
Working with
Recordsets —
Part II

In this chapter, I’ll continue my discussion of the ADO
Recordset object by covering how to access the informa-

tion contained in the various fields. Then I’ll explain how to
move around and locate records in the Recordset.

More About Recordsets
As you know, a Recordset object contains a collection of
rows returned from the database. Rather than make all of the
rows available to you at one time, it maintains a pointer to the
current row that you can move through the recordset using
various methods and properties. The information contained
in the row’s columns is made available through the Fields
collection. Depending on your cursor type, you can change
the values locally and then commit the values to the database
using the appropriate methods.

The Field Object
The Field object contains information about a specific col-
umn in a Recordset. It is part of the Fields collection, which
contains the set of columns retrieved from the database.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Accessing fields
in a recordset

Moving around in
a recordset

Sorting and
filtering rows

Collecting recordset
information

Getting information
from fields

Working with
large values

✦ ✦ ✦ ✦

300 Part III ✦ Hardcore ADO

Field object properties
Table 15-1 lists the properties associated with the Field object. Tables 15-2 and
15-3 contain additional information about specific properties listed in Table 15-1.

Values, values and more values: Each field has three properties that describe its
value. Value contains the current value of the field. OriginalValue contains
the value as it was originally retrieved from the database. UnderlyingValue
contains the current value for the field, which may reflect changes made by other
transactions.

Table 15-1
Properties of the Field Object

Property Description

ActualSize A Long value containing the actual length of a field’s value.

Attributes An enumerated type describing the characteristics of the column
(see Table 15-2).

DataFormat An object reference to a StdDataFormat object containing
information about how to format the data value.

DefinedSize A Long containing the maximum length of a field’s value.

Name A String value containing the name of the field.

NumericScale A Byte value containing the number of digits to the right of the
decimal point for a numeric field.

OriginalValue A Variant containing the original value of the field before any
modifications were made.

Precision A Byte value containing the total number of digits in a numeric
field.

Properties An object reference to a Properties collection containing
provider-specific information about a field.

Type An enumerated type containing the OLE DB data type of the field
(see Table 15-3).

UnderlyingValue A Variant containing the current value of the field in the
database as it exists on the database server.

Value A Variant containing the current value of the field.

Note

301Chapter 15 ✦ Working with Recordsets — Part II

Table 15-2
Values for Attributes

Constant Value Description

adFldUnspecified -1 The provider doesn’t supply field attributes.

adFldMayDefer 2 The field value is not retrieved with the whole
record, but only when you explicitly access the
field.

adFldUpdateable 4 The field’s value may be changed.

adFldUnknownUpdateable 8 The provider can’t determine if you can change
the field’s value.

adFldFixed 16 The field contains fixed-length data.

adFldIsNullable 32 The field will accept Null values.

adFldMayBeNull 64 The field may contain a Null value.

adFldLong 128 The field contains a long binary value and you
should use the AppendChunk and GetChunk
methods to access its data.

adFldRowID 256 The field contains an identity value which can’t
be changed.

adFldRowVersion 512 The field contains a time stamp value that is
used to track updates.

adFldCacheDeferred 4096 This field is cached by the provider and
subsequent reads and writes are done from
cache.

adFldIsChapter 8192 The field contains a chapter value, which
specifies a specific child Recordset related to
this parent field.

adFldNegativeScale 16384 The field contains a numeric column that
supports negative scale values.

adFldKeyColumn 32768 The field is (or at least part of) the primary key
for the table.

adFldIsRowURL 65536 The field contains the URL that names the
resource from the data store represented by
the record.

Continued

302 Part III ✦ Hardcore ADO

Table 15-2 (continued)

Constant Value Description

adFldIsDefaultStream 131072 The field contains the default stream for the
resource represented by the record.

adFldIsCollection 262144 The field contains a collection of another
resource such as a folder rather than a simple
resource such as a file.

Table 15-3
Values for Type

Constant Value Description

adEmpty 0 This field has no value (OLE DB data type value:
DBTYPE_EMPTY).

adSmallInt 2 This field has an Integer value (OLE DB data type
value: DBTYPE_I2).

adInteger 3 This field has a Long value (OLE DB data type value:
DBTYPE_I4).

adSingle 4 This field has a Single value (OLE DB data type
value: DBTYPE_R4).

adDouble 5 This field has a Double value (OLE DB data type
value: DBTYPE_R8).

adCurrency 6 This field has a Currency value (OLE DB data type
value: DBTYPE_CY).

adDate 7 This field has a Date value (OLE DB data type value:
DBTYPE_DATE).

adBSTR 8 This field has a null-terminated Unicode string (OLE
DB data type value: DBTYPE_BSTR).

adIDispatch 9 This field has a pointer to an IDispatch interface in
a COM object (OLE DB data type value:
DBTYPE_IDISPATCH).

adError 10 This field has a 32-bit error code (OLE DB data type
value: DBTYPE_ERROR).

adBoolean 11 This field has a Boolean value (OLE DB data type
value: DBTYPE_BOOL).

303Chapter 15 ✦ Working with Recordsets — Part II

Constant Value Description

adVariant 12 This field has a Variant value (OLE DB data type
value: DBTYPE_VARIANT). Note that while this type
is supported by OLE DB, but it is not supported by
ADO. Using it may cause unpredictable results.

adIUnknown 13 This field has a pointer to an IUnknown interface in a
COM object (OLE DB data type value:
DBTYPE_IUNKNOWN).

adDecimal 14 This field has an exact numeric value with a fixed
precision and scale (OLE DB data type value:
DBTYPE_DECIMAL).

adTinyInt 16 This field has a one byte signed integer (OLE DB data
type value: DBTYPE_I1).

adUnsignedTinyInt 17 This field has a one byte unsigned integer (OLE DB
data type value: DBTYPE_UI1).

adUnsignedInt 18 This field has a two byte unsigned integer (OLE DB
data type value: DBTYPE_UI2).

adUnsignedInt 19 This field has a four byte unsigned integer (OLE DB
data type value: DBTYPE_UI4).

adBigInt 20 This field has an 8-byte signed integer (OLE DB data
type value: DBTYPE_I8).

adUnsignedBigInt 21 This field has an 8-byte unsigned integer (OLE DB
data type value: DBTYPE_UI8).

adFileTime 64 This field has a 64-bit date-time value represented as
the number of 100-nanosecond intervals since 1
January 1601 (OLE DB data type value: DBTYPE_
FILETIME).

adGUID 72 This field has a globally unique identifier value (OLE
DB data type value: DBTYPE_GUID).

adBinary 128 This field has a Binary value (OLE DB data type
value: DBTYPE_BYTES).

adChar 129 This field has a String value (OLE DB data type
value: DBTYPE_STR).

adWChar 130 This field contains a null-terminated Unicode
character string (OLE DB data type value: DBTYPE_
WSTR).

adNumeric 131 This field contains an exact numeric value with a fixed
precision and scale (OLE DB data type value:
DBTYPE_NUMERIC).

Continued

304 Part III ✦ Hardcore ADO

Table 15-3 (continued)

Constant Value Description

adUserDefined 132 This field contains a user-defined value (DBTYPE_UDT).

adDBDate 133 This field has a date value using the YYYYMMDD
format (OLE DB data type value: DBTYPE_DBDATE).

adDBTime 134 This field has a time value using the HHMMSS format
(OLE DB data type value: DBTYPE_DBTIME).

adDBTimeStamp 135 This field has a date-time stamp in the YYYYMMDDHH
MMSS format (OLE DB data type value: DBTYPE_
DBTIMESTAMP).

adChapter 136 This field has a 4-byte chapter value that identifies the
rows in a child rowset (OLE DB data type value:
DBTYPE_HCHAPTER).

adPropVariant 138 This field has an Automation PROPVARIANT (OLE DB
data type value: DBTYPE_PROP_VARIANT).

adVarNumeric 139 This field contains a numeric value. (Available for
Parameter objects only.)

adVarChar 200 This field contains a String. (Available for
Parameter objects only.)

adLongVarChar 201 This field has a long character value. (Available for
Parameter objects only.)

adVarWChar 202 This field has a null-terminated Unicode character
string value. (Available for Parameter objects only.)

adLongVarWChar 203 This field has a long null-terminated character string
value. (Available for Parameter objects only.)

adVarBinary 204 This field has a binary value. (Available for
Parameter objects only.)

adLongVarBinary 205 This field has a long binary value. (Available for
Parameter objects only.)

Field object methods
The Field object contains two methods that help you deal with large fields.

305Chapter 15 ✦ Working with Recordsets — Part II

Sub AppendChunk (Data as Variant)
The AppendChunk method is used to add data to a large text or binary field. The
first time the AppendChunk method is used, the value in Data will overwrite any
existing data in the field. For subsequent calls, simply append data to the end of
the existing data.

Data is a Variant containing the data to be appended to the end of the field.

Function GetChunk (Length as Long) as Variant
The GetChunk method is used to retrieve data from a large text or binary field. The
first time GetChunk is called, the data will be retrieved from the start of the field. Only
the number of bytes (or Unicode characters) specified will be retrieved. Subsequent
calls will retrieve data from where the previous call left off. If you specify a length
greater than the remaining data, only the remaining data will be returned without
padding.

A long, long chunk ago: You can only use the GetChunk and the AppendChunk
methods when the adFldLong bit is set in the Attributes property.

Length is a Long containing the number of bytes or characters of data to be
retrieved.

The Fields Collection
The Fields collection contains the set of columns being returned in a Recordset
object.

Fields collection properties
Table 15-4 lists the properties associated with the Fields collection.

Table 15-4
Properties of the Fields Collection

Property Description

Count A Long value containing the number of Field objects in the collection.

Item(index) An object reference to a Field object containing information about a
particular field in the Recordset. To locate a field, specify a value in
the range of 0 to Count –1 or the name of the Field.

Note

306 Part III ✦ Hardcore ADO

Special fields: The two special fields that are defined for a Record object are the
default Stream object (index = adDefaultStream) and the absolute URL for
the Record (index = adRecordURL).

Fields collection methods
The Fields collection contains methods that are used to maintain the set of Field
objects.

Sub Append (Name As String, Type As DataTypeEnum, [DefinedSize As
Long], [Attrib As FieldAttributeEnum = adFldUnspecified], [FieldValue
As Variant])
The Append method creates a new Field object and adds it to the Fields collection.

Name is a String value containing the name of the field.

Type is the data type that will be associated with the new field.

DefinedSize is a Long containing the size of the new field.

Attrib is a bit pattern containing values that determine the characteristics of the
field (see Table 15-2 for the possible values for this property).

FieldValue is a Variant that contains the value for the new field. If this value isn’t
specified, then the field will be Null.

Sub Delete (Index As Variant)
The Delete method removes a Field from the collection. Index is either a String
containing the name of the field or a Long value containing the ordinal position of
the Field object to be deleted.

Sub Refresh()
The Refresh method has no real effect on the Fields collection. To see a change
in the underlying database structures, you need to issue a Requery method of the
Recordset object.

Sub Update()
The Update method is used to save the changes you make to the Fields collection.

Note

307Chapter 15 ✦ Working with Recordsets — Part II

Moving Around a Recordset
You can use the Recordset object to gain access to the set of rows selected from
the database. You can only access one row at a time with the current record pointer,
which allows you to use various methods and properties to change the record that
the current record pointer is pointing to.

The Recordset Movement Demo program
To demonstrate the different ways to move around in a Recordset, I wrote the
Recordset Movement Demo program (see Figure 15-1). This program might not win
the award for the World’s Most Cluttered window, but it would certainly place in the
top five. However, it does accomplish its goal of presenting the maximum amount of
information about what happens when you move around in a Recordset.

Figure 15-1: Running the Recordset Movement Demo program

This program can be found on the CD-ROM in the \VB6DB\Chapter15\
RecordsetMovementDemo directory.

On the
CD-ROM

308 Part III ✦ Hardcore ADO

Running the program
In order to try moving around in a recordset with this program, you must first con-
nect to your database. Enter your user name and password information in the appro-
priate blanks in the Connection frame and press the Connect button. Respond Yes to
the message box that asks “Do you really want to connect?”. If you were able to suc-
cessfully connect to the database server, the message “Connected” will be displayed
in the status bar at the bottom of the form.

Once you’re connected to the database server, you can open the Recordset in the
Open Recordset frame. You may enter a two-character state name in the field called
Select State to restrict the Recordset so that it only contains customers from the
specified state. Otherwise, the recordset will contain all of the customers from the
database.

You can also specify the number of records you want per page in the Page Size field.
The default value is ten. Then you can choose values for Cursor Location, Cursor
Type, and Lock Type properties. Pressing Open Recordset will open the recordset.
You can change any of these values and press the Open Recordset button to close
the current recordset and open it again with the new parameters.

The current status of the Recordset object is recorded in the Recordset Status
frame. The values from three fields are displayed, along with the current status of the
BOF and EOF properties. Normally the BOF or EOF boxes will be black, indicating that
the current record pointer isn’t pointing to either extreme. When you read either BOF
or EOF, the appropriate box will be displayed in yellow. If you are already on BOF or
EOF and attempt to move beyond the end of the recordset a second time, the box will
be displayed in red. Also displayed are the values from the AbsolutePosition,
RecordCount, AbsolutePage, PageCount, and Bookmark properties.

Once you have opened the Recordset, you can move around using the controls in
the Move Demo, Filter, Find, and Sort frames of the form. Note that you can’t update
any of the fields in the database. I’ll discuss updating information in a recordset in
Chapter 16.

Check before you click: I don’t check most of the input parameters before using
them, so don’t be surprised if the program gets a fatal error or does something
unpredictable if you enter the wrong value.

Module level declarations
The Recordset Movement Demo program includes a few variables declared at the
module level, making them global to the entire module (see Listing 15-1). These
include the Customers Recordset object, the db Connection object and the
SaveBookmark variable. Note that I declared both the Recordset and Connection
objects WithEvents, which allow me to monitor the status of both objects with the
appropriate events to track their status.

Caution

309Chapter 15 ✦ Working with Recordsets — Part II

Listing 15-1: Module level declarations for Recordset
Movement Demo

Option Explicit

Dim WithEvents Customers As ADODB.Recordset
Dim WithEvents db As ADODB.Connection
Dim SaveBookmark As Variant

Moving sequentially
The current record is a pointer to one of the rows in the Recordset. Assume that
you retrieve a Recordset from your database with seven rows. Before the first row
in the recordset is a special marker known as the BOF, while the EOF marker is
beyond the end of the last row. The current record pointer can point to any of
these locations (see Figure 15-2).

Figure 15-2: A logical view of the current record pointer

Absolutely addressed: The record numbers shown in Figure 15-2 correspond to
the values of the AbsolutePosition property, except for BOF and EOF, which
don’t have a corresponding value for AbsolutePosition.

When you first open a Recordset, the current record pointer is pointing to the first
record (assuming of course that there is at least one record in the recordset). From
this location, you can move to the next record (record number 2) in sequence using
the MoveNext method. Using the MoveLast method will take you to record number 7,
which is the last record in the recordset. You can return to the first record by using
the MoveFirst method, and you can move to the previous record using the
MovePrevious method.

Note

EOF 1 2 3 4 5 6 7 EOF

Current Record Pointer

310 Part III ✦ Hardcore ADO

Moving beyond the ends
One problem with the MoveNext method is that if you are at the last record in the
recordset, there is nothing to prevent you from trying to move beyond the end.
When this happens, the current record pointer is moved to EOF. While the current
record pointer points to EOF, any attempt to access column information results in
an error. The same problem occurs with the MovePrevious method and the begin-
ning of the Recordset.

The solution to this problem is to not leave the current record pointer pointing to
EOF or BOF. This condition can be detected by using the EOF and BOF properties.
The EOF property is TRUE only when the current record pointer is pointing beyond
the last record, while the BOF property is only TRUE if the current record pointer is
pointing before the first record. Note that if both properties are TRUE, the Recordset
doesn’t contain any records.

Using the MoveNext method
Using these methods is very straightforward. All you really need to do is to call the
desired method; however, this isn’t really practical since it doesn’t do any error
checking. A more practical example is shown in Listing 15-2. This routine verifies
that the Recordset isn’t already at the end of file marker before it calls the
MoveNext method. This ensures that you can’t move beyond EOF.

Listing 15-2: The MoveNextDemo routine

Sub MoveNextDemo()

If Not Customers.EOF Then
Customers.MoveNext

End If

End Sub

An alternate MoveNext
Another way to handle the MoveNext method is shown in Listing 15-3. This routine
uses the On Error Resume Next statement and the Err object to detect when the
MoveNext fails. If it does fail, then my old friend WriteError is used to display the
database message.

311Chapter 15 ✦ Working with Recordsets — Part II

Listing 15-3: The Command5_Click event in Recordset
Movement Demo

Private Sub Command5_Click()

On Error Resume Next

StatusBar1.SimpleText = “”
Err.Clear

Customers.MoveNext
If Err.Number <> 0 Then

WriteError

End If

End Sub

However, to make the Command5_Click event work properly, I also have to code the
WillMove event to detect and cancel any attempt to move beyond the BOF or EOF
(see Listing 15-4). This routine detects when you are at EOF or BOF and are about to
perform a method that would trigger an error, and sets the adStatus parameter to
adStatusCancel to return an error condition.

Listing 15-4: The Customers_WillMove event in Recordset
Movement Demo

Private Sub Customers_WillMove(_
ByVal adReason As ADODB.EventReasonEnum, _
adStatus As ADODB.EventStatusEnum, _
ByVal pRecordset As ADODB.Recordset)

If Customers.BOF And adReason = adRsnMovePrevious Then
adStatus = adStatusCancel

End If

If Customers.EOF And adReason = adRsnMoveNext Then
adStatus = adStatusCancel

End If

End Sub

312 Part III ✦ Hardcore ADO

Moving randomly
There are several ways to move around the Recordset randomly. The one you
should use depends on what you are trying to accomplish. The Bookmark property
allows you to save the location of a row and be able to return to that row at some
future point in time. The Move method allows you to move forward or backward the
specified number of rows. The AbsolutePage property allows you to jump to the
specified page number in the Recordset. If your recordset supports it, you can
also use the AbsolutePosition property to position the cursor at a specific loca-
tion in the recordset.

Using bookmarks
The Bookmark property contains the current location of a record in a Recordset. It
is a Variant value that is highly dependent on the data provider. It is possible to
have multiple bookmarks that point to the same record, but each bookmark is a dif-
ferent value. The only way to compare bookmarks is to use the CompareBookmarks
method. Also, a Bookmark is specific to the Recordset that it came from. You can’t
use it with any other recordsets, even if they were created with the same command.

Cloned again: A Bookmark can be used with any copy of a Recordset that was
created using the Clone method.

To save a bookmark, simply declare a Variant variable and save the value of the
Bookmark property to it, as shown below.

SaveBookmark = Customers.Bookmark

This saves the location of the current record. Then after moving to a different
record, you can move the current record pointer back to the bookmarked location
by assigning the value you saved back to the Bookmark property. When you add
some error-handling logic, you end up with code like you see in Listing 15-5.

Listing 15-5: The Command8_Click of Recordset Movement
Demo

Private Sub Command8_Click()

On Error Resume Next

StatusBar1.SimpleText = “”
Err.Clear

Customers.Bookmark = SaveBookmark

Note

313Chapter 15 ✦ Working with Recordsets — Part II

If Err.Number <> 0 Then
WriteError

End If

End Sub

Moving forward and backward
The Move method takes two parameters: the number of rows to move and an
optional Bookmark that will be used as the starting location. The number of rows
may be either positive or negative. A positive value will move the specified number
of rows toward the last row of the Recordset, while a negative value will move
toward the first row. If you specify a value of zero, the current record will be
refreshed.

Specifying the bookmark computes the offset relative to that record rather than the
current record. Of course, the Recordset must support bookmarks in order to use
this parameter.

Listing 15-6 shows how easy it is to call the Move method. While you might think
that the error checking in this routine isn’t necessary, think again. If you specify too
large of a value (for example, one that would take you beyond the end of the record-
set), a run-time error will be triggered.

Listing 15-6: The Command7_Click event of Recordset
Movement Demo

Private Sub Command7_Click()

On Error Resume Next

StatusBar1.SimpleText = “”
Err.Clear

Customers.Move CLng(Text14.Text)
If Err.Number <> 0 Then

WriteError

End If

End Sub

314 Part III ✦ Hardcore ADO

Reading pages
One of the more interesting features of ADO is its ability to manage data in terms of
pages. A page is a group of records from the database. The PageSize property
determines the number of records in a page, while the PageCount property tells
you the number of pages in your Recordset. The AbsolutePage property contains
the relative number of the current in the recordset.

You can reposition the current record pointer by setting the AbsolutePage prop-
erty to a particular page, as shown below:

Customers.AbsolutePage = CLng(Text18.Text)

This will move the current record pointer to the first record on that page. You can
even change the PageSize property while the Recordset object is open, which
makes it easy to change the number of records displayed per page on the fly.

Internet ready: The page properties are often useful in an Internet or transaction-
oriented environment where a user scrolls though a recordset one page at a time.
You can use the AbsolutePage property to determine which page needs to be
displayed, and then use the MoveNext method to retrieve the remaining rows on
the page.

Absolute positioning
If your recordset supports the AbsolutePosition and RecordCount properties,
you can determine the current record number and the total records in your
Recordset. The AbsolutePosition property will also allow you to move the
cursor to the specified location.

Absolute ain’t accurate: You should not use the AbsolutePosition property in
place of bookmarks. Depending on the options you select when you open your
recordset, the actual record pointed to by the AbsolutePosition may change as
other records are added and deleted from the recordset. Don’t assume that if you
haven’t added or deleted a record, this value won’t change. Remember — depend-
ing on the type of cursor you select, changes made by other database users may
affect the value of AbsolutePosition associated with a particular row.

Searching, Sorting, and Filtering
Another common need is the ability to find and organize the information within a
recordset. The Recordset object includes a method to find a particular row by
searching for a value, and a method to sort the records contained in the recordset
by a specified list of fields.

Caution

Tip

315Chapter 15 ✦ Working with Recordsets — Part II

Finding a row
One common problem with retrieving a large number of records is trying to find a
particular value in the Recordset. The easiest way to address this problem is to
use the Find method.

The Find method allows you to specify a search string consisting of a column
name, a relational operator, and a value. If the value is a string, it must be enclosed
in either single quotes (‘) or pound signs (#). Double quotes (“) may not be used.
Pound signs must enclose date values.

If you use the Like operator, you may also use an asterisk (*) as a wild card charac-
ter in any string value. However, the asterisk must be the last character in the
value or the only character in the value. Otherwise a run-time error will occur.

The Find method has several arguments in addition to the search condition.
Specify the number of rows to skip before beginning your search; otherwise, the
search will begin with the current row. So, you should specify a value of one if you
want to find the next occurrence of a value.

You can also specify whether you want to search backwards (toward the beginning)
or forwards (toward the end) of the recordset, and you may specify a bookmark
from where the search will begin.

Like most of the Recordset methods I’ve talked about so far, you simply call the
method with the list of arguments you wish to use, and include the appropriate
error checking to prevent a run-time error from occurring if you can’t find the
record or your search condition contains an error (see Listing 15-7).

Listing 15-7: The Command10_Click event of Recordset
Movement Demo

Private Sub Command10_Click()

On Error Resume Next

StatusBar1.SimpleText = “”
Err.Clear

Customers.Find Text17.Text, 1
If Err.Number <> 0 Then

WriteError

End If

End Sub

316 Part III ✦ Hardcore ADO

For client-side cursors only: The Seek method provides an alternative to the
Find method, but is only available when you are using client-side cursors (dis-
cussed in Chapter 14). You begin by specifying the name of an index in the Index
property and then supplying a list of values to search for that corresponds to the
columns in the index (i.e., if your index has only one column, only one value may
be supplied). Note that not all providers support this feature, including the one for
SQL Server, so you may want to use the Supports method to determine if the
Seek method is supported.

Sorting rows
The Sort property contains the list of columns that are used to sort your record-
set. Thus, one way you can sort the recordset in the sample program is by setting
the Sort property to the following value:

State, Name Desc

This sort key will sort the rows by State in ascending order and then by the Name
column in descending order.

The Sort property is available only for client-side recordsets, which means you
may want to do a little extra error checking, especially if you use multiple cursor
types. The error message that would normally be issued (“Object or provider is not
capable of performing requested operation”) doesn’t fully describe what caused the
error.

Listing 15-8 contains some sample code that will sort the information in a recordset.
The routine begins by getting the sort key from the form and assigning it to the
Sort property. Then I check for errors and display the appropriate error message.
An error code of 3251 implies that the user attempted to sort the recordset without
using a client-side cursor.

Listing 15-8: The Command13_Click event in Recordset
Movement Demo

Private Sub Command13_Click()

On Error Resume Next

Err.Clear
Customers.Sort = Text19.Text
If Err.Number = 3251 And _

Customers.CursorLocation = adUseServer Then
StatusBar1.SimpleText = _

Note

317Chapter 15 ✦ Working with Recordsets — Part II

“Can’t sort while using server cursors.”

ElseIf Err.Number <> 0 Then
WriteError

End If

End Sub

Filtering rows
One of my favorite tools available in a Recordset object — one that will help you
locate a particular record — is the Filter property. Only those rows that meet the
filter criteria you specify will be visible in the recordset.

You can filter your recordset using a string which is similar to the condition you
would specify in the Where clause of a Select statement. A condition is composed
of one or more simple expressions composed of column names, relational opera-
tors, and values that can be grouped together, as in this example:

State = ‘MD’ And CustomerId > 100

To remove a filter, simply set the Bookmark property to zero or the constant
adFilterNone. The original contents of the recordset will now be accessible.

If you create an array of bookmark values and assign it to the Filter property, only
the rows in the array will be visible in the recordset. You can also assign the Filter
property a value from the FilterGroupEnum data type. Aside from adFilterNone,
these values are used primarily for reviewing the results of batch updates, which I’ll
talk about in the next chapter.

Why did it change?: Using the Filter property will change the values in the
AbsolutePosition, AbsolutePage, RecordCount, and PageCount proper-
ties for a specific row. If you need to remember where a particular row is located,
you should use the Bookmark property, which will remain unchanged no matter
what the value of the Filter property.

Listing 15-9 describes a routine that applies the value specified in the Text16 text
box as a filter to the Customers recordset. If the length of the text is zero, then I
explicitly remove the filter by assigning the Filter property the value
adFilterNone.

Caution

318 Part III ✦ Hardcore ADO

Listing 15-9: The Command9_Click event in Recordset
Movement Demo

Private Sub Command9_Click()

On Error Resume Next

StatusBar1.SimpleText = “”
Err.Clear

If Len(Text16.Text) = 0 Then
Customers.Filter = adFilterNone

Else
Customers.Filter = Text16.Text

End If

If Err.Number <> 0 Then
WriteError

End If

End Sub

Collecting recordset information
There are two events associated with changing the position of the current record
pointer in the Recordset object. I talked about the WillMove event earlier in this
chapter (see Listing 15-4), and now I want to talk about the MoveComplete event.
This is an excellent place to display the current status of a recordset.

You don’t need to do this: In this sample program, I wanted to demonstrate
clearly how the various status fields change while you perform various tasks using
a Recordset. The easiest way for me to do this was to trap the state of the object
using the MoveComplete event. However, this isn’t something you need to do in
your own programs. You can easily test the various properties directly after you
perform a task. Thus, you don’t need to use the MoveComplete event.

Listing 15-10: The Customers_MoveComplete event in
Recordset Movement Demo

Private Sub Customers_MoveComplete(_
ByVal adReason As ADODB.EventReasonEnum, _
ByVal pError As ADODB.Error, _
adStatus As ADODB.EventStatusEnum, _

Tip

319Chapter 15 ✦ Working with Recordsets — Part II

ByVal pRecordset As ADODB.Recordset)

On Error Resume Next

If Customers.BOF And adStatus = adStatusErrorsOccurred Then
Text5.BackColor = RGB(255, 0, 0)

ElseIf Customers.BOF Then
Text5.BackColor = RGB(255, 255, 0)

Else
Text5.BackColor = RGB(0, 0, 0)

End If

If Customers.EOF And adStatus = adStatusErrorsOccurred Then
Text6.BackColor = RGB(255, 0, 0)

ElseIf Customers.EOF Then
Text6.BackColor = RGB(255, 255, 0)

Else
Text6.BackColor = RGB(0, 0, 0)

End If

Text9.Text = FormatNumber(Customers.AbsolutePosition, 0)
Text10.Text = FormatNumber(Customers.RecordCount, 0)
Text11.Text = FormatNumber(Customers.AbsolutePage, 0)
Text12.Text = FormatNumber(Customers.PageCount, 0)

Err.Clear
Text13.Text = Customers.Bookmark
If Err.Number <> 0 Then

Text13.Text = “The bookmark isn’t available.”

End If

End Sub

This routine starts out by displaying information about the BOF and EOF flags. The
code for both is the same. There are three possible conditions. First, if the current
record pointer is not pointing to either BOF or EOF, I have a normal record and
don’t want to do anything. Second, if the current record pointer is pointing to either
BOF or EOF, then I want to turn the background of the associated text box to yellow
(RGB(255,255,0)). The third condition arises if the most recent move operation
had an error. I assume that the current record pointer was at BOF or EOF before
the mast operation. Then I want to display the background in red (RGB(255,0,0)).

320 Part III ✦ Hardcore ADO

This means that the user attempted to move past the BOF or EOF marker. The easi-
est way to implement this in code is to start with the last condition (because it’s
the most restrictive) and work my way backwards.

After I set the BOF and EOF flags, I display the properties for AbsolutePosition,
RecordCount, AbsolutePage, and PageCount. Then I attempt to grab the current
bookmark. If the Bookmark isn’t available, I’ll trigger a run-time error and display a
message that indicates this.

Getting Information From Fields
Moving around a recordset is important, but retrieving information from a field is
equally important. Each of the sample programs in Part III of this book has used the
Fields collection and some Field objects to display data. In some cases, this was
done explicitly through statements like this:

Text1.Text = FormatNumber(rs.Fields(0).Value, 0)

while other programs used the Recordset object as the data source and bound
various controls on the form to the individual Field objects.

Binding a field to a control
The same properties that you use to bind a control to the ADO Data Control are
also used to bind to a Recordset. However, unlike the ADO Data Control, you can’t
bind the controls at design time, since the Recordset object doesn’t exist. So you
need to set these properties at runtime. In fact, you can only set these properties
while the Recordset object is open. This means that if you close a recordset and
reopen it, you need to rebind all of your controls.

Shown below is a code fragment that contains the key properties you need to set in
order to bind a field to a control. The DataField property contains the name of the
column you want to bind the control to, while the DataSource property contains
an object reference to the Recordset object. Note that you must use the Set state-
ment to make this assignment.

Text3.DataField = “Name”
Set Text3.DataSource = Customers

Accessing field values
Assuming that you don’t want to bind your data using a control, you can access
each field directly using the Fields collection and the Field object.

321Chapter 15 ✦ Working with Recordsets — Part II

Referencing a field’s value
Visual Basic provides many different ways for you to retrieve a value from a Field
object. You can use the traditional object-oriented way by specifying the Recordset
object and working your way down to the lowest level object. The following expres-
sions take advantage of the default properties of the Recordset object and the
Fields and Items collections to return the value of the “Name” field. Note that you
can replace the value “Name” with the numeric position of the field in the Fields
collection.

Customers.Fields.Items(“Name”).Value
Recordset.Fields.Items(“Name”)
Recordset.Fields(“Name”).Value
Recordset.Fields(“Name”)
Recordset(“Name”)

Fewer is faster: The fewer periods (.) included in an object reference, the faster it
will run. Each period means that a call must be made to the object to determine if
the following property is valid and to get a reference to the code that will process
it. The information needed to call the object’s default property is automatically
retrieved when the object is created.

An alternate way to retrieve a value is by using an exclamation mark (!), as shown
below.

Recordset!Name

Note that in this format, the field name must be specified without single quotes (‘)
and spaces. You also can’t use a numeric reference to the field. However, if you
enclose the field name using square brackets ([]), you can use any of these values
as shown below.

Recordset![First Name]

Other field values
There are two other value properties associated with a Field object: the
OriginalValue and the UnderlyingValue. The OriginalValue field contains the
value of the Field object as it was when it was retrieved from the database. This
value is useful when you want to restore the original value after you change it. The
UnderlyingValue contains the value for this field in this row, as it currently exists
in the database when you access this property.

Working with large values
When you declare a column as NText, Text, or Image, you can’t use the Value prop-
erty to access the data. Instead, you must use the GetChunk method to retrieve

Tip

322 Part III ✦ Hardcore ADO

information from the field, and the AppendChunk method to save values to the field.
These methods work basically the same for all three types of data, so I’m just going
to talk about Image fields in this section. Most people are going to use them for
graphic images, binary documents (such as RTF files, Excel Worksheets, and so on)
or other forms of binary data.

Bound controls
Chances are, the reason you’re using large columns is that you want to hold an
image or a large text document. If that’s true, then you should take advantage of
controls like the Image, Picture, and the Rich Text Box that are capable of
being bound to a field in a recordset and can handle large volumes of data.

Imperfect images: Changing the image in either the Picture control or the
Image control will not update the field in the recordset. You must explicitly load
the image into the field. Even if you were able to save the image in the control,
you would be better off storing the image in either .GIF or .JPG format in the
database, rather than storing the uncompressed bit map image used by the
Picture and Image controls.

Loading images
One of the most common questions I’ve heard people ask is how to load an image
into an Image database field from a Visual Basic program. The answer is shown in
Listing 15-11. The real trick is to use a Byte array and Redim the size so that the
array has the same number of bytes as the image file. Then it’s merely a matter of
opening the file for binary access and using the Get statement to read the image
into the array in a single chunk. Once you’ve loaded the image into memory, you
can use the AppendChunk method to copy it into the Field object, and then
Update to save it to the database.

You can find the Recordset Update Demo program on the CD-ROM in the
\VB6DB\Chapter16\RecordsetUpdateDemo directory.

Listing 15-11: The Command14_Click event in Recordset
Update Demo

Private Sub Command14_Click()

Dim f As String
Dim img() As Byte

f = InputBox(“Enter image file name:”)

On the
CD-ROM

Note

323Chapter 15 ✦ Working with Recordsets — Part II

f = App.Path & “\” & f

If Len(Dir(f)) > 0 Then
Open f For Binary Access Read As #1
ReDim img(FileLen(f) - 1)
Get #1, , img()
Close #1

Images(“Image”).AppendChunk img
Image1.Picture = LoadPicture(f)

Else
Image1.Picture = LoadPicture()

End If

End Sub

Zero counts, too: When moving data from a file to a Byte array, remember that
the array will start with zero, so the size of the array must be one byte less than
size of the file to allow for the zeroth byte in the array.

While it is possible to use a loop like the one shown below to load an image, I feel
that it isn’t worth the effort for files smaller than a megabyte or so. However, you
can use the following code to replace the statements in Listing 15-11 from the Open
statement to the Close statement to perform a loop. Note that this routine begins
by copying the odd size block first and then copying chunks in a fixed block size.
Otherwise, you’d have to keep track of the number of bytes transferred to deter-
mine when you are about to read the last block so you may ReDim the Byte array
in order to transfer only the appropriate amount of data.

Open f For Binary Access Read As #1
ReDim img(FileLen(f) Mod 1024 - 1)
Get #1, , img()

Do While Not EOF(1)
Images.Fields(“Image”).AppendChunk img
ReDim img(1023)
Get #1, , img

Loop
Close #1

Saving images
The code to save the value in a long field isn’t very different than it is to load the
data into the field. If possible, it’s best to try to deal with the data in a single chunk,
as shown in Listing 15-12.

Note

324 Part III ✦ Hardcore ADO

Listing 15-12: The Command15_Click event in Recordset
Update Demo

Private Sub Command15_Click()

Dim f As String
Dim img() As Byte

f = InputBox(“Enter image file name:”)
f = App.Path & “\” & f

ReDim img(Images.Fields(“Image”).ActualSize - 1)
Open f For Binary Access Write As #1
img = Images.Fields(“Image”).GetChunk(UBound(img) + 1)
Put #1, , img
Close #1

End Sub

Thoughts on Designing Database Applications

There are two basic ways to design a database application. One way is to permit the user to
scroll through from one record to another through the entire recordset. The second way is
to ask the user for a key value, which will return only the records related to the key. Both
approaches have strengths and weaknesses, and you can build effective programs using
either technique.

The first method works well if you want to use the ADO Data Control. The ADO Data Control
opens a connection to the database and its Recordset object as soon as the form con-
taining it is shown. However, this isn’t practical for large, multi-user applications. It can be
difficult for a user to find a particular row in the data, while at the same time consuming a
lot of database resources. However, this approach is ideal for small databases, where the
number of records is small enough that the scrolling ability is appreciated and you have a
sufficiently small number of users that won’t overwhelm the database server.

A better approach for large databases is one that allows the user to retrieve data based on
a key value, such as CustomerId or IntentoryId. If the user doesn’t know the exact value,
they can perform a limited search on a field like Name to get the appropriate key value. This
approach has the advantage of using fewer resources on the database server, since you are
accessing far fewer records at any point in time. It also allows you to think of your applica-
tion in terms of transactions. This allows you to take advantage of stored procedures and
COM+ transactions, which would allow you to isolate the application logic, and in turn
makes your application far more scalable. This approach is the only way you can build
applications that run in a user’s browser.

325Chapter 15 ✦ Working with Recordsets — Part II

Summary
In this chapter you learned the following:

✦ You can use the Fields collection to access the collection of columns
retrieved from the database.

✦ You can use the Field object to access the information associated with a
single column.

✦ You can use many different methods to select a record from the recordset,
including MoveFirst, MoveNext, MovePrev, MoveLast, Move, Bookmark,
AbsoluteRecord and AbsolutePage.

✦ You can use the Sort property to sort the information in a recordset and the
Find method to locate a particular row in a recordset.

✦ You can use the GetChunk and AppendChunk methods to retrieve and store
information in large values in your recordset, such as images.

✦ ✦ ✦

