-Elvish

These are not grammatical IANA codes:

Elvish
xklingon
x-_______

[38] Subcode ::= ([a-z] | [A-Z])+

Production [38] defines a subcode as one or more capital or small letters from the
English alphabet. These are grammatical subcodes:

gb
GreatBritain
UK
uk

These are not grammatical subcodes:

Great Britain

Element
[39] element ::= EmptyElemTag | STag content ETag

Production [39] defines an element as either an empty element tag (production
[44]) or a start tag (production [40]), followed by content (production [43]),
followed by an end tag (production [42]).

These are legal elements:

<P>Hello!</P>
<P/>
<P></P>

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 887

888 Appendixes

These are not legal elements:

<P>Hello!</p>
<P>
</Q>

Start Tag
[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’

Production [40] says that a start tag begins with a < followed by an XML name
(Production [5]), followed by any number of attributes (Production [41]) separated
by whitespace, followed by a closing >. These are some legal start tags:

<DOCUMENT>
<________>
<DOCUMENT >
<DOCUMENT TITLE=”The Red Badge of Courage” >
<DOCUMENT TITLE=”The Red Badge of Courage” PAGES=”129”>

These are not legal start tags:

< DOCUMENT>
< >
<12091998>

[41] Attribute ::= Name Eq AttValue

Production [41] says that an attribute consists of an XML name (Production [5]),
followed by an equals sign (which may be encased in whitespace) followed by an
attribute value (Production [10]). Grammatical attributes include:

TITLE=”The Red Badge of Courage”
PAGES=”129”
TITLE = “The Red Badge of Courage”
PAGES = “129”
TITLE=’The Red Badge of Courage’
PAGES=’129’
SENTENCE=’Jim said, “I didn't expect to see you here.”’

Ungrammatical attributes include:

TITLE=”The Red Badge of Courage’
PAGES=129
SENTENCE=’Then Jim said, “I didn’t expect to see you here.”’

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 888

889Appendix A ✦ XML Reference Material

End Tag
[42] ETag ::= ‘</’ Name S? ‘>’

Production [42] defines an end tag as the literal string </ immediately followed by
an XML name, optionally followed by whitespace, followed by the > character. For
example, these are grammatical XML end tags:

</PERSON>
</PERSON >
</AbrahamLincoln>
</________>

These are not grammatical XML end tags:

</ PERSON>
</Abraham Lincoln>
</PERSON NAME=”Abraham Lincoln”>
</>

Content of Elements
[43] content ::= (element | CharData | Reference | CDSect | PI | Comment)*

Production [43] defines content as any number of elements (Production [39]),
character data (Production [14]), references (Production [67]), CDATA sections
(Production [18]), processing instructions (Production [16]), and comments
(Production [15]) in any order. This production lists everything that can appear
inside an element.

Tags for Empty Elements
[44] EmptyElemTag ::= ‘<’ Name (S Attribute)* S? ‘/>’

Production [44] defines an empty element tag as the character <, followed by an
XML name, followed by whitespace, followed by zero more attributes separated
from each other by whitespace, optionally followed by whitespace, followed by the
literal />. These are some grammatical empty tags:

<PERSON/>
<PERSON />
<Person/>
<person />
<AbrahamLincoln/>
<_______/>

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 889

890 Appendixes

These are ungrammatical as empty tags:

< PERSON/>
<PERSON>
</Person>
</person/>
</>

(The second and third are grammatical start and end tags respectively.)

Element Type Declaration
[45] elementdecl ::= ‘<!ELEMENT’ S Name S contentspec S? ‘>’

Production [45] says that an element declaration consists of the literal <!ELEMENT,
followed by whitespace, followed by an XML name (Production [5]), followed by a
content specification (Production [46]), optionally followed by whitespace,
followed by the > character.

Grammatical element declarations include:

<!ELEMENT DOCUMENT ANY>
<!ELEMENT HR EMPTY>
<!ELEMENT DOCUMENT (#PCDATA | P | H)>

[46] contentspec ::= ‘EMPTY’ | ‘ANY’ | Mixed | children

Production [46] defines a content specification as either the literals EMPTY or ANY, a
list of children (Production [47]) or mixed content (Production [51]).

Element-content Models
[47] children ::= (choice | seq) (‘?’ | ‘*’ | ‘+’)?

Production [47] says that a list of children consists of either a choice (Production
[49]) or a sequence (Production [50]) optionally followed by one of the characters
?, *, or +.

[48] cp ::= (Name | choice | seq) (‘?’ | ‘*’ | ‘+’)?

Production [48] defines a content particle as an XML name (Production [5]),
choice, (Production [49]), or sequence (Production [50], optionally suffixed with a
?, *, or +.

[49] choice ::= ‘(‘ S? cp (S? ‘|’ S? cp)* S? ‘)’

Production [49] says that a choice is one or more content particles (Production
[48]) enclosed in parentheses and separated from each other by vertical bars and
optional whitespace. Grammatical choices include:

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 890

891Appendix A ✦ XML Reference Material

(P | UL | H1 | H2 | H3 | H4 | H5 | BLOCKQUOTE | PRE | HR | DIV)
(P|UL|H1|H2|H3|H4|H5|H6|BLOCKQUOTE|PRE|HR|DIV)
(SON | DAUGHTER)
(SON | DAUGHTER)
(ADDRESS | (NAME, STREET, APT, CITY, STATE, ZIP))

[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’

Production [50] says that a sequence is one or more content particles (Production
[48]) enclosed in parentheses and separated from each other by commas and
optional whitespace. Grammatical sequences include:

(NAME, STREET, APT, CITY, STATE, ZIP)
(NAME , STREET , APT , CITY , STATE , ZIP)
(NAME,STREET,APT,CITY,STATE,ZIP)
(NAME,STREET,APT, CITY,STATE,ZIP)
(NAME, (STREET|BOX), (APT|SUITE), CITY, STATE, ZIP, COUNTRY?)
(NAME)

Mixed-content Declaration
[51] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘|’ S? Name)* S? ‘)*’ | ‘(‘ S? ‘#PCDATA’ S? ‘)’

Production [51] says that mixed content is either the literal (#PCDATA) (with
allowances for optional whitespace) or a choice that includes the literal #PCDATA as
its first content particle. These are some grammatical mixed-content models:

(#PCDATA)
(#PCDATA)
(#PCDATA | PERSON)
(#PCDATA | PERSON)
(#PCDATA | TITLE | JOURNAL | MONTH | YEAR | SERIES | VOLUME)

These are ungrammatical mixed content models:

(PERSON | #PCDATA)
(#PCDATA, TITLE, #PCDATA, JOURNAL, MONTH, YEAR, #PCDATA)
(#PCDATA | (NAME, STREET, APT, CITY, STATE, ZIP))

Attribute-list Declaration
[52] AttlistDecl ::= ‘<!ATTLIST’ S Name AttDef* S? ‘>’

Production [52] says that an attribute list declaration consists of the literal
<!ATTLIST, followed by whitespace, followed by an XML name (Production [5]),
followed by zero or more attribute definitions (Production [53]), optionally
followed by whitespace, followed by the > character.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 891

892 Appendixes

Grammatical attribute list declarations include:

<!ATTLIST IMG ALT CDATA #REQUIRED>
<!ATTLIST AUTHOR EXTENSION CDATA #IMPLIED>
<!ATTLIST AUTHOR COMPANY CDATA #FIXED “TIC”>
<!ATTLIST P VISIBLE (TRUE | FALSE) “TRUE”>
<!ATTLIST ADDRESS STATE NMTOKEN #REQUIRED>
<!ATTLIST ADDRESS STATES NMTOKENS #REQUIRED>
<!ATTLIST P PNUMBER ID #REQUIRED>
<!ATTLIST PERSON FATHER IDREF #IMPLIED>
<!ATTLIST SLIDESHOW SOURCES ENTITIES #REQUIRED>
<!ATTLIST SOUND PLAYER NOTATION (MP) #REQUIRED>

[53] AttDef ::= S Name S AttType S DefaultDecl

Production [53] defines an attribute definition as whitespace, an XML name
(Production [5]), more whitespace, an attribute type (Production [54]), more
whitespace, and a default declaration (Production [60]). Grammatical attribute
definitions include:

IMG ALT CDATA #REQUIRED
AUTHOR EXTENSION CDATA #IMPLIED
AUTHOR COMPANY CDATA #FIXED “TIC”
P VISIBLE (TRUE | FALSE) “TRUE”
ADDRESS STATE NMTOKEN #REQUIRED
ADDRESS STATES NMTOKENS #REQUIRED
P PNUMBER ID #REQUIRED
PERSON FATHER IDREF #IMPLIED
SLIDESHOW SOURCES ENTITIES #REQUIRED
SOUND PLAYER NOTATION (MP) #REQUIRED

Attribute Types
[54] AttType ::= StringType | TokenizedType | EnumeratedType

Production [54] defines an attribute type as either a string type (Production [55]), a
tokenized type (Production [56]), or an enumerated type (Production [57]).

[55] StringType ::= ‘CDATA’

Production [55] defines a string type as the literal CDATA.

[56] TokenizedType ::= ‘ID’ | ‘IDREF’ | ‘IDREFS’ | ‘ENTITY’ | ‘ENTITIES’ |
‘NMTOKEN’ | ‘NMTOKENS’

Production [56] defines TokenizedType as any one of theses seven literals:

ID

IDREF

IDREFS

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 892

893Appendix A ✦ XML Reference Material

ENTITY

ENTITIES

NMTOKEN

NMTOKENS

Enumerated Attribute Types
[57] EnumeratedType ::= NotationType | Enumeration

Production [57] defines an enumerated type as either a notation type (Production
[58]) or an enumeration (Production [59]).

[58] NotationType ::= ‘NOTATION’ S ‘(‘ S? Name (S? ‘|’ S? Name)* S? ‘)’

Production [58] defines a notation type as the literal NOTATION, followed by
whitespace, followed by one or more XML names (Production [5]), separated by
vertical bars, and enclosed in parentheses. These are some grammatical notation
types:

NOTATION (MP)
NOTATION (MP | PDF)
NOTATION (mp | gcc | xv)
NOTATION (A | B | C)

These are some ungrammatical notation types:

NOTATION (“MP”)
NOTATION (MP PDF)
NOTATION (mp, gcc, xv)
NOTATION (“A” “B” “C”)

[59] Enumeration ::= ‘(‘ S? Nmtoken (S? ‘|’ S? Nmtoken)* S? ‘)’

Production [59] defines an enumeration as one or more XML name tokens
(Production [7]) separated by vertical bars and enclosed in parentheses. These are
some grammatical enumerations:

(airplane)
(airplane | train | car | horse)
(airplane | train | car | horse)
(cavalo | carro | trem |avião)
(A | B | C | D | E | F | G | H)

The following are not acceptable enumerations:

()
(airplane train car horse)
(A, B, C, D, E, F, G, H)
airplane | train | car | horse

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 893

894 Appendixes

Attribute Defaults
[60] DefaultDecl ::= ‘#REQUIRED’ | ‘#IMPLIED’ | ((‘#FIXED’ S)? AttValue)

Production [60] defines the default declaration as one of these four things:

✦ the literal #REQUIRED

✦ the literal #IMPLIED

✦ the literal #FIXED followed by whitespace (Production [3]), followed by an
attribute value (Production [10])

✦ an attribute value (Production [10])

Conditional Section
[61] conditionalSect ::= includeSect | ignoreSect

Production [61] defines a conditional section as either an include section
(Production [62]) or an ignore section (Production [63]).

[62] includeSect ::= ‘<![‘ S? ‘INCLUDE’ S? ‘[‘ extSubsetDecl ‘]]>’

Production [62] defines an include section as an external subset declaration
(Production [31]) sandwiched between <![INCLUDE[]]>, modulo whitespace.
These are grammatical include sections:

<![INCLUDE []]>
<![INCLUDE[]]>
<![INCLUDE[]]>

[63] ignoreSect ::= ‘<![‘ S? ‘IGNORE’ S? ‘[‘ ignoreSectContents* ‘]]>’

Production [63] defines an ignore section as ignore section contents (Production
[64]) sandwiched between <![IGNORE[]]>, modulo whitespace. These are
grammatical ignore sections:

<![IGNORE []]>
<![IGNORE[]]>
<![IGNORE[]]>

[64] ignoreSectContents ::= Ignore (‘<![‘ ignoreSectContents ‘]]>’ Ignore)*

Production [64] defines an ignore section contents as an ignore block (Production
[65]), optionally followed by a block of text sandwiched between <![and]]>
literals, followed by more text. This may be repeated as many times as desired. This
allows ignore sections to nest.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 894

895Appendix A ✦ XML Reference Material

[65] Ignore ::= Char* - (Char* (‘<![‘ | ‘]]>’) Char*)

Production 65 defines an ignore block as any run of text that contains neither the
<![or]]> literals. This prevents any possible confusion about where an ignore
block ends.

Character Reference
[66] CharRef ::= ‘&#’ [0-9]+ ‘;’ | ‘&#x’ [0-9a-fA-F]+ ‘;’

Production [66] defines two forms for character references. The first is the literal
&# followed by one or more of the ASCII digits 0 through 9. The second form is the
literal &#x followed by one or more of the hexadecimal digits 0 through F. The digits
representing 10 through 16 (A through F) may be either lower- or uppercase.

Entity Reference
[67] Reference ::= EntityRef | CharRef

Production [67] defines a reference as either an entity reference (Production [68])
or a character reference (Production [66]).

[68] EntityRef ::= ‘&’ Name ‘;’

Production [68] defines an entity reference as an XML name (Production [5])
sandwiched between the ampersand character and a semicolon. These are
grammatical entity references:

&
à
&my_abbreviation;

These are ungrammatical entity references:

&
& agrave ;
& my_abbreviation;

[69] PEReference ::= ‘%’ Name ‘;’

Production [69] defines a parameter entity reference as an XML name (Production
[5]) sandwiched between the percent character and a semicolon. These are
grammatical parameter entity references:

%inlines;
%mathml;
%MyElements;

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 895

896 Appendixes

These are ungrammatical parameter entity references:

%inlines
% mathml ;
%my elements;

Entity Declaration
[70] EntityDecl ::= GEDecl | PEDecl

Production [70] defines an entity declaration as either a general entity declaration
(Production [71]) or a parameter entity declaration (Production [71]).

[71] GEDecl ::= ‘<!ENTITY’ S Name S EntityDef S? ‘>’

Production [71] defines a general entity declaration as the literal <!ENTITY
followed by whitespace (Production [3]), followed by an XML name (Production
[5]), followed by an entity definition (Production [73]), optionally followed by
whitespace, followed by the > character. These are some grammatical general entity
declarations:

<!ENTITY alpha “α”>
<!ENTITY Alpha “Α”>
<!ENTITY SPACEMUSIC SYSTEM “/sounds/space.wav” NDATA MP >
<!ENTITY LOGO SYSTEM “logo.gif”>
<!ENTITY COPY99 “Copyright 1999 %erh;”>

These are some ungrammatical general entity declarations:

<!ENTITY alpha α>
<!ENTITY Capital Greek Alpha “Α”>
<!ENTITY LOGO SYSTEM logo.gif>

[72] PEDecl ::= ‘<!ENTITY’ S ‘%’ S Name S PEDef S? ‘>’

Production [72] defines a parameter entity declaration as the literal <!ENTITY
followed by whitespace (Production [3]), followed by a percent sign and more
whitespace, followed by an XML name (Production [5]), followed by an entity
definition (Production [73]), optionally followed by whitespace, followed by the >
character. In essence this says that parameter entity declarations are the same as
general entity declarations except for the % between the <!ENTITY and the name.
These are some grammatical parameter entity declarations:

<!ENTITY % fulldtd “IGNORE”>
<!ENTITY % ERH “Elliotte Rusty Harold”>
<!ENTITY % inlines
“(person | degree | model | product | animal | ingredient)*”>

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 896

897Appendix A ✦ XML Reference Material

These are some ungrammatical parameter entity declarations:

<!ENTITY %fulldtd; “IGNORE”>
<!ENTITY % ERH Elliotte Rusty Harold>
<!ENTITY % inlines
“(person | degree | model | product | animal | ingredient)*’>

[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)

Production [73] says that an entity definition is either an entity value (Production
[9]) or an external ID (Production [75]) followed by an NData declaration
(Production [76]).

[74] PEDef ::= EntityValue | ExternalID

Production [74] says that the definition of a parameter entity may be either an
entity value (Production [9]) or an external ID (Production [75]).

External Entity Declaration
[75] ExternalID ::= ‘SYSTEM’ S SystemLiteral | ‘PUBLIC’ S PubidLiteral S
SystemLiteral

Production [75] defines an external ID as either the keyword SYSTEM followed by
whitespace and a system literal (Production [11]) or the keyword PUBLIC followed
by whitespace, a public ID literal (Production [12]), more whitespace, and a system
literal (Production [11]). These are some grammatical external IDs:

SYSTEM “logo.gif”
SYSTEM “/images/logo.gif”
SYSTEM “http://www.idgbooks.com/logo.gif”
SYSTEM “../images/logo.gif”
PUBLIC “-//IETF//NONSGML Media Type image/gif//EN”

“http://www.isi.edu/in-notes/iana/assignments/media-
types/image/gif”

These are some ungrammatical external IDs:

SYSTEM logo.gif
SYSTEM “/images/logo.gif’
SYSTEM http://www.idgbooks.com/logo.gif
PUBLIC “-//IETF//NONSGML Media Type image/gif//EN”
PUBLIC “http://www.isi.edu/in-notes/iana/assignments/media-
types/image/gif”

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 897

898 Appendixes

[76] NDataDecl ::= S ‘NDATA’ S Name

Production [76] defines an NData declaration as whitespace (Production [3]),
followed by the NDATA literal, followed by whitespace, followed by an XML name
(Production [5]). For example:

NDATA PDF
NDATA MIDI

Text Declaration
[77] TextDecl ::= ‘<?xml’ VersionInfo? EncodingDecl S? ‘?>’

Production [77] says that a text declaration looks almost like an XML declaration
(Production [23]) except that it may not have a standalone document declaration
(Production [32]). These are grammatical text declarations:

<?xml version=”1.0”?>
<?xml version=”1.0” encoding=”Big5”?>
<?xml version=”1.0” encoding=”ISO-8859-5”?>

These are not grammatical text declarations:

<?xml?>
<?xml encoding=”Big5”?>
<?xml encoding=”Big5” version=”1.0” ?>
<?xml version=”1.0” standalone=”yes”? encoding=”ISO-8859-1” >
<?xml version=”1.0” styles=”poems.css”>
<?xml version=”1.0” encoding=”ISO-8859-1” standalone=”yes”?>
<?xml version=”1.0” standalone=”no”? >

Well-formed External Parsed Entity
[78] extParsedEnt ::= TextDecl? content

Production [78] says that an external general parsed entity consists of an optional
text declaration followed by content (Production [43]). The main point of this
production is that the content may not include a DTD or any markup declarations.

[79] extPE ::= TextDecl? extSubsetDecl

Production [79] says that an external parameter entity consists of an optional text
declaration followed by an external subset declaration (Production [31]).

Encoding Declaration
[80] EncodingDecl ::= S ‘encoding’ Eq (‘“‘ EncName ‘“‘ | “‘“ EncName “‘“)

Production [80] defines an encoding declaration as whitespace (Production [3]),
followed by the string “encoding” followed by an equals sign (Production [25]),

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 898

899Appendix A ✦ XML Reference Material

followed by the name of the encoding (Production [81]) enclosed in either single or
double quotes. These are all legal encoding declarations:

encoding=”Big5”
encoding=”ISO-8859-5”
encoding = “Big5”
encoding = “ISO-8859-5”
encoding= ‘Big5’
encoding= ‘ISO-8859-5’

These are not legal encoding declarations:

encoding “Big5”
encoding=”ISO-8859-51’
encoding = “Big5
encoding = ‘ISO-8859-5”

[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | ‘-’)*

Production [81] says the name of an encoding begins with one of the ASCII letters A
through Z or a through z, followed by any number of ASCII letters, digits, periods,
underscores, and hyphens. These are legal encoding names:

ISO-8859-1
Big5
GB2312

These are ungrammatical encoding names:

ISO 8859-1
Big5 Chinese
GB 2312
____851

Notation Declarations
[82] NotationDecl ::= ‘<!NOTATION’ S Name S (ExternalID | PublicID) S? ‘>’

Production [82] defines a notation declaration as the literal string “<!NOTATION”,
followed by whitespace (Production [3]), followed by an XML name (Production[5])
for the notation, followed by whitespace, followed by either an external ID
(Production [75]) or a public ID (Production [83]), optionally followed by
whitespace, followed by the literal string “>”. These are grammatical notation
declarations:

<!NOTATION GIF SYSTEM “image/gif”>
<!NOTATION GIF SYSTEM “image/gif” >
<!NOTATION GIF PUBLIC

“-//IETF//NONSGML Media Type image/gif//EN”
“http://www.isi.edu/in-notes/iana/assignments/media-

types/image/gif”>

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 899

900 Appendixes

These are not grammatical notation declarations:

<! NOTATION GIF SYSTEM “image/gif” >
< !NOTATION GIF SYSTEM “image/gif” >
<!NOTATION GIF “image/gif”>
<!NOTATION GIF SYSTEM image/gif>
<!NOTATION GIF PUBLIC

“http://www.isi.edu/in-notes/iana/assignments/media-
types/image/gif”>

[83] PublicID ::= ‘PUBLIC’ S PubidLiteral

Production [83] defines a public ID as the literal string PUBLIC, followed by
whitespace (Production [3]), followed by a public ID literal (Production [12]).
These are grammatical public IDs:

PUBLIC “-//IETF//NONSGML Media Type image/gif//EN”
PUBLIC “ISO 8879:1986//ENTITIES Added Latin 1//EN//XML”

These are ungrammatical public IDs:

PUBLIC -//IETF//NONSGML Media Type image/gif//EN
PUBLIC ‘ISO 8879:1986//ENTITIES Added Latin 1//EN//XML”

Characters
[84] Letter ::= BaseChar | Ideographic

Production [84] defines a letter as either a base character or an ideographic
character.

[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6] |
[#x00D8-#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131] | [#x0134-#x013E] |
[#x0141-#x0148] | [#x014A-#x017E] | [#x0180-#x01C3] | [#x01CD-#x01F0] |
[#x01F4-#x01F5] | [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] |
#x0386 | [#x0388-#x038A] | #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE] |
[#x03D0-#x03D6] | #x03DA | #x03DC | #x03DE | #x03E0 | [#x03E2-#x03F3] |
[#x0401-#x040C] | [#x040E-#x044F] | [#x0451-#x045C] | [#x045E-#x0481] |
[#x0490-#x04C4] | [#x04C7-#x04C8] | [#x04CB-#x04CC] | [#x04D0-#x04EB] |
[#x04EE-#x04F5] | [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 | [#x0561-
#x0586] | [#x05D0-#x05EA] | [#x05F0-#x05F2] | [#x0621-#x063A] |
[#x0641-#x064A] | [#x0671-#x06B7] | [#x06BA-#x06BE] | [#x06C0-#x06CE] |
[#x06D0-#x06D3] | #x06D5 | [#x06E5-#x06E6] | [#x0905-#x0939] | #x093D |
[#x0958-#x0961] | [#x0985-#x098C] | [#x098F-#x0990] | [#x0993-#x09A8] |
[#x09AA-#x09B0] | #x09B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD] | [#x09DF-
#x09E1] | [#x09F0-#x09F1] | [#x0A05-#x0A0A] | [#x0A0F-#x0A10] |
[#x0A13-#x0A28] | [#x0A2A-#x0A30] | [#x0A32-#x0A33] | [#x0A35-#x0A36] |

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 900

901Appendix A ✦ XML Reference Material

[#x0A38-#x0A39] | [#x0A59-#x0A5C] | #x0A5E | [#x0A72-#x0A74] | [#x0A85-
#x0A8B] | #x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8] | [#x0AAA-#x0AB0] |
[#x0AB2-#x0AB3] | [#x0AB5-#x0AB9] | #x0ABD | #x0AE0 | [#x0B05-#x0B0C] |
[#x0B0F-#x0B10] | [#x0B13-#x0B28] | [#x0B2A-#x0B30] | [#x0B32-#x0B33] |
[#x0B36-#x0B39] | #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61] | [#x0B85-
#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-#x0B95] | [#x0B99-#x0B9A] | #x0B9C |
[#x0B9E-#x0B9F] | [#x0BA3-#x0BA4] | [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5] |
[#x0BB7-#x0BB9] | [#x0C05-#x0C0C] | [#x0C0E-#x0C10] | [#x0C12-#x0C28] |
[#x0C2A-#x0C33] | [#x0C35-#x0C39] | [#x0C60-#x0C61] | [#x0C85-#x0C8C] |
[#x0C8E-#x0C90] | [#x0C92-#x0CA8] | [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] |
#x0CDE | [#x0CE0-#x0CE1] | [#x0D05-#x0D0C] | [#x0D0E-#x0D10] | [#x0D12-
#x0D28] | [#x0D2A-#x0D39] | [#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30 |
[#x0E32-#x0E33] | [#x0E40-#x0E45] | [#x0E81-#x0E82] | #x0E84 | [#x0E87-
#x0E88] | #x0E8A | #x0E8D | [#x0E94-#x0E97] | [#x0E99-#x0E9F] |
[#x0EA1-#x0EA3] | #x0EA5 | #x0EA7 | [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE] |
#x0EB0 | [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4] | [#x0F40-#x0F47] |
[#x0F49-#x0F69] | [#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100 | [#x1102-
#x1103] | [#x1105-#x1107] | #x1109 | [#x110B-#x110C] | [#x110E-#x1112] |
#x113C | #x113E | #x1140 | #x114C | #x114E | #x1150 | [#x1154-#x1155] |
#x1159 | [#x115F-#x1161] | #x1163 | #x1165 | #x1167 | #x1169 | [#x116D-
#x116E] | [#x1172-#x1173] | #x1175 | #x119E | #x11A8 | #x11AB |
[#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2] | #x11EB |
#x11F0 | #x11F9 | [#x1E00-#x1E9B] | [#x1EA0-#x1EF9] | [#x1F00-#x1F15] |
[#x1F18-#x1F1D] | [#x1F20-#x1F45] | [#x1F48-#x1F4D] | [#x1F50-#x1F57] |
#x1F59 | #x1F5B | #x1F5D | [#x1F5F-#x1F7D] | [#x1F80-#x1FB4] | [#x1FB6-
#x1FBC] | #x1FBE | [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC] | [#x1FD0-#x1FD3] |
[#x1FD6-#x1FDB] | [#x1FE0-#x1FEC] | [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] |
#x2126 | [#x212A-#x212B] | #x212E | [#x2180-#x2182] | [#x3041-#x3094] |
[#x30A1-#x30FA] | [#x3105-#x312C] | [#xAC00-#xD7A3]

Production [85] lists the base characters. These are the defined Unicode characters
that are alphabetic but not punctuation marks or digits. For instance, A-Z and a-z
are base characters but 0-9 and !, “, #, $, and so forth, are not. This list is so long
because it contains characters from not only the English alphabet but also Greek,
Hebrew, Arabic, Cyrillic, and all the other alphabetic scripts Unicode supports.

[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]

Production [86] lists the ideographic characters. #x4E00-#x9FA5 are Unicode’s
Chinese-Japanese-Korean unified ideographs. #x3007 is the ideographic number
zero. Characters #x3021 through #x3029 are the Hangzhou style numerals.

[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] |
[#x0591-#x05A1] | [#x05A3-#x05B9] | [#x05BB-#x05BD] | #x05BF | [#x05C1-
#x05C2] | #x05C4 | [#x064B-#x0652] | #x0670 | [#x06D6-#x06DC] |
[#x06DD-#x06DF] | [#x06E0-#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED] |

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 901

902 Appendixes

[#x0901-#x0903] | #x093C | [#x093E-#x094C] | #x094D | [#x0951-#x0954] |
[#x0962-#x0963] | [#x0981-#x0983] | #x09BC | #x09BE | #x09BF | [#x09C0-
#x09C4] | [#x09C7-#x09C8] | [#x09CB-#x09CD] | #x09D7 | [#x09E2-#x09E3] |
#x0A02 | #x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] | [#x0A47-#x0A48] |
[#x0A4B-#x0A4D] | [#x0A70-#x0A71] | [#x0A81-#x0A83] | #x0ABC | [#x0ABE-
#x0AC5] | [#x0AC7-#x0AC9] | [#x0ACB-#x0ACD] | [#x0B01-#x0B03] | #x0B3C |
[#x0B3E-#x0B43] | [#x0B47-#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-#x0B57] |
[#x0B82-#x0B83] | [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] |
#x0BD7 | [#x0C01-#x0C03] | [#x0C3E-#x0C44] | [#x0C46-#x0C48] | [#x0C4A-
#x0C4D] | [#x0C55-#x0C56] | [#x0C82-#x0C83] | [#x0CBE-#x0CC4] |
[#x0CC6-#x0CC8] | [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6] | [#x0D02-#x0D03] |
[#x0D3E-#x0D43] | [#x0D46-#x0D48] | [#x0D4A-#x0D4D] | #x0D57 | #x0E31 |
[#x0E34-#x0E3A] | [#x0E47-#x0E4E] | #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-
#x0EBC] | [#x0EC8-#x0ECD] | [#x0F18-#x0F19] | #x0F35 | #x0F37 | #x0F39 |
#x0F3E | #x0F3F | [#x0F71-#x0F84] | [#x0F86-#x0F8B] | [#x0F90-#x0F95] |
#x0F97 | [#x0F99-#x0FAD] | [#x0FB1-#x0FB7] | #x0FB9 | [#x20D0-#x20DC] |
#x20E1 | [#x302A-#x302F] | #x3099 | #x309A

Production [87] lists the combining characters. These are characters that are
generally combined with the preceding character to form the appearance of a single
character. For example, character ̀ is the combining accent grave. The
letter a (a) followed by a combining accent grave would generally be
rendered as à and occupy only a single character width, even in a monospaced font.

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9] | [#x0966-
#x096F] | [#x09E6-#x09EF] | [#x0A66-#x0A6F] | [#x0AE6-#x0AEF] |
[#x0B66-#x0B6F] | [#x0BE7-#x0BEF] | [#x0C66-#x0C6F] | [#x0CE6-#x0CEF] |
[#x0D66-#x0D6F] | [#x0E50-#x0E59] | [#x0ED0-#x0ED9] | [#x0F20-#x0F29]

Production [88] lists the characters that are considered to be digits. These include
not only the usual European numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, but also the
Arabic-Indic digits used primarily in Egyptian Arabic, the Eastern Arabic Indic digits
used in Persian and Urdu, and many more.

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46 |
#x0EC6 | #x3005 | [#x3031-#x3035] | [#x309D-#x309E] | [#x30FC-#x30FE]

Production [89] lists the characters that are considered to be extenders. In order,
these characters are the middle dot, the modifier letter triangular colon, the modi-
fier letter half-triangular colon, the Greek middle dot, the Arabic tatweel, the Thai
maiyamok, the Lao ko la, the ideographic iteration mark, five Japanese Kana repeat
marks, the Japanese Hiragana iteration mark and voiced iteration mark, and the
Japanese Katakana and Hiragana sound mark and prolonged sound mark. An extend-
er is a character that’s neither a letter nor a combining character, but that is none-
theless included in words as part of the word. The closest equivalent in English is
perhaps the hyphen used in words like mother-in-law or well-off. However, the
hyphen is not considered to be an extender in XML.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 902

903Appendix A ✦ XML Reference Material

#x0387, the triangular colon, has been removed from the extender class in the lat-
est Unicode errata sheet, but this has not yet trickled down into XML.

Well-formedness Constraints
According to the XML 1.0 specification, an XML document is well-formed if:

1. Taken as a whole it matches the production labeled document.

2. It meets all the well-formedness constraints given in this specification.

3. Each of the parsed entities which is referenced directly or indirectly within
the document is well-formed.

This reference topic is designed to help you understand the second of those
requirements and more quickly determine whether your documents meet that
requirement.

What is a Well-formedness Constraint?
As you read the BNF grammar for XML 1.0, you should notice that some
productions have associated well-formedness constraints, abbreviated WFC. For
example, here’s production [40]:

[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’
[WFC: Unique Att Spec]

What follows “WFC: “ is the name of the well-formedness constraint, “Unique Att
Spec” in this example. Generally, if you look a little below the production you’ll find
the constraint with the given name. For example, looking below Production [40]
you’ll find this:

Well-formedness Constraint: Unique Att Spec
No attribute name may appear more than once in the same start tag or empty-
element tag.

This says that a given attribute may not appear more than once in a single element.
For example, the following tag violates well-formedness:

<P COLOR=”red” COLOR=”blue”>

Well-formedness constraints are used for requirements like this that are difficult or
impossible to state in the form of a BNF grammar. As XML parsers read a document,
they must not only check that the document matches the document production of

Note

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 903

904 Appendixes

the BNF grammar, they must also check that it satisfies all well-formedness
constraints.

There are also validity constraints that must be satisfied by valid documents. XML
processors are not required to check validity constraints if they do not wish to,
however. Most validity constraints deal with declarations in the DTD. Validity con-
straints are covered later in this appendix.

Productions Associated with
Well-formedness Constraints
This section lists the productions associated with well-formedness constraints and
explains those constraints. Most productions don’t have any well-formedness
constraints; so most productions are not listed here. The complete list of
productions is found in the BNF Grammar portion of this appendix.

[29] markupdecl ::= elementdecl | AttlistDecl |
EntityDecl | NotationDecl | PI | Comment
[Well-formedness Constraint: PEs in Internal Subset]

This well-formedness constraint states that parameter entity references defined in
the internal DTD subset cannot be used inside a markup declaration. For example,
the following is illegal:

<!ENTITY % INLINES SYSTEM “(I | EM | B | STRONG | CODE)*”>
<!ELEMENT P %INLINES; >

On the other hand, the above would be legal in the external DTD subset.

[39] element ::= EmptyElemTag | STag content ETag
[Well-Formedness Constraint: Element Type Match]

This well-formedness constraint simply says that the name of the start tag must
match the name of the corresponding end tag. For instance, these elements are
well-formed:

<TEST>content</TEST>
<test>content</test>

However, these are not:

<TEST>content</test>
<Fred>content</Ethel>

Note

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 904

905Appendix A ✦ XML Reference Material

[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’
[Well-formedness Constraint: Unique Att Spec]

This constraint says that a given attribute may not appear more than once in a
single element. For example, the following tags violates well-formedness:

<P COLOR=”red” COLOR=”blue”>
<P COLOR=”red” COLOR=”red”>

The problem is that the COLOR attribute appears twice in the same tag. In the
second case, it doesn’t matter that the value is the same both times. It’s still
malformed. The following two tags are well-formed because the attributes have
slightly different names:

<P COLOR1=”red” COLOR2=”blue”>
<P COLOR1=”red” COLOR2=”red”>

[41] Attribute ::= Name Eq AttValue
[Well-formedness Constraint: No External Entity References]

This constraint says that attribute values may not contain entity references that
point to data in other documents. For example, consider this attribute:

<BOX COLOR=”&RED;” />

Whether this is well-formed depends on how the entity RED is defined. If it’s
completely defined in the DTD, either in the internal or external subset, this tag is
acceptable. For example:

<!ENTITY RED “#FF0000”>

However, if the RED entity is defined as an external entity that refers to a separate
file, then it’s not well defined. In that case, the ENTITY declaration would look
something like this:

<!ENTITY RED SYSTEM “red.txt” NDATA COLOR>

Note that this constraint applies to parsed entities. It does not apply to unparsed
entities given as the value of an attribute of type ENTITY or ENTITIES. For example,
the following is legal even though RED is an external entity used as an attribute
value.

<?xml version=”1.0”?>
<!DOCTYPE EXAMPLE [
<!ELEMENT EXAMPLE ANY>
<!NOTATION COLOR SYSTEM “x-color”>

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 905

906 Appendixes

<!ENTITY RED SYSTEM “red.txt” NDATA COLOR>
<!ATTLIST EXAMPLE HUE ENTITY #REQUIRED>

]>
<EXAMPLE HUE=”RED”>
testing 1 2 3
</EXAMPLE>

[Well-formedness Constraint: No < in Attribute Values]

This constraint is very simple. The less-than sign (<) cannot be part of an attribute
value. For example, the following tags are malformed:

<BOX COLOR=”<6699FF>” />
<HALFPLANE REGION=”X < 8” />

Technically, these tags are already forbidden by Production [10]. The real purpose
of this constraint is to make sure that a < doesn’t slip in via an external entity
reference. The correct way to embed a < in an attribute value is to use the <
entity reference like this:

<BOX COLOR=”<6699FF>” />
<HALFPLANE REGION=”X < 8” />

[44] EmptyElemTag ::= ‘<’ Name (S Attribute)* S? ‘/>’
[Well-formedness Constraint: Unique Att Spec]

This constraint says that a given attribute may not appear more than once in a
single empty element. For example, the following tags violate well-formedness:

<P COLOR=”red” COLOR=”blue” />
<P COLOR=”red” COLOR=”red” />

Take a look at the second example. Even the purely redundant attribute violates
well-formedness.

[60] DefaultDecl ::= ‘#REQUIRED’ | ‘#IMPLIED’ | ((‘#FIXED’ S)? AttValue)
[Well-formedness Constraint: No < in Attribute Values]

This is the same constraint seen in Production [41]. This merely states that you
can’t place a < in a default attribute value in a <!ATTLIST> declaration. For
example, these are malformed attribute declarations:

<!ATTLIST RECTANGLE COLOR CDATA “<330033>”>
<!ATTLIST HALFPLANE REGION CDATA “X < 0” />

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 906

907Appendix A ✦ XML Reference Material

[66] CharRef ::= ‘&#’ [0-9]+ ‘;’ | ‘&#x’ [0-9a-fA-F]+ ‘;’
[Well-formedness Constraint: Legal Character]

This constraint says that characters referred to by character references must be
legal characters if they were simply typed in the document. Character references
are convenience for inputting legal characters that are difficult to type on a
particular system. They are not a means to input otherwise forbidden characters.

The definition of a legal character is given by Production [2]:

[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF]
| [#xE000-#xFFFD] | [#x10000-#x10FFFF]

The main items of interest here are the characters not included. Specifically, these
are the non-printing ASCII control characters of which the most common are the
bell, vertical tab, and formfeed; the surrogates block from #xD800 to #xDFFF, and
the non-character #xFFFE.

[68] EntityRef ::= ‘&’ Name ‘;’
[Well-formedness Constraint: Entity Declared]

The intent of this well-formedness constraint is to make sure that all entities used
in the document are declared in the DTD using <!ENTITY>. However, there are two
loopholes:

1. The five predefined entities: <, ', >, ", and & are not
required to be declared, although they may be.

2. A non-validating processor can allow undeclared entities if it’s possible they
may have been declared in the external DTD subset (which a non-validating
processor is not required to read). Specifically, it’s possible that entities were
declared in an external DTD subset if:

a. The standalone document declaration does not have
standalone=”yes”.

b. The DTD contains at least one parameter entity reference.

If either of these conditions is violated, then undeclared entities (other than the five
in loophole one) are not allowed.

This constraint also specifies that, if entities are declared, they must be declared
before they’re used.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 907

908 Appendixes

[Well-formedness Constraint: Parsed Entity]

This constraint states that entity references may only contain the names of parsed
entities. Unparsed entity names are only contained in attribute values of type
ENTITY or ENTITIES. For example, this is a malformed document:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT ANY>
<!ENTITY LOGO SYSTEM “http://metalab.unc.edu/xml/logo.gif”

NDATA GIF>
<!NOTATION GIF SYSTEM “image/gif”>
]>
<DOCUMENT>
&LOGO;

</DOCUMENT>

This is the correct way to embed the unparsed entity LOGO in the document:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT ANY>
<!ENTITY LOGO SYSTEM “http://metalab.unc.edu/xml/logo.gif”

NDATA GIF>
<!NOTATION GIF SYSTEM “image/gif”>
<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE SOURCE ENTITY #REQUIRED>

]>
<DOCUMENT>
<IMAGE SOURCE=”LOGO” />

</DOCUMENT>

[Well-formedness Constraint: No Recursion]

This well-formedness constraint states that a parsed entity cannot refer to itself.
For example, this open source classic is malformed:

<!ENTITY GNU “&GNU;’s not Unix!”>

Circular references are a little trickier to spot, but are equally illegal:

<!ENTITY LEFT “Left &RIGHT; Left!”>
<!ENTITY RIGHT “Right &LEFT; Right!”>

Note that it’s only the recursion that’s malformed, not the mere use of one entity
reference inside another. The following is perfectly fine because although the

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 908

909Appendix A ✦ XML Reference Material

COPY99 entity depends on the ERH entity, the ERH entity does not depend on the
COPY99 entity.

<!ENTITY ERH “Elliotte Rusty Harold”>
<!ENTITY COPY99 “Copyright 1999 &ERH;”>

[69] PEReference ::= ‘%’ Name ‘;’
[Well-formedness Constraint: No Recursion]

This is the same constraint that applies to Production [68]. Parameter entities can’t
recurse any more than general entities can. For example, this entity declaration is
also malformed:

<!ENTITY % GNU “%GNU;’s not Unix!”>

And this is still illegal:

<!ENTITY % LEFT “Left %RIGHT; Left!”>
<!ENTITY % RIGHT “Right %LEFT; Right!”>

[Well-formedness Constraint: In DTD]

This well-formedness constraint requires that parameter entity references can only
appear in the DTD. They may not appear in the content of the document or
anywhere else that’s not the DTD.

Validity Constraints
This reference topic is designed to help you understand what is required in order
for an XML document to be valid. Validity is often useful, but is not always required.
You can do a lot with simply well-formed documents, and such documents are often
easier to write because there are fewer rules to follow. For valid documents, you
must follow the BNF grammar, the well-formedness constraints, and the validity
constraints discussed in this section.

What Is a Validity Constraint?
A validity constraint is a rule that must be adhered to by a valid document. Not all
XML documents are, or need to be, valid. It is not necessarily an error for a
document to fail to satisfy a validity constraint. Validating processors have the
option of reporting violations of these constraints as errors, but they do not have
to. All syntax (BNF) errors and well-formedness violations must still be reported
however.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 909

910 Appendixes

Only documents with DTDs may be validated. Almost all the validity constraints
deal with the relationships between the content of the document and the
declarations in the DTD.

Validity Constraints in XML 1.0
This section lists and explains all of the validity constraints in the XML 1.0
standard. These are organized according to the BNF rule each applies to.

[28] doctypedecl ::= ‘<!DOCTYPE’ S Name (S ExternalID)? S? (‘[‘
(markupdecl | PEReference | S)* ‘]’ S?)? ‘>’
Validity Constraint: Root Element Type

This constraint simply states that the name given in the DOCTYPE declaration must
match the name of the root element. In other words, the bold parts below have to
all be the same.

<?xml version=”1.0”?>
<!DOCTYPE ROOTNAME [
<!ELEMENT ROOTNAME ANY>

]>
<ROOTNAME>
content

</ROOTNAME>

It’s also true that the root element must be declared — that’s done by the line in
italic — however that declaration is required by a different validity constraint, not
this one.

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl | NotationDecl
| PI | Comment
Validity Constraint: Proper Declaration/PE Nesting

This constraint requires that a markup declaration contain or be contained in one
or more parameter entities, but that it may not be split across a parameter entity.
For example, consider this element declaration:

<!ELEMENT PARENT (FATHER | MOTHER)>

The parameter entity declared by the following entity declaration is a valid
substitute for the content model, because the parameter entity contains both the <
and the >:

<!ENTITY % PARENT_DECL “<!ELEMENT PARENT (FATHER | MOTHER)>”>

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 910

911Appendix A ✦ XML Reference Material

Given that entity, you can rewrite the element declaration like this:

%PARENT_DECL;

This is valid because the parameter entity contains both the < and the >. Another
option is to include only part of the element declaration in the parameter entity. For
example, if you had many elements whose content model was(FATHER | MOTHER),
then it might be useful to do something like this:

<!ENTITY % PARENT_TYPES “(FATHER | MOTHER)”>
<!ELEMENT PARENT %PARENT_TYPES;>

Here, neither the < or > is included in the parameter entity. You cannot enclose one
of the angle brackets in the parameter entity without including its mate. The
following, for example, is invalid, even though it appears to expand into a legal
element declaration:

<!ENTITY % PARENT_TYPES “(FATHER | MOTHER)>”>
<!ELEMENT PARENT %PARENT_TYPES;

Note that the problem is not that the parameter entity’s replacement text contains a
> character. That’s legal (unlike the use of a < character, which would be illegal in
an internal parameter entity declaration). The problem is how the > character is
used to terminate an element declaration that began in another entity.

[32] SDDecl ::= S ‘standalone’ Eq ((“‘“ (‘yes’ | ‘no’) “‘“) |
(‘“‘ (‘yes’ | ‘no’) ‘“‘))
Validity Constraint: Standalone Document Declaration

In short, this constraint says that a document must have a standalone document
declaration with the value no (standalone=”no”) if any other files are required to
process this file and determine its validity. Mostly this affects external DTD subsets
linked in through parameter entities. This is the case if any of the following are true:

✦ An entity used in the document is declared in an external DTD subset.

✦ The external DTD subset provides default values for attributes that appear in
the document without values.

✦ The external DTD subset changes how attribute values in the document may
be normalized.

✦ The external DTD subset declares elements whose children are only elements
(no character data or mixed content) when those children may themselves
contain whitespace.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 911

912 Appendixes

[39] element ::= EmptyElemTag | STag content ETag
Validity Constraint: Element Valid

This constraint simply states that this element matches an element declaration in
the DTD. More precisely one of the following conditions must be true:

1. The element has no content and the element declaration declares the element
EMPTY.

2. The element contains only child elements that match the regular expression
in the element’s content model.

3. The element is declared to have mixed content, and the element’s content
contains character data and child elements that are declared in the mixed-
content declaration.

4. The element is declared ANY, and all child elements are declared.

[41] Attribute ::= Name Eq AttValue
Validity Constraint: Attribute Value Type

This constraint simply states that the attribute’s name must have been declared in
an ATTLIST declaration in the DTD. Furthermore, the attribute value must match
the declared type in the ATTLIST declaration.

[45] elementdecl ::= ‘<!ELEMENT’ S Name S contentspec S? ‘>’
Validity Constraint: Unique Element Type Declaration

An element cannot be declared more than once in the DTD, whether the
declarations are compatible or not. For example, this is valid:

<!ELEMENT EM (#PCDATA)>

This, however, is not valid:

<!ELEMENT EM (#PCDATA)>
<!ELEMENT EM (#PCDATA | B)>

Neither is this valid:

<!ELEMENT EM (#PCDATA)>
<!ELEMENT EM (#PCDATA)>

This is most likely to cause problems when merging external DTD subsets from
different sources that both declare some of the same elements. To a limited extent,
namespaces can help resolve this.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 912

913Appendix A ✦ XML Reference Material

[49] choice ::= ‘(‘ S? cp (S? ‘|’ S? cp)* S? ‘)’
Validity Constraint: Proper Group/PE Nesting

This constraint states that a choice may contain or be contained in one or more
parameter entities, but that it may not be split across a parameter entity. For
example, consider this element declaration:

<!ELEMENT PARENT (FATHER | MOTHER)>

The parameter entity declared by the following entity declaration is a valid
substitute for the content model because the parameter entity contains both
the (and the):

<!ENTITY % PARENT_TYPES “(FATHER | MOTHER)”>

That is, you can rewrite the element declaration like this:

<!ELEMENT PARENT %PARENT_TYPES;>

This is valid because the parameter entity contains both the (and the). Another
option is to include only the child elements, but leave out both parentheses. For
example:

<!ENTITY % PARENT_TYPES “ FATHER | MOTHER “>
<!ELEMENT PARENT (%PARENT_TYPES;)>

The advantage here is that you can easily add additional elements not defined in
the parameter entity. For example:

<!ELEMENT PARENT (UNKNOWN | %PARENT_TYPES;) >

What you cannot do, however, is enclose one of the parentheses in the parameter
entity without including its mate. The following, for example, is invalid, even though
it appears to expand into a legal element declaration.

<!ENTITY % FATHER “ FATHER)”>
<!ENTITY % MOTHER “ (MOTHER | “>
<!ELEMENT PARENT %FATHER; %MOTHER;) >

The problem in this example is the ELEMENT declaration, not the ENTITY
declarations. It is valid to declare the entities as done here. It’s their use in the
context of a choice that makes them invalid.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 913

914 Appendixes

[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’
Validity Constraint: Proper Group/PE Nesting

This is exactly the same constraint as above, except now it’s applied to sequences
rather than choices. It requires that a sequence may contain or be contained in one
or more parameter entities, but it may not be split across a parameter entity. For
example, consider this element declaration:

<!ELEMENT ADDRESS (NAME, STREET, CITY, STATE, ZIP)>

The parameter entity declared by the following entity declaration is a valid
substitute for the content model because the parameter entity contains both
the (and the):

<!ENTITY % SIMPLE_ADDRESS “(NAME, STREET, CITY, STATE, ZIP)”>

That is, you can rewrite the element declaration like this:

<!ELEMENT ADDRESS %SIMPLE_ADDRESS;>

This is valid because the parameter entity contains both the (and the). Another
option is to include only the child elements, but leave out both parentheses. For
example:

<!ENTITY % SIMPLE_ADDRESS “ NAME, STREET, CITY, STATE, ZIP “>
<!ELEMENT ADDRESS(%SIMPLE_ADDRESS;)>

The advantage here is that you can easily add additional elements not defined in
the parameter entity. For example:

<!ENTITY % INTERNATIONAL_ADDRESS “ NAME, STREET, CITY,
PROVINCE?, POSTAL_CODE?, COUNTRY “>

<!ELEMENT ADDRESS ((%SIMPLE_ADDRESS;)
| (%INTERNATIONAL_ADDRESS;)) >

What you cannot do, however, is enclose one of the parentheses in the parameter
entity without including its mate. The following, for example, is invalid, even though
it appears to expand into a legal element declaration:

<!ENTITY % SIMPLE_ADDRESS_1 “(NAME, STREET, “>
<!ENTITY % SIMPLE_ADDRESS_2 “CITY, STATE, ZIP)”>
<!ELEMENT ADDRESS %SIMPLE_ADDRESS_1; %SIMPLE_ADDRESS_2;) >

The problem in this example is the ELEMENT declaration, not the ENTITY
declarations. It is valid to declare the entities like this. It’s their use in the context of
a sequence that makes them invalid.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 914

915Appendix A ✦ XML Reference Material

[51] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘|’ S? Name)* S? ‘)*’ |
‘(‘ S? ‘#PCDATA’ S? ‘)’
Validity Constraint: Proper Group/PE Nesting

This is exactly the same constraint as above, except now it’s applied to mixed
content rather than choices or sequences. It requires that a mixed-content model
may contain or be contained in a parameter entity, but it may not be split across a
parameter entity. For example, consider this element declaration:

<!ELEMENT P (#PCDATA | I | EM | B | STRONG)>

The parameter entity declared by the following entity declaration is a valid
substitute for the content model because the parameter entity contains both
the (and the):

<!ENTITY % INLINES “(#PCDATA | I | EM | B | STRONG)”>

That is, you can rewrite the element declaration like this:

<!ELEMENT P %INLINES;>

This is valid because the parameter entity contains both the (and the). Another
option is to include only the content particles, but leave out both parentheses. For
example:

<!ENTITY % INLINES “ #PCDATA | I | EM | B | STRONG “>
<!ELEMENT P (%INLINES;) >

The advantage here is that you can easily add additional elements not defined in
the parameter entity. For example:

<!ELEMENT QUOTE (%INLINES; | SPEAKER) >

What you cannot do, however, is enclose one of the parentheses in the parameter
entity without including its mate. The following, for example, is invalid, even though
it appears to expand into a legal element declaration:

<!ENTITY % INLINES1 “ I | EM | B | STRONG)”>
<!ENTITY % INLINES2 “ (#PCDATA | SPEAKER | “>
<!ELEMENT QUOTE %INLINES1; %INLINES2;) >

The problem in this example is the ELEMENT declaration, not the ENTITY
declarations. It is valid to declare the entities as is done here. It’s their use in the
context of a choice (or sequence) that makes them invalid.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 915

916 Appendixes

Validity Constraint: No Duplicate Types

No element can be repeated in a mixed-content declaration. For example, the
follwing is invalid:

(#PCDATA | I | EM | I | EM)

There’s really no reason to write a mixed-content declaration like this, but at the
same time, it’s not obvious what the harm is. Interestingly, pure choices do allow
content models like this:

(I | EM | I | EM)

It only becomes a problem when #PCDATA gets mixed in.

This choice is ambiguous — that is, when the parser encounters an I or an EM, it
doesn’t know whether it matches the first or the second instance in the content
model. So although legal, some parsers will report it as an error, and it should be
avoided if possible.

[56] TokenizedType ::= ‘ID’ | ‘IDREF’ | ‘IDREFS’ | ‘ENTITY’ | ‘ENTITIES’ |
‘NMTOKEN’ | ‘NMTOKENS’
Validity Constraint: ID

Attribute values of ID type must be valid XML names (Production [5]). Furthermore,
a single name cannot be used more than once in the same document as the value of
an ID type attribute. For example, this is invalid given that ID is declared to be ID:

<BOX ID=”B1” WIDTH=”50” HEIGHT=”50” />
<BOX ID=”B1” WIDTH=”250” HEIGHT=”250” />

This is also invalid because XML names cannot begin with numbers:

<BOX ID=”1” WIDTH=”50” HEIGHT=”50” />

This is valid if NAME does not have type ID:

<BOX ID=”B1” WIDTH=”50” HEIGHT=”50” />
<BOX NAME=”B1” WIDTH=”250” HEIGHT=”250” />

On the other hand, that example is invalid if NAME does have type ID, even though
the NAME attribute is different from the ID attribute. Furthermore, the following is
invalid if NAME has type ID, even though two different elements are involved:

<BOX NAME=”FRED” WIDTH=”50” HEIGHT=”50” />
<PERSON NAME=”FRED” />

Caution

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 916

917Appendix A ✦ XML Reference Material

ID attribute values must be unique across all elements and ID attributes, not just a
particular class of, or attributes of, a particular class of elements.

Validity Constraint: One ID per Element Type

Each element can have at most one attribute of type ID. For example, the following
is invalid:

<!ELEMENT PERSON (ANY) >
<!ATTLIST PERSON SS_NUMBER ID #REQUIRED>
<!ATTLIST PERSON EMPLOYEE_ID ID #REQUIRED>

Validity Constraint: ID Attribute Default

All attributes of ID type must be declared #IMPLIED or #REQUIRED. #FIXED is not
allowed. For example, the following is invalid:

<!ATTLIST PERSON SS_NUMBER ID #FIXED “SS123-45-6789”>

The problem is that if there’s more than one PERSON element in the document, the
ID validity constraint will automatically be violated.

Validity Constraint: IDREF

The IDREF validity constraint specifies that an attribute value of an IDREF type
attribute must be the same as the value of an ID type attribute of an element in the
document. Multiple IDREF attributes in the same or different elements may point to
a single element. ID attribute values must be unique (at least among other ID
attribute values in the same document), but IDREF attributes do not need to be.

Additionally, attribute values of type IDREFS must be a whitespace-separated list of
ID attribute values from elements in the document.

Validity Constraint: Entity Name

The value of an attribute whose declared type is ENTITY must be the name of an
unparsed general (non-parameter) entity declared in the DTD, whether in the
internal or external subset.

The value of an attribute whose declared type is ENTITIES must be a whitespace-
separated list of the names of unparsed general (non-parameter) entities declared
in the DTD, whether in the internal or external subset.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 917

918 Appendixes

Validity Constraint: Name Token

The value of an attribute whose declared type is NMTOKEN must match the
NMTOKEN production of XML (Production [7]). That is, it must be composed of one
or more name characters. It differs from an XML name in that it may start with a
digit, a period, a hyphen, a combining character, or an extender.

The value of an attribute whose declared type is NMTOKENS must be a whitespace-
separated list of name tokens. For example, this is a valid element with a COLORS
attribute of type NMTOKENS:

<BOX WIDTH=”50” HEIGHT=”50” COLORS=”red green blue” />

This is an invalid element with a COLORS attribute of type NMTOKENS:

<BOX WIDTH=”50” HEIGHT=”50” COLORS=”red, green, blue” />

[58] NotationType ::= ‘NOTATION’ S ‘(‘ S? Name (S? ‘|’ S? Name)* S? ‘)’
Validity Constraint: Notation Attributes

The value of an attribute whose declared type is NOTATION must be the name of a
notation that’s been declared in the DTD.

[59] Enumeration ::= ‘(‘ S? Nmtoken (S? ‘|’ S? Nmtoken)* S? ‘)’
Validity Constraint: Enumeration

The value of an attribute whose declared type is ENUMERATION must be a
whitespace-separated list of name tokens. These name tokens do not necessarily
have to be the names of anything declared in the DTD or elsewhere. They simply
have to match the NMTOKEN production (Production [7]). For example, this is an
invalid enumeration because commas rather than whitespace are used to separate
the name tokens:

(red, green, blue)

This is an invalid enumeration because the name tokens are enclosed in quote
marks:

(“red” “green” “blue”)

Neither commas nor quote marks are valid name characters so there’s no
possibility for these common mistakes to be misinterpreted as a whitespace-
separated list of unusual name tokens.

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 918

919Appendix A ✦ XML Reference Material

[60] DefaultDecl ::= ‘#REQUIRED’ | ‘#IMPLIED’ | ((‘#FIXED’ S)? AttValue)
Validity Constraint: Required Attribute

If an attribute of an element is declared to be #REQUIRED, then it is a validity error
for any instance of the element not to provide a value for that attribute.

Validity Constraint: Attribute Default Legal

This common-sense validity constraint merely states that any default attribute
value provided in an ATTLIST declaration must satisfy the constraints for an
attribute of that type. For example, the following is invalid because the default
value, UNKNOWN, is not one of the choices given by the content model.

<!ATTLIST CIRCLE VISIBLE (TRUE | FALSE) “UNKNOWN”>

UNKNOWN would be invalid for this attribute whether it was provided as a default
value or in an actual element like the following:

<CIRCLE VISIBLE=”UNKNOWN” />

Validity Constraint: Fixed Attribute Default

This common-sense validity constraint merely states that if an attribute is declared
#FIXED in its ATTLIST declaration, then that same ATTLIST declaration must also
provide a default value. For example, the following is invalid:

<!ATTLIST AUTHOR COMPANY CDATA #FIXED>

Here’s a corrected declaration:

<!ATTLIST AUTHOR COMPANY CDATA #FIXED “TIC”>

[68] EntityRef ::= ‘&’ Name ‘;’
Validity Constraint: Entity Declared

This constraint expands on the well-formedness constraint of the same name. In a
valid document, all referenced entities must be defined by <!ENTITY> declarations
in the DTD. Definitions must precede any use of the entity they define.

The loophole for standalone=”no” documents that applies to merely well-formed
documents is no longer available. The loophole for the five predefined entities:
<, ', >, ", and & is still available. However, it is recom-

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 919

920 Appendixes

mended that you declare them, even though you don’t absolutely have to.
Those declarations would look like this:

<!ENTITY lt “&#60;”>
<!ENTITY gt “>”>
<!ENTITY amp “&#38;”>
<!ENTITY apos “'”>
<!ENTITY quot “"”>

[69] PEReference ::= ‘%’ Name ‘;’
Validity Constraint: Entity Declared

This is the same constraint as the previous one, merely applied to parameter entity
references instead of general entity references.

[76] NDataDecl ::= S ‘NDATA’ S Name
Validity Constraint: Notation Declared

The name used in a notation data declaration (which is in turn used in an entity
definition for an unparsed entity) must be the name of a notation declared in the
DTD. For example, the following document is valid. However, if you take away the
line declaring the GIF notation (shown in bold) it becomes invalid.

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT ANY>
<!ENTITY LOGO SYSTEM “http://metalab.unc.edu/xml/logo.gif”

NDATA gif>
<!NOTATION GIF SYSTEM “image/gif”>

]>
<DOCUMENT>
&LOGO;

</DOCUMENT>

✦ ✦ ✦

3236-7 AppA.F.qc 6/29/99 1:13 PM Page 920

The XML 1.0
Specification

This appendix has the complete, final XML 1.0
specification as published by the World Wide Web

consortium. This document has been reviewed by W3C
Members and other interested parties and has been endorsed
by the Director as a W3C Recommendation. It is a stable
document and may be used as reference material or cited as a
normative reference from another document. If any changes to
XML are required in the future (as they undoubtedly will be) a
new version number will be applied.

This document isn’t always easy reading. Precision is
preferred over clarity. However, when you’re banging your
head against the wall, and trying to decide whether the
problem is with your XML processor or with your XML code,
this is the deciding document. Therefore, it’s important to
have at least a cursory familiarity with it, and be able to find
things in it when you need to.

This document was primarily written by Tim Bray and C. M.
Sperberg-McQueen with assistance from many others credited
at the end of the document.

REC-xml-19980210

W3C Recommendation 10-February-1998

This version:

http://www.w3.org/TR/1998/REC-xml-19980210

http://www.w3.org/TR/1998/REC-xml-
19980210.xml

http://www.w3.org/TR/1998/REC-xml-
19980210.html

http://www.w3.org/TR/1998/REC-xml-
19980210.pdf

http://www.w3.org/TR/1998/REC-xml-19980210.ps

BBA P P E N D I X

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 921

922 Appendixes

Latest version:

http://www.w3.org/TR/REC-xml

Previous version:

http://www.w3.org/TR/PR-xml-971208

Editors:

Tim Bray (Textuality and Netscape) <tbray@textuality.com>

Jean Paoli (Microsoft) <jeanpa@microsoft.com>

C. M. Sperberg-McQueen (University of Illinois at Chicago) <cmsmcq@uic.edu>

Abstract
The Extensible Markup Language (XML) is a subset of SGML that is completely
described in this document. Its goal is to enable generic SGML to be served,
received, and processed on the Web in the way that is now possible with HTML.
XML has been designed for ease of implementation and for interoperability with
both SGML and HTML.

Status of This Document
This document has been reviewed by W3C Members and other interested parties
and has been endorsed by the Director as a W3C Recommendation. It is a stable
document and may be used as reference material or cited as a normative reference
from another document. W3C’s role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment. This
enhances the functionality and interoperability of the Web.

This document specifies a syntax created by subsetting an existing, widely used
international text processing standard (Standard Generalized Markup Language, ISO
8879:1986(E) as amended and corrected) for use on the World Wide Web. It is a
product of the W3C XML Activity, details of which can be found at http://www.w3.
org/XML. A list of current W3C Recommendations and other technical documents
can be found at http://www.w3.org/TR.

This specification uses the term URI, which is defined by [Berners-Lee et al.], a
work in progress expected to update [IETF RFC1738] and [IETF RFC1808].

The list of known errors in this specification is available at http://www.w3.org/XML/
xml-19980210-errata.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 922

923Appendix B ✦ The XML 1.0 Specification

Please report errors in this document to xml-editor@w3.org.

Extensible Markup Language (XML) 1.0

Table of Contents
1. Introduction

1.1 Origin and Goals

1.2 Terminology

2. Documents

2.1 Well-Formed XML Documents

2.2 Characters

2.3 Common Syntactic Constructs

2.4 Character Data and Markup

2.5 Comments

2.6 Processing Instructions

2.7 CDATA Sections

2.8 Prolog and Document Type Declaration

2.9 Standalone Document Declaration

2.10 White Space Handling

2.11 End-of-Line Handling

2.12 Language Identification

3. Logical Structures

3.1 Start-Tags, End-Tags, and Empty-Element Tags

3.2 Element Type Declarations

3.2.1 Element Content

3.2.2 Mixed Content

3.3 Attribute-List Declarations

3.3.1 Attribute Types

3.3.2 Attribute Defaults

3.3.3 Attribute-Value Normalization

3.4 Conditional Sections

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 923

924 Appendixes

4. Physical Structures

4.1 Character and Entity References

4.2 Entity Declarations

4.2.1 Internal Entities

4.2.2 External Entities

4.3 Parsed Entities

4.3.1 The Text Declaration

4.3.2 Well-Formed Parsed Entities

4.3.3 Character Encoding in Entities

4.4 XML Processor Treatment of Entities and References

4.4.1 Not Recognized

4.4.2 Included

4.4.3 Included If Validating

4.4.4 Forbidden

4.4.5 Included in Literal

4.4.6 Notify

4.4.7 Bypassed

4.4.8 Included as PE

4.5 Construction of Internal Entity Replacement Text

4.6 Predefined Entities

4.7 Notation Declarations

4.8 Document Entity

5. Conformance

5.1 Validating and Non-Validating Processors

5.2 Using XML Processors

6. Notation

Appendices

A. References

A.1 Normative References

A.2 Other References

B. Character Classes

C. XML and SGML (Non-Normative)

D. Expansion of Entity and Character References (Non-Normative)

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 924

925Appendix B ✦ The XML 1.0 Specification

E. Deterministic Content Models (Non-Normative)

F. Autodetection of Character Encodings (Non-Normative)

G. W3C XML Working Group (Non-Normative)

1. Introduction
Extensible Markup Language, abbreviated XML, describes a class of data objects
called XML documents and partially describes the behavior of computer programs
which process them. XML is an application profile or restricted form of SGML, the
Standard Generalized Markup Language [ISO 8879]. By construction, XML
documents are conforming SGML documents.

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which form
character data, and some of which form markup. Markup encodes a description of
the document’s storage layout and logical structure. XML provides a mechanism to
impose constraints on the storage layout and logical structure.

A software module called an XML processor is used to read XML documents and
provide access to their content and structure. It is assumed that an XML processor
is doing its work on behalf of another module, called the application. This
specification describes the required behavior of an XML processor in terms of how
it must read XML data and the information it must provide to the application.

1.1 Origin and Goals
XML was developed by an XML Working Group (originally known as the SGML
Editorial Review Board) formed under the auspices of the World Wide Web
Consortium (W3C) in 1996. It was chaired by Jon Bosak of Sun Microsystems with
the active participation of an XML Special Interest Group (previously known as the
SGML Working Group) also organized by the W3C. The membership of the XML
Working Group is given in an appendix. Dan Connolly served as the WG’s contact
with the W3C.

The design goals for XML are:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute
minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 925

926 Appendixes

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

This specification, together with associated standards (Unicode and ISO/IEC 10646
for characters, Internet RFC 1766 for language identification tags, ISO 639 for
language name codes, and ISO 3166 for country name codes), provides all the
information necessary to understand XML Version 1.0 and construct computer
programs to process it.

This version of the XML specification may be distributed freely, as long as all text
and legal notices remain intact.

1.2 Terminology
The terminology used to describe XML documents is defined in the body of this
specification. The terms defined in the following list are used in building those
definitions and in describing the actions of an XML processor:

may Conforming documents and XML processors are permitted to but need not
behave as described.

must Conforming documents and XML processors are required to behave as
described; otherwise they are in error.

error A violation of the rules of this specification; results are undefined.
Conforming software may detect and report an error and may recover from it.

fatal error An error which a conforming XML processor must detect and report to
the application. After encountering a fatal error, the processor may continue
processing the data to search for further errors and may report such errors to the
application. In order to support correction of errors, the processor may make
unprocessed data from the document (with intermingled character data and
markup) available to the application. Once a fatal error is detected, however, the
processor must not continue normal processing (i.e., it must not continue to pass
character data and information about the document’s logical structure to the
application in the normal way).

at user option Conforming software may or must (depending on the modal verb in
the sentence) behave as described; if it does, it must provide users a means to
enable or disable the behavior described.

validity constraint A rule which applies to all valid XML documents. Violations of
validity constraints are errors; they must, at user option, be reported by validating
XML processors.

well-formedness constraint A rule which applies to all well-formed XML
documents. Violations of well-formedness constraints are fatal errors.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 926

927Appendix B ✦ The XML 1.0 Specification

match (Of strings or names:) Two strings or names being compared must be
identical. Characters with multiple possible representations in ISO/IEC 10646 (e.g.
characters with both precomposed and base+diacritic forms) match only if they
have the same representation in both strings. At user option, processors may
normalize such characters to some canonical form. No case folding is performed.
(Of strings and rules in the grammar:) A string matches a grammatical production if
it belongs to the language generated by that production. (Of content and content
models:) An element matches its declaration when it conforms in the fashion
described in the constraint “Element Valid”.

for compatibility A feature of XML included solely to ensure that XML remains
compatible with SGML.

for interoperability A non-binding recommendation included to increase the
chances that XML documents can be processed by the existing installed base of
SGML processors which predate the WebSGML Adaptations Annex to ISO 8879.

2. Documents
A data object is an XML document if it is well-formed, as defined in this
specification. A well-formed XML document may in addition be valid if it meets
certain further constraints.

Each XML document has both a logical and a physical structure. Physically, the
document is composed of units called entities. An entity may refer to other entities
to cause their inclusion in the document. A document begins in a “root” or
document entity. Logically, the document is composed of declarations, elements,
comments, character references, and processing instructions, all of which are
indicated in the document by explicit markup. The logical and physical structures
must nest properly, as described in “4.3.2 Well-Formed Parsed Entities”.

2.1 Well-Formed XML Documents
A textual object is a well-formed XML document if:

✦ Taken as a whole, it matches the production labeled document.

✦ It meets all the well-formedness constraints given in this specification.

Each of the parsed entities which is referenced directly or indirectly within the
document is well-formed.

Document
[1] document ::= prolog element Misc*

Matching the document production implies that:

✦ It contains one or more elements.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 927

928 Appendixes

✦ There is exactly one element, called the root, or document element, no part of
which appears in the content of any other element. For all other elements, if
the start-tag is in the content of another element, the end-tag is in the content
of the same element. More simply stated, the elements, delimited by start- and
end-tags, nest properly within each other.

✦ As a consequence of this, for each non-root element C in the document, there
is one other element P in the document such that C is in the content of P, but
is not in the content of any other element that is in the content of P. P is
referred to as the parent of C, and C as a child of P.

2.2 Characters
A parsed entity contains text, a sequence of characters, which may represent
markup or character data. A character is an atomic unit of text as specified by
ISO/IEC 10646 [ISO/IEC 10646]. Legal characters are tab, carriage return, line feed,
and the legal graphic characters of Unicode and ISO/IEC 10646. The use of
“compatibility characters”, as defined in section 6.8 of [Unicode], is discouraged.

Character Range
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] /* any Unicode
character,

| [#xE000-#xFFFD] excluding the surrogate
| [#x10000-#x10FFFF] blocks, FFFE, and FFFF.

*/

The mechanism for encoding character code points into bit patterns may vary from
entity to entity. All XML processors must accept the UTF-8 and UTF-16 encodings of
10646; the mechanisms for signaling which of the two is in use, or for bringing other
encodings into play, are discussed later, in “4.3.3 Character Encoding in Entities”.

2.3 Common Syntactic Constructs
This section defines some symbols used widely in the grammar.

S (white space) consists of one or more space (#x20) characters, carriage returns,
line feeds, or tabs.

White Space
[3] S ::= (#x20 | #x9 | #xD | #xA)+

Characters are classified for convenience as letters, digits, or other characters.
Letters consist of an alphabetic or syllabic base character possibly followed by one
or more combining characters, or of an ideographic character. Full definitions of
the specific characters in each class are given in “B. Character Classes”.

A Name is a token beginning with a letter or one of a few punctuation characters,
and continuing with letters, digits, hyphens, underscores, colons, or full stops,
together known as name characters. Names beginning with the string “xml”, or any
string which would match ((‘X’|’x’) (‘M’|’m’) (‘L’|’l’)), are reserved for
standardization in this or future versions of this specification.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 928

929Appendix B ✦ The XML 1.0 Specification

Note: The colon character within XML names is reserved for experimentation with
name spaces. Its meaning is expected to be standardized at some future point, at
which point those documents using the colon for experimental purposes may need
to be updated. (There is no guarantee that any name-space mechanism adopted for
XML will in fact use the colon as a name-space delimiter.) In practice, this means
that authors should not use the colon in XML names except as part of name-space
experiments, but that XML processors should accept the colon as a name
character.

An Nmtoken (name token) is any mixture of name characters.

Names and Tokens

[4] NameChar ::= Letter | Digit | ‘.’ | ‘-’ | ‘_’ | ‘:’
| CombiningChar | Extender

[5] Name ::= (Letter | ‘_’ | ‘:’) (NameChar)*
[6] Names ::= Name (S Name)*
[7] Nmtoken ::= (NameChar)+
[8] Nmtokens ::= Nmtoken (S Nmtoken)*

Literal data is any quoted string not containing the quotation mark used as a
delimiter for that string. Literals are used for specifying the content of internal
entities (EntityValue), the values of attributes (AttValue), and external
identifiers (SystemLiteral). Note that a SystemLiteral can be parsed without
scanning for markup.

Literals

[9] EntityValue ::= ‘“‘ ([^%&”] | PEReference | Reference)*
‘“‘

| “‘“ ([^%&’] | PEReference |
Reference)* “‘“
[10] AttValue ::= ‘“‘ ([^<&”] | Reference)* ‘“‘

| “‘“ ([^<&’] | Reference)* “‘“
[11] SystemLiteral ::= (‘“‘ [^”]* ‘“‘) | (“‘“ [^’]* “‘“)
[12] PubidLiteral ::= ‘“‘ PubidChar* ‘“‘

| “‘“ (PubidChar - “‘“)* “‘“
[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9]

| [-’()+,./:=?;!*#@$_%]

2.4 Character Data and Markup
Text consists of intermingled character data and markup. Markup takes the form of
start-tags, end-tags, empty-element tags, entity references, character references,
comments, CDATA section delimiters, document type declarations, and processing
instructions.

All text that is not markup constitutes the character data of the document.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 929

930 Appendixes

The ampersand character (&) and the left angle bracket (<) may appear in their
literal form only when used as markup delimiters, or within a comment, a
processing instruction, or a CDATA section. They are also legal within the literal
entity value of an internal entity declaration; see “4.3.2 Well-Formed Parsed
Entities”. If they are needed elsewhere, they must be escaped using either numeric
character references or the strings “&” and “<” respectively. The right angle
bracket (>) may be represented using the string “>”, and must, for compatibility,
be escaped using “>” or a character reference when it appears in the string “]]>”
in content, when that string is not marking the end of a CDATA section.

In the content of elements, character data is any string of characters which does
not contain the start-delimiter of any markup. In a CDATA section, character data is
any string of characters not including the CDATA-section-close delimiter, “]]>”.

To allow attribute values to contain both single and double quotes, the apostrophe
or single-quote character (‘) may be represented as “'”, and the double-quote
character (“) as “"”.

Character Data

[14] CharData ::= [^<&]* - ([^<&]* ‘]]>’ [^<&]*)

2.5 Comments
Comments may appear anywhere in a document outside other markup; in addition,
they may appear within the document type declaration at places allowed by the
grammar. They are not part of the document’s character data; an XML processor
may, but need not, make it possible for an application to retrieve the text of
comments. For compatibility, the string “—” (double-hyphen) must not occur
within comments.

Comments

[15] Comment ::= ‘<!—’ ((Char - ‘-’) | (‘-’ (Char - ‘-’)))* ‘—
>’

An example of a comment:

<!— declarations for <head> & <body> —>

2.6 Processing Instructions
Processing instructions (PIs) allow documents to contain instructions for
applications.

Processing Instructions
[16] PI ::= ‘<?’ PITarget

(S (Char* - (Char* ‘?>’ Char*)))? ‘?>’
[17] PITarget ::= Name - ((‘X’ | ‘x’) (‘M’ | ‘m’) (‘L’ | ‘l’))

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 930

931Appendix B ✦ The XML 1.0 Specification

PIs are not part of the document’s character data, but must be passed through to
the application. The PI begins with a target (PITarget) used to identify the
application to which the instruction is directed. The target names “XML”, “xml”,
and so on are reserved for standardization in this or future versions of this
specification. The XML Notation mechanism may be used for formal declaration of
PI targets.

2.7 CDATA Sections
CDATA sections may occur anywhere character data may occur; they are used to
escape blocks of text containing characters which would otherwise be recognized
as markup. CDATA sections begin with the string “<![CDATA[“ and end with the
string “]]>”:

CDATA Sections

[18] CDSect ::= CDStart CData CDEnd
[19] CDStart ::= ‘<![CDATA[‘
[20] CData ::= (Char* - (Char* ‘]]>’ Char*))
[21] CDEnd ::= ‘]]>’

Within a CDATA section, only the CDEnd string is recognized as markup, so that left
angle brackets and ampersands may occur in their literal form; they need not (and
cannot) be escaped using “<” and “&”. CDATA sections cannot nest.

An example of a CDATA section, in which “<greeting>” and “</greeting>” are
recognized as character data, not markup:

<![CDATA[<greeting>Hello, world!</greeting>]]>

2.8 Prolog and Document Type Declaration
XML documents may, and should, begin with an XML declaration which specifies
the version of XML being used. For example, the following is a complete XML
document, well-formed but not valid:

<?xml version=”1.0”?> <greeting>Hello, world!</greeting>

and so is this:

<greeting>Hello, world!</greeting>

The version number “1.0” should be used to indicate conformance to this version of
this specification; it is an error for a document to use the value “1.0” if it does not
conform to this version of this specification. It is the intent of the XML working
group to give later versions of this specification numbers other than “1.0”, but this
intent does not indicate a commitment to produce any future versions of XML, nor

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 931

932 Appendixes

if any are produced, to use any particular numbering scheme. Since future versions
are not ruled out, this construct is provided as a means to allow the possibility of
automatic version recognition, should it become necessary. Processors may signal
an error if they receive documents labeled with versions they do not support.

The function of the markup in an XML document is to describe its storage and
logical structure and to associate attribute-value pairs with its logical structures.
XML provides a mechanism, the document type declaration, to define constraints
on the logical structure and to support the use of predefined storage units. An XML
document is valid if it has an associated document type declaration and if the
document complies with the constraints expressed in it.

The document type declaration must appear before the first element in the
document.

Prolog

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= ‘<?xml’ VersionInfo EncodingDecl? SDDecl? S?
‘?>’
[24] VersionInfo ::= S ‘version’ Eq (‘ VersionNum ‘

| “ VersionNum “)
[25] Eq ::= S? ‘=’ S?
[26] VersionNum ::= ([a-zA-Z0-9_.:] | ‘-’)+
[27] Misc ::= Comment | PI | S

The XML document type declaration contains or points to markup declarations
that provide a grammar for a class of documents. This grammar is known as a
document type definition, or DTD. The document type declaration can point to an
external subset (a special kind of external entity) containing markup declarations,
or can contain the markup declarations directly in an internal subset, or can do
both. The DTD for a document consists of both subsets taken together.

A markup declaration is an element type declaration, an attribute-list declaration,
an entity declaration, or a notation declaration. These declarations may be
contained in whole or in part within parameter entities, as described in the well-
formedness and validity constraints below. For fuller information, see “4. Physical
Structures”.

Document Type Definition

[28] doctypedecl ::= ‘<!DOCTYPE’ S Name (S ExternalID)?
S? (‘[‘ (markupdecl | PEReference
| S)* ‘]’ S?)? ‘>’
[VC: Root Element Type]

[29] markupdecl ::= elementdecl | AttlistDecl

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 932

933Appendix B ✦ The XML 1.0 Specification

| EntityDecl | NotationDecl | PI
| Comment
[VC: Proper Declaration/PE Nesting]
[WFC: PEs in Internal Subset]

The markup declarations may be made up in whole or in part of the replacement
text of parameter entities. The productions later in this specification for individual
nonterminals (elementdecl, AttlistDecl, and so on) describe the declarations after
all the parameter entities have been included.

Validity Constraint: Root Element Type: The Name in the document type
declaration must match the element type of the root element.

Validity Constraint: Proper Declaration/PE Nesting: Parameter-entity replacement
text must be properly nested with markup declarations. That is to say, if either the
first character or the last character of a markup declaration (markupdecl above) is
contained in the replacement text for a parameter-entity reference, both must be
contained in the same replacement text.

Well-Formedness Constraint: PEs in Internal Subset: In the internal DTD subset,
parameter-entity references can occur only where markup declarations can occur,
not within markup declarations. (This does not apply to references that occur in
external parameter entities or to the external subset.)

Like the internal subset, the external subset and any external parameter entities
referred to in the DTD must consist of a series of complete markup declarations of
the types allowed by the non-terminal symbol markupdecl, interspersed with white
space or parameter-entity references. However, portions of the contents of the
external subset or of external parameter entities may conditionally be ignored by
using the conditional section construct; this is not allowed in the internal subset.

External Subset

[30] extSubset ::= TextDecl? extSubsetDecl
[31] extSubsetDecl ::= (markupdecl | conditionalSect |
PEReference | S)*

The external subset and external parameter entities also differ from the internal
subset in that in them, parameter-entity references are permitted within markup
declarations, not only between markup declarations.

An example of an XML document with a document type declaration:

<?xml version=”1.0”?>
<!DOCTYPE greeting SYSTEM “hello.dtd”>
<greeting>Hello, world!</greeting>

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 933

934 Appendixes

The system identifier “hello.dtd” gives the URI of a DTD for the document.

The declarations can also be given locally, as in this example:

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE greeting [
<!ELEMENT greeting (#PCDATA)>

]>
<greeting>Hello, world!</greeting>

If both the external and internal subsets are used, the internal subset is considered
to occur before the external subset. This has the effect that entity and attribute-list
declarations in the internal subset take precedence over those in the external
subset.

2.9 Standalone Document Declaration
Markup declarations can affect the content of the document, as passed from an
XML processor to an application; examples are attribute defaults and entity
declarations. The standalone document declaration, which may appear as a
component of the XML declaration, signals whether or not there are such
declarations which appear external to the document entity.

Standalone Document Declaration

[32] SDDecl ::= S ‘standalone’ Eq ((“‘“ (‘yes’ | ‘no’)
“‘“) | (‘“‘ (‘yes’ | ‘no’) ‘“‘))
[VC: Standalone Document Declaration]

In a standalone document declaration, the value “yes” indicates that there are no
markup declarations external to the document entity (either in the DTD external
subset, or in an external parameter entity referenced from the internal subset)
which affect the information passed from the XML processor to the application.
The value “no” indicates that there are or may be such external markup
declarations. Note that the standalone document declaration only denotes the
presence of external declarations; the presence, in a document, of references to
external entities, when those entities are internally declared, does not change its
standalone status.

If there are no external markup declarations, the standalone document declaration
has no meaning. If there are external markup declarations but there is no
standalone document declaration, the value “no” is assumed.

Any XML document for which standalone=”no” holds can be converted
algorithmically to a standalone document, which may be desirable for some
network delivery applications.

Validity Constraint: Standalone Document Declaration: The standalone document
declaration must have the value “no” if any external markup declarations contain
declarations of:

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 934

935Appendix B ✦ The XML 1.0 Specification

✦ attributes with default values, if elements to which these attributes apply
appear in the document without specifications of values for these attributes,
or

✦ entities (other than amp, lt, gt, apos, quot), if references to those entities
appear in the document, or

✦ attributes with values subject to normalization, where the attribute appears in
the document with a value which will change as a result of normalization, or

✦ element types with element content, if white space occurs directly within any
instance of those types.

An example XML declaration with a standalone document declaration:

<?xml version=”1.0” standalone=’yes’?>

2.10 White Space Handling
In editing XML documents, it is often convenient to use “white space” (spaces, tabs,
and blank lines, denoted by the nonterminal S in this specification) to set apart the
markup for greater readability. Such white space is typically not intended for
inclusion in the delivered version of the document. On the other hand, “significant”
white space that should be preserved in the delivered version is common, for
example in poetry and source code.

An XML processor must always pass all characters in a document that are not
markup through to the application. A validating XML processor must also inform
the application which of these characters constitute white space appearing in
element content.

A special attribute named xml:space may be attached to an element to signal an
intention that in that element, white space should be preserved by applications. In
valid documents, this attribute, like any other, must be declared if it is used. When
declared, it must be given as an enumerated type whose only possible values are
“default” and “preserve”. For example:

<!ATTLIST poem xml:space (default|preserve) ‘preserve’>

The value “default” signals that applications’ default white-space processing modes
are acceptable for this element; the value “preserve” indicates the intent that
applications preserve all the white space. This declared intent is considered to
apply to all elements within the content of the element where it is specified, unless
overridden with another instance of the xml:space attribute.

The root element of any document is considered to have signaled no intentions as
regards application space handling, unless it provides a value for this attribute or
the attribute is declared with a default value.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 935

936 Appendixes

2.11 End-of-Line Handling
XML parsed entities are often stored in computer files which, for editing
convenience, are organized into lines. These lines are typically separated by some
combination of the characters carriage-return (#xD) and line-feed (#xA).

To simplify the tasks of applications, wherever an external parsed entity or the
literal entity value of an internal parsed entity contains either the literal two-
character sequence “#xD#xA” or a standalone literal #xD, an XML processor must
pass to the application the single character #xA. (This behavior can conveniently
be produced by normalizing all line breaks to #xA on input, before parsing.)

2.12 Language Identification
In document processing, it is often useful to identify the natural or formal language
in which the content is written. A special attribute named xml:lang may be inserted
in documents to specify the language used in the contents and attribute values of
any element in an XML document. In valid documents, this attribute, like any other,
must be declared if it is used. The values of the attribute are language identifiers as
defined by [IETF RFC 1766], “Tags for the Identification of Languages”:

Language Identification

[33] LanguageID ::= Langcode (‘-’ Subcode)*
[34] Langcode ::= ISO639Code | IanaCode | UserCode
[35] ISO639Code ::= ([a-z] | [A-Z]) ([a-z] | [A-Z])
[36] IanaCode ::= (‘i’ | ‘I’) ‘-’ ([a-z] | [A-Z])+
[37] UserCode ::= (‘x’ | ‘X’) ‘-’ ([a-z] | [A-Z])+
[38] Subcode ::= ([a-z] | [A-Z])+

The Langcode may be any of the following:

✦ a two-letter language code as defined by [ISO 639], “Codes for the
representation of names of languages”

✦ a language identifier registered with the Internet Assigned Numbers Authority
[IANA]; these begin with the prefix “i-” (or “I-”)

✦ a language identifier assigned by the user, or agreed on between parties in
private use; these must begin with the prefix “x-” or “X-” in order to ensure
that they do not conflict with names later standardized or registered with
IANA.

There may be any number of Subcode segments; if the first subcode segment exists
and the Subcode consists of two letters, then it must be a country code from [ISO
3166], “Codes for the representation of names of countries.” If the first subcode
consists of more than two letters, it must be a subcode for the language in question
registered with IANA, unless the Langcode begins with the prefix “x-” or “X-”.

It is customary to give the language code in lower case, and the country code (if
any) in upper case. Note that these values, unlike other names in XML documents,
are case insensitive.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 936

937Appendix B ✦ The XML 1.0 Specification

For example:

<p xml:lang=”en”>The quick brown fox jumps over the lazy dog.</
p>
<p xml:lang=”en-GB”>What colour is it?</p>
<p xml:lang=”en-US”>What color is it?</p>
<sp who=”Faust” desc=’leise’ xml:lang=”de”>
<l>Habe nun, ach! Philosophie,</l>
<l>Juristerei, und Medizin</l>
<l>und leider auch Theologie</l>
<l>durchaus studiert mit heißem Bemüh’n.</l>
</sp>

The intent declared with xml:lang is considered to apply to all attributes and
content of the element where it is specified, unless overridden with an instance of
xml:lang on another element within that content.

A simple declaration for xml:lang might take the form:

xml:lang NMTOKEN #IMPLIED

but specific default values may also be given, if appropriate. In a collection of
French poems for English students, with glosses and notes in English, the xml:lang
attribute might be declared this way:

<!ATTLIST poem xml:lang NMTOKEN ‘fr’>
<!ATTLIST gloss xml:lang NMTOKEN ‘en’>
<!ATTLIST note xml:lang NMTOKEN ‘en’>

3. Logical Structures
Each XML document contains one or more elements, the boundaries of which are
either delimited by start-tags and end-tags, or, for empty elements, by an empty-
element tag. Each element has a type, identified by name, sometimes called its
“generic identifier” (GI), and may have a set of attribute specifications. Each
attribute specification has a name and a value.

Element

[39] element ::= EmptyElemTag | STag content ETag
[WFC: Element Type Match]
[VC: Element Valid]

This specification does not constrain the semantics, use, or (beyond syntax) names
of the element types and attributes, except that names beginning with a match to
((‘X’|’x’)(‘M’|’m’)(‘L’|’l’)) are reserved for standardization in this or future versions
of this specification.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 937

938 Appendixes

Well-Formedness Constraint: Element Type Match:The Name in an element’s end-
tag must match the element type in the start-tag.

Validity Constraint: Element Valid: An element is valid if there is a declaration
matching elementdecl where the Name matches the element type, and one of the
following holds:

1. The declaration matches EMPTY and the element has no content.

2. The declaration matches children and the sequence of child elements
belongs to the language generated by the regular expression in the content
model, with optional white space (characters matching the nonterminal S)
between each pair of child elements.

3. The declaration matches Mixed and the content consists of character data
and child elements whose types match names in the content model.

4. The declaration matches ANY, and the types of any child elements have been
declared.

3.1 Start-Tags, End-Tags, and Empty-Element Tags
The beginning of every non-empty XML element is marked by a start-tag.

Start-tag

[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’
[WFC: Unique Att Spec]

[41] Attribute ::= Name Eq AttValue
[VC: Attribute Value Type]
[WFC: No External Entity References]
[WFC: No < in Attribute Values]

The Name in the start- and end-tags gives the element’s type. The Name-AttValue
pairs are referred to as the attribute specifications of the element, with the Name in
each pair referred to as the attribute name and the content of the AttValue (the
text between the ‘ or “ delimiters) as the attribute value.

Well-Formedness Constraint: Unique Att Spec: No attribute name may appear
more than once in the same start-tag or empty-element tag.

Validity Constraint: Attribute Value Type: The attribute must have been declared;
the value must be of the type declared for it. (For attribute types, see “3.3 Attribute-
List Declarations”.)

Well-Formedness Constraint: No External Entity References: Attribute values
cannot contain direct or indirect entity references to external entities.

Well-Formedness Constraint: No < in Attribute Values: The replacement text of
any entity referred to directly or indirectly in an attribute value (other than “<”)
must not contain a <.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 938

939Appendix B ✦ The XML 1.0 Specification

An example of a start-tag:

<termdef id=”dt-dog” term=”dog”>

The end of every element that begins with a start-tag must be marked by an end-tag
containing a name that echoes the element’s type as given in the start-tag:

End-tag

[42] ETag ::= ‘</’ Name S? ‘>’

An example of an end-tag:

</termdef>

The text between the start-tag and end-tag is called the element’s content:

Content of Elements

[43] content ::= (element | CharData | Reference | CDSect | PI
| Comment)*

If an element is empty, it must be represented either by a start-tag immediately
followed by an end-tag or by an empty-element tag. An empty-element tag takes a
special form:

Tags for Empty Elements

[44] EmptyElemTag ::= ‘<’ Name (S Attribute)* S? ‘/>’
[WFC: Unique Att Spec]

Empty-element tags may be used for any element which has no content, whether or
not it is declared using the keyword EMPTY. For interoperability, the empty-element
tag must be used, and can only be used, for elements which are declared EMPTY.

Examples of empty elements:

<IMG align=”left”
src=”http://www.w3.org/Icons/WWW/w3c_home” />

</br>

3.2 Element Type Declarations
The element structure of an XML document may, for validation purposes, be
constrained using element type and attribute-list declarations. An element type
declaration constrains the element’s content.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 939

940 Appendixes

Element type declarations often constrain which element types can appear as
children of the element. At user option, an XML processor may issue a warning
when a declaration mentions an element type for which no declaration is provided,
but this is not an error.

An element type declaration takes the form:

Element Type Declaration

[45] elementdecl ::= ‘<!ELEMENT’ S Name S contentspec S? ‘>’
[VC: Unique Element Type Declaration]

[46] contentspec ::= ‘EMPTY’ | ‘ANY’ | Mixed | children

where the Name gives the element type being declared.

Validity Constraint: Unique Element Type Declaration: No element type may be
declared more than once.

Examples of element type declarations:

<!ELEMENT br EMPTY>
<!ELEMENT p (#PCDATA|emph)* >
<!ELEMENT %name.para; %content.para; >
<!ELEMENT container ANY>

3.2.1 Element Content
An element type has element content when elements of that type must contain only
child elements (no character data), optionally separated by white space (characters
matching the nonterminal S). In this case, the constraint includes a content model, a
simple grammar governing the allowed types of the child elements and the order in
which they are allowed to appear. The grammar is built on content particles (cps),
which consist of names, choice lists of content particles, or sequence lists of
content particles:

Element-content Models

[47] children ::= (choice | seq) (‘?’ | ‘*’ | ‘+’)?
[48] cp ::= (Name | choice | seq) (‘?’ | ‘*’ | ‘+’)?
[49] choice ::= ‘(‘ S? cp (S? ‘|’ S? cp)* S? ‘)’

[VC: Proper Group/PE Nesting]
[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’

[VC: Proper Group/PE Nesting]

where each Name is the type of an element which may appear as a child. Any
content particle in a choice list may appear in the element content at the location
where the choice list appears in the grammar; content particles occurring in a
sequence list must each appear in the element content in the order given in the list.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 940

941Appendix B ✦ The XML 1.0 Specification

The optional character following a name or list governs whether the element or the
content particles in the list may occur one or more (+), zero or more (*), or zero or
one times (?). The absence of such an operator means that the element or content
particle must appear exactly once. This syntax and meaning are identical to those
used in the productions in this specification.

The content of an element matches a content model if and only if it is possible to
trace out a path through the content model, obeying the sequence, choice, and
repetition operators and matching each element in the content against an element
type in the content model. For compatibility, it is an error if an element in the
document can match more than one occurrence of an element type in the content
model. For more information, see “E. Deterministic Content Models”.

Validity Constraint: Proper Group/PE Nesting: Parameter-entity replacement text
must be properly nested with parenthesized groups. That is to say, if either of the
opening or closing parentheses in a choice, seq, or Mixed construct is contained
in the replacement text for a parameter entity, both must be contained in the same
replacement text. For interoperability, if a parameter-entity reference appears in a
choice, seq, or Mixed construct, its replacement text should not be empty, and
neither the first nor last non-blank character of the replacement text should be a
connector (| or ,).

Examples of element-content models:

<!ELEMENT spec (front, body, back?)>
<!ELEMENT div1 (head, (p | list | note)*, div2*)>
<!ELEMENT dictionary-body (%div.mix; | %dict.mix;)*>

3.2.2 Mixed Content
An element type has mixed content when elements of that type may contain
character data, optionally interspersed with child elements. In this case, the types
of the child elements may be constrained, but not their order or their number of
occurrences:

Mixed-content Declaration

[51] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘|’ S? Name)* S? ‘)*’
| ‘(‘ S? ‘#PCDATA’ S? ‘)’

[VC: Proper Group/PE Nesting]
[VC: No Duplicate Types]

where the Names give the types of elements that may appear as children.

Validity Constraint: No Duplicate Types: The same name must not appear more
than once in a single mixed-content declaration.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 941

942 Appendixes

Examples of mixed content declarations:

<!ELEMENT p (#PCDATA|a|ul|b|i|em)*>
<!ELEMENT p (#PCDATA | %font; | %phrase; | %special; | %form;)*
>
<!ELEMENT b (#PCDATA)>

3.3 Attribute-List Declarations
Attributes are used to associate name-value pairs with elements. Attribute
specifications may appear only within start-tags and empty-element tags; thus, the
productions used to recognize them appear in “3.1 Start-Tags, End-Tags, and Empty-
Element Tags”. Attribute-list declarations may be used:

✦ To define the set of attributes pertaining to a given element type.

✦ To establish type constraints for these attributes.

✦ To provide default values for attributes.

Attribute-list declarations specify the name, data type, and default value (if any) of
each attribute associated with a given element type:

Attribute-list Declaration

[52] AttlistDecl ::= ‘<!ATTLIST’ S Name AttDef* S? ‘>’
[53] AttDef ::= S Name S AttType S DefaultDecl

The Name in the AttlistDecl rule is the type of an element. At user option, an XML
processor may issue a warning if attributes are declared for an element type not
itself declared, but this is not an error. The Name in the AttDef rule is the name of
the attribute.

When more than one AttlistDecl is provided for a given element type, the contents
of all those provided are merged. When more than one definition is provided for the
same attribute of a given element type, the first declaration is binding and later
declarations are ignored. For interoperability, writers of DTDs may choose to
provide at most one attribute-list declaration for a given element type, at most one
attribute definition for a given attribute name, and at least one attribute definition
in each attribute-list declaration. For interoperability, an XML processor may at
user option issue a warning when more than one attribute-list declaration is
provided for a given element type, or more than one attribute definition is provided
for a given attribute, but this is not an error.

3.3.1 Attribute Types
XML attribute types are of three kinds: a string type, a set of tokenized types, and
enumerated types. The string type may take any literal string as a value; the
tokenized types have varying lexical and semantic constraints, as noted:

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 942

943Appendix B ✦ The XML 1.0 Specification

Attribute Types

[54] AttType ::= StringType | TokenizedType | EnumeratedType
[55] StringType ::= ‘CDATA’
[56] TokenizedType ::= ‘ID’ [VC: ID]

[VC: One ID per Element
Type]

[VC: ID Attribute Default
]

| ‘IDREF’ [VC: IDREF]
| ‘IDREFS’ [VC: IDREF]
| ‘ENTITY’ [VC: Entity Name]
| ‘ENTITIES’ [VC: Entity Name]
| ‘NMTOKEN’ [VC: Name Token]
| ‘NMTOKENS’ [VC: Name Token]

Validity Constraint: ID: Values of type ID must match the Name production. A name
must not appear more than once in an XML document as a value of this type; i.e., ID
values must uniquely identify the elements which bear them.

Validity Constraint: One ID per Element Type: No element type may have more
than one ID attribute specified.

Validity Constraint: ID Attribute Default: An ID attribute must have a declared
default of #IMPLIED or #REQUIRED.

Validity Constraint: IDREF: Values of type IDREF must match the Name production,
and values of type IDREFS must match Names; each Name must match the value of
an ID attribute on some element in the XML document; i.e. IDREF values must
match the value of some ID attribute.

Validity Constraint: Entity Name: Values of type ENTITY must match the Name
production, values of type ENTITIES must match Names; each Name must match the
name of an unparsed entity declared in the DTD.

Validity Constraint: Name Token: Values of type NMTOKEN must match the
Nmtoken production; values of type NMTOKENS must match Nmtokens.

Enumerated attributes can take one of a list of values provided in the declaration.
There are two kinds of enumerated types:

Enumerated Attribute Types

[57] EnumeratedType ::= NotationType | Enumeration
[58] NotationType ::= ‘NOTATION’ S ‘(‘ S? [VC: Notation
Attributes]

Name (S? ‘|’ S? Name)* S? ‘)’
[59] Enumeration ::= ‘(‘ S? Nmtoken (S? [VC: Enumeration]

‘|’ S?Nmtoken)* S? ‘)’

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 943

944 Appendixes

A NOTATION attribute identifies a notation, declared in the DTD with associated
system and/or public identifiers, to be used in interpreting the element to which
the attribute is attached.

Validity Constraint: Notation Attributes: Values of this type must match one of the
notation names included in the declaration; all notation names in the declaration
must be declared.

Validity Constraint: Enumeration: Values of this type must match one of the
Nmtoken tokens in the declaration.

For interoperability, the same Nmtoken should not occur more than once in the
enumerated attribute types of a single element type.

3.3.2 Attribute Defaults
An attribute declaration provides information on whether the attribute’s presence
is required, and if not, how an XML processor should react if a declared attribute is
absent in a document.

Attribute Defaults

[60] DefaultDecl ::= ‘#REQUIRED’ | ‘#IMPLIED’
| ((‘#FIXED’ S)? AttValue)
[VC: Required Attribute]
[VC: Attribute Default Legal]
[WFC: No < in Attribute Values]
[VC: Fixed Attribute Default]

In an attribute declaration, #REQUIRED means that the attribute must always be
provided, #IMPLIED that no default value is provided. If the declaration is neither
#REQUIRED nor #IMPLIED, then the AttValue value contains the declared default
value; the #FIXED keyword states that the attribute must always have the default
value. If a default value is declared, when an XML processor encounters an omitted
attribute, it is to behave as though the attribute were present with the declared
default value.

Validity Constraint: Required Attribute: If the default declaration is the keyword
#REQUIRED, then the attribute must be specified for all elements of the type in the
attribute-list declaration.

Validity Constraint: Attribute Default Legal: The declared default value must meet
the lexical constraints of the declared attribute type.

Validity Constraint: Fixed Attribute Default: If an attribute has a default value
declared with the #FIXED keyword, instances of that attribute must match the
default value.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 944

945Appendix B ✦ The XML 1.0 Specification

Examples of attribute-list declarations:

<!ATTLIST termdef
id ID #REQUIRED
name CDATA #IMPLIED>

<!ATTLIST list
type (bullets|ordered|glossary) “ordered”>

<!ATTLIST form
method CDATA #FIXED “POST”>

3.3.3 Attribute-Value Normalization
Before the value of an attribute is passed to the application or checked for validity,
the XML processor must normalize it as follows:

✦ a character reference is processed by appending the referenced character to
the attribute value.

✦ an entity reference is processed by recursively processing the replacement
text of the entity.

✦ a whitespace character (#x20, #xD, #xA, #x9) is processed by appending #x20
to the normalized value, except that only a single #x20 is appended for a
“#xD#xA” sequence that is part of an external parsed entity or the literal
entity value of an internal parsed entity.

✦ other characters are processed by appending them to the normalized value.

If the declared value is not CDATA, then the XML processor must further process
the normalized attribute value by discarding any leading and trailing space (#x20)
characters, and by replacing sequences of space (#x20) characters by a single
space (#x20) character.

All attributes for which no declaration has been read should be treated by a non-
validating parser as if declared CDATA.

3.4 Conditional Sections
Conditional sections are portions of the document type declaration external subset
which are included in, or excluded from, the logical structure of the DTD based on
the keyword which governs them.

Conditional Section

[61] conditionalSect ::= includeSect | ignoreSect
[62] includeSect ::= ‘<![‘ S? ‘INCLUDE’ S? ‘[‘ extSubsetDecl
‘]]>’
[63] ignoreSect ::= ‘<![‘ S? ‘IGNORE’ S? ‘[‘
ignoreSectContents*

‘]]>’

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 945

946 Appendixes

[64] ignoreSectContents ::= Ignore (‘<![‘ ignoreSectContents
‘]]>’ Ignore)*

[65] Ignore ::= Char* - (Char* (‘<![‘ | ‘]]>’)
Char*)

Like the internal and external DTD subsets, a conditional section may contain one
or more complete declarations, comments, processing instructions, or nested
conditional sections, intermingled with white space.

If the keyword of the conditional section is INCLUDE, then the contents of the
conditional section are part of the DTD. If the keyword of the conditional section is
IGNORE, then the contents of the conditional section are not logically part of the
DTD. Note that for reliable parsing, the contents of even ignored conditional
sections must be read in order to detect nested conditional sections and ensure
that the end of the outermost (ignored) conditional section is properly detected. If
a conditional section with a keyword of INCLUDE occurs within a larger conditional
section with a keyword of IGNORE, both the outer and the inner conditional
sections are ignored.

If the keyword of the conditional section is a parameter-entity reference, the
parameter entity must be replaced by its content before the processor decides
whether to include or ignore the conditional section.

An example:

<!ENTITY % draft ‘INCLUDE’ >
<!ENTITY % final ‘IGNORE’ >

<![%draft;[
<!ELEMENT book (comments*, title, body, supplements?)>
]]>
<![%final;[
<!ELEMENT book (title, body, supplements?)>
]]>

4. Physical Structures
An XML document may consist of one or many storage units. These are called
entities; they all have content and are all (except for the document entity, see
below, and the external DTD subset) identified by name. Each XML document has
one entity called the document entity, which serves as the starting point for the
XML processor and may contain the whole document.

Entities may be either parsed or unparsed. A parsed entity’s contents are referred
to as its replacement text; this text is considered an integral part of the document.

An unparsed entity is a resource whose contents may or may not be text, and if
text, may not be XML. Each unparsed entity has an associated notation, identified
by name. Beyond a requirement that an XML processor make the identifiers for the

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 946

947Appendix B ✦ The XML 1.0 Specification

entity and notation available to the application, XML places no constraints on the
contents of unparsed entities.

Parsed entities are invoked by name using entity references;
unparsed entities by name, given in the value of ENTITY or
ENTITIES attributes.

General entities are entities for use within the document content. In this specifi-
cation, general entities are sometimes referred to with the unqualified term entity
when this leads to no ambiguity. Parameter entities are parsed entities for use with-
in the DTD. These two types of entities use different forms of reference and are
recognized in different contexts. Furthermore, they occupy different namespaces; a
parameter entity and a general entity with the same name are two distinct entities.

4.1 Character and Entity References
A character reference refers to a specific character in the ISO/IEC 10646 character
set, for example one not directly accessible from available input devices.

Character Reference

[66] CharRef ::= ‘&#’ [0-9]+ ‘;’
| ‘&#x’ [0-9a-fA-F]+ ‘;’ [WFC: Legal Character

]

Well-Formedness Constraint: Legal Character: Characters referred to using
character references must match the production for Char.

If the character reference begins with “&#x”, the digits and letters up to the
terminating; provide a hexadecimal representation of the character’s code point in
ISO/IEC 10646. If it begins just with “&#”, the digits up to the terminating ; provide a
decimal representation of the character’s code point.

An entity reference refers to the content of a named entity. References to parsed
general entities use ampersand (&) and semicolon (;) as delimiters. Parameter-
entity references use percent-sign (%) and semicolon (;) as delimiters.

Entity Reference

[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= ‘&’ Name ‘;’ [WFC: Entity Declared]

[VC: Entity Declared]
[WFC: Parsed Entity]
[WFC: No Recursion]

[69] PEReference ::= ‘%’ Name ‘;’ [VC: Entity Declared]
[WFC: No Recursion]
[WFC: In DTD]

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 947

948 Appendixes

Well-Formedness Constraint: Entity Declared In a document without any DTD, a
document with only an internal DTD subset which contains no parameter entity
references, or a document with “standalone=’yes’”, the Name given in the entity
reference must match that in an entity declaration, except that well-formed
documents need not declare any of the following entities: amp, lt, gt, apos, quot.
The declaration of a parameter entity must precede any reference to it. Similarly,
the declaration of a general entity must precede any reference to it which appears
in a default value in an attribute-list declaration. Note that if entities are declared in
the external subset or in external parameter entities, a non-validating processor is
not obligated to read and process their declarations; for such documents, the rule
that an entity must be declared is a well-formedness constraint only if
standalone=’yes’.

Validity Constraint: Entity Declared: In a document with an external subset or
external parameter entities with “standalone=’no’”, the Name given in the entity
reference must match that in an entity declaration. For interoperability, valid
documents should declare the entities amp, lt, gt, apos, quot, in the form specified
in “4.6 Predefined Entities”. The declaration of a parameter entity must precede any
reference to it. Similarly, the declaration of a general entity must precede any
reference to it which appears in a default value in an attribute-list declaration.

Well-Formedness Constraint: Parsed Entity: An entity reference must not contain
the name of an unparsed entity. Unparsed entities may be referred to only in
attribute values declared to be of type ENTITY or ENTITIES.

Well-Formedness Constraint: No Recursion: A parsed entity must not contain a
recursive reference to itself, either directly or indirectly.

Well-Formedness Constraint: In DTD: Parameter-entity references may only appear
in the DTD.

Examples of character and entity references:

Type <key>less-than</key> (<) to save options.
This document was prepared on &docdate; and
is classified &security-level;.

Example of a parameter-entity reference:

<!— declare the parameter entity “ISOLat2”... —>
<!ENTITY % ISOLat2

SYSTEM “http://www.xml.com/iso/isolat2-xml.entities” >
<!— ... now reference it. —>
%ISOLat2;

4.2 Entity Declarations
Entities are declared thus:

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 948

949Appendix B ✦ The XML 1.0 Specification

Entity Declaration

[70] EntityDecl ::= GEDecl | PEDecl
[71] GEDecl ::= ‘<!ENTITY’ S Name S EntityDef S? ‘>’
[72] PEDecl ::= ‘<!ENTITY’ S ‘%’ S Name S PEDef S? ‘>’
[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)
[74] PEDef ::= EntityValue | ExternalID

The Name identifies the entity in an entity reference or, in the case of an unparsed
entity, in the value of an ENTITY or ENTITIES attribute. If the same entity is declared
more than once, the first declaration encountered is binding; at user option, an XML
processor may issue a warning if entities are declared multiple times.

4.2.1 Internal Entities
If the entity definition is an EntityValue, the defined entity is called an internal
entity. There is no separate physical storage object, and the content of the entity is
given in the declaration. Note that some processing of entity and character
references in the literal entity value may be required to produce the correct
replacement text: see “4.5 Construction of Internal Entity Replacement Text”.

An internal entity is a parsed entity. Example of an internal entity declaration:

<!ENTITY Pub-Status “This is a pre-release of the
specification.”>

4.2.2 External Entities
If the entity is not internal, it is an external entity, declared as follows:

External Entity Declaration

[75] ExternalID ::= ‘SYSTEM’ S SystemLiteral
| ‘PUBLIC’ S PubidLiteral S SystemLiteral

[76] NDataDecl ::= S ‘NDATA’ S Name [VC: Notation Declared]

If the NDataDecl is present, this is a general unparsed entity; otherwise it is a
parsed entity.

Validity Constraint: Notation Declared: The Name must match the declared name
of a notation.

The SystemLiteral is called the entity’s system identifier. It is a URI, which may
be used to retrieve the entity. Note that the hash mark (#) and fragment identifier
frequently used with URIs are not, formally, part of the URI itself; an XML processor
may signal an error if a fragment identifier is given as part of a system identifier.
Unless otherwise provided by information outside the scope of this specification
(e.g. a special XML element type defined by a particular DTD, or a processing
instruction defined by a particular application specification), relative URIs are
relative to the location of the resource within which the entity declaration occurs. A
URI might thus be relative to the document entity, to the entity containing the
external DTD subset, or to some other external parameter entity.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 949

950 Appendixes

An XML processor should handle a non-ASCII character in a URI by representing the
character in UTF-8 as one or more bytes, and then escaping these bytes with the
URI escaping mechanism (i.e., by converting each byte to %HH, where HH is the
hexadecimal notation of the byte value).

In addition to a system identifier, an external identifier may include a public
identifier. An XML processor attempting to retrieve the entity’s content may use
the public identifier to try to generate an alternative URI. If the processor is unable
to do so, it must use the URI specified in the system literal. Before a match is
attempted, all strings of white space in the public identifier must be normalized to
single space characters (#x20), and leading and trailing white space must be
removed.

Examples of external entity declarations:

<!ENTITY open-hatch SYSTEM
“http://www.textuality.com/boilerplate/OpenHatch.xml”>

<!ENTITY open-hatch
PUBLIC “-//Textuality//TEXT Standard open-

hatch boilerplate//EN”
“http://www.textuality.com/boilerplate/OpenHatch.xml”>

<!ENTITY hatch-pic SYSTEM “../grafix/OpenHatch.gif” NDATA gif >

4.3 Parsed Entities
4.3.1 The Text Declaration
External parsed entities may each begin with a text declaration.

Text Declaration

[77] TextDecl ::= ‘<?xml’ VersionInfo? EncodingDecl S? ‘?>’

The text declaration must be provided literally, not by reference to a parsed entity.
No text declaration may appear at any position other than the beginning of an
external parsed entity.

4.3.2 Well-Formed Parsed Entities
The document entity is well-formed if it matches the production labeled document.
An external general parsed entity is well-formed if it matches the production
labeled extParsedEnt. An external parameter entity is well-formed if it matches
the production labeled extPE.

Well-Formed External Parsed Entity

[78] extParsedEnt ::= TextDecl? content
[79] extPE ::= TextDecl? extSubsetDecl

An internal general parsed entity is well-formed if its replacement text matches the
production labeled content. All internal parameter entities are well-formed by
definition.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 950

951Appendix B ✦ The XML 1.0 Specification

A consequence of well-formedness in entities is that the logical and physical
structures in an XML document are properly nested; no start-tag, end-tag, empty-
element tag, element, comment, processing instruction, character reference, or
entity reference can begin in one entity and end in another.

4.3.3 Character Encoding in Entities
Each external parsed entity in an XML document may use a different encoding for
its characters. All XML processors must be able to read entities in either UTF-8 or
UTF-16.

Entities encoded in UTF-16 must begin with the Byte Order Mark described by
ISO/IEC 10646 Annex E and Unicode Appendix B (the ZERO WIDTH NO-BREAK
SPACE character, #xFEFF). This is an encoding signature, not part of either the
markup or the character data of the XML document. XML processors must be able
to use this character to differentiate between UTF-8 and UTF-16 encoded
documents.

Although an XML processor is required to read only entities in the UTF-8 and UTF-
16 encodings, it is recognized that other encodings are used around the world, and
it may be desired for XML processors to read entities that use them. Parsed entities
which are stored in an encoding other than UTF-8 or UTF-16 must begin with a text
declaration containing an encoding declaration:

Encoding Declaration

[80] EncodingDecl ::= S ‘encoding’ Eq (‘“‘ EncName ‘“‘
| “‘“ EncName “‘“)

[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | ‘-’)*
/* Encoding name contains only Latin characters */

In the document entity, the encoding declaration is part of the XML declaration.
The EncName is the name of the encoding used.

In an encoding declaration, the values “UTF-8”, “UTF-16”, “ISO-10646-UCS-2”, and
“ISO-10646-UCS-4” should be used for the various encodings and transformations of
Unicode / ISO/IEC 10646, the values “ISO-8859-1”, “ISO-8859-2”, ... “ISO-8859-9”
should be used for the parts of ISO 8859, and the values “ISO-2022-JP”, “Shift_JIS”,
and “EUC-JP” should be used for the various encoded forms of JIS X-0208-1997. XML
processors may recognize other encodings; it is recommended that character
encodings registered (as charsets) with the Internet Assigned Numbers Authority
[IANA], other than those just listed, should be referred to using their registered
names. Note that these registered names are defined to be case-insensitive, so
processors wishing to match against them should do so in a case-insensitive way.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 951

952 Appendixes

In the absence of information provided by an external transport protocol (e.g.
HTTP or MIME), it is an error for an entity including an encoding declaration to be
presented to the XML processor in an encoding other than that named in the
declaration, for an encoding declaration to occur other than at the beginning of an
external entity, or for an entity which begins with neither a Byte Order Mark nor an
encoding declaration to use an encoding other than UTF-8. Note that since ASCII is
a subset of UTF-8, ordinary ASCII entities do not strictly need an encoding
declaration.

It is a fatal error when an XML processor encounters an entity with an encoding
that it is unable to process.

Examples of encoding declarations:

<?xml encoding=’UTF-8’?>
<?xml encoding=’EUC-JP’?>

4.4 XML Processor Treatment of Entities and References
The table below summarizes the contexts in which character references, entity
references, and invocations of unparsed entities might appear and the required
behavior of an XML processor in each case. The labels in the leftmost column
describe the recognition context:

Reference in Content as a reference anywhere after the start-tag and before the
end-tag of an element; corresponds to the nonterminal content.

Reference in Attribute Value as a reference within either the value of an attribute
in a start-tag, or a default value in an attribute declaration; corresponds to the
nonterminal AttValue.

Occurs as Attribute Value as a Name, not a reference, appearing either as the value
of an attribute which has been declared as type ENTITY, or as one of the space-
separated tokens in the value of an attribute which has been declared as type
ENTITIES.

Reference in Entity Value as a reference within a parameter or internal entity’s
literal entity value in the entity’s declaration; corresponds to the nonterminal
EntityValue.

Reference in DTD as a reference within either the internal or external subsets of
the DTD, but outside of an EntityValue or AttValue.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 952

953Appendix B ✦ The XML 1.0 Specification

External
Internal Parsed

Entity Type Character Parameter General General Unparsed

Reference in Not Included Included if Forbidden Included
Content recognized validating

Reference in Not Included in Forbidden Forbidden Included
Attribute Value recognized literal

Occurs as Not Forbidden Forbidden Notify Not
Attribute Value recognized recognized

Reference in Included in Bypassed Bypassed Forbidden Included
Entity Value literal

Reference in Included Forbidden Forbidden Forbidden Forbidden
DTD as PE

4.4.1 Not Recognized
Outside the DTD, the % character has no special significance; thus, what would be
parameter entity references in the DTD are not recognized as markup in content.
Similarly, the names of unparsed entities are not recognized except when they
appear in the value of an appropriately declared attribute.

4.4.2 Included
An entity is included when its replacement text is retrieved and processed, in place
of the reference itself, as though it were part of the document at the location the
reference was recognized. The replacement text may contain both character data and
(except for parameter entities) markup, which must be recognized in the usual way,
except that the replacement text of entities used to escape markup delimiters (the
entities amp, lt, gt, apos, quot) is always treated as data. (The string “AT&T;”
expands to “AT&T;” and the remaining ampersand is not recognized as an entity-
reference delimiter.) A character reference is included when the indicated character
is processed in place of the reference itself.

4.4.3 Included If Validating
When an XML processor recognizes a reference to a parsed entity, in order to
validate the document, the processor must include its replacement text. If the
entity is external, and the processor is not attempting to validate the XML
document, the processor may, but need not, include the entity’s replacement text. If
a non-validating parser does not include the replacement text, it must inform the
application that it recognized, but did not read, the entity.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 953

954 Appendixes

This rule is based on the recognition that the automatic inclusion provided by the
SGML and XML entity mechanism, primarily designed to support modularity in
authoring, is not necessarily appropriate for other applications, in particular
document browsing. Browsers, for example, when encountering an external parsed
entity reference, might choose to provide a visual indication of the entity’s
presence and retrieve it for display only on demand.

4.4.4 Forbidden
The following are forbidden, and constitute fatal errors:

✦ the appearance of a reference to an unparsed entity.

✦ the appearance of any character or general-entity reference in the DTD except
within an EntityValue or AttValue.

✦ a reference to an external entity in an attribute value.

4.4.5 Included in Literal
When an entity reference appears in an attribute value, or a parameter entity
reference appears in a literal entity value, its replacement text is processed in place
of the reference itself as though it were part of the document at the location the
reference was recognized, except that a single or double quote character in the
replacement text is always treated as a normal data character and will not
terminate the literal. For example, this is well-formed:

<!ENTITY % YN ‘“Yes”’ >
<!ENTITY WhatHeSaid “He said &YN;” >

while this is not:

<!ENTITY EndAttr “27’” >
<element attribute=’a-&EndAttr;>

4.4.6 Notify
When the name of an unparsed entity appears as a token in the value of an attribute
of declared type ENTITY or ENTITIES, a validating processor must inform the
application of the system and public (if any) identifiers for both the entity and its
associated notation.

4.4.7 Bypassed
When a general entity reference appears in the EntityValue in an entity declaration,
it is bypassed and left as is.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 954

955Appendix B ✦ The XML 1.0 Specification

4.4.8 Included as PE
Just as with external parsed entities, parameter entities need only be included if
validating. When a parameter-entity reference is recognized in the DTD and
included, its replacement text is enlarged by the attachment of one leading and one
following space (#x20) character; the intent is to constrain the replacement text of
parameter entities to contain an integral number of grammatical tokens in the DTD.

4.5 Construction of Internal Entity Replacement Text
In discussing the treatment of internal entities, it is useful to distinguish two forms
of the entity’s value. The literal entity value is the quoted string actually present in
the entity declaration, corresponding to the non-terminal EntityValue. The
replacement text is the content of the entity, after replacement of character
references and parameter-entity references.

The literal entity value as given in an internal entity declaration (EntityValue) may
contain character, parameter-entity, and general-entity references. Such references
must be contained entirely within the literal entity value. The actual replacement
text that is included as described above must contain the replacement text of any
parameter entities referred to, and must contain the character referred to, in place
of any character references in the literal entity value; however, general-entity
references must be left as-is, unexpanded. For example, given the following
declarations:

<!ENTITY % pub “Éditions Gallimard” >
<!ENTITY rights “All rights reserved” >
<!ENTITY book “La Peste: Albert Camus,
© 1947 %pub;. &rights;” >

then the replacement text for the entity “book” is:

La Peste: Albert Camus,
(c) 1947 Éditions Gallimard. &rights;

The general-entity reference “&rights;” would be expanded should the reference
“&book;” appear in the document’s content or an attribute value.

These simple rules may have complex interactions; for a detailed discussion of a
difficult example, see “D. Expansion of Entity and Character References”.

4.6 Predefined Entities
Entity and character references can both be used to escape the left angle bracket,
ampersand, and other delimiters. A set of general entities (amp, lt, gt, apos, quot) is
specified for this purpose. Numeric character references may also be used; they are
expanded immediately when recognized and must be treated as character data, so
the numeric character references “<” and “&” may be used to escape < and
& when they occur in character data.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 955

956 Appendixes

All XML processors must recognize these entities whether they are declared or not.
For interoperability, valid XML documents should declare these entities, like any
others, before using them. If the entities in question are declared, they must be
declared as internal entities whose replacement text is the single character being
escaped or a character reference to that character, as shown below.

<!ENTITY lt “&#60;”>
<!ENTITY gt “>”>
<!ENTITY amp “&#38;”>
<!ENTITY apos “'”>
<!ENTITY quot “"”>

Note that the < and & characters in the declarations of “lt” and “amp” are doubly
escaped to meet the requirement that entity replacement be well-formed.

4.7 Notation Declarations
Notations identify by name the format of unparsed entities, the format of elements
which bear a notation attribute, or the application to which a processing
instruction is addressed.

Notation declarations provide a name for the notation, for use in entity and
attribute-list declarations and in attribute specifications, and an external identifier
for the notation which may allow an XML processor or its client application to
locate a helper application capable of processing data in the given notation.

Notation Declarations

[82] NotationDecl ::= ‘<!NOTATION’ S Name S (ExternalID
| PublicID) S? ‘>’

[83] PublicID ::= ‘PUBLIC’ S PubidLiteral

XML processors must provide applications with the name and external identifier(s)
of any notation declared and referred to in an attribute value, attribute definition,
or entity declaration. They may additionally resolve the external identifier into the
system identifier, file name, or other information needed to allow the application to
call a processor for data in the notation described. (It is not an error, however, for
XML documents to declare and refer to notations for which notation-specific
applications are not available on the system where the XML processor or
application is running.)

4.8 Document Entity
The document entity serves as the root of the entity tree and a starting-point for an
XML processor. This specification does not specify how the document entity is to
be located by an XML processor; unlike other entities, the document entity has no
name and might well appear on a processor input stream without any identification
at all.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 956

957Appendix B ✦ The XML 1.0 Specification

5. Conformance
5.1 Validating and Non-Validating Processors
Conforming XML processors fall into two classes: validating and non-validating.

Validating and non-validating processors alike must report violations of this
specification’s well-formedness constraints in the content of the document entity
and any other parsed entities that they read.

Validating processors must report violations of the constraints expressed by the
declarations in the DTD, and failures to fulfill the validity constraints given in this
specification. To accomplish this, validating XML processors must read and
process the entire DTD and all external parsed entities referenced in the document.

Non-validating processors are required to check only the document entity, includ-
ing the entire internal DTD subset, for well-formedness. While they are not required
to check the document for validity, they are required to process all the declarations
they read in the internal DTD subset and in any parameter entity that they read, up
to the first reference to a parameter entity that they do not read; that is to say, they
must use the information in those declarations to normalize attribute values, include
the replacement text of internal entities, and supply default attribute values. They
must not process entity declarations or attribute-list declarations encountered after a
reference to a parameter entity that is not read, since the entity may have contained
overriding declarations.

5.2 Using XML Processors
The behavior of a validating XML processor is highly predictable; it must read
every piece of a document and report all well-formedness and validity violations.
Less is required of a non-validating processor; it need not read any part of the
document other than the document entity. This has two effects that may be
important to users of XML processors:

✦ Certain well-formedness errors, specifically those that require reading
external entities, may not be detected by a non-validating processor.
Examples include the constraints entitled Entity Declared, Parsed Entity, and
No Recursion, as well as some of the cases described as forbidden in “4.4 XML
Processor Treatment of Entities and References”.

✦ The information passed from the processor to the application may vary,
depending on whether the processor reads parameter and external entities.
For example, a non-validating processor may not normalize attribute values,
include the replacement text of internal entities, or supply default attribute
values, where doing so depends on having read declarations in external or
parameter entities.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 957

958 Appendixes

For maximum reliability in interoperating between different XML processors,
applications which use non-validating processors should not rely on any behaviors
not required of such processors. Applications which require facilities such as the
use of default attributes or internal entities which are declared in external entities
should use validating XML processors.

6. Notation
The formal grammar of XML is given in this specification using a simple Extended
Backus-Naur Form (EBNF) notation. Each rule in the grammar defines one symbol,
in the form

symbol ::= expression

Symbols are written with an initial capital letter if they are defined by a regular
expression, or with an initial lower case letter otherwise. Literal strings are quoted.

Within the expression on the right-hand side of a rule, the following expressions are
used to match strings of one or more characters:

#xN

where N is a hexadecimal integer, the expression matches the character in ISO/IEC
10646 whose canonical (UCS-4) code value, when interpreted as an unsigned binary
number, has the value indicated. The number of leading zeros in the #xN form is
insignificant; the number of leading zeros in the corresponding code value is
governed by the character encoding in use and is not significant for XML.

[a-zA-Z], [#xN-#xN]

matches any character with a value in the range(s) indicated (inclusive).

[^a-z], [^#xN-#xN]

matches any character with a value outside the range indicated.

[^abc], [^#xN#xN#xN]

matches any character with a value not among the characters given.

“string”

matches a literal string matching that given inside the double quotes.

‘string’

matches a literal string matching that given inside the single quotes.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 958

959Appendix B ✦ The XML 1.0 Specification

These symbols may be combined to match more complex patterns as follows,
where A and B represent simple expressions:

(expression)

expression is treated as a unit and may be combined as described in this list.

A?

matches A or nothing; optional A.

A B

matches A followed by B.

A | B

matches A or B but not both.

A - B

matches any string that matches A but does not match B.

A+

matches one or more occurrences of A.

A*

matches zero or more occurrences of A.

Other notations used in the productions are:

/* ... */

comment.

[wfc: ...]

well-formedness constraint; this identifies by name a constraint on well-formed
documents associated with a production.

[vc: ...]

validity constraint; this identifies by name a constraint on valid documents
associated with a production.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 959

960 Appendixes

Appendices

A. References
A.1 Normative References

IANA (Internet Assigned Numbers Authority). Official Names for Character Sets, ed.
Keld Simonsen et al. See ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets.

IETF RFC 1766 IETF (Internet Engineering Task Force). RFC 1766: Tags for the
Identification of Languages, ed. H. Alvestrand. 1995.

ISO 639 (International Organization for Standardization). ISO 639:1988 (E). Code for
the representation of names of languages. [Geneva]: International Organization for
Standardization, 1988.

ISO 3166 (International Organization for Standardization). ISO 3166-1:1997 (E).
Codes for the representation of names of countries and their subdivisions — Part 1:
Country codes [Geneva]: International Organization for Standardization, 1997.

ISO/IEC 10646 ISO (International Organization for Standardization). ISO/IEC
10646-1993 (E). Information technology — Universal Multiple-Octet Coded Character
Set (UCS) — Part 1: Architecture and Basic Multilingual Plane. [Geneva]: International
Organization for Standardization, 1993 (plus amendments AM 1 through AM 7).

Unicode The Unicode Consortium. The Unicode Standard, Version 2.0. Reading,
Mass.: Addison-Wesley Developers Press, 1996.

A.2 Other References

Aho/Ullman Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Reading: Addison-Wesley, 1986, rpt. corr. 1988.

Berners-Lee et al. Berners-Lee, T., R. Fielding, and L. Masinter. Uniform Resource
Identifiers (URI): Generic Syntax and Semantics. 1997. (Work in progress; see updates
to RFC1738.)

Brüggemann-Klein Brüggemann-Klein, Anne. Regular Expressions into Finite
Automata. Extended abstract in I. Simon, Hrsg., LATIN 1992, S. 97-98. Springer-
Verlag, Berlin 1992. Full Version in Theoretical Computer Science 120: 197-213, 1993.

Brüggemann-Klein and Wood Brüggemann-Klein, Anne, and Derick Wood.
Deterministic Regular Languages. Universität Freiburg, Institut für Informatik, Bericht
38, Oktober 1991.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 960

961Appendix B ✦ The XML 1.0 Specification

Clark James Clark. Comparison of SGML and XML. See http://www.w3.org/TR/
NOTE-sgml-xml-971215.

IETF RFC1738 IETF (Internet Engineering Task Force). RFC 1738: Uniform Resource
Locators (URL), ed. T. Berners-Lee, L. Masinter, M. McCahill. 1994.

IETF RFC1808 IETF (Internet Engineering Task Force). RFC 1808: Relative Uniform
Resource Locators, ed. R. Fielding. 1995.

IETF RFC2141 IETF (Internet Engineering Task Force). RFC 2141: URN Syntax, ed. R.
Moats. 1997.

ISO 8879 ISO (International Organization for Standardization). ISO 8879:1986(E).
Information processing — Text and Office Systems — Standard Generalized Markup
Language (SGML). First edition — 1986-10-15. [Geneva]: International Organization
for Standardization, 1986.

ISO/IEC 10744 ISO (International Organization for Standardization). ISO/IEC
10744-1992 (E). Information technology — Hypermedia/Time-based Structuring
Language (HyTime). [Geneva]: International Organization for Standardization, 1992.
Extended Facilities Annexe. [Geneva]: International Organization for
Standardization, 1996.

B. Character Classes
Following the characteristics defined in the Unicode standard, characters are
classed as base characters (among others, these contain the alphabetic characters
of the Latin alphabet, without diacritics), ideographic characters, and combining
characters (among others, this class contains most diacritics); these classes
combine to form the class of letters. Digits and extenders are also distinguished.

Characters

[84] Letter ::= BaseChar | Ideographic
[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A]

| [#x00C0-#x00D6] | [#x00D8-#x00F6]
| [#x00F8-#x00FF] | [#x0100-#x0131]
| [#x0134-#x013E] | [#x0141-#x0148]
| [#x014A-#x017E] | [#x0180-#x01C3]
| [#x01CD-#x01F0] | [#x01F4-#x01F5]
| [#x01FA-#x0217] | [#x0250-#x02A8]
| [#x02BB-#x02C1] | #x0386 | [#x0388-#x038A]
| #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE]
| [#x03D0-#x03D6] | #x03DA | #x03DC | #x03DE
| #x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C]
| [#x040E-#x044F] | [#x0451-#x045C]
| [#x045E-#x0481] | [#x0490-#x04C4]

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 961

962 Appendixes

| [#x04C7-#x04C8] | [#x04CB-#x04CC]
| [#x04D0-#x04EB] | [#x04EE-#x04F5]
| [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559
| [#x0561-#x0586] | [#x05D0-#x05EA]
| [#x05F0-#x05F2] | [#x0621-#x063A]
| [#x0641-#x064A] | [#x0671-#x06B7]
| [#x06BA-#x06BE] | [#x06C0-#x06CE]
| [#x06D0-#x06D3] | #x06D5 | [#x06E5-#x06E6]
| [#x0905-#x0939] | #x093D | [#x0958-#x0961]
| [#x0985-#x098C] | [#x098F-#x0990]
| [#x0993-#x09A8] | [#x09AA-#x09B0]
| #x09B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD]
| [#x09DF-#x09E1] | [#x09F0-#x09F1]
| [#x0A05-#x0A0A] | [#x0A0F-#x0A10]
| [#x0A13-#x0A28] | [#x0A2A-#x0A30]
| [#x0A32-#x0A33] | [#x0A35-#x0A36]
| [#x0A38-#x0A39] | [#x0A59-#x0A5C]
| #x0A5E | [#x0A72-#x0A74] | [#x0A85-#x0A8B]
| #x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8]
| [#x0AAA-#x0AB0] | [#x0AB2-#x0AB3]
| [#x0AB5-#x0AB9] | #x0ABD | #x0AE0
| [#x0B05-#x0B0C] | [#x0B0F-#x0B10]
| [#x0B13-#x0B28] | [#x0B2A-#x0B30]
| [#x0B32-#x0B33] | [#x0B36-#x0B39]
| #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61]
| [#x0B85-#x0B8A] | [#x0B8E-#x0B90]
| [#x0B92-#x0B95] | [#x0B99-#x0B9A] | #x0B9C
| [#x0B9E-#x0B9F] | [#x0BA3-#x0BA4]
| [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5]
| [#x0BB7-#x0BB9] | [#x0C05-#x0C0C]
| [#x0C0E-#x0C10] | [#x0C12-#x0C28]
| [#x0C2A-#x0C33] | [#x0C35-#x0C39]
| [#x0C60-#x0C61] | [#x0C85-#x0C8C]
| [#x0C8E-#x0C90] | [#x0C92-#x0CA8]
| [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE
| [#x0CE0-#x0CE1] | [#x0D05-#x0D0C]
| [#x0D0E-#x0D10] | [#x0D12-#x0D28]
| [#x0D2A-#x0D39] | [#x0D60-#x0D61]
| [#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33]
| [#x0E40-#x0E45] | [#x0E81-#x0E82] | #x0E84
| [#x0E87-#x0E88] | #x0E8A | #x0E8D
| [#x0E94-#x0E97] | [#x0E99-#x0E9F]
| [#x0EA1-#x0EA3] | #x0EA5 | #x0EA7
| [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0
| [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4]
| [#x0F40-#x0F47] | [#x0F49-#x0F69]
| [#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100
| [#x1102-#x1103] | [#x1105-#x1107] | #x1109
| [#x110B-#x110C] | [#x110E-#x1112] | #x113C
| #x113E | #x1140 | #x114C | #x114E | #x1150
| [#x1154-#x1155] | #x1159 | [#x115F-#x1161]

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 962

963Appendix B ✦ The XML 1.0 Specification

| #x1163 | #x1165 | #x1167 | #x1169
| [#x116D-#x116E] | [#x1172-#x1173] | #x1175
| #x119E | #x11A8 | #x11AB | [#x11AE-#x11AF]
| [#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2]
| #x11EB | #x11F0 | #x11F9 | [#x1E00-#x1E9B]
| [#x1EA0-#x1EF9] | [#x1F00-#x1F15]
| [#x1F18-#x1F1D] | [#x1F20-#x1F45]
| [#x1F48-#x1F4D] | [#x1F50-#x1F57] | #x1F59
| #x1F5B | #x1F5D | [#x1F5F-#x1F7D]
| [#x1F80-#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE
| [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC]
| [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB]
| [#x1FE0-#x1FEC] | [#x1FF2-#x1FF4]
| [#x1FF6-#x1FFC] | #x2126 | [#x212A-#x212B]
| #x212E | [#x2180-#x2182] | [#x3041-#x3094]
| [#x30A1-#x30FA] | [#x3105-#x312C]
| [#xAC00-#xD7A3]

[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007
| [#x3021-#x3029]

[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361]
| [#x0483-#x0486] | [#x0591-#x05A1]
| [#x05A3-#x05B9] | [#x05BB-#x05BD]
| #x05BF | [#x05C1-#x05C2] | #x05C4
| [#x064B-#x0652] | #x0670
| [#x06D6-#x06DC] | [#x06DD-#x06DF]
| [#x06E0-#x06E4] | [#x06E7-#x06E8]
| [#x06EA-#x06ED] | [#x0901-#x0903]
| #x093C | [#x093E-#x094C] | #x094D
| [#x0951-#x0954] | [#x0962-#x0963]
| [#x0981-#x0983] | #x09BC | #x09BE
| #x09BF | [#x09C0-#x09C4]
| [#x09C7-#x09C8] | [#x09CB-#x09CD]
| #x09D7 | [#x09E2-#x09E3] | #x0A02
| #x0A3C | #x0A3E | #x0A3F
| [#x0A40-#x0A42] | [#x0A47-#x0A48]
| [#x0A4B-#x0A4D] | [#x0A70-#x0A71]
| [#x0A81-#x0A83] | #x0ABC
| [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9]
| [#x0ACB-#x0ACD] | [#x0B01-#x0B03]
| #x0B3C | [#x0B3E-#x0B43]
| [#x0B47-#x0B48] | [#x0B4B-#x0B4D]
| [#x0B56-#x0B57] | [#x0B82-#x0B83]
| [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8]
| [#x0BCA-#x0BCD] | #x0BD7
| [#x0C01-#x0C03] | [#x0C3E-#x0C44]
| [#x0C46-#x0C48] | [#x0C4A-#x0C4D]
| [#x0C55-#x0C56] | [#x0C82-#x0C83]
| [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8]
| [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6]
| [#x0D02-#x0D03] | [#x0D3E-#x0D43]
| [#x0D46-#x0D48] | [#x0D4A-#x0D4D]

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 963

964 Appendixes

| #x0D57 | #x0E31 | [#x0E34-#x0E3A]
| [#x0E47-#x0E4E] | #x0EB1
| [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC]
| [#x0EC8-#x0ECD] | [#x0F18-#x0F19]
| #x0F35 | #x0F37 | #x0F39 | #x0F3E
| #x0F3F | [#x0F71-#x0F84]
| [#x0F86-#x0F8B] | [#x0F90-#x0F95]
| #x0F97 | [#x0F99-#x0FAD]
| [#x0FB1-#x0FB7] | #x0FB9
| [#x20D0-#x20DC] | #x20E1
| [#x302A-#x302F] | #x3099 | #x309A

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669]
| [#x06F0-#x06F9] | [#x0966-#x096F]
| [#x09E6-#x09EF] | [#x0A66-#x0A6F]
| [#x0AE6-#x0AEF] | [#x0B66-#x0B6F]
| [#x0BE7-#x0BEF] | [#x0C66-#x0C6F]
| [#x0CE6-#x0CEF] | [#x0D66-#x0D6F]
| [#x0E50-#x0E59] | [#x0ED0-#x0ED9]
| [#x0F20-#x0F29]

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387
| #x0640 | #x0E46 | #x0EC6 | #x3005
| [#x3031-#x3035] | [#x309D-#x309E]
| [#x30FC-#x30FE]

The character classes defined here can be derived from the Unicode character
database as follows:

✦ Name start characters must have one of the categories Ll, Lu, Lo, Lt, Nl.

✦ Name characters other than Name-start characters must have one of the
categories Mc, Me, Mn, Lm, or Nd.

✦ Characters in the compatibility area (i.e. with character code greater than
#xF900 and less than #xFFFE) are not allowed in XML names.

✦ Characters which have a font or compatibility decomposition (i.e. those with
a “compatibility formatting tag” in field 5 of the database — marked by field 5
beginning with a “<”) are not allowed.

✦ The following characters are treated as name-start characters rather than
name characters, because the property file classifies them as Alphabetic:
[#x02BB-#x02C1], #x0559, #x06E5, #x06E6.

✦ Characters #x20DD-#x20E0 are excluded (in accordance with Unicode,
section 5.14).

✦ Character #x00B7 is classified as an extender, because the property list so
identifies it.

✦ Character #x0387 is added as a name character, because #x00B7 is its
canonical equivalent.

✦ Characters ‘:’ and ‘_’ are allowed as name-start characters.

✦ Characters ‘-’ and ‘.’ are allowed as name characters.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 964

965Appendix B ✦ The XML 1.0 Specification

C. XML and SGML (Non-Normative)
XML is designed to be a subset of SGML, in that every valid XML document should
also be a conformant SGML document. For a detailed comparison of the additional
restrictions that XML places on documents beyond those of SGML, see [Clark].

D. Expansion of Entity and Character
References (Non-Normative)
This appendix contains some examples illustrating the sequence of entity- and
character-reference recognition and expansion, as specified in “4.4 XML Processor
Treatment of Entities and References”.

If the DTD contains the declaration

<!ENTITY example “<p>An ampersand (&#38;) may be escaped
numerically (&#38;#38;) or with a general entity
(&amp;).</p>” >

then the XML processor will recognize the character references when it parses the
entity declaration, and resolve them before storing the following string as the value
of the entity “example”:

<p>An ampersand (&) may be escaped
numerically (&#38;) or with a general entity
(&amp;).</p>

A reference in the document to “&example;” will cause the text to be reparsed, at
which time the start- and end-tags of the “p” element will be recognized and the
three references will be recognized and expanded, resulting in a “p” element with
the following content (all data, no delimiters or markup):

An ampersand (&) may be escaped
numerically (&) or with a general entity
(&).

A more complex example will illustrate the rules and their effects fully. In the
following example, the line numbers are solely for reference.

1 <?xml version=’1.0’?>
2 <!DOCTYPE test [
3 <!ELEMENT test (#PCDATA) >
4 <!ENTITY % xx ‘%zz;’>
5 <!ENTITY % zz ‘<!ENTITY tricky “error-prone” >’ >
6 %xx;
7]>
8 <test>This sample shows a &tricky; method.</test>

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 965

966 Appendixes

This produces the following:

in line 4, the reference to character 37 is expanded immediately, and the parameter
entity “xx” is stored in the symbol table with the value “%zz;”. Since the
replacement text is not rescanned, the reference to parameter entity “zz” is not
recognized. (And it would be an error if it were, since “zz” is not yet declared.)

in line 5, the character reference “<” is expanded immediately and the
parameter entity “zz” is stored with the replacement text “<!ENTITY tricky “error-
prone” >”, which is a well-formed entity declaration.

in line 6, the reference to “xx” is recognized, and the replacement text of “xx”
(namely “%zz;”) is parsed. The reference to “zz” is recognized in its turn, and its
replacement text (“<!ENTITY tricky “error-prone” >”) is parsed. The general entity
“tricky” has now been declared, with the replacement text “error-prone”.

in line 8, the reference to the general entity “tricky” is recognized, and it is
expanded, so the full content of the “test” element is the self-describing (and
ungrammatical) string This sample shows a error-prone method.

E. Deterministic Content Models (Non-Normative)
For compatibility, it is required that content models in element type declarations be
deterministic.

SGML requires deterministic content models (it calls them “unambiguous”); XML
processors built using SGML systems may flag non-deterministic content models
as errors.

For example, the content model ((b, c) | (b, d)) is non-deterministic, because given
an initial b the parser cannot know which b in the model is being matched without
looking ahead to see which element follows the b. In this case, the two references to
b can be collapsed into a single reference, making the model read (b, (c | d)). An
initial b now clearly matches only a single name in the content model. The parser
doesn’t need to look ahead to see what follows; either c or d would be accepted.

More formally: a finite state automaton may be constructed from the content model
using the standard algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and
Ullman [Aho/Ullman]. In many such algorithms, a follow set is constructed for each
position in the regular expression (i.e., each leaf node in the syntax tree for the
regular expression); if any position has a follow set in which more than one
following position is labeled with the same element type name, then the content
model is in error and may be reported as an error.

Algorithms exist which allow many but not all non-deterministic content models to
be reduced automatically to equivalent deterministic models; see Brüggemann-
Klein 1991 [Brüggemann-Klein].

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 966

967Appendix B ✦ The XML 1.0 Specification

F. Autodetection of Character Encodings
(Non-Normative)
The XML encoding declaration functions as an internal label on each entity,
indicating which character encoding is in use. Before an XML processor can read
the internal label, however, it apparently has to know what character encoding is in
use—which is what the internal label is trying to indicate. In the general case, this
is a hopeless situation. It is not entirely hopeless in XML, however, because XML
limits the general case in two ways: each implementation is assumed to support
only a finite set of character encodings, and the XML encoding declaration is
restricted in position and content in order to make it feasible to autodetect the
character encoding in use in each entity in normal cases. Also, in many cases other
sources of information are available in addition to the XML data stream itself. Two
cases may be distinguished, depending on whether the XML entity is presented to
the processor without, or with, any accompanying (external) information. We
consider the first case first.

Because each XML entity not in UTF-8 or UTF-16 format must begin with an XML
encoding declaration, in which the first characters must be ‘<?xml’, any conforming
processor can detect, after two to four octets of input, which of the following cases
apply. In reading this list, it may help to know that in UCS-4, ‘<’ is “#x0000003C” and ‘?’
is “#x0000003F”, and the Byte Order Mark required of UTF-16 data streams is “#xFEFF”.

✦ 00 00 00 3C: UCS-4, big-endian machine (1234 order)

✦ 3C 00 00 00: UCS-4, little-endian machine (4321 order)

✦ 00 00 3C 00: UCS-4, unusual octet order (2143)

✦ 00 3C 00 00: UCS-4, unusual octet order (3412)

✦ FE FF: UTF-16, big-endian

✦ FF FE: UTF-16, little-endian

✦ 00 3C 00 3F: UTF-16, big-endian, no Byte Order Mark (and thus, strictly
speaking, in error)

✦ 3C 00 3F 00: UTF-16, little-endian, no Byte Order Mark (and thus, strictly
speaking, in error)

✦ 3C 3F 78 6D: UTF-8, ISO 646, ASCII, some part of ISO 8859, Shift-JIS, EUC, or any
other 7-bit, 8-bit, or mixed-width encoding which ensures that the characters
of ASCII have their normal positions, width, and values; the actual encoding
declaration must be read to detect which of these applies, but since all of
these encodings use the same bit patterns for the ASCII characters, the
encoding declaration itself may be read reliably

✦ 4C 6F A7 94: EBCDIC (in some flavor; the full encoding declaration must be
read to tell which code page is in use)

✦ other: UTF-8 without an encoding declaration, or else the data stream is
corrupt, fragmentary, or enclosed in a wrapper of some kind

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 967

968 Appendixes

This level of autodetection is enough to read the XML encoding declaration and
parse the character-encoding identifier, which is still necessary to distinguish the
individual members of each family of encodings (e.g. to tell UTF-8 from 8859, and
the parts of 8859 from each other, or to distinguish the specific EBCDIC code page
in use, and so on).

Because the contents of the encoding declaration are restricted to ASCII characters,
a processor can reliably read the entire encoding declaration as soon as it has
detected which family of encodings is in use. Since in practice, all widely used
character encodings fall into one of the categories above, the XML encoding
declaration allows reasonably reliable in-band labeling of character encodings, even
when external sources of information at the operating-system or transport-protocol
level are unreliable.

Once the processor has detected the character encoding in use, it can act
appropriately, whether by invoking a separate input routine for each case, or by
calling the proper conversion function on each character of input.

Like any self-labeling system, the XML encoding declaration will not work if any
software changes the entity’s character set or encoding without updating the
encoding declaration. Implementors of character-encoding routines should be
careful to ensure the accuracy of the internal and external information used to label
the entity.

The second possible case occurs when the XML entity is accompanied by encoding
information, as in some file systems and some network protocols. When multiple
sources of information are available, their relative priority and the preferred
method of handling conflict should be specified as part of the higher-level protocol
used to deliver XML. Rules for the relative priority of the internal label and the
MIME-type label in an external header, for example, should be part of the RFC
document defining the text/xml and application/xml MIME types. In the interests of
interoperability, however, the following rules are recommended.

✦ If an XML entity is in a file, the Byte-Order Mark and encoding-declaration PI
are used (if present) to determine the character encoding. All other heuristics
and sources of information are solely for error recovery.

✦ If an XML entity is delivered with a MIME type of text/xml, then the charset
parameter on the MIME type determines the character encoding method; all
other heuristics and sources of information are solely for error recovery.

✦ If an XML entity is delivered with a MIME type of application/xml, then the
Byte-Order Mark and encoding-declaration PI are used (if present) to
determine the character encoding. All other heuristics and sources of
information are solely for error recovery.

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 968

969Appendix B ✦ The XML 1.0 Specification

These rules apply only in the absence of protocol-level documentation; in
particular, when the MIME types text/xml and application/xml are defined, the
recommendations of the relevant RFC will supersede these rules.

G. W3C XML Working Group (Non-Normative)
This specification was prepared and approved for publication by the W3C XML
Working Group (WG). WG approval of this specification does not necessarily imply
that all WG members voted for its approval. The current and former members of
the XML WG are:

Jon Bosak, Sun (Chair); James Clark (Technical Lead); Tim Bray, Textuality and
Netscape (XML Co-editor); Jean Paoli, Microsoft (XML Co-editor); C. M. Sperberg-
McQueen, U. of Ill. (XML Co-editor); Dan Connolly, W3C (W3C Liaison); Paula
Angerstein, Texcel; Steve DeRose, INSO; Dave Hollander, HP; Eliot Kimber, ISOGEN;
Eve Maler, ArborText; Tom Magliery, NCSA; Murray Maloney, Muzmo and Grif;
Makoto Murata, Fuji Xerox Information Systems; Joel Nava, Adobe; Conleth
O’Connell, Vignette; Peter Sharpe, SoftQuad; John Tigue, DataChannel.

✦ ✦ ✦

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 969

3236-7 AppB.F.qc 6/29/99 1:13 PM Page 970

