
Integrating XML
with Internet
Information
Server
Applications

In this chapter, I’ll show you how to use the Document
Object Model by building a Web page using VBScript. That

Web page will communicate with a Web server application
built with Internet Information Server (IIS) Applications.

Requesting Information
How often have you wanted to import a particular piece of
information via the Web into your program for analysis?
Perhaps you’re interested in getting a stock quote on a peri-
odic rate or following mortgage rates? Maybe you want to
download information about how well the Orioles are playing.

By defining an XML document for requesting information and
another document to contain the response, you can build a
new breed of server that responds to XML requests for infor-
mation. The fact that you can leverage existing HTTP tech-
nologies, such as Web servers and Web development tools,
makes it easier to build these applications.

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Requesting

information using

the Document

Object Model

Building a simple

Web page

Updating customer

information

✦ ✦ ✦ ✦

4728-3 ch22.f.qc 7/31/00 09:51 Page 483

484 Part V ✦ The Impact of XML

Getting Customer Information With XML
In this chapter, I’m going to focus on how to build an XML client program that
requests information from an XML Server program. I’ve decided to build a Web
page using a little VBScript as the client and an IIS Application as the server (see
Figure 22-1). This application supports two basic types of requests: retrieving infor-
mation about a customer and updating information about a customer.

Figure 22-1: Running the XML Server application

Building the Simple Web Page
The sample Web page shown in Figure 22-1 is a fairly simple Web page that uses a
table to line up the captions and the fields I use to display the data, as you can see
in Listing 22-1. It is broken into three main sections: the <head>, the <body>, and
the <script>. While I’ve left the tags for <script> in Listing 22-1, I omitted the
code, since I’ll discuss it later in this section.

Listing 22-1: HTML for the XML client Web page

<html>
<head>

<title>Address Information</title>
</head>

4728-3 ch22.f.qc 7/31/00 09:51 Page 484

485Chapter 22 ✦ Integrating XML with Internet Information Server Applications

<body>
Address Information
<form align=”left” name=”AddressInfo”>

<table border = “0”>
<tr>

<td>Customer Id:</td>
<td><input type=”text” name=”CustomerId” size=”6”

value=”0”></td>
</tr>
<tr>

<td>Name:</td>
<td><input type=”text” name=”Name” size=”45”

value=””></td>
</tr>
<tr>

<td>Street:</td>
<td><input type=”text” name=”Street” size=”45”

value=””></td>
</tr>
<tr>

<td>City/State/Zip:</td>
<td>

<input type=”text” name=”City” size=”30” value=””>
<input type=”text” name=”State” size=”2” value=””>
<input type=”text” name=”Zip” size=”5” value=””>

</td>
</tr>

</table>
</form>
<button onClick=”GetCustomerInfo()”>Get Customer Info</button>
<button onClick=”UpdateCustomerInfo()”>Update Customer

Info</button>
</body>
<script language=”VBScript”>

</script>
</html>

Note that the form declaration differs from most Web pages that use forms. In this
case, I don’t need attributes that describe how to send the form data to the server.
Specifically, I didn’t code the action and method attributes. This is because I sim-
ply don’t need them. The routines that will handle the conversion to XML will also
handle the interactions with the Web server.

4728-3 ch22.f.qc 7/31/00 09:51 Page 485

486 Part V ✦ The Impact of XML

At the bottom of the form, I declared buttons that will call the GetCustomerInfo
and UpdateCustomerInfo VBScript routines. This is where the actual work of con-
verting the information from the form into an XML document and sending it to the
server for processing takes place.

Requesting Customer Information
Retrieving customer information involves determining how the request and
response XML documents should look and then building the code to process the
documents.

Defining the XML documents
The GetCustomerInfo script routine takes the CustomerId field from the form on
the Web page and assembles the XML document shown in Listing 22-2. This docu-
ment defines the GETCUSTOMERINFO element to identify the request. Within the GET-
CUSTOMERINFO element are one or more CUSTOMER elements with the CustomerId
attribute coded. This attribute specifies the customer you want to retrieve.

Listing 22-2: A sample request for customer information

<?xml version=”1.0”?>
<GETCUSTOMERINFO>

<CUSTOMER CustomerId=”0”/>
</GETCUSTOMERINFO>

Listng 22-3 shows how the server should respond to the request. I use the same
basic document that was used to request the customer’s information, but I expand
the CUSTOMER element to include elements for the Name, Street, City, State, and Zip
fields from the Customers table. I also include another attribute called Get, which
indicates the status of the request. A value of OK means that the information was
retrieved properly. Otherwise, Get will contain an error message.

Listing 22-3: A sample response to the request for customer
information

<GETCUSTOMERINFO>
<CUSTOMER CustomerId=”0” Get=”OK”>

4728-3 ch22.f.qc 7/31/00 09:51 Page 486

487Chapter 22 ✦ Integrating XML with Internet Information Server Applications

<NAME>
Dexter Valentine

</NAME>
<STREET>

3250 Second Ave.
</STREET>
<CITY>

San Francisco
</CITY>
<STATE>

CA
</STATE>
<ZIP>

94115
</ZIP>

</CUSTOMER>
</GETCUSTOMERINFO>

Requesting a customer
Pressing the Get Customer Info button on the Web page will trigger the
GetCustomerInfo VBScript routine in the <script> section of the HTML docu-
ment (see Listing 22-4). This routine performs three separate tasks. First, it must
create an XML document similar to the one shown in Listing 22-2. Next, it must
take the document and transmit it to the Web server. Finally, it must take the
response document (see Listing 22-3) from the Web server and fill in the various
fields on the form.

Listing 22-4: The GetCustomerInfo routine in XML Client

Sub GetCustomerInfo()

Set XMLReq = CreateObject(“MSXML2.DOMDocument”)
Set p = XMLReq.createProcessingInstruction(“xml”, _

“version=””1.0”””)
XMLReq.appendChild p

Set node = XMLReq.createElement(“GETCUSTOMERINFO”)
Set subnode = XMLReq.createElement(“CUSTOMER”)
subnode.setAttribute “CustomerId”, _

Document.AddressInfo.CustomerId.Value

node.appendChild subnode

Continued

4728-3 ch22.f.qc 7/31/00 09:51 Page 487

488 Part V ✦ The Impact of XML

Listing 22-4 (continued)

XMLReq.appendChild node

MsgBox XMLReq.xml

set http=CreateObject(“MSXML2.XMLHTTP”)
http.open “Post”, _

“http://athena/VB6DB22/VB6DB22.ASP?wci=GetCustomer”,
false
http.setRequestHeader “Content-Type”, “text/xml”
http.send XMLReq

Set XMLResp = CreateObject(“MSXML2.DOMDocument”)
XMLResp.LoadXML http.responsetext

MsgBox XMLResp.xml

Set nl = XMLResp.getElementsByTagName(“CUSTOMER”)
i = 0
Do While (i < nl.length) And (nl(i).getAttribute(“CustomerId”)
<> _

Document.AddressInfo.CustomerId.Value)
i = i + 1

Loop

If i < nl.length Then
If nl(i).getAttribute(“Get”) = “OK” Then

Set nx = nl(i).getElementsByTagName(“NAME”)
Document.AddressInfo.Name.Value = nx(0).text

Set nx = nl(i).getElementsByTagName(“STREET”)
Document.AddressInfo.Street.Value = nx(0).text

Set nx = nl(i).getElementsByTagName(“CITY”)
Document.AddressInfo.City.Value = nx(0).text

Set nx = nl(i).getElementsByTagName(“STATE”)
Document.AddressInfo.State.Value = nx(0).text

Set nx = nl(i).getElementsByTagName(“ZIP”)
Document.AddressInfo.Zip.Value = nx(0).text

Else
MsgBox “The customer wasn’t found: “ & _

nl(i).getAttribute(“Get”)

Else
MsgBox “The customer wasn’t found.”

4728-3 ch22.f.qc 7/31/00 09:51 Page 488

489Chapter 22 ✦ Integrating XML with Internet Information Server Applications

End If

End Sub

The format’s changed to protect the guilty: I admit it. I’ve reformatted all of the
HTML and script code from the actual documents to make them more readable.
However, changing the formatting does not change how the Web page works.

Building the request document
The GetCustomerInfo routine begins by creating a DOMDocument object called
XMLReq to hold the XML document I want to send to the server. Note that I can’t use
the normal Dim and Set statements to create the object, because VBScript can’t ref-
erence the object libraries directly from code. The only way to create an object in
VBScript is to use the CreateObject function.

After creating the base document, I add the <?xml version=”1.0”?> element by
using the createProcessingInstruction and appendChild methods. While this
isn’t absolutely necessary, since the MSXML parser is smart enough to figure out
how your document is structured without it, it is good form to include this element
in case you choose to use a different XML server in the future.

Once the XML document is initialized, I create the GETCUSTOMERINFO element that
really defines this document by using the createElement method. This returns an
object reference to an XMLDOMElement object, which I save in the variable called
node. Then I create another XMLDOMElement object for CUSTOMER in the variable
subnode. I use the setAttribute method to create the CustomerId attribute with
the value from the CustomerId field in the form. Then I connect the subnode object
to the node object by using the node.appendChild method. Next, I use the
XMLReq.appendChild method to link the node object to the root document.

I should point out that the order in which I append the processing and element
instructions to the root object is important. All of the objects stored below a partic-
ular hierarchy are stored in the order where they were inserted. Thus, if you want
element A to be displayed before element B when the XML document is generated,
you must append element A before you append element B. Since I want the GET-
CUSTOMERINFO element to follow the processing instruction element, I have to
append the processing instruction first.

After creating the document, I use the MsgBox statement (see Figure 22-2) and the
XMLReq.xml method to display the document to the user. While this wouldn’t be
included in a production version of this application, it allows the programmer to
see the XML request before it is sent.

Note

4728-3 ch22.f.qc 7/31/00 09:51 Page 489

490 Part V ✦ The Impact of XML

Figure 22-2: Viewing the XML
GETCUSTOMERINFO
request document

Sending the request document
In the next section of the routine, I create an XMLHttp object called http to perform
the actual data transfer. After creating http, I use the open method to establish an
HTTP connection to the Web server. I specify that I want to perform an HTTP Post
operation to send the document, and I include the URL of the program that will pro-
cess the request. Finally, I choose not to do an asynchronous transfer. This means
that the send method won’t return until a response has been received from the Web
server. This approach simplifies the programming involved, since I don’t have to
enable the onreadystatechange event to determine when the response document
has been received.

Before I send the document, I use the setRequestHeader method to set the
Content-Type HTTP header explicitly to text/xml. While this isn’t important in
this application, since both sides are expecting XML documents to be transferred,
it may be important in other situations where different processing paths may be
taken depending on the document type.

When the code reaches the send method, a warning message may be displayed to
the user letting them know that the Web page is accessing external information (see
Figure 22-3). You can configure the Web browser to allow programs to disable this
error message by changing the security level to low for the particular zone that you
are accessing.

Figure 22-3: Getting permission to
end the XML document

Do I really want to do this?: Changing the security level in your browser to allow
you to use the send method in your Web page allows any Web page in the same
content zone to use this function. Before you change this option, be sure you
really want to take this security risk.

After using the send method to transmit the document, I create a new DOMDocument
object that will hold the response from the Web server. Then I use the LoadXML

Caution

4728-3 ch22.f.qc 7/31/00 09:51 Page 490

491Chapter 22 ✦ Integrating XML with Internet Information Server Applications

method to create the document from the http.responsetext property and then use
the MsgBox statement to display the response document to the user (see Figure 22-4).

Figure 22-4: Viewing the GETCUSTOMERINFO response document

Displaying the response document
Displaying the information is merely a matter of working your way through the
response from the Web server and extracting the information you want to display.
This is easier said than done, however. You need to traverse the document hierar-
chy to find the CUSTOMER element that matches the CustomerId value from the
form. Then you need to determine if the request was successful. Once this is done,
you can take the information associated with the request and update the form.

In this case, I begin by creating a nodeList object that contains all of the CUSTOMER
elements using the getElementsByTagName method. Since it is possible that the
nodeList object may have more than one CUSTOMER element, I’ll set the variable i
to zero and use a Do While loop to check each of the elements to find the first one
that matches the CustomerId value from the form.

When the loop finishes, the variable i will either point to the proper element or it
will contain a value that is one larger than the number of elements in the nodeList
object. (Remember that the nodeList object is a zero-based collection, so if it con-
tains only one element, the element will have an index value of zero while the col-
lection has a length of one.)

Next, I check the value of i to see if it is less than the length of the collection and
issue the appropriate message if it isn’t. Then I can see if the value of the Get
attribute is OK. If it isn’t, I need to issue the appropriate error message.

If everything worked correctly, I can retrieve the information for each of the fields
on the form by creating a new nodeList object by searching for a particular ele-
ment within the current node (nl(i)). Since the format of the document allows
only one element with a particular name within the CUSTOMER element, I can safely
access the first value in the returned nodeList since I know it must be the only ele-
ment in the list. Then I can use the text property to extract the value of the
XMLDOMText node below it and save it in the appropriate field on the form. This
results in the updated Web page shown in Figure 22-5.

4728-3 ch22.f.qc 7/31/00 09:51 Page 491

492 Part V ✦ The Impact of XML

Figure 22-5: Viewing the customer’s information

Getting a customer from the database
Now that you understand the client side, it’s time to dig into the server side. Since
this is an IIS Application, it responds to requests sent to an Internet Information
Server (IIS) Web server. In this case, it must respond to an XML document that is
transmitted using the Post method. It must parse the incoming XML document to
determine the information that is requested and then construct a new XML docu-
ment with the appropriate response.

The GetCustomer_Respond event in the XML Server program is triggered any time
someone requests a document using the following URL:

http://Athena/VB6DB22/VB6DB22.ASP?wci=GetCustomer

This URL points to a computer called Athena and looks in the VB6DB22 directory
for the file called VB6DB22.ASP. It passes the wci=GetCustomer parameter to the
file, which will trigger the GetCustomer_Respond event in the IIS Application (see
Listing 22-5).

Listing 22-5: The GetCustomer_Respond event in XML Server

Private Sub GetCustomer_Respond()

Dim attr As IXMLDOMAttribute

4728-3 ch22.f.qc 7/31/00 09:51 Page 492

493Chapter 22 ✦ Integrating XML with Internet Information Server Applications

Dim el As IXMLDOMElement
Dim nl As IXMLDOMNodeList
Dim node As IXMLDOMElement
Dim p As IXMLDOMProcessingInstruction
Dim subnode As IXMLDOMElement
Dim subsubnode As IXMLDOMElement
Dim XMLReq As DOMDocument
Dim XMLResp As DOMDocument
Dim z() As Byte

Dim db As ADODB.Connection
Dim rs As ADODB.Recordset

z = Request.BinaryRead(10000)
Set XMLReq = New DOMDocument
XMLReq.loadXML StrConv(z, vbUnicode)
Set nl = XMLReq.getElementsByTagName(“CUSTOMER”)

Set XMLResp = New DOMDocument
Set p = XMLResp.createProcessingInstruction(“xml”, _

“version=””1.0”””)
XMLResp.appendChild p

Set node = XMLResp.createElement(“GETCUSTOMERINFO”)
XMLResp.appendChild node

Set db = New ADODB.Connection
db.Open _

“provider=sqloledb;data source=Athena;initial catalog=VB6DB”,
_

“sa”, “”

Set rs = New ADODB.Recordset
Set rs.ActiveConnection = db

For Each el In nl
rs.Source = “Select * From Customers Where CustomerId = “ & _

el.getAttribute(“CustomerId”)
rs.Open

If Not ((rs.BOF) And (rs.EOF)) Then
Set subnode = XMLResp.createElement(“CUSTOMER”)
Set attr = XMLResp.createAttribute(“CustomerId”)
attr.Text = rs(“CustomerId”).Value
subnode.Attributes.setNamedItem attr
Set attr = XMLResp.createAttribute(“Get”)
attr.Text = “OK”
subnode.Attributes.setNamedItem attr

Continued

4728-3 ch22.f.qc 7/31/00 09:51 Page 493

494 Part V ✦ The Impact of XML

Listing 22-5 (continued)

node.appendChild subnode

Set subsubnode = XMLResp.createElement(“NAME”)
subsubnode.Text = rs(“Name”).Value
subnode.appendChild subsubnode

Set subsubnode = XMLResp.createElement(“STREET”)
subsubnode.Text = rs(“Street”).Value
subnode.appendChild subsubnode

Set subsubnode = XMLResp.createElement(“CITY”)
subsubnode.Text = rs(“City”).Value
subnode.appendChild subsubnode

Set subsubnode = XMLResp.createElement(“STATE”)
subsubnode.Text = rs(“State”).Value
subnode.appendChild subsubnode

Set subsubnode = XMLResp.createElement(“ZIP”)
subsubnode.Text = rs(“Zip”).Value
subnode.appendChild subsubnode

Else
Set subnode = XMLResp.createElement(“CUSTOMER”)
Set attr = XMLResp.createAttribute(“CustomerId”)
attr.Text = el.getAttribute(“CustomerId”)
subnode.Attributes.setNamedItem attr

Set attr = XMLResp.createAttribute(“Get”)
attr.Text = “Not found”
subnode.Attributes.setNamedItem attr

node.appendChild subnode

End If

rs.Close

Next el

XMLResp.Save Response

db.Close

Set XMLResp = Nothing
Set XMLReq = Nothing
Set rs = Nothing

4728-3 ch22.f.qc 7/31/00 09:51 Page 494

495Chapter 22 ✦ Integrating XML with Internet Information Server Applications

Set db = Nothing

End Sub

Preparing to respond to the request
After declaring a whole lot of local variables, I begin processing by using the
Request.BinaryRead to get the input document into a byte array. Next, I create
a new instance of the DOMDocument object that will hold the request, and use the
loadXML method to build the document object hierarchy. Note that I used the
StrConv function to convert the ASCII encoded string into Unicode before loading
it with the loadXML method. Finally, I use the getElementsByTagName method to
create a list of all of the CUSTOMER elements.

Then I create a new instance of the response document (XMLResp) and initialize it
with the standard XML version information. Next, I will append a GETCUSTOMERINFO
object that will contain the individual CUSTOMER elements that form the response.

In order to access the database, I create a new instance of the ADODB.Connection
object and use the Open method to log onto the database server. Then I create a
new instance of the ADODB.Recordset object and set the ActiveConnection prop-
erty to the Connection object I just opened.

Building the response
After all of the prep work, I use a For Each loop to access each CUSTOMER element
in the nodeList collection. Using the information from the CustomerId attribute, I
build a Select statement to retrieve information about the specified CustomerId
value and then open the Recordset object.

If the Recordset object contains at least one record (Not (rs.BOF And rs.EOF)
is True), I’ll create a new CUSTOMER element node using the createElement
method, and set the CustomerId to the current value of CustomerId and the Get
attribute to OK.

For each of the fields that I want to return, I create a new element node and assign
it the value from the corresponding database field. Then I add it to the CUSTOMER
element I created earlier. After I add all of the elements, I close the Recordset
object.

If the Select didn’t return any rows, I’ll create a CUSTOMER element with the
CustomerId and Get attributes as before, but rather than assigning the Get attri-
bute a value of OK, I’ll return “Not found”. Afterwards, I’ll close the Recordset
object for the particular CUSTOMER element and repeat the For Each loop until
I’m out of CUSTOMER elements to process.

4728-3 ch22.f.qc 7/31/00 09:51 Page 495

496 Part V ✦ The Impact of XML

Finally, I’ll use the XMLResp.Save method against the Response object. This will
automatically take the XML document stored in the document object model and
output the XML tags to the HTTP return stream. Once the document is returned, I
can close the database connection and destroy the various objects I created while
processing this request.

Updating Customer Information
You’ve seen one way to handle a transaction using XML documents to carry the
request and the response. This is the basic way most XML data exchanges will
occur. It doesn’t matter if the document exchange returns information or performs
a function. As long as the proper information is contained in the document, it really
doesn’t matter.

However, the GetCustomerInfo and GetCustomer_Respond routines are based on
documents that are element-oriented. Each individual field is stored in a separate
element. In the update process, I choose to store each field as an element of the
CUSTOMER element.

Defining the update XML documents
When requesting an update, you need to include all of the fields that need to be
updated in the requesting document. By using attributes instead of elements, you
can get a slightly smaller document which probably won’t make much of a differ-
ence in the long run, but it does result in a flatter hierarchy which can be easier to
process with your application program.

Listing 22-6 contains a sample XML document that would be transmitted from the
XML client to the XML server to update a particular value. Each of the fields to be
updated are stored in a separate attribute, and the CustomerId attribute is used to
identify the customer’s information in the database.

Listing 22-6: An XML document containing update
information

<?xml version=”1.0”?>
<UPDATECUSTOMERINFO>

<CUSTOMER CustomerId=”0” Name=”Dexter Valentine”
Street=”3250 Second Ave.” City=”San Francisco”
State=”CA” Zip=”94115”/>

</UPDATECUSTOMERINFO>

4728-3 ch22.f.qc 7/31/00 09:51 Page 496

497Chapter 22 ✦ Integrating XML with Internet Information Server Applications

The document to return the status of the update is based on the same document
that was used to request the update (see Listing 22-7). The main differences are
that the individual attributes containing the data to be updated are not returned,
while a new attribute called Update is added that will report the status of the
update.

Listing 22-7: An XML document containing the results of the
update

<?xml version=”1.0”?>
<UPDATECUSTOMERINFO>

<CUSTOMER CustomerId=”0” Update=”OK”/>
</UPDATECUSTOMERINFO>

Requesting an update
Clicking on the Update Customer Info button will trigger the UpdateCustomerInfo
routine shown in Listing 22-8. This routine begins by creating an object called
XMLReq, which will hold the XML request document and insert the XML version pro-
cessing instruction.

Listing 22-8: The UpdateCustomerInfo routine in XML Client

Sub UpdateCustomerInfo()

Set XMLReq = CreateObject(“MSXML2.DOMDocument”)
Set p = XMLReq.createProcessingInstruction(“xml”,
“version=””1.0”””)
XMLReq.appendChild p

Set node = XMLReq.createElement(“UPDATECUSTOMERINFO”)
Set subnode = XMLReq.createElement(“CUSTOMER”)

subnode.setAttribute “CustomerId”, _
Document.AddressInfo.CustomerId.Value

subnode.setAttribute “Name”, Document.AddressInfo.Name.Value
subnode.setAttribute “Street”,
Document.AddressInfo.Street.Value
subnode.setAttribute “City”, Document.AddressInfo.City.Value
subnode.setAttribute “State”, Document.AddressInfo.State.Value

Continued

4728-3 ch22.f.qc 7/31/00 09:51 Page 497

498 Part V ✦ The Impact of XML

Listing 22-8 (continued)

subnode.setAttribute “Zip”, Document.AddressInfo.Zip.Value
node.appendChild subnode

XMLReq.appendChild node

MsgBox XMLReq.xml

set http=CreateObject(“MSXML2.XMLHTTP”)
http.Open “Post”, _

“http://athena/VB6DB22/VB6DB22.ASP?wci=UpdateCustomer”,
false
http.setRequestHeader “Content-Type”, “text/xml”
http.send XMLReq
Set XMLResp = CreateObject(“MSXML2.DOMDocument”)
XMLResp.LoadXML http.responsetext

MsgBox XMLResp.xml

End Sub

Next, I create the UPDATECUSTOMERINFO and CUSTOMER elements, which will hold
the request. Then I can use the setAttribute method to add the various attribute
values to the CUSTOMER element. Note that the setAttribute method will automat-
ically create the XMLDOMAttribute object for the attribute if it doesn’t exist and
automatically append it to the element. If the attribute object already exists, then
this method will merely update the value.

Before I send the document to the server, I display it using a MsgBox statement (see
Figure 22-6). Then I use the same technique I used earlier to send the request to the
XML server and wait for its response. When I receive the response, I display the
response to the user to let them know if the update was successful or not (see
Figure 22-7).

Figure 22-6: Displaying the update request

4728-3 ch22.f.qc 7/31/00 09:51 Page 498

499Chapter 22 ✦ Integrating XML with Internet Information Server Applications

Figure 22-7: Displaying a successful update

Processing an update
On the server side, the UpdateCustomer_Respond event will be triggered when
an XML document arrives (see Listing 22-9). It uses the same process that the
GetCustomer_Respond method used to receive the XML document, initialize the
return XML document, and open a database connection. I also select all of the ele-
ments named CUSTOMER and save them in a nodeList object. However, from this
point on, the two routines differ significantly.

Listing 22-9: The UpdateCustomer_Respond in XML Server

Private Sub UpdateCustomer_Respond()

On Error Resume Next

Dim attr As IXMLDOMAttribute
Dim el As IXMLDOMElement
Dim nl As IXMLDOMNodeList
Dim node As IXMLDOMElement
Dim p As IXMLDOMProcessingInstruction
Dim parm As ADODB.Parameter
Dim subnode As IXMLDOMElement
Dim subsubnode As IXMLDOMElement
Dim XMLReq As DOMDocument
Dim XMLResp As DOMDocument
Dim z() As Byte

Dim db As ADODB.Connection
Dim cmd As ADODB.Command

z = Request.BinaryRead(10000)
Set XMLReq = New DOMDocument
XMLReq.loadXML StrConv(z, vbUnicode)

Set nl = XMLReq.getElementsByTagName(“CUSTOMER”)

Set XMLResp = New DOMDocument

Continued

4728-3 ch22.f.qc 7/31/00 09:51 Page 499

500 Part V ✦ The Impact of XML

Listing 22-9 (continued)

Set p = XMLResp.createProcessingInstruction(“xml”, _
“version=””1.0”””)

XMLResp.appendChild p

Set node = XMLResp.createElement(“UPDATECUSTOMERINFO”)
XMLResp.appendChild node

Set db = New ADODB.Connection
db.Open _

“provider=sqloledb;data source=Athena;initial catalog=VB6DB”, _
“sa”, “”

Set cmd = New ADODB.Command
Set cmd.ActiveConnection = db
cmd.CommandText = “Update Customers Set Name=?, Street=?, “ & _

“City=?, State=?, Zip=? Where CustomerId=?”

Set parm = cmd.CreateParameter(“Name”, adVarChar, adParamInput, 64)
cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“Street”, adVarChar, _
adParamInput, 64)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“City”, adVarChar, adParamInput, 64)
cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“State”, adChar, adParamInput, 2)
cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“Zip”, adInteger, adParamInput, 4)
cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“CustomerId”, adInteger, _
adParamInput, 4)

cmd.Parameters.Append parm

For Each el In nl
cmd.Parameters(“CustomerId”).Value = _

el.getAttribute(“CustomerId”)
cmd.Parameters(“Name”).Value = el.getAttribute(“Name”)
cmd.Parameters(“Street”).Value = el.getAttribute(“Street”)
cmd.Parameters(“City”).Value = el.getAttribute(“City”)
cmd.Parameters(“State”).Value = el.getAttribute(“State”)
cmd.Parameters(“Zip”).Value = el.getAttribute(“Zip”)
db.Errors.Clear
cmd.Execute

4728-3 ch22.f.qc 7/31/00 09:51 Page 500

501Chapter 22 ✦ Integrating XML with Internet Information Server Applications

Set subnode = XMLResp.createElement(“CUSTOMER”)
subnode.setAttribute “CustomerId”, _

cmd.Parameters(“CustomerId”).Value
If db.Errors.Count = 0 Then

subnode.setAttribute “Update”, “OK”

Else
subnode.setAttribute “Update”, db.Errors.Item(0).Description

End If
node.appendChild subnode

Next el

XMLResp.Save Response

Set XMLResp = Nothing
Set XMLReq = Nothing

db.Close
Set cmd = Nothing
Set db = Nothing

End Sub

I chose to create a parameterized Command object, which uses the Update state-
ment to change the contents of the database. So, after creating a new instance of
the Command object, I create an Update statement listing each of the fields I want to
update and assigning them a value of question mark (?). The question mark is really
a placeholder that will be replaced with the parameters associated with the
Command object.

Then I create the Parameter objects for the Command object using the Create
Parameter method. I specify the name, data type, direction, and length for each
parameter as I create it, then I Append it to the Command’s Parameters collection.
Note that I create the Parameter objects in the same order that the question marks
appear. This is very important, since the only way to associate a parameter with the
statement is the order of the parameters.

Once I’ve done all of this setup work, I’m ready to use a For Each loop to process
the list of CUSTOMER elements. I use the getAttribute method to return the value
of each of the attributes from the XML request document and save it as the value in
the corresponding Parameter object.

4728-3 ch22.f.qc 7/31/00 09:51 Page 501

502 Part V ✦ The Impact of XML

After defining the parameters, I clear the Connection object’s Errors collection and
Execute the command. Then I create the CUSTOMER element in the return document
and set the CustomerId property. If there were no database errors (db.Errors.
Count = 0), I’ll set the Get attribute to OK; otherwise, I’ll set the Get attribute to
the Description property from the first element in the Errors collection.

Now I Append the CUSTOMER element to the XMLResp document and retrieve the
next node in the nodeList object. This process will continue until all of the ele-
ments in the nodeList object have been processed. I end the routine by saving
the XMLResp object to the Response stream, closing the database connection
and destroying the objects I used in this routine.

Thoughts about Programming XML Documents

Without XML at your disposal, getting information across the Web programmatically can be
difficult. You have to build complicated programs that will download a Web page contain-
ing the information you want, and then try to parse it looking for the proper value. In addi-
tion, you have to update your program each time someone updates the format of the Web
page. However, XML offers an easier solution.

Using XML it is reasonable to build a pair of applications that communicate with each other
via the Internet using XML documents. The client program may be a traditional Visual Basic
program, or perhaps a JavaScript-based Web page, that generates an XML document con-
taining a request for information. This request is then passed to a Web server, which
receives the XML document, decodes it, and returns the data to the client program. Finally,
the client program extracts the information it wants from the return XML document.

The nice thing about this approach is that you can use any tools you want on the client and
the server side. The only issue is that both programs must agree on the elements in the
XML documents that are exchanged. But as long as XML is used in the middle, the details of
the programs on each side aren’t important.

The programs can be coded in Visual Basic, VBScript, Java, C++, or even COBOL for that
matter. They can run on Windows 2000 Server, Solaris, Linux, or OS/390. The point is, as
long as the XML is properly constructed, you have a vendor-independent solution.

You should consider the application I built here merely as a toy to explore what you can do
with a little XML, HTML, and a Visual Basic program. I’m not saying that you should run out
and convert all of your applications to XML anytime you need to pass information. However,
XML is the wave of the future, and anything you can do now to learn more about how to
use it will make your life easier in the future.

One of the problems with message queues is that you need a way to pass information
between the client application and the transaction server. While you can pass persisted
objects back and forth, they can be a pain to develop and debug. Since XML is human read-
able, it is easier to debug (trust me — debugging a COM+ based message queue application
can be a real nightmare) without losing any of the flexibility of objects it would replace.

4728-3 ch22.f.qc 7/31/00 09:51 Page 502

503Chapter 22 ✦ Integrating XML with Internet Information Server Applications

Summary
In this chapter you learned:

✦ how to design XML documents to request and receive information from a
Web server.

✦ how to build an IIS Application that sends an XML request to a Web server.

✦ how to build an IIS Application to parse an XML document.

✦ how to update a database using an XML document.

✦ ✦ ✦

You could easily combine tools such as an IIS Application, COM+ transactions, message
queues, and XML to build a complex, high-performance application that accepts vendor-
neutral requests coded in XML. This allows you to develop clients for different platforms,
including such operating systems as Linux, Solaris, Macintosh, and even the occasional
OS/390 IBM mainframe.

4728-3 ch22.f.qc 7/31/00 09:51 Page 503

4728-3 ch22.f.qc 7/31/00 09:51 Page 504

