
Using
Commands
and Stored
Procedures

In this chapter, I will cover how to create and use ADO
Command objects. The Command object allows you to spec-

ify a command that will retrieve data from your database.
Typically this object is used with stored procedures and
SQL queries that include a series of parameters.

Introducing the ADO
Command Object

After you have an open connection, the first thing you’re going
to want to do is to execute some commands. Commands are
defined in the Command object and can be SQL statements or
calls to stored procedures. Some commands, particularly those
that use stored procedures, may have parameters that supply
additional information to the command or return information
after the command was executed. Parameter information is
stored in the Parameters collection, with each parameter hav-
ing its own Parameter object. Also, depending on the particu-
lar command, it may or may not return a Recordset object
containing rows of information from your database.

Discussing Commandobjects without talking about Recordset
objects can be difficult, since the primary reason for using
Command objects is to create Recordsets. See Chapter 14 for
more information about Recordsetobjects.

Cross-
Reference

1313C H A P T E R

✦✦✦✦

In This Chapter

Presenting the ADO
Command Object

Introducing the ADO
Parameter Object

Working with the
ADO Parameters
Collection

Creating and
executing commands

Using stored
procedures

✦ ✦ ✦ ✦

236 Part III ✦ Hardcore ADO

The Command Object
The Command object contains information about an SQL statement or stored proce-
dure you wish to execute against a database. You may optionally include a list of
parameters that will be passed to the stored procedure. If the command returns a
set of rows, the Command object will return a Recordset object containing the
results.

Command object properties
Table 13-1 lists the properties associated with the Command object.

Table 13-1
Properties of the Command Object

Property Description

ActiveConnection A Variant array containing an object reference to the
Connection object used to access the database. May also
contain a valid connection string that will dynamically create a
connection to your database when you use the Execute
method.

CommandText A String value containing an SQL statement, a stored procedure
name, or other provider command to be executed.

CommandTimeout A Long value containing the maximum number of seconds for
the command to execute before an error is returned. Default is 30
seconds.

CommandType An enumerated type (see Table 13-2) describing the type of
command to be executed.

Name A String containing the name of the object.

Parameters An object reference to a Parameters collection containing the
parameters that will be passed to a stored procedure or a
parameterized query.

Prepared A Boolean, when TRUE, means that the command should be
prepared before execution.

Properties An object reference to a Properties collection containing
additional information about the Command object.

State A Long describing the current state of the Command object.
Multiple values from Table 13-3 can be combined to describe the
current state.

237Chapter 13 ✦ Using Commands and Stored Procedures

Table 13-2
Values for CommandType

Constant Value Description

adCmdUnspecified -1 CommandType should be automatically
determined.

adCmdText 1 CommandText contains either an SQL
statement or stored procedure call.

adCmdTable 2 CommandText contains the name of a table in
the database.

adCmdStoredProcedure 4 CommandText contains the name of a stored
procedure.

adCmdUnknown 8 The type of command isn’t known.

adExecuteNoRecords 128 Indicates that the command will not return any
rows or will automatically discard any rows that
are generated. Must be used with adCmdText
or adCmdStoredProcedure.

adCmdFile 256 CommandText is the name of a persistently
stored Recordset.

adCmdTableDirect 512 CommandText contains the name of a database
table.

Table 13-3
Values for State

Constant Value Description

adStateClosed 0 The Command object is closed.

adStateOpen 1 The Command object is open.

adStateConnecting 2 The Command object is connecting to the
database.

adStateExecuting 4 The Command object is executing.

adStateFetching 8 Rows are being retrieved.

238 Part III ✦ Hardcore ADO

Command bject methods
The Command object contains only three methods: Cancel, CreateParameter, and
Execute.

Sub Cancel()
The Cancel method is used to terminate an asynchronous task started by the
Execute method.

Function CreateParameter ([Name As String], [Type As DataTypeEnum =
adEmpty], [Direction As ParameterDirectionEnum = adParamInput],
[Size As Long], [Value]) As Parameter
The CreateParameter method creates a new Parameter object, which may be
added to the Parameters collection using the Parameters.Append method.

Name specifies the name of the parameter.

Type specifies the data type of the parameter.

Direction specifies whether the parameter is input only, output only, or both
input and output.

Size specifies the length of the parameter. This parameter is only important when
you have a variable length data type, such as a string or an array.

Value specifies the value of the parameter.

Function Execute ([RecordsAffected], [Parameters],
[Options As Long =-1]) As Recordset
The Execute method runs the SQL statement or stored procedure specified in the
Command object. A Recordset object will be returned as the result of the function,
which will contain any rows returned by the command.

RecordsAffected optionally returns a Long value with the number of records
affected by the command.

Parameters optionally passes a Variant array containing a list of parameters to
be used by the command. Note that output parameters will not return correct val-
ues through this parameter. Instead, you should use the Parameters collection to
get the correct values for output parameters.

239Chapter 13 ✦ Using Commands and Stored Procedures

Options optionally passes a combination of the values specified in Table 13-4. Note
that some of these values are the same as those available for the CommandType
property.

Table 13-4
Values for Options

Constant Value Description

adOptionUnspecified -1 No options are specified.

adCmdText 1 CommandText contains either an SQL
statement or stored procedure call.

adCmdTable 2 CommandText contains the name of a table
in the database.

adCmdStoredProcedure 4 CommandText contains the name of a stored
procedure.

adCmdUnknown 8 The type of command isn’t known.

adAsyncExecute 16 The command should be executed
asynchronously.

adAsyncFetch 32 After the number of rows specified in the
CacheSize property of the Recordset
object are returned, the remaining rows will
be returned asynchronously.

adAsyncFetchNonBlocking 64 The main thread isn’t blocked while retrieving
rows. If the current row hasn’t been retrieved,
the current row will be moved to the end of
the file.

adExecuteNoRecords 128 Indicates that the command will not return
any rows or will automatically discard any
rows that are generated. Must be used with
either the adCmdText or
adCmdStoredProcedure values.

adCmdFile 256 CommandText is the name of a persistently
stored Recordset.

adCmdTableDirect 512 CommandText contains the name of a
database table.

240 Part III ✦ Hardcore ADO

The Parameter Object
The Parameter object contains information about a parameter used in a stored
procedure or parameterized query defined in a Command object.

Parameter object properties
Table 13-6 lists the properties associated with the Parameter object.

Table 13-6
Properties of the Parameter Object

Property Description

Attributes An enumerated type describing the characteristics of the parameter
(see Table 13-7).

Direction An enumerated type that describes whether the parameter is an input-
only, input/outpu, or output-only parameter (see Table 13-8).

Name A String value containing the name of the parameter.

NumericScale A Byte value containing the number of digits to the right of the
decimal point for a numeric field.

Precision A Byte value containing the total number of digits in a numeric field.

Properties An object reference to a Properties collection containing provider-
specific information about a parameter.

Type An enumerated type (see Table 13-9) containing the OLE DB data type
of the field.

Value A Variant array containing the current value of the parameter.

Table 13-7
Values for Attributes

Constant Value Description

adFldUnspecified -1 The provider doesn’t supply field attributes.

adFldMayDefer 2 The field value is not retrieved with the
whole record, but only when you explicitly
access the field.

241Chapter 13 ✦ Using Commands and Stored Procedures

Constant Value Description

adFldUpdateable 4 The field’s value may be changed.

adFldUnknownUpdateable 8 The provider can’t determine if you can
change the field’s value.

adFldFixed 16 The field contains fixed-length data.

adFldIsNullable 32 The field will accept Null values.

adFldMayBeNull 64 The field may contain a Null value.

adFldLong 128 The field contains a long binary value and
you should use the AppendChunk and
GetChunk methods to access its data.

adFldRowID 256 The field contains an identity value that
can’t be changed.

adFldRowVersion 512 The field contains a time stamp value that is
used to track updates.

adFldCacheDeferred 4096 This field is cached by the provider and
subsequent reads and writes are done from
cache.

adFldIsChapter 8192 The field contains a chapter value, which
specifies a specific child Recordset related
to this parent field.

adFldNegativeScale 16384 The field contains a numeric column that
supports negative scale values.

adFldKeyColumn 32768 The field is (or is at least part of) the
primary key for the table.

adFldIsRowURL 65536 The field contains the URL that names the
resource from the data store represented by
the record.

adFldIsDefaultStream 131072 The field contains the default stream for the
resource represented by the record.

adFldIsCollection 262144 The field contains a collection of another
resource, such as a folder, rather than a
simple resource, such as a file.

242 Part III ✦ Hardcore ADO

Table 13-8
Values for Direction

Constant Value Description

adParamUnknown 0 The direction of the parameter is unknown.

adParamInput 1 The parameter is an input-only parameter.

adParamOutput 2 The parameter is an output-only parameter.

adParamInputOutput 3 The parameter is both an input and an
output parameter.

adParamReturnValue 4 The parameter contains a return value.

Table 13-9
Values for Type

Constant Value Description

adEmpty 0 This field has no value (DBTYPE_EMPTY).

adSmallInt 2 This field has an Integer value
(DBTYPE_I2).

adInteger 3 This field has a Long value (DBTYPE_I4).

adSingle 4 This field has a Single value
(DBTYPE_R4).

adDouble 5 This field has a Double value
(DBTYPE_R8).

adCurrency 6 This field has a Currency value
(DBTYPE_CY).

adDate 7 This field has a Date value
(DBTYPE_DATE).

adBSTR 8 This field has a null-terminated Unicode
string (DBTYPE_BSTR).

adIDispatch 9 This field has a pointer to an IDispatch
interface in a COM object
(DBTYPE_IDISPATCH).

adError 10 This field has a 32-bit error code
(DBTYPE_ERROR).

adBoolean 11 This field has a Boolean value
(DBTYPE_BOOL).

243Chapter 13 ✦ Using Commands and Stored Procedures

Constant Value Description

adVariant 12 This field has a Variant value
(DBTYPE_VARIANT). Note that this type is
not supported by ADO and causes
unpredictable results.

adIUknown 13 This field has a pointer to an IUnknown
interface in a COM object (DBTYPE_
IUNKNOWN).

adDecimal 14 This field has an exact numeric value with
a fixed precision and scale (DBTYPE_
DECIMAL).

adTinyInt 16 This field has a one byte signed integer
(DBTYPE_I1).

adUnsignedTinyInt 17 This field has a one byte unsigned integer
(DBTYPE_UI1).

adUnsignedInt 18 This field has a two byte unsigned integer
(DBTYPE_UI2).

adUnsignedInt 19 This field has a four byte unsigned integer
(DBTYPE_UI4).

adBigInt 20 This field has an 8-byte signed integer
(DBTYPE_I8).

adUnsignedBigInt 21 This field has an 8-byte unsigned integer
(DBTYPE_UI8).

adFileTime 64 This field has a 64-bit date-time value
represented as the number of 100-
nanosecond intervals since 1 January 1601
(DBTYPE_FILETIME).

adGUID 72 This field has a globally unique identifier
value (DBTYPE_GUID).

adBinary 128 This field has a Binary value (DBTYPE_
BYTES).

adChar 129 This field has a String value (DBTYPE_
STR).

adWChar 130 This field contains a null-terminated
Unicode character string (DBTYPE_WSTR).

adNumeric 131 This field contains an exact numeric value
with a fixed precision and scale (DBTYPE_
NUMERIC).

Continued

244 Part III ✦ Hardcore ADO

Table 13-9 (continued)

Constant Value Description

adUserDefined 132 This field contains a user-defined value
(DBTYPE_UDT).

adDBDate 133 This field has a date value using the
YYYYMMDD format (DBTYPE_DBDATE).

adDBTime 134 This field has a time value using the
HHMMSS format (DBTYPE_DBTIME).

adDBTimeStamp 135 This field has a date-time stamp in the
YYYYMMDDHHMMSS format
(DBTYPE_DBTIMESTAMP).

adChapter 136 This field has a 4-byte chapter value that
identifies the rows in a child rowset
(DBTYPE_HCHAPTER).

adPropVariant 138 This field has an Automation PROPVARIANT
(DBTYPE_PROP_VARIANT).

adVarNumeric 139 This field contains a numeric value.
(Available for Parameter objects only.)

adVarChar 200 This field has a String. (Available for
Parameter objects only.)

adLongVarChar 201 This field has a long character value.
(Available for Parameter objects only.)

adVarWChar 202 This field has a null-terminated Unicode
character string value. (Available for
Parameter objects only.)

adLongVarWChar 203 This field has a long null-terminated
character string value. (Available for
Parameter objects only.)

adVarBinary 204 This field has a binary value. (Available for
Parameter objects only.)

adLongVarBinary 205 This field has a long binary value. (Available
for Parameter objects only.)

245Chapter 13 ✦ Using Commands and Stored Procedures

Parameter object methods
There is only one method available for the Parameter object: the AppendChunk
method.

Sub AppendChunk (Data As Variant)
The AppendChunk method is used to add data to a large text or binary field. The
first time the AppendChunk method is used, the value in Data will overwrite any
existing data in the field. For subsequent calls, simply append data to the end of
the existing data. Data is a Variant array containing the data to be appended to
the end of the field.

The Parameters Collection
The Parameters collection contains the set of parameters associated with a
Command object.

Parameters collection properties
Table 13-10 lists the properties associated with the Parameters collection.

Table 13-10
Properties of the Parameters Collection

Property Description

Count A Long value containing the number of Parameter objects in the
collection.

Item(index) An object reference to a Parameter object containing information
about a particular field in the Recordset. To locate a field, specify a
value in the range of 0 to Count –1 or the name of the
Parameter.

Parameters collection methods
The method available for the Parameters collection allows you to manage the set
of Parameter objects.

246 Part III ✦ Hardcore ADO

Sub Append (Object As Object)
The Append method adds a Parameter object to the collection. The Type property
of the Parameter object must be defined before you can add it to the collection.
Object is a Parameter object containing the new parameter.

Use the CreateParameter method of the Command object to create a new
Parameter object, then use the Append method to add it to the collection.

Sub Delete (Index As Variant)
The Delete method removes an object specified by Index from the collection.
Index is either a String value containing the name of the parameter or a Long
value containing the ordinal position of the Parameter object to be deleted.

Sub Refresh()
The Refresh method can be used to retrieve information about the parameters in
a stored procedure from the data provider. To use Refresh in this fashion, you
need a valid Command object with an active connection to the data source. Then
all you need to do is specify values for CommandText and CommandType and use
the Parameters.Refresh method. This will retrieve all of the information for the
stored procedure from the data provider. Note that this works only if your data
provider supports stored procedures or an SQL query with embedded parameters
(also known as a parameterized query).

Running SQL Statements
A Command object contains all of the information necessary to send a command to
the database server for execution. Sometimes the command will need parameters,
while at other times it will not. Depending on the command you want to execute, it
may return nothing or a Recordset object containing the set of rows selected from
the database. No matter what the command is, the approach you use to define it
and run it is basically the same.

Running a simple command
Every Command you execute needs at least two pieces of information before you can
use it. You must set the CommandText to the command you want to execute and you
must set the ActiveConnection property to an open Connection object.

While not as important, you should set the CommandType property to the value
appropriate for the command you want to execute. If this value is not specified, or
set to adCmdUnknown, the database server must determine if the command is an

Tip

247Chapter 13 ✦ Using Commands and Stored Procedures

SQL statement, a stored procedure, or a table name before it can execute it. While
this extra overhead isn’t large by itself, it can be significant when you multiply it by
the number of requests the server must execute.

The Command Demo program (see Figure 13-1) is based on the Connection Demo
program from Chapter 12. All of the code and form elements are carried over intact,
although I added a few new command buttons and Click events to demonstrate
how to use the Command object.

Figure 13-1: Running the Command
Demo program

The Command Demo program can be found on the CD-ROM in the
\VB6DB\Chapter13\CommandDemo directory.
.

Listing 13-1 shows how you can use a Command object to create a database table. In
this example, I create a table called MyTable. However, this technique can be used
to execute any SQL statement except for the Select statement. (The Select state-
ment will return a Recordset object, which requires some additional code.)

Listing 13-1: The Command5_Click event in Command Demo

Private Sub Command5_Click()

Dim c As ADODB.Command

On Error Resume Next

Continued

On the
CD-ROM

248 Part III ✦ Hardcore ADO

Listing 13-1 (continued)

Set c = New ADODB.Command
Set c.ActiveConnection = db
c.CommandText = “Create Table MyTable (MyColumn Char (10))”
c.CommandType = adCmdText

db.Errors.Clear
c.Execute
If db.Errors.Count > 0 Then

WriteError

End If

End Sub

Once is okay, twice isn’t: Since this routine creates a table in your database, run-
ning it a second time will fail unless you remove the table manually. You should
use a query tool to delete the table before you try it a second time or try it again to
see the error that will result from executing this command twice.

The routine begins by creating a new instance of the Command object and setting the
ActiveConnection property to the same Connection object I created in Chapter 12.
Then I assign the SQL statement I want to execute to the CommandText property. Since
I’m executing an SQL statement, I’ll set the CommandType to adCmdText to prevent the
server from trying to determine if it is the name of a table or stored procedure.

Once the command is defined, executing is easy. I Clear the Errors collection to
make sure that any errors in the collection are caused by the Execute method.
Then I use the Execute method to run the command on the database server. If
there are any errors in the Errors collection, I’ll call the WriteError routine to
display the information.

Returning a Recordset
Working with Recordsets is basically the same as working with simple commands
except that the Execute method returns a reference to Recordset object. In Listing
13-2, I create a Connection object the same way as in Listing 13-1, but instead of
the Create Table SQL statement, I use a Select statement.

Note

249Chapter 13 ✦ Using Commands and Stored Procedures

Listing 13-2: The Command4_Click event in Command Demo

Private Sub Command4_Click()

Dim c As ADODB.Command
Dim rs As ADODB.Recordset

On Error Resume Next

Set c = New ADODB.Command
Set c.ActiveConnection = db
c.CommandText = “Select Count(*) From Customers Where State =
‘MD’”
c.CommandType = adCmdText

db.Errors.Clear
Set rs = c.Execute
If db.Errors.Count > 0 Then

WriteError

Else
StatusBar1.SimpleText = “Response: “ & _

FormatNumber(rs.Fields(0).Value, 0)

End If

End Sub

Since the call to c.Execute will return an object reference, I need to use a Set
statement to assign the object reference to the Recordset object. Note that I didn’t
need to create an instance of the Recordset object. The Execute method took care
of this for me.

Next, I check for errors in the Errors collection and call the WriteError routine
if I find any. Otherwise, I output the value of the first field in the first row of the
Recordset in the status bar. You can verify that the value is correct by executing
the same query using your database query tool.

Quick and dirty: Building and debugging a database application can be difficult. If
you’re truly paranoid, like me, you don’t trust your application until you can verify
that it worked properly using an independent tool. This is where a tool like SQL
Server’s Query Analyzer comes in handy. You can use it to execute any type of
query you like. Thus, you can test your Select statement to ensure that the right
number of rows was returned or to verify that an update to the database was
made properly. You can also use it to test various SQL statements, and when
you’re satisfied that they’re correct, you can copy them to the CommandText prop-
erty of a Command object.

Tip

250 Part III ✦ Hardcore ADO

Running with parameters
While knowing the number of customers in Maryland is nice, a better approach
than creating a Command object for each state would be to create one that accepts
parameters. This is also an easy process, as you can see in Listing 13-3. This routine
is based on the one shown in Listing 13-2. The only differences are the ones needed
for parameters.

Listing 13-3: The Command3_Click event in Command Demo

Private Sub Command3_Click()

Dim c As ADODB.Command
Dim p As ADODB.Parameter
Dim rs As ADODB.Recordset

On Error Resume Next

Set c = New ADODB.Command
Set c.ActiveConnection = db
c.CommandText = “Select Count(*) From Customers Where State =
?”
c.CommandType = adCmdText

Set p = c.CreateParameter(“State”, adChar, adParamInput, 2)
c.Parameters.Append p

c.Parameters(“State”).Value = Text3.Text

db.Errors.Clear
Set rs = c.Execute
If db.Errors.Count > 0 Then

WriteError

Else
StatusBar1.SimpleText = “Response: “ & _

FormatNumber(rs.Fields(0).Value, 0)

End If

End Sub

The first difference you might have noticed is that I assigned the Select statement
to the CommandText property. In place of the MD, there is now a question mark (?).
Question marks are used to identify the place where a parameter will be substi-
tuted into the statement. In this case, the parameter is the two-character state
abbreviation.

251Chapter 13 ✦ Using Commands and Stored Procedures

Next, I use the CreateParameter method to create a new Parameter object called
State. I’ll save the object reference in a temporary variable called p. It has a type of
Char(2) and is an input-only parameter. The last argument of the method is omitted.
Had I wanted to assign a default value for the parameter, I would have specified it as
the last parameter. After creating the parameter, I use the Append method of the
Parameters collection to add the object to the collection.

Order in the parameters: The order in which you add the parameters to the col-
lection is the same order that will be used to match the parameters to the ques-
tion marks in the CommandText. The first parameter is mapped to the first
question mark, while the second parameter is mapped to the second question
mark, and so on.

Once the parameter has been defined, you can use the Parameters collection to
identify the parameter by name and assign it a value. Then you can use the
Execute method to generate the Recordset object and display the results.

An alternate way to execute a command with parameters is to supply the parame-
ter values as part of the Execute method, as shown in the following line of code:

Set rs = c.Execute(, Array(Text3.Text))

The second argument of the Execute method allows you to specify a Variant
array containing a list of parameters that will be used by the command. The easiest
way to construct a Variant array is to use the Array function, which takes a list of
values and returns a Variant array containing the values. If you have already speci-
fied a parameter directly in the Parameters collection, the value specified in the
Execute method will override that value.

Stored Procedures
Stored procedures are useful tools that allow you to execute a set of SQL state-
ments on the database server by issuing a single command with a series of parame-
ters. Information can be returned via the Parameters collection or in a Recordset
object. Stored procedures are highly dependent on the database system on which
they run. However, the benefits of using stored procedures often far outweigh hav-
ing SQL statements that are independent of a particular database system.

Advantages of stored procedures
Many people use stored procedures in their database applications for three main
reasons: faster performance, application logic, and security.

Note

252 Part III ✦ Hardcore ADO

Faster performance
Using stored procedures is typically faster than issuing the equivalent SQL state-
ments from your application, for several reasons. The first reason is that stored
procedures are stored on the database server in a prepared format. This avoids
the overhead of preparing a statement on the fly. Also, if you repeatedly execute
the same statement, most database servers will prepare the statement each time
you execute it, imposing a lot of extra overhead on the database server.

Prepared for speed: Before any SQL statement can be executed, it must be pre-
pared. Preparing a statement involves parsing the words in the statement, compil-
ing them into a package, and then optimizing the package based on the data in
the database.

In addition, stored procedures often contain multiple SQL statements, which means
that you don’t have to wait for a response across the network before you send the
next command. The individual statements are executed in sequence until the stored
procedure is complete. This means that the intermediate recordsets you would
have transmitted to the client computer, and the commands you would have issued
in response, aren’t necessary. Which in turn reduces the amount of time needed to
perform the function.

Application logic
Stored procedures are written using a language that allows you to have local vari-
ables, perform computations, call other stored procedures, and process record-
sets — as well as execute SQL statements. In short, you can think of a stored
procedure much like you would think of a Visual Basic program, but one whose
execution is tightly coupled with the database server.

Since many developers find this concept appealing, they code their business logic
as stored procedures and make them available for application programmers to
use. This ensures that each program can take advantage of the business logic, and
as long as the calling sequence isn’t changed, you won’t have to recompile your
Visual Basic program each time a stored procedure is changed.

Security
Using a stored procedures can be more secure than granting someone direct access
to a database. Since stored procedures are database objects, they are usually secured
using the same tools that you would use for a table or a view for user access, yet you
can allow the stored procedure to run using someone else’s database privileges. This
allows you to put code in a stored procedure to perform a specific function that the
user might not otherwise be able to perform. The user will not be able to see or
change this code.

Note

253Chapter 13 ✦ Using Commands and Stored Procedures

Stored procedures and the Data View Window
In Chapter 9, I talked about how to use the Data View Window (see Figure 13-2) to
access your database while using the Data Environment Designer. It’s possible to
use the Data View Window without the Data Environment Designer. Unlike the Data
Environment Designer, the Data View Window isn’t integrated into your program. It
is a design-time only tool that allows you to access your database design, tables,
views, and stored procedures tasks using a database vendor independent tool.

Figure 13-2: Adding the Data View
Window to your application

Exclusively Enterprise Edition: The Data View Window features I’m going to cover
apply to the Enterprise Edition of Visual Basic. If you have the Professional Edition,
you will need to create and debug your stored procedures using tools provided by
your database vendor. This isn’t entirely bad, as I feel these tools are often better
than the ones supplied with Visual Basic.

Creating a Data Link
Before you can use the Data View Window, you need to create a link to the database.
After opening the Data View Window, right click on the Data Link icon and select Add
a Data Link from the pop-up menu. This will display the same Data Link Properties
dialog box that you’ve seen many times by now (see Figure 13-3). Simply select the
proper OLE DB provider for your database, enter the connection information, and
press OK to return to the Data View Window.

Note

254 Part III ✦ Hardcore ADO

Figure 13-3: Viewing the Data Link
Properties window yet again

Creating a stored procedure
If you expand your newly created Data Link icon, you’ll see each of the four types of
objects available for you to manipulate: Database Diagrams, Tables, Views and Stored
Procedures. Double clicking on the Stored Procedures icon will display the list of
stored procedures in the database, and right clicking on the same icon and selecting
New Stored Procedure from the po-up menu will allow you to create a new stored pro-
cedure (see Figure 13-4).

The New Stored Procedure window is a simple editor with a series of buttons
across the top of the screen. The same window will be used to edit an existing
stored procedure. The only difference is that the name of the existing stored pro-
cedure will be displayed in the title bar. The icons that appear in the toolbar are
explained below:

✦ New Stored Procedure – prompts you to save your changes and then dis-
plays a skeleton stored procedure for you to edit.

✦ Open Text File – asks if you want to overwrite the existing text and then dis-
plays a File Open dialog box to load a text file into the edit window.

✦ Save to Database – saves your stored procedure to the database.

255Chapter 13 ✦ Using Commands and Stored Procedures

Figure 13-4: Creating a stored procedure

✦ Save as Text – saves your stored procedure to a text file.

✦ Print – sends your stored procedure to the default Windows printer.

✦ Find – displays a Find dialog box.

✦ Cut/Copy/Paste – performs the standard editing function using the clipboard.

✦ Debug – starts the stored procedure debugger.

Coding the stored procedure
Writing a stored procedure is highly dependent on the database server you use. The
example I’m going to use here is for the SQL Server 7. However, no matter whose
database system you’re using, all stored procedures have some things in common.
First, they are all created using the Create Procedure SQL statement, and can be

New Stored Procedure

Save to
Database

Print

Cut

Paste

Open Text File

Save as Text

Find

Copy

Debug

256 Part III ✦ Hardcore ADO

deleted with the Drop Procedure statement. The identifier that follows the Create
Procedure statement is the name of the stored procedure. Second, all stored proce-
dures accept arguments that allow you to pass parameters to them and return val-
ues from them. After the arguments are defined, you enter the statements that
comprise the stored procedure.

The Stored Procedure window allows you to build the Create Procedure statement
that will create your stored procedure. Listing 13-4 shows a stored procedure that
performs the same function as the Select statement I’ve been using throughout this
chapter in the sample program. It takes a single parameter, @State that has a type
of Char(2), which is the same type as the State column in the database. The @State
parameter is used in place of the question mark in the parameterized Select state-
ment in the previous example.

Listing 13-4: The CountByState stored procedure

Create Procedure CountByState (@State Char(2)) As

Select Count(*)
From Customers
Where State = @State
Return

Saving the stored procedure
Pressing the Save to Database button will execute the Create Procedure statement on
the database server and will create a stored procedure using the name CountByState.
If you want to edit the stored procedure, simply expand the Stored Procedures icon on
the Data View window and double click on CountByName. This will display the same
SQL statement, with one minor difference. The words Create Procedure will be
replaced with Alter Procedure.

Debugging stored procedures
The T-SQL Debugger allows you to debug stored procedures directly from Visual
Basic. This tool only works with SQL Server 6.5 and later databases. The debugger
can be called directly from Visual Basic. Before you can use the debugger, you must
install the appropriate code on your database server.

Installing the SQL Server debugging support
The setup program is contained in the \SQDBG_SS directory on disk 2 of the Visual
Basic installation CD-ROMs. You can even run the setup program while your SQL
Server database is running.

257Chapter 13 ✦ Using Commands and Stored Procedures

When you start the setup program, you’ll see a dialog box similar to the one shown
in Figure 13-5 reminding you that this utility is not part of SQL Server, but part of
Visual Basic. If you agree with the license information, press the Continue button.

Figure 13-5: Reviewing license information for the SQL
Server Debugging facility

The next few dialog boxes will ask you to verify your name and organization infor-
mation and to enter the CD Key from the back of your Visual Basic CD-ROM case.
Enter the information as requested and press OK or Continue at each step of the
wizard until you reach the Installation dialog box shown in Figure 13-6. You can
change the directory where the software will be installed by pressing the Change
Folder button. When you’re ready to begin, press the square Server button. The
setup program will then install the debugging support feature.

Figure 13-6: Starting the installation program

258 Part III ✦ Hardcore ADO

I got this weird error: If you get a strange error while trying to start the T-SQL
Debugger and it instructs you to look in the client log on the database server, most
likely the SQL Server Debugging support has not been installed.

Setting T-SQL Debugging Options
Before you use the T-SQL Debugger, you should review the options. To display
the options, choose Tools ➪ T-SQL Debugging Options from the Visual Basic main
menu. This will bring up the T-SQL Debugging Options dialog box, as shown in
Figure 13-7.

Figure 13-7: Setting debugging options

There are four options you can set. Checking the Automatically step into Stored
Procedures through RDO and ADO connections will automatically start the debugger
anytime you execute a stored procedure while running your Visual Basic program.
If this box is not checked, the debugger will not be used at runtime. Checking Use
Safe Mode (transaction rollback) for Stored Procedure calls means that any changes
made by the stored procedure while in debug mode are discarded.

Sometimes it works and sometimes it doesn’t: I’ve noticed that changing these
properties don’t always take effect the next time you run your program in the IDE.
I suggest running your program and ending it before you attempt to do anything.
Then run the program again, and the debugger should behave properly.

The Limit SQL Output to the following number of lines per resultset determines the
upper limit in the number of rows that will be retrieved while debugging the proce-
dure. This value helps to ensure that your stored procedure doesn’t run out of con-
trol. The Login Timeout value for retrieving stored procedure text sets the maximum
amount of time the debugger will wait to connect to the database server.

Starting the T-SQL Debugger
You can run the T-SQL Debugger directly from Visual Basic by choosing Add-Ins ÿ T-
SQL Debugger from the main menu. This will display the Visual Basic T-SQL Batch
Debugger dialog box (see Figure 13-8). You need to provide the information in this
window to connect to the database to select and run your stored procedure.

Note

Tip

259Chapter 13 ✦ Using Commands and Stored Procedures

Figure 13-8: Setting options in the T-SQL Debugger window

To connect to an SQL Server database using OLE DB, simply enter the name of your
database server in the SQL Server drop-down box, specify the name of the database
you want to use in the Database drop down box, and supply your user name and
password in the UID and Password fields. You can also define an ODBC connection
by pressing the Define DSN button.

Once these values are set, the Stored Procedure and Batch Query tabs will be
enabled. To debug a stored procedure, select the Stored Procedure tab (see Figure
13-9) and choose the stored procedure you want to debug in the Procedure Name
drop-down box. Then select each of the parameters listed in the Parameters area
and assign them the values you want to use during the execution.

Figure 13-9: Selecting the stored procedure and entering
its parameters

260 Part III ✦ Hardcore ADO

Run simple queries: You can use the Batch Query tab in the Visual Basic T-SQL
Debugger to run any block of SQL statements you may choose using the T-SQL
Debugger.

Running the Debugger
After you have finished entering values for all of the parameters, press the Execute
button on the Stored Procedure tab of the Visual Basic Batch T-SQL Debugger to
start a debugging session. The T-SQL Debugger window will be displayed (see
Figure 13-10).

Figure 13-10: Running the T-SQL Debugger

Local Variables
and Parameters

Status Stored ProcedureGlobal Variables Results

Select Query

Toggle Breakpoint

Run to Cursor

Step Over

Step Info

Remove all Breakpoints

Go

Tip

261Chapter 13 ✦ Using Commands and Stored Procedures

✦ Select Query – allows you to choose from multiple queries you may be debug-
ging at the same time.

✦ Go – runs the query to completion from the current statement or to the next
breakpoint.

✦ Toggle Breakpoint – enables or disables a breakpoint at the specified line of
code.

✦ Removes All Breakpoints – removes all of the breakpoints in the stored
procedure.

✦ Step Into – runs the stored procedure until the specified subexpression is
reached

✦ Step Over – runs the selected subexpression.

✦ Run To Cursor – runs the stored procedure up to where the cursor is pointing.

✦ Stored Procedure – contains the text of the stored procedure. This area is
used to display the currently active statement and any breakpoints that have
been set.

✦ Local Variables and Parameters – this section contains variables local to the
stored procedure and their current values. You can edit a value by double
clicking on the value to select it and entering a new value.

✦ Global Variables – this section contains the global variables for the stored
procedure and their current values. These values may also be changed while
the stored procedure is waiting for user input.

✦ Results – displays any rows returned by a Select statement and also describes
the current state of execution.

✦ Status – describes the current state of the debugger. If the message Waiting for
user input is displayed, the debugger is in break mode and waiting for you to
resume execution.

Calling a stored procedure
As you might expect, defining a stored procedure in a Command object isn’t much
different than defining an SQL statement (see Listing 13-5). In place of the SQL
statement, you will need to specify the name of the stored procedure in the
CommandText property. You should specify adCmdStoredProc as the value of
CommandType.

One advantage of using stored procedures is the ability to automatically retrieve the
parameter definitions rather than manually defining each Parameter object and
adding it to the Parameters collection. Simply use the Refresh method of the
Parameters collection to retrieve the definitions from the database. Then you may
assign values to each parameter by name as you did when you explicitly defined the
parameters.

262 Part III ✦ Hardcore ADO

Listing 13-5: The CountByState stored procedure

Private Sub Command6_Click()

Dim c As ADODB.Command
Dim p As ADODB.Parameter
Dim rs As ADODB.Recordset

On Error Resume Next

Set c = New ADODB.Command
Set c.ActiveConnection = db
c.CommandText = “CountByState”
c.CommandType = adCmdStoredProc

c.Parameters.Refresh
c.Parameters(“@State”).Value = Text4.Text

db.Errors.Clear
Set rs = c.Execute
If db.Errors.Count > 0 Then

WriteError

Else
StatusBar1.SimpleText = “Response: “ & _

FormatNumber(rs.Fields(0).Value, 0)

End If

End Sub

Thoughts on Stored Procedures

Using stored procedures is very important when building applications for Oracle. They can
make a significant difference in how your application performs. However, stored proce-
dures are not as important for SQL Server 7 databases. SQL Server 7 prepares an SQL state-
ment the first time it encounters it during your program’s execution and retains it so that
the next time you use it, it won’t have to prepare it again. This doesn’t mean that you
shouldn’t use stored procedures in SQL Server 7, because they don’t make as big of a dif-
ference as they do with an Oracle database.

Command objects are necessary when you want to execute a stored procedure or any SQL
statement other than a Select statement. Also, Command objects are important when you
want to use parameter-based queries. The rest of the time, you can perform the same func-
tion directly using the Recordset object, a topic that will be covered in the next chapter.

263Chapter 13 ✦ Using Commands and Stored Procedures

Summary
In this chapter you learned the following:

✦ You can define a Command object to hold a frequently executed SQL statement
or stored procedure.

✦ You can define Parameter objects which contain information that is passed
to a stored procedure or parameterized query for execution.

✦ You can easily create and edit stored procedures directly in Visual Basic.

✦ You can install the stored procedure debugger routines into your database
server so that you can debug stored procedures directly from Visual Basic.

✦ ✦ ✦

