
Using COM+
Transactions

In this chapter, I’ll show you how to create a COM+ transac-
tion. These transactions can be used to implement an n-tier

application system, which can offer significant performance
improvements when compared with more traditional client/
server applications. 

A Brief Overview of COM+
Writing a COM+ program isn’t difficult. If you understand how
to create and use a Class module, then writing a COM+ trans-
action isn’t much more difficult than that. However, to write
an effective COM+ application means that you need to know
what COM+ is and how it works.

Multi-tier applications
In a traditional client/server application, the client computer
communicates directly with the database server (see Figure
18-1). This is also known as a 2-tier application program.

Figure 18-1: A 2-tier application

Client Computer

Database Server

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Reviewing the 
COM+ transaction
architecture

Meeting the 
ACID test

Constructing COM+
transactions

Building a test
program

✦ ✦ ✦ ✦

4728-3 ch18.f.qc  7/31/00  09:50  Page 369



370 Part IV ✦ COM+ Transactions, and Message Queues

By using COM+ transactions, you can implement a 3-tier solution. In practice, you
have a computer for the client, a second one for the COM+ transaction server, and a
third one for the database server (see Figure 18-2). Note that the transaction server
generally sits between the application client and the database server.

Figure 18-2: A 3-tier application

The transaction server is a place where you can move your application logic away
from the client program yet keep it independent of the database server. This
allows more flexibility when designing your application, because you can provide
an object-oriented view of your data, while making available facilities that allow
you to share resources for better performance and permit transaction support for
better reliability.

A more interesting solution is shown in Figure 18-3. While I’ve labeled it a 4-tier pro-
cessing solution, most people consider it just another variation of a 3-tier solution,
because they feel that the client computer running a Web browser is not a true tier.
However, given how easy it is to add VBScript or JavaScript to the Web page to per-
form basic functions like data validation, why not consider it a true tier?

In general, you can refer to multi-tier solutions as n-tier, where n refers to the num-
ber of levels of computers used in the application design. Note that I don’t simply
count the number of computers, because it is quite possible to have more than one
Web server, more than one transaction server or more than one database server
that provides the same basic services, but are implemented on multiple computers
to better handle the workload. With n-tier solutions, each level of computers pro-
vides a new type of service. In practice, however, each new level of computers intro-
duces additional overhead and beyond the four computers shown in Figure 18-3, it is
doubtful that you would gain any additional benefit from adding a new tier.

Client Computer Transaction Server Database Server

4728-3 ch18.f.qc  7/31/00  09:50  Page 370



371Chapter 18 ✦ Using COM+ Transactions

Figure 18-3: A 4-tier application

Transaction Servers
The transaction server receives requests from the program running on the client
and starts a transaction to process it. If information is needed from the database
server, the transaction will communicate with the database server. When the
transaction has finished processing, it will return back to the calling program.

Adding the third tier, you offload some of the work from the database server, which
allows the database server to perform additional work on the same hardware con-
figuration. It also simplifies updating the application, since it is possible to make
changes to a transaction on the transaction server without changing the client pro-
gram that calls the transaction.

In a 4-tier solution, using a transaction server makes even more sense. It allows you
to offload work from both the Web server and the database server onto a separate
computer system, which serves to improve response time on both machines. This
allows you to increase the available memory for Web page caching and database
record caching.

Web Server

Client Computer

Transaction Server Database Server

4728-3 ch18.f.qc  7/31/00  09:50  Page 371



372 Part IV ✦ COM+ Transactions, and Message Queues

Typically, the database server, transaction server, and Web server (if present) are
all connected via a very high-speed connection. At least a 100 MHz Ethernet, if not 
a gigahertz Ethernet or other specialized networking technology, is used to connect
these computers together. Often this network is isolated from the other networks 
to improve security and performance. This means that there are very few delays
caused by the network. Yet by spreading the work around, you can ensure that no
one system is overloaded. You can even add additional Web servers and transac-
tion servers transparently if you really need them without requiring changes to
your application.

COM+ applications
A COM+ transaction is basically a COM object that has been coded and compiled 
to run under the COM+ transaction server. In Visual Basic, you create a COM+ trans-
action by building an ActiveX DLL application. You need to include a few special
objects and add a little code to perform some handshaking with the transaction
server and use a special tool to define your transaction to the transaction server.
But other than that, you’re free to take advantage of the Visual Basic language.

A COM+ application is just a collection of one or more COM+ transactions that are
grouped together into a single ActiveX DLL file. There are four basic types of COM+
applications:

✦ Server applications: A server application is the more common form of a
COM+ application. It runs under control of the transaction server. The applica-
tion can interact with the transaction server through the objects associated
with the transaction’s context.

✦ Library applications: A library application is a specialized form of a COM+
application that runs locally on the client computer. It runs in the same
address space as the client program that created it. This means less overhead
to the client program, because several COM+ applications can use the same
components. However, because this object isn’t running under the control of
the transaction server, it can’t take advantage of some of the features of the
transaction server.

✦ Application proxies: An application proxy contains the registration informa-
tion necessary for an application to remotely access a server application. If
you run it on the client computer, all of the information necessary to access 
a specific remote server application will be installed on the client computer.

✦ COM+ preinstalled applications: COM+ comes with a set of applications that
help you configure and administer your COM+ system. These applications
include COM+ System Administration, COM+ Utilities, and IIS System
Applications.

Of these types of COM+ applications, I’m going to focus on server applications,
since they are the most useful of all.

4728-3 ch18.f.qc  7/31/00  09:50  Page 372



373Chapter 18 ✦ Using COM+ Transactions

The COM+ transaction server
The COM+ Transaction Server provides a framework to execute transactions on an
n-tier application system. Included with the Server are facilities that allow you to
share resources, such as ASO Connection objects, and provide additional security
on your transaction.

You can only run the COM+ Transaction Server under Windows 2000 Server. You
can’t run it under Windows 9x, Windows NT, or even Windows 2000 Professional. It
relies on facilities, such as the Active Directory, to manage much of the information
it needs to run your transactions. Because the COM+ Transaction Server represents
only one tier in an application, you can use any database server you choose, even if
it runs under a different operating system such as Unix. The only restriction is that
the database server must be supported by ADO.

Serving transactions under Windows NT: If you want to run transactions under
Windows NT Server, you need to use a tool called Microsoft Transaction Server,
usually called MTS. Many of the basic facilities in MTS were upgraded to create
COM+, but COM+ is not upwards compatible with MTS. COM+ requires less code
to interact with the transaction server and is easier to administer than MTS.

The object context
Every COM+ transaction that is run under control of the COM+ Transaction Server
is associated with a set of objects known as a context. A context represents the
smallest possible unit of work for a component. Each instance of a COM object is
assigned to a context. Multiple objects can use the same context depending on how
they were defined and created.

The object context contains information about how the object was created and the
status of the work that is currently active. You can access these facilities through
the ObjectContext object. All of the other objects in the context can be referenced
from this object either directly or indirectly.

The Component Services utility
The Component Services utility is used to manage and configure COM+ transac-
tions (see Figure 18-4). You can start it in Windows 2000 by choosing Programs ➪
Administrative Tools ➪ Component Services from the Start button. This tool will be
used frequently while testing your application to change the characteristics of the
transaction, as well as to install updated copies of the COM component that makes
up your COM+ application.

Note

4728-3 ch18.f.qc  7/31/00  09:50  Page 373



374 Part IV ✦ COM+ Transactions, and Message Queues

Figure 18-4: Running the Component Services utility

Introducing COM+ Transactions
COM+ transactions are a feature of Windows 2000 that you can use when building
scalable, n-tier applications. COM+ is built on top of COM and integrates features
such as the Microsoft Transaction Server and Microsoft Message Queues into a
single technology.

COM+ is built using C++ and some of its features can only be accessed from C++.
However, this doesn’t mean that you can’t use COM+ from Visual Basic 6. In fact,
many of the features are actually very easy to use, once you understand how to
work with them. Because this book is aimed at Visual Basic programmers, I’ll focus
on the features you can exploit today and leave the rest for the C++ programmers.

A view of things to come: As I write this, there are many rumors surrounding
the features that will be present in Visual Basic 7. While it isn’t clear exactly what
features will be present, you can bet that support for COM+ will be at the top of
the list.

In Chapter 16, I talked about how to use the BeginTransaction, CommitTransaction,
and RollbackTransaction methods to define a transaction over a database connec-
tion. These transactions represented a fundamental unit of work for the application.

Note

4728-3 ch18.f.qc  7/31/00  09:50  Page 374



375Chapter 18 ✦ Using COM+ Transactions

They could contain the database calls necessary to make a withdrawal from your 
savings account, register you for a college course, or even order a book over the
Internet.

Simply looking at a transaction from a database perspective may be a bit too limiting
for many applications. In addition to manipulating data in the database, transactions
often perform validation along with the database activities. For example, before mak-
ing a withdrawal from your checking account, you must first verify that the account
number is valid, and second, that there are sufficient funds in the checking account
before subtracting the money from that account.

There are a several ways to implement a transaction. The most common way is to
write complex stored procedures that run on the database server. This approach
imposes extra work on the database server, which may detract from the database
server’s overall performance. In Windows 2000, you have the option of building
COM+ transactions that run under control of a transaction server, which you can
easily run on a separate machine.

The ACID test
Each COM+ transaction must meet the ACID test. The letters in ACID stand for
Atomicity, Consistency, Isolation, and Durability, and serve to identify the differ-
ent criteria that a transaction must meet.

Atomicity
Atomicity means that either all or none of a transaction is completed. In other words,
the work a transaction performs can’t be subdivided. If the transaction completes
successfully, all of the changes it makes will remain. If the transaction fails, then all
of the changes it made must be undone.

Consider an airline reservations system. When you make a reservation, you specify
the date, flight number, number of seats you want, plus a number of parameters
such as first class or economy. You want the reservation to succeed only if all of
these parameters are met. Otherwise you want the reservation to fail, so you can
try again. Either all of the seats you requested are available or none of them.

Consistency
Another aspect of a transaction is that it must always leave the system in a consis-
tent state. Consider what happens if you move money from your savings account 
to your checking account. You have to read the current balance from the savings
account, subtract the amount of money you want to move, and update the account
with the new balance. Then you have to read the current balance from the checking
account, add the money to it, and update the account with the new balance.

4728-3 ch18.f.qc  7/31/00  09:50  Page 375



376 Part IV ✦ COM+ Transactions, and Message Queues

Consider what happens if the process fails after the first update is finished, but
before the second update is made. The database will automatically ensure that the
first update is saved, but it will not save an incomplete update. This means that the
money would be removed from your saving account but not added to your check-
ing account. For all practical purposes, the money would be lost and the database
left in an inconsistent state.

By placing the two updates into a transaction, you can ensure that the database is
left in a consistent state. Either both updates are completed or both updates are
not completed. In this example, whether the transaction succeeds or fails, the
money won’t be lost.

Isolation
While not as obvious as the previous characteristics of a transaction, isolation is
also very important. Each transaction lives in its own world, where it can’t see any
of the processing performed by another active transaction. The concept of isolation
is important because it allows the system to recover from failures. While the system
is actively processing transactions, you may have dozens or even hundreds of
active transactions at any point in time. However, with transaction isolation, these
transactions can be viewed as a single stream of transactions, where one transac-
tion is completed before the next one begins. This process allows recovery pro-
grams to work, and makes it possible to implement distributed database systems.

Durability
The last characteristic of a transaction is its ability to survive system failures. Once
a transaction has been completed, it is critical that the changes it made aren’t lost.
For this reason, it’s important that the system keep logs and backups of all the trans-
actions that were processed. These files make it possible for work to be recovered in
case of a catastrophic system failure.

Class module properties for transactions
In order to identify a Visual Basic class module as a COM+ transaction, you need to
adjust some of its properties. These properties control how Visual Basic will com-
pile your program.

In order to run a transaction under control of COM+ you need to specify the value
of the MTSTransactionMode property in the class module. While this value can be
overridden by the Component Services utility, you should choose the proper value
before you try to install it under COM+. Table 18-1 lists the Visual Basic constant
that you can set using the Properties window for the class module.

4728-3 ch18.f.qc  7/31/00  09:50  Page 376



377Chapter 18 ✦ Using COM+ Transactions

Table 18-1
MTSTransactionMode Values

Visual Basic Constant COM+ Transaction Support Numeric Value

NotAnMTSObject Disabled 0

NoTransactions Not Supported 1

RequiresTransaction Required 2

UsesTransaction Supported 3

RequiresNewTransaction Requires New 4

✦ NotAnMTSObject implies that the object isn’t supported under COM+
Transaction Server. You should use this value when you do not expect to
run your component under control of the Transaction Server.

✦ NoTransactions means that the object doesn’t support transactions. When a
new instance of the object is created, its object context is created without a
transaction.

✦ RequiresTransaction means that the component’s objects must execute with-
out the scope of a transaction. When a new instance of the object is created,
the object context is inherited from the object context of the client. If the
client doesn’t have a transaction, a new transaction is created for the object.
If the client is a COM+ transaction, then a new transaction will not be started
because one is already active.

✦ UsesTransaction means that the component’s objects can execute within the
scope of a transaction. When a new instance of the object is created, its object
context is inherited from the object context of the client. If the client doesn’t
have a transaction, the new object will run without a transaction.

✦ RequiresNewTransaction means that the component’s objects must execute
within their own transactions. When a new instance of the object is created, a
new transaction will automatically be created for the object, even if the calling
object is already executing within a transaction.

The ObjectContext object
The ObjectContext object is the most important object when implementing a
COM+ transaction. Through this object, you will control how the transaction
behaves. You can use this object to communicate with the transaction server and
find out information about the environment in which it is running.

4728-3 ch18.f.qc  7/31/00  09:50  Page 377



378 Part IV ✦ COM+ Transactions, and Message Queues

You can get access to this object by selecting the COM+ Services Type Library
from the References window by choosing Project ÿ References from the Visual
Basic main menu (see Figure 18-5) and then declaring and calling the
GetObjectContext function, as shown below:

Dim MyContext As ObjectContext
Set MyContext = GetObjectContext()

Figure 18-5: Selecting the COM+
Services Type Library

ObjectContext object properties
Table 18-2 lists the properties of the ObjectContext object.

Table 18-2
Properties of the ObjectContext Object

Property Description

ContextInfo An object reference to the ContextInfo object.

Count A Long value containing the number of property objects.

Item An object reference to a specific property object.

Security An object reference to the SecurityProperty object.

ObjectContext object methods
Of the methods available for the ObjectContext object, the most important are
SetAbort and SetComplete. These instruct the transaction server whether to
allow the transaction’s activities to be saved or undone.

4728-3 ch18.f.qc  7/31/00  09:50  Page 378



379Chapter 18 ✦ Using COM+ Transactions

Function CreateInstance (bstrProgID As String) As Variant
The CreateInstance method returns an object reference to a new instance of
the specified object using the current object’s context. This function should be
used in place of the CreateObject function, because it implements the current
context for its execution. If the object isn’t registered with COM+, the object is
merely created and no context will be assigned. If the object is registered with
COM+, it will be created according to the COM+ Transaction Support value and
the MTSTransactionMode property. bstrProgID is a String value containing
the name of the object to be created.

Sub DisableCommit( )
The DisableCommit method tells the transaction server that the object’s work has
left the system in an inconsistent state.

Sub EnableCommit( )
The EnableCommit method tells the transaction server that the object’s work may
not be complete, but that the system is now in a consistent state.

Function IsCallerInRole(bstrRole As String) As Boolean
The IsCallerInRole method returns True when the object’s direct caller is in the
specified role, either individually or as part of a group. bstrRole is a String value
containing the security role.

Function IsInTransaction() As Boolean
The IsInTransaction method is True when the object is executing inside a trans-
action.

Function IsSecurityEnabled ( ) As Boolean
The IsSecurityEnabled method is True when security is enabled.

Sub SetAbort( )
The SetAbort method instructs the transaction server to undo any of the transac-
tion’s actions. This may be because an unrecoverable error has occurred or the sys-
tem is in an inconsistent state.

Sub SetComplete()
The SetComplete method instructs the transaction server to commit all updates to
the system because the transaction has completed its work successfully.

4728-3 ch18.f.qc  7/31/00  09:50  Page 379



380 Part IV ✦ COM+ Transactions, and Message Queues

Constructing a COM+ Transaction
Constructing a COM+ transaction is fairly easy. You start by creating an ActiveX DLL
project to hold the transaction. If you want to pass any objects between the trans-
action and the program, you will need a second ActiveX DLL to hold the type infor-
mation. Finally, to test your transaction, you’ll need a simple application that calls
the transaction.

For this example, I’m going to use the Customers table and create COM+ transac-
tions to retrieve a single customer and to update a single customer. The informa-
tion will be passed back and forth between the client and the transaction server
using the Customer object. To demonstrate the transactions, I’m also going to
build a simple IIS Application and run it through the IIS Web server.

Holding type information
One problem you will encounter when you begin using COM+ transactions is that
you can’t rely on global variables to pass information back and forth to the routines
you may call. Everything must be passed as a parameter. Depending on the data
you want to share with a routine, this can be a problem.

Using Visual Basic’s class modules, you can create an object that contains a lot of
information in a single entity. When using some of the more advanced features in
Windows, such as COM+ transactions and message queuing, this is my favorite way
to pass information around.

The downside to using class modules to pass information around in a COM+ trans-
action is that you really have to deal with two different programs. The COM+ trans-
action operates independently of the application program using the transaction.
Therefore, both programs need a copy of the definitions. The only reasonable way
to handle this situation is to introduce a third code module that holds the type defi-
nitions for your transactions. This third module exists on both the client machine
and the transaction server machine.

Creating storage for property values
Like any object, the Customer object consists of a series of Public Property
Get and Property Let routines, which are used to access a bunch of Private
variables defined at the module level. Listing 18-1 contains the list of Private
variables. Note that each of the variable names begins with an X. This is because I
wanted the object’s user to see the field names I used in the database rather than
use a cryptic abbreviation. Since I’m the only person who expects to see inside
the Customer object, I don’t consider this a real hardship.

4728-3 ch18.f.qc  7/31/00  09:50  Page 380



381Chapter 18 ✦ Using COM+ Transactions

Listing 18-1: The module level declarations in Customer

Option Explicit

Private XCustomerID As Long
Private XName As String
Private XStreet As String
Private XCity As String
Private XState As String
Private XZip As Long
Private XPhone As String
Private XEMailAddress As String
Private XDateAdded As Date
Private XDateUpdated As Date
Private XMailingList As Boolean
Private XComments As String
Private XIsDirty As Boolean

You should note that in addition to the various fields from the database, I also
added one more value, called XIsDirty. The XIsDirty property is used to indicate
when the data in the object has been changed. It’s a quick and easy way to deter-
mine if the information was changed and the database should be updated.

Managing property values
The Property Get routine just returns the value of the corresponding X variable
(see Listing 18-2), while the Property Let routine is a little more complicated (see
Listing 18-3).

The Property Let routine determines if the value of the property is different than
the value already in private storage. If the value is different, then I save the new value,
set the XIsDirty property, and mark the property as changed. Otherwise, I ignore
the assignment. While checking the assignment is a little extra work, it allows some-
one to reassign the current value to the property without resetting the XIsDirty flag.

Listing 18-2: The CustomerId Property Get 
routine in Customer

Public Property Get CustomerId() As Long

CustomerId = XCustomerID

End Property

4728-3 ch18.f.qc  7/31/00  09:50  Page 381



382 Part IV ✦ COM+ Transactions, and Message Queues

Listing 18-3: The CustomerId Property Let 
routine in Customer

Public Property Let CustomerId(c As Long)

If c <> XCustomerID Then
XCustomerID = c
XIsDirty = True
PropertyChanged “CustomerId”

End If

End Property

Property May I: The CanPropertyChange method isn’t required when dealing
with properties in the Customer object, since the Customer object can’t act as a
data consumer.

Initializing property values
I chose to make the Customers object a persistable object. This will have a big ben-
efit later when I talk about message queuing in Chapter 19. However, for normal
COM+ transactions, you don’t really need persistent objects. Once the object is
instantiated, it will remain instantiated until you destroy it.

Listing 18-4 contains the statements necessary to initialize the variables in local
storage. Note that I just use reasonable default values for all of these properties
except for XDateAdded and XDateUpdated. For these values, I use the function Now
to save the current date and time into these variables. This makes it easier for
someone to create a new Customer object and not worry about assigning values to
these two fields. It also won’t cause a problem when the COM+ transaction returns
information from the database, since these initial values will be overlaid with the
live values from the database.

Listing 18-4: The Class_InitProperties event in Customer

Private Sub Class_InitProperties()

XCustomerID = -1
XName = “”
XStreet = “”
XCity = “”
XState = “”

Note

4728-3 ch18.f.qc  7/31/00  09:50  Page 382



383Chapter 18 ✦ Using COM+ Transactions

XZip = 0
XPhone = “”
XEMailAddress = “”
XDateAdded = Now
XDateUpdated = Now
XMailingList = False
XComments = “”
XIsDirty = False

End Sub

As you would expect, the ReadProperties and WriteProperties events are pretty
simple, just a series of statement that use the ReadProperty and WriteProperty
methods to restore and save these values. Listing 18-5 shows the ReadProperties
event.

Listing 18-5: The Class_ReadProperties event in Customer

Private Sub Class_ReadProperties(PropBag As PropertyBag)

XCustomerID = PropBag.ReadProperty(“CustomerId”, 0)
XName = PropBag.ReadProperty(“Name”, “”)
XStreet = PropBag.ReadProperty(“Street”, “”)
XCity = PropBag.ReadProperty(“City”, “”)
XState = PropBag.ReadProperty(“State”, “”)
XZip = PropBag.ReadProperty(“Zip”, 0)
XPhone = PropBag.ReadProperty(“Phone”, “”)
XEMailAddress = PropBag.ReadProperty(“EMailAddress”, “”)
XDateAdded = PropBag.ReadProperty(“DateAdded”, 0)
XDateUpdated = PropBag.ReadProperty(“DateUpdated”, 0)
XMailingList = PropBag.ReadProperty(“MailingList”, False)
XComments = PropBag.ReadProperty(“Comments”, “”)
XIsDirty = False

End Sub

Note that even though I assign the current date and time in the InitProperties
event to the DateAdded and DateUpdated properties, I use a default value of
zero. This just means that these properties will always be stored in the property
bag, which is likely to happen anyway, given the nature of the data stored in the
properties.

4728-3 ch18.f.qc  7/31/00  09:50  Page 383



384 Part IV ✦ COM+ Transactions, and Message Queues

Installing the DLL
Once you build your program, you need to compile it to an ActiveX DLL (Dynamic
Linking Library) and then register it in the Windows Registry. When you register
your DLL, selected information about the DLL will be loaded into the Registry,
including the location of the DLL file, the name of the objects available, and the
Globally Unique Identifiers (GUID) that are used to locate them.

When your program references an object, it presents the object’s GUID to Windows,
which in turn uses it as a key to locate information about the object in the Registry.
This means that the actual location of the file can be independent of the application.

To register your file, you need to use the RegSvr32 utility program. To run it, choose
Start ➪ Run from the Windows taskbar. Then enter the RegSvr32 followed by the
fully qualified path name to the DLL file, as shown below:

RegSvr32 d:\VB6DB\Chapter18\CustomerObjects\cust.dll

and press Enter. The registration program will run for a split second and display a
message box saying that RegisterDLL Server succeeded.

If you need to make a change to the DLL after you have registered it, you must run
the following command:

RegSvr32 /u d:\VB6DB\Chapter18\CustomerObjects\cust.dll

It will acknowledge the request by saying DLLUnregister Server succeeded.

DOS ain’t dead: After using DOS and many other character operating systems
over the years, I actually like typing my commands and seeing the results. I often
use DOS to display directory information and to copy files, and as a result, I usu-
ally have a DOS window open. So rather than choosing Start ➪ Run, I usually just
toggle to my DOS window to run the RegSvr32 command. Besides, if the DLL is in
the current directory, I need only type the file name rather than the fully qualified
path name.

Accessing the database with transactions
Now that I have an object I can pass back and forth to COM+ transactions, I want to
build some transactions. For all practical purposes, building a COM+ transaction is
just like building any other COM component that accesses a database — with two
exceptions. First, you need to use the ObjectContext object to inform the transac-
tion server of the transaction’s status. Second, you need to grab and release
database resources, such as the Connection object, quickly.

Tip

4728-3 ch18.f.qc  7/31/00  09:50  Page 384



385Chapter 18 ✦ Using COM+ Transactions

Getting customer information
The GetCustomer method (see Listing 18-6) retrieves the customer information for
the customer specified in the CustomerId parameter and returns it to the calling
program using the Customer object. While a method that strictly reads information
from the database doesn’t benefit from the COM+ transaction server’s ability to
manage complex transactions, it does allow this routine to operate more efficiently
than it would if you embedded the code directly in your application program.

Listing 18-6: The GetCustomer method of CustomerInfo

Public Function GetCustomer(CustomerId As Long) As Customer

Dim c As Customer
Dim cmd As ADODB.Command
Dim db As ADODB.Connection
Dim o As ObjectContext
Dim parm As ADODB.Parameter
Dim rs As ADODB.Recordset

Set o = GetObjectContext()

Err.Clear
Set db = New ADODB.Connection

db.Provider = “sqloledb”
db.ConnectionString = “Athena”
db.CursorLocation = adUseNone
db.Open , “sa”, “”
db.DefaultDatabase = “VB6DB”

Set cmd = New ADODB.Command
Set cmd.ActiveConnection = db
cmd.CommandText = “Select * from Customers “ & _

“Where CustomerId = ?”
Set parm = cmd.CreateParameter(“CustomerId”, adInteger, _

adParamInput, 4)
cmd.Parameters.Append parm

Err.Clear
cmd.Parameters(“CustomerId”).Value = CustomerId
Set rs = cmd.Execute
If Err.Number <> 0 Then

App.LogEvent “CustomerInfo(GetCustomer): “ & _
“Can’t retrieve the “ & _
“record for CustomerId “ & _
FormatNumber(CustomerId, 0) & “. Error: “ & _
Err.Description & “-” & _
Hex(Err.Number)

Continued

4728-3 ch18.f.qc  7/31/00  09:50  Page 385



386 Part IV ✦ COM+ Transactions, and Message Queues

Listing 18-6 (continued)

Set c = Nothing

Else
Set c = New Customer
c.CustomerId = rs.Fields(“CustomerId”)
c.Name = rs.Fields(“Name”)
c.Street = rs.Fields(“Street”)
c.City = rs.Fields(“City”)
c.State = rs.Fields(“State”)
c.Zip = rs.Fields(“Zip”)
c.Phone = rs.Fields(“Phone”)
c.EMailAddress = rs.Fields(“EMailAddress”)
c.DateAdded = rs.Fields(“DateAdded”)
c.DateUpdated = rs.Fields(“DateUpdated”)
c.MailingList = rs.Fields(“MailingList”)
c.Comments = rs.Fields(“Comments”)

End If

Set GetCustomer = c
rs.Close
db.Close
Set rs = Nothing
Set db = Nothing
Set c = Nothing
Set o = Nothing

End Function

The GetCustomer method begins by declaring a number of objects that I’ll use in
this program. Next, I’ll get an object reference to the ObjectContext for this trans-
action. While I don’t really need it, it isn’t a bad idea to get in the habit of starting
every method by getting the context.

Next, I establish a connection to the database. Rather than creating a connection
once and using it for all transactions that this object might execute, it is more effi-
cient to get a connection, use it, and then release it as quickly as possible. The
COM+ transaction server intercepts your call and satisfies your request with an
existing connection from a pool of connections it maintains. When you release the
connection, the COM+ transaction server adds it back to the pool and makes it avail-
able for someone else to use. By sharing connections in this fashion, both your
application and the database server have a lot less work to do.

4728-3 ch18.f.qc  7/31/00  09:50  Page 386



387Chapter 18 ✦ Using COM+ Transactions

After the connection is opened, I create a Command object with a parameterized
Select statement and its associated Parameter object. I chose to use the Command
object rather than a Recordset because the Command object will be more efficient
in the long run. SQL Server 7 will parse the query the first time it sees it, and the
next time I use the query, it will be able to use the already parsed version. This
makes it nearly as fast as a stored procedure, without the headaches of creating a
stored procedure.

When I execute the Command, it will return a Recordset object containing the
value I requested, in which case I’ll save the values into a Customer object and
return it as the value of the function. If executing the Command generated an error,
I’ll write the error to the application’s log file and return Nothing as the value of
the function.

At the end of the function, I close the Recordset and Connection objects and destroy
all of the objects I used in the routine. Note that I destroy the ObjectContext object,
since it is no longer necessary. A call to SetComplete or SetAbort isn’t necessary
since I didn’t modify any data.

Saving customer information
The PutCustomer method shown in Listing 18-7 follows the same basic logic flow
as the GetCustomer method you saw in 18-6. I begin by acquiring a connection to
the database. Then I create a Command object that executes an SQL Update state-
ment. Next I assign the appropriate values from the Customer object to the parame-
ters in the command and then execute the Update statement. Finally, I return any
error information as the value of the function, signal the ObjectContext that the
transaction is complete and destroy the objects I used.

Listing 18-7: The PutCustomer method of CustomerInfo

Public Function PutCustomer(c As Customer) As Long

On Error Resume Next

Dim cmd As ADODB.Command
Dim db As ADODB.Connection
Dim o As ObjectContext
Dim parm As ADODB.Parameter

Set o = GetObjectContext()

PutCustomer = 0
Err.Clear

Continued

4728-3 ch18.f.qc  7/31/00  09:50  Page 387



388 Part IV ✦ COM+ Transactions, and Message Queues

Listing 18-7 (continued)

Set db = New ADODB.Connection
db.Provider = “sqloledb”
db.ConnectionString = “Athena”
db.CursorLocation = adUseNone
db.Open , “sa”, “”
db.DefaultDatabase = “VB6DB”

Set cmd = New ADODB.Command
Set cmd.ActiveConnection = db
cmd.CommandText = “Update Customers Set Name=?, Street=?, “ _

“City=?, State=?, “ & _
“Zip=?, Phone=?, EMailAddress=?, DateAdded=?, “ & _
“DateUpdated=?, MailingList=?, Comments=? “ & _
“Where CustomerId=?”

Set parm = cmd.CreateParameter(“Name”, adVarChar, _
adParamInput, 64)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“Street”, adVarChar, _
adParamInput, 64)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“City”, adVarChar, _
adParamInput, 64)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“State”, adChar, _
adParamInput, 2)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“Zip”, adInteger, _
adParamInput, 4)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“Phone”, adVarChar, _
adParamInput, 32)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“EMailAddress”, adVarChar, _
adParamInput, 128)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“DateAdded”, adDBDate, _
adParamInput)

cmd.Parameters.Append parm

4728-3 ch18.f.qc  7/31/00  09:50  Page 388



389Chapter 18 ✦ Using COM+ Transactions

Set parm = cmd.CreateParameter(“DateUpdated”, adDBDate, _
adParamInput)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“MailingList”, adBoolean, _
adParamInput)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“Comments”, adVarChar, _
adParamInput, 256)

cmd.Parameters.Append parm

Set parm = cmd.CreateParameter(“CustomerId”, adInteger, _
adParamInput, 4)

cmd.Parameters.Append parm

cmd.Parameters(“CustomerId”).Value = c.CustomerId
cmd.Parameters(“Name”).Value = c.Name
cmd.Parameters(“Street”).Value = c.Street
cmd.Parameters(“City”).Value = c.City
cmd.Parameters(“State”).Value = c.State
cmd.Parameters(“Zip”).Value = c.Zip
cmd.Parameters(“Phone”).Value = c.Phone
cmd.Parameters(“EMailAddress”).Value = c.EMailAddress
cmd.Parameters(“DateAdded”).Value = c.DateAdded
cmd.Parameters(“DateUpdated”).Value = c.DateUpdated
cmd.Parameters(“MailingList”).Value = c.MailingList
cmd.Parameters(“Comments”).Value = c.Comments
cmd.Execute

If Err.Number <> 0 Then
App.LogEvent _

“Customer(PutCustomer): Can’t update the record “ & _
“for CustomerId “ & _
FormatNumber(c.CustomerId, 0) & “. Error: “ & _
Err.Description & “-” & _
Hex(Err.Number)

PutCustomer = Err.Number
End If

db.Close
o.SetComplete
Set cmd = Nothing
Set db = Nothing
Set o = Nothing

End Function

4728-3 ch18.f.qc  7/31/00  09:50  Page 389



390 Part IV ✦ COM+ Transactions, and Message Queues

You may be wondering why I chose to use the Update statement, rather than
update the database using a Recordset object. The answer is really simple: the
Update statement is more efficient in this situation. In order to use a Recordset,
you would have to retrieve the records a second time. Then you would have to
change the values in the current record and use the Update method to send the
changes back to the database. In this case, simply send the update directly to the
server.

Installing the transaction into COM+
The COM+ transaction server is managed by using the Component Services utility.
You can access this utility by choosing Start ➪ Programs ➪ Administrative Tools ➪
Component Services (see Figure 18-4).

To add your application to the COM+ transaction server, you need to perform these
steps:

1. Choose Start ➪ Programs ➪ Administrative Tools ➪ Component Services from
the Windows taskbar.

2. Under Console Root, open COM+ Applications by selecting Component
Services, then Computers and the name of the computer on which you want
to create service.

3. Right click on Component Services and choose New ➪ Application from the
pop-up menu. This starts the COM Application Install Wizard.

4. Press Next from the welcome screen and then click on the Create an empty
application button.

5. On the Create Empty Application window, enter the name for your new appli-
cation and choose Server Application (see Figure 18-6).

6. Click Next to display the Set Application Identity window shown in Figure 18-7.
Choose the user account under which the application will run. You can choose
to use the security of the user name who is logged onto the server’s console
(the interactive user) when the application is run. You may also enter the name
and password of a specific user. Click Next to go to the last step of the wizard.

7. Click Finish to install the empty application.

Security can be difficult: For testing purposes, I suggest that you use the user
name of the interactive user logged onto the server’s console. Then you should
sign on as Administrator (or another user name with the same privileges as
Administrator). This will remove most of the security restrictions on your transac-
tions. Once the transactions have been debugged, you can go back and create a
specific user name with only the privileges needed to run the transaction.

Note

4728-3 ch18.f.qc  7/31/00  09:50  Page 390



391Chapter 18 ✦ Using COM+ Transactions

Figure 18-6: Entering the name of the application

Figure 18-7: Associating the application with a 
user name

Once you have an empty application, you need to import your ActiveX DLL using
these steps in the Component Services utility (choose Start ➪ Programs ➪
Administrative Tools ➪ Component Services in Windows 2000).

1. Expand the application you just created to display the Components and Roles
folders beneath it.

2. Right click on the Components folder and select New ➪ Component from the
pop-up menu. This will start the COM Component Install Wizard.

4728-3 ch18.f.qc  7/31/00  09:50  Page 391



392 Part IV ✦ COM+ Transactions, and Message Queues

3. Click Next to move to the Import or Install a Component step and click on
Install New Component(s) button.

4. A File Open dialog box will be displayed. Choose the name of the DLL file you
just created and click on the Open button to display the Install New Components
dialog box with the file you just selected (see Figure 18-8). If you need to install
more than one file, press the Add button.

5. After you have selected the files to be installed, click Next to go to the last
step of the wizard and press Finish to add the component to the application.

Figure 18-8: Selecting the name of your ActiveX DLL

Building a simple test program
In order to test the COM+ transactions, I created simple IIS Application. This pro-
gram responds to the URL http://Athena/VB6DB18/VB6DB18.ASP with a Web
page, as shown in Figure 18-9.

IIS Applications are neat: My favorite feature in Visual Basic 6 is the ability to cre-
ate a compiled, Web server-based application using IIS Applications. IIS
Applications are generally more efficient than ASP applications and they are more
secure because the source code is separate from the executable program.

When someone enters the URL to run the IIS Application, IIS will trigger the
WebClass_Start event shown in Listing 18-8. Depending on the request, one of
three things will happen. If no form information is included, a blank Web form will be
displayed, with default values for the Customer object. If a GetCustomer request is
made, then the CustomerId value from the form will be passed to the GetCustomer
transaction to retrieve the specified customer. If a PutCustomer request is made,
then the information on the form will be passed to the PutCustomer method to
update the database. A form with the information about the current customer is
returned in both the PutCustomer and GetCustomer requests.

Tip

4728-3 ch18.f.qc  7/31/00  09:50  Page 392



393Chapter 18 ✦ Using COM+ Transactions

Figure 18-9: Viewing address information returned by the COM+ 
transaction

Listing 18-8: The WebClass_Start event in Address
Information

Private Sub WebClass_Start()

Dim c As Cust.Customer
Dim ci As Object

If Len(Request.Form(“GetCustomer”)) > 0 Then
Set ci = CreateObject(“CustInfo.CustomerInfo”)
Set c = ci.GetCustomer(CLng(Request.Form(“CustomerId”)))
Set ci = Nothing

ElseIf Len(Request.Form(“PutCustomer”)) > 0 Then
Set ci = CreateObject(“CustInfo.CustomerInfo”)
Set c = New Cust.Customer
c.CustomerId = Request.Form(“CustomerId”)
c.Name = Request.Form(“Name”)
c.Street = Request.Form(“Street”)
c.City = Request.Form(“City”)
c.State = Request.Form(“State”)
c.Zip = Request.Form(“Zip”)

Continued

4728-3 ch18.f.qc  7/31/00  09:50  Page 393



394 Part IV ✦ COM+ Transactions, and Message Queues

Listing 18-8 (continued)

c.Phone = Request.Form(“Phone”)
c.EMailAddress = Request.Form(“DateAdded”)
c.DateUpdated = Request.Form(“DateUpdated”)
If Request.Form(“MailingList”) = “ON” Then

c.MailingList = True
Else

c.MailingList = False
End If
c.Comments = Request.Form(“Comments”)
ci.PutCustomer c
Set ci = Nothing

Else
Set c = New Cust.Customer
c.CustomerId = 9999

End If

With Response
.Write “<html>”
.Write “<head>”
.Write “<title>Address Information</title>”
.Write “</head>”
.Write “<body>”
.Write “<strong>Address Information</strong>”
.Write “<form align=””left”” name=””AddressInfo”” “
.Write “action=””VB6DB18.ASP”” method=””post””>”
.Write “<table border = “”0””>”
.Write “<tr>”
.Write “<td>Customer Id:</td>”
.Write “<td>”
.Write “<input type=””text”” name=””CustomerId”””
.Write “ size=””6”” value=” 
.Write FormatNumber(c.CustomerId, 0, , , vbFalse) & “>”
.Write “</td>”
.Write “</tr>”
.Write “<tr>”
.Write “<td>Name:</td>”
.Write “<td>”
.Write “<input type=””text”” name=””Name”””
.Write “ size=””45”” value=””” & c.Name & “””>”
.Write “</td>”
.Write “</tr>”
.Write “<tr>”
.Write “<td>Street:</td>”
.Write “<td>”
.Write “<input type=””text”” name=””Street”””
.Write “ size=””45”” value=””” & c.Street & “””>”
.Write “</td>”

4728-3 ch18.f.qc  7/31/00  09:50  Page 394



395Chapter 18 ✦ Using COM+ Transactions

.Write “</tr>”

.Write “<tr>”

.Write “<td>City/State/Zip:</td>”

.Write “<td>”

.Write “<input type=””text”” name=””City”””

.Write “ size=””30”” value=””” & c.City & “””>”

.Write “<input type=””text”” name=””State”””

.Write “ size=””2”” value=””” & c.State & “””>”

.Write “<input type=””text”” name=””Zip”””

.Write “ size=””5”” value=” 

.Write FormatNumber(c.Zip, 0, , , vbFalse) & “>”

.Write “</td>”

.Write “</tr>”

.Write “<tr>”

.Write “<td>Phone:</td>”

.Write “<td>”

.Write “<input type=””text”” name=””Phone”””

.Write “ size=””45”” value=””” & c.Phone & “””>”

.Write “</td>”

.Write “</tr>”

.Write “<tr>”

.Write “<td>Date Added/Date Updated:</td>”

.Write “<td>”

.Write “<input type=””text”” name=””DateAdded”””

.Write “ size=””21”” value=””” & c.DateAdded & “””>”

.Write “<input type=””text”” name=””DateUpdated”””

.Write “ size=””20”” value=””” & c.DateUpdated & “””>”

.Write “</td>”

.Write “</tr>”

.Write “<tr>”

.Write “<td>”

.Write “Mailing List:”

.Write “</td>”

.Write “<td>”
If c.MailingList Then

.Write “<input type=””checkbox”” “

.Write “name=””MailingList”” value=””ON”” checked>”
Else

.Write “<input type=””checkbox”” “

.Write “name=””MailingList”” value=””ON””>”
End If
.Write “</td>”
.Write “</tr>”
.Write “<tr>”
.Write “<td>Comments:</td>”
.Write “<td>”
.Write “<textarea rows=””6”” name=””Comments”””
.Write “ cols=””45””>”
.Write c.Comments
.Write “</textarea>”
.Write “</td>”
.Write “</tr>”

Continued

4728-3 ch18.f.qc  7/31/00  09:50  Page 395



396 Part IV ✦ COM+ Transactions, and Message Queues

Listing 18-8 (continued)

.Write “</table>”

.Write “<input type=””submit”” value=””Get Customer”” “

.Write “name=””GetCustomer””>”

.Write “<input type=””submit”” value=””Update Customer””  “

.Write “name=””PutCustomer””>”

.Write “<input type=””reset”” value=””Reset””

.Write “ name=””Reset””>”

.Write “</form>”

.Write “</body>”

.Write “</html>”
End With

Set c = Nothing

End Sub

This program is a little tricky in the way it works. It relies on the fact that the
Request.Form method doesn’t return an error when I try to access a particular
field that isn’t present, plus the fact that the value of a button is present in the form
data only when it is pressed. So I can check Request.Form(“GetCustomer”) to
see if someone pressed the Get Customer button and know that the value will only
be there when someone pressed that button.

This means that I can use a compound If statement to determine which of the but-
tons on the form were pressed, if any. If the user pressed the Get Customer button, I
can create an instance of the CustomerInfo object and call the GetCustomer method
to return the specified customer value. Likewise, I can create a CustomerInfo object
to call the PutCustomer method if I find the Put Customer button in the Form.
Request method.

If neither button on the form was pressed, I can simply create an empty Customer
object. This means that no matter how I start the form, I’ll have a valid Customer
object to use when I generate the form.

The second half of the routine is devoted to creating the HTML tags necessary to
display the form. I embedded the references to the Customer object where neces-
sary to display information on the form.

Developing IIS Application forms the lazy way: I used Microsoft FrontPage 2000
to create the basic form and then I copied the HTML tags in WordPad and added
the appropriate calls to Write. Finally, I copied the statements into Visual Basic
and added the code to reference the various objects I created.

Tip

4728-3 ch18.f.qc  7/31/00  09:50  Page 396



397Chapter 18 ✦ Using COM+ Transactions

Thoughts on COM+The COM+ Transaction Server isn’t appropriate for all applica-
tions. While COM+ transactions help large applications, they may actually hurt
small ones. First, it adds another level of complexity that isn’t necessary in a small
application. Second, it may actually perform slower, depending on the hardware
configuration.

However, there is no substitute for COM+ if you are building a high-volume applica-
tion. This is especially true if you support multiple user interfaces to the data, such
as a traditional Visual Basic form-based client/server program and a Web based
application using an IIS Application.

There is a flaw in the update logic of the sample application. You may run into a
conflict when multiple users try to update the data. Consider the case where
Christopher gets a copy of the data, then Samantha gets a copy of the data and
updates it, and then Christopher performs his update. Samantha’s update would be
lost and Christopher would not have seen her changes. For many applications this
approach is fine, but it may cause a problem with others.

This problem is similar to the problem with optimistic locks, and you can use a sim-
ilar approach to correct it. You could modify the Customer object to store both the
original values for each field and the current values for each field. Then, when you
update the database, you can compare the original values to the values in the
database and abort the transaction if there is a difference.

Summary
In this chapter you learned the following:

✦ You can build applications by using multiple tiers of processing. This is known
as n-tier processing.

✦ You can use transaction servers to improve the performance of your application.

✦ You can use the Component Services utility to add transactions to a COM+
Transaction Server.

✦ You can use the ACID test to determine if you have a valid transaction.

✦ You can use the ObjectContext object to communicate from your transac-
tion to the transaction server.

✦ You can control security on a transaction so that it can perform tasks with the
authority of someone other than the user name that called the transaction.

✦ ✦ ✦

4728-3 ch18.f.qc  7/31/00  09:50  Page 397



4728-3 ch18.f.qc  7/31/00  09:50  Page 398


