
Using Message
Queues

In this chapter, I want to talk about Microsoft Message
Queues, including what they are, how they work, and when

they might be useful for your applications.

How Message Queuing Works
Message queuing is a tool that helps two programs communi-
cate with each other in an asynchronous fashion. This means
that a client program can send a request to a server and then
continue processing without waiting for the server process to
complete. When the server process has finished processing
the request, it will return the message to the client program,
which will be notified with the response it available to be pro-
cessed.

Well, kinda, sorta: While not strictly a part of the COM+
programming environment, Microsoft Message Queuing
works closely with COM and COM+ components to imple-
ment high-performance applications.

Synchronous processing
Normally, when you are using a COM component and you
issue a method, or request the information in a property, your
program must wait until the method or property returns con-
trol to your program. This is called synchronous processing.

In synchronous processing, the client program begins by send-
ing a request to the server to perform a specific task. The
server program receives the request, performs the task, and
returns the result back to the client. During the time the server
is processing the client’s request, the client program is in a wait

Note

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing the
Queuing Object
Model

Accessing
message queues

Building client and
server programs

Viewing message
queue information

✦ ✦ ✦ ✦

4728-3 ch19.f.qc 7/31/00 09:50 Page 399

400 Part IV ✦ COM+ Transactions and Message Queues

state, where it can’t perform any processing. It will only resume processing after the
server has returned its response (see Figure 19-1).

Synchronous processing made simple: When thinking about synchronous pro-
cessing, visualize how a Web browser works. The URL is used to generate a
request to the Web server and then the browser waits for the Web page to be
returned.

Figure 19-1: Processing a synchronous request

Asynchronous processing
In some cases, it’s useful for your program to issue a request for information and
then perform other tasks while your program waits for the response. This is called
asynchronous processing.

In asynchronous processing, the client program begins by sending a request to the
server to perform a specific task and then resumes its normal processing. The server
receives the request, processes it, and returns the result. When the result is received,
the client program is notified that the result is available and ready for the client pro-
gram to use (see Figure 19-2).

Asynchronous processing made simple: One way to understand how asyn-
chronous processing works is to compare it to electronic mail. You can send a
message to someone requesting a piece of information and then continue reading
and sending other e-mail until you receive a response to your original message.

Tip

Request

Response

Client Server

Tip

4728-3 ch19.f.qc 7/31/00 09:50 Page 400

401Chapter 19 ✦ Using Message Queues

Figure 19-2: Processing an asynchronous request

Since the client is no longer tightly coupled to the server, the server has the free-
dom to process requests in the most efficient manner. Since it is quite possible that
multiple clients will be sending requests, all of the messages are stored in a queue
as they are received. As the server finishes processing one request, it will pull the
next request from the queue. This ensures that all of the messages are processed in
the order in which they were received.

Benefits of message queuing
Using message queues will increase the complexity of your application. In addition,
not all applications will benefit from using message queuing. However, the benefits
of message queuing may outweigh the extra complexity.

Component availability
Just because you have a full-time connection to the server doesn’t mean that the
server will always be available. The server’s operating system or the application
running on the server may have crashed. Networking problems are probably more
common, especially if the server is located in another building or across the coun-
try from your client machines.

Client Server

Request
Client

Request
Queue

Client
Response

Queue

Server
Request
Queue

Server
Request
Queue

Response

4728-3 ch19.f.qc 7/31/00 09:50 Page 401

402 Part IV ✦ COM+ Transactions and Message Queues

If you are unable to reach the server for any reason, all of the requests are buffered
locally until the server can be reached. When the server becomes available, the
information that was buffered locally will be transmitted to the server for process-
ing. Also, any results that the server may have processed will be received into local
storage for the client to process.

Component performance
By queuing requests for processing, the user need not wait for the server to finish
processing one request before starting on the next request. Thus, you can create
your application to prioritize how the processing is done. This is important when
your server becomes overloaded. Those tasks that need an immediate response,
such as checking inventory levels, can be handled as a normal COM+ object. Those
tasks that are not as time-sensitive, such as printing an invoice, can be deferred
until the server is less busy by using message queuing.

Component lifetimes
Delays caused by transmitting information over the network and interacting with
the user extend the amount of time that an object actually exists inside the transac-
tion server. By using message queuing, the exchange of information is handled out-
side the transaction server. This means that the object exists for far less time than
it would without using message queuing. This translates into better performance in
the transaction server, because fewer system resources are needed to process the
actual transaction.

Disconnected applications
If you create queues that go in both to the server and to the client, you may not
need a full-time connection to the server. Requests can be queued up until a con-
nection to the server is established. Then the requests are transmitted to the
server for processing using the server queue. Any responses that the server has for
the client can be queued in the client queue. When the connection is established,
both queues will be transmitted to the other machine. If the connection remains up
for enough time, the server may actually be able to respond to the requests sent by
the client and return them via the reverse queue.

Message reliability
Message queuing relies on a database to store the requests. This ensures that the
requests are protected from system failures. If and when the database needs to be
recovered, the requests in the queues would also be recovered. Since the time to
transmit and add the request to a queue is much less than the time a normal object
would exist, it is less likely that a failure would occur in the middle of a specific
request.

4728-3 ch19.f.qc 7/31/00 09:50 Page 402

403Chapter 19 ✦ Using Message Queues

Server scheduling
Another advantage of message queuing is the ability to shift the work sitting in a
queue to a time when the server is less busy. Thus, message queues have the ability
to duplicate the batch-processing features of the mainframe world by making it
easy to shift work to a less busy time.

Load leveling
One problem with most server-driven application systems is that their workload
can vary greatly over time, which may have an adverse impact on performance. In a
synchronous environment, a server can easily get overwhelmed for a few moments
at a time. If this happens occasionally, the server can catch up and nobody will
notice. On the other hand, if this happens frequently, the operating system and the
server application will be forced to spend extra resources managing the extra work,
which means that there are less resources to process the extra work.

This extra overhead can be eliminated by using message queuing (asynchronous
processing). You would tune the server and the application to get the highest per-
formance. Then you would stage the requests in a message queue until the server
can process them. Most of the time, the requests would be pulled from the message
queue as fast as they arrive. However, when the requests arrive faster than the
server can process them, they will remain in the message queue until the server
can process them.

In real terms, the slight penalty imposed by using message queuing will not make a
big difference in the time it takes to process a request until the server becomes over-
loaded. Then, depending on how overloaded the server is, using message queuing
will increase the time to process each request. However, because the application is
continuing to process requests at optimal speed, the time the request spends in the
message queue, plus the time it takes the application to process the request, will
most likely be less than the time it takes to process the request while the server
is overloaded.

Too much is just right: A long time ago, I ran into a situation where one of the
computers I was responsible for was running at maximum capacity. The CPU uti-
lization would stay at 100% for several minutes at a stretch. Response time was
horrible. Upgrading to a CPU that was twice as fast solved the problem. However,
the CPU utilization was about 40%, rather than the expected 50%. After a lot of
digging and analysis, I determined that the old CPU was wasting nearly 20% of its
capacity trying to manage the extra requests. With the faster CPU, the overload
condition never arose and the CPU cycles were never wasted. While it is not
always possible to double your CPU capacity, you may be able to use a tool like
message queuing to ensure that the your CPU isn’t wasting extra cycles trying to
manage too much work.

Note

4728-3 ch19.f.qc 7/31/00 09:50 Page 403

404 Part IV ✦ COM+ Transactions and Message Queues

Microsoft Message Queuing
In order to use message queues in a Windows environment, you need a piece of
software called Microsoft Message Queuing (often abbreviated MSMQ). It runs on
Windows 9x, Windows NT, and Windows 2000, though you may need the appropri-
ate patches to run it. It is considered a base component of these operating systems;
thus, there isn’t a separate charge for the software.

Requests and responses
A request is sent to the server using an object containing all of the information
needed to process the request. The object must be persistable and be less than
four megabytes in length.

There are four basic responses to a request.

✦ No response is necessary – this means that the message sent by the client
either doesn’t need a response or the response will be returned using a differ-
ent technique. For instance, the message sent by the client may request a
report that will be returned by e-mail.

✦ Trigger an event in the client application – this means that the server appli-
cation will fire an event in the client program when the server application has
finished processing the message.

✦ Use a synchronous method to check on the status – this means that the
server application may expose a property that a client application can access
to determine if their message has been processed.

✦ Use message queuing to receive a response – this is probably the most com-
mon way to determine the outcome of processing a request. Consider the case
of a salesperson that enters orders into a laptop computer while at a customer’s
site. At the end of the day, the salesperson could connect the laptop to the com-
pany’s application server. Then MSMQ would transfer the local messages to the
message queues on the server, while downloading any responses from the
server into local storage for the salesperson to browse at his or her leisure.

Types of queues
Queues are really just storage that is allocated to contain messages along with the
information needed to manage the information in the queue. Different types of
requests receive different types of responses. Also, in order to operate a message
queue, the software on the client and server ends of the message queue need to
exchange information. This information is typically sent using message queues.

4728-3 ch19.f.qc 7/31/00 09:50 Page 404

405Chapter 19 ✦ Using Message Queues

There are six basic types of queues. The type of queue dictates how the queue will
be used, but underneath, the same basic technology is used to support all of these
types:

✦ Message – this is the most common type of queue and is used primarily by
applications. Clients can send messages to the queue, while server applica-
tions can retrieve messages from the queue.

✦ Administration – this type of queue is used by an application to retrieve sta-
tus information about messages in a message queue. For example, an
acknowledgement message indicates that a message was received or retrieved
from the application at the queue’s destination.

✦ Response – this type of queue is used by client applications to receive
responses from the server application.

✦ Report – this type of queue tracks the progress of the messages as they move
through the system.

✦ Journal – this type of queue holds messages that have been retrieved at their
destination.

✦ Dead-letter – application messages that can’t be delivered are stored in this
type of queue.

Public and private queues
Queues can also be labeled as public or private. Public queues are registered in the
Active Directory and can be located by anyone with access to the Active Directory.
You can search for various properties of a queue in the Active Directory so that you
can locate the correct one. Thus public queues can only be implemented on a
Windows 2000 Server based system.

Combining the name of the computer with the name of the queue creates the name
of a public queue. So, the queue MyQueue on the Athena would be known as
Athena\MyQueue.

Actively seeking directory information: The Active Directory facility in Windows
2000 Server is a tool that stores information about the resources on the local com-
puter, or resources that can be found elsewhere on the network. Windows 2000
makes extensive use of this facility to store information about the operating system,
such as user names, like public queues, other specialized services, and so on.
Private queues are registered on an individual computer and can be found by any-
one who knows the names of the computer and the queue. You must also include
the keyword \Private$ in the name of the queue, so a private queue on Athena
called MyQueue would be written as Athena\Private$\MyQueue.

Note

4728-3 ch19.f.qc 7/31/00 09:50 Page 405

406 Part IV ✦ COM+ Transactions and Message Queues

By default, all queues are public. To make a queue private, you must include
\Private in the name of the queue when it is created. You must have access to
an Active Directory server to do this, however. Note that private queues can be
created on Windows 98- and Windows NT-based machines.

Message queuing and COM+ transactions
COM+ transactions using message queues work automatically with the COM+ trans-
action server and the ObjectContext object. Getting the ObjectContext object
and performing the SetComplete, or SetAbort, method automatically rolls back
any operations you made to the queues. In other words, no messages are removed
from the queues or physically sent until the transaction is either committed or
rolled back.

There is one big issue about using message queues and transactions. While inside
a transaction, you can only send messages to transactional queues — queues that
were created with the IsTransactional parameter of the MSMQQueueInfo.Create
method set to True. Also, any messages that are sent automatically have their
MSMQMessage.Priority value set to zero. This ensures that the messages are pro-
cessed in the order in which they were received.

The message queues also include their own version of transaction support in
case you don’t want to use the COM+ transaction server or want to work outside
its control. You need to use the MSMQCoordinatedTransactionDispenser to
begin a transaction while under control of the COM+ transaction server. Use the
MSMQTransactionDispenser object if you’re not under control of the COM+ trans-
action server. Then use the MSMQTransaction object to either commit the transac-
tion or abort the transaction.

Message Queuing Object Model
Like most Windows tools, the MSMQ is accessed via a series of COM components.
Figure 19-3 shows a brief overview of the objects and how they are related to each
other.

✦ MSMQQuery – is used to search the Active Directory for public queues. It
returns an MSMQQueueInfos collection containing the set of message queues
that met the search criteria.

✦ MSMQQueueInfos – contains a set of MSMQQueueInfo objects. This compo-
nent contains the results of an MSMQQuery operation.

✦ MSMQQueueInfo – is used to create and open queues as well as containing
other information about a specific queue.

4728-3 ch19.f.qc 7/31/00 09:50 Page 406

407Chapter 19 ✦ Using Message Queues

Figure 19-3: The Message Queuing Object Model

✦ MSMQQueue – is the base object in the object model. You use this object to
access the individual messages in the queue.

✦ MSMQMessage – holds a message that is put in a queue or received from a
queue.

✦ MSMQEvent – is used to define queuing events in your application. These
events are fired as information arrives at your application.

Making it simpler: To simplify this discussion of message queues, I’m going to
focus on private queues, which means that I’m going to ignore the MSMQQuery
and MSMQQueueInfos objects. The only function lost by omitting the discussion
of these objects is the ability to dynamically locate the proper queue by name
only. To access a private queue, you must know the its name as well as the com-
puter where it exists.

To add message queuing to your application, you need to select the Microsoft
Message Queue 2.0 Object Library in the References dialog box (see Figure 19-4).
To display this dialog box, choose Project ➪ References from the main menu.

Note

MSMQQuery MSMQQueueInfosv

MSMQQueueInfo

MSMQQueueInfo

MSMQQueue MSMQEventMSMQMessage

4728-3 ch19.f.qc 7/31/00 09:50 Page 407

408 Part IV ✦ COM+ Transactions and Message Queues

Figure 19-4: Selecting
the Microsoft Message
Queue Object Library

The MSMQQueueInfo Object
The MSMQQueueInfo object is used to create or open a message queue. It can also
set and return information about a particular queue.

MSMQQueueInfo object properties
Table 19-1 lists the properties of the MQMQQueueInfo object.

Table 19-1
Properties of the MSMQQueueInfo Object

Property Description

Authenticate A Long value that specifies whether the queue accepts
only authenticated messages.

BasePriority A Long that specifies a base priority for all messages sent
to a public queue.

CreateTime A Date value containing the date and time the public
queue was created.

IsTransactional A Boolean value when True means only messages from
transactions will be accepted into the queue.

IsWorldReadable A Boolean when True indicates that everyone can read
the messages in the queue.

4728-3 ch19.f.qc 7/31/00 09:50 Page 408

409Chapter 19 ✦ Using Message Queues

Property Description

Journal A Long when set to MQ_JOURNAL (0) means that the
messages aren’t saved; MS_JOURNAL (1) means that
when a message is removed from the queue, it is stored
in the journal queue.

JournalQuota A Long containing the size in kilobytes of the journal
queue.

Label A String value containing up to 124 characters that
describe the queue.

ModifyTime A Date value containing the date and time when the
properties of the queue were last modified.

PathName A String containing the path name of the queue. This
value is in the form of \system\queue or
\system\PRIVATE$\queue.

PathNameDNS A String containing the path name of the queue, where
the system name is fully qualified.

PrivLevel A Long when set to MQ_PRIV_LEVEL_NONE (0) means
that the queue accepts only unencrypted messages;
MQ_PRIV_LEVEL_OPTIONAL (1) means that the queue
doesn’t enforce privacy (default); or MQ_PRIV_LEVEL
_BODY (2) accepts only encrypted messages.

QueueGuid A String containing the GUID of the queue.

Quote A Long containing the maximum size of the queue in
kilobytes.

ServiceTypeGuid A String containing the type of service provided by the
queue.

MSMQQueueInfo object methods
The MSMQQueueInfo object contains methods for managing queues.

Sub Create ([IsTransactional], [IsWorldReadable])
The Create method creates a new queue based on the properties defined in this
object.

4728-3 ch19.f.qc 7/31/00 09:50 Page 409

410 Part IV ✦ COM+ Transactions and Message Queues

IsTransactional is a Boolean when True means only messages from transac-
tions will be accepted into the queue.

IsWorldReadable is a Boolean when True indicates that everyone can read the
messages in the queue.

Sub Delete()
The Delete method deletes the queue associated with this object.

Function Open(Access As Long, ShareMode As Long) As MSMQQueue
The Open method returns an object reference to MSMQQueue specified by the
PathName property.

Access is a Long value specifying the level type of access to the queue. Multiple val-
ues may be combined by adding them together. Values are MQ_RECEIVE_ACCESS (1)
means that messages can be received or peeked at in the queue; MQ_SEND_ACCESS
(2) means that messages can be sent to the queue; and MQ_PEEK_ACCESS (32) means
that you can peek at messages in the queue, but not remove them.

ShareMode is a Long specifying how the queue is shared. A value of MQ_DENY_NONE
(0) means that the queue is shared with everyone (you must use this value if you
specify MQ_SEND_ACCESS or MQ_PEEK_ACCESS); or MQ_DENY_RECEIVE_SHARE (1)
prevents anyone except those in this process from accessing the queue (this value
should be used when you specify MQ_RECEIVE_ACCESS).

Sub Refresh()
The Refresh method gets a fresh copy of the properties associated with this
queue.

Sub Update()
The Update method updates the Active Directory for a public queue or the local
computer with the current property values for this queue.

The MSMQQueue Object
The MSMQQueue object is a fundamental object when dealing with message queuing.
This object has the necessary properties and methods to access the information in
the queue. The MSMQQueueInfo object is used to open the queue and return an
object reference to this object.

4728-3 ch19.f.qc 7/31/00 09:50 Page 410

411Chapter 19 ✦ Using Message Queues

MSMQQueue object properties
Table 19-2 lists the properties of the MQMQQueue object.

Table 19-2
Properties of the MSMQQueue Object

Property Description

Access A Long value indicating whether you can send messages, peek at
messages, or receive messages from the queue.

Handle A Long containing a handle of the open queue.

IsOpen A Boolean value when True means that the queue is open.

QueueInfo An object reference to a MSMQQueueInfo object containing
additional information about the queue.

ShareMode A Long that indicates whether the queue is available to everyone or
whether only this process.

MSMQQueue object methods
The MSMQQueue object contains methods for examining the contents of the queue.

Sub Close()
The Close method closes the queue.

Sub EnableNotification(Event As MSMQEvent, [Cursor],
[ReceiveTimeout])
The EnableNotification method instructs the message queuing software to trig-
ger events using the MSMQEvent object. Note that this object needed to be declared
using the WithEvents keyword in order to receive the events. You can specify that
the event will be fired when there is a message in the queue, when a message is at
the queue’s current location, or when a message is at the queue’s next location.
Note that it may be possible that multiple messages may be in front of the message
that triggered the event.

Event is an object reference to an MSMQEvent object that has been declared
WithEvents, which will be fired as needed.

4728-3 ch19.f.qc 7/31/00 09:50 Page 411

412 Part IV ✦ COM+ Transactions and Message Queues

Cursor is an enumerated type that specifies the action of the cursor. A value of
MQMSG_FIRST (0) means that the event will be fired when a message is in the queue.
A value of MQMSG_CURRENT (1) means that the event will be fired when a message is
at the current location of the cursor. A value of MQMSG_NEXT (2) means that the
event will be fired when a message is at the new cursor location.

ReceiveTimeout is a Long containing the number of milliseconds that MSMQ will
wait for a message to arrive.

Function Peek([WantDestinationQueue], [WantBody], [ReceiveTimeout])
As MSMQMessage
The Peek method returns the first message in the queue without receiving the mes-
sage from the queue. If the queue is empty, it will wait for a message to arrive.

WantDestinationQueue is a Boolean when True means that the MSMQMessage.
DestinationQueueInfo property will be updated to contain the information
about the destination queue. If not specified, a value of False will be assumed.

WantBody is a Boolean when True means that the body of the message should be
returned (default). Set this value to False to reduce the amount of time to return
the message.

ReceiveTimeout is a Long containing the number of milliseconds that MSMQ will
wait for a message to arrive.

Function PeekCurrent([WantDestinationQueue], [WantBody],
[ReceiveTimeout], [WantConnectorType]) As MSMQMessage
The PeekCurrent method returns the current message in the queue without
receiving it.

WantDestinationQueue is a Boolean when True means that the MSMQMessage.
DestinationQueueInfo property will be updated to contain the information
about the destination queue. If not specified, a value of False will be assumed.

WantBody is a Boolean when True means that the body of the message should be
returned (default). Set this value to False to reduce the amount of time to return
the message.

ReceiveTimeout is a Long containing the number of milliseconds that MSMQ will
wait for a message to arrive.

WantConnecterType is a Boolean when True means that connector information
will also be retrieved. If not specified, a value of False will be assumed.

4728-3 ch19.f.qc 7/31/00 09:50 Page 412

413Chapter 19 ✦ Using Message Queues

Function PeekNext([WantDestinationQueue], [WantBody],
[ReceiveTimeout], [WantConnectorType]) As MSMQMessage
The PeekNext method returns the next method in the queue without receiving the
message.

WantDestinationQueue is a Boolean value when True means that the
MSMQMessage.DestinationQueueInfo property will be updated to contain the
information about the destination queue. If not specified, a value of False will be
assumed.

WantBody is a Boolean when True means that the body of the message should be
returned (default). Set this value to False to reduce the amount of time to return
the message.

ReceiveTimeout is a Long value containing the number of milliseconds that MSMQ
will wait for a message to arrive.

WantConnecterType is a Boolean when True means that connector information
will also be retrieved. If not specified, a value of False will be assumed.

Function Receive([Transaction], [WantDestinationQueue], [WantBody],
[ReceiveTimeout], [WantConnectorType]) As MSMQMessage
The Receive method returns the first message in the queue and removes it from
the queue.

Transaction is an MSMQTransaction object or one of these values: MQ_NO_
TRANSACTION (0), which means that call is not part of a transaction; MQ_MTS_
TRANSACTION (1), which means that the call is made as part of the current MTS
or COM+ transaction; MQ_XA_TRANSACTION (2), which means that the call is part
of an externally coordinated, XA-compliant transaction; or MQ_SINGLE_MESSAGE
(3), which means that the call retrieves a single message.

WantDestinationQueue is a Boolean when True means that the MSMQMessage.
DestinationQueueInfo property will be updated to contain the information about
the destination queue. If not specified, a value of False will be assumed.

WantBody is a Boolean when True means that the body of the message should be
returned (default). Set this value to False to reduce the amount of time to return
the message.

ReceiveTimeout is a Long containing the number of milliseconds that MSMQ will
wait for a message to arrive.

4728-3 ch19.f.qc 7/31/00 09:50 Page 413

414 Part IV ✦ COM+ Transactions and Message Queues

WantConnecterType is a Boolean when True means that connector information
will also be retrieved. If not specified, a value of False will be assumed.

Function ReceiveCurrent([Transaction], [WantDestinationQueue],
[WantBody], [ReceiveTimeout], [WantConnectorType]) As
MSMQMessage
The ReceiveCurrent method returns the current message in the queue and
removes it from the queue.

Transaction is an MSMQTransaction object or one of these values: MQ_NO_
TRANSACTION (0), which means that call is not part of a transaction; MQ_MTS_
TRANSACTION (1), which means that the call is made as part of the current MTS
or COM+ transaction; MQ_XA_TRANSACTION (2), which means that the call is part
of an externally coordinated, XA-compliant transaction; or MQ_SINGLE_MESSAGE
(3), which means that the call retrieves a single message.

WantDestinationQueue is a Boolean when True means that the MSMQ
Message.DestinationQueueInfo property will be updated to contain the
information about the destination queue. If not specified, a value of False will
be assumed.

WantBody is a Boolean when True means that the body of the message should be
returned (default). Set this value to False to reduce the amount of time to return
the message.

ReceiveTimeout is a Long containing the number of milliseconds that MSMQ will
wait for a message to arrive.

WantConnecterType is a Boolean when True means that connector information
will also be retrieved. If not specified, a value of False will be assumed.

Sub Reset()
The Reset method moves to the current message cursor to the start of the queue.

The MSMQMessage Object
The MSMQMessage object contains the message that is sent and received using
message queuing.

4728-3 ch19.f.qc 7/31/00 09:50 Page 414

415Chapter 19 ✦ Using Message Queues

MSMQMessage object properties
Table 19-3 lists the properties of the MSMQMessage object.

Set not for the body of a message: Don’t use the Set statement to assign an
object to the Body property of an MSMQMessage object. The Set statement cre-
ates a reference to an object. You should use an assignment statement to copy the
entire contents of the object into the Body property.

Table 19-3
Properties of the MSMQMessage Object

Property Description

Ack A Long value that specifies the type of
acknowledgement that is returned.

AdminQueueInfo An object reference to the MSMQQueueInfo
object that is used for acknowledgement
messages.

AppSpecific A Long value containing application-specific
information.

ArrivalTime A Date value containing the date and time the
message arrived at the queue.

AuthenticationProviderName A String value containing the name of the
cryptographic provider used to generate the
digital signature for the message.

AuthenticationProviderType A Long value containing the type of the
cryptographic provider.

AuthLevel A Long value that specifies whether or not the
message should be authenticated when received.

Body A Variant value containing the message to be
sent. Typically, this will be either a String or
apersistent COM component.

BodyLength A Long value containing the number of bytes in
the message.

Class ALong value containing the type of message
being sent.

Continued

Caution

4728-3 ch19.f.qc 7/31/00 09:50 Page 415

416 Part IV ✦ COM+ Transactions and Message Queues

Table 19-3 (continued)

Property Description

ConnectorTypeGUID A String value containing the GUID associated
with the component that was used to externally
set some of the message properties that are
typically set by MSMQ.

CorrelationId A Variant value containing a 20-byte
application-defined value that can be used to link
messages together.

Delivery Specifies how the message is delivered. Possible
values are MQMSG_DELIVERY_EXPRESS (0),
which is default and specifies a normal delivery
process where it may be possible to lose the
message in case of system failure; or MQMSG_
DELIVERY_RECOVERABLE (1), which means
that a more reliable system is used.

DestinationQueueInfo An object reference to an MSMQQueueInfo
object that will be used as the destination queue.

DestinationSymmetricKey A Variant value containing the symmetric key
used to encrypt messages.

EncryptAlgorithm A Long value, which specifies the encryption
algorithm used to encrypt the body of the
message.

Extension A Variant value containing additional
application-specific information associated with
the message.

HashAlgorithm A Long value containing the hash algorithm used
to authenticate a message.

Id A Variant value containing the identifier for this
message. This value is automatically generated by
MSMQ.

IsAuthenticated An Integer value that specifies whether the
local queue manager authenticated the message.

IsFirstInTransaction An Integer value that specifies whether the
message is the first message sent in a
transaction.

IsLastInTransaction An Integer value that specifies whether
the message is the last message sent in a
transaction.

4728-3 ch19.f.qc 7/31/00 09:50 Page 416

417Chapter 19 ✦ Using Message Queues

Property Description

Journal A Long value that specifies whether a copy of the
message was stored in the journal queue.

Label A String value containing an application-
specific value describing the message.

MaxTimeToReachQueue A Long value containing the maximum number
of seconds that can elapse before the message
must reach the queue before it will be canceled
and an error message returned to the sender.

MaxTimeToReceive A Long value containing the maximum number
of seconds that can elapse before the message
must be received before it will be canceled and
an error message returned to the sender.

MsgClass A Long value containing the message type.

Priority A Long value containing the relative priority of
the message.

PrivLevel A Long value containing how the message is
encrypted.

ResponseQueueInfo An object reference to an MSMQQueueInfo
object that specifies the response queue used to
send response information.

SenderCertificate A Byte() array containing the security certificate
information.

SenderId A Byte() array containing the name of the user
who sent the message.

SenderIdType A Long value that specifies whether the
SenderId value was included in the message.

SenderVersion A Long value containing information about the
version of MSMQ that was used to send the
message.

SendTime A Date value containing the date and time the
message was sent.

Signature A Byte() containing the digital signature used
to authenticate the message.

SourceMachineGuid A String array value containing the GUID of the
computer, which sent the message.

Continued

4728-3 ch19.f.qc 7/31/00 09:50 Page 417

418 Part IV ✦ COM+ Transactions and Message Queues

Table 19-3 (continued)

Property Description

Trace A Long value that specifies where a message will
be returned to the sender in the report queue for
each hop taken by the message in the delivery
process.

TransactionId A Byte() array that identifies the transaction
that sent the message.

TransactionStatusQueueInfo An object reference to a transaction status queue
used for transactional messages.

MSMQMessage object methods
The MSMQMessage object contains methods for sending a message to a queue.

Sub AttachCurrentSecurityContext()
The AttachCurrentSecurityContext method retrieves the security information
needed to attach a certificate to the message when requesting authentication.

Sub Send(DestinationQueue As MSMQQueue, [Transaction])
The Send method transmits the message to the specified queue.

DestinationQueue is an object reference to an open MSMQQueue object.

Transaction is a Variant which can be a reference to a MSMQTransaction object
or one of these constants: MQ_NO_TRANSACTION (0), which means that this call isn’t
part of a transaction; MQ_MTS_TRANSACTION (1), which means that this call is part of
the current MTS or COM+ transaction; MQ_XA_TRANSACTION, which means that this
call is part of an externally coordinated, XA-compliant transaction; or MQ_SINGLE_
TRANSACTION (3), which means the message comprises a single transaction.

MSMQEvent object events
The MSMQEvent object is used to define the events in your program that will be
fired when a message arrives in the queue. These events are defined by the
EnableNotification method of the MSMQQueue object.

4728-3 ch19.f.qc 7/31/00 09:50 Page 418

419Chapter 19 ✦ Using Message Queues

Event Arrived (Queue As Object, Cursor As Long)
The Arrived event is triggered when an MSMQMessage object arrives in the associ-
ated queue.

Queue is an object reference to the queue containing the newly arrived message.

Cursor is a Long value for Cursor as specified in the EnableNotification
method.

It’s not automatic: You must call the EnableNotification method after pro-
cessing the newly arrived message in order to be notified when the next message
arrives.

Event ArrivedError (Queue As Object, ErrorCode As Long,
Cursor As Long)
The ArrivedError event is triggered when an error occurs.

Queue is an object reference to the queue containing the newly arrived message.

ErrorCode is a Long value containing the cause of the error.

Cursor is a Long value for Cursor as specified in the EnableNotification
method.

Timeout for an error: The most common error returned in the ArrivedError event
is a timeout, where no messages were received in the specified amount of time.
As with the Arrived event, you must use the EnableNotification method
again to receive the next event.

Accessing Message Queues
While the object model for message queuing looks complicated, it isn’t that difficult
to master, especially if you use private queues. To demonstrate message queuing, I
built a pair of programs. One originates requests, while the other responds to them.
The client program (see Figure 19-5) retrieves information about a customer, while
the server program (see Figure 19-6) processes the requests. I decided to use the
COM+ transaction to get the information because it demonstrates how the various
pieces can fit together into a robust application design.

Note

Note

4728-3 ch19.f.qc 7/31/00 09:50 Page 419

420 Part IV ✦ COM+ Transactions and Message Queues

Figure 19-5: Running the message
queuing client

Figure 19-6: Running the message
queuing server

Building the client program
The client program is a relatively simple Visual Basic program that communicates
with the server using two message queues. The first queue is the request queue,
which is used to pass information to the server, while the second queue is the
response queue, which is used to receive information from the server.

Starting the client
When the client program loads, I initialize both the request queue (ReqQueue) and
the response queue (RespQueue) (see Listing 19-1). The process to open both
queues is the same. I create a new QueueInfo object, specify the PathName of the
queue, and then use the Open method to get access to the queue.

4728-3 ch19.f.qc 7/31/00 09:50 Page 420

421Chapter 19 ✦ Using Message Queues

Listing 19-1: The Form_Load event in MSMQ Client

Private Sub Form_Load()

Set ReqInfo = New MSMQQueueInfo
ReqInfo.PathName = “.\Private$\VB6DB19Req”
Set ReqQueue = ReqInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

Set RespInfo = New MSMQQueueInfo
RespInfo.PathName = “.\Private$\VB6DB19Resp”
Set RespQueue = RespInfo.Open(MQ_RECEIVE_ACCESS, _
MQ_DENY_RECEIVE_SHARE)

Set RespEvent = New MSMQEvent
RespQueue.EnableNotification RespEvent, , 1000

End Sub

When I open the request queue, I specify MQ_DENY_NONE to allow other programs to
share the request. However, when I open the response queue, I don’t permit anyone
else to receive data from it by specifying MQ_DENY_RECEIVE_SHARE. In general, each
user should have their own unique response queue. This permits the server to send
information to multiple users, even though the users may not be around to receive
the information.

Once the response queue is opened, I create an MSMQEvent object, whose Arrived
event will be fired when a message arrives in the response queue. I use the Enable
Notification method to associate the Event object with the response queue.
I also specify a timeout value of 1000 milliseconds (or 1 second). If no messages
arrive in this amount of time, the ArrivedError event will be fired.

Requesting a customer’s information
After the user enters a CustomerId value and presses the Get Customer button, the
Command1_Click event will be triggered (see Listing 19-2). This routine verifies that
a numeric value was entered into the Text1 text box, and then constructs and
sends a message to the server.

I begin by creating a new Customer object and assigning the value of the text box
to the CustomerId property. Then I create a new MSMQMessage object. I set the
ResponseQueueInfo property to point to the QueueInfo object associated with
the response queue.

4728-3 ch19.f.qc 7/31/00 09:50 Page 421

422 Part IV ✦ COM+ Transactions and Message Queues

Listing 19-2: The Command1_Click event in MSMQ Client

Private Sub Command1_Click()

Dim msg As New MSMQMessage

If IsNumeric(Text1.Text) Then
Set c = New Customer
c.CustomerId = CLng(Text1.Text)
Set msg = New MSMQMessage
Set msg.ResponseQueueInfo = RespQueue.QueueInfo
msg.Body = c
msg.Send ReqQueue

End If

End Sub

The next statement is very critical. You must assign the object to the message’s
Body property. This saves a copy of the object in the Body property rather than
merely saving a pointer to the object. Once you’ve populated the message, you can
use the Send method to place the message in a queue.

Set not: By now, if you see an assignment with an object on the right side of the
equal sign (=), you expect to see a Set statement before the variable on the left
side. If you try to use the Set statement with the Body property of a message,
your information will be lost as soon as the message is sent. Message queuing
saves the persistent information from an object and then destroys it. The persis-
tent information is then sent to the destination, where it is recreated when the
program receives the object.

Getting the results
Because message queuing is asynchronous in nature, you don’t know if the message
will be returned in milliseconds, seconds, hours, or days. Thus, it is useful for an
event to be fired when the message arrives. The Arrived event is triggered when a
message is ready to be received (see Listing 19-3). If no messages arrive before the
timeout limit is reached, the ArrivedError event will be fired (see Listing 19-4).

The Arrived event begins by receiving the first message from the queue. The
queue that the message arrives in is specified by the Queue parameter and the
Receive method is used to retrieve the message. I specify a value of 1000 milli-
seconds to retrieve the message before returning an error.

Caution

4728-3 ch19.f.qc 7/31/00 09:50 Page 422

423Chapter 19 ✦ Using Message Queues

Listing 19-3: The RespEvent_Arrived event in MSMQ Client

Private Sub RespEvent_Arrived(ByVal Queue As Object, _
ByVal Cursor As Long)

Dim r As Customer
Dim msg As MSMQMessage

Set msg = Queue.Receive(, , , 1000)
If Not (msg Is Nothing) Then

Set r = msg.Body
Text2.Text = r.Name
Text3.Text = r.Street
Text4.Text = r.City
Text5.Text = r.State
Text6.Text = FormatNumber(r.Zip, 0)
Text7.Text = r.Phone
Text8.Text = FormatDateTime(r.DateAdded, vbGeneralDate)
Text9.Text = FormatDateTime(r.DateUpdated, vbGeneralDate)
Check1.Value = CLng(r.MailingList) * -1
Text10.Text = r.Comments

End If

RespQueue.EnableNotification RespEvent, , 1000

End Sub

Once I have the message, it is a very simple matter to get a reference to the
Customer object from the Body property and assign its values to each of the fields
on the form.

What happened to all my requests?: When receiving messages in the Arrived
event, it is possible to process the messages too quickly. In this example,
I assumed that the user would submit one request at a time, but there is nothing
to prevent the user from requesting information on multiple customers before the
response to the first message is received. If this happens, it is quite possible that
the server will retrieve the next response before the user has finished viewing the
first response. In this case, it may be useful to save the messages into a
Collection object as they are received. Another approach would be to examine
the information in each response using the Peek methods, and only receive the
message from the message queue when you’re ready to delete it.

Caution

4728-3 ch19.f.qc 7/31/00 09:50 Page 423

424 Part IV ✦ COM+ Transactions and Message Queues

Before I leave this event, I need to reset the trigger so that the next message is
received. This is done using the same EnableNotification method that I origi-
nally used to enable this event.

But it worked once: If you can receive the first message, but your program does-
n’t process any other messages after that, verify that you re-enabled the response
event after processing a message.

The ArrivedError event is fired when a message doesn’t arrive in the message
queue before its timeout value. If you are expecting a steady stream of messages,
you may want to re-enable the event in the ArrivedError event (see Listing 19-4).

Listing 19-4: The RespEvent_ArrivedError event
in MSMQ Client

Private Sub RespEvent_ArrivedError(ByVal Queue As Object, _
ByVal ErrorCode As Long, ByVal Cursor As Long)

RespQueue.EnableNotification RespEvent, , 1000

End Sub

Building the server program
The server program is designed to receive requests from a client in the request
queue, call the GetCustomer transaction I wrote in Chapter 18, and return the data
to the client in the response queue. It also includes tools to create and delete the
queues that the client program will use.

Creating queues
When the user presses the Build Queues button, the Command1_Click event will be
triggered (see Listing 19-5). For each queue, this routine creates a new QueueInfo
object, specifies the PathName of the queue, and then calls the Create method to
define the queue.

Deleting is simple: To delete a queue, use the same logic as shown in Listing 19-5,
but substitute Delete for Create.

Tip

Tip

4728-3 ch19.f.qc 7/31/00 09:50 Page 424

425Chapter 19 ✦ Using Message Queues

Listing 19-5: The Command1_Click event in MSMQ Server

Private Sub Command1_Click()

Dim RespInfo As MSMQQueueInfo

Set RespInfo = New MSMQQueueInfo
RespInfo.PathName = “.\Private$\VB6DB19Resp”
RespInfo.Create

Set ReqInfo = New MSMQQueueInfo
ReqInfo.PathName = “.\Private$\VB6DB19Req”
ReqInfo.Create

Set respinfo = Nothing
Set ReqInfo = Nothing

End Sub

Starting the server
The server will not process any messages until the user presses the Run Server but-
ton. This triggers the Command2_Click event, as shown in Listing 19-6. This routine
begins by writing that the server is active to the text box on the form, and then it
opens the request queue and enables notification using the ReqEvent object. At this
point, the server will respond to messages as they are sent, using the ReqEvent_
Arrival events.

Listing 19-6: The Command2_Click event in MSMQ Server

Private Sub Command2_Click()

Text1.Text = FormatDateTime(Now, vbGeneralDate) & _
“ Server active.” & vbCrLf

Set ReqInfo = New MSMQQueueInfo
ReqInfo.PathName = “.\Private$\VB6DB19Req”
Set ReqQueue = ReqInfo.Open(MQ_RECEIVE_ACCESS,
MQ_DENY_RECEIVE_SHARE)

Set ReqEvent = New MSMQEvent
ReqQueue.EnableNotification ReqEvent, , 60000

End Sub

4728-3 ch19.f.qc 7/31/00 09:50 Page 425

426 Part IV ✦ COM+ Transactions and Message Queues

Processing messages
The heart of the server is the ReqEvent_Arrived event (see Listing 19-7). This
event is responsible for receiving the request, calling the COM+ transaction, and
returning the data to the user via the response queue. This routine begins by
appending an entry to the text box with the date and time that the message was
received. This information is useful in monitoring the server’s activities while test-
ing the program, though it should be eliminated in a production application.

Listing 19-7: The ReqEvent_Arrival event in MSMQ Server

Private Sub ReqEvent_Arrived(ByVal Queue As Object, _
ByVal Cursor As Long)

Dim c As Customer
Dim ci As CustInfo.CustomerInfo
Dim msg As MSMQMessage
Dim xc As Customer
Dim xmsg As MSMQMessage
Dim xqueue As MSMQQueue

Text1.Text = Text1.Text & FormatDateTime(Now, vbGeneralDate) _
& “ Message received.” & vbCrLf

Set msg = Queue.Receive(, , , 1000)
If Not (msg Is Nothing) Then

Set c = msg.Body

Set ci = CreateObject(“CustInfo.CustomerInfo”)
Set xc = ci.GetCustomer(c.CustomerId)
Set ci = Nothing

Set xmsg = New MSMQMessage
xmsg.Body = xc

Set xqueue = msg.ResponseQueueInfo.Open(MQ_SEND_ACCESS, _
MQ_DENY_NONE)

xmsg.Send xqueue
Set xqueue = Nothing
Set xc = Nothing

End If

ReqQueue.EnableNotification ReqEvent, , 60000

End Sub

4728-3 ch19.f.qc 7/31/00 09:50 Page 426

427Chapter 19 ✦ Using Message Queues

Next, I receive the message using the Queue parameter. Once I have the message,
I can extract the CustomerId value from the message’s body and call the CustInfo.
CustomerInfo transaction to get the requested information. Then I create a new
MSMQMessage object and save the Customer object into the Body property. Note
that I didn’t use a Set statement, since I want a copy of the document rather than
a reference for the object.

To send the message, I open the response queue contained in the original message
and use the Send method to put the message into the response queue. Then I reset
the message notification so that the next time a message arrives, I will be ready to
process it. The program also includes a ReqEvent_ArrivedError similar to the
one used in the MSMQ Client program to allow the server to continue to receive
messages after a timeout condition.

Viewing Message Queue Information
You may find it useful to have an independent tool to see messages as they arrive in
a message queue for processing. If you are running Windows 2000 Server, you can
use the Computer Management utility (Start ➪ Programs ➪ Administrative Tools ➪
Computer Management) to examine the contents of a message queue.

After starting this program, you’ll see the typical Microsoft Management Console
with a tree of icons on the left side with details about the currently selected icon on
the right (see Figure 19-7). By expanding the Services and Applications icon, you
can expose the Message Queuing icon. Then by drilling down, under Private
Queues, you can see the queues that are used by the MSMQ Client and MSMQ
Server programs.

Within each queue, you can select Queue messages to see the messages that are in
the queue waiting to be processed. The easiest way to try this, using the sample
programs from this chapter, is to run the client program without running the server.
Any messages sent from the client program will accumulate in the queue, and if you
then run the server program, you can see the messages quickly disappear —
returned to the client program via the response queue.

Where did my message go?: If your program isn’t working properly, this utility
will help you discover whether or not the program is sending the messages
properly.

Tip

4728-3 ch19.f.qc 7/31/00 09:50 Page 427

428 Part IV ✦ COM+ Transactions and Message Queues

Figure 19-7: Running the Computer Management utility

Thoughts on Message Queuing

This chapter is just a brief introduction to what you can do with message queuing. I find
message queuing a fascinating tool that makes it easy to implement asynchronous pro-
cessing.

Consider this example. You have a group of salespeople out in the field with laptop com-
puters. Since it’s not practical for them to stay in constant contact with the home office, you
build a stand-alone application that keeps track of the items in the sales catalog and allows
them to enter orders that can be printed out and submitted later.

If you were to include message queuing in the application, you could modify the applica-
tion so that it automatically queues orders to be sent to the home office the next time the
salesperson connects to the organization’s network. The application could also receive
updates to the local sales database, as well as updates to customer orders that have already
been placed.

Another situation where you might find message queuing useful is when you have long-
running tasks like report generators, or complex database queries where an immediate
response isn’t necessary. By using message queuing, you can collect these requests and
then process them as time and resources permit. In the mainframe world, this is referred to
as batch processing. However, I suggest that you refer to this process by another name so
that your users don’t think you’re a relic from the olden days — like me.

4728-3 ch19.f.qc 7/31/00 09:51 Page 428

429Chapter 19 ✦ Using Message Queues

Summary
In this chapter you learned the following:

✦ You can use the Microsoft Message Queuing to send information asyn-
chronously from one computer to another.

✦ You can use message queues to smooth the workload in a heavily loaded
server.

✦ You can use public queues only on Windows 2000 servers, while private
queues can be used on Windows 98 and NT as well as Windows 2000.

✦ You can open a queue with the MSMQQueueInfo object.

✦ You can send messages using the MSMQQueue object.

✦ You can receive messages via the MSMQEvent object.

✦ You can view the messages in a message queue by using the Computer
Management utility to verify if your application is properly sending messages.

✦ ✦ ✦

4728-3 ch19.f.qc 7/31/00 09:51 Page 429

4728-3 ch19.f.qc 7/31/00 09:51 Page 430

