
Working with
Recordsets —
Part I

Of all of the objects in ADO, the Recordset object is the
one you’ll use the most. It contains the actual data from

your database. You can use this object to retrieve, insert,
update, and delete information from the database. It can be
used as a data source for other controls, just like the ADO
Data Control. In fact the ADO Data Control exposes a refer-
ence to the Recordset object, you can access the information
contained in the underlying recordset directly.

This chapter and the next two are dedicated to the topic of
recordsets. In this chapter, I’m going to discuss the various
properties, methods, and events in a Recordset object. Then
I’ll discuss how to open and use a Recordset object. In the
next chapter, I’ll continue discussing the Recordset object
and cover how to move around inside recordsets and how to
access the individual fields. Finally, in Chapter 16 I’ll cover the
issues related to updating the data contained in a recordset.

The Recordset Object
The Recordset object contains the set of rows retrieved from a
database query. Various properties and methods instruct the
OLE DB provider on how the rows should be returned from the
database and how the provider should handle updates and
locking to ensure proper access to the data. Other properties
and methods in the Recordset object allow you to access the
set of rows retrieved.

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The Recordset object

Exploring various
types of locks

Choosing a
cursor type

Opening a recordset

✦ ✦ ✦ ✦

266 Part III ✦ Hardcore ADO

Birds of a Feather aren’t at the first record of the Recordset: There is a common
misconception that when BOF is TRUE, you are at the first record of the
Recordset. This isn’t true. When BOF is TRUE, the current record pointer is before
the first record in the Recordset, and there isn’t a current record. The same is
true for EOF, except in that case, the current record pointer is beyond the last
record in the Recordset.

Recordset object properties
Table 14-1 lists the properties associated with the Recordset object. Tables 14-2
through 14-8 contain additional information about individual properties in the
Recordset object.

Table 14-1
Properties of the Recordset Object

Property Description

AbsolutePage A Long value containing the absolute page number of the
current record in the Recordset ranging from 1 to PageCount.
This value may also be adPosBOF (-2) if the current record is at
the beginning of the file or adPosEOF (-3) if the current record
is at the end of the file. A value of adPosUnknown (-1) may be
used if the Recordset is empty or the provider doesn’t support
this property.

AbsolutePosition A Long value containing the absolute position of the current
record in the Recordset ranging from 1 to RecordCount. This
value may also be adPosBOF (-2) if the current record is at the
beginning of the file or adPosEOF (-3) if the current record is at
the end of the file. A value of adPosUnknown (-1) may be used
if the Recordset is empty or the provider doesn’t support this
property.

ActiveCommand An object reference to the Command object that created the
Recordset. If the Recordset wasn’t created using a Command
object, this property will have a Null object reference.

ActiveConnection A Variant array containing either a String value with a valid
connection string or an object reference to a Connection
object.

BOF A Boolean value that is TRUE when the current record position
is before the first record in the Recordset.

Note

267Chapter 14 ✦ Working with Recordsets — Part I

Property Description

Bookmark A Variant that sets or returns a value that uniquely identifies
the current record in the current Recordset object. You can
save this property and move to a different record. Then you can
restore the value to return back to the original record.

CacheSize A Long value containing the number of records kept in the
provider’s cache. The default value for this property is 1.

CursorLocation An enumerated value that indicates where the cursor is
maintained (see Table 14-2).

CursorType An enumerated value that specifies the type of cursor that will
be used on the Recordset. (see Table 14-3).

DataMember A String containing the name of the data member that will be
retrieved using the DataSource property. Works with the
DataSource property to bind a Recordset to a control.

DataSource An object reference that indicates the data source when using
bound controls.

EditMode An enumerated value containing the edit mode of the current
record (see Table 14-4).

EOF A Boolean value that is TRUE when the current record position
is after the last record in the Recordset.

Fields An object reference to a Fields collection containing the fields
associated with the current record.

Filter A Variant value containing one of the following: a String
value containing an expression similar to that in a Where clause
that will select only those records meeting the specified criteria;
an Array of bookmarks; or a Long value selected from Table
14-5.

Index A String containing the name of an index that is used in
conjunction with the Seek method.

LockType An enumerated value containing the locking mode used by the
Recordset when retrieving records (see Table 14-6).

MarshalOptions An enumerated value that indicates how records are to be
marshaled back to the server. Applies only to Recordsets with
client-side cursors (discussed later in this chapter). The default
value is adMarshalAll (0), which returns all rows back to the
server for processing, while adMarshalModifiedOnly (1)
returns only the modified rows.

Continued

268 Part III ✦ Hardcore ADO

Table 14-1 (continued)

Property Description

MaxRecords A Long value that specifies the maximum number of rows to be
returned. A value of zero implies there is no maximum limit.

PageCount A Long value containing the number of pages of data in the
Recordset. The number of records in a page is specified by the
PageSize property, while the current page number is specified
in the AbsolutePage property.

PageSize A Long value containing the number of records in a single page.

Properties An object reference to a Properties collection containing
provider specific information.

RecordCount A Long value containing the number of records retrieved. If the
provider is not able to determine the number of records
retrieved or a forward-only cursor is selected, this property will
have a value of –1.

Sort Specifies a list one or more of field names on which the
Recordset will be sorted. Multiple fields need to be separated
by commas, and each field name may be followed by ASC or
DESC to sort the fields in either ascending or descending order.
The syntax is basically the same as the Order By clause in the
Select statement. This property is only valid when you use a
client-side cursor (discussed later in this chapter).

Source A Variant which can either be a String containing the name
of a table, a SQL Statement, or the name of a stored procedure
or an object reference to a Command object.

State A Long value describing the current state of the Recordset
object. Multiple values can be combined to describe the current
state (see Table 14-7 for a list of values).

Status A Long value describing the current status of a record in a batch
update (see Table 14-8).

StayInSync A Boolean value that when TRUE means that the reference to
child records in a hierarchical Recordset will automatically be
changed when the parent row’s position changes. The default
value for this property is TRUE.

269Chapter 14 ✦ Working with Recordsets — Part I

Table 14-2
Values for CursorLocation

Constant Value Description

adUseNone 1 Doesn’t use cursor services. This value should not
be selected and exists solely for compatibility.

adUseServer 2 The cursor services are provided by the data
provider.

adUseClient 3 The cursor services are provided by a local cursor
library, which may provide more features than
the data provider’s cursor library provides.

Table 14-3
Values for CursorType

Constant Value Description

adOpenUnspecified -1 The type of cursor isn’t specified.

adOpenForwardOnly 0 A forward-only cursor is used, which permits you
only to scroll forward through the records in the
Recordset.

adOpenKeyset 1 A keyset cursor is used, which is similar to a
dynamic cursor, but doesn’t permit you to see
records added by other users.

adOpenDynamic 2 A dynamic cursor is used, which allows you to
see records added by other users, plus any
changes and deletions made by other users.

adOpenStatic 3 A static cursor is used, which prevents you from
seeing any and all changes from other users.

270 Part III ✦ Hardcore ADO

Table 14-4
Values for EditMode

Constant Value Description

adEditNone 0 Editing is not active; the data in the current
record hasn’t been changed.

adEditInProgress 1 The data in the current record has been changed,
but not yet saved.

adEditAdd 2 The AddNew method has been used to create a
new record, but the record hasn’t been saved yet.

adEditDelete 4 The current record has been deleted.

Table 14-5
Values for Filter

Constant Value Description

adFilterNone 0 Removes all filtering criteria.

adFilterPendingRecords 1 Selects only those records that have been
changed, but not sent to the server for
updating. Applies to batch update mode
only.

adFilterAffectedRecords 2 Selects only those records that have been
affected by the last CancelBatch, Delete,
Resync, or UpdateBatch.

adFilterFetchedRecords 3 Selects only those records in the current
cache.

adFilterConflictingRecords 5 Selects only those records that have failed
the last batch update.

Table 14-6
Values for LockMode

Constant Value Description

adLockUnspecified -1 The type of locking isn’t specified.

adLockReadOnly 1 Doesn’t permit you to change any values.

271Chapter 14 ✦ Working with Recordsets — Part I

Constant Value Description

adLockPessimistic 2 Records are locked at the data source record
by record once the data in the record has
been changed.

adLockOptimistic 3 Records are locked only when you call the
UpdateMethod.

adLockBatchOptimistic 4 Records are not locked, and conflicts will be
returned for resolution after the
UpdateBatch method has completed.

Table 14-7
Values for State

Constant Value Description

adStateClosed 0 The Command object is closed.

adStateOpen 1 The Command object is open.

adStateConnecting 2 The Command object is connecting to the
database.

adStateExecuting 4 The Command object is executing.

adStateFetching 8 Rows are being retrieved.

Table 14-8
Values for Status

Constant Value Description

adRecOK 0 The record was successfully updated.

adRecNew 1 The record is new.

adRecModified 2 The record has been modified.

adRecDeleted 4 The record has been deleted.

adRecUnmodified 8 The record has not been modified.

adRecInvalid 16 The record wasn’t saved because its
bookmark was invalid.

Continued

272 Part III ✦ Hardcore ADO

Table 14-8 (continued)

Constant Value Description

adRecMultipleChanges 64 The record wasn’t saved because it would
have affected multiple records.

adRecPendingChanges 128 The record wasn’t saved because it refers to
a pending insert.

adRecCanceled 256 The record wasn’t saved because the
operation was canceled.

adRecCantRelease 1024 The new record wasn’t saved because the
existing record was locked.

adRecConcurrencyViolation 2048 The record wasn’t saved because optimistic
concurrency was in use.

adRecIntegrityViolation 4096 The record wasn’t saved because the data
violated an integrity constraint.

adRecMaxChangesExceeded 8192 The record wasn’t saved because there were
too many pending changes.

adRecObjectOpen 16384 The record wasn’t saved because of a
conflict with an open storage object.

adRecOutOfMemory 32768 The record wasn’t saved because the
computer ran out of memory.

adRecPermissionDenied 65536 The record wasn’t saved because the user
doesn’t have sufficient permissions.

adRecSchemaViolation 131072 The record wasn’t saved because it violates
the underlying database structure.

adRecDBDeleted 262144 The record has already been deleted from
the data source.

Recordset object methods,
The Recordset object contains many different methods to manipulate the data in
the Recordset.

Sub AddNew ([FieldList], [Values])
The AddNew method is used to add a new empty record to the Recordset. This
will set the EditMode property to adEditAdd. After assigning values to each of
the fields, you can use the Update method to save the changes. If you specify the
FieldList and Values parameters, the values are immediately saved to the
database and no call to Update is needed.

273Chapter 14 ✦ Working with Recordsets — Part I

In batch update mode, you proceed as above. The changes will be saved locally in
the Recordset, but not sent to the server. After adding the last record of the batch,
you must call the UpdateBatch method to save the changes to the database. Then
you should set the Filter property to adFilterConflicting and take the appro-
priate action for the records that weren’t posted to the database properly.

FieldList is optional and is either a String value containing a single field name
or a String Array containing a list of field names.

Values is an optional Variant containing a single value corresponding to a single
field name or Array of values corresponding to the Array of field names.

Sub Cancel()
The Cancel method is used to terminate an asynchronous task started by the Open
method.

Sub CancelBatch ([AffectRecords As AffectEnum = adAffectAll])
The CancelBatch method is used to cancel a pending batch update. If the current
record hasn’t been saved, CancelBatch will automatically call CancelUpdate to
discard any changes. As with all batch operations, you should verify the Status
property for all of the affected records to ensure that they were properly canceled.

AffectRecords is an enumerated type that describes which records will be
affected by the cancel operation (see Table 14-9).

Table 14-9
Values for AffectRecords

Constant Value Description

adAffectCurrent 1 Affects only the current record in the
Recordset.

adAffectGroup 2 Affects only those records selected by the current
value of the Filter property.

adAffectAll 3 Affects all records in the Recordset.

adAffectAllChapters 4 Affects all records in all chapters of the
Recordset.

274 Part III ✦ Hardcore ADO

Sub CancelUpdate ()
The CancelUpdate method is used to abandon all of the changes made to a record
and to restore its values to the original values before the Update method is called.
If you use CancelUpdate to undo a row added with the AddNew method, the newly
added row will be discarded, and the current record will become the row that was
the current row before the AddNew method was used.

Function Clone ([LockType As LockTypeEnum =
adLockTypeUnspecified]) As Recordset
The Clone method is used to create a duplicate of a Recordset object. LockType
allows you to specify that the new Recordset object is read-only. The only permis-
sible values are adLockUnspecified and adLockReadOnly.

Sub Close
The Close method closes an open Recordset and frees all of its associated
resources. If you are editing a record in the Recordset, an error will occur, and the
Close method will be terminated. You need to call either Update or CancelUpdate
first. If you are working in batch mode, all changes since the last UpdateBatch will
be lost.

Sub CompareBookmarks(Bookmark1, Bookmark2) As CompareEnum
The CompareBookmarks method compares two bookmarks and returns information
about their relative positions. Both bookmarks must come from the same Recordset
object or from clones of the same Recordset object. Table 14-10 contains a list of
possible return values.

Bookmark1 and Bookmark2 are valid bookmarks.

Table 14-10
Values for CompareEnum

Constant Value Description

adCompareLessThan 0 The first bookmark is before the second
bookmark.

adCompareEqual 1 The two bookmarks are equal.

adCompareGreaterThan 2 The first bookmark is after the second
bookmark.

adCompareNotEqual 3 The two bookmarks are different and not
ordered.

adCompareNotComparable 4 The bookmarks can’t be compared.

275Chapter 14 ✦ Working with Recordsets — Part I

Sub Delete ([AffectRecords As AffectEnum = adAffectCurrent])
The Delete method is used to delete one or more records from a Recordset
object.

AffectRecords is an enumerated type that describes which records will be
deleted by this operation (see Table 14-9). The default value is adAffectCurrent,
which means only the current row will be deleted.

Sub Find (Criteria As String, [SkipRows As Long], [SearchDirection As
SearchDirectionEnum = adSearchForward], [Start])
The Find method is used to locate the specified criteria in a Recordset. Note that
you must have a valid current record before calling the Find method, so you may
want to call MoveFirst before using this method.

Criteria is a String value that specifies a field name, a comparison operator, and
a value. Only one field name may be specified.

SkipRows is a Long value that specifies the number of rows to skip relative to the
current row before starting the search. The default value is zero, which means the
search will begin with the current row.

SearchDirection is an enumerated type that indicates the direction of the search.
You can specify adSearchForward (1) to search to the end of the Recordset, or
you can specify adSearchBackward (-1) to search to the beginning of the
Recordset.

Start is a Variant containing a bookmark for the first record to be searched.

Function GetRows ([Rows As Long = -1], [Start], [Fields]) As Variant
The GetRows method retrieves multiple records from a Recordset object into a
two-dimensional array.

Rows is the number of rows to be retrieved. The default value is adGetRowsRest
(-1), which will retrieve the rest of the rows in the table.

Start is an optional Variant containing a bookmark for the first row to be retrieved.
If you do not specify values for both Rows and Start, all of the rows in the table will
be retrieved.

Fields is an optional Variant containing a String with a single field name, a
String array with multiple field names, the index of the field, or an array of field
index values.

276 Part III ✦ Hardcore ADO

Function GetString ([StringFormat As StringFormatEnum =
adClipString], [NumRows As Long = -1], [ColumnDelimiter As String],
[RowDelimiter As String], [NullExpr As String]) As String
The GetString method returns a String containing the values from the
Recordset.

StringFormat is a Long value containing the value adClipString (2). This is the
only legal value for this method.

NumRows is a Long value containing the number of rows to be saved in the string. A
value of –1 means that all of the rows will be retrieved.

ColumnDelimiter is a String containing the delimiter to be used between each
column. If not specified, a tab character will be used.

RowDelimiter is a String containing the delimiter to be used between each row. If
not specified, a carriage return character will be used.

NullExpr is a String containing the value to be displayed in place of a null value.
If it is not specified, nothing will be output.

To CSV or not to CSV: I often find it useful to create Comma Separated Value files
from a database. These files can be easily imported into a program like Excel for
analysis and testing. The GetString method makes it easy to write a program to
save your data into a CSV file. Simply specify a comma for ColumnDelimiter
and vbCrLf for the RowDelimiter.

Sub Move (NumRecords As Long, [Start])
The Move method is used to move the current record pointer to a different loca-
tion in the Recordset. If the Recordset is already at BOF, an attempt to move
backwards will generate a runtime error. Similarly, if the Recordset is already at
EOF, an attempt to move forward will also generate a runtime error.

NumRecords is a Long value containing the number of records to be moved. If a
value of zero is specified, the current record pointer remains unchanged, and the
current record is refreshed. A value greater than zero means that the current record
position will be moved to the end of the Recordset, while a value less than zero
will move the current record pointer towards the beginning of the Recordset.

Start is a Variant containing a bookmark that will be used as the starting position
for the move.

Forward-NOT-only: Even if you specify a forward-only cursor, you can still move
backward using the Move method, as long as you do not move beyond the
records in the current cache.

Tip

Tip

277Chapter 14 ✦ Working with Recordsets — Part I

Sub MoveFirst ()
The MoveFirst method moves the current record pointer to the first record in the
Recordset.

MoveFirst first: I usually find it a good idea to call MoveFirst after opening a
Recordset to ensure that I have a valid record ready for processing.

Sub MoveLast()
The MoveLast method moves the current record pointer to the last record in the
Recordset. Note that you can’t use the MoveLast method with a forward-only
cursor.

Sub MoveNext ()
The MoveNext method moves the current record pointer to the next record in the
Recordset. If the current record pointer is at the last record in the Recordset, the
current record pointer will be moved to EOF. If the current record pointer is already
at EOF, a call to MoveNext will cause a runtime error.

Sub MovePrevious ()
The MovePrevious method moves the current record pointer to the previous
record in the Recordset. If the current record pointer is on the first record in the
Recordset, the current record pointer will be moved to BOF. If the current record
pointer is already at BOF, a call to MovePrevious will trigger a runtime error.

Function NextRecordset ([RecordsAffected]) As Recordset
The NextRecordset method clears the current Recordset object and returns the
next Recordset that resulted from a query or stored procedure that returned multi-
ple Recordsets. RowsAffected is a Long value containing the number of records
affected.

Sub Open ([Source As Variant], [ActiveConnection As Variant],
[CursorType As CursorTypeEnum = adOpenUnspecified], [LockType As
LockTypeEnum], [Options As Long = -1])
The Open method opens a new Recordset object.

Source is a Variant containing an object reference to a valid Command object; an
object reference of a valid Stream object containing a persistently stored Recordset;
or a String containing a SQL statement, a table name, the name of a stored proce-
dure, a URL, or the name of a file.

Tip

278 Part III ✦ Hardcore ADO

ActiveConnection is a Variant that contains an object reference to an open
Connection object or a String value that contains the same connection informa-
tion found in the ConnectionString property.

CursorType is an enumerated value (see Table 14-11) that specifies the type of cur-
sor that will be used on the Recordset.

LockType is an enumerated value (see Table 14-12) containing the locking mode
used by the Recordset when retrieving records.

Options optionally passes one of the values specified in Table 14-3.

Table 14-11
Values for CursorType

Constant Value Description

adOpenUnspecified -1 The type of cursor isn’t specified.

adOpenForwardOnly 0 A forward-only cursor is used, which permits
you only to scroll forward through the records
in the Recordset.

adOpenKeyset 1 A keyset cursor is used, which is similar to a
dynamic cursor, but doesn’t permit you to see
records added by other users.

adOpenDynamic 2 A dynamic cursor is used, which allows you to
see records added by other users, plus any
changes and deletions made by other users.

adOpenStatic 3 A static cursor is used, which prevents you
from seeing any and all changes from other
users.

Table 14-12
Values for LockType

Constant Value Description

adLockUnspecified -1 The type of locking isn’t specified.

adLockReadOnly 1 Doesn’t permit you to change any values.

adLockPessimistic 2 Records are locked at the data source record
by record once the data in the record has
been changed.

279Chapter 14 ✦ Working with Recordsets — Part I

Constant Value Description

adLockOptimistic 3 Records are locked only when you call the
UpdateMethod.

adLockBatchOptimistic 4 Records are not locked, and conflicts will be
returned for resolution after the
UpdateBatch method has completed.

Sub Requery ([Options As Long = -1])
The Requery method gets a fresh copy of the data in a Recordset by re-executing
the query that originally generated the Recordset.

Options is a Long value that describes how to execute the query. You may set its
value to any combination of the following values described in Table 14-13: adAsync
Execute, adAsyncFetch, adAsynchFetchNonBlocking, and adExecuteNoRecords.
If omitted, none of these values will be selected.

Table 14-13
Values for Options

Constant Value Description

adOptionUnspecified -1 No options are specified.

adCmdText 1 CommandText contains either a SQL
statement or a stored procedure call.

adCmdTable 2 CommandText contains the name of a
table in the database.

adCmdStoredProcedure 4 CommandText contains the name of a
stored procedure.

adCmdUnknown 8 The type of command isn’t known.

adAsyncExecute 16 The command should be executed
asynchronously.

adAsyncFetch 32 After the number of rows specified in the
CacheSize property of the Recordset
object are returned, the remaining rows will
be returned asynchronously.

Continued

280 Part III ✦ Hardcore ADO

Table 14-13 (continued)

Constant Value Description

adAsyncFetchNonBlocking 64 The main thread isn’t blocked while
retrieving rows. If the current row hasn’t
been retrieved, the current row will be
moved to the end of the file.

adExecuteNoRecords 128 Indicates that the command will not return
any rows or will automatically discard any
rows that are generated. Must be used with
either the adCmdText or
adCmdStoredProcedure values.

adCmdFile 256 CommandText is the name of a persistently
stored Recordset.

adCmdTableDirect 512 CommandText contains the name of a
database table.

Sub Resync ([AffectRecords As AffectEnum],
[ResyncValues As ResyncEnum)
The Resync method gets any updates to the data that may have happened while
using a static or forward-only cursor. Unlike the Requery method, the Resync
method does not re-execute the query associated with the Recordset, so any rows
added since the original query was executed will not be visible.

AffectRecords is an enumerated type that describes which records will be
affected by the cancel operation (see Table 14-9).

ResyncValues is an enumerated type that determines how changed records in the
Recordset will be handled. A value of adResyncUnderlyingValues (1) means
that all pending updates are saved, while a value of adResyncAllValues (2)
means that all pending updates are canceled (default).

Sub Save ([Destination], [PersistFormat As PersistFormatEnum])
The Save method is used to save a local copy of an open Recordset (including any
child recordsets associated with it) to a disk file or a Stream object. If you have an
active filter on the Recordset, only the filtered records will be saved. After the first
time you call the Save method, you should omit the Destination parameter, because
the destination remains open. If you specify the same value for Destination a second
time, a runtime error will occur. If you specify a different value, both destinations will
remain open. Closing the Recordset will also close the Destination.

281Chapter 14 ✦ Working with Recordsets — Part I

Destination is a Variant value containing either an object reference to a Stream
or a String containing the fully qualified filename where the data will be stored.

PersistFormat is an enumerated data type whose value is either adPersistADTG
(0), which will save the Recordset in the Advanced Data TableGram (ADTG) format
(default), or adPersistXML (1), which will save the Recordset using XML format.

Sub Seek (KeyValues, [SeekOption As SeekEnum])
The Seek method is used to move the cursor to a new location in the Recordset. It
works with the Index property to search the specified index for a particular value.

KeyValues is an array of Variant values, corresponding to the columns in the
index.

SeekOption is an enumerated data type that specifies how to perform the compari-
son (see Table 14-14).

Table 14-14
Values for SeekOption

Constant Value Description

adSeekFirstEQ 1 Seeks the first row with a key value equal to
KeyValues.

adSeekLastEQ 2 Seeks the last row with a key value equal to
KeyValues.

adSeekAfterEQ 4 Seeks the first row with a key value greater than or
equal to KeyValues.

adSeekAfter 8 Seeks the first row with a key value greater than
KeyValues.

adSeekBeforeEQ 16 Seeks the first row with a key value just less than or
equal to KeyValues.

adSeekBefore 32 Seeks the first row with a key value just less than
KeyValues.

Clients not wanted: The Seek method will not work with client-side cursors (dis-
cussed later in this chapter), so select adUseServer for the CursorType prop-
erty.

Note

282 Part III ✦ Hardcore ADO

Function Supports (CursorOptions As CursorOptionEnum) As Boolean
The Supports method returns TRUE if the data provider supports the combination
of values specified in CursorOptions. CursorOptions is a Long value whose value
is created by adding one or more values of the values listed in Table 14-15 together.

Table 14-15
Values for CursorOptions

Constant Value Description

adHoldRecords 256 The provider will retrieve more records or changes
to another position without committing all
pending changes.

adMovePrevious 512 The provider supports the MoveFirst,
MovePrevious, Move, and GetRows methods to
move the cursor backwards without requiring
bookmarks.

adBookmark 8192 The provider supports the Bookmark property.

adApproxPosition 16384 The provider supports the AbsolutePosition
and AbsolutePage properties.

adUpdateBatch 65536 The provider supports the UpdateBatch and
Cancel batch methods.

adResync 131072 The provider supports the Resync method.

adNotify 262144 The provider supports notifications, which implies
that Recordset events are supported.

adFind 524288 The provider supports the Find method.

adSeek 4194304 The provider supports the Seek method.

adIndex 8388608 The provider supports the Index property.

adAddNew 16778240 The provider supports the AddNew method.

adDelete 16779264 The provider supports the Delete position.

adUpdate 16779984 The provider supports the Update method.

Sub Update ([Fields], [Values])
The Update method saves any changes you make the current row of a Recordset.
You can either update the row directly by accessing each field by using the
Recordset’s Fields collection, or you can specify a list of fields and their values
by using the Fields and Values properties.

283Chapter 14 ✦ Working with Recordsets — Part I

If you move to another row in the Recordset, ADO will automatically call the
Update method to save your changes. You must explicitly call the CancelUpdate
method to discard any changes you may have made before moving to another row.

Fields is a Variant value containing a single field name or a Variant array con-
taining a list of field names.

Values is a Variant value containing a single value or a Variant array containing
a list of values, whose position in the array correspond to the field names in the
Fields parameter.

All or none: You must specify both the Fields and Values parameters or nei-
ther. Specifying only one will cause an error. Also if you pass an array for Fields,
the Values property must also be an array of an identical size.

Sub UpdateBatch ([AffectRecords As AffectEnum])
The UpdateBatch method saves all pending batch changes to the database.
AffectRecords is an enumerated data type indicating which rows in the
Recordset will be affected (see Table 14-9).

It sort of worked: You must check the Errors collection after performing a
UpdateBatch to determine which rows weren’t properly updated. You can set
the Filter property to adFilterAffectedRecords and move though the
remaining records to identify those with problems by checking the Status
property.

Recordset object events
The Recordset object contains many different events to handle various conditions
encountered in the Recordset.

Event EndOfRecordset (fMoreData As Boolean, adStatus As
EventStatusEnum, pRecordset As Recordset)
The EndOfRecordset event is triggered when the program attempts to move beyond
the end of the Recordset. This is most likely triggered by a call to MoveNext. You can
use this event to acquire more rows from the database and append them to the end
of Recordset to allow the MoveNext to succeed. If you do this, you must set the
fMoreData parameter to TRUE to indicate that the cursor is no longer at the end of
the Recordset.

fMoreData is a Boolean value where TRUE means that more rows have been added
to the Recordset.

Caution

Note

284 Part III ✦ Hardcore ADO

adStatus is an enumerated value that indicates the action that should be taken
when the event returns (see Table 14-16). When the event is triggered, this value
will be set to either adStatusOk or adStatusCantDeny. If it is set to
adStatusCantDeny, you can’t set the parameter to adStatusCancel.

Table 14-16
Values for EventStatusEnum

Constant Value Description

AdStatusOK 1 The operation that triggered the event was
successful.

adStatusErrorsOccured 2 The operation that triggered the event failed.

adStatusCantDeny 3 The operation can’t be canceled.

adStatusCancel 4 Requests that the operation that triggered
the event be canceled.

adStatusUnwantedEvent 5 Prevents subsequent notifications before the
event method has finished executing.

pRecordset is an object reference to the Recordset that triggered the event.

Event FetchComplete (pError As Error, adStatus As EventStatusEnum,
pRecordset As Recordset)
The FetchComplete event is triggered after all of the rows have been retrieved dur-
ing an asynchronous operation.

pError is an object reference to an Error object containing any error information.
This property is only valid if adStatus is set to adStatusErrorsOccured.

adStatus is an enumerated value that indicates the action that should be
taken when the event returns (see Table 14-16). You may also set this value to
adStatusUnwantedEvent before the event completes to prevent it from being
called again.

pRecordset is an object reference to the Recordset that triggered the event.

Event FetchProgress (Progress As Long, MaxProgress As Long,
adStatus As EventStatusEnum, pRecordset As Recordset)
The FetchProgress event is fired periodically during an asynchronous operation
to report how many rows have been retrieved.

285Chapter 14 ✦ Working with Recordsets — Part I

Progress is a Long value indicating the number of records that have been
retrieved so far.

MaxProgress is a Long value indicating the number of records that are expected to
be retrieved.

adStatus is an enumerated value that indicates the action that should be taken
when the event returns (see Table 14-16).

pRecordset is an object reference to the Recordset that triggered the event.

Event FieldChangeComplete (cFields As Long, Fields, pError asError,
adStatus As EventStatusEnum, pRecordset As Recordset)
The FieldChangeComplete event is called after the values of one or more Field
objects have been changed. This can happen if the program assigns a value to the
Value property of the Field object or by using the Update method and specifying
a list of fields and values.

cFields is a Long value indicating the number of fields in Fields.

Fields is an array of object pointers that point to Field objects that were
changed.

pError is an Error object containing any error that may have occurred. This value
is valid only if adStatus is set to adStatusErrorsOccured.

adStatus is an enumerated value that indicates the action that should be taken
when the event returns (see Table 14-16).

pRecordset is an object reference to the Recordset that triggered the event.

Event MoveComplete (adReason As EventReasonEnum, pError As Error,
adStatus As EventStatusEnum, pRecordset as Recordset)
The MoveComplete event is called after the current record has changed to a new
position in the Recordset.

Counting rows: If you want to display the relative position of the cursor in the
Recordset, the MoveComplete event is an ideal place for this. You can easily
use the AbsolutePosition property to display the current record number and
the RecordCount properties to display the total number of records retrieved.

adReason is an enumerated data type indicating the operation that originally
caused the move (see Table 14-17).

Tip

286 Part III ✦ Hardcore ADO

Table 14-17
Values for EventReasonEnum

Constant Value Description

adRsnAddNew 1 The operation executed an AddNew method.

adRsnDelete 2 The operation used the Delete method.

adRsnUpdate 3 The operation performed an Update method.

adRsnUndoUpdate 4 The operation reversed an Update method.

adRsnUndoAddNew 5 The operation reversed an AddNew method.

adRsnUndoDelete 6 The operation reversed a Delete method.

adRsnRequery 7 The operation performed a Requery.

adRsnResync 8 The operation performed a Resync.

adRsnClose 9 The operation closed the Recordset.

adRsnMove 10 The operation moved the current record pointer
to a different record.

adRsnFirstChange 11 The operation made the first change to a row.

adRsnMoveFirst 12 The operation moved the current record pointer
to the first record in the Recordset.

adRsnMoveNext 13 The operation moved the current record pointer
to the next record in the Recordset.

adRsnMovePrevious 14 The operation moved the current record pointer
to the previous record in the Recordset.

adRsnMoveLast 15 The operation moved the current record pointer
to the last record in the Recordset.

pError is an Error object containing any error that may have occurred. This value
is only valid if adStatus is set to adStatusErrorsOccured.

adStatus is an enumerated value that indicates the action that should be taken
when the event returns (see Table 14-16).

pRecordset is an object reference to the Recordset that triggered the event.

287Chapter 14 ✦ Working with Recordsets — Part I

Event RecordChangeComplete (adReason As EventReasonEnum,
cRecords As Long, pError As Error, adStatus As EventStatusEnum,
pRecordset as Recordset)
The RecordChangeComplete event is called after one or more records in the
Recordset have been changed.

adReason is an enumerated data type indicating the operation that originally
caused the change (see Table 14-17). Possible values are the following:
adRsnAddNew, adRsnDelete, adRsnUpdate, adRsnUndoUpdate,
adRsnUndoAddNew, adRsnUndoDelete, and adRsnFirstChange.

cRecords is a Long value containing the number of records that were changed.

pError is an Error object containing any error that may have occurred. This value
is only valid if adStatus is set to adStatusErrorsOccured.

adStatus is an enumerated value that indicates the action that should be taken
when the event returns (see Table 14-16).

pRecordset is an object reference to the Recordset that triggered the event.

Event RecordsetChangeComplete (adReason As EventReasonEnum,
pError As Error, adStatus As EventStatusEnum, pRecordset as
Recordset)
The RecordsetChangeComplete event is called after a change to the Recordset.

adReason is an enumerated data type indicating the operation that originally
caused the move (see Table 14-17). Possible values are the following: adRsnClose,
adRsnReQuery, and adRsnReSync.

pError is an Error object containing any error that may have occurred. This value
is only valid if adStatus is set to adStatusErrorsOccured.

adStatus is an enumerated value that indicates the action that should be taken
when the event returns (see Table 14-16).

pRecordset is an object reference to the Recordset that triggered the event.

288 Part III ✦ Hardcore ADO

Event WillChangeField (cFields As Long, Fields, adStatus As
EventStatusEnum, pRecordset As Recordset)
The WillChangeField event is called before an operation that will change the val-
ues in one or more Field objects is started. After the changes have been made, the
FieldChangeComplete event is fired. You can choose to cancel the operation by
setting the adStatus property to adStatusCancel.

cFields is a Long value indicating the number of fields in Fields.

Fields is an array of object pointers that point to Field objects that are to be
changed.

adStatus is an enumerated value that indicates the action that should be taken
when the event returns (see Table 14-16).

pRecordset is an object reference to the Recordset that triggered the event.

Event WillChangeRecord (adReason As EventReasonEnum, cRecords As
Long, pError As Error, adStatus As EventStatusEnum, pRecordset as
Recordset)
The WillChangeRecord event is called before one or more records in the
Recordset will be changed.

adReason is an enumerated data type indicating the operation that caused the
change (see Table 14-17). Possible values are the following: adRsnAddNew,
adRsnDelete, adRsnUpdate, adRsnUndoUpdate, adRsnUndoAddNew,
adRsnUndoDelete, and adRsnFirstChange.

cRecords is a Long value containing the number of records will be changed.

adStatus is an enumerated value that indicates the action that should be taken
when the event returns (see Table 14-16).

pRecordset is an object reference to the Recordset that triggered the event.

Event WillChangeRecordset (adReason As EventReasonEnum, pError As
Error, adStatus As EventStatusEnum, pRecordset as Recordset)
The WillChangeRecordset event is called before the Recordset is changed.

adReason is an enumerated data type indicating the operation that caused the
change (see Table 14-17). Possible values are the following: adRsnClose,
adRsnReQuery, and adRsnReSync.

289Chapter 14 ✦ Working with Recordsets — Part I

pError is an Error object containing any error that may have occurred. This value
is only valid if adStatus is set to adStatusErrorsOccured.

adStatus is an enumerated value that indicates the action that should be taken
when the event returns (see Table 14-16).

pRecordset is an object reference to the Recordset that triggered the event.

Event WillMove (adReason As EventReasonEnum, adStatus As
EventStatusEnum, pRecordset as Recordset)
The WillMove event is called before the current record pointer is changed to a new
position in the Recordset.

adReason is an enumerated data type indicating the operation that originally
caused the move (see Table 14-16).

adStatus is an enumerated value that indicates the action that should be taken
when the event returns (see Table 14-16).

pRecordset is an object reference to the Recordset that triggered the event.

Before Opening a Recordset
Before you open a recordset there are a number of issues you need to consider. For
instance, you need to decide whether or not you plan to update the database. Then
you need to decide what type of cursor you want to use. Finally, you need to decide
where the cursor should be located. These issues have a big impact on how your
application performs, not only for a single user, but for all of the users that access
your database server.

Locking considerations
One of the problems of running an application where multiple users are accessing
the same collection of information is controlling access to the information so that
two people aren’t trying to update the same information at the same time.

To understand why locking is important consider the following example. Assume
that your bank runs two programs to update their accounts at the same time (see
Figure 14-1). One program applies deposits, while the other applies withdrawals.
As luck would have it, both programs attempt to update your account at the same
time. Without locking, the withdrawal program may read the current balance in

290 Part III ✦ Hardcore ADO

your account and begin to process the withdrawal. Then the deposit program reads
the current balance and updates the database with the new balance. Finally, the
withdrawal program posts the balance it computes. This is a serious problem
(although I wish it worked the other way).

Figure 14-1: Processing concurrent database updates without locks

To avoid this problem, you need to prevent all other users from accessing this partic-
ular account until after the update has been completed. Figure 14-2 shows how the
same sequence of actions would work with locks. The withdrawal program is able to
read the account balance immediately, and it places a lock on the account so no
other programs can access the information. When the deposit program attempts to
read the balance, it is forced to wait for the lock to be released. This allows the with-
drawal program to finish its processing uninterrupted and release the lock it placed
on the account. Once the lock is released, the account balance will be returned to the
deposit program, which can then complete its updates accurately.

Figure 14-2: Processing concurrent database updates with locks

With-
drawal

Program

With Locking

Deposit
Program

Account
Balance

Release Lock

Wait for Lock to be Released

Time

$1,426.55 $1,426.55 $726.55$726.55

Read Account
Balance

With Lock

Read Account
Balance

$5,726.55 $5,726.55

Apply Deposit
of $5000

Release Lock

Apply
Withdrawal

of $700

Withdrawal

Program

Without Locking

Deposit

Program

Account

Balance

Apply Withdrawal
of $700

Apply Deposit
of $5000

Time

$1,426.55 $1,426.55 $6,426.55 $726.55

Read Account
Balance

Read Account
Balance

291Chapter 14 ✦ Working with Recordsets — Part I

As you can see, locking is necessary to ensure that changes to the database are
applied in the correct order. In most cases, the order of the changes against the
database isn’t important as long as the changes are made sequentially rather than
concurrently. After all, it doesn’t matter whether the deposit is made first or the
withdrawal is made first as long as they aren’t made at the same time.

The ADO LockType allows you to choose from one of four different types of locks:
read-only, pessimistic, optimistic, and batch optimistic. You need to choose the one
that best suits your needs.

Read-only locks
While locks are necessary when performing updates, it is useful to tell the database
server that you are never going to update the data in the database. In a sense, a
read-only lock is not a lock at all, but specifying a read-only lock ensures that you
can’t update the database.

Pessimistic locks
A pessimistic lock is the most conservative lock available in ADO. When you begin
to edit a record by assigning a new value into one of the existing fields in the row, a
lock is placed on the row so that no other users can access it. The row remains
locked until you update it using the Update method.

One problem with using pessimistic locking is that in addition to the row you are
modifying, all of the rows stored in the same physical block of storage (typically
called a database page) are also locked, which makes them unavailable for other
users also.

In days of old: The current version of most popular database systems supports
row-level locking, which means that a lock affects only the row that it was
intended for and not the other rows in the same physical block of storage.

However, a bigger problem with pessimistic locking is that the lock is held during
the entire time you are editing the row. Depending on how your application works,
the lock could be held anywhere from a few moments to many minutes. In some
applications this may not be critical, but in others it could cause serious problems
because other applications may be forced to wait until you complete the edit. Also
the database server may take the lock away from you if you held it too long, which
will cause an error when you eventually get around to finishing the update.

In general, the more rows you have in a table, the fewer problems you will have
with conflicting pessimistic locks. Likewise, performing fewer updates and having
fewer users also reduces the likelihood of a lock conflict.

Note

292 Part III ✦ Hardcore ADO

Optimistic locks
Optimistic locks still ensure that your update is performed correctly. Unlike pes-
simistic locks, however, optimistic locks aren’t placed until you call the Update
method, so a lock is not placed on the row when you begin editing the row. When
the update is performed, the row is locked, and the current value of each field in
the database server is compared to the original value of each field taken when the
application program retrieved the row. If there aren’t any differences, the update
will proceed normally. Otherwise an error will be returned to your program. It will
be up to your program to decide whether to reapply the changes or restart the
update from the beginning.

Batch optimistic locks
Batch optimistic locks are similar to optimistic locks, except you can update multi-
ple rows before returning them to the database server for updating using the
UpdateBatch method. After performing a batch update, you need to review each
of the rows you updated to ensure that the changes were applied to the database.

This type of lock is useful when you want to add lots of rows to a table. It is impos-
sible for anyone to update any of the values in these rows, since the data hasn’t
been sent to the database yet.

Choosing a cursor type
While locks affect how you update data, cursor types affect how your application
will see changes in the database that are made by other users. Choosing the appro-
priate cursor type is important and depends mostly on how you plan to use the
data. ADO supports four types of cursors: forward-only cursors, static cursors,
keyset cursors, and dynamic cursors.

Forward-only cursors
A forward-only cursor is the most restrictive of all of the cursors available. It is avail-
able only in combination with a read-only lock. It presents a static view of the data
in the Recordset that can’t be addressed randomly. Any changes, additions, or
deletions to the underlying data will not be visible to your program.

You must scroll through the Recordset one row at a time from the beginning to the
end. If you need to move backwards or start over again, you will have to close the
Recordset and reopen it.

Typically this type of cursor is most useful for reports or for translation tables that
are never updated. Forward-only cursors have less overhead and offer better per-
formance than the other types of cursors.

293Chapter 14 ✦ Working with Recordsets — Part I

Static cursors
Like the forward-only cursor, a static cursor also provides a static view of your data.
Records that have been added, deleted, or updated will not be visible to your pro-
gram. However, you may move the current record pointer to any location in the
Recordset without restriction.

Client-side only: A static cursor is your only choice for client-side cursors, though
it may be used with a server-side cursor as well.

Keyset cursors
A keyset cursor allows you to see any updates or deletions, but not additions made
to the underlying data that have been made after you opened the Recordset.
Bookmarks are supported, and you may move anywhere in the Recordset you
choose.

Keyset cursors work by keeping a list of bookmarks in a temporary table on the
server. As you move from one row to another, the provider will retrieve the most
current values associated with the particular row. In general, I avoid keyset cursors
because they are slower than static cursors and don’t provide all of the updates to
the database as does a dynamic cursor.

Dynamic cursors
Dynamic cursors allow you to view any changes made to the database, including
additions, deletions, and updates. All forms of movement through the Recordset
that don’t rely on Bookmarks are always supported. Note that most data providers
include bookmark support even though it isn’t required.

Dynamic cursors are useful if you want to see all of the changes in the underlying
data you retrieved from the database. They are only appropriate if you are using a
server-side cursor and there is more overhead when using a dynamic cursor
because the provider has to check continually for changes in the database.
However, if you are only retrieving a few rows from the database, then dynamic
cursors may be appropriate.

Picking a cursor location
The last major choice you have to make when opening a recordset is choosing
between a server-side cursor and a client-side cursor. This choice is made using
the CursorLocation property.

Note

294 Part III ✦ Hardcore ADO

Server-side cursors
A server-side cursor is the traditional cursor used in a database system. It directly
accesses data on the server. A request to move the current record pointer to a dif-
ferent record results in a request to the database server (unless, of course, you
set CacheSize to a value greater than one, and the record is in the local cache).
Server-side cursors can be used with keyset and dynamic cursors to allow your
program to see changes in the live database.

Client-side cursors
A client-side cursor is a special type of cursor that allows you a richer environment
with which to build your application than a server-side cursor does. Data is buffered
locally, and you can operate in disconnected mode from the database server. After
retrieving your data from the database, you can break the connection and work with
the information in the recordset locally. Later you can reconnect and apply whatever
changes you made locally to the database server.

I can’t see it: The UnderlyingValue property is not available on Field
objects using a client-side cursor, since all of the records are buffered locally.

Opening a Recordset
There are three main ways to create a Recordset. As you saw in Chapter 13, you
can create a Command object and use the Execute method to return a reference to
a Recordset object. A second way to create a Recordset is by storing a SQL state-
ment, stored procedure name, or table name in the recordset’s Source property
and then using the Open method to populate the recordset. The last way is to set
the Source property to an active Command object and then use the Open method.
Because I already covered the first way in Chapter 13, I’ll cover the last two ways
here.

Using Source strings
For many applications all you need to use is a Connection object and a Recordset
object. Listing 14-1 is similar to the program in Chapters 13 and uses the same
Connection object from Chapter 12. Instead of creating a Command object with the
Select statement, I assign the Select statement to the Source property of the
Recordset.

I then specify values for CursorLocation, CursorType, and LockType. While these
values aren’t critical to the way this routine runs, it is a good idea to specify them
always and ask only for the resources you really need. Then after clearing the

Note

295Chapter 14 ✦ Working with Recordsets — Part I

Errors collection, I issue the Open method. If there’s a problem, I write the error
message using the WriteError routine from Chapter 12. Otherwise, I display the
first value from the first column of the recordset in the status bar just like I did in
the previous version of the program.

Listing 14-1: The Command7_Click event in Recordset Demo

Private Sub Command7_Click()

Dim rs As ADODB.Recordset

On Error Resume Next

Set rs = New ADODB.Recordset
Set rs.ActiveConnection = db
rs.Source = “Select Count(*) From Customers Where State = ‘MD’”
rs.CursorLocation = adUseServer
rs.CursorType = adOpenForwardOnly
rs.LockType = adLockReadOnly

db.Errors.Clear
rs.Open
If db.Errors.Count > 0 Then

WriteError

Else
StatusBar1.SimpleText = “Response: “ & _

FormatNumber(rs.Fields(0).Value, 0)

End If

End Sub

Using Command objects
Another way to populate a Recordset object is to create a Command object with the
command to extract the information from the database and assign it to the record-
set’s Source property. Listing 14-2 is essentially a combination of the code from
Listing 14-1 and Listing 13-5. It takes the steps I used to build a Command object that
references the stored procedure CountByState and marries it to the code to create
and open the Recordset. The only difference in the steps is that I used a Set state-
ment to assign the Command object to the recordset’s Source property instead of
assigning a Select statement to the Source property.

296 Part III ✦ Hardcore ADO

Listing 14-2: The Command8_Click event in Recordset Demo

Private Sub Command8_Click()

Dim c As ADODB.Command
Dim p As ADODB.Parameter
Dim rs As ADODB.Recordset

On Error Resume Next

Set c = New ADODB.Command
Set c.ActiveConnection = db
c.CommandText = “CountByState”
c.CommandType = adCmdStoredProc

c.Parameters.Refresh
c.Parameters(“@State”).Value = Text5.Text

Set rs = New ADODB.Recordset
Set rs.Source = c
rs.CursorLocation = adUseServer
rs.CursorType = adOpenForwardOnly
rs.LockType = adLockReadOnly

db.Errors.Clear
rs.Open
If db.Errors.Count > 0 Then

WriteError

Else
StatusBar1.SimpleText = “Response: “ & _

FormatNumber(rs.Fields(0).Value, 0)

End If

End Sub

Thoughts on Opening a Recordset Object

Of the three approaches I talked about in the last two chapters to create a recordset, the
two I described in this chapter are the ones I use, typically. I like the simplicity of just using
the Recordset object and the Connection object to access the database. I also like the
ability to open the recordset with the options Especially, I really want the options for the
type of cursor and locking strategy. Of course, I can’t use this technique to execute any com-
mands that have parameters, which is why I use the other approach. As with the other
approach, I have the freedom to set all of the key values in the Recordset object before I
open it.

297Chapter 14 ✦ Working with Recordsets — Part I

Summary
In this chapter you learned the following:

✦ You can use a server-side cursor when you want to manipulate the recordset
on the database server.

✦ You can use a client-side cursor when you want to manipulate the recordset
on the database client.

✦ You can use read-only locks to prevent others from changing the data while
your recordset is open.

✦ You can use pessimistic locks to prevent others from changing the values in
the current record in your recordset. This technique however incurs a signifi-
cant amount of overhead in the database server.

✦ You can use optimistic locking when you don’t expect others to change the
data in the current row while you are editing it. Of course you have to handle
the error condition that may arise if someone does change the data while you
are accessing it.

✦ You can use batch optimistic locking when making changes in a group of
records. This approach has the least overhead of all of the locking methods,
but requires you to verify each row you changed to insure that the data
wasn’t changed by another database client before you made your changes.

✦ ✦ ✦

