
Working with
Recordsets —
Part III

In this chapter, I’ll wrap up my coverage of the ADO
Recordset object by discussing how to update the infor-

mation in a particular record, and then I’ll explain other more
advanced ideas such as batch updates and transactions. I’ll
conclude the chapter by covering how to clone recordsets,
resync, and requery recordsets, and how to return multiple
recordsets. I’ll also show you some alternate ways to get data,
and finally, how to set the cache size for recordsets.

Up until this point, I’ve focused on how to move the current
record pointer around in a Recordset object and how to
access individual fields in it. Now it’s time to discuss how to
change the information in a recordset. You can insert, delete,
and update the individual records in a recordset by using the
AddNew, Delete and Update methods.

Updating Recordsets
Updating records in a Recordset can involve no more than
selecting the appropriate LockType when you open the
recordset. After the user has updated the field using bound
controls or with code in your program that explicitly changes
a field’s Value property, using any of the move methods will
automatically save the changes. However, having a deeper
understanding of how the update process works will help you
fine-tune your application to run faster and better.

Recordset Update DemoThe Recordset Update Demo program
(see Figure 16-1) is designed to let you try different approaches
to updating a recordset while watching the various indicators.

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Updating fields in a
recordset

Adding and deleting
records in a recordset

Batching changes

Using transactions

Working with
disconnected
recordsets

Working with other
recordset functions

✦ ✦ ✦ ✦



328 Part III ✦ Hard Core ADO

While this program is similar to the Recordset Movement Demo program (and uses
much of the same code), it is more complicated to use. In the Recordset Movement
Demo program, most of the activities require only one button click in order to per-
form a function. The Recordset Update Demo program usually requires a number 
of separate steps in order to accomplish a task successfully. This process merely
reflects the number of individual steps it takes to update a database record.

Figure 16-1: Running the Recordset Update Demo program

You can find the Recordset Update Demo program on the CD-ROM in the
\VB6DB\Chapter16\RecordsetUpdateDemo directory.

Like the Recordset Movement Demo program, the Recordset Update Demo program
relies on bound controls to display information from the database. I used a different
table in this program to show you how to use an image to display a picture from 
an Image field in the table. Unfortunately, you can only display an image from the
database with the Image control. You must manually load the image file from disk
to update the value in the database. See Chapter 15 for more details about how to
use the AppendChunk method to load a file to the Image field.

On the
CD-ROM



329Chapter 16 ✦ Working with Recordsets — Part III

In a typical update scenario, you press the Add New button to create a new record
in the database and then fill in values for the two bound fields (InventoryId and
Seq). Next, you press the Load Image button to fill in a value for the image field.
Finally, you press the Update button to save the image to the database. Of course,
this simple example assumes that you have opened the recordset with a cursor that
can be updated.

I did it first: I often find myself writing small programs that allow me to explore
the various features of an object. The program usually starts out simple and often
ends up fairly complex. The Recordset Update Demo and the Recordset
Movement Demo programs provide examples of applications that I wrote to test
various features in ADO. Rather than write your own small programs to try combi-
nations of things in ADO, I suggest you use these programs instead. They’ll save
you a lot of time and energy.

Updating an existing record
The update process begins as soon as you move the current record pointer to a
new row. If you selected pessimistic locking when you opened the recordset, the
database server will immediately place a lock on the row, preventing any other user
from accessing the row until you have finished working with it.

The read-only and the batch: This section addresses only what happens when
you use pessimistic or optimistic locking with a server-side cursor. Obviously, you
can’t update a recordset that was opened in read-only mode, and I’ll cover batch
optimistic locks and client-side cursors later in this chapter under “Performing
batch updates” and “Working with Disconnected Recordsets,” respectively.

When the row is retrieved from the database server, its values will be made
available to you in the Fields collection of the Recordset object. As you saw in
Chapter 15, each Field object in the collection keeps the original value of the
field as it was retrieved separate from the current value as seen by your pro-
gram. The current value is stored in the Value property, while the original value
is stored in the OriginalValue property. A third value, which is available on
demand, allows you to retrieve the value of the field as it currently exists in the
database server at that instant. The UnderlyingValue property is useful only
with optimistic locking, since it is impossible for the value of the field to change
while the row is locked using pessimistic locking.

Binding effects: Bound controls work exactly the same with Recordset objects
as they do with the ADO Data Control. When the user changes a value in a
bound control, the Value property of the Field object will be changed automat-
ically. This action triggers all of the associated processes for the Recordset.

Note

Note

Tip



330 Part III ✦ Hard Core ADO

Initially, the EditMode property will be set to adEditNone (0), which means that no
changes have occurred to the record. The moment one of the values changes, the
EditMode property will be set to adEditInProgress (1), which means that one or
more values of the current record have been changed.

Once you’ve finished changing the values in the current row, you can decide
whether to save your changes or to discard them. In database terms, you either
perform a commit to save your changes or a roll back to undo all of your changes. 
If you choose to roll back your changes, you must call the Cancel method (see
Listing 16-1). This method takes care of undoing your changes in the database.
While it is unlikely, it is possible that you may get a run-time error when using 
the Cancel method.

Listing 16-1: The Command12_Click event in Recordset
Update Demo

Private Sub Command12_Click()

On Error Resume Next

Images.Cancel
If Err.Number <> 0 Then

WriteError

End If

Text10.Text = FormatNumber(Images.EditMode, 0)

End Sub

Updating the data is a lot more complex than canceling the update, even though the
code is similar (see Listing 16-2). What happens under the covers depends on the
locking mode you chose. If you chose pessimistic locking, the values will be returned
to the database server and applied to the database. The EditMode property will be
reset to adEditNone. The lock on the record at the database server will remain in
place until you move to a new row.

If you chose optimistic locking, a series of activities will take place. First, a lock is
placed on the row at the database server. Then, for each field in the recordset’s
Fields collection, the OriginalValue property will be compared to the Underlying
Value property. If there are any differences, the Update method will be terminated, 
an error will be returned in the Errors collection and the lock will be released. If 
the original values are the same as the underlying values, the changed values in the
Value property will be saved to the database server. Then the lock on the current
row will be released, and EditMode will be reset to adEditNone.



331Chapter 16 ✦ Working with Recordsets — Part III

Listing 16-2: The Command10_Click event in 
Recordset Update Demo

Private Sub Command10_Click()

On Error Resume Next

Images.Update
If Err.Number <> 0 Then

WriteError

End If

Text10.Text = FormatNumber(Images.EditMode, 0)

End Sub

No matter which locking strategy you chose, it is still possible for the update to fail.
You may have changed the primary key so that it duplicates another value in the
table. It is possible that you may have used a set of values that violates a foreign
key constraint, or you may have triggered another constraint. In these situations,
the update will not be made to the database, and the Update method will fail. Your
current data will remain in the Fields collection, and you may attempt to correct
the problem and try the Update method again.

Adding a new record
Adding a new record is similar to updating an existing record, except that no locks
are required. The AddNew method creates a new database record by creating an
empty row, which then becomes the current record (see Listing 16-3). All of the
Field objects will automatically be set to Null or the default value as specified in
the table definition. The EditMode property will be set to adEditAdd, indicating
you’re editing a newly accessed record. Your program is then free to change the
values as desired.

Listing 16-3: The Command7_Click event in 
Recordset Update Demo

Private Sub Command7_Click()

On Error Resume Next

Continued



332 Part III ✦ Hard Core ADO

Listing 16-3: (continued)

Images.AddNew
If Err.Number <> 0 Then

WriteError

End If

Text10.Text = FormatNumber(Images.EditMode, 0)

End Sub

When your program is ready to save the new record to the database, you need to
call the Update method. The new record will be sent to the database server for pro-
cessing. If you have an identity field, its value will be computed before it is saved to
the database. If there are any errors with the values in the record, such as a dupli-
cate primary key, invalid foreign key reference, not Null constraints, or any other
constraint violations, an error will be returned, and the record won’t be added.
However, the values will remain in the Fields collection, and you can correct 
them to try again. Alternately, you can call the Cancel method to undo the AddNew
method.

The newly added record may or may not be visible in the Recordset depending on
your provider and the cursor type. You may have to use the ReQuery method to
make it visible.

Yet another way to add: If you specify a list of field names and their values as part
of the call to AddNew, the new record will be created, the listed values will be
applied to their associated fields, and the record will be saved to the database.
There’s no need to call the Update method. Note that this method may still fail for
the reasons I discussed earlier, at the end of “Updating an existing record.”

Deleting an existing record
Deleting the current record is as easy as calling the Delete method (see Listing
16-4). Of course, you must lock the record before deleting it, so it is possible for 
the Delete method to fail if you are using optimistic locking. It is also possible 
for the Delete method to fail if deleting the record would trigger a constraint.

Once the record is deleted, it remains the current record, although if you try to
access any of the Field objects, a run-time error will occur. As soon as you move
the current record pointer to another record, the deleted record will no longer be
visible. Once a record has been deleted, you can’t undelete it using the Cancel
method.

Note



333Chapter 16 ✦ Working with Recordsets — Part III

Listing 16-4: The Command8_Click event of 
Recordset Update Demo

Private Sub Command8_Click()

On Error Resume Next

Images.Delete
If Err.Number <> 0 Then

WriteError

End If

Text10.Text = FormatNumber(Images.EditMode, 0)

End Sub

The Delete method has an interesting capability that allows you to delete multiple
rows with a single call. You can delete all of the rows in the Recordset, or you can
delete only those records selected by the Filter property. You can also delete the
rows in the current chapter of a hierarchical recordset.

Performing batch updates
The idea behind optimistic locking is that with enough data, the odds that two or
more people would try to access the same record are so low as to be nonexistent.
Suppose you have an application that falls into this group that performs operations
on groups of records rather than just individual records. Perhaps, you have a table
that you use to hold the line items entry from an order. So if someone is likely to
access one of these rows, that person is likely to access all of them. The same argu-
ment could hold true for the course records in a student information system, the
transaction records against a single financial account, or the payroll records of 
a single employee. Each of these groups could be considered a batch, which is
updated as a single unit.

ADO supports the concept of batch updating with a batch optimistic locking strat-
egy. It uses the same locking strategy that is used for an optimistic lock, but it
allows you to create a group of changes that are sent to the database server for pro-
cessing at a single time. By transmitting the group of changes as a single group, you
can get better response time because you don’t have to wait on each individual row
to be updated. Also, this means less work for the server as it can update the group
of rows more intelligently.



334 Part III ✦ Hard Core ADO

In terms of using batch optimistic locks in your application, you need to open 
the Recordset object with LockType equal to adLockBatchOptimistic. Next 
you should set CursorLocation to adUseClient and CursorType to adStatic.
While other combinations of these properties may work, these will give you the
best results. All of the data will be buffered locally in the client computer, which 
will give you the best performance because you only communicate with the data-
base server at the beginning and the end of the process. 

After you open your Recordset, you can use it as you normally would. You can add
new records, delete existing ones, or change any values you choose. However, as
you make these changes, they are held and not transmitted to the database server
for processing. Instead, they are held locally until you explicitly commit them or
discard them.

You can discard your changes with the CancelBatch method (see Listing 16-5), or
you can save the changes with the UpdateBatch method (see Listing 16-6). However,
since the changes are applied with an optimistic lock, you need to check for errors to
see if all of your changes were successfully applied. Even if you use the CancelBatch
method, it is possible for you to get a warning or an error if someone else deleted
some or all of the records you would have updated before you canceled the update.

Listing 16-5: The Command13_Click event in Recordset
Update Demo

Private Sub Command13_Click()

On Error Resume Next

Images.CancelBatch
If Err.Number <> 0 Then

WriteError

End If

Text10.Text = FormatNumber(Images.EditMode, 0)

End Sub

You can check the status of your data after you use the CancelBatch or the
UpdateBatch by setting the Filter property to adFilterConflictingRecords.
The filter limits the recordset so that only the records that couldn’t be updated dur-
ing the call to UpdateBatch are visible. You should then scan through the entire
recordset and check the Status property to learn why the records weren’t prop-
erly updated.



335Chapter 16 ✦ Working with Recordsets — Part III

Listing 16-6: The Command11_Click event in Recordset
Update Demo

Private Sub Command11_Click()

On Error Resume Next

Images.UpdateBatch
Images.Filter = adFilterConflictingRecords
Images.MoveFirst
Do While Not Images.EOF

If Images.Status <> 0 Then
MsgBox “Error “ & FormatNumber(Images.Status,0) & _

“ in: “ & _ 
FormatNumber(Images.Fields(“InventoryId”).Value, 0)

End If

Images.MoveNext

Loop

Text10.Text = FormatNumber(Images.EditMode, 0)

End Sub

Making Transactions
An important feature in ADO is the ability to use transactions while processing your
data. They allow you to identify a series of individual database operations all of
which must be successful or all of their effects must be completely removed from
the database.

Why do I need transactions?
Think back to Chapter 14 where I was discussing why locking is necessary in a
database system. I discussed an example where you needed to serialize the debits
and the credits to a bank account to prevent an invalid value from being created.
Yet you could create an invalid amount in another way, even with proper locking.

Consider what happens when you transfer money from one account to another. You
withdraw money from one account and credit it to another. With locking, you can
make sure that each operation ensures that the appropriate values are created in
both tables. However, what happens if one operation happens and the other does-



336 Part III ✦ Hard Core ADO

n’t. If you do the withdrawal first, the money will disappear if it isn’t properly cred-
ited, while if the credit is made first, the money appears to come out of nowhere.

This is a situation where you have two database operations that must be successful
or both operations must fail together. If only one fails, you have a serious problem.
The problems that cause the failure of one operation and not the other can range
from a simple application error, through a networking problem, and to a major
database server problem. While you might think that this example is a little con-
trived, there are many situations where you have a series of database operations
where you want all of them to succeed or none of them.

The solution to this program is to group the set of operations into a package known
as a transaction. A transaction is an atomic unit because it can’t be subdivided. The
entire transaction must be applied to the database, or the entire transaction is
aborted.

Yet a transaction need not be limited to a single recordset. Most applications
update multiple recordsets as a routine part of their processing. Consider the
order portion of the sample database. The Orders table contains information that
is specific to the order such as the CustomerId and the date the order was placed.
Each item in the order has a separate record in the OrderDetails table. To place an
order, you have to add one record to the Orders table and one or more records to
the OrderDetails table. This is another situation where you want both tables prop-
erly updated or neither.

ADO and transactions
Transactions are implemented using the Connection object and not the Recordset
object. You can involve any number of Recordset objects and operations as long as
they are all using the same Connection object. Of course, the single connection limi-
tation implies that a transaction can’t span more than one database server, though
you may be able to access multiple databases on a single database server.

A transaction involves three basic methods. The BeginTrans method (see Listing
16-7) marks the beginning of a transaction. The CommitTrans method (see Listing
16-8) marks the successful conclusion of a transaction, while the RollbackTrans
method (see Listing 16-9) discards all of the changes made and leaves the database
untouched.

Transactions aren’t batch locks: Don’t confuse batch optimistic locks with trans-
actions. They serve two different purposes. Batch optimistic locks are a perfor-
mance enhancement that can be used successfully on large databases where you
don’t expect multiple users to try to access the same group of rows. Transactions
are used to ensure that the database remains consistent. They can be used in any
situation where you have a group of database operations that must be performed
together or not at all.

Note



337Chapter 16 ✦ Working with Recordsets — Part III

Listing 16-7: The Command21_Click event in Recordset
Update Demo

Private Sub Command21_Click()

On Error Resume Next

db.BeginTrans
If Err.Number <> 0 Then

WriteError

Else
Text11.Text = “Active”

End If

End Sub

Listing 16-8: The Command20_Click event in Recordset
Update Demo

Private Sub Command20_Click()

On Error Resume Next

db.CommitTrans
If Err.Number <> 0 Then

WriteError

Else
Text11.Text = “Committed”

End If

End Sub

Listing 16-9: The Command19_Click event in R
ecordset Update Demo

Private Sub Command19_Click()

On Error Resume Next
db.RollbackTrans
If Err.Number <> 0 Then

Continued



338 Part III ✦ Hard Core ADO

Listing 16-9 (continued)

WriteError
Else

Text11.Text = “Rollback”

End If

End Sub

If you set the Connection object’s Attribute property to either adXactAbort
Retaining or adXactCommitRetaining or both, a new transaction will be
started automatically when you call either the RollbackTrans or the Commit
Trans method. While this can be useful in some types of programs, I like the idea
of explicitly marking the beginning and end of a transaction. Not only does this
make the code that forms the transaction clearer to the next programmer who
may have to modify your program, but it also allows you the freedom to perform
database activities outside the scope of a transaction.

Working with Disconnected Recordsets
Client-side cursors let you do more of your database work on your local machine
rather than continually communicating with the database server for each and
every request. However, it is possible to do all of your work locally if you’re will-
ing to do a little extra work and then upload your work to the database server
when you’re finished.

What is a disconnected recordset? The basic idea behind a disconnected recordset is
that you make a local copy of the data in the recordset and then break the connec-
tion to the database server. You can then perform your updates against the local
copy, and when you’re finished, you can reconnect to the database server and
upload the changes.

The key to making this work is the ability to use a client-side cursor and batch opti-
mistic locking. Using these tools, you would go ahead and process your data normally
and all of the changes would be buffered locally until you execute the UpdateBatch
method to transmit them to the database server. So while you might have a connec-
tion to the database server, it’s not absolutely necessary since there are no communi-
cations traveling between the database client and the database server.

Disconnected from the net: Disconnected recordsets are ideal for situations
where you need to make changes to your database from a laptop that is not per-
manently attached to your network. You can collect these changes into a single
batch while the computer is away from the network and upload them when the
computer is reattached to the network.

Tip



339Chapter 16 ✦ Working with Recordsets — Part III

Making a recordset local
A Recordset object can be saved as a local disk file by using the Save method. You
can save the recordset using either the ADTG (Advanced Data Table Datagram) or
XML (Extensible Markup Language). ADTG is a Microsoft proprietary format that is
somewhat more efficient than the XML format and can handle all types of Record
sets. XML is an open standard supported by multiple vendors, but there are some
situations (primarily dealing with hierarchical recordsets) where you may lose some
functionality. When saving a Recordset for local processing, either format is fine,
though XML would be preferred if you want to share the file with someone else.

Saving the recordset
In the example in Listing 16-10, I constructed a filename using the directory path 
to the application and the first three characters of the file type described in the
combo box. Then I used the value from the ItemData list for the current combo
box to determine the format used to save the Recordset.

Listing 16-10: The Command18_Click event of 
Recordset Update Demo

Private Sub Command18_Click()

On Error Resume Next

Images.Save App.Path & “\localrs.” & 
Left(Combo5.Text, 3), _
Combo5.ItemData(Combo5.ListIndex)

If Err.Number <> 0 Then
WriteError

End If

End Sub

Expensive words: The process of saving a copy of a Recordset locally so it can
be reopened while not connected to the database server is known as persisting
the recordset.

I’ll talk about XML in more detail starting with Chapter 21.

Once the Recordset has been saved, you can disconnect it from the database
server by setting the ActiveConnection property to Nothing. Then you can close
the Recordset object and the Connection object. As long as the recordset is con-
nected to the database, you will continue to operate as before.

Cross-
Reference

Note



340 Part III ✦ Hard Core ADO

Opening the saved recordset
Once you have saved the Recordset as just described, you can reopen it using the
file you just saved without specifying a connection to the database server (see
Listing 16-11). You’ll need a valid instance of a Recordset object in order to open
the file. When you code the Open method, you need to specify the name of the file
as the Source parameter and adCmdFile for the Options parameter. The file will
then be copied by the client cursor library into memory and can be accessed as a
normal Recordset object, and you can also use bound controls.

Listing 16-11: The Command22_Click event of the Recordset
Update Demo

Private Sub Command22_Click()

On Error Resume Next

If Images Is Nothing Then
Set Images = New Recordset

Else
Images.Close

End If

Err.Clear
Images.Open App.Path & “\localrs.” & Left(Combo5.Text, 3), , _

adOpenStatic, adLockBatchOptimistic, adCmdFile

If Err.Number <> 0 Then
WriteError

Else
Text8.Text = “Local”

Text4.DataField = “InventoryId”
Set Text4.DataSource = Images
Text7.DataField = “Seq”
Set Text7.DataSource = Images
Image1.DataField = “Image”
Set Image1.DataSource = Images

End If

End Sub



341Chapter 16 ✦ Working with Recordsets — Part III

Reconnecting to the database server
Once you’ve finished updating your recordset locally, you need to reconnect to the
database server. This can be a few minutes or a few days after you originally saved
the data. If you haven’t opened the recordset with batch optimistic locks, you need
to close the recordset and reopen it.

With the open copy of the local recordset, you then have to set the Active
Connection property to a valid connection object (see Listing 16-12). This will
restore your connection to the database server. Then you can use the UpdateBatch
method to send the changed records to the database server. It is very important
that you check the results of the UpdateBatch method; since it is possible some-
one else may have updated the records while you were editing the recordset locally.

Listing 16-12: The Command25_Click event in 
Recordset Update Demo

Private Sub Command25_Click()

On Error Resume Next

Set Images.ActiveConnection = db
If Err.Number <> 0 Then

WriteError

End If

Images.UpdateBatch
Images.Filter = adFilterConflictingRecords
Images.MoveFirst
Do While Not Images.EOF

If Images.Status <> 0 Then
MsgBox “Error “ & FormatNumber(Images.Status,0) & _

“ in: “ & _ 
FormatNumber(Images.Fields(“InventoryId”).Value, 0)

End If

Images.MoveNext

Loop

End Sub



342 Part III ✦ Hard Core ADO

Working with Other Recordset Functions
There are few other functions available for recordsets, which I want to briefly touch
on in this chapter. For the most part, these functions aren’t used very often, but
they can add value to your application in the right situation.

Cloning a recordset
Sometimes it is useful to create an identical copy of a Recordset object. This may
arise if you need multiple current record pointers in the same recordset or if you
want to use two different filters at the same time.

In order to clone a recordset, your provider must support bookmarks. The side
effect of this is that a bookmark from one recordset will work in all of its clones as
long as no filters have been applied or you haven’t executed the Resync or Requery
methods. This has yet another side effect; changes made to one recordset will be
seen immediately by the other recordsets.

Resyncing and requerying a recordset
When you access a Recordset with a static or forward-only cursor, you can’t 
see the changes that someone else may have made in the database. The Resync
method allows you to get a fresh copy of the values from the database without
executing the query again. This means that the Resync method is more efficient.

Of course, Resync has its limitations. It won’t detect when a new record has been
added. If any of the records in the Recordset are deleted, an error will be gener-
ated in the Error collection, and you will need to use the Filter property to
examine these records to determine how you want to handle them.

The Requery method on the other hand forces the database server to re-execute
the query that was originally used to retrieve the records from the database. This
means that records that have been added, deleted, and updated will be properly
reflected in your Recordset. Calling Requery is the equivalent of calling the Close
and Open methods. Obviously, using Requery is more expensive (in terms of
resources and time) than using Resync, but there are times when it is necessary.

Returning multiple recordsets
A stored procedure has the ability to return multiple recordsets with a single call;
however, only one recordset is accessible at a time through the Recordset object.
You can also specify multiple Select statements in a Command object to return multi-
ple recordsets.



343Chapter 16 ✦ Working with Recordsets — Part III

When you execute the Command object, the first recordset is generated, and the
server waits to generate the next recordset until you call the NextRecordset
method. If you close the Recordset object before retrieving all of the recordsets,
the remaining statements are not executed.

Alternate ways to get data
While you can retrieve information from a recordset using the Fields collection,
there are a couple of other methods of which you should be aware. They are the
GetRows method and the GetString method. Both return one or more rows of
information from the Recordset object in a single call.

The GetRows method returns a Variant containing a two-dimensional array where
each row of the array corresponds to a row of information from the recordset and
each column of the array corresponds to a column in the recordset. The dimen-
sions of the array are automatically resized to handle the amount of data that you
request.

You can also specify the field you want to extract by including the name of the field
as a parameter to the method. You can specify an array containing list of fields that
you want to retrieve.

The GetString method performs the same basic function as the GetRows method,
but it returns the data as a single String rather then the cells of an array. You can
specify the delimiter that will be used between columns and the delimiter between
rows. For example, you can create a CSV (comma separated value) file by specifying
a comma (,) as the column delimiter and a carriage return/line feed pair (vbCrLf)
for the row delimiter.

Both methods start with the current record and return the specified number of
records. The GetRows method allows you to specify the starting position if your
Recordset supports bookmarks.

Comma Separated Value files, the easy way: The GetString method makes it
really easy to create the data for a CSV file.

Note that with either method, you may get an error number 3021 when reading
the last block of data. This error number means that you reached the end of the
file; however, this is expected, if you read multiple records at a time. In this case,
it means that you requested more records than were available, hence the end of
file error.

Tip



344 Part III ✦ Hard Core ADO

Setting the cache size
One of the problems when building a client/server database is that all of the commu-
nications between the client program and the database server are routed through a
network. By default, only one record is transmitted between your application and
the database server each time you move the current record pointer. However, this
value is tunable by using the CacheSize property.

The CacheSize determines the number of records that are buffered locally by the
OLE DB provider. A value of one means that only one record is quickly available to
your program. Increasing this size to more than one means that the provider will
keep multiple records locally. This means that the provider will not request addi-
tional data from the server until you reference a record outside of the cache. As long
as your program requests from within the cache, the provider doesn’t need to com-
municate with the database server. When your program does reference a record out-
side of the cache, the provider will flush the local cache and fill it again with new
records from the database server.

Depending on your program, changing the CacheSize property can make a big differ-
ence, either good or bad. If you are reading through the Recordset sequentially, then
you’ll get the biggest performance boost, especially if you open the recordset in read-
only mode with a forward-only cursor. In many cases, the cost of retrieving records is
proportional to the number of calls the provider has to make to the database server.
Thus, if you retrieve more records from the database server with each call, the fewer
calls you will need to make to satisfy the query.

However, if your program is reading records randomly throughout the recordset,
having a large cache is a detriment. The database server must retrieve more
records from the database and transmit them over the network, which is work that
is essentially wasted.

There is another issue using a large cache, which can cause other problems if you
are not careful. Since the provider and server are not in contact until you need to
retrieve additional records, it is possible that someone else will have changed or
deleted a record after the records were retrieved. Your program will need to be able
to handle this situation. For read-only access with a forward-only cursor, this
shouldn’t be a big problem. But if your program is attempting to update records
using a CacheSize greater than one, you may have problems. I suggest that you
either use batch optimistic locking and handle the errors after the fact or drop the
CacheSize back to one.



345Chapter 16 ✦ Working with Recordsets — Part III

Summary
In this chapter you learned the following:

✦ You can change the values in a row by using the Fields collection and then
save the new values using the Update method.

✦ You can use the AddNew method to insert a new row and the Delete method
to remove a row from a recordset.

✦ You can group changes into batches for better performance.

✦ You can define transactions in your application, in which all of the changes
must succeed or all of the changes will be discarded.

✦ You can use disconnected recordsets to access information from the database
without having an active connection to the database. 

✦ You can perform a number of other useful functions with a Recordset object
such as returning multiple recordsets and multiple rows.

✦ ✦ ✦

Thoughts on Updating Recordsets

Updating Recordsets is one of the most important functions that a database program
PERFORMS. ADO provides a wide range of tools to make this process as painless as possi-
ble. Once you get comfortable using the ADO object library to access your data, using other
tools will feel downright awkward.

Most of the time when I need to build a simple program to update a database, I just open
a Recordset object and then bind a bunch of controls to it to display the information.
While there is a little more code involved with this process than using something like the
ADO Data Control, I don’t mind the extra work because I prefer to open the Recordset
after I open the form that uses it.

But while it is easy to update a database using a Recordset, you’ll probably be better off
using stored procedures and a Command object. Depending on the database server and the
OLE DB provider, many Recordset operations have to be translated to explicit SQL
Statements that are executed directly against the database. While this extra work isn’t
much, if you have a high-volume application, anything you can do to reduce work will make
your application run better. After all, while machine resources are relatively cheap, some-
one has to pay for them, and if you don’t really need the resources, you shouldn’t use them.




