
Building Your
Own Bound
Controls

In this chapter, I’ll show you how to build your own COM
components that can be bound to a data source. I’ll also

cover how to create your own data source, which can be used
in place of the ADO Data Control.

Introducing Data Sources
and Consumers

In the ADO world, everything can be classified into one of
two groups: data sources and data consumers. A data source
produces data that can be read by a data consumer. A data
consumer may update data provided by a data source. The
technique used to connect the data source to the data con-
sumer is known as data binding. This is the same technique
that you use to bind a text box control (data consumer) to
the ADO Data Control (data source).

Data sources and data consumers are just COM objects that
support a few special properties and events. COM objects can
take the form of ActiveX controls, ActiveX DLLs, and ActiveX
EXEs. The form you choose depends on how you want your
objects to work. The same principles of binding apply equally
to all three types of COM components.

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Building class objects

Building user controls

Implementing data
binding

✦ ✦ ✦ ✦

4728-3 ch17.f.qc 7/31/00 09:50 Page 349

350 Part IV ✦ COM+ Transactions, and Message Queues

Data sources
A data source is responsible for generating an ADO Recordset object, which is
accessed by a data consumer. A common example of a data source in Visual Basic is
the ADO Data Control. While you might think that the ADO Data Control is very com-
plicated, it really isn’t. I’ll show you how to build one later in this chapter, in the sec-
tion called “Building a Data Source”.

A data source has two key elements: the DataSourceBehavior property and the
GetDataMember event. When the DataSourceBehavior property has a value of
vbDataSource (1), the object becomes a data source. The GetDataMember event will
be triggered whenever the data source needs an object pointer to the Recordset
object. Whenever the current record in the Recordset object changes, the data con-
sumer will be notified and it can update its information.

The data source has the option of making more than one recordset available to a
data consumer. The DataMember property is used to identify the specific recordset
that the data consumer wants to access. This value is passed to the object using
the GetDataMember event. If your data source only returns a single Recordset
object, then this property can be ignored.

Data consumers
A data consumer receives data generated by a data source. It doesn’t deal with the
Recordset object directly, but rather it identifies one or more fields of data that it
wants to access and the properties that will receive it. Then, as the current record
pointer in the Recordset moves, the data source will assign the updated data to
the specified properties in the data consumer.

Data consumers come in two flavors: simple and complex. A simple data consumer
binds only a single property to a data source, while a complex data consumer can
bind multiple properties to a data source. The type of data consumer is identified by
the DataBindingBehavior property. A value of vbSimpleBound (1) means that the
object has one property bound to the data source, while a value of vbComplexBound
(2) means that the object has multiple properties bound to the data source.

After selecting the type of data consumer, you need to adjust the attributes for
each of the properties you want to bind to the data source. This involves using the
Procedure Attributes dialog box to mark the property as data bound. If you’re not
familiar with this tool, see “Setting Property Attributes,” later in this chapter.

While a simple data consumer can specify the necessary binding information directly
in the object’s properties, a complex data consumer can’t. It uses the DataBindings
collection and the DataBinding object to hold the definitions. The DataBinding
object contains all of the properties that would have been used in the object itself
had the object been a simple data consumer. Thus, you need one DataBinding
object for each property you wish to bind. The DataBindings collection holds the
set of DataBinding objects for the data consumer.

4728-3 ch17.f.qc 7/31/00 09:50 Page 350

351Chapter 17 ✦ Building Your Own Bound Controls

A Brief Introduction to COM Components
Many database applications, which are written as a series of large programs, could
benefit from rewriting them to use COM (component object model) components.
COM components are ideal for isolating commonly used functions from the pro-
grams that use them. You can use them to hold your application logic, such as how
to validate a particular data element, or you can use them to hold your database
logic, such as how to retrieve a set of information from the database.

By isolating commonly used routines away from your main programs, you make it
easier to update your application. Since COM components live in files external to
your program’s EXE file, you can replace one component without necessarily affect-
ing the others. This will let you replace one small file, rather than replacing all of
the program files that make up your application.

What is a COM component?
A COM component is an object module that contains executable code that can be
dynamically loaded into memory at runtime. Communication with a COM compo-
nent follows a fairly strict set of rules, the details of which a Visual Basic program-
mer really doesn’t have to worry about. The Visual Basic programmer only has to
worry about properties, methods, and events that form the interface to the COM
component.

Recall that COM components come in three flavors: ActiveX DLLs, ActiveX EXEs,
and ActiveX Controls. Every Visual Basic programmer is familiar with ActiveX con-
trols, which are placed on their forms to perform various functions. ActiveX DLLs
(Dynamic Linking Libraries) and ActiveX EXEs (Executables) are really just a series
of one or more Visual Basic Class modules that are compiled into a single file.

The key difference between an ActiveX control and ActiveX DLLs and EXEs is that a
control has a visible presence that can be included on a Visual Basic form. ActiveX
DLLs and EXEs are built using the Visual Basic Class modules, while an ActiveX
control is built using a UserControl module.

Using class modules
Class modules are used to build both ActiveX DLLs and ActiveX EXEs. Which of
these you choose depends on how you plan to use them. The code in an ActiveX
DLL runs inside your program’s address space and responds quicker to processing
requests than an ActiveX EXE. An ActiveX EXE runs independently of your program
and need not reside on the same computer. This allows you to spread your process-
ing over multiple computers.

A Class module is just a template for an object. It describes the public properties,
methods, and events that other programs will use, and it contains the code and local
data storage definitions that are used to respond to various processing requests.

4728-3 ch17.f.qc 7/31/00 09:50 Page 351

352 Part IV ✦ COM+ Transactions, and Message Queues

Properties appear to the user as a variable that is part of the object. They are imple-
mented as either a public module level variable that is visible to the users of the
object or as a special routine that is called when you want to return or set a prop-
erty value. Property values are returned using the Property Get statement, which
is equivalent to the Function statement. The Property Set statement is used to
assign object values to a property, while the Property Let is used to assign values
to all other types of variables. While it is legal to use a set of parameters with the
Property statements, you should make the PropertyGet and Let statements have
the same parameter list.

Methods are normal functions and subroutines that are used to perform actions
using information in the object. These routines must be declared as Public in order
to be accessed by the object’s user. Otherwise, they may only be called by other
routines in the object itself.

Events are subroutines external to the object that can be called from within the
object. The subroutine header must be included in the Class module in order to
define the parameters that may be passed to the subroutine, while the actual sub-
routine will be coded by the object’s user and will reside in the user’s program.

Eventless: Even though you have the ability to use events in your class module,
you shouldn’t use them, because they limit the usefulness of your objects.

Persistable objects
It is often desirable to create objects that have a memory of their property values.
This means that while you run a program, you can create an object and save its val-
ues so that the next time you run the program, those values will be restored.

Queuing for bytes: When using message queuing, it is important for you to make
any objects you send persistent. If you don’t, you will lose your data when the
receiving program re-creates your object (see Chapter 19 for more information
about message queuing).

Persistence is managed though the PropertyBag object. When you create an
instance of the object for the first time, you must provide initial values for each of
the properties. As part of the process of destroying the object, you can save the
property values into the PropertyBag object. Then when the object is re-created,
you can restore the property values saved in the PropertyBag, which means that
the object has all of the same values that it had before it was destroyed.

Consider for a moment how Visual Basic implements ActiveX controls. While in
design mode, VB actually creates an instance of the control and lets you manipulate
its properties through the Properties window. Then, when you go to run the program,
the design time instance of the control is destroyed, but before it is destroyed, it
saves a copy of its properties in the PropertyBag.

Tip

Tip

4728-3 ch17.f.qc 7/31/00 09:50 Page 352

353Chapter 17 ✦ Building Your Own Bound Controls

When you run the program, a run-time instance of the control is created, which
reads its property settings from the PropertyBag. All of your design time settings
are present in the new instance of the control, so the control can draw itself on the
form in the proper location, as dictated by the Left, Top, Width, and Height prop-
erties. This also means that the rest of the property values are available so the con-
trol should behave as per your design.

Class module properties
Table 17-1 lists the internal properties for a class object. These properties deter-
mine how the object will behave. Note that these properties will not be visible to
the user, but merely determine some of the capabilities of your object.

Table 17-1
Properties for a Class Module

Property Description

DataBindingBehavior An enumerated data type which can be vbSimpleBound
(1), meaning that only a single property can be bound;
vbComplexBound (2), meaning that multiple properties
can be bound; or vbNone (0), meaning that the object isn’t
a data consumer.

DataSourceBehavior An enumerated data type which can be vbDataSource (1),
meaning the object will act as a data source; or vbNone (0),
meaning the object isn’t a data source.

Instancing An enumerated data type which describes how an
object will be reused. A value of Private (0) means that
even though your object may have Public members,
no programs outside your current project can access it.
PublicNotCreatable (1) means that other programs
can use this object but can’t create it. MultiUse (5)
means that other programs can create and use this object.
GlobalMultiUse (6) is identical to MultiUse, but the
properties and methods of this class can be used without
explicitly creating an instance of the object first.

Persistable An enumerated data type that allows you to keep property
values between instances. If you set this property to
Persistable, additional events will be available in your
class module to initialize, save, and restore property values.
NotPersistable implies that the object’s properties will be
reinitialized each time an instance of the object is created.

4728-3 ch17.f.qc 7/31/00 09:50 Page 353

354 Part IV ✦ COM+ Transactions, and Message Queues

Class module property routines
When you set the DataBindingBehavior property to vbComplexBound (2), the
four property routines described below will automatically be added to your class
object to handle the binding issues.

Public Property Get DataSource() As DataSource
The DataSource Propety Get routine is used to return the current data source.

Public Property Set DataSource(ByVal objDataSource As DataSource)
The DataSource Property Set routine is used to assign a new value to data
source, where objDataSource is an object reference to a data source.

Public Property Get DataMember() As DataMember
The DataMember Property Get routine is used to return the current data member.

Public Property Let DataMember(ByVal DataMember As DataMember)
The DataMember Property Let routine is used to assign a new data member to
the object, where DataMember is an object reference to a data member.

Class module events
By default, a Class module has two events: Initialize and Terminate, which are
called when the object is created and destroyed. However, if you make the object a
data source, the GetDataMember event is also included.

Event GetDataMember(DataMember As String, Data As Object)
The GetDataMember event is triggered when a user requests a recordset by
specifying a value for DataMember. Note that this event is present only when the
DataSourceBehavior property is set to vbDataSource.

DataMember is a String value that contains the name of the data member that the
event should return.

Data is an object reference that you must return containing a Recordset object
associated with the DataMember value specified.

Event Initialize()
The Initialize event is triggered when a new instance of the object is created.
You should initialize your local variables and allocate any module level objects that
your object will be using.

4728-3 ch17.f.qc 7/31/00 09:50 Page 354

355Chapter 17 ✦ Building Your Own Bound Controls

Event InitProperties()
The InitProperties event is triggered when a new instance of the object is created.
You should use this routine to initialize properties, rather than the Initialize
event, to avoid conflicts that may occur when using the Initialize event and the
ReadProperties event.

Event ReadProperties(PropBag As PropertyBag)
The ReadProperties event is triggered when an old instance of an object needs
to restore its properties, where PropBag is an object reference to a PropertyBag
object, which is used to store the property values.

Event Terminate()
The Terminate event is triggered when the object is about to be destroyed. You
should set all of the object variables that still exist to Nothing, so that you can
reclaim the memory and other resources they are using. If you don’t do this, the
objects will remain in memory until the user program for an ActiveX DLL or the
ActiveX EXE ends.

Event WriteProperties(PropBag As PropertyBag)
The WriteProperties event is triggered before a persistent object is destroyed. In
this event, you must use the PropertyBag object to save the values of your proper-
ties so that later they may be restored using the ReadProperties event. PropBag
is an object reference to a PropertyBag object, which is used to store the property
values.

The PropertyBag object
The PropertyBag object contains the information that needs to be saved between
instances of an object. It works with the InitProperties, ReadProperties,
and WriteProperties events in the Class module and UserControl module.
The sole property for the PropertyBag object is Contents, which is a Byte()
containing the data that is stored in the PropertyBag.

Function ReadProperty(Name As String, [DefaultValue]) As Variant
The ReadProperty method is used to retrieve a property value from the property
bag.

Name is a String containing the name of the property value stored in the property
bag. DefaultValue is a Variant containing the default value of the property.

4728-3 ch17.f.qc 7/31/00 09:50 Page 355

356 Part IV ✦ COM+ Transactions, and Message Queues

Sub WriteProperty(Name As String, Value, [DefaultValue])
The WriteProperty method is used to store a property value in the property bag.

Name is a String containing the name of the property value stored in the property
bag.

Value is a Variant containing the value of the property.

DefaultValue is a Variant containing the default value of the property.

Default consistently: You must specify the same value for DefaultValue in the
ReadProperty and the WriteProperty methods, since the property value is
stored only when it is different from the specified default value. By doing this,
Microsoft reduces the amount of data you need to store in the property bag.
However, if you’re not careful, you can get different property values each time you
save and restore an object.

Building a Data Source
The classic data source that everyone builds when creating the first data source is
a clone of the ADO Data Control. It’s an ideal control to build, since it offers a visual
component that the user can interact with, and not much code is necessary beyond
what is required to manage the DataBindings collection. My implementation of
this control is called the DataSpinner control (see Figure 17-1).

The DataSpinner control consists of two command buttons and a text box. The
command buttons are used to scroll forward and backward through the data in the
control, while the text box simply represents a way to display information in the
control.

UserControls vs. Classes: All of the steps described here apply equally when cre-
ating a UserControl data source or a Class module data source.

Figure 17-1: Designing the
DataSpinner control

Note

Caution

4728-3 ch17.f.qc 7/31/00 09:50 Page 356

357Chapter 17 ✦ Building Your Own Bound Controls

Module-level declarations
Before I dig into the code for the DataSpinner control, I want to go over the module-
level declarations (see Listing 17-1). Of the six variables declared, four are used to
hold property values. The ConnectionString is stored in cn; Recordsource is
kept in ds; UserName is stored in us; and Password is stored in pw. The other two
variables hold a connection to the database server and the current recordset that
supplies the bound data.

Listing 17-1: Module-level declarations in DataSpinner

Private cn As String
Private db As ADODB.Connection
Private ds As String
Private pw As String
Private rs As ADODB.Recordset
Private us As String

Event Click()
Event Scroll()

Two events are also defined. The Click event is triggered whenever someone clicks
in the text box, while the Scroll event is triggered whenever someone presses
either the prev or next button.

Binding data
Since the DataSpinner control is a data source, you must set the DataSource
Behavior to vbDataSource (1) in the UserControl properties. This will expose
the names of the columns retrieved from the database and allow them to be bound
to the control. This information is gathered from the GetDataMember event (see
Listing 17-2).

Listing 17-2: The UserControl_GetDataMember Event in
DataSpinner

Private Sub UserControl_GetDataMember _
(DataMember As String, Data As Object)

If db Is Nothing Then

If Len(cn) > 0 And Len(us) > 0 Then
Set db = New ADODB.Connection

Continued

4728-3 ch17.f.qc 7/31/00 09:50 Page 357

358 Part IV ✦ COM+ Transactions, and Message Queues

Listing 17-2 (continued)

db.Open cn, us, pw

Set rs = New ADODB.Recordset
rs.Open ds, db, adOpenStatic, adLockPessimistic
If Not (rs.EOF And rs.BOF) Then

rs.MoveFirst
End If

End If

End If

Set Data = rs

End Sub

The GetDataMember event is called whenever Visual Basic needs a reference to
the underlying Recordset object. This allows the caller to find out the names of the
columns returned at design time or to retrieve the current row of information to be
displayed in the bound controls.

This event will also be called each time the DataMember property in the control is
changed. Typically, you would return a different Recordset based on the value of
DataMember argument: however, in this case, I’m always going to return the same
Recordset no matter what value is supplied in the DataMember argument.

I start this event by checking to see if the module-level variable db is Nothing. If it
is, it means that I haven’t opened a connection to the database yet. Then I can ver-
ify that someone entered a connection string (cn) and a user name (us) before
opening a database connection.

Once the connection is open, I can open the Recordset object. In this case, I
choose to always specify a static cursor and pessimistic locking. However, I could
have easily created properties for these values also. Then I do a MoveFirst to
ensure that the current record pointer is pointing to the first record in the
Recordset.

At the end of the routine, I’ll return an object pointer to the Recordset object using
the Data parameter. If I couldn’t open the Recordset, then the rs will have a value of
Nothing and the program trying to bind to the control will get an error. Otherwise,
the information contained in rs will be used in the binding process.

4728-3 ch17.f.qc 7/31/00 09:50 Page 358

359Chapter 17 ✦ Building Your Own Bound Controls

Moving through the recordset
Once the control has been initialized, you write your program just like you would
normally write a Visual Basic program. For instance, in Listing 17-3, the code you
see would be very typical of routine to move current record pointer to the next
record in a recordset.

Listing 17-3: The Command2_Click event in DataSpinner

Private Sub Command2_Click()

If Not rs Is Nothing Then
rs.MoveNext
If rs.EOF Then

rs.MoveFirst

End If
RaiseEvent Scroll

End If

End Sub

The only part of the code that is different is the RaiseEvent statement. In this case,
the RaiseEvent statement is used to trigger the Scroll event that was declared in
the module-level declarations. This event allows someone using this control to
detect when the current record pointer has changed.

Exporting recordset information
A programmer using this control might find it useful to look at the underlying
Recordset object from time to time. The easiest way to handle this is to create a
Property Get routine, like the one shown in Listing 17-4. This routine merely
returns an object reference to rs. Because I don’t want anyone changing the object,
I didn’t include a Property Set routine. This makes the Recordset property read-
only, and the programmer using the control can’t substitute their recordset for the
one in the control.

4728-3 ch17.f.qc 7/31/00 09:50 Page 359

360 Part IV ✦ COM+ Transactions, and Message Queues

Listing 17-4: The Recordset Property Get routine in
DataSpinner

Public Property Get Recordset() As ADODB.Recordset

Set Recordset = rs

End Property

Using the DataSpinner control
Adding the DataSpinner control to your application is merely a matter of dragging
the control onto your form and setting a few properties. In this case, I set the
Connection property to provider=sqloledb;data source=athena;initial
catalog=VB6DB and the RecordSource property to Select * From Customers.
This will return all of the records in the Customer table.

The Scroll event is a good place to display the AbsolutePosition property of
the underlying Recordset (see Listing 17-5). Note that I use the Recordset prop-
erty described previously in this chapter under “Exporting Recordset Information”
to access this information.

Listing 17-5: The DataSpinner1_Scroll event in Customer
Viewer

Private Sub DataSpinner1_Scroll()

DataSpinner1.Text = _
FormatNumber(DataSpinner1.Recordset.AbsolutePosition, 0)

End Sub

Building a Data Consumer
To go along with the data source I just built, I created a simple data consumer
called AddressDisplay (see Figure 17-2). The control is composed of six text boxes
and six label controls. Each text box has its own unique property. Assigning a value
to any of these properties simply displays the value in the appropriate text box.

4728-3 ch17.f.qc 7/31/00 09:50 Page 360

361Chapter 17 ✦ Building Your Own Bound Controls

Figure 17-2: Designing the
AddressDisplay control

Exposing properties
Each text box on the control has a Property Get routine and Property Let rou-
tine that manage the information associated with each control. Listing 17-6 shows
a typical Property Get routine that retrieves the value from the text box that is
used to display the Name field from the database.

Listing 17-6: The CName Property Get routine in
AddressDisplay

Public Property Get CName() As String

CName = Text1.Text

End Property

What’s in a name: You may be wondering why I named this property CName,
rather than calling it Name after the database field. The reason is simple. Each
ActiveX control already comes with a property called Name, and you can’t override
this property.

Changing a property is somewhat more complicated than you might expect. In
the CName Property Let routine (see Listing 17-7), you notice that I call the
CanPropertyChange method to determine if I can change the value. This pre-
vents errors from occurring if someone chooses to bind the control to a read-
only Recordset.

Note

4728-3 ch17.f.qc 7/31/00 09:50 Page 361

362 Part IV ✦ COM+ Transactions, and Message Queues

Listing 17-7: The CName Property Let routine in
AddressDisplay

Public Property Let CName(s As String)

If CanPropertyChange(“CName”) Then
Text1.Text = s
PropertyChanged “CName”

End If

End Property

I also use the PropertyChanged method to notify the control that this property has
changed. This is important, since it ensures that the control knows when a property
has changed. If the control isn’t aware that the property has changed, it may not
properly save the property values in the Recordset.

You should closely examine your code and the objects on your UserControl to make
sure that the value of the property can’t be changed without calling the Property
Changed method. In the case of this control, it is possible for a user to change the
contents of the text box on the control. So I need to include a Change event for each
text box to indicate that the value of the property has been changed (see Listing 17-8).

Listing 17-8: The Text1_Change event in AddressDisplay

Private Sub Text1_Change()

PropertyChanged “CName”

End Sub

Setting property attributes
In order to allow a property to be bound to a data source, you have to identify
the property as data bound. To set the attribute on the property, you need to
use the Procedure Attributes tool (see Figure 17-3). To start the tool, choose
Tools ➪ Procedure Attributes from the Visual Basic main menu.

To mark a property as data bound, select the name of the property in the Name drop-
down box and press the Advanced button. This will display a window similar to the
one shown in Figure 17-4. At the bottom of the window is the Data Binding section.

4728-3 ch17.f.qc 7/31/00 09:50 Page 362

363Chapter 17 ✦ Building Your Own Bound Controls

Figure 17-3: Setting
property attributes

Figure 17-4: Viewing advanced
procedure attributes

In the Data Binding section, place a check mark in the Property is data bound check
box. This will enable the check boxes below it. Then you should check Show in
DataBindings collection at design time and Property will call CanPropertyChange
before changing check boxes. This will allow you to bind the property to a data
source at design-time and let Visual Basic know that you are using the CanProperty
Change method in the property routines.

You don’t have to close the window after selecting the information for a single prop-
erty. Just select a different property in the Name drop-down box and set the desired
values. Once you enter all of this information, you can verify it by adding your con-
trol to a simple program and displaying the Data Bindings window (see Figure 17-5).

If you check the This property binds to DataField check box in the window shown
in Figure 17-4, you can bind the property to the control’s DataField property.
This means that the programmer using your control doesn’t have to use the Data
Bindings window to bind a field in a data source to this property.

4728-3 ch17.f.qc 7/31/00 09:50 Page 363

364 Part IV ✦ COM+ Transactions, and Message Queues

Figure 17-5: Binding
properties in the Data
Bindings window

Data binding and other stuff too: The Procedure Attributes tool performs many
useful functions, in addition to allowing you to mark a property as data bound.
You can add a description to each property that will show up when you view the
component in the Object Browser window. You can mark a property as hidden,
assign the property to a specific property page (if you implement custom property
windows) and you can assign the property to a specific category so that it can be
separated out in the Properties window.

Persisting properties
One of the important housekeeping duties you need to worry about in an ActiveX
control is making sure that the values someone assigns to the control at design-
time are properly saved between development sessions, and also available at run-
time. This is managed by using the PropertyBag object (introduced earlier in this
chapter under “Persistable Objects”) and the InitProperties, ReadProperties,
and WriteProperties events.

Initializing properties for the first time
The InitProperties event is triggered the first time a control (or any other per-
sistent ActiveX component) is instantiated. You should include code in this event
to make sure that all of the property values are properly initialized. In this exam-
ple, I choose to assign descriptive values for each of the fields in the control (see
Listing 17-9).

While I could have assigned these values directly using the Properties window for
each of the controls used in this control, I wanted to show you the types of things
you might do in this event.

Tip

4728-3 ch17.f.qc 7/31/00 09:50 Page 364

365Chapter 17 ✦ Building Your Own Bound Controls

Listing 17-9: The UserControl_InitProperties event in
AddressDisplay

Private Sub UserControl_InitProperties()

Text1.Text = “CName”
Text2.Text = “Street”
Text3.Text = “City”
Text4.Text = “State”
Text5.Text = “Zip”
Text6.Text = “CustomerId”

End Sub

Saving property values
When the control is destroyed, the WriteProperties event is triggered so you can
save your current property values (see Listing 17-9). A PropertyBag object is passed
to this event to hold all of the property values. To save the current value of each
property, you must call the WriteProperties event and specify the property name,
the property value, and the default value.

Listing 17-9: The UserControl_WriteProperties event
in AddressDisplay

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)

PropBag.WriteProperty “CName”, Text1.Text, “CName”
PropBag.WriteProperty “Street”, Text2.Text, “Street”
PropBag.WriteProperty “City”, Text3.Text, “City”
PropBag.WriteProperty “State”, Text4.Text, “State”
PropBag.WriteProperty “Zip”, Text5.Text, “Zip”
PropBag.WriteProperty “CustomerId”, Text6.Text, “CustomerId”

End Sub

If the current value of the property is different than the default value, it will be
saved in the property bag. Otherwise, the value will be discarded. While this saves
space in the PropertyBag object, it may cause problems if you don’t use the same
default value consistently.

Reading properties after the first time
The InitProperties event is only called once, when the control is instantiated for
the first time. Each time after that, the ReadProperties event will be called. In this

4728-3 ch17.f.qc 7/31/00 09:50 Page 365

366 Part IV ✦ COM+ Transactions, and Message Queues

event, you just need to load the properties you saved in the WriteProperties
event (see Listing 17-10). As you might expect, you need to use the ReadProperty
method to retrieve each property value from the PropertyBag object.

Listing 17-10: The UserControl_ReadProperties event in
AddressDisplay

Private Sub UserControl_ReadProperties(PropBag As PropertyBag)

Text1.Text = PropBag.ReadProperty(“CName”, “CName”)
Text2.Text = PropBag.ReadProperty(“Street”, “Street”)
Text3.Text = PropBag.ReadProperty(“City”, “City”)
Text4.Text = PropBag.ReadProperty(“State”, “State”)
Text5.Text = PropBag.ReadProperty(“Zip”, “Zip”)
Text6.Text = PropBag.ReadProperty(“CustomerId”, “CustomerId”)

End Sub

Initialize ain’t gone: The Initialize event is still present in a persistent com-
ponent and you should use it to initialize various aspects to the control that need
to be initialized each time the control is instantiated. You should save the
ReadProperties and InitProperties events for situations where you want
to keep a memory of various property values.

Pulling It All Together
With both the Data Spinner and the Address Display controls available, it is a simple
matter to create a test program (see Figure 17-6). In this case, I simply created a new
program and added both controls to the form. I then entered the appropriate values
for the Connection, RecordSource, Username, and Password properties in the
DataSpinner control, and bound the various properties of the AddressDisplay
control to the DataSpinner control. I also added the code for the Scroll event to
display the current record number.

Figure 17-6: Running the Customer
Viewer program

Note

4728-3 ch17.f.qc 7/31/00 09:50 Page 366

367Chapter 17 ✦ Building Your Own Bound Controls

Summary
In this chapter you learned the following:

✦ You can easily create your own data sources similar to the ADO Data Control
selecting the appropriate property values.

✦ You can build data consumers by configuring the properties of the object
using the Procedure Attributes window.

✦ You can build COM components using the Visual Basic Class module.

✦ You can make an ActiveX control persistable by using the PropertyBag
object to save and restore the values for each property.

✦ ✦ ✦

Thoughts on Using ActiveX DLLs

Building your own COM components isn’t difficult once you have a working template to fol-
low. In this chapter I focused on how to create a data source and a data consumer using
ActiveX controls. However, the steps I went through to expose the properties of a data con-
sumer and returning Recordset information from a data source can be used to build other
types of COM components.

In many ways, you’ll find that ActiveX DLLs may be even more useful in database program-
ming than ActiveX controls. After all, ActiveX controls are much more useful in a regular
Visual Basic program than in an IIS Application. ActiveX DLLs can be used to represent infor-
mation abstracted from a database rather than just presenting the collection of Fields
from a Recordset object. They also are a convenient place to include application logic that
can be used to validate information in the object or perform useful calculations with the
data in the object. ActiveX DLLs are also easy to migrate to COM+ transactions, a topic that
I’ll explore in Chapter 18.

4728-3 ch17.f.qc 7/31/00 09:50 Page 367

4728-3 ch17.f.qc 7/31/00 09:50 Page 368

