
Connecting to
a database

In this chapter, I’m going to discuss the ADO Connection
object in depth. Also, since the Errors collection and the

Error object are tightly coupled with the Connection object,
I’m going to cover them also. Access to a data provider is man-
aged using the ADO Connection object. Thus, every program
that uses a database server must include at least one
Connection object. Unless you are using multiple data
providers or accessing multiple database servers, one
Connection object is sufficient.

The Connection Object
The Connection object is used to maintain a connection to a
data source. It can be implicitly created through the Command
and Recordset objects, or you can create an instance of the
Connection object and share it among multiple Command and
Recordset objects.

Connection object properties
Table 12-1 lists the properties associated with the
Connection object.

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using the ADO
Connection object

Working with the
ADO Error object

Introducing the ADO
Errors collection

Connecting to your
database server

Analyzing errors

✦ ✦ ✦ ✦

212 Part II ✦ Beginning Database Programming

Table 12-1
Properties of the Connection Object

Property Description

Attributes A Long value containing the transaction attributes for a
connection (see Table 12-2). Note that not all data providers
support this property.

CommandTimeout A Long containing the maximum number of seconds for the
command to execute before an error is returned. Default is 30
seconds.

ConnectionString A String containing the information necessary to connect to
a data source.

ConnectionTimeout A Long containing the maximum number of seconds that the
program should wait for a connection to be opened before
returning an error. Default is 15 seconds.

CursorLocation A Long containing the default location of the cursor service
(see Table 12-3). This value will automatically be inherited by
the Recordset object using this Connection object.

DefaultDatabase A String containing the name of the default database.

Errors An object reference to an Errors collection.

IsolationLevel A Long containing the level of transaction isolation (see
Table 12-4).

Mode A Long containing the available permissions for modifying data
(see Table 12-5).

Properties An object reference to a Properties collection containing
provider-specific information.

Provider A String containing the name of the data provider. This value
may also be set as part of the ConnectionString.

State A Long describing the current state of the Command object.
Multiple values can be combined to describe the current state
(see Table 12-6).

Version A String containing the current ADO version number.

See Chapter 22, “Integrating XML with Internet Explorer 5,” for more information
about SQL Server connection strings; Chapter 26, “Overview of Oracle 8i,” for
more information about Oracle 8i connection strings; and Chapter 30, “Creating
Jet Database Objects,” for more information about Jet connection strings.

Cross-
Reference

213Chapter 12 ✦ Connecting to a database

Table 12-2
Values for Attributes

Constant Value Description

adXactCommitRetaining 131072 Calling CommitTrans automatically
starts a new transaction.

adXactAbortRetaining 262144 Calling RollbackTrans automatically
starts a new transaction.

Table 12-3
Values for CursorLocation

Constant Value Description

adUseNone 1 Does not use cursor services (obsolete).

adUseServer 2 Uses the server-side cursor library.

adUseClient 3 Uses the client-side cursor library.

Table 12-4
Values for IsolationLevel

Constant Value Description

adXactUnspecified -1 The provider is using a different isolation
level than specified.

adXactChaos 16 Pending changes from more highly
isolated transactions can’t be overwritten.

adXactBrowse 256 Can view uncommitted changes in other
transactions.

adXactReadUncommitted 256 Same as adXactBrowse.

adXactCursorStability 4096 Can view only committed changes in
other transactions.

adXactReadCommitted 4096 Same as adXactCursorStability.

adXactRepeatableRead 65536 Can’t view changes in other transactions
until you Requery the Recordset
object.

Continued

214 Part II ✦ Beginning Database Programming

Table 12-4 (continued)

Constant Value Description

adXactIsolated 1048576 Transactions are conducted in isolation
from all other transactions.

adXactSerializable 1048576 Same as adXactIsolated.

Table 12-5
Values for Mode

Constant Value Description

adModeUnknown 0 Permissions are not set or can’t be
determined.

adModeRead 1 Requests read permission.

adModeWrite 2 Requests write permission.

adModeReadWrite 3 Requests read/write permission.

adModeShareDenyRead 4 Prevent other connections from opening
with read permissions.

adModeShareDenyWrite 8 Prevent other connections from opening
with write permissions.

adModeShareExclusive 12 Prevent other connections from opening.

adModeShareDenyNone 16 Permit other connections with any
permissions.

adModeRecursive 32 Used with adModeShareDenyRead,
adModeShareDenyWrite, and
adModeShareDenyNone to propagate
sharing restrictions to all sub-records of
the current Record.

Connection object methods
The Connection object has many methods that allow you to manage your connec-
tion to a data source.

215Chapter 12 ✦ Connecting to a database

Table 12-6
Values for State

Constant Value Description

adStateClosed 0 The Command object is closed.

adStateOpen 1 The Command object is open.

adStateConnecting 2 The Command object is connecting to the
database.

adStateExecuting 4 The Command object is executing.

adStateFetching 8 Rows are being retrieved.

Function BeginTrans () As Long
The BeginTrans method marks the beginning of a transaction. The return value
corresponds to the nesting level of the transaction. The first call to BeginTrans
will return a one. A second call to BeginTrans, without a call to CommitTrans or
RollbackTrans, will return two.

Sub Cancel ()
The Cancel method is used to terminate an asynchronous task started by the
Execute or Open methods.

Sub Close ()
The Close method closes the connection to the data provider. It will also close any
open Recordset objects and set the ActiveConnection property of any Command
objects to Nothing.

Sub CommitTrans ()
The CommitTrans method ends a transaction and saves the changes to the
database. Depending on the Attributes property, a new transaction may auto-
matically be started.

Function Execute (CommandText As String, [RecordsAffected],
[Options As Long = -1]) As Recordset
The Execute method is used to execute the specified command. A Recordset
object will be returned as the result of the function, which will contain any rows
returned by the command.

216 Part II ✦ Beginning Database Programming

CommandText is a String containing an SQL Statement, stored procedure, table
name, or other data provider-specific command to be executed.

RecordsAffected optionally returns a Long value with the number of records
affected by the command.

Options optionally passes a combination of the values specified in Table 11-5 found
in the section on the Command object.

Sub Open ([ConnectionString As String], [UserID As String],
[Password As String], [Options As Long = -1])
The Open method initializes the Connection object by establishing a connection to
a data provider.

ConnectionString is a String value containing the same connection information
found in the ConnectionString property. The value in this parameter will override
the value in the property.

UserID contains a String value with the UserID needed to access the database.
This value will override any UserID information included in the ConnectionString
parameter or property.

Password contains a String value with the password associated with the specified
UserID. This value will override any password information included in the
ConnectionString parameter or property.

Options optionally passes one of the values specified in Table 12-7. If you specify
adAsyncConnect, the ConnectComplete event will be fired when the connection
process has finished.

Table 12-7
Values for Options

Constant Value Description

adConnectUnspecified -1 Opens the connection synchronously.
Default.

adAsyncConnect 16 Opens the connection asynchronously.

217Chapter 12 ✦ Connecting to a database

Function OpenSchema (Schema As SchemaEnum,
[Restrictions], [SchemaID]) As Recordset
The OpenSchema method returns database information from the data provider. A
Recordset object will be returned as the result of the function, which will contain
any rows returned by the command.

Schema is an enumerated value specifying the type of information to be returned.

Restrictions contains an array of query constraints.

SchemaID optionally contains a GUID for a provider-schema query not defined in
the OLE DB specification. This parameter is only used when the Schema parameter
is set to adSchemaProviderSpecific.

So you want to write a database utility: The OpenSchema method can be used
to perform nearly forty different queries against a database catalog. Each query
returns a different Recordset containing the relevant information. Since this
information is extremely complex and not generally used by database program-
mers, you should reference the OLE DB documentation for detailed information
about this method.

Sub RollbackTrans ()
The RollbackTrans method ends a transaction and discards any changes to the
database. Depending on the Attributes property, a new transaction may auto-
matically be started.

Connection object events
The Connection object contains events that allow you to intercept status informa-
tion and determine error conditions while you have a connection to your data source.

Event BeginTransComplete (TransactionLevel As Long, pError As Error,
adStatus As EventStatusEnum, pConnection As Connection)
The BeginTransComplete is called after the BeginTrans method has finished
running in asynchronous mode.

TransactionLevel is a Long value containing the new transaction level.

pError is an object reference to an Error object if the value of adStatus is set to
adStatusErrorsOccured.

adStatus is a Long value that contains one of the status values listed in Table 12-8.

pConnection is an object reference to the Connection object associated with the
BeginTrans method.

Note

218 Part II ✦ Beginning Database Programming

Table 12-8
Values for adStatus

Constant Value Description

adStatusOK 1 The operation completed successfully.

adStatusErrorsOccured 2 The operation failed. Error information is
in pError.

adStatusCantDeny 3 The operation can’t request the
cancellation of the current operation.

adStatusCancel 4 The operation requested that the
operation be canceled.

adStatusUnwantedEvent 5 Setting the value of the adStatus
parameter to this value while in the
event will prevent subsequent events
from being fired.

Event CommitTransComplete (pError As Error, adStatus As
EventStatusEnum, pConnection As Connection)
The CommitTransComplete is called when the CommitTrans method has finished
running in asynchronous mode.

pError is an object reference to an Error object if the value of adStatus is set to
adStatusErrorsOccured.

adStatus is a Long value that contains one of the status values listed in Table 12-8
in the BeginTransComplete event.

pConnection is an object reference to the Connection object associated with the
CommitTrans method.

Event ConnectComplete (pError As Error, adStatus As
EventStatusEnum, pConnection As Connection)
The ConnectComplete is called when the Connect method has finished running in
asynchronous mode.

pError is an object reference to an Error object if the value of adStatus is set to
adStatusErrorsOccured.

219Chapter 12 ✦ Connecting to a database

adStatus is a Long value that contains one of the status values listed in Table 12-8
in the BeginTransComplete event.

pConnection is an object reference to the Connection object associated with the
Connect method.

Event Disconnect (adStatus As EventStatusEnum, pConnection
As Connection)
The Disconnect event is called when the connection has been dropped from the
data source.

adStatus is a Long value that always contains adStatusOK.

pConnection is an object reference to the Connection object associated with the
CommitTrans method.

Event ExecuteComplete (RecordsAffected As Long, pError As Error,
adStatus As EventStatusEnum, pCommand As Command, pRecordset As
Recordset, pConnection as Connection)
The ExecuteComplete event is called when the Execute method has finished run-
ning in asynchronous mode.

RecordsAffected is a Long value containing the number of records affected by the
command executed by the Execute method.

pError is an object reference to an Error object if the value of adStatus is set to
adStatusErrorsOccured.

adStatus is a Long value containing one of the status values listed in Table 12-8 in
the BeginTransComplete event.

pCommand is an object reference to a Command object, if a Command object was exe-
cuted.

pRecordset is an object reference to a Recordset object containing the results of
the command’s execution.

pConnection is an object reference to the Connection object associated with the
ExecuteComplete method.

220 Part II ✦ Beginning Database Programming

Event InfoMessage (pError As Error, adStatus As EventStatusEnum,
pConnection as Connection)
The InfoMessage event is called when a warning message is received by the cur-
rent connection.

pError is an object reference to an Error object if the value of adStatus is set to
adStatusErrorsOccured.

adStatus is a Long value containing one of the status values listed in Table 12-8 in
the BeginTransComplete event.

pConnection is an object reference to the Connection object associated with the
message.

Event RollbackTransComplete (pError As Error, adStatus As
EventStatusEnum, pConnection as Connection)
The RollbackTransComplete event is called when the RollbackTrans method
has finished running in asynchronous mode.

pError is an object reference to an Error object if the value of adStatus is set to
adStatusErrorsOccured.

adStatus is a Long value containing one of the status values listed in Table 12-8 in
the BeginTransComplete event.

pConnection is an object reference to the Connection object associated with
RollbackTrans method.

Event WillConnect (ConnectionString As String, UserID As String,
Password As String, Options As Long, adStatus As EventStatusEnum,
pConnection as Connection)
The WillConnect event is called before the process to establish that a connection
is started. You can override any of the values in the ConnectionString, UserID,
Password, and Options properties. By default, the value of adStatus is set to
adStatusOK. If you set adStatus to adStatusCancel, you will terminate the con-
nection request. This will trigger the ConnectComplete event with an adStatus of
adStatusErrorsOccurred.

ConnectionString is a String containing the same connection information found
in the ConnectionString property.

UserID contains a String value with the UserID needed to access the database.

221Chapter 12 ✦ Connecting to a database

Password contains a String value with the password associated with the specified
UserID.

Options optionally passes one of the values specified in Table 12-7 in the Open
method above.

adStatus is a Long value containing one of the status values listed in Table 12-8 in
the BeginTransComplete event.

pConnection is an object reference to the Connection object associated with the
connection that triggered this event.

Event WillExecute (Source As String, CursorType As CursorTypeEnum,
LockType As LockTypeEnum, Options As Long, adStatus As EventStatus
Enum, pCommand As Command, pRecordset As Recordset, pConnection
as Connection)
The WillExecute event is called before a command is executed. You can override
any of the values in the Source, CursorType, LockType and Options properties.
By default, the value of adStatus is set to adStatusOK. If you set adStatus to
adStatusCancel, you will terminate the connection request. This will trigger the
ConnectComplete event with an adStatus of adStatusErrorsOccurred.

Source is a String containing the SQL Statement, stored procedure name, or other
command to be executed.

CursorType contains a CursorTypeEnum value describing the type of cursor to be
used in the Recordset (see Table 12-9).

LockType contains a LockTypeEnum value (see Table 12-10).

Options optionally passes one of the values specified in Table 12-7 in the Open
method above.

adStatus is a Long value containing one of the status values listed in Table 12-7 in
the BeginTransComplete event.

pCommand is an object reference to a Command object, if a Command object is about
to be executed.

pRecordset is an object reference to a Recordset object, if a Recordset object
was the source of the function to be executed.

pConnection is an object reference to the Connection object associated with the
connection that triggered this event.

222 Part II ✦ Beginning Database Programming

Table 12-9
Values for CursorType

Constant Value Description

adOpenUnspecified -1 The type of cursor isn’t specified.

adOpenForwardOnly 0 A forward-only cursor is used, which permits
you only to scroll forward through the records
in the Recordset.

adOpenKeyset 1 A keyset cursor is used, which is similar to a
dynamic cursor, but doesn’t permit you to see
records added by other users.

adOpenDynamic 2 A dynamic cursor is used, which allows you to
see records added by other users, plus any
changes and deletions made by other users.

adOpenStatic 3 A static cursor is used, which prevents you
from seeing any and all changes from other
users.

Table 12-10
Values for LockType

Constant Value Description

adLockUnspecified -1 The type of locking isn’t specified.

adLockReadOnly 1 Doesn’t permit you to change any values.

adLockPessimistic 2 Records are locked at the data source record
by record once the data in the record has
been changed.

adLockOptimistic 3 Records are locked only when you call the
UpdateMethod.

adLockBatchOptimistic 4 Records are not locked, and conflicts will be
returned for resolution after the
UpdateBatch method has completed.

223Chapter 12 ✦ Connecting to a database

The Error Object
The Error object contains information about a specific error condition.

Error object properties
Table 12-11 lists the properties associated with the Error object.

Table 12-11
Properties of the Error Object

Property Description

Description A String value containing a short text description of the error.

HelpContext A Long value containing the help context ID reference within the
help file specified by HelpFile. If no additional help can be
found, this value will contain a zero.

HelpFile A String containing the name of the help file where a more
detailed description of the error may be found. If no additional
help is available, this value will contain an empty string.

NativeError A Long containing a provider-specific error code.

Number A Long containing the OLE DB error code number. This value is
unique to this specific error condition.

Source A String containing the name of the object or application that
caused the error. ADO errors will generally have Source values of
the format ADODB.objectname, ADOX.objectname, or ADOMD.
objectname, where objectname is the name of the object that
caused the error.

SQLState A String containing the standard five-character ANSI SQL
error code.

The Errors Collection
The Errors collection contains the set of errors generated in response to a specific
failure. If an operation fails, the Errors collection is cleared and all of the individual
errors are recorded in the collection.

224 Part II ✦ Beginning Database Programming

If you are using the Resync, UpdateBatch, or CancelBatch methods on a
Recordset object, you may generate a set of warnings that will not raise the On
Error condition in Visual Basic. Thus, it is important to check for warnings when
using these methods and take the appropriate action.

I’m certain it didn’t error again: Successfully performing a function will not clear
the Errors collection. Thus, the information from a previous error will remain in
the collection until it is either explicitly cleared or another error occurs. For this
reason, it is very important that you clear the Errors collection after you handle
the error condition and before you resume normal processing. Otherwise, you
may falsely detect an error condition.

Errors collection properties
Table 12-12 lists the properties associated with the Errors collection.

Table 12-12
Properties of the Errors Collection

Property Description

Count A Long value containing the number of errors in the collection.

Item(index) An object reference to an Error object containing information about a
particular error. To locate an error, specify a value in the range of 0 to
Count –1.

Errors collection methods
The Errors collection contains methods to manage the collection of error
information.

Sub Clear ()
The Clear method initializes the Errors collection to the empty state.

Sub Refresh ()
The Refresh method gets a fresh copy of the error information from the data
provider.

Caution

225Chapter 12 ✦ Connecting to a database

Connecting To Database Server
In the previous chapters, I provided all of the information necessary to connect to
either the ADO Data Control or the Data Environment Designer and they took care
of connecting to the database server. However, if you plan to use the ADO objects
directly, you need to deal with a few issues yourself.

Connection strings
A connection string contains the information necessary to connect your application
to a data source. This value is stored in the ConnectionString property of the
Connection object. It consists of a series of keyword clauses separated by semi-
colons (;). You create a keyword clause by specifying a keyword, an equal sign (=),
and then the value of the keyword. If the same keyword is specified more than once,
only the last occurrence will be used, except in the case of the provider keyword,
in which the first occurrence will be used.

Spaces are permitted: A keyword always ends with an equal sign, so special
characters, such as a space or a period, are legal.

Consider the following connection string:

provider=sqloledb;data source=Athena;initial catalog=VB6DB

It uses the sqloledb provider and then specifies Athena as the data source and
VB6DB as the initial catalog. Note the spaces inside both the data source and the ini-
tial catalog keywords are legal.

Connection strings the easy way: Building a connection string to a new database
system can be a real headache, making sure that you have all the needed key-
words to make the connection. Try building a dummy application using the ADO
Data Control. Then configure the ConnectionString property using the
Properties dialog box. This creates the connection string and puts it in the
ConnectionString property. Then all you need to do is copy the connection
string to your application.

Provider keyword
The Provider keyword specifies the name of the OLE DB provider that will be
used to connect to the data source. If this keyword is not included in the connec-
tion string, the OLD DB Provider for ODBC will be used. Table 12-13 lists some
common databases and their OLE DB providers.

Tip

Note

226 Part II ✦ Beginning Database Programming

Table 12-13
Common OLE DB Providers

Database Provider

OLE DB Provider for ODBC MSDASQL.1

Jet 3.51 (Access 97) Microsoft.Jet.OLEDB.3.51

Jet 4.0 (Access 2000) Microsoft.Jet.OLEDB.4.0

Oracle MSDAORA.1

SQL Server 7 SQLOLEDB

Common keywords
Nearly all data providers support the keywords listed in Table 12-14. In many cases,
these keywords will be all you need to connect to the data source.

Table 12-14
Common Keywords for SQLOLEDB

Keyword Alias Description

Data Source Server Specifies the location of the database server or the
name of the file containing the data, depending on
the specific provider.

Initial Catalog Database Specifies the name of the default database on the
database server.

Password PWD Specifies the password associated with the User Id
keyword.

User Id UID Specifies the user name that will be used to connect
to the database server.

Keywords for SQLOLEDB
Accessing an SQL Server database is very straightforward. All you need to do is
include the Data Source keyword and either specify the user name and password
or set the Trusted_Connection keyword to yes. However, there are a number of
other keywords that can provide additional functions. Table 12-15 lists the set of
keywords that are specific to SQL Server.

227Chapter 12 ✦ Connecting to a database

Table 12-15
Common Keywords for SQLOLEDB

Keyword Description

Application Name Contains the name of the application program.

Connect Timeout Specifies the number of seconds in which the database
server must respond before the connection will timeout.

Integrated Security When set to SSPI, Windows NT Authentication will be
used.

Trusted_Connection Contains yes if you are using Windows NT
Authentication.

Workstation ID Contains name of the client machine.

Keywords for Microsoft.Jet.OLEDB.4.0
When accessing a Jet database, you need to remember that there isn’t really a
database server involved, like there is with most other database systems. The
database is a specially formatted disk file, which you reference in the Data Source
keyword. The other keywords have the normal meaning, and the list of specific key-
words for the Microsoft Jet provider is listed in Table 12-16.

Table 12-16
Common Keywords for SQLOLEDB

Keyword Description

Jet OLEDB:System Database Contains the fully qualified file name for the
workgroup information file.

Jet OLEDB:Registry Path Specifies the registry key that contains values for
the database engine.

Jet OLEDB:Database Password Contains the database password.

Opening a connection
Opening a database connection is merely a matter of declaring an object, creating a
new instance of it, and then opening the connection. The key is using the proper
connection string when you open the connection.

228 Part II ✦ Beginning Database Programming

Declaring a Connection object
The following line of code declares the variable db as a Connection object.

Dim db As ADODB.Connection

You can use any of the methods or properties associated with the Connection
object, but not any of the events. This is perfectly fine for most programs. The
events only provide status information that can be safely ignored by most pro-
grams.

Globally speaking: When creating applications with multiple forms, I often add a
module to the program to hold objects that I want to access, including things like
the Connection object, which can easily share among multiple forms.

Sometimes, however, you might want to track this status information. This is a great
place to include extra security checks, since you have the opportunity to review vari-
ous functions before they are actually performed, and cancel them. To include events
with the Connection object, you need to use the WithEvents keyword in the Dim
statement as in the statement below:

Dim WithEvents db As ADODB.Connection

Qualifying for clarity: I usually use the ADODB prefix for all ADO objects. This elim-
inates confusion with other objects (such as the DAO) that have the same name.

The WithEvents keyword imposes some restrictions on how you can declare your
object. You can only use it in Form modules and Class modules. You can’t use it in
a regular .BAS module. You also can’t use the New keyword. You must instantiate
the object using a Set statement with the New keyword.

Faster objects: While you can use the New keyword in a Dim statement to create
an object the first time it’s used, it adds code to every statement to see if the
object exists and create it if necessary.

Coding the Connection object
One of the things I like best about using the ADO objects directly, rather than using
the Data Environment Designer or the ADO Data Command, is that the database
isn’t opened for me when the program is started. This allows me the opportunity
to ask the user for their user name and password before I open the database.

The Connect Demo program shown in Figure 12-1 is a very simple program that
demonstrates how to connect to an SQL Server database. It consists of two com-
mand buttons that are used to connect and disconnect from the database, plus two
text boxes that allow the user to enter their user name and password.

Tip

Note

Tip

229Chapter 12 ✦ Connecting to a database

Figure 12-1: The Connect Demo program

Clicking the button labeled Connect will fire the Command1_Click event, as shown
in Listing 12-1. I begin the routine by using the On Error Resume Next statement,
which prevents a run-time error from killing the program. However, I need to be
careful to explicitly check for error conditions, or an undetected error could cause
havoc with my program.

Listing 12-1: The Command1_Click event in Connect Demo

Private Sub Command1_Click()

Dim p As ADODB.Property

On Error Resume Next
Set db = New ADODB.Connection
db.ConnectionString = “provider=sqloledb;” & _

“data source=Athena;initial catalog=VB6DB”

db.Properties(“User Id”).Value = Text1.Text
db.Properties(“Password”).Value = Text2.Text

db.Open

Continued

230 Part II ✦ Beginning Database Programming

Listing 12-1 (continued)

If db.State = adStateOpen Then
Command1.Enabled = False
Command2.Enabled = True

Else
WriteError

End If

End Sub

Next, I create a new instance of the Connection object using the Set statement.
Then I set the various properties in the Connection before I open the connection.
While I can set the ConnectionString property directly, I need to set the values
for User Id and Password through the Properties collection. For these values, I
simply use the name of the property as the index in the Properties collection and
assign the values I want to the Value property. Of course, these properties are spe-
cific to the provider that is used, so you need to see which of these custom proper-
ties you really need.

Check “The Parameter Object” and “The Parameters Collection” in Chapter 13 for
more details about these objects.

Opening the connection
Once the properties are set, I invoke the Open method to connect to the database
server. Another way to handle the connection would be to specify all of the infor-
mation as part of the call to the Open method, as shown below:

db.Open “provider=sqloledb;data source=Athena; “ & _
“initial catalog=VB6DB”, Text1.Text, Text2.Text

This has the advantage of fewer lines of text, which means fewer places where
something can go wrong.

After I’ve used the Open method, I need to know if it was successful. Had I not used
the On Error statement, I could safely assume that the Open method was successful,
because the program would had gotten a run-time error and died. Here I can do one
of two things. First, I can check the Errors object to see if there was an error and
check the error code for the appropriate action. Second, I can check the State prop-
erty to make sure that the object’s state is open. If the connection is open, I’ll disable
the button that connects to the database and enable the button that closes the con-
nection. If it isn’t, I’ll display an error message to the user with the WriteError
routine.

Cross-
Reference

231Chapter 12 ✦ Connecting to a database

Closing a connection
Closing a Connection object is merely a matter of using the Close method and
releasing the resources associated with the object, which you can see in Listing
12-2. If I was able to close the connection, I will disable the Disconnect button and
reenable the Connect button so the user can try connecting to the database again.
If the Close method generated an error, I’ll display the error using the WriteError
routine.

Listing 12-2: The Command2_Click event in Connect Demo

Private Sub Command2_Click()

db.Close
If db.State = adStateClosed Then

Set db = Nothing
Command2.Enabled = False
Command1.Enabled = True

Else
WriteError

End If

End Sub

Analyzing Errors
The Connection object’s Errors collection contains the information about the
most recent error that occurred. When performing database functions, it is quite
possible that a single request may generate multiple errors. Usually, the first error
is the most significant error, and the rest of the errors are secondary effects of the
main error.

Retrieving error informationThe WriteError subroutine in Listing 12-3 is designed
to update a StatusBar control with the results of the most recent error. I check the
Count property to see how many errors are in the collection, and if there’s only
one, I display it in the status bar. If I have multiple errors, I’ll display the first error
in the status bar just like I displayed the single error, and then use a For Each loop
to display each of the individual error messages.

232 Part II ✦ Beginning Database Programming

Listing 12-3: The WriteError subroutine in Connect Demo

Private Sub WriteError()

Dim e As ADODB.Error

If db.Errors.Count = 1 Then
StatusBar1.SimpleText = “Error: “ & db.Errors(0).Description

Elseif db.Errors.Count > 1 Then
StatusBar1.SimpleText = “Multiple errors:” & _

db.Errors(0).Description

For Each e In db.Errors
MsgBox e.Description

Next e

End If

db.Errors.Clear

End Sub

It is important to clear the Errors collection before you issue the next database
request. The Errors collection is only cleared automatically the next time an error
is encountered. If you don’t clear the collection before you issue a database request,
and then check it afterwards, you can’t be certain that the errors in the Errors col-
lection were caused by the most recent database request.

There are two places where you should clear the Errors collection. The first is
immediately after handling an error condition, as I did in the WriteError routine.
This ensures that Error object is clear after processing an error condition. However,
since it is possible that you may not check every place there can be an error, you
should also clear the Errors collection before any call that might result in an error.

Watching connection activity
The events associated with the Connect object provide a way to catch an activity
before and after it executes. This will allow you to grab information and display it to
the user, or to review the request and deny it.

Displaying status information
The db_ConnectComplete event shown in Listing 12-4 will be fired after the user
connects to the database. I begin by checking the adStatus parameter to see if the

233Chapter 12 ✦ Connecting to a database

connection completed without an error. If it did, I let the user know that they’re
connected to the database. Otherwise, I get the error message from the pError
object and display it in the status bar.

Listing 12-4: The db_ConnectComplete event in Connect Demo

Private Sub db_ConnectComplete(ByVal pError As ADODB.Error, _
adStatus As ADODB.EventStatusEnum, _
ByVal pConnection As ADODB.Connection)

If adStatus = adStatusOK Then
StatusBar1.SimpleText = “Connected.”

Else
StatusBar1.SimpleText = “Error: “ & pError.Description

End If

End Sub

Canceling a request
The Complete events in the Connection object merely indicate the current status of
a request. The Will events, on the other hand, are the perfect place to review a
request and cancel it if desired. Listing 12-5 takes advantage of the db_WillConnect
event to see if the user really wants to connect to the database server.

Listing 12-5: The db_WillConnect event in Connect Demo

Private Sub db_WillConnect(ConnectionString As String, _
UserID As String, Password As String, Options As Long, _
adStatus As ADODB.EventStatusEnum, _
ByVal pConnection As ADODB.Connection)

If MsgBox(“Do you really want to connect?”, vbYesNo, _
“Connect to remote database”) = vbYes Then

StatusBar1.SimpleText = “Will connect.”

Else
adStatus = adStatusCancel

End If

End Sub

234 Part II ✦ Beginning Database Programming

I begin this routine by displaying a message box that asks the user if they really
want to connect to the database server. If the user responds no, I’ll cancel the
request by setting the adStatus parameter to adStatusCancel. This will trigger
an error condition, which is intercepted by both the WriteError routine and the
ConnectComplete event. If the user responds yes, the status bar is updated, and
the Open method will be allowed to continue.

So it’s contrived: The example here is somewhat contrived; however, in a real
application, you may want to restrict connections based on the time of date, day of
week, or particular value of the user name.

Tip

Thoughts on the Connection Object

The Connection object manages the path to your database server. In most cases, you’ll
open the connection when your program begins and close it when it ends. You won’t
bother with any of the events and you may not even specify any of the connection proper-
ties other than the connection string. After all, the main reason you want to use the
Connection object is to connect to the database. The real work of your application will be
done with the other objects in the ADO library.

Summary
In this chapter you learned the following:

✦ You can use the Connection object to establish a link between the database
client program and the database server.

✦ You can use connection strings to specify the parameters that are passed to
the OLE DB provider to establish the connection to the database server.

✦ You can use the Error object to determine why the most recent database
request failed.

✦ You can use the events in the Connection object to gather information about
the various database requests sent to the database server and cancel them if
desired.

✦ ✦ ✦

