
More About
Bound Controls

In the previous chapter, I showed you how to build a pro-
gram without any code using only bound controls and the

ADO Data Control. In this chapter, I will continue discussing
bound controls by talking about some other properties and
events that you can use to help ensure that only valid data is
stored in your database. Then I’m going to discuss a few other
useful controls that have special features to help ensure that
your data is correct before it gets into the database.

Bound Controls Revisited
Bound controls are not as simple as I led you to believe in
Chapter 7. There are several other properties, methods, and
events that allow you to fine-tune how the user interacts with
the control.

Key properties
All bound controls contain the properties listed in Table 8-1,
which affect the way the control works with the user and with
the database.

Key methods
While the SetFocus method isn’t directly used in binding a
control to a data source, it is sometimes used in performing
data validation.

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Bound controls
revisited

Using the Masked
Edit control

Using the
DateTimePicker
control

Using the DataCombo
control

✦ ✦ ✦ ✦

4728-3 ch08.f.qc 7/31/00 09:45 Page 119

120 Part II ✦ Beginning Database Programming

Table 8-1
Key Properties of Bound Controls

Property Description

CausesValidation A Boolean value, where TRUE means that the Validation
event for the control previously focused will be fired
before the focus is shifted to this control.

DataChanged A Boolean value, where TRUE means that either the user
has changed the value of the control or the program has
changed the value of the control.

DataField A String value containing the field name to which the
control is bound.

DataFormat An object reference to an StdDataFormat object which
contains information about how to format the value
displayed by the control.

DataMember A String value that identifies which set of data should be
used when a DataSource has more than one set of data.

DataSource An object reference to an object that can act as a data
source. Common data sources include the ADO Data
Control, a Recordset object or a Class module where
the DataSourceBehavior property is set to
vbDataSource (1).

Object.SetFocus ()
The SetFocus method is used to transfer the focus to the control specified by
object. If the control specified by object isn’t visible or can’t accept the focus, a
runtime error will occur.

Key events
Most controls that can be bound have a set of events that will be fired as the user
interacts with the control. These events can be used to verify that the information a
user enters into the control is correct.

Event Change ()
The Change event is fired each time the value of a control changes. This can happen
if the user updates the value in the control or explicitly sets the Value, Caption, or
Text property in code.

4728-3 ch08.f.qc 7/31/00 09:45 Page 120

121Chapter 8 ✦ More About Bound Controls

Event GotFocus ()
The GotFocus event fired before a control receives the focus.

Event KeyDown (KeyCode As Integer, Shift As Integer)
The KeyDown event is fired whenever the user presses a key while the control has
the focus, where KeyCode is an Integer value containing the key code of the key
that was pressed. This value is not the ASCII character value associated with the key.

Shift is an Integer value that indicates the status of the Shift, Alt, and Ctrl keys.

Event KeyPress (KeyAscii As Integer)
The KeyPress event is fired whenever a key is pressed and released, where KeyAscii
contains the ASCII code of the key that was pressed. Changing this value to zero in the
event cancels the keystroke.

Event KeyUp (KeyCode As Integer, Shift As Integer)
The KeyUp event is fired whenever the user releases a key while the control has the
focus, where KeyCode is an Integer value containing the key code of the key that
was released. This value is not the ASCII character value associated with the key.

Shift is an Integer value that indicates the status of the Shift, Alt, and Ctrl keys.

Event LostFocus ()
The LostFocus event is fired just before the focus is transferred to another control.

Event Validate (Cancel As Boolean)
The Validate event is used to verify that the contents of a control are valid before
the focus is shifted to another control. The Validate event will only be triggered if
the destination control has the CausesValidation property set to TRUE. This is
the case where Cancel is a Boolean value, and TRUE means that the focus should
not be shifted to the next control. By default, Cancel is set to FALSE.

Data validation
There are basically four ways to verify that the user has entered the correct data
into a control like a TextBox:

✦ Change event

✦ KeyPress, KeyUp, and KeyDown events

✦ GotFocus and LostFocus events

✦ Validate event

4728-3 ch08.f.qc 7/31/00 09:45 Page 121

122 Part II ✦ Beginning Database Programming

Each approach is discussed below, along with any of its advantages and disad-
vantages.

Using the Change event
The Change event is triggered each time the value of the control is changed. While
at first this may be the ideal event with which to verify changes, it turns out it is the
least practical approach.

Consider a TextBox control. Each time the user types a character into the text win-
dow, the change event is fired. Also, anytime you change the Text property in your
program, you trigger the Change event. This can make things really complicated if
you choose to change the value of the control while in the Change event.

Using the KeyPress, KeyUp, and KeyDown events
The KeyPress, KeyUp, and KeyDown events are fired whenever a user presses a key
on the keyboard. Like the Change event, these events are somewhat limited in their
usefulness for validating data. However, you can trap the keystrokes as they are
entered and translate them into something or perform a special task.

For instance, you can include some code in the KeyPress event to translate any
lowercase characters into their uppercase equivalents automatically. You can also
define certain keystrokes, such as the Esc key, to perform special functions, like
restoring the original value for the field from the database (see Listing 8-1).

Listing 8-1: The Text1_KeyPress event in Customer
Information Editor

Private Sub Text1_KeyPress(KeyAscii As Integer)

If Chr(KeyAscii) >= “a” And Chr(KeyAscii) <= “z” Then
KeyAscii = KeyAscii - 32

ElseIf (KeyAscii = 27) And Text1.DataChanged Then
Text1.Text = Adodc1.Recordset.Fields(“Name”).OriginalValue
KeyAscii = 0

End If

End Sub

Looking to the future: One of the properties of the ADO Data Control is a refer-
ence to the underlying Recordset object containing the data retrieved from the
database. I’ll cover the Recordset object in detail starting with Chapter 11.

Note

4728-3 ch08.f.qc 7/31/00 09:45 Page 122

123Chapter 8 ✦ More About Bound Controls

Using the LostFocus event
You can also use the LostFocus event to perform edit checks. This event is trig-
gered when the user or the program transfers the focus to another control. Since
the LostFocus event of the current control is the last piece of processing that
occurs before the next control gains the focus, it is an ideal place to verify that the
data in the control is valid.

In Listing 8-2, I use the LostFocus event to determine if the user has left the field
blank. If so, I turn the background red to indicate that this field has an error. After
the user has entered some data and leaves the control again, I return the normal
background color for the text box. Of course, since I only change the color in the
LostFocus event, the error will still be flagged after the user returns the focus to
the control. You can leave it this way, or you can add some code in the GotFocus
event to reset the error flag.

Listing 8-2: The Text1_LostFocus event in Customer
Information Editor

Private Sub Text1_LostFocus()

If Len(Text1.Text) = 0 Then
Text1.BackColor = &HFFFF&

Else
Text1.BackColor = &H80000005

End If

End Sub

Make an error stand out: No matter how you determine that the contents of a
field are invalid, you should include some code to tell the user in no uncertain
terms that the value is incorrect. You could include a line such as
Text1.BackColor = &HFF& to turn the background of a text box red in the
LostFocus event and use a line of code like Text1.BackColor = &H80000005
to restore the proper background color. You could also use other colors to display
different status conditions, such as yellow (&HFFFF&) to when a field should not be
left blank.

Resetting focus in the LostFocus event: When your program handles the
LostFocus event, the focus has already begun the process of shifting to the next
control. If you try to use the SetFocus method inside the LostFocus event to
bring the focus back to the current control, the next control will briefly receive the
focus, and its GotFocus and LostFocus events will be fired.

Note

Tip

4728-3 ch08.f.qc 7/31/00 09:45 Page 123

124 Part II ✦ Beginning Database Programming

Using the Validate event
Probably the best way to verify that the data entered by a user is acceptable is to
put the test in the Validate event. When the user attempts to switch the focus to
another control, the Validate event is fired. If the value in the control isn’t accept-
able, all you need to do is set the Cancel parameter to TRUE and the focus will
remain with the current control without triggering the GotFocus/LostFocus events
of the other control.

Unlike the other approaches to validating data which operate on a single control at
a time, using the Validate method requires that you coordinate all of the controls
on a single form. In general, all of the controls on the form that are capable of
receiving the focus need the CausesValidation property set to TRUE. The only
controls that shouldn’t have CausesValidation set to TRUE are those that would
allow the user to abort any changes.

For example, consider a form like the one in Figure 8-1. There are three text boxes
and two command buttons that can receive the focus. Each of these controls has
the CausesValidate property set to TRUE, except for the Cancel button. This
means that the Validate event will be triggered when the user tries to shift the
focus on any of the text boxes or the Update button.

Figure 8-1: Validating data on a form

A typical Validate event is shown in Listing 8-3. In this routine, I merely verify that
the text box is not empty. If it is, then I’ll turn the background to red and display an
error message in the status bar. Then I’ll set the Cancel parameter to TRUE to pre-
vent the user from moving the focus to another control.

Listing 8-3: The Text1_Validate Event in Validate Event Demo

Private Sub Text1_Validate(Cancel As Boolean)

If Len(Text1.Text) = 0 Then
Text1.BackColor = &HFF&
StatusBar1.SimpleText = “Field 1 is blank.”

4728-3 ch08.f.qc 7/31/00 09:45 Page 124

125Chapter 8 ✦ More About Bound Controls

Cancel = True

End If

End Sub

Since the Cancel button has the CausesValidation property set to FALSE, even if
there is an error in one of the text boxes, the focus can be transferred to the Cancel
button. Thus, you can use this button to undo any changes or reset the information
displayed in the other controls to their default values.

Explain what caused the error: In addition to making your error stand out, you
may want to explain the error in more detail. While you can always display the
error message using a message box, consider adding a StatusBar control at the
bottom of the form and displaying the error message inside one of the panels. This
allows you to display the error message without unnecessarily disrupting the
user’s work.

Formatting data
Another ability of many bound controls is the ability to format automatically the
data they display. You can specify the format information in the DataFormat prop-
erty. You can specify the format information at design time (see Figure 8-2) or at
runtime using the StdDataFormat object (see Table 8-2).

Figure 8-2: Specifying a format for your data

Tip

4728-3 ch08.f.qc 7/31/00 09:45 Page 125

126 Part II ✦ Beginning Database Programming

Typically, you’re going to set the format for a field at design time. Simply choose the
appropriate Format Type for the value you want to format and a set of options will
appear under the Format heading corresponding to the Format Type you selected.

Table 8-2
Key Properties of the StdDataFormat Object

Property Description

FalseValue A Variant containing the value to be displayed
when a Boolean field is FALSE.

FirstDayOfWeek An enumerated value that contains the value of the
first day of a week. This information is used to
compute values such as the week of the year. Legal
values are fmtDayUseSystem (0), fmtSunday (1),
fmtMonday (2), . . . and fmtSaturday (7).

FirstWeekOfYear An enumerated value that contains information
about how to determine the first week of the year.
Legal values are fmtWeekUseSystem (0),
fmtFirstJan1 (1), fmtFirstFourDays (2), and
fmtFirstFullWeek (3).

Format A String value containing a standard format string.

NullValue A Variant containing the value to be displayed for a
Null value.

TrueValue A Variant containing the value to be displayed
when a Boolean field is TRUE.

Type An enumerated value that describes the type of
information being displayed from the database. Legal
values are: fmtGeneral (0), fmtCustom (1),
fmtPicture (2), fmtObject (3), fmtCheckbox
(4), fmtBoolean (5), and fmtBytes (6).

Numbers and names: Visual Basic often allows you to specify the value of a prop-
erty by name rather than by number. This is known as an enumerated value. You
should use enumerated values whenever possible to more clearly document the
value you are using.

Tip

4728-3 ch08.f.qc 7/31/00 09:45 Page 126

127Chapter 8 ✦ More About Bound Controls

Using the Picture and Image Controls
Displaying graphic images in your database is very easy when you use a bound
Picture or Image control. Unlike the other bound controls, these controls are
strictly one way. They can display data from your database, but changing the image
displayed in the control will not update the image in your database when the rest of
the row is updated.

The key to using these controls is to bind them to a column in your database con-
taining the raw image. The image can be in any format that is acceptable to the
LoadPicture function, including .BMP, .JPG, and .GIF. The type of image will auto-
matically be detected and picture will automatically be loaded into the control.

You can’t assign an image stored in your database directly to the Picture property
of the Picture or Image controls. You must either save the column’s value to a file
and then use the LoadImage function or bind the control directly to the database.

Aren’t they the same? The Image and Picture controls can both be used to dis-
play images. All of the data binding properties are the same. However, the
Picture control has the ability to act as a container for other controls, and it also
includes a rich set of drawing methods that are not found on the Image control.

Using the Masked Edit Control
The Masked Edit control is an alternative to of the text box control. It includes the
ability to compare incoming keystrokes against an input mask that determines whether
the keystroke is valid or not. Using a simple mask can ensure that numeric fields will
contain only numeric values, and with more complex masks, you can enter and display
more complex values, such as telephone numbers and social security numbers (see
Figure 8-3).

Figure 8-3: Entering a numeric value for the ZIP code.

Invalid social security numbers: The middle two digits of a social security num-
ber (AAA-BB-CCCC) are never 00. The programmers at the Social Security
Administration use social security numbers with 00 in the middle to test their
applications.

Tip

Note

4728-3 ch08.f.qc 7/31/00 09:45 Page 127

128 Part II ✦ Beginning Database Programming

Key properties
The Masked Edit control contains all of the standard properties found in an aver-
age ActiveX control, such as Top, Left, Width, Height, Enabled, ToolTipText,
etc. However there are a few key properties that affect the way the control works
(see Table 8-3).

Table 8-3
Key Properties of the Masked Edit Control

Property Description

AllowPrompt A Boolean value, where TRUE means that PromptChar is a valid
input character.

AutoTab A Boolean value, where TRUE means that the control will
automatically tab to the next field when this field is full.

ClipMode An enumerated data type that determines if the literal characters
displayed in the input mask will be included in a copy or cut
operation. A value of mskIncludeLiterals (0) means that the
characters will be included, while a value of mskExcludeLiterals
(1) means that the characters will not be included.

ClipText A String containing the contents of the control, without any
literal characters.

Format A String containing up to four format strings separated by
semicolons that will be used to display the information in the
control.

FormattedText A String containing the text that will be displayed in the control
when another control has the focus.

HideSelection A Boolean value, where TRUE means that selected text will not be
highlighted when the control loses focus.

Mask A String value containing the input mask. Table 8-4 contains a
list of legal mask characters. Any other character in the input mask
is considered a literal character.

MaxLength An Integer containing the maximum length of the input data.

PromptChar A String containing a single character that is used to prompt the
user for input.

4728-3 ch08.f.qc 7/31/00 09:45 Page 128

129Chapter 8 ✦ More About Bound Controls

Property Description

PromptInclude A Boolean value, where TRUE means that PromptChar is
included in the Text property. For bound controls TRUE means
that the value in the Text property will be saved in the database
and FALSE means that the value in the ClipText property will be
saved.

Text A String value containing the value that is displayed in the
control while the control has the focus.

Table 8-4
Mask Characters

Character Description

A required numeric character.

. A decimal point indicator as defined in Windows. It is treated as a literal.

, A thousands separator as defined in Windows. It is treated as a literal.

/ A date separator as defined in Windows. It is treated as a literal.

: A time separator as defined in Windows. It is treated as a literal.

\ Treat the next character as a literal.

& A character placeholder.

> Convert the following characters to uppercase.

< Convert the following characters to lowercase.

A A required alphanumeric character.

A An optional alphanumeric character.

9 An optional numeric character.

C Same as & (ensures compatibility with Microsoft Access).

? A required alphanumeric character.

Other Any other character is treated as a literal.

Creating an input mask
When programming the Masked Edit control, the first step is to build an input
mask. The best way to start is to choose the mask characters that reflect how your
users enter their data and insert them into the Mask property. You can add literal
characters such as parentheses and dashes to make the input mask easier to use.
Table 8-5 lists some sample values for the Mask property.

4728-3 ch08.f.qc 7/31/00 09:45 Page 129

130 Part II ✦ Beginning Database Programming

Table 8-5
Sample Masks

Input Mask Description

(###) ###-#### A telephone number.

####-####-####-#### A credit card number.

###-##-#### A social security number.

>A<AAAAAAAA A name field with the first character always in uppercase
and the following characters always in lowercase.

>AAAAAAAAAA A name field with all characters converted to uppercase.

?#:## A time value.

##/##/## A date value.

The mask didn’t work: Just because you use an input mask to ensure the input is
in the proper format doesn’t mean that the value entered will always be correct.
For instance, someone could enter (000) 000-0000 as a telephone number or
they could enter 99/99/99 as a date. Both of these values are invalid, yet they
meet the requirements specified by the input mask. In these cases, you can use
the Validate event or another control, such as the DateTimePicker, to
ensure that the user’s data is correct.

As the user enters characters into the control at runtime, each character is validated
against the input mask. Any literal characters are frozen on the screen and are auto-
matically skipped over. If the user enters a character that isn’t compatible with the
input mask, it is ignored, unless you have coded the ValidateError event. Then
the event will be fired and you can respond in whatever fashion you wish.

A real multimedia solution: I like to use the full multimedia capabilities of a
PC/XT to let the user know that they typed an invalid character in the Masked
Edit control. Therefore, in the ValidateError event, I’ll include a Beep state-
ment to generate an audible signal to the user.

Prompting the user
A prompt character can be defined using the PromptChar property. This character
will be displayed in the each position of the field where the user is expected to enter
a value. Generally, you will want to use the underscore (_) character as the prompt
character, but you may want to supply a value like a zero or a space depending on
the input mask. For instance, if you set PromptChar to 0 and Mask to ###-##-####,

Tip

Caution

4728-3 ch08.f.qc 7/31/00 09:45 Page 130

131Chapter 8 ✦ More About Bound Controls

the user will see 000-00-0000 in the field. The user would then overtype the prompt
characters with the appropriate values. Note that if you use a value for PromptChar
that is also legal in the input mask, then you need to set the AllowPrompt property
to TRUE.

Database considerations
When using the Masked Edit control as a bound control, you need to decide which
value you want to store in the database. If you set the PromptInclude property to
TRUE, the value in Text property, which will include any literal values from the
input mask, will be saved in the database. Otherwise, the value from the ClipText
property will be used.

Using the DateTimePicker Control
While you can use the TextBox or the Masked Edit controls to enter date and
time values, using the DateTimePicker control is a much better way. The sole
purpose of the DateTimePicker control is to help users enter legal date and time
values. From a programming point of view, it works just like a TextBox control.
You can use the standard data binding properties to connect it to your database.

Key properties
The DateTimePicker control contains all of the standard properties found in an
average ActiveX control, such as Top, Left, Width, Height, Enabled, ToolTipText,
etc. However, there are a few key properties that affect the way the control works
(see Table 8-6).

Table 8-6
Key Properties of the DateTimePicker Control

Property Description

CalendarBackColor A Long value containing the background color of
the calendar.

CalendarForeColor A Long value containing the foreground color of
the calendar.

Continued

4728-3 ch08.f.qc 7/31/00 09:45 Page 131

132 Part II ✦ Beginning Database Programming

Table 8-6 (continued)

Property Description

CalendarTitleBackColor A Long value containing the background color of
the calendar’s title bar.

CalendarTitleForeColor A Long value containing the foreground color of
the calendar’s title bar.

CalendarTrailingForeColor A Long value containing the foreground color for
the dates before and after the current month.

CheckBox A Boolean value. When TRUE, a check box will
be displayed next to the value. If not checked,
NULL will be returned as Value.

CustomFormat A String value containing an alternate format to
display date and/or time values chosen from the
characters listed in Table 8-7. Also, you must set
Format to dtpCustom (3).

Day A Variant value containing the currently
selected day of month.

DayOfWeek A Variant value containing the currently
selected day of week.

Format An enumerated type specifying the standard or
custom format that will be used to display the
date and/or time value. Possible values are
dtpLongDate (0) to display a date in a long
format; dtpShortDate (1) to display a date in a
short format; dtpTime (2) to display the time;
and dtpCustom (3) to display the value using the
format string in CustomFormat.

Hour A Variant value containing the currently
selected hour.

MaxDate A Date value containing the maximum date value
a user can enter.

MinDate A Date value containing the minimum date value
a user can enter.

Minute A Variant value containing the currently
selected minute.

Month A Variant value containing the currently
selected month.

4728-3 ch08.f.qc 7/31/00 09:45 Page 132

133Chapter 8 ✦ More About Bound Controls

Property Description

Second A Variant value containing the currently
selected second.

UpDown A Boolean value when TRUE displays an
updown (spin) button to modify dates instead of
a drop-down calendar.

Value A Variant value containing the currently
selected date.

Year A Variant value containing the currently
selected year.

Table 8-7
Mask Characters

Character Description

D Displays the day of month without a leading zero (1-31).

dd Displays the day of month as two digits using a leading zero if
necessary (01-31).

ddd Displays the day of week as a three-character abbreviation (Sun,
Mon, etc.).

dddd Displays the day of week with its full name (Sunday, Monday, etc.).

H Displays the hour without a leading zero (0-12).

hh Displays the hour with two digits, using a leading zero if necessary
(00-12).

H Displays the hour in 24-hour format without a leading zero (0-23).

HH Displays the hour in 24-hour format, using a leading zero if necessary
(00-23).

M Displays the month without a leading zero (1-12).

MM Displays the month as two digits, using a leading zero if necessary
(01-12).

MMM Displays the month as a three-character abbreviation (Jan, Feb, etc.).

MMMM Displays the month with its full name (January, February, etc.).

m Displays the minutes without a leading zero (0-59).

Continued

4728-3 ch08.f.qc 7/31/00 09:45 Page 133

134 Part II ✦ Beginning Database Programming

Table 8-7 (continued)

Character Description

mm Displays the minutes as two digits, using a leading zero if necessary
(00-59).

s Displays the seconds without a leading zero (0-59).

ss Displays the seconds as two digits, using a leading zero if necessary
(00-59).

t Displays AM or PM as a single character (A or P).

tt Displays AM or PM as two characters (AM or PM).

x Uses the Callback events (CallbackKeyDown, Format, and
FormatSize) to get the information needed to format the custom
date/time value.

y Displays the day of year (1-365).

yy Displays the year as a two-digit number (00-99).

yyyy Displays the year as a four-digit number (0100-9999).

Choosing a user interface
The DateTimePicker control has two different ways to allow users to edit date
and time values. If you want to edit only date values, you can display a drop-down
calendar, which allows the user to select a particular date (see Figure 8-4). Set
UpDown to TRUE.

Figure 8-4: Using a drop-down
calendar to enter a date

If you want to edit only time values or date and time values, you can set UpDown to
FALSE and the user can edit by clicking on a value and using the spinner arrows at
the end of the field to adjust the value (see Figure 8-5). This option works with all
formats, including any custom format you may choose to build.

4728-3 ch08.f.qc 7/31/00 09:45 Page 134

135Chapter 8 ✦ More About Bound Controls

Figure 8-5: Entering a date and time value

Using the DataCombo Control
The DataCombo control looks and works just like a regular ComboBox control,
except that the data for the control comes directly from the database. This con-
trol is extremely useful when you want to translate a coded data value into its text
equivalent. It uses two database tables: one table containing the data you want to
edit, and a translation table that contains both the encoded and translated values.
The beauty of this control is that no code is required to perform the translation
process.

They come in pairs: The DataList control is very similar to the DataCombo con-
trol, in the same way a list box is the same as a combo box. Thus, they share many
common properties and methods.

Key properties
The DataCombo control has a number of properties that affect the way the control
works (see Table 8-8). It also supports all of the standard properties, methods, and
events listed.

Table 8-8
Key Properties of the DataCombo Control

Property Description

BoundColumn A String value that contains the name of the column that will
supply that value to the control.

BoundText A String value that contains the current value of the
BoundColumn.

DataBindings An object reference to a DataBindings collection.

ListField A String value that contains the name of the column used to
fill the drop-down list.

MatchedWithList A Boolean value that indicates the contents of the BoundText
matches one of the entries in the list.

Continued

Note

4728-3 ch08.f.qc 7/31/00 09:45 Page 135

136 Part II ✦ Beginning Database Programming

Table 8-8 (continued)

Property Description

MatchEntry An enumerated data type that controls how the user’s
keystrokes will be matched with the values in the control. A
value of dblBasicMatching (0) means that when the user
presses a key, the list of values is searched for by the first item
whose first character matches the key that was pressed. If the
same key is pressed again, the second item whose first character
matches will be displayed. A value of dblExtendedMatching
(1) means that the control will search for an item in the list
whose value matches all of the characters entered. Typing
additional characters refines the search.

RowMember A String value that identifies which set of data should be used
when a RowSource has more than one set of data.

RowSource An object reference to an object that can act as a data source.
Common data sources include the ADO Data Control, a
Recordset object, or a Class module where the
DataSourceBehavior property is set to vbDataSource (1).

SelectedItem A Variant value containing a bookmark for the currently
selected record.

Style An Integer value that controls how the user interacts with the
control. Values are dbcDropdownCombo (0), which allows the
user to enter a value in the text box or select a value from the
drop-down box; dbcSimpleCombo (1), which allows the user to
enter a value into the text box or select a value from the list
below the text box; and dbcDropdownList (3), which allows
the user to only select a value from the drop-down list.

Sort, please: You should use a Select statement with the Order By clause when
defining your data source so that the list of values can be displayed in sorted
order.

Key methods
The DataCombo control supports the usual assortment of methods; however, the
ReFill method is unique to this and the DataList control.

Tip

4728-3 ch08.f.qc 7/31/00 09:45 Page 136

137Chapter 8 ✦ More About Bound Controls

DataCombo.ReFill ()
The ReFill method gets a fresh copy of the data from the RowSource and recre-
ates the list of items in the list.

It’s not the same: Don’t confuse the ReFill method with the Refresh method.
The Refresh method merely repaints the data on the screen. It doesn’t get a
fresh copy of the data from the database.

Configuring the control
Using the DataCombo control is more complicated than most bound controls,
because it needs to interact with two database tables. It also can be used in two dif-
ferent fashions. First, the user may choose a value from a list of values. Second, the
user may choose from a list of values that are automatically encoded and decoded
as needed.

Selecting from a list
To function as a normal bound control, you need to specify values for both the
DataSource and DataField properties. The DataSource property must contain
an object reference to an OLE DB data source such as an ADO Data Control or a
Recordset object that references the table you want to update. The DataField
property specifies the column name whose value is displayed in the text part of
the combo box.

The list part of the combo box is populated using the RowSource and ListField
properties. The RowSource property is an object reference to an ADO Data Control
or a Recordset object corresponding to the list of entries to be displayed in the list
part of the combo box. The ListField property contains the name of the column
whose values will be displayed in the list part of the control. Before you can use the
DataCombo control, you need to set one more property, BoundColumn. This property
should be set to the same value as ListField.

Translating a value
When designing a database it is common to codify a value in order to reduce
redundancy in your database. When you do this, you typically create a field called
ManufacturerId in one table and use another table to translate ManufacturerId
into the manufacturer’s Name. Thus the ManufacturerId value is known as the
codified value, while Name is known as the translated value.

Note

4728-3 ch08.f.qc 7/31/00 09:45 Page 137

138 Part II ✦ Beginning Database Programming

In the example used in this book, each row in the Inventory table contains a reference
to the ManufacturerId, while the Manufacturers table contains ManufacturerId and
the Name associated with the ManufacturerId. Because ManufacturerId is a numeric
value, it is difficult to remember which value is associated with each manufacturer’s
name. This situation is an ideal candidate for the DataCombo control.

The properties of the DataCombo control should be set as follows: DataSource =
Adodc1 (the table with the raw data); DataField = ManufacturerId (the codified
field in the raw data table); RowSource = Adodc2 (the translation table); ListField
= Name (the translated field in the translation table); and BoundColumn =
ManufacturerId (the codified field in the translation table).

When using the DataCombo control to automatically translate a value, you should
set the Style property to dbcDropdownList (3) in order to prevent problems. The
other values for Style allow the user to enter their own value into the control. This
can cause a translation error, since the value in the codified column doesn’t have
translation value in the translation table. The easiest way to handle this situation is
to place a button beside the DataCombo control to add the new value to the transla-
tion table and then refresh the data displayed in the control using the Refill
method (see Figure 8-6).

Figure 8-6: Adding a value to the translation table

In the Command2_Click event in the Add New Manufacturer form, which occurs
when the OK button is pressed, you begin by adding the new manufacturer to the
Manufacturers table (see Listing 8-4). Then you use the Requery method to get a
fresh, reordered copy of the data from the database, and then use the data combo’s
ReFill method to get a fresh copy of the data for the drop-down line. Finally, you
should save the newly added manufacturer into the data combo’s Text property to
save the user from having to select the newly added information.

4728-3 ch08.f.qc 7/31/00 09:45 Page 138

139Chapter 8 ✦ More About Bound Controls

Listing 8-4: The Command2_Click event in Inventory
Information — Add New Manufacturer form

Private Sub Command2_Click()

Form1.Adodc2.Recordset.AddNew
Form1.Adodc2.Recordset.Fields(“ManufacturerId”).Value = _

CLng(Text1.Text)
Form1.Adodc2.Recordset.Fields(“Name”).Value = Text2.Text
Form1.Adodc2.Recordset.Update
Form1.Adodc2.Recordset.Requery
Form1.DataCombo1.ReFill
Form1.DataCombo1.Text = Text2.Text
Unload Me

End Sub

Thoughts on Reducing Data Errors

If you were to write a database program in a different programming language, you would
probably have to spend a lot of time moving data from database buffers to the various dis-
play fields. In some languages such as COBOL, you might spend as much as fifty percent of
your programming effort writing this type of code.

By using bound controls in Visual Basic, you can do two things. First, you reduce the overall
size of your program, since you don’t have to move all that information to and from the
database buffers. Second, you improve the reliability of your program, since the code that
handles the data movement isn’t yours. Of course, you might make a mistake when speci-
fying which field is associated with a particular control, but this is much easier to find and
fix than looking through a complex program and trying to find why a particular field wasn’t
updated.

Data validation is a big part of the process also. The best way to help prevent your database
from becoming corrupt is to verify that all of the data that is entered into the database is
acceptable. Using controls such as the MaskedEdit and the DateTimePicker control
means that the data that is entered is at least of the right type and the proper format. This
goes a long way towards preventing bad data from reaching your database.

Sometimes bad data will get into your database no matter how much you check and
recheck your data before it is entered. For instance, someone could mistype an item num-
ber yet still end up with a bad record. Even though the item number was valid, it wasn’t the
product the customer wanted. To help prevent this type of problem, you should provide as

Continued

4728-3 ch08.f.qc 7/31/00 09:45 Page 139

140 Part II ✦ Beginning Database Programming

Summary
In this chapter you learned the following:

✦ You can validate data in a bound control by using the Change, KeyPress,
LostFocus, and Validate events.

✦ You can use the MaskEdit control to prompt users for textual information.

✦ You can use the DateTimePicker control to help users select date and time
values.

✦ You can use the DataCombo box in place of a normal ComboBox control to
allow a user to select from a series of values extracted directly from your
database.

✦ ✦ ✦

Continued

much visual feedback as possible. Perhaps you could display a picture of the item, which
would allow the customer to see that they entered the wrong item. Izf a picture isn’t practi-
cal, you should at least provide a description of the item from which the customer may be
able to recognize their mistake.

While providing feedback isn’t that important if the information is being entered by a per-
son whose full-time job is to use this application, it is very important for a casual user. A
casual user typically isn’t very comfortable with the application and is prone to making
more mistakes, yet with the proper feedback mechanisms, they will do a better job in the
long run.

4728-3 ch08.f.qc 7/31/00 09:45 Page 140

