
Introducing XML

Unless you’ve been living on the moon for the last several
years, you’ve undoubtedly heard of XML. It’s been hailed

as the future of the Web, the foundation for e-commerce and
the universal information exchange medium. In reality, XML 
is merely a language used to describe information. In this chap-
ter, I’ll talk about how to create an XML document, how XML
works with ADO, and why you might want to use XML in your
applications.

Documenting Information
XML stands for Extensible Markup Language. It is part of the
family of languages developed from the Standardized General
Purpose Markup Language (SGML) that includes the various
dialects of HyperText Markup Language (HTML). These lan-
guages are used to describe the structure of a document, 
but not the actual information contained in the document.

Tagging information
All SGML languages, including XML and HTML, are based on
the concept of tags. A tag is formed by inserting a keyword
inside a less than and greater than symbol pair (<>), such as
<HEADER1>. Most tags work in pairs such as <HEADER1> and
</HEADER1>, where the slash in front of the keyword is used
to mark the end of that tag pair. In XML, this combination is
known as an element. An element is used to mark the begin-
ning and end of a piece of information. Sometimes the infor-
mation is a single value, while at other times, it may be a
collection of elements.

Elements may be nested and the information inside inherits
the characteristics of all of the outer elements. In HTML, for
instance, the tag <I> identifies a block of text that should be

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Writing XML
documents

Working with XML
and ADO

Understanding the
benefits of using XML

✦ ✦ ✦ ✦

4728-3 ch20.f.qc  7/31/00  09:51  Page 433



434 Part V ✦ The Impact of XML

displayed in italics, while the tag <B> identifies a block of text that should be dis-
played in bold. Thus, the following HTML statement will display the text in both
bold and italics:

You may display text in <B>bold</B>, <I>italics</I>, and both
<B><I>bold and italics</I></B> by using different combinations
of tags.

Adding attributes
SGML also allows you to refine the meaning of a tag by including one or more
attributes inside the tag. For instance, the <IMG> tag is used in HTML to mark the
place where an image will be placed. Yet knowing that an image is to be placed in a
document isn’t sufficient unless you know which image is to be used. This informa-
tion is specified with the SRC attribute. Thus, the following tag would display the
image CJ&Sam.JPG in a Web page:

<IMG SRC=”CJ&Sam.JPG”>

Many tags support multiple attributes.  The following tag not only specifies the
name of the image to be displayed, but its height and width:

<IMG SRC=”CJ&Sam.JPG” HEIGHT=”640” WIDTH=”480”>

Grouping and formatting tags
Tags are grouped together in a document. With very few exceptions, how the tags
are placed in the document doesn’t matter, as long as the order of the tags remains
constant. Thus, this set of tags

You may display text in <B>bold</B>, <I>italics</I>, and both
<B><I>bold and italics</I></B> by using different combinations
of tags.

and this set of tags

You may display text in
<B>bold</B>,
<I>italics</I>,
and both
<B><I>bold and italics</I></B>
by using different combinations of tags.

and even this set of tags

You may display text in
<B>bold</B>,
<I>italics</I>,

and both
<B><I>bold and italics</I></B>

by using different combinations of tags.

4728-3 ch20.f.qc  7/31/00  09:51  Page 434



435Chapter 20 ✦ Introducing XML

have exactly the same meaning and will result in exactly the same display. This
allows you to format your documents and make them easy to read without impact-
ing the meaning of the information contained in the document.

Using XML tags
Unlike the HTML generic tags, which describe how information is to be formatted in
a document, XML uses meaningful tags that describe the information they contain.
A tag can refer to a single field or to a collection of fields, which correspond to a
field name in a table, a database table, or a hierarchical view that is constructed
from multiple database tables.

Helpful hierarchies: Theoretically, it is possible to describe any combination of
data in a hierarchy. In fact, some of the earliest databases, such as IBM’s
Information Management System (IMS), were based on a hierarchical data model.
When extracting data from a database to send to another application, it is often
useful to arrange it as a hierarchy. This eliminates redundant information and
makes it easier for the receiving application to reformat the data to fit its own
database structures.

A Simple XML document
Figure 20-1 shows a diagram of my family. It describes the family name (Freeze), the
father (me), the mother (Jill), our children (Christopher and Samantha), and our
pets (Kokomo, Pixel, Terry, Cali, Dusty and Raymond).

Figure 20-1: My family

Note

4728-3 ch20.f.qc  7/31/00  09:51  Page 435



436 Part V ✦ The Impact of XML

Listing 20-1 contains the SQL statements that would create a database to hold this
information. The database consists of four tables: one with the family name, one
with information about the parents, another with the family’s children, and a fourth
with information about the family’s pets.

Listing 20-1: A family database

Create Table Family (
Name Char(32))

Create Table Parents (
Name Char(32),
Parent Char(32),
Type Char(32))

Create Table Children (
Name Char(32),
Child Char(32),
Type Char(32))

Create Table Pets (
Name Char(32),
Pet Char(32),
Type Char(32))

You can also easily translate this information into an XML document (see Listing
20-2). Notice that the database tables had to flatten the information to fit into
three distinct tables, while the XML document maintained the original hierarchi-
cal structure.

Listing 20-2: An XML document for the Freeze family

<?xml version=”1.0”?>
<FAMILY>

<NAME>Freeze</NAME>
<PARENTS>
<FATHER>Wayne</FATHER>

<MOTHER>Jill</MOTHER>
</PARENTS>
<CHILDREN>

<SON>Christopher</SON>
<DAUGHTER>Samantha</DAUGHTER>

</CHILDREN>
<PETS>

<DOG>Kokomo</DOG>
<CAT>Pixel</CAT>

4728-3 ch20.f.qc  7/31/00  09:51  Page 436



437Chapter 20 ✦ Introducing XML

<CAT>Terry</CAT>
<CAT>Cali</CAT>
<CAT>Dusty</CAT>
<STINGRAY>Raymond</STINGRAY>

</PETS>
</FAMILY>

You can find the FAMILY.XML document as \VB6DB\Chapter20\XML\FAM-
ILY.XML on the CD-ROM.

The XML tags are used either to identify a single item, such as the name of the
father or mother, or to identify a collection of tags that are logically grouped
together, such as the children or pets.

Some of the latest generation of Web browsers, such as Internet Explorer 5.0, can
display XML files directly (see Figure 20-2). If you look at Figure 20-2 carefully, you’ll
see a minus sign ( - ) in front of the <FAMILY>, <PARENTS>, <CHILDREN>, and <PETS>
tags, in addition to the raw HTML. By clicking on the minus sign next to a tag, you
can hide all of the tags below it in the hierarchy. The minus sign will change to a
plus sign (+), which you can click on to show the tags again.

Figure 20-2: Viewing XML data in Internet Explorer 5.0

On the
CD-ROM

4728-3 ch20.f.qc  7/31/00  09:51  Page 437



438 Part V ✦ The Impact of XML

XML attributes
Another way to include information in an XML document is to use attributes. Like
element names, you determine which attributes you want to include in the docu-
ment. I’ve taken the XML document from Listing 20-2 and rewritten it to move the
information about the type of family member to an attribute within an element, as
shown in Listing 20-3.

Listing 20-3: An XML document for the Freeze family

<?xml version=”1.0”?>
<FAMILY Name=”Freeze”>
<PARENT Type=”Father”>Wayne</PARENT>

<PARENT Type=”Mother”>Jill</PARENT>
<CHILD Type=”Son”>Christopher</CHILD>
<CHILD Type=”Daughter”>Samantha</CHILD>
<PET Type=”Dog”>Kokomo</PET>
<PET Type=”Cat”>Pixel</PET>
<PET Type=”Cat”>Terry</PET>
<PET Type=”Cat”>Cali</PET>
<PET Type=”Cat”>Dusty</PET>
<PET Type=”Stingray”>Raymond</PET>

</FAMILY>

Using attributes lets you include more information in a single element. The down-
side is that it makes the document more complicated to read; it may also hide some
hierarchy information.

For the most part, you should use attributes to hold information about your data.
For example, the following element uses the attribute Currency to describe the
type of currency used in the value for LISTPRICE. This is a good example of using
attributes to clarify the information for a particular data value.

<LISTPRICE Currency=”USD”>29.99</LISTPRICE>

Extendable elements: If you’re not sure whether to code a value as an element or
an attribute, you should probably code the value as an element. This approach is
more flexible, which is important if you plan to include new elements and
attributes in the future.

Tip

4728-3 ch20.f.qc  7/31/00  09:51  Page 438



439Chapter 20 ✦ Introducing XML

Writing XML Documents
The rules for XML are fairly straightforward, and if you want, you can create your
XML documents in any old text editor, including Notepad. However, for the most
part, you should use an alternate way to load a file. Probably the best way is to
write a program that generates the document for you. By doing this you can ensure
that the document is generated properly. See Chapter 21 for one method you might
use in Visual Basic.

Extensive XML: I highly recommend the XML Bible by Elliotte Rusty Harold, pub-
lished by IDG Books. This well-written book goes into all of the details you should
know before you build an XML-based application.

Creating an XML document
At the top of an XML document is a header tag, which describes information about
the document (see Listing 20-4). Typically, all you will code is the version level,
though the XML standard defines several other attributes that you may want to
include.

Listing 20-4: A minimal XML document

<?xml version=”1.0”?>
<root_element_tag>
</root_element_tag>

Following the header tag is the root level element. Every XML document is a hierar-
chy, with one and only one root element. In Listing 20-4, the root level element is
<root_element_tag> and </root_element_tag>, while in Listing 20-2 the root
level element is <FAMILY> and </FAMILY>.

Identifying XML elements
Unlike HTML, you must create the XML elements you use in your document. For
instance, I created the following element to identify my son:

<SON>Christopher</SON>

Note

4728-3 ch20.f.qc  7/31/00  09:51  Page 439



440 Part V ✦ The Impact of XML

The tag <SON> marks the beginning of a block of data, while the tag </SON> marks
the end of the tag. You can nest pairs of tags within each other, like this:

<CHILDREN>
<SON>Christopher</SON>
<DAUGHTER>Samantha</DAUGHTER>

</CHILDREN>

The <CHILDREN> tag marks the collection of elements that comprises the children in
my family. Elements can and should be nested to describe groups of data. A group of
data might be something as simple as identifying a record, a collection of records, or
a table.

The following element

<CHILDREN></CHILDREN>

can be written as

<CHILDREN/>

In this case, it means that there is no information associated with that particular
element.

In order to be considered a well-formed XML document, the start and stop tags
must not overlap. They need to be closed in the reverse order in which they were
opened. The following statement is legal in HTML, but will cause an error in XML:

<B><I>Hi Jill</B></I>

Thus, you need to rewrite the statement as follows:

<B><I>Hi Jill</I></B>

Creating XSL Style Sheets
The Extensible Style Sheet Language (XSL) is used to format an XML document. An
XSL Style Sheet is similar in concept to a Cascading Style Sheet for an HTML docu-
ment. Both tools allow you to create a template that can be used to provide a com-
mon formatting to a document.

And that ain’t all: This is an overly abbreviated section that describes what you
can do with just a few XSL statements. XSL is a very rich language, which can be
used to format some very complex documents.

The basic approach used in the XSL is that the first element in the document applies
to the root element of the XML document. The rest of the elements on the XML doc-
ument are formatted recursively from the root element. All XSL elements have a pre-

Note

4728-3 ch20.f.qc  7/31/00  09:51  Page 440



441Chapter 20 ✦ Introducing XML

fix of xsl:.XSL is derived from SMGL and XML, so it is a tag-oriented language that
has to follow the same basic rules used for any XML document. Unlike some other
languages, XSL is case sensitive, so all tags must be entered using lowercase charac-
ters. Figure 20-3 shows the same FAMILY.XML document from Listing 20-2, but it uses
the style codes from the XSL document shown in Listing 20-5.

Figure 20-3: Formatting an XML document with an XSL style sheet

Listing 20-5: An XSL style sheet for the FAMILY.XML
document

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>
<xsl:template match=”/”>

<html>
<head>
</head>
<body>
<xsl:apply-templates/>
</body>
</html>

Continued

4728-3 ch20.f.qc  7/31/00  09:51  Page 441



442 Part V ✦ The Impact of XML

Listing 20-5 (continued)

</xsl:template>

<xsl:template match=”FAMILY”>
<h1>
The 
<xsl:value-of select=”NAME”/>
Family
</h1>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”PARENTS”>
<p>
<h2>Parents:</h2>
<xsl:apply-templates/>
</p>

</xsl:template>

<xsl:template match=”FATHER”>
<li>
<xsl:value-of select=”.”/>
(father)
</li>

</xsl:template>

<xsl:template match=”MOTHER”>
<li>
<xsl:value-of select=”.”/>
(mother)
</li>

</xsl:template>

<xsl:template match=”CHILDREN”>
<p>
<h2>Children:</h2>
<xsl:apply-templates/>
</p>

</xsl:template>

<xsl:template match=”SON”>
<li>
<xsl:value-of select=”.”/>
(son)
</li>

</xsl:template>

<xsl:template match=”DAUGHTER”>
<li>

4728-3 ch20.f.qc  7/31/00  09:51  Page 442



443Chapter 20 ✦ Introducing XML

<xsl:value-of select=”.”/>
(daughter)
</li>

</xsl:template>

<xsl:template match=”PETS”>
<p>
<h2>Pets:</h2>
<xsl:apply-templates/>
</p>

</xsl:template>

<xsl:template match=”DOG”>
<li>
<xsl:value-of select=”.”/>
(dog)
</li>

</xsl:template>

<xsl:template match=”CAT”>
<li>
<xsl:value-of select=”.”/>
(cat)
</li>

</xsl:template>

<xsl:template match=”STINGRAY”>
<li>
<xsl:value-of select=”.”/>
(stingray)
</li>

</xsl:template>

</xsl:stylesheet>

The XSL style sheet is found on the CD-ROM in the \VB6DB\CHAPTER20\FAM-
ILY.XSL file. I’ve also included a modified version of the FAMILY.XML file, called
FAMILY1.XML, that will use this style sheet to format the information.

The xsl:stylesheet element
The xsl:stylesheet element is the root element of an XSL style sheet. The primary
attribute to this element is the xlsnm:xsl, which is used to specify the name space
for the document. The name space identifies all of the elements and their attributes.
This is a URL reference to a Web site like the one below. However, most XML vendors
only verify the name; they don’t actually look up the document on the Web.

http://www.w3.org/TR/WD-xsl

On the
CD-ROM

4728-3 ch20.f.qc  7/31/00  09:51  Page 443



444 Part V ✦ The Impact of XML

Name spaces are used in XML to help clarify a reference. For instance, if you have a
tag called name, it may have many different meanings depending on the context in
which it is used. By adding the name space and a colon in front of the element, you
can clarify which name space the element was used from. In fact, the xsl: in front
of the xsl:stylesheet element identifies the element as belonging to the xsl name
space.

The xsl:template element
The xsl:template element is the fundamental element to control how a particular
part of your XML document is formatted. Consider the following fragment from the
FAMILY.XSL document:

<xsl:template match=”STINGRAY”>
<li>
<xsl:value-of select=”.”/>
(stingray)
</li>

</xsl:template>

This code will process the following STINGRAY element from the XML document:

<STINGRAY>Raymond</STINGRAY>

The match attribute identifies the XML element that will be processed by this XSL
element. Note that there are many other ways to associate the XSL template with an
XML element. The match attribute is just one of the easier ones to use.

Once the particular template element has been defined, the information inside the
element will be displayed and any XSL elements will be executed. In this case, the
following information will be output:

<li>Raymond (stingray)</li>

Where the text <li> comes directly from this element, the word Raymond will be
generated by the <xsl:value-of> element, followed by the text (stingray) and
</li>. There is no reason that I couldn’t have included other HTML elements,
such as an IMG element, to display a picture of a stingray or a hyperlink to another
document. Also, you should note that the information is processed in order of how
it is listed. Thus, you can perform tasks before and after any other XSL tags you
wish to use.

Office-oriented: The xsl:template element is similar to the concept of Style,
used in Microsoft Office. In a typical Word document for example, you may use
specific styles for headers, body text, tables, etc. . If you want to change the font
used in a header, all you have to do is update the style with the new font. Then all
of the headers in the document will automatically be updated. Without styles, you
would have to manually update each individual header. 

Note

4728-3 ch20.f.qc  7/31/00  09:51  Page 444



445Chapter 20 ✦ Introducing XML

The xsl:value-of element
The xsl:value-of element returns the value of an element. If you use the select
attribute and specify a period as the value, then the value of the current element
will be returned. Thus, for this XSL template

<xsl:template match=”DAUGHTER”>
<li>
<xsl:value-of select=”.”/>
(daughter)
</li>

</xsl:template>

and this XML element

<DAUGHTER>Samantha</DAUGHTER>

the <xsl:value- of select=”.”/> will return the value Samantha.

The xsl:apply-templates element
The xsl:apply-templates element processes templates for all of the elements
within the current element. In the following XSL template

<xsl:template match=”PARENTS”>
<p>
<h2>Parents:</h2>
<xsl:apply-templates/>
</p>

</xsl:template>

an HTML header would be created containing the word Parents, and then the
FATHER and MOTHER elements beneath the PARENTS tag would be processed from
the XML document fragment shown below:

<PARENTS>
<FATHER>Wayne</FATHER>

<MOTHER>Jill</MOTHER>
</PARENTS>

Any information output by processing the templates associated with these ele-
ments would follow the information output before the <xsl-apply-templates>
element was reached in the XSL template. After all of the templates have been 
processed, the </p> tag would be output.c

4728-3 ch20.f.qc  7/31/00  09:51  Page 445



446 Part V ✦ The Impact of XML

Other XML tools
There are a few other tools that you should be aware of when creating an XML doc-
ument. These tools help ensure that your XML documents are created properly, as
well as help other users understand your document.

XML parsers
One tool that you’ll find valuable is an XML parser. Given the nature of the XML lan-
guage, it can be a real pain for you to write code to convert the XML elements into
something a bit more meaningful, much less verify that the XML document you
received is well formed.

Microsoft has released an XML parser called MSXML that you can call from your
program. I’ll talk about this parser in more detail in Chapter 21.

Document Type Definitions
Another feature of XML is the ability to create a set of rules that governs how an
XML document is created. These rules are known as Document Type Definitions, or
DTD. This information can be useful when creating XML documents, since it ensures
that you can’t create an invalid document. You don’t have to include a DTD with
your XML document, and in practice, many tools, such as Internet Explorer 5.0,
don’t bother to use it even if you do include it.

XLinks and XPointers
The Extensible Linking Language (XLL) helps you locate XML resources outside the
local document. XLL has two main parts: XLinks and XPointers. XLL is similar in
concept to an HTML link. An XPointer is a way to identify a location in an XML doc-
ument, while an XLink uses a URL, and perhaps an Xpointer, to locate a section of a
document.

Working with XML and ADO
ADO has the ability to save information from a Recordset object into an XML file.
This makes it easy to create ADO documents that can be sent to other applications.
But while the file is formatted according to XML rules, there are a few unique char-
acteristics that you should understand.

Cross-
Reference

4728-3 ch20.f.qc  7/31/00  09:51  Page 446



447Chapter 20 ✦ Introducing XML

Creating an XML File with ADO
Consider the following Select statement:

Select CustomerId, Name
From Customers
Where State = ‘MD’

You can easily use it to populate a Recordset with data from the sample database
and save the results to an XML file with the statements in Listing 20-6.

Listing 20-6: The Command1_Click event in SaveXML

Private Sub Command1_Click()

Dim db As ADODB.Connection
Dim rs As ADODB.Recordset

Set db = New ADODB.Connection
db.Open “provider=sqloledb;data source=Athena;” & _

“initial catalog=VB6DB”, “sa”, “”

Set rs = New ADODB.Recordset
rs.Open “Select CustomerId, Name From Customers “ & _

“Where State=’MD’”, db, adOpenForwardOnly, adLockReadOnly

rs.Save App.Path & “\results.xml”, adPersistXML

rs.Close

db.Close

End Sub

The SaveXML program and a copy of the Results.XML file can be found on the
CD-ROM in the \VB6DB\Chapter20\SaveXML directory.

Looking at the XML file
The XML file will contain all of the information necessary to reconstruct the
Recordset, including a description of each Recordset and each row of information
retrieved from the database (see Listing 20-7).

On the
CD-ROM

4728-3 ch20.f.qc  7/31/00  09:51  Page 447



448 Part V ✦ The Impact of XML

Listing 20-7: A sample XML file created by ADO

<xml xmlns:s=’uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882’
xmlns:dt=’uuid:C2F41010-65B3-11d1-A29F-00AA00C14882’
xmlns:rs=’urn:schemas-microsoft-com:rowset’
xmlns:z=’#RowsetSchema’>

<s:Schema id=’RowsetSchema’>

<s:ElementType name=’row’ content=’eltOnly’
rs:CommandTimeout=’30’>

<s:AttributeType name=’CustomerId’ rs:number=’1’
s:writeunknown=’true’>

<s:datatype dt:type=’int’ dt:maxLength=’4’
rs:precision=’10’

rs:fixedlength=’true’ rs:maybenull=’false’/>

</s:AttributeType>

<s:AttributeType name=’Name’ rs:number=’2’ 
rs:nullable=’true’ rs:writeunknown=’true’>

<s:datatype dt:type=’string’ rs:dbtype=’str’
dt:maxLength=’64’/>

</s:AttributeType>

<s:extends type=’rs:rowbase’/>

</s:ElementType>

</s:Schema>

<rs:data>

<z:row CustomerId=’84’ Name=’Fred Price’/>
<z:row CustomerId=’205’ Name=’Joseph Bell’/>
<z:row CustomerId=’385’ Name=’Kali Carlisle’/>

</rs:data>

</xml>

It looks different on disk: While the XML file generated by ADO is human read-
able, it isn’t very printer friendly. Therefore, I’ve restructured how the elements are
displayed in Listing 20-5, without changing any of the content.

Note

4728-3 ch20.f.qc  7/31/00  09:51  Page 448



449Chapter 20 ✦ Introducing XML

The root element of the XML document is the xml element. It is used to define the
name spaces that are used within the document. Four name spaces are typically
defined:

✦ s defines the schema

✦ dt defines data types

✦ rs defines Recordset information

✦ z contains row information

The XML file is broken into two main elements: the schema element and the record-
set element. The schema element is denoted by the tag <s:schema>, while the
recordset element is denoted by the <rs:data> tag.

In the s:schema element, global recordset information is defined in the
s:ElementType element. Within this element, information about each of the
columns is defined. The s:AtrributeType element is used to define the column
name that will be used in the recordset’s z:row element, along with its data type.

Then each row of data in the recordset is listed in the rs:data element. This is the
most understandable element in the file. Each row in the recordset is identified with
the z:row element name. Within the row, each column is listed as an attribute, with
its corresponding data value.

Understanding the Benefits of Using XML
So, now you know that XML is a way that you can intelligently describe data. But
why would you want to use it in your applications? In short, not all applications will
benefit from XML, but many will.

Data interchange
XML is based on the concept that a document is the best way to exchange informa-
tion between organizations. All kinds of documents are used in a business: purchase
orders, invoices, contracts, product specifications, and so on. A document created by
one organization must then be read and understood by another. Documents contain
two parts: the framework for presenting the information and the information itself.

Consider a product catalog. It consists of a number of individual specification
sheets. For a group of similar products, each of the categories in the specification
sheet is the same, inviting the reader to make apples-to-apples comparisons
between products.

4728-3 ch20.f.qc  7/31/00  09:51  Page 449



450 Part V ✦ The Impact of XML

There are many different ways to exchange data between applications, each with 
its limitations and problems. In order to understand why you would use XML, 
you should understand the more traditional methods of data interchange.

Binary files
Binary files typically contain a raw dump of the data from your application. No
information about the data structure of the file is contained in the file, and usually a
custom program needs to be written to read the information from the file and refor-
mat it into something that the receiving application can use.

Once the file is created, it is transported to another computer via a network, floppy
disk, or some other method, then loaded into the second computer. Any errors or
problems encountered on the remote computer are usually returned back to the
first computer, using the same technique that was used to send the data in the first
place. However, this technique means that there is a delay between the time the
data is created in the sending application and the time before the receiving applica-
tion has posted the changes. In many cases this doesn’t matter, but in some cases it
can be a big problem.

There are other drawbacks to using binary files. Different computers use different
ways of storing numeric data. Intel computers, for instance, store a 16-bit integer
low byte then high byte, while other types of computers may store the same value
high byte then low byte. This means that you may have to transform the actual val-
ues in order to accurately process the file.

Text files
Text files are also known as flat files. These files usually contain a formatted dump
of data from the sending application. When dealing with mainframe-based applica-
tions, these files typically use a fixed data format, where each field occupies the
same column positions in each line of the file.

PC-based applications typically use delimited files, such as Comma Separated Value
(CSV) files or tab delimited files, where each field in a line is separated from the next
field by a special character, such as a comma or tab. Each record in the file is sepa-
rated from the next by a carriage return, line feed, or carriage return line feed pair.

Like binary files, text files usually don’t contain information about the data itself.
Sometimes the first line of the file will contain the names of the fields, but other infor-
mation, such as data type and size information, is almost never included. Also, like
binary files, text files need to be transported to the remote computer either through 
a network or through removable media, such as a floppy disk or magnetic tape.

COM components
Using COM to exchange data is merely a matter of building a COM component in
the receiving application that can be called by the sending application as the data
is created. This makes is easier to send the data, since the receiving application is

4728-3 ch20.f.qc  7/31/00  09:51  Page 450



451Chapter 20 ✦ Introducing XML

able to process the data as it is received. There is no problem parsing the various
fields that are being transported, since each field is stored in its own property with
its own specific data type.

One problem encountered when using COM for data interchange revolves around
the real-time nature of COM. As the data is generated in the sending application, the
receiving application must be available to process it. If necessary, you can use a
message queue between the COM components that allows the two applications to
process data at their own speed. This prevents the sending application from trans-
mitting data faster than the receiving application can process it.

You don’t have to worry about byte order or any other compatibility issues like that
because the COM specification ensures that those problems can’t arise. Of course,
using COM components means that you have to run in a Windows environment.
While there are techniques that allow you to run COM on non-Windows systems,
they generally aren’t as stable as using COM natively.

Separating content from formatting
It is possible to build generic Web pages that load and display the information
found in an XML document, however it is often desirable to create a program that
reads the HTML document and extracts meaningful information from the document.
By using an XML document, you can easily extract the information you need.

Better searches
It is possible to perform better searches of an XML file when compared to an
unstructured file. You can use the tags to ignore data you don’t want to search.
For instance, if you have an XML file containing a list of books, you can search
only the author tags if you’re looking for a book written by a particular author.
While this may not make a big difference when searching for someone named
Elizabeth Thornberry, it may help to eliminate false hits when searching for titles
written by Red Book.

Local access
For all practical purposes, you could use an XML document as a primitive database.
All of the information needed to describe the data is kept within the document, so it
would be easy to retrieve data from a remote database server and save it locally in
an XML file which could be used as input to various tools, such as a report writer or
statistical analysis program. Because you have a local copy of the data, you don’t
impact the database server’s performance when you process the data as you try
various report formats or create complex statistical analysis programs.

Easily compressed
Because XML tags and data are stored using normal common ASCII characters, the
data is easily compressed. Thus tools, such as a dial-up modem that automatically
includes data compression helps to compensate for the fact that XML documents

4728-3 ch20.f.qc  7/31/00  09:51  Page 451



452 Part V ✦ The Impact of XML

are much larger than a straight binary file. Note that even with compression, the
XML document will most likely still be larger than the equivalent binary file, but
using data compression goes a long way toward eliminating the extra overhead.

Vendor independence
XML is independent of any particular vendor and has the benefit of being incorpo-
rated into many different products. Thus, it is easily incorporated into applications.
Unlike comma separated value files that have to be parsed, there are many different
XML parsers available to help you read an XML document. So as long as you can
agree on the elements in the XML document, it doesn’t matter whether a COBOL
program running on an IBM mainframe or a Visual Basic program running on
Windows 2000 processes the XML document.

Industry acceptance
Many industry-specific groups are being formed to determine the elements and
organization for document exchange. This is very important, since it will allow you
to exchange information with other applications and not worry if, for example,
someone chooses to call someone’s name FIRST_NAME, FIRSTNAME or FNAME.

There are a number of industry groups currently working on standardizing XML
tags so that organizations can exchange documents with the knowledge that they
will understand the structures used in the documents.

Thoughts on Using XML

Not every application will benefit from XML. Specifically, adding XML support to closed
applications (for example, those applications that don’t share data with other applications)
is probably a waste of time and money. There are better ways to share data within an appli-
cation, such as a database or a COM object. However, if you have an open application that
needs to exchange data with other applications, XML may be the solution for you.

It’s my opinion that XML is one of the most over-hyped technologies in the market today.
Every vendor is scrambling to demonstrate their commitment to XML and claim that their
products are XML-enabled. In reality, XML is only a tool for facilitating data exchange. The real
power of XML comes from the fact that many industries are defining XML-based standards for
information interchange. Having a standard that describes how to submit a purchase order
for automotive parts or return information about your checkbook is what is really important.

4728-3 ch20.f.qc  7/31/00  09:51  Page 452



453Chapter 20 ✦ Introducing XML

Summary
In this chapter you learned:

✦ how XML documents are formatted.

✦ about XML tags and attributes.

✦ how to translate a database design into an XML document.

✦ how to create an XML document with an editor.

✦ how to view an XML document with Internet Explorer 5.

✦ about XSL style sheets.

✦ how ADO saves recordsets in XML format. 

✦ about the benefits of using XML

✦ ✦ ✦

4728-3 ch20.f.qc  7/31/00  09:51  Page 453



4728-3 ch20.f.qc  7/31/00  09:51  Page 454


