
TEAM LinG

MySQL® Language
Reference

00 6337 fm 6/24/04 12:44 PM Page i

TEAM LinG

00 6337 fm 6/24/04 12:44 PM Page ii

TEAM LinG

MySQL® Language
Reference

800 East 96th Street, Indianapolis, Indiana 46240 USA

MySQL AB

00 6337 fm 6/24/04 12:44 PM Page iii

TEAM LinG

MySQL Language Reference
Copyright © 2005 by MySQL AB

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permis-
sion from the publisher. No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation of this book, the publisher
and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32633-7

Library of Congress Catalog Card Number: 2003110975

Printed in the United States of America

First Printing: July 2004

06 05 04 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Pearson cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an “as is” basis. The author and the publisher shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
1-317-428-3341
international@pearsontechgroup.com

00 6337 fm 6/24/04 12:44 PM Page iv

TEAM LinG

ASSOCIATE PUBLISHER
Mark Taber

ACQUISITIONS EDITOR
Shelley Johnston

DEVELOPMENT EDITOR
Damon Jordan

MANAGING EDITOR
Charlotte Clapp

PROJECT EDITOR
Andy Beaster

COPY EDITOR
Mike Henry

INDEXER
Ken Johnson

PROOFREADER
Wendy Ott

PUBLISHING
COORDINATOR
Vanessa Evans

BOOK DESIGNER
Gary Adair

PAGE LAYOUT
Stacey Richwine-DeRome

MYSQL AB DOCUMENTATION
TEAM
Paul DuBois
Stefan Hinz
Arjen Lentz

MYSQL HQ
MySQL AB
Bangårdsgatan 8
S-753 20 Uppsala
Sweden

UNITED STATES
MySQL Inc.
2510 Fairview Avenue East
Seattle, WA 98102
USA

GERMANY, AUSTRIA AND
SWITZERLAND
MySQL GmbH
Schlosserstraße 4
D-72622 Nürtingen
Germany

FINLAND
MySQL Finland Oy
Tekniikantie 21
FIN-02150 Espoo
Finland

FRANCE
MySQL AB (France)
123, rue du Faubourg St. Antoine
75011, Paris
France

MySQL® Press is the exclusive publisher of technology books and materials that have been
authorized by MySQL AB. MySQL Press books are written and reviewed by the world's
leading authorities on MySQL technologies, and are edited, produced, and distributed by
the Que/Sams Publishing group of Pearson Education, the worldwide leader in integrated
education and computer technology publishing. For more information on MySQL Press
and MySQL Press books, please go to www.mysqlpress.com.

MySQL® AB develops, markets, and supports a family of high-performance, affordable
database servers and tools. MySQL AB is the sole owner of the MySQL server source code,
the MySQL trademark, and the mysql.com domain. For more information on MySQL AB
and MySQL AB products, please go to www.mysql.com or the following areas of the
MySQL Web site:

n Training information: www.mysql.com/training
n Support services: www.mysql.com/support
n Consulting services: www.mysql.com/consulting

00 6337 fm 6/24/04 12:44 PM Page v

TEAM LinG

Contents At a Glance
1 General Information 1

2 Language Structure 63

3 Character Set Support 81

4 Column Types 111

5 Functions and Operators 137

6 SQL Statement Syntax 219

7 Spatial Extensions in MySQL 349

8 Stored Procedures and Functions 383

9 Error Handling in MySQL 397

A Troubleshooting Query Problems 415

B MySQL Regular Expressions 427

Index 433

00 6337 fm 6/24/04 12:44 PM Page vi

TEAM LinG

Table of Contents
1 General Information 1

1.1 About This Guide . 1
1.1.1 Conventions Used in This Manual . 2

1.2 Overview of the MySQL Database Management System 4
1.2.1 History of MySQL . 5
1.2.2 The Main Features of MySQL . 6
1.2.3 MySQL Stability . 8
1.2.4 How Big MySQL Tables Can Be . 10
1.2.5 Year 2000 Compliance . 11

1.3 Overview of MySQL AB . 12
1.3.1 The Business Model and Services of MySQL AB 13
1.3.2 Contact Information . 16

1.4 MySQL Support and Licensing . 17
1.4.1 Support Offered by MySQL AB . 17
1.4.2 Copyrights and Licenses Used by MySQL 18
1.4.3 MySQL Licenses . 18
1.4.4 MySQL AB Logos and Trademarks . 21

1.5 MySQL Development Roadmap . 22
1.5.1 MySQL 4.0 in a Nutshell . 23
1.5.2 MySQL 4.1 in a Nutshell . 25
1.5.3 MySQL 5.0: The Next Development Release 27

1.6 MySQL and the Future (the TODO) . 27
1.6.1 New Features Planned for 4.1. 27
1.6.2 New Features Planned for 5.0. 27
1.6.3 New Features Planned for 5.1. 28
1.6.4 New Features Planned for the Near Future 29
1.6.5 New Features Planned for the Mid-Term Future 32
1.6.6 New Features We Don’t Plan to Implement 33

1.7 MySQL Information Sources . 33
1.7.1 MySQL Mailing Lists. 33
1.7.2 MySQL Community Support on IRC
(Internet Relay Chat) . 42

00 6337 fm 6/24/04 12:44 PM Page vii

TEAM LinG

1.8 MySQL Standards Compliance . 42
1.8.1 What Standards MySQL Follows . 43
1.8.2 Selecting SQL Modes . 43
1.8.3 Running MySQL in ANSI Mode . 43
1.8.4 MySQL Extensions to Standard SQL . 44
1.8.5 MySQL Differences from Standard SQL 47
1.8.6 How MySQL Deals with Constraints . 54
1.8.7 Known Errors and Design Deficiencies in MySQL 56

2 Language Structure 63

2.1 Literal Values . 63
2.1.1 Strings . 63
2.1.2 Numbers . 66
2.1.3 Hexadecimal Values . 66
2.1.4 Boolean Values . 67
2.1.5 NULL Values . 67

2.2 Database, Table, Index, Column, and Alias Names 67
2.2.1 Identifier Qualifiers . 69
2.2.2 Identifier Case Sensitivity . 69

2.3 User Variables . 71
2.4 System Variables . 72

2.4.1 Structured System Variables. 74
2.5 Comment Syntax . 76
2.6 Treatment of Reserved Words in MySQL . 77

3 Character Set Support 81

3.1 Character Sets and Collations in General . 81
3.2 Character Sets and Collations in MySQL . 82
3.3 Determining the Default Character Set and Collation. 84

3.3.1 Server Character Set and Collation . 84
3.3.2 Database Character Set and Collation. 85
3.3.3 Table Character Set and Collation . 86
3.3.4 Column Character Set and Collation . 86
3.3.5 Examples of Character Set and Collation Assignment 87
3.3.6 Connection Character Sets and Collations 88
3.3.7 Character String Literal Character Set and Collation 90

00 6337 fm 6/24/04 12:44 PM Page viii

TEAM LinG

3.3.8 Using COLLATE in SQL Statements . 91
3.3.9 COLLATE Clause Precedence . 92
3.3.10 BINARY Operator . 92
3.3.11 Some Special Cases Where the Collation
Determination Is Tricky . 92
3.3.12 Collations Must Be for the Right Character Set 93
3.3.13 An Example of the Effect of Collation . 94

3.4 Operations Affected by Character Set Support . 95
3.4.1 Result Strings . 95
3.4.2 CONVERT() . 96
3.4.3 CAST() . 96
3.4.4 SHOW Statements . 97

3.5 Unicode Support . 98
3.6 UTF8 for Metadata . 99
3.7 Compatibility with Other DBMSs . 101
3.8 New Character Set Configuration File Format. 101
3.9 National Character Set. 101
3.10 Upgrading Character Sets from MySQL 4.0 . 101

3.10.1 4.0 Character Sets and Corresponding 4.1
Character Set/Collation Pairs . 102
3.10.2 Converting 4.0 Character Columns to 4.1 Format 103

3.11 Character Sets and Collations That MySQL Supports 104
3.11.1 Unicode Character Sets . 105
3.11.2 West European Character Sets . 106
3.11.3 Central European Character Sets . 107
3.11.4 South European and Middle East Character Sets 108
3.11.5 Baltic Character Sets . 108
3.11.6 Cyrillic Character Sets . 109
3.11.7 Asian Character Sets . 109

4 Column Types 111

4.1 Column Type Overview . 111
4.1.1 Overview of Numeric Types . 111
4.1.2 Overview of Date and Time Types. 114
4.1.3 Overview of String Types . 115

00 6337 fm 6/24/04 12:44 PM Page ix

TEAM LinG

4.2 Numeric Types. 117
4.3 Date and Time Types . 120

4.3.1 The DATETIME, DATE, and TIMESTAMP Types 122
4.3.2 The TIME Type . 126
4.3.3 The YEAR Type . 127
4.3.4 Y2K Issues and Date Types . 128

4.4 String Types . 128
4.4.1 The CHAR and VARCHAR Types . 128
4.4.2 The BLOB and TEXT Types . 130
4.4.3 The ENUM Type . 131
4.4.4 The SET Type . 133

4.5 Column Type Storage Requirements . 134
Storage Requirements for Numeric Types . 134
Storage Requirements for Date and Time Types 135
Storage Requirements for String Types . 135

4.6 Choosing the Right Type for a Column . 136
4.7 Using Column Types from Other Database Engines 136

5 Functions and Operators 137

5.1 Operators . 138
5.1.1 Parentheses . 138
5.1.2 Comparison Operators. 138
5.1.3 Logical Operators . 143
5.1.4 Case-Sensitivity Operators . 145

5.2 Control Flow Functions . 145
5.3 String Functions . 148

5.3.1 String Comparison Functions . 159
5.4 Numeric Functions . 161

5.4.1 Arithmetic Operators . 161
5.4.2 Mathematical Functions . 163

5.5 Date and Time Functions . 169
5.6 Full-Text Search Functions. 187

5.6.1 Boolean Full-Text Searches . 190
5.6.2 Full-Text Searches with Query Expansion 192
5.6.3 Full-Text Restrictions . 193
5.6.4 Fine-Tuning MySQL Full-Text Search 194
5.6.5 Full-Text Search TODO. 196

x Contents

00 6337 fm 6/24/04 12:44 PM Page x

TEAM LinG

5.7 Cast Functions . 196
5.8 Other Functions . 198

5.8.1 Bit Functions . 198
5.8.2 Encryption Functions . 200
5.8.3 Information Functions . 203
5.8.4 Miscellaneous Functions . 208

5.9 Functions and Modifiers for Use with GROUP BY Clauses 211
5.9.1 GROUP BY (Aggregate) Functions . 211
5.9.2 GROUP BY Modifiers . 214
Other Considerations When Using ROLLUP . 216
5.9.3 GROUP BY with Hidden Fields. 217

6 SQL Statement Syntax 219

6.1 Data Manipulation Statements . 219
6.1.1 DELETE Syntax . 219
6.1.2 DO Syntax . 222
6.1.3 HANDLER Syntax . 222
6.1.4 INSERT Syntax . 224
6.1.5 LOAD DATA INFILE Syntax . 230
6.1.6 REPLACE Syntax . 238
6.1.7 SELECT Syntax . 239
6.1.8 Subquery Syntax . 248
6.1.9 TRUNCATE Syntax . 260
6.1.10 UPDATE Syntax. 260

6.2 Data Definition Statements . 262
6.2.1 ALTER DATABASE Syntax . 262
6.2.2 ALTER TABLE Syntax . 263
6.2.3 CREATE DATABASE Syntax . 269
6.2.4 CREATE INDEX Syntax . 270
6.2.5 CREATE TABLE Syntax . 271
6.2.6 DROP DATABASE Syntax . 286
6.2.7 DROP INDEX Syntax . 286
6.2.8 DROP TABLE Syntax . 287
6.2.9 RENAME TABLE Syntax . 287

6.3 MySQL Utility Statements. 288
6.3.1 DESCRIBE Syntax (Get Information About Columns) 288
6.3.2 USE Syntax . 288

xiContents

00 6337 fm 6/24/04 12:44 PM Page xi

TEAM LinG

6.4 MySQL Transactional and Locking Statements 289
6.4.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax. 289
6.4.2 Statements That Cannot Be Rolled Back 290
6.4.3 Statements That Cause an Implicit Commit 290
6.4.4 SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax 290
6.4.5 LOCK TABLES and UNLOCK TABLES Syntax 291
6.4.6 SET TRANSACTION Syntax . 294

6.5 Database Administration Statements . 294
6.5.1 Account Management Statements . 294
6.5.2 Table Maintenance Statements. 303
6.5.3 SET and SHOW Syntax . 309
6.5.4 Other Administrative Statements . 331

6.6 Replication Statements . 336
6.6.1 SQL Statements for Controlling Master Servers 336
6.6.2 SQL Statements for Controlling Slave Servers. 338

7 Spatial Extensions in MySQL 349

7.1 Introduction . 349
7.2 The OpenGIS Geometry Model . 350

7.2.1 The Geometry Class Hierarchy . 350
7.2.2 Class Geometry . 351
7.2.3 Class Point. 353
7.2.4 Class Curve. 353
7.2.5 Class LineString . 353
7.2.6 Class Surface . 354
7.2.7 Class Polygon . 354
7.2.8 Class GeometryCollection . 355
7.2.9 Class MultiPoint . 355
7.2.10 Class MultiCurve . 355
7.2.11 Class MultiLineString . 356
7.2.12 Class MultiSurface . 356
7.2.13 Class MultiPolygon . 356

7.3 Supported Spatial Data Formats . 357
7.3.1 Well-Known Text (WKT) Format . 357
7.3.2 Well-Known Binary (WKB) Format . 358

xii Contents

00 6337 fm 6/24/04 12:44 PM Page xii

TEAM LinG

xiiiContents

7.4 Creating a Spatially Enabled MySQL Database 359
7.4.1 MySQL Spatial Data Types . 359
7.4.2 Creating Spatial Values . 359
7.4.3 Creating Spatial Columns . 362
7.4.4 Populating Spatial Columns . 363
7.4.5 Fetching Spatial Data . 364

7.5 Analyzing Spatial Information . 365
7.5.1 Geometry Format Conversion Functions 365
7.5.2 Geometry Functions . 366
7.5.3 Functions That Create New Geometries from
Existing Ones . 373
7.5.4 Functions for Testing Spatial Relations Between
Geometric Objects . 374
7.5.5 Relations on Geometry Minimal Bounding
Rectangles (MBRs) . 374
7.5.6 Functions That Test Spatial Relationships
Between Geometries . 375

7.6 Optimizing Spatial Analysis . 377
7.6.1 Creating Spatial Indexes . 377
7.6.2 Using a Spatial Index . 379

7.7 MySQL Conformance and Compatibility . 381
7.7.1 GIS Features That Are Not Yet Implemented 381

8 Stored Procedures and Functions 383

8.1 Stored Procedure Syntax . 384
8.1.1 Maintaining Stored Procedures . 384
8.1.2 SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS 387
8.1.3 CALL . 388
8.1.4 BEGIN ... END Compound Statement . 388
8.1.5 DECLARE Statement . 388
8.1.6 Variables in Stored Procedures. 388
8.1.7 Conditions and Handlers . 389
8.1.8 Cursors . 391
8.1.9 Flow Control Constructs . 392

9 Error Handling in MySQL 397

9.1 Error Returns . 397
9.2 Error Messages. 405

00 6337 fm 6/24/04 12:44 PM Page xiii

TEAM LinG

A Troubleshooting Query Problems 415

A.1 Query-Related Issues . 415
A.1.1 Case Sensitivity in Searches . 415
A.1.2 Problems Using DATE Columns . 416
A.1.3 Problems with NULL Values . 417
A.1.4 Problems with Column Aliases . 418
A.1.5 Rollback Failure for Non-Transactional Tables 419
A.1.6 Deleting Rows from Related Tables . 419
A.1.7 Solving Problems with No Matching Rows 420
A.1.8 Problems with Floating-Point Comparisons 420

A.2 Optimizer-Related Issues . 423
A.3 Table Definition-Related Issues . 424

A.3.1 Problems with ALTER TABLE . 424
A.3.2 How to Change the Order of Columns in a Table 424
A.3.3 TEMPORARY TABLE Problems . 425

B MySQL Regular Expressions 427

Index 433

00 6337 fm 6/24/04 12:44 PM Page xiv

TEAM LinG

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name
and phone or email address. I will carefully review your comments and share them with the
author and editors who worked on the book.

Email: mysqlpress@pearsoned.com

Mail: Mark Taber
Associate Publisher
Pearson Education/MySQL Press
800 East 96th Street
Indianapolis, IN 46240 USA

00 6337 fm 6/24/04 12:44 PM Page xv

TEAM LinG

00 6337 fm 6/24/04 12:44 PM Page xvi

TEAM LinG

1
General Information

The MySQL® software delivers a very fast, multi-threaded, multi-user, and robust SQL
(Structured Query Language) database server. MySQL Server is intended for mission-critical,
heavy-load production systems as well as for embedding into mass-deployed software.
MySQL is a registered trademark of MySQL AB.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an
Open Source/Free Software product under the terms of the GNU General Public License
or can purchase a standard commercial license from MySQL AB. See Section 1.4, “MySQL
Support and Licensing.”

The MySQL Web site (http://www.mysql.com/) provides the latest information about the
MySQL software.

1.1 About This Guide
This guide is made up of those chapters from the MySQL Reference Manual that focus on the
SQL language used to perform database queries in MySQL. It covers language structure,
functions and operators, column types, and SQL statement syntax. A companion guide, the
MySQL Administrator’s Guide, serves as a reference to database administration topics. It cov-
ers software installation, server configuration and day-to-day operation, table maintenance,
and replication.

This guide is current up to MySQL 5.0.1, but is also applicable for older versions of the
MySQL software (such as 3.23 or 4.0-production) because functional changes are indicated
with reference to a version number.

Because this guide serves as a reference, it does not provide general instruction on SQL or
relational database concepts. It also will not teach you how to use your operating system or
command-line interpreter.

The MySQL Database Software is under constant development, and the Reference Manual
is updated frequently as well. The most recent version of the manual is available online in
searchable form at http://dev.mysql.com/doc/. Other formats also are available, including
HTML, PDF, and Windows CHM versions.

02 6337 ch01 6/24/04 12:43 PM Page 1

TEAM LinG

2 CHAPTER 1 General Information

If you have any suggestions concerning additions or corrections to this manual, please send
them to the documentation team at docs@mysql.com.

This manual was initially written by David Axmark and Michael “Monty” Widenius. It is now
maintained by the MySQL Documentation Team, consisting of Arjen Lentz, Paul DuBois, and
Stefan Hinz.

The copyright (2004) to this manual is owned by the Swedish company MySQL AB. See
Section 1.4.2, “Copyrights and Licenses Used by MySQL.”

1.1.1 Conventions Used in This Manual
This manual uses certain typographical conventions:

n constant

Constant-width font is used for command names and options; SQL statements; database,
table, and column names; C and Perl code; filenames; URLs; and environment variables.
Example: “To see how mysqladmin works, invoke it with the --help option.”

n constant bold

Bold constant-width font is used to indicate input that you type in examples.
n constant italic

Italic constant-width font is used to indicate variable input for which you should substitute
a value of your own choosing.

n ‘c’

Constant-width font with surrounding quotes is used to indicate character sequences.
Example: “To specify a wildcard, use the ‘%’ character.”

n italic

Italic font is used for emphasis, like this.
n boldface

Boldface font is used in table headings and to convey especially strong emphasis.

When commands are shown that are meant to be executed from within a particular program,
the program is indicated by a prompt shown before the command. For example, shell> indi-
cates a command that you execute from your login shell, and mysql> indicates a statement that
you execute from the mysql client program.

shell> type a shell command here

mysql> type a mysql statement here

The “shell” is your command interpreter. On Unix, this is typically a program such as sh or csh.
On Windows, the equivalent program is command.com or cmd.exe, typically run in a console window.

When you enter a command or statement shown in an example, do not type the prompt shown
in the example.

02 6337 ch01 6/24/04 12:43 PM Page 2

TEAM LinG

31.1 About This Manual

In example commands, input that you type is indicated in bold type. Variable input for which
you should substitute a value that you choose is indicated in italic type. Database, table, and
column names must often be substituted into statements. To indicate that such substitution is
necessary, this manual uses db_name, tbl_name, and col_name. For example, you might see a
statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own data-
base, table, and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case sensitive and may be written in uppercase or lowercase. This
manual uses uppercase.

In syntax descriptions, square brackets (‘[’ and ‘]’) are used to indicate optional words or
clauses. For example, in the following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by
vertical bars (‘|’). When one member from a set of choices may be chosen, the alternatives are
listed within square brackets (‘[’ and ‘]’):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within
braces (‘{’ and ‘}’):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a short-
er version of more complex syntax. For example, INSERT ... SELECT is shorthand for the form
of INSERT statement that is followed by a SELECT statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated.
In the following example, multiple reset_option values may be given, with each of those after
the first preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the
sequence to set an environment variable and run a command looks like this in Bourne shell syntax:

shell> VARNAME=value some_command

If you are using csh or tcsh, you must issue commands somewhat differently. You would exe-
cute the sequence just shown like this:

shell> setenv VARNAME value

shell> some_command

02 6337 ch01 6/24/04 12:43 PM Page 3

TEAM LinG

4 CHAPTER 1 General Information

1.2 Overview of the MySQL Database
Management System
MySQL, the most popular Open Source SQL database management system, is developed,
distributed, and supported by MySQL AB. MySQL AB is a commercial company, founded
by the MySQL developers, that builds its business by providing services around the MySQL
database management system. See Section 1.3, “Overview of MySQL AB.”

The MySQL Web site (http://www.mysql.com/) provides the latest information about
MySQL software and MySQL AB.

n MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping
list to a picture gallery or the vast amounts of information in a corporate network. To
add, access, and process data stored in a computer database, you need a database man-
agement system such as MySQL Server. Since computers are very good at handling
large amounts of data, database management systems play a central role in computing,
as standalone utilities or as parts of other applications.

n MySQL is a relational database management system.

A relational database stores data in separate tables rather than putting all the data in
one big storeroom. This adds speed and flexibility. The SQL part of “MySQL” stands
for “Structured Query Language.” SQL is the most common standardized language
used to access databases and is defined by the ANSI/ISO SQL Standard. The SQL
standard has been evolving since 1986 and several versions exist. In this manual, “SQL-
92” refers to the standard released in 1992, “SQL:1999” refers to the standard released
in 1999, and “SQL:2003” refers to the current version of the standard. We use the
phrase “the SQL standard” to mean the current version of the SQL Standard at any
time.

n MySQL software is Open Source.

Open Source means that it is possible for anyone to use and modify the software.
Anybody can download the MySQL software from the Internet and use it without pay-
ing anything. If you wish, you may study the source code and change it to suit your
needs. The MySQL software uses the GPL (GNU General Public License) to define
what you may and may not do with the software in different situations. If you feel
uncomfortable with the GPL or need to embed MySQL code into a commercial appli-
cation, you can buy a commercially licensed version from us. See Section 1.4.3,
“MySQL Licenses.”

n The MySQL Database Server is very fast, reliable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server also has a
practical set of features developed in close cooperation with our users. You can find a
performance comparison of MySQL Server with other database managers at
http://dev.mysql.com/tech-resources/crash-me.php.

02 6337 ch01 6/24/04 12:43 PM Page 4

TEAM LinG

51.2 Overview of the MySQL Database Management System

MySQL Server was originally developed to handle large databases much faster than
existing solutions and has been successfully used in highly demanding production envi-
ronments for several years. Although under constant development, MySQL Server
today offers a rich and useful set of functions. Its connectivity, speed, and security make
MySQL Server highly suited for accessing databases on the Internet.

n MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multi-
threaded SQL server that supports different backends, several different client programs
and libraries, administrative tools, and a wide range of application programming inter-
faces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that you can
link into your application to get a smaller, faster, easier-to-manage product.

n A large amount of contributed MySQL software is available.

It is very likely that you will find that your favorite application or language already sup-
ports the MySQL Database Server.

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we
don’t mind if you pronounce it as “my sequel” or in some other localized way.

1.2.1 History of MySQL
We started out with the intention of using mSQL to connect to our tables using our own fast
low-level (ISAM) routines. However, after some testing, we came to the conclusion that
mSQL was not fast enough or flexible enough for our needs. This resulted in a new SQL
interface to our database but with almost the same API interface as mSQL. This API was
designed to allow third-party code that was written for use with mSQL to be ported easily for
use with MySQL.

The derivation of the name MySQL is not clear. Our base directory and a large number of
our libraries and tools have had the prefix “my” for well over 10 years. However, co-founder
Monty Widenius’s daughter is also named My. Which of the two gave its name to MySQL
is still a mystery, even for us.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen by the founders
of MySQL AB from a huge list of names suggested by users in our “Name the Dolphin”
contest. The winning name was submitted by Ambrose Twebaze, an Open Source software
developer from Swaziland, Africa. According to Ambrose, the name Sakila has its roots in
SiSwati, the local language of Swaziland. Sakila is also the name of a town in Arusha,
Tanzania, near Ambrose’s country of origin, Uganda.

02 6337 ch01 6/24/04 12:43 PM Page 5

TEAM LinG

6 CHAPTER 1 General Information

1.2.2 The Main Features of MySQL
The following list describes some of the important characteristics of the MySQL Database
Software. See also Section 1.5, “MySQL Development Roadmap,” for more information
about current and upcoming features.

n Internals and Portability
n Written in C and C++.
n Tested with a broad range of different compilers.
n Works on many different platforms.
n Uses GNU Automake, Autoconf, and Libtool for portability.
n APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available.
n Fully multi-threaded using kernel threads. It can easily use multiple CPUs if they

are available.
n Provides transactional and non-transactional storage engines.
n Uses very fast B-tree disk tables (MyISAM) with index compression.
n Relatively easy to add another storage engine. This is useful if you want to add an

SQL interface to an in-house database.
n A very fast thread-based memory allocation system.
n Very fast joins using an optimized one-sweep multi-join.
n In-memory hash tables, which are used as temporary tables.
n SQL functions are implemented using a highly optimized class library and should

be as fast as possible. Usually there is no memory allocation at all after query
initialization.

n The MySQL code is tested both with commercial and Open Source memory
leakage detectors.

n The server is available as a separate program for use in a client/server networked
environment. It is also available as a library that can be embedded (linked) into
standalone applications. Such applications can be used in isolation or in environ-
ments where no network is available.

n Column Types
n Many column types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT,

DOUBLE, CHAR, VARCHAR, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET, ENUM,
and OpenGIS spatial types.

n Fixed-length and variable-length records.

02 6337 ch01 6/24/04 12:43 PM Page 6

TEAM LinG

71.2 Overview of the MySQL Database Management System

n Statements and Functions
n Full operator and function support in the SELECT and WHERE clauses of queries. For

example:
mysql> SELECT CONCAT(first_name, ‘ ‘, last_name)

-> FROM citizen

-> WHERE income/dependents > 10000 AND age > 30;

n Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions
(COUNT(), COUNT(DISTINCT ...), AVG(), STD(), SUM(), MAX(), MIN(), and GROUP_
CONCAT()).

n Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and
ODBC syntax.

n Support for aliases on tables and columns as required by standard SQL.
n DELETE, INSERT, REPLACE, and UPDATE return the number of rows that were changed

(affected). It is possible to return the number of rows matched instead by setting a
flag when connecting to the server.

n The MySQL-specific SHOW command can be used to retrieve information about
databases, tables, and indexes. The EXPLAIN command can be used to determine
how the optimizer resolves a query.

n Function names do not clash with table or column names. For example, ABS is a
valid column name. The only restriction is that for a function call, no spaces are
allowed between the function name and the ‘(’ that follows it.

n You can mix tables from different databases in the same query (as of MySQL 3.22).
n Security

n A privilege and password system that is very flexible and secure, and that allows
host-based verification. Passwords are secure because all password traffic is
encrypted when you connect to a server.

n Scalability and Limits
n Handles large databases. We use MySQL Server with databases that contain 50

million records. We also know of users who use MySQL Server with 60,000 tables
and about 5,000,000,000 rows.

n Up to 64 indexes per table are allowed (32 before MySQL 4.1.2). Each index may
consist of 1 to 16 columns or parts of columns. The maximum index width is 1000
bytes (500 before MySQL 4.1.2). An index may use a prefix of a column for CHAR,
VARCHAR, BLOB, or TEXT column types.

n Connectivity
n Clients can connect to the MySQL server using TCP/IP sockets on any platform.

On Windows systems in the NT family (NT, 2000, or XP), clients can connect
using named pipes. On Unix systems, clients can connect using Unix domain
socket files.

02 6337 ch01 6/24/04 12:43 PM Page 7

TEAM LinG

8 CHAPTER 1 General Information

n The Connector/ODBC interface provides MySQL support for client programs
that use ODBC (Open Database Connectivity) connections. For example, you can
use MS Access to connect to your MySQL server. Clients can be run on Windows
or Unix. Connector/ODBC source is available. All ODBC 2.5 functions are sup-
ported, as are many others.

n The Connector/JDBC interface provides MySQL support for Java client programs
that use JDBC connections. Clients can be run on Windows or Unix.
Connector/JDBC source is available.

n Localization
n The server can provide error messages to clients in many languages.
n Full support for several different character sets, including latin1 (ISO-8859-1),

german, big5, ujis, and more. For example, the Scandinavian characters ‘â’, ‘ä’
and ‘ö’ are allowed in table and column names. Unicode support is available as of
MySQL 4.1.

n All data is saved in the chosen character set. All comparisons for normal string
columns are case-insensitive.

n Sorting is done according to the chosen character set (using Swedish collation by
default). It is possible to change this when the MySQL server is started. To see an
example of very advanced sorting, look at the Czech sorting code. MySQL Server
supports many different character sets that can be specified at compile time and
runtime.

n Clients and Tools
n The MySQL server has built-in support for SQL statements to check, optimize,

and repair tables. These statements are available from the command line through
the mysqlcheck client. MySQL also includes myisamchk, a very fast command-line
utility for performing these operations on MyISAM tables.

n All MySQL programs can be invoked with the --help or -? options to obtain
online assistance.

1.2.3 MySQL Stability
This section addresses the questions, “How stable is MySQL Server?” and, “Can I depend on
MySQL Server in this project?” We will try to clarify these issues and answer some important
questions that concern many potential users. The information in this section is based on
data gathered from the mailing lists, which are very active in identifying problems as well as
reporting types of use.

The original code stems back to the early 1980s. It provides a stable code base, and the
ISAM table format used by the original storage engine remains backward-compatible. At

02 6337 ch01 6/24/04 12:43 PM Page 8

TEAM LinG

91.2 Overview of the MySQL Database Management System

TcX, the predecessor of MySQL AB, MySQL code has worked in projects since mid-1996,
without any problems. When the MySQL Database Software initially was released to a
wider public, our new users quickly found some pieces of untested code. Each new release
since then has had fewer portability problems, even though each new release has also had
many new features.

Each release of the MySQL Server has been usable. Problems have occurred only when
users try code from the “gray zones.” Naturally, new users don’t know what the gray zones
are; this section therefore attempts to document those areas that are currently known. The
descriptions mostly deal with Version 3.23 and 4.0 of MySQL Server. All known and report-
ed bugs are fixed in the latest version, with the exception of those listed in the bugs section,
which are design-related. See Section 1.8.7, “Known Errors and Design Deficiencies in
MySQL.”

The MySQL Server design is multi-layered with independent modules. Some of the newer
modules are listed here with an indication of how well-tested each of them is:

n Replication (Gamma)

Large groups of servers using replication are in production use, with good results.
Work on enhanced replication features is continuing in MySQL 5.x.

n InnoDB tables (Stable)

The InnoDB transactional storage engine has been declared stable in the MySQL 3.23
tree, starting from Version 3.23.49. InnoDB is being used in large, heavy-load production
systems.

n BDB tables (Gamma)

The Berkeley DB code is very stable, but we are still improving the BDB transactional
storage engine interface in MySQL Server, so it will take some time before this is as
well tested as the other table types.

n Full-text searches (Beta)

Full-text searching works but is not yet widely used. Important enhancements have
been implemented in MySQL 4.0.

n Connector/ODBC 3.51 (Stable)

Connector/ODBC 3.51 uses ODBC SDK 3.51 and is in wide production use. Some issues
brought up appear to be application-related and independent of the ODBC driver or
underlying database server.

n Automatic recovery of MyISAM tables (Gamma)

This status applies only to the new code in the MyISAM storage engine that checks when
opening a table whether it was closed properly and executes an automatic check or
repair of the table if it wasn’t.

02 6337 ch01 6/24/04 12:43 PM Page 9

TEAM LinG

10 CHAPTER 1 General Information

1.2.4 How Big MySQL Tables Can Be
MySQL 3.22 had a 4GB (4 gigabyte) limit on table size. With the MyISAM storage engine in
MySQL 3.23, the maximum table size was increased to 8 million terabytes (263 bytes). With
this larger allowed table size, the maximum effective table size for MySQL databases now usu-
ally is determined by operating system constraints on file sizes, not by MySQL internal limits.

The InnoDB storage engine maintains InnoDB tables within a tablespace that can be created
from several files. This allows a table to exceed the maximum individual file size. The table-
space can include raw disk partitions, which allows extremely large tables. The maximum
tablespace size is 64TB.

The following table lists some examples of operating system file-size limits:

Operating System File Size Limit

Linux-Intel 32-bit 2GB, much more when using LFS

Linux-Alpha 8TB (?)

Solaris 2.5.1 2GB (4GB possible with patch)

Solaris 2.6 4GB (can be changed with flag)

Solaris 2.7 Intel 4GB

Solaris 2.7 UltraSPARC 512GB

NetWare w/NSS filesystem 8TB

On Linux 2.2, you can get MyISAM tables larger than 2GB in size by using the Large File
Support (LFS) patch for the ext2 filesystem. On Linux 2.4, patches also exist for ReiserFS to
get support for big files. Most current Linux distributions are based on kernel 2.4 and
already include all the required LFS patches. However, the maximum available file size still
depends on several factors, one of them being the filesystem used to store MySQL tables.

For a detailed overview about LFS in Linux, have a look at Andreas Jaeger’s “Large File
Support in Linux” page at http://www.suse.de/~aj/linux_lfs.html.

By default, MySQL creates MyISAM tables with an internal structure that allows a maximum
size of about 4GB. You can check the maximum table size for a table with the SHOW TABLE
STATUS statement or with myisamchk -dv tbl_name.

If you need a MyISAM table that will be larger than 4GB in size (and your operating system
supports large files), the CREATE TABLE statement allows AVG_ROW_LENGTH and MAX_ROWS
options. You can also change these options with ALTER TABLE after the table has been creat-
ed, to increase the table’s maximum allowable size.

Other ways to work around file-size limits for MyISAM tables are as follows:

n If your large table is read-only, you can use myisampack to compress it. myisampack usu-
ally compresses a table by at least 50%, so you can have, in effect, much bigger tables.
myisampack also can merge multiple tables into a single table.

n Another way to get around the operating system file limit for MyISAM data files is by
using the RAID options.

02 6337 ch01 6/24/04 12:43 PM Page 10

TEAM LinG

111.2 Overview of the MySQL Database Management System

n MySQL includes a MERGE library that allows you to handle a collection of MyISAM tables
that have identical structure as a single MERGE table.

1.2.5 Year 2000 Compliance
The MySQL Server itself has no problems with Year 2000 (Y2K) compliance:

n MySQL Server uses Unix time functions that handle dates into the year 2037 for TIMESTAMP
values. For DATE and DATETIME values, dates through the year 9999 are accepted.

n All MySQL date functions are implemented in one source file, sql/time.cc, and are
coded very carefully to be year 2000-safe.

n In MySQL 3.22 and later, the YEAR column type can store years 0 and 1901 to 2155 in
one byte and display them using two or four digits. All two-digit years are considered to
be in the range 1970 to 2069, which means that if you store 01 in a YEAR column,
MySQL Server treats it as 2001.

The following simple demonstration illustrates that MySQL Server has no problems with
DATE or DATETIME values through the year 9999, and no problems with TIMESTAMP values until
after the year 2030:

mysql> DROP TABLE IF EXISTS y2k;

Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE y2k (date DATE,

-> date_time DATETIME,

-> time_stamp TIMESTAMP);

Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO y2k VALUES

-> (‘1998-12-31’,’1998-12-31 23:59:59’,19981231235959),

-> (‘1999-01-01’,’1999-01-01 00:00:00’,19990101000000),

-> (‘1999-09-09’,’1999-09-09 23:59:59’,19990909235959),

-> (‘2000-01-01’,’2000-01-01 00:00:00’,20000101000000),

-> (‘2000-02-28’,’2000-02-28 00:00:00’,20000228000000),

-> (‘2000-02-29’,’2000-02-29 00:00:00’,20000229000000),

-> (‘2000-03-01’,’2000-03-01 00:00:00’,20000301000000),

-> (‘2000-12-31’,’2000-12-31 23:59:59’,20001231235959),

-> (‘2001-01-01’,’2001-01-01 00:00:00’,20010101000000),

-> (‘2004-12-31’,’2004-12-31 23:59:59’,20041231235959),

-> (‘2005-01-01’,’2005-01-01 00:00:00’,20050101000000),

-> (‘2030-01-01’,’2030-01-01 00:00:00’,20300101000000),

-> (‘2040-01-01’,’2040-01-01 00:00:00’,20400101000000),

-> (‘9999-12-31’,’9999-12-31 23:59:59’,99991231235959);

Query OK, 14 rows affected (0.01 sec)

Records: 14 Duplicates: 0 Warnings: 2

02 6337 ch01 6/24/04 12:43 PM Page 11

TEAM LinG

12 CHAPTER 1 General Information

mysql> SELECT * FROM y2k;

+------------+---------------------+----------------+

| date | date_time | time_stamp |

+------------+---------------------+----------------+

| 1998-12-31 | 1998-12-31 23:59:59 | 19981231235959 |

| 1999-01-01 | 1999-01-01 00:00:00 | 19990101000000 |

| 1999-09-09 | 1999-09-09 23:59:59 | 19990909235959 |

| 2000-01-01 | 2000-01-01 00:00:00 | 20000101000000 |

| 2000-02-28 | 2000-02-28 00:00:00 | 20000228000000 |

| 2000-02-29 | 2000-02-29 00:00:00 | 20000229000000 |

| 2000-03-01 | 2000-03-01 00:00:00 | 20000301000000 |

| 2000-12-31 | 2000-12-31 23:59:59 | 20001231235959 |

| 2001-01-01 | 2001-01-01 00:00:00 | 20010101000000 |

| 2004-12-31 | 2004-12-31 23:59:59 | 20041231235959 |

| 2005-01-01 | 2005-01-01 00:00:00 | 20050101000000 |

| 2030-01-01 | 2030-01-01 00:00:00 | 20300101000000 |

| 2040-01-01 | 2040-01-01 00:00:00 | 00000000000000 |

| 9999-12-31 | 9999-12-31 23:59:59 | 00000000000000 |

+------------+---------------------+----------------+

14 rows in set (0.00 sec)

The final two TIMESTAMP column values are zero because the final year values (2040, 9999)
exceed the TIMESTAMP maximum. The TIMESTAMP data type, which is used to store the current
time, supports values that range from 19700101000000 to 20300101000000 on 32-bit machines
(signed value). On 64-bit machines, TIMESTAMP handles values up to 2106 (unsigned value).

Although MySQL Server itself is Y2K-safe, you may run into problems if you use it with
applications that are not Y2K-safe. For example, many old applications store or manipulate
years using two-digit values (which are ambiguous) rather than four-digit values. This prob-
lem may be compounded by applications that use values such as 00 or 99 as “missing” value
indicators. Unfortunately, these problems may be difficult to fix because different applica-
tions may be written by different programmers, each of whom may use a different set of
conventions and date-handling functions.

Thus, even though MySQL Server has no Y2K problems, it is the application’s responsibili-
ty to provide unambiguous input.

1.3 Overview of MySQL AB
MySQL AB is the company of the MySQL founders and main developers. MySQL AB was
originally established in Sweden by David Axmark, Allan Larsson, and Michael “Monty”
Widenius.

The developers of the MySQL server are all employed by the company. We are a virtual
organization with people in a dozen countries around the world. We communicate extensively
over the Internet every day with one another and with our users, supporters, and partners.

02 6337 ch01 6/24/04 12:43 PM Page 12

TEAM LinG

131.3 Overview of MySQL AB

We are dedicated to developing the MySQL database software and promoting it to new
users. MySQL AB owns the copyright to the MySQL source code, the MySQL logo and
trademark, and this manual. See Section 1.2, “Overview of the MySQL Database
Management System.”

The MySQL core values show our dedication to MySQL and Open Source.

These core values direct how MySQL AB works with the MySQL server software:

n To be the best and the most widely used database in the world
n To be available and affordable by all
n To be easy to use
n To be continuously improved while remaining fast and safe
n To be fun to use and improve
n To be free from bugs

These are the core values of the company MySQL AB and its employees:

n We subscribe to the Open Source philosophy and support the Open Source community
n We aim to be good citizens
n We prefer partners that share our values and mindset
n We answer email and provide support
n We are a virtual company, networking with others
n We work against software patents

The MySQL Web site (http://www.mysql.com/) provides the latest information about
MySQL and MySQL AB.

By the way, the “AB” part of the company name is the acronym for the Swedish “aktiebo-
lag,” or “stock company.” It translates to “MySQL, Inc.” In fact, MySQL, Inc. and MySQL
GmbH are examples of MySQL AB subsidiaries. They are located in the United States and
Germany, respectively.

1.3.1 The Business Model and Services of MySQL AB
One of the most common questions we encounter is, “How can you make a living from some-
thing you give away for free?” This is how:

n MySQL AB makes money on support, services, commercial licenses, and royalties.
n We use these revenues to fund product development and to expand the MySQL

business.

The company has been profitable since its inception. In October 2001, we accepted venture
financing from leading Scandinavian investors and a handful of business angels. This invest-
ment is used to solidify our business model and build a basis for sustainable growth.

02 6337 ch01 6/24/04 12:43 PM Page 13

TEAM LinG

14 CHAPTER 1 General Information

1.3.1.1 Support
MySQL AB is run and owned by the founders and main developers of the MySQL database.
The developers are committed to providing support to customers and other users in order
to stay in touch with their needs and problems. All our support is provided by qualified
developers. Really tricky questions are answered by Michael “Monty” Widenius, principal
author of the MySQL Server.

Paying customers receive high-quality support directly from MySQL AB. MySQL AB also
provides the MySQL mailing lists as a community resource where anyone may ask questions.

For more information and ordering support at various levels, see Section 1.4, “MySQL
Support and Licensing.”

1.3.1.2 Training and Certification
MySQL AB delivers MySQL and related training worldwide. We offer both open courses
and in-house courses tailored to the specific needs of your company. MySQL Training is
also available through our partners, the Authorized MySQL Training Centers.

Our training material uses the same sample databases used in our documentation and our
sample applications, and is always updated to reflect the latest MySQL version. Our trainers
are backed by the development team to guarantee the quality of the training and the contin-
uous development of the course material. This also ensures that no questions raised during
the courses remain unanswered.

Attending our training courses will enable you to achieve your MySQL application goals.
You will also:

n Save time
n Improve the performance of your applications
n Reduce or eliminate the need for additional hardware, decreasing cost
n Enhance security
n Increase customer and co-worker satisfaction
n Prepare yourself for MySQL Certification

If you are interested in our training as a potential participant or as a training partner,
please visit the training section at http://www.mysql.com/training/, or send email to
training@mysql.com.

For details about the MySQL Certification Program, please see http://www.mysql.com/
certification/.

02 6337 ch01 6/24/04 12:43 PM Page 14

TEAM LinG

151.3 Overview of MySQL AB

1.3.1.3 Consulting
MySQL AB and its Authorized Partners offer consulting services to users of MySQL Server
and to those who embed MySQL Server in their own software, all over the world.

Our consultants can help you design and tune your databases, construct efficient queries,
tune your platform for optimal performance, resolve migration issues, set up replication,
build robust transactional applications, and more. We also help customers embed MySQL
Server in their products and applications for large-scale deployment.

Our consultants work in close collaboration with our development team, which ensures the
technical quality of our professional services. Consulting assignments range from two-day
power-start sessions to projects that span weeks and months. Our expertise covers not only
MySQL Server, it also extends into programming and scripting languages such as PHP, Perl,
and more.

If you are interested in our consulting services or want to become a consulting partner,
please visit the consulting section of our Web site at http://www.mysql.com/consulting/ or
contact our consulting staff at consulting@mysql.com.

1.3.1.4 Commercial Licenses
The MySQL database is released under the GNU General Public License (GPL). This
means that the MySQL software can be used free of charge under the GPL. If you do not
want to be bound by the GPL terms (such as the requirement that your application must
also be GPL), you may purchase a commercial license for the same product from MySQL
AB; see https://order.mysql.com/. Since MySQL AB owns the copyright to the MySQL
source code, we are able to employ Dual Licensing, which means that the same product is
available under GPL and under a commercial license. This does not in any way affect the
Open Source commitment of MySQL AB. For details about when a commercial license is
required, please see Section 1.4.3, “MySQL Licenses.”

We also sell commercial licenses of third-party Open Source GPL software that adds value
to MySQL Server. A good example is the InnoDB transactional storage engine that offers
ACID support, row-level locking, crash recovery, multi-versioning, foreign key support, and
more.

1.3.1.5 Partnering
MySQL AB has a worldwide partner program that covers training courses, consulting and
support, publications, plus reselling and distributing MySQL and related products. MySQL
AB Partners get visibility on the http://www.mysql.com/ Web site and the right to use
special versions of the MySQL trademarks to identify their products and promote their
business.

If you are interested in becoming a MySQL AB Partner, please email partner@mysql.com.

02 6337 ch01 6/24/04 12:43 PM Page 15

TEAM LinG

16 CHAPTER 1 General Information

The word MySQL and the MySQL dolphin logo are trademarks of MySQL AB. See
Section 1.4.4, “MySQL AB Logos and Trademarks.” These trademarks represent a signifi-
cant value that the MySQL founders have built over the years.

The MySQL Web site (http://www.mysql.com/) is popular among developers and users. In
December 2003, we served 16 million page views. Our visitors represent a group that makes
purchase decisions and recommendations for both software and hardware. 12% of our visi-
tors authorize purchase decisions, and only 9% have no involvement at all in purchase deci-
sions. More than 65% have made one or more online business purchases within the last
half-year, and 70% plan to make one in the next few months.

1.3.2 Contact Information
The MySQL Web site (http://www.mysql.com/) provides the latest information about
MySQL and MySQL AB.

For press services and inquiries not covered in our news releases
(http://www.mysql.com/news-and-events/), please send email to press@mysql.com.

If you have a support contract with MySQL AB, you will get timely, precise answers to your
technical questions about the MySQL software. For more information, see Section 1.4.1,
“Support Offered by MySQL AB.” On our Web site, see http://www.mysql.com/support/,
or send email to sales@mysql.com.

For information about MySQL training, please visit the training section at
http://www.mysql.com/training/, or send email to training@mysql.com. See Section 1.3.1.2,
“Training and Certification.”

For information on the MySQL Certification Program, please see
http://www.mysql.com/certification/. See Section 1.3.1.2, “Training and Certification.”

If you’re interested in consulting, please visit the consulting section of our Web site at
http://www.mysql.com/consulting/, or send email to consulting@mysql.com. See Section
1.3.1.3, “Consulting.”

Commercial licenses may be purchased online at https://order.mysql.com/. There you will
also find information on how to fax your purchase order to MySQL AB. More information
about licensing can be found at http://www.mysql.com/products/pricing.html. If you have
questions regarding licensing or you want a quote for high-volume licensing, please fill in
the contact form on our Web site (http://www.mysql.com/), or send email to
licensing@mysql.com (for licensing questions) or to sales@mysql.com (for sales inquiries). See
Section 1.4.3, “MySQL Licenses.”

If you represent a business that is interested in partnering with MySQL AB, please send
email to partner@mysql.com. See Section 1.3.1.5, “Partnering.”

For more information on the MySQL trademark policy, refer to http://www.mysql.com/
company/trademark.html, or send email to trademark@mysql.com. See Section 1.4.4, “MySQL
AB Logos and Trademarks.”

02 6337 ch01 6/24/04 12:43 PM Page 16

TEAM LinG

171.4 MySQL Support and Licensing

If you are interested in any of the MySQL AB jobs listed in our jobs section (http://www.
mysql.com/company/jobs/), please send email to jobs@mysql.com. Please do not send your
CV as an attachment, but rather as plain text at the end of your email message.

For general discussion among our many users, please direct your attention to the appropri-
ate mailing list. See Section 1.7.1, “MySQL Mailing Lists.”

Reports of errors (often called “bugs”), as well as questions and comments, should be sent to
the general MySQL mailing list. See Section 1.7.1.1, “The MySQL Mailing Lists.” If you
have found a sensitive security bug in MySQL Server, please let us know immediately by
sending email to security@mysql.com. See Section 1.7.1.3, “How to Report Bugs or
Problems.”

If you have benchmark results that we can publish, please contact us via email at
benchmarks@mysql.com.

If you have suggestions concerning additions or corrections to this manual, please send them
to the documentation team via email at docs@mysql.com.

For questions or comments about the workings or content of the MySQL Web site
(http://www.mysql.com/), please send email to webmaster@mysql.com.

MySQL AB has a privacy policy, which can be read at http://www.mysql.com/company/
privacy.html. For any queries regarding this policy, please send email to privacy@mysql.com.

For all other inquiries, please send email to info@mysql.com.

1.4 MySQL Support and Licensing
This section describes MySQL support and licensing arrangements.

1.4.1 Support Offered by MySQL AB
Technical support from MySQL AB means individualized answers to your unique problems
direct from the software engineers who code the MySQL database engine.

We try to take a broad and inclusive view of technical support. Almost any problem involv-
ing MySQL software is important to us if it’s important to you. Typically, customers seek
help on how to get different commands and utilities to work, remove performance bottle-
necks, restore crashed systems, understand the impact of operating system or networking
issues on MySQL, set up best practices for backup and recovery, utilize APIs, and so on.
Our support covers only the MySQL server and our own utilities, not third-party products
that access the MySQL server, although we try to help with these where we can.

Detailed information about our various support options is given at http://www.
mysql.com/support/, where support contracts can also be ordered online. To contact our
sales staff, send email to sales@mysql.com.

02 6337 ch01 6/24/04 12:43 PM Page 17

TEAM LinG

18 CHAPTER 1 General Information

Technical support is like life insurance. You can live happily without it for years. However,
when your hour arrives, it becomes critically important, but it’s too late to buy it. If you use
MySQL Server for important applications and encounter sudden difficulties, it may be too
time-consuming to figure out all the answers yourself. You may need immediate access to
the most experienced MySQL troubleshooters available, those employed by MySQL AB.

1.4.2 Copyrights and Licenses Used by MySQL
MySQL AB owns the copyright to the MySQL source code, the MySQL logos and trade-
marks, and this manual. See Section 1.3, “Overview of MySQL AB.” Several different
licenses are relevant to the MySQL distribution:

1. All the MySQL-specific source in the server, the mysqlclient library and the client, as
well as the GNU readline library, are covered by the GNU General Public License.
See http://www.fsf.org/licenses/. The text of this license can be found as the file
COPYING in MySQL distributions.

2. The GNU getopt library is covered by the GNU Lesser General Public License. See
http://www.fsf.org/licenses/.

3. Some parts of the source (the regexp library) are covered by a Berkeley-style copyright.

4. Older versions of MySQL (3.22 and earlier) are subject to a stricter license
(http://www.mysql.com/products/mypl.html). See the documentation of the specific ver-
sion for information.

5. The MySQL Reference Manual is not distributed under a GPL-style license. Use of the
manual is subject to the following terms:

n Conversion to other formats is allowed, but the actual content may not be altered
or edited in any way.

n You may create a printed copy for your own personal use.
n For all other uses, such as selling printed copies or using (parts of) the manual in

another publication, prior written agreement from MySQL AB is required.

Please send an email message to docs@mysql.com for more information or if you are
interested in doing a translation.

For information about how the MySQL licenses work in practice, please refer to Section
1.4.3, “MySQL Licenses,” and Section 1.4.4, “MySQL AB Logos and Trademarks.”

1.4.3 MySQL Licenses
The MySQL software is released under the GNU General Public License (GPL), which is
probably the best known Open Source license. The formal terms of the GPL license can be
found at http://www.fsf.org/licenses/. See also http://www.fsf.org/licenses/gpl-faq.html
and http://www.gnu.org/philosophy/enforcing-gpl.html.

02 6337 ch01 6/24/04 12:43 PM Page 18

TEAM LinG

191.4 MySQL Support and Licensing

Our GPL licensing is supported by an optional license exception that enables many
Free/Libre and Open Source Software (“FLOSS”) applications to include the GPL-licensed
MySQL client libraries despite the fact that not all FLOSS licenses are compatible with the
GPL. For details, see http://www.mysql.com/products/licensing/foss-exception.html.

Because the MySQL software is released under the GPL, it may often be used for free, but
for certain uses you may want or need to buy commercial licenses from MySQL AB at
https://order.mysql.com/. See http://www.mysql.com/products/licensing.html for more
information.

Older versions of MySQL (3.22 and earlier) are subject to a stricter license (http://www.
mysql.com/products/mypl.html). See the documentation of the specific version for information.

Please note that the use of the MySQL software under commercial license, GPL, or the old
MySQL license does not automatically give you the right to use MySQL AB trademarks.
See Section 1.4.4, “MySQL AB Logos and Trademarks.”

1.4.3.1 Using the MySQL Software Under a Commercial License
The GPL license is contagious in the sense that when a program is linked to a GPL pro-
gram, all the source code for all the parts of the resulting product must also be released
under the GPL. If you do not follow this GPL requirement, you break the license terms and
forfeit your right to use the GPL program altogether. You also risk damages.

You need a commercial license under these conditions:

n When you link a program with any GPL code from the MySQL software and don’t
want the resulting product to be licensed under GPL, perhaps because you want to
build a commercial product or keep the added non-GPL code closed source for other
reasons. When purchasing commercial licenses, you are not using the MySQL software
under GPL even though it’s the same code.

n When you distribute a non-GPL application that works only with the MySQL software
and ship it with the MySQL software. This type of solution is considered to be linking
even if it’s done over a network.

n When you distribute copies of the MySQL software without providing the source code
as required under the GPL license.

n When you want to support the further development of the MySQL database even if
you don’t formally need a commercial license. Purchasing support directly from
MySQL AB is another good way of contributing to the development of the MySQL
software, with immediate advantages for you. See Section 1.4.1, “Support Offered by
MySQL AB.”

Our GPL licensing is supported by an optional license exception that enables many
Free/Libre and Open Source Software (“FLOSS”) applications to include the GPL-licensed
MySQL client libraries despite the fact that not all FLOSS licenses are compatible with the
GPL. For details, see http://www.mysql.com/products/licensing/foss-exception.html.

02 6337 ch01 6/24/04 12:43 PM Page 19

TEAM LinG

20 CHAPTER 1 General Information

If you require a commercial license, you will need one for each installation of the MySQL
software. This covers any number of CPUs on a machine, and there is no artificial limit on
the number of clients that connect to the server in any way.

For commercial licenses, please visit our Web site at http://www.mysql.com/products/
licensing.html. For support contracts, see http://www.mysql.com/support/. If you have
special needs, please contact our sales staff via email at sales@mysql.com.

1.4.3.2 Using the MySQL Software for Free Under GPL
You can use the MySQL software for free under the GPL if you adhere to the conditions of the
GPL. For additional details about the GPL, including answers to common questions, see the
generic FAQ from the Free Software Foundation at http://www.fsf.org/licenses/gpl-faq.html.

Our GPL licensing is supported by an optional license exception that enables many
Free/Libre and Open Source Software (“FLOSS”) applications to include the GPL-licensed
MySQL client libraries despite the fact that not all FLOSS licenses are compatible with the
GPL. For details, see http://www.mysql.com/products/licensing/foss-exception.html.

Common uses of the GPL include:

n When you distribute both your own application and the MySQL source code under the
GPL with your product.

n When you distribute the MySQL source code bundled with other programs that are not
linked to or dependent on the MySQL system for their functionality even if you sell the
distribution commercially. This is called “mere aggregation” in the GPL license.

n When you are not distributing any part of the MySQL system, you can use it for free.
n When you are an Internet Service Provider (ISP), offering Web hosting with MySQL

servers for your customers. We encourage people to use ISPs that have MySQL support,
because doing so will give them the confidence that their ISP will, in fact, have the
resources to solve any problems they may experience with the MySQL installation. Even
if an ISP does not have a commercial license for MySQL Server, their customers should
at least be given read access to the source of the MySQL installation so that the cus-
tomers can verify that it is correctly patched.

n When you use the MySQL database software in conjunction with a Web server, you do
not need a commercial license (so long as it is not a product you distribute). This is true
even if you run a commercial Web server that uses MySQL Server, because you are not
distributing any part of the MySQL system. However, in this case we would like you to
purchase MySQL support because the MySQL software is helping your enterprise.

If your use of MySQL database software does not require a commercial license, we encour-
age you to purchase support from MySQL AB anyway. This way you contribute toward
MySQL development and also gain immediate advantages for yourself. See Section 1.4.1,
“Support Offered by MySQL AB.”

02 6337 ch01 6/24/04 12:43 PM Page 20

TEAM LinG

211.4 MySQL Support and Licensing

If you use the MySQL database software in a commercial context such that you profit by its use,
we ask that you further the development of the MySQL software by purchasing some level of
support. We feel that if the MySQL database helps your business, it is reasonable to ask that you
help MySQL AB. (Otherwise, if you ask us support questions, you are not only using for free
something into which we’ve put a lot a work, you’re asking us to provide free support, too.)

1.4.4 MySQL AB Logos and Trademarks
Many users of the MySQL database want to display the MySQL AB dolphin logo on their Web
sites, books, or boxed products. We welcome and encourage this, although it should be noted that
the word MySQL and the MySQL dolphin logo are trademarks of MySQL AB and may only be
used as stated in our trademark policy at http://www.mysql.com/company/trademark.html.

1.4.4.1 The Original MySQL Logo
The MySQL dolphin logo was designed by the Finnish advertising agency Priority in 2001.
The dolphin was chosen as a suitable symbol for the MySQL database management system,
which is like a smart, fast, and lean animal, effortlessly navigating oceans of data. We also hap-
pen to like dolphins.

The original MySQL logo may only be used by representatives of MySQL AB and by those
having a written agreement allowing them to do so.

1.4.4.2 MySQL Logos That May Be Used Without Written Permission
We have designed a set of special Conditional Use logos that may be downloaded from our Web
site at http://www.mysql.com/press/logos.html and used on third-party Web sites without written
permission from MySQL AB. The use of these logos is not entirely unrestricted but, as the name
implies, subject to our trademark policy that is also available on our Web site. You should read
through the trademark policy if you plan to use them. The requirements are basically as follows:

n Use the logo you need as displayed on the http://www.mysql.com/ site. You may scale it
to fit your needs, but may not change colors or design, or alter the graphics in any way.

n Make it evident that you, and not MySQL AB, are the creator and owner of the site that
displays the MySQL trademark.

n Don’t use the trademark in a way that is detrimental to MySQL AB or to the value of
MySQL AB trademarks. We reserve the right to revoke the right to use the MySQL AB
trademark.

n If you use the trademark on a Web site, make it clickable, leading directly to
http://www.mysql.com/.

n If you use the MySQL database under GPL in an application, your application must be
Open Source and must be able to connect to a MySQL server.

Contact us via email at trademark@mysql.com to inquire about special arrangements to fit your
needs.

02 6337 ch01 6/24/04 12:43 PM Page 21

TEAM LinG

22 CHAPTER 1 General Information

1.4.4.3 When You Need Written Permission to Use MySQL Logos
You need written permission from MySQL AB before using MySQL logos in the following
cases:

n When displaying any MySQL AB logo anywhere except on your Web site.
n When displaying any MySQL AB logo except the Conditional Use logos (mentioned

previously) on Web sites or elsewhere.

Due to legal and commercial reasons, we monitor the use of MySQL trademarks on prod-
ucts, books, and other items. We usually require a fee for displaying MySQL AB logos on
commercial products, since we think it is reasonable that some of the revenue is returned to
fund further development of the MySQL database.

1.4.4.4 MySQL AB Partnership Logos
MySQL partnership logos may be used only by companies and persons having a written
partnership agreement with MySQL AB. Partnerships include certification as a MySQL
trainer or consultant. For more information, please see Section 1.3.1.5, “Partnering.”

1.4.4.5 Using the Word MySQL in Printed Text or Presentations
MySQL AB welcomes references to the MySQL database, but it should be noted that the
word MySQL is a trademark of MySQL AB. Because of this, you must append the trademark
notice symbol (®) to the first or most prominent use of the word MySQL in a text and, where
appropriate, state that MySQL is a trademark of MySQL AB. For more information, please
refer to our trademark policy at http://www.mysql.com/company/trademark.html.

1.4.4.6 Using the Word MySQL in Company and Product Names
Use of the word MySQL in company or product names or in Internet domain names is not
allowed without written permission from MySQL AB.

1.5 MySQL Development Roadmap
This section provides a snapshot of the MySQL development roadmap, including major fea-
tures implemented or planned for MySQL 4.0, 4.1, 5.0, and 5.1. The following sections
provide information for each release series.

The production release series is MySQL 4.0, which was declared stable for production use
as of Version 4.0.12, released in March 2003. This means that future 4.0 development will
be limited only to making bug fixes. For the older MySQL 3.23 series, only critical bug fixes
will be made.

Active MySQL development currently is taking place in the MySQL 4.1 and 5.0 release
series. This means that new features are being added to MySQL 4.1 and MySQL 5.0.
4.1 is available in beta status, and 5.0 is avalable in alpha status.

02 6337 ch01 6/24/04 12:43 PM Page 22

TEAM LinG

231.5 MySQL Development Roadmap

Plans for some of the most requested features are summarized in the following table:

Feature MySQL Series

Unions 4.0

Subqueries 4.1

R-trees 4.1 (for MyISAM tables)

Stored procedures 5.0

Views 5.0

Cursors 5.0

Foreign keys 5.1 (already implemented in 3.23 for InnoDB)

Triggers 5.1

Full outer join 5.1

Constraints 5.1

1.5.1 MySQL 4.0 in a Nutshell
Long awaited by our users, MySQL Server 4.0 is now available in production status.

MySQL 4.0 is available for download at http://dev.mysql.com/ and from our mirrors.
MySQL 4.0 has been tested by a large number of users and is in production use at many
large sites.

The major new features of MySQL Server 4.0 are geared toward our existing business and
community users, enhancing the MySQL database software as the solution for mission-critical,
heavy-load database systems. Other new features target the users of embedded databases.

1.5.1.1 Features Available in MySQL 4.0
n Speed enhancements

n MySQL 4.0 has a query cache that can give a huge speed boost to applications
with repetitive queries.

n Version 4.0 further increases the speed of MySQL Server in a number of areas,
such as bulk INSERT statements, searching on packed indexes, full-text searching
(using FULLTEXT indexes), and COUNT(DISTINCT).

n Embedded MySQL Server introduced
n The new Embedded Server library can easily be used to create standalone and

embedded applications. The embedded server provides an alternative to using
MySQL in a client/server environment.

n InnoDB storage engine as standard
n The InnoDB storage engine is now offered as a standard feature of the MySQL

server. This means full support for ACID transactions, foreign keys with cascading
UPDATE and DELETE, and row-level locking are now standard features.

02 6337 ch01 6/24/04 12:43 PM Page 23

TEAM LinG

24 CHAPTER 1 General Information

n New functionality
n The enhanced FULLTEXT search properties of MySQL Server 4.0 enables FULLTEXT

indexing of large text masses with both binary and natural-language searching
logic. You can customize minimal word length and define your own stop word lists
in any human language, enabling a new set of applications to be built with MySQL
Server.

n Standards compliance, portability, and migration
n Many users will also be happy to learn that MySQL Server now supports the UNION

statement, a long-awaited standard SQL feature.
n MySQL now runs natively on the Novell NetWare platform beginning with

NetWare 6.0.
n Features to simplify migration from other database systems to MySQL Server

include TRUNCATE TABLE (as in Oracle).
n Internationalization

n Our German, Austrian, and Swiss users will note that MySQL 4.0 now supports a
new character set, latin1_de, which ensures that the German sorting order sorts
words with umlauts in the same order as do German telephone books.

n Usability enhancements

In the process of implementing features for new users, we have not forgotten requests
from our loyal community of existing users.

n Most mysqld parameters (startup options) can now be set without taking down the
server. This is a convenient feature for database administrators (DBAs).

n Multiple-table DELETE and UPDATE statements have been added.
n On Windows, symbolic link handling at the database level is enabled by default.

On Unix, the MyISAM storage engine now supports symbolic linking at the table
level (and not just the database level as before).

n SQL_CALC_FOUND_ROWS and FOUND_ROWS() are new functions that make it possible to
find out the number of rows a SELECT query that includes a LIMIT clause would
have returned without that clause.

The news section of the online manual includes a more in-depth list of features. See
http://dev.mysql.com/doc/mysql/en/News.html.

1.5.1.2 The Embedded MySQL Server
The libmysqld embedded server library makes MySQL Server suitable for a vastly expanded
realm of applications. By using this library, developers can embed MySQL Server into various
applications and electronics devices, where the end user has no knowledge of there actually
being an underlying database. Embedded MySQL Server is ideal for use behind the scenes in
Internet appliances, public kiosks, turnkey hardware/software combination units, high per-
formance Internet servers, self-contained databases distributed on CD-ROM, and so on.

02 6337 ch01 6/24/04 12:43 PM Page 24

TEAM LinG

251.5 MySQL Development Roadmap

Many users of libmysqld will benefit from the MySQL Dual Licensing. For those not wish-
ing to be bound by the GPL, the software is also made available under a commercial license.
The embedded MySQL library uses the same interface as the normal client library, so it is
convenient and easy to use.

1.5.2 MySQL 4.1 in a Nutshell
MySQL Server 4.0 laid the foundation for new features implemented in MySQL 4.1, such
as subqueries and Unicode support, and for the work on stored procedures being done in
Version 5.0. These features come at the top of the wish list of many of our customers.

With these additions, critics of the MySQL Database Server have to be more imaginative
than ever in pointing out deficiencies in the MySQL database management system. Already
well-known for its stability, speed, and ease of use, MySQL Server is able to fulfill the
requirement checklists of very demanding buyers.

1.5.2.1 Features Available in MySQL 4.1
The MySQL 4.1 features listed in this section already are implemented. A few other
MySQL 4.1 features are still planned. See Section 1.6.1, “New Features Planned for 4.1.”

The set of features being added to Version 4.1 is mostly fixed. Most new features being
coded are or will be available in MySQL 5.0. See Section 1.6.2, “New Features Planned
for 5.0.”

MySQL 4.1 is currently in the beta stage, and binaries are available for download at
http://dev.mysql.com/downloads/mysql/4.1.html. All binary releases pass our extensive test
suite without any errors on the platforms on which we test.

For those wishing to use the most recent development source for MySQL 4.1, we make our
4.1 BitKeeper repository publicly available.

MySQL 4.1 is going through the steps of Alpha (during which time new features might still
be added/changed), Beta (when we have feature freeze and only bug corrections will be
done), and Gamma (indicating that a production release is just weeks ahead). At the end of
this process, MySQL 4.1 will become the new production release.

n Support for subqueries and derived tables
n A “subquery” is a SELECT statement nested within another statement. A “derived

table” (an unnamed view) is a subquery in the FROM clause of another statement.
n Speed enhancements

n Faster binary client/server protocol with support for prepared statements and
parameter binding.

n BTREE indexing is now supported for HEAP tables, significantly improving response
time for non-exact searches.

02 6337 ch01 6/24/04 12:43 PM Page 25

TEAM LinG

26 CHAPTER 1 General Information

n New functionality
n CREATE TABLE tbl_name2 LIKE tbl_name1 allows you to create, with a single state-

ment, a new table with a structure exactly like that of an existing table.
n The MyISAM storage engine now supports OpenGIS spatial types for storing geo-

graphical data.
n Replication can be done over SSL connections.

n Standards compliance, portability, and migration
n The new client/server protocol adds the ability to pass multiple warnings to the

client, rather than only a single result. This makes it much easier to track problems
that occur in operations such as bulk data loading.

n SHOW WARNINGS shows warnings for the last command.
n Internationalization

n To support applications that require the use of local languages, the MySQL
software now offers extensive Unicode support through the utf8 and ucs2
character sets.

n Character sets can now be defined per column, table, and database. This allows for
a high degree of flexibility in application design, particularly for multi-language
Web sites.

n Usability enhancements
n In response to popular demand, we have added a server-based HELP command that

can be used to get help information for SQL statements. The advantage of having
this information on the server side is that the information is always applicable to
the particular server version that you actually are using. Because this information is
available by issuing an SQL statement, any client can be written to access it. For
example, the help command of the mysql command-line client has been modified
to have this capability.

n In the new client/server protocol, multiple statements can be issued with a single
call.

n The new client/server protocol also supports returning multiple result sets. This
might occur as a result of sending multiple statements, for example.

n A new INSERT ... ON DUPLICATE KEY UPDATE ... syntax has been implemented.
This allows you to UPDATE an existing row if the INSERT would have caused a dupli-
cate in a PRIMARY or UNIQUE index.

n A new aggregate function, GROUP_CONCAT(), adds the extremely useful capability of
concatenating column values from grouped rows into a single result string.

The news section of the online manual includes a more in-depth list of features. See
http://dev.mysql.com/doc/mysql/en/News.html.

02 6337 ch01 6/24/04 12:43 PM Page 26

TEAM LinG

271.6 MySQL and the Future (the TODO)

1.5.3 MySQL 5.0: The Next Development Release
New development for MySQL is focused on the 5.0 release, featuring stored procedures and
other new features. See Section 1.6.2, “New Features Planned for 5.0.”

For those wishing to take a look at the bleeding edge of MySQL development, we make our
BitKeeper repository for MySQL Version 5.0 publicly available. As of December 2003,
binary builds of Version 5.0 are also available.

1.6 MySQL and the Future (the TODO)
This section summarizes the features that we plan to implement in MySQL Server. The
items are ordered by release series. Within a list, items are shown in approximately the
order they will be done.

Note: If you are an enterprise-level user with an urgent need for a particular feature, please
contact sales@mysql.com to discuss sponsoring options. Targeted financing by sponsor com-
panies allows us to allocate additional resources for specific purposes. One example of a fea-
ture sponsored in the past is replication.

1.6.1 New Features Planned for 4.1
The following features are not yet implemented in MySQL 4.1, but are planned for imple-
mentation as MySQL 4.1 moves into its beta phase. For a list what is already done in
MySQL 4.1, see Section 1.5.2.1, “Features Available in MySQL 4.1.”

n Stable OpenSSL support (MySQL 4.0 supports rudimentary, not 100% tested, support
for OpenSSL).

n More testing of prepared statements.
n More testing of multiple character sets for one table.

1.6.2 New Features Planned for 5.0
The following features are planned for inclusion into MySQL 5.0. Some of the features such
as stored procedures are complete and are included in MySQL 5.0 alpha, which is available
now. Others such as cursors are only partially available. Expect these and other features to
mature and be fully supported in upcoming releases.

Note that because we have many developers that are working on different projects, there
will also be many additional features. There is also a small chance that some of these fea-
tures will be added to MySQL 4.1. For a list what is already done in MySQL 4.1, see
Section 1.5.2.1, “Features Available in MySQL 4.1.”

02 6337 ch01 6/24/04 12:43 PM Page 27

TEAM LinG

28 CHAPTER 1 General Information

For those wishing to take a look at the bleeding edge of MySQL development, we make our
BitKeeper repository for MySQL Version 5.0 publicly available. As of December 2003,
binary builds of Version 5.0 are also available.

n Stored Procedures
n Stored procedures currently are implemented, based on the SQL:2003 standard.

n New functionality
n Elementary cursor support.
n The ability to specify explicitly for MyISAM tables that an index should be created as

an RTREE index. (In MySQL 4.1, RTREE indexes are used internally for geometrical
data that use GIS data types, but cannot be created on request.)

n Dynamic length rows for MEMORY tables.
n Standards compliance, portability, and migration

n Add true VARCHAR support (column lengths longer than 255, and no stripping of
trailing whitespace). There is already support for this in the MyISAM storage engine,
but it is not yet available at the user level.

n Speed enhancements
n SHOW COLUMNS FROM tbl_name (used by the mysql client to allow expansions of col-

umn names) should not open the table, only the definition file. This will require
less memory and be much faster.

n Allow DELETE on MyISAM tables to use the record cache. To do this, we need to
update the threads record cache when we update the .MYD file.

n Better support for MEMORY tables:
n Dynamic length rows.
n Faster row handling (less copying).

n Usability enhancements
n Resolving the issue of RENAME TABLE on a table used in an active MERGE table possi-

bly corrupting the table.

The news section of the online manual includes a more in-depth list of features. See
http://dev.mysql.com/doc/mysql/en/News.html.

1.6.3 New Features Planned for 5.1
n New functionality

n FOREIGN KEY support for all table types, not just InnoDB.
n Column-level constraints.
n Online backup with very low performance penalty. The online backup will make it

easy to add a new replication slave without taking down the master.

02 6337 ch01 6/24/04 12:43 PM Page 28

TEAM LinG

291.6 MySQL and the Future (the TODO)

n Speed enhancements
n New text-based table definition file format (.frm files) and a table cache for table

definitions. This will enable us to do faster queries of table structures and do more
efficient foreign key support.

n Optimize the BIT type to take one bit. (BIT now takes one byte; it is treated as a
synonym for TINYINT.)

n Usability enhancements
n Add options to the client/server protocol to get progress notes for long running

commands.
n Implement RENAME DATABASE. To make this safe for all storage engines, it should

work as follows:

1. Create the new database.

2. For every table, do a rename of the table to another database, as we do with
the RENAME command.

3. Drop the old database.
n New internal file interface change. This will make all file handling much more

general and make it easier to add extensions like RAID.

1.6.4 New Features Planned for the Near Future
n New functionality
n Views, implemented in stepwise fashion up to full functionality.

n Oracle-like CONNECT BY PRIOR to search tree-like (hierarchical) structures.
n Add all missing standard SQL and ODBC 3.0 types.
n Add SUM(DISTINCT).
n INSERT SQL_CONCURRENT and mysqld --concurrent-insert to do a concurrent insert

at the end of a table if the table is read-locked.
n Allow variables to be updated in UPDATE statements. For example: UPDATE foo SET

@a:=a+b,a=@a, b=@a+c.
n Change when user variables are updated so that you can use them with GROUP BY,

as in the following statement: SELECT id, @a:=COUNT(*), SUM(sum_col)/@a FROM
tbl_name GROUP BY id.

n Add an IMAGE option to LOAD DATA INFILE to not update TIMESTAMP and
AUTO_INCREMENT columns.

n Add LOAD DATA INFILE ... UPDATE syntax that works like this:
n For tables with primary keys, if an input record contains a primary key value,

existing rows matching that primary key value are updated from the remainder
of the input columns. However, columns corresponding to columns that are
missing from the input record are not touched.

02 6337 ch01 6/24/04 12:43 PM Page 29

TEAM LinG

30 CHAPTER 1 General Information

n For tables with primary keys, if an input record does not contain the primary
key value or is missing some part of the key, the record is treated as LOAD DATA
INFILE ... REPLACE INTO.

n Make LOAD DATA INFILE understand syntax like this:
LOAD DATA INFILE ‘file_name.txt’ INTO TABLE tbl_name

TEXT_FIELDS (text_col1, text_col2, text_col3)

SET table_col1=CONCAT(text_col1, text_col2),

table_col3=23

IGNORE text_col3

This can be used to skip over extra columns in the text file, or update columns
based on expressions of the read data.

n New functions for working with SET type columns:
n ADD_TO_SET(value,set)

n REMOVE_FROM_SET(value,set)

n If you abort mysql in the middle of a query, you should open another connection
and kill the old running query. Alternatively, an attempt should be made to detect
this in the server.

n Add a storage engine interface for table information so that you can use it as a sys-
tem table. This would be a bit slow if you requested information about all tables,
but very flexible. SHOW INFO FROM tbl_name for basic table information should be
implemented.

n Allow SELECT a FROM tbl_name1 LEFT JOIN tbl_name2 USING (a); in this case a is
assumed to come from tbl_name1.

n DELETE and REPLACE options to the UPDATE statement (this will delete rows when a
duplicate-key error occurs while updating).

n Change the format of DATETIME to store fractions of seconds.
n Make it possible to use the new GNU regexp library instead of the current one

(the new library should be much faster than the current one).
n Standards compliance, portability, and migration

n Don’t add automatic DEFAULT values to columns. Produce an error for any INSERT
statement that is missing a value for a column that has no DEFAULT.

n Add ANY(), EVERY(), and SOME() group functions. In standard SQL, these work only
on boolean columns, but we can extend these to work on any columns or expres-
sions by treating a value of zero as FALSE and non-zero values as TRUE.

n Fix the type of MAX(column) to be the same as the column type:
mysql> CREATE TABLE t1 (a DATE);

mysql> INSERT INTO t1 VALUES (NOW());

mysql> CREATE TABLE t2 SELECT MAX(a) FROM t1;

mysql> SHOW COLUMNS FROM t2;

02 6337 ch01 6/24/04 12:43 PM Page 30

TEAM LinG

311.6 MySQL and the Future (the TODO)

n Speed enhancements
n Don’t allow more than a defined number of threads to run MyISAM recovery at the

same time.
n Change INSERT INTO ... SELECT to optionally use concurrent inserts.
n Add an option to periodically flush key pages for tables with delayed keys if they

haven’t been used in a while.
n Allow join on key parts (optimization issue).
n Add a log file analyzer that can extract information about which tables are hit most

often, how often multiple-table joins are executed, and so on. This should help
users identify areas of table design that could be optimized to execute much more
efficient queries.

n Usability enhancements
n Return the original column types when doing SELECT MIN(column) ... GROUP BY.
n Make it possible to specify long_query_time with a granularity in microseconds.
n Link the myisampack code into the server so that it can perform PACK or COMPRESS

operations.
n Add a temporary key buffer cache during INSERT/DELETE/UPDATE so that we can

gracefully recover if the index file gets full.
n If you perform an ALTER TABLE on a table that is symlinked to another disk, create

temporary tables on that disk.
n Implement a DATE/DATETIME type that handles time zone information properly, to

make dealing with dates in different time zones easier.
n Fix configure so that all libraries (like MyISAM) can be compiled without threads.
n Allow user variables as LIMIT arguments; for example, LIMIT @a,@b.
n Automatic output from mysql to a Web browser.
n LOCK DATABASES (with various options).
n Many more variables for SHOW STATUS. Record reads and updates. Selects on a single

table and selects with joins. Mean number of tables in selects. Number of ORDER BY
and GROUP BY queries.

n mysqladmin copy database new-database; this requires a COPY operation to be
added to mysqld.

n Processlist output should indicate the number of queries/threads.
n SHOW HOSTS for printing information about the hostname cache.
n Change table names from empty strings to NULL for calculated columns.
n Don’t use Item_copy_string on numerical values to avoid number-to-string-to-number

conversion in case of SELECT COUNT(*)*(id+0) FROM tbl_name GROUP BY id.

02 6337 ch01 6/24/04 12:43 PM Page 31

TEAM LinG

32 CHAPTER 1 General Information

n Change so that ALTER TABLE doesn’t abort clients that execute INSERT DELAYED.
n Fix so that when columns are referenced in an UPDATE clause, they contain the old

values from before the update started.
n New operating systems

n Port the MySQL clients to LynxOS.

1.6.5 New Features Planned for the Mid-Term Future
n Implement function: get_changed_tables(timeout,table1,table2,...).
n Change reading through tables to use mmap() when possible. Now only compressed

tables use mmap().
n Make the automatic timestamp code nicer. Add timestamps to the update log with SET

TIMESTAMP=val;.
n Use read/write mutex in some places to get more speed.
n Automatically close some tables if a table, temporary table, or temporary file gets error

23 (too many open files).
n Better constant propagation. When an occurrence of col_name=n is found in an expres-

sion, for some constant n, replace other occurrences of col_name within the expression
with n. Currently, this is done only for some simple cases.

n Change all const expressions with calculated expressions if possible.
n Optimize key = expr comparisons. At the moment, only key = column or key = constant

comparisons are optimized.
n Join some of the copy functions for nicer code.
n Change sql_yacc.yy to an inline parser to reduce its size and get better error messages.
n Change the parser to use only one rule per different number of arguments in function.
n Use of full calculation names in the order part (for Access97).
n MINUS, INTERSECT, and FULL OUTER JOIN. (Currently UNION and LEFT|RIGHT OUTER JOIN

are supported.)
n Allow SQL_OPTION MAX_SELECT_TIME=val, for placing a time limit on a query.
n Allow updates to be logged to a database.
n Enhance LIMIT to allow retrieval of data from the end of a result set.
n Alarm around client connect/read/write functions.
n Please note the changes to mysqld_safe: According to FSSTND (which Debian tries to

follow), PID files should go into /var/run/<progname>.pid and log files into /var/log.
It would be nice if you could put the “DATADIR” in the first declaration of “pidfile”
and “log” so that the placement of these files can be changed with a single statement.

02 6337 ch01 6/24/04 12:43 PM Page 32

TEAM LinG

331.7 MySQL Information Sources

n Allow a client to request logging.
n Allow the LOAD DATA INFILE statement to read files that have been compressed with

gzip.
n Fix sorting and grouping of BLOB columns (partly solved now).
n Change to use semaphores when counting threads. One should first implement a sema-

phore library for MIT-pthreads.
n Add full support for JOIN with parentheses.
n As an alternative to the one-thread-per-connection model, manage a pool of threads to

handle queries.
n Allow GET_LOCK() to obtain more than one lock. When doing this, it is also necessary to

handle the possible deadlocks this change will introduce.

1.6.6 New Features We Don’t Plan to Implement
We aim toward full compliance with ANSI/ISO SQL. There are no features we plan not to
implement.

1.7 MySQL Information Sources

1.7.1 MySQL Mailing Lists
This section introduces the MySQL mailing lists and provides guidelines as to how the lists
should be used. When you subscribe to a mailing list, you will receive all postings to the list
as email messages. You can also send your own questions and answers to the list.

1.7.1.1 The MySQL Mailing Lists
To subscribe to or unsubscribe from any of the mailing lists described in this section, visit
http://lists.mysql.com/. Please do not send messages about subscribing or unsubscribing to
any of the mailing lists, because such messages are distributed automatically to thousands of
other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the site may have
a local mailing list, so that messages sent from lists.mysql.com to your site are propagated
to the local list. In such cases, please contact your system administrator to be added to or
dropped from the local MySQL list.

If you wish to have traffic for a mailing list go to a separate mailbox in your mail program,
set up a filter based on the message headers. You can use either the List-ID: or Delivered-
To: headers to identify list messages.

02 6337 ch01 6/24/04 12:43 PM Page 33

TEAM LinG

34 CHAPTER 1 General Information

The MySQL mailing lists are as follows:

n announce

This list is for announcements of new versions of MySQL and related programs. This
is a low-volume list to which all MySQL users should subscribe.

n mysql

This is the main list for general MySQL discussion. Please note that some topics are
better discussed on the more-specialized lists. If you post to the wrong list, you may not
get an answer.

n mysql-digest

This is the mysql list in digest form. Subscribing to this list means that you will get all
list messages, sent as one large mail message once a day.

n bugs

This list will be of interest to you if you want to stay informed about issues reported
since the last release of MySQL or if you want to be actively involved in the process of
bug hunting and fixing. See Section 1.7.1.3, “How to Report Bugs or Problems.”

n bugs-digest

This is the bugs list in digest form.
n internals

This list is for people who work on the MySQL code. This is also the forum for discus-
sions on MySQL development and for posting patches.

n internals-digest

This is the internals list in digest form.
n mysqldoc

This list is for people who work on the MySQL documentation: people from MySQL
AB, translators, and other community members.

n mysqldoc-digest

This is the mysqldoc list in digest form.
n benchmarks

This list is for anyone interested in performance issues. Discussions concentrate on
database performance (not limited to MySQL), but also include broader categories such
as performance of the kernel, filesystem, disk system, and so on.

n benchmarks-digest

This is the benchmarks list in digest form.

02 6337 ch01 6/24/04 12:43 PM Page 34

TEAM LinG

351.7 MySQL Information Sources

n packagers

This list is for discussions on packaging and distributing MySQL. This is the forum
used by distribution maintainers to exchange ideas on packaging MySQL and on ensur-
ing that MySQL looks and feels as similar as possible on all supported platforms and
operating systems.

n packagers-digest

This is the packagers list in digest form.
n java

This list is for discussions about the MySQL server and Java. It is mostly used to dis-
cuss JDBC drivers, including MySQL Connector/J.

n java-digest

This is the java list in digest form.
n win32

This list is for all topics concerning the MySQL software on Microsoft operating sys-
tems, such as Windows 9x, Me, NT, 2000, and XP.

n win32-digest

This is the win32 list in digest form.
n myodbc

This list is for all topics concerning connecting to the MySQL server with ODBC.
n myodbc-digest

This is the myodbc list in digest form.
n gui-tools

This list is for all topics concerning MySQL GUI tools, including MySQL
Administrator and the Control Center graphical client.

n gui-tools-digest

This is the mysqlcc list in digest form.
n plusplus

This list is for all topics concerning programming with the C++ API for MySQL.
n plusplus-digest

This is the plusplus list in digest form.
n msql-mysql-modules

This list is for all topics concerning the Perl support for MySQL with msql-mysql-
modules, which is now named DBD::mysql.

n msql-mysql-modules-digest

This is the msql-mysql-modules list in digest form.

02 6337 ch01 6/24/04 12:43 PM Page 35

TEAM LinG

36 CHAPTER 1 General Information

If you’re unable to get an answer to your questions from a MySQL mailing list, one option
is to purchase support from MySQL AB. This will put you in direct contact with MySQL
developers. See Section 1.4.1, “Support Offered by MySQL AB.”

The following table shows some MySQL mailing lists in languages other than English.
These lists are not operated by MySQL AB.

n mysql-france-subscribe@yahoogroups.com

A French mailing list.
n list@tinc.net

A Korean mailing list. Email subscribe mysql your@email.address to this list.
n mysql-de-request@lists.4t2.com

A German mailing list. Email subscribe mysql-de your@email.address to this list. You
can find information about this mailing list at http://www.4t2.com/mysql/.

n mysql-br-request@listas.linkway.com.br

A Portuguese mailing list. Email subscribe mysql-br your@email.address to this list.
n mysql-alta@elistas.net

A Spanish mailing list. Email subscribe mysql your@email.address to this list.

1.7.1.2 Asking Questions or Reporting Bugs
Before posting a bug report or question, please do the following:

n Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try to
keep the manual up to date by updating it frequently with solutions to newly found
problems. The change history (http://dev.mysql.com/doc/mysql/en/News.html) can be
particularly useful since it is quite possible that a newer version already contains a solu-
tion to your problem.

n Search in the bugs database at http://bugs.mysql.com/ to see whether the bug has
already been reported and fixed.

n Search the MySQL mailing list archives at http://lists.mysql.com/.
n You can also use http://www.mysql.com/search/ to search all the Web pages (including

the manual) that are located at the MySQL AB Web site.

If you can’t find an answer in the manual or the archives, check with your local MySQL
expert. If you still can’t find an answer to your question, please follow the guidelines on
sending mail to a MySQL mailing list, outlined in the next section, before contacting us.

1.7.1.3 How to Report Bugs or Problems
The normal place to report bugs is http://bugs.mysql.com/, which is the address for our
bugs database. This database is public, and can be browsed and searched by anyone. If you
log in to the system, you will also be able to enter new reports.

02 6337 ch01 6/24/04 12:43 PM Page 36

TEAM LinG

371.7 MySQL Information Sources

Writing a good bug report takes patience, but doing it right the first time saves time both for
us and for yourself. A good bug report, containing a full test case for the bug, makes it very
likely that we will fix the bug in the next release. This section will help you write your report
correctly so that you don’t waste your time doing things that may not help us much or at all.

We encourage everyone to use the mysqlbug script to generate a bug report (or a report
about any problem). mysqlbug can be found in the scripts directory (source distribution) and
in the bin directory under your MySQL installation directory (binary distribution). If you
are unable to use mysqlbug (for example, if you are running on Windows), it is still vital that
you include all the necessary information noted in this section (most importantly, a descrip-
tion of the operating system and the MySQL version).

The mysqlbug script helps you generate a report by determining much of the following infor-
mation automatically, but if something important is missing, please include it with your mes-
sage. Please read this section carefully and make sure that all the information described here
is included in your report.

Preferably, you should test the problem using the latest production or development version
of MySQL Server before posting. Anyone should be able to repeat the bug by just using
mysql test < script_file on the included test case or by running the shell or Perl script
that is included in the bug report.

All bugs posted in the bugs database at http://bugs.mysql.com/ will be corrected or docu-
mented in the next MySQL release. If only minor code changes are needed to correct a
problem, we may also post a patch that fixes the problem.

If you have found a sensitive security bug in MySQL, you can send email to security@mysql.com.

If you have a repeatable bug report, please report it to the bugs database at
http://bugs.mysql.com/. Note that even in this case it’s good to run the mysqlbug script first
to find information about your system. Any bug that we are able to repeat has a high chance
of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much informa-
tion, but not to one containing too little. People often omit facts because they think they
know the cause of a problem and assume that some details don’t matter. A good principle is
this: If you are in doubt about stating something, state it. It is faster and less troublesome to
write a couple more lines in your report than to wait longer for the answer if we must ask
you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of the
MySQL distribution used, and (b) not fully describing the platform on which the MySQL
server is installed (including the platform type and version number). This is highly relevant
information, and in 99 cases out of 100, the bug report is useless without it. Very often we get
questions like, “Why doesn’t this work for me?” Then we find that the feature requested
wasn’t implemented in that MySQL version, or that a bug described in a report has already

02 6337 ch01 6/24/04 12:43 PM Page 37

TEAM LinG

38 CHAPTER 1 General Information

been fixed in newer MySQL versions. Sometimes the error is platform-dependent; in such
cases, it is next to impossible for us to fix anything without knowing the operating system and
the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your
compiler, if it is related to the problem. Often people find bugs in compilers and think the
problem is MySQL-related. Most compilers are under development all the time and become
better version by version. To determine whether your problem depends on your compiler,
we need to know what compiler you use. Note that every compiling problem should be
regarded as a bug and reported accordingly.

It is most helpful when a good description of the problem is included in the bug report.
That is, give a good example of everything you did that led to the problem and describe, in
exact detail, the problem itself. The best reports are those that include a full example show-
ing how to reproduce the bug or problem.

If a program produces an error message, it is very important to include the message in your
report. If we try to search for something from the archives using programs, it is better that
the error message reported exactly matches the one that the program produces. (Even the
lettercase should be observed.) You should never try to reproduce from memory what the
error message was; instead, copy and paste the entire message into your report.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a
MyODBC trace file and send it with your report.

Please remember that many of the people who will read your report will do so using an 80-
column display. When generating reports or examples using the mysql command-line tool,
you should therefore use the --vertical option (or the \G statement terminator) for output
that would exceed the available width for such a display (for example, with the EXPLAIN
SELECT statement; see the example later in this section).

Please include the following information in your report:

n The version number of the MySQL distribution you are using (for example,
MySQL 4.0.12). You can find out which version you are running by executing
mysqladmin version. The mysqladmin program can be found in the bin directory
under your MySQL installation directory.

n The manufacturer and model of the machine on which you experience the problem.
n The operating system name and version. If you work with Windows, you can usually

get the name and version number by double-clicking your My Computer icon and
pulling down the Help/About Windows menu. For most Unix-like operating systems,
you can get this information by executing the command uname -a.

n Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include
these values.

02 6337 ch01 6/24/04 12:43 PM Page 38

TEAM LinG

391.7 MySQL Information Sources

n If you are using a source distribution of the MySQL software, the name and version
number of the compiler used are needed. If you have a binary distribution, the distribu-
tion name is needed.

n If the problem occurs during compilation, include the exact error messages and also a
few lines of context around the offending code in the file where the error occurs.

n If mysqld died, you should also report the query that crashed mysqld. You can usually
find this out by running mysqld with query logging enabled, and then looking in the log
after mysqld crashes.

n If a database table is related to the problem, include the output from mysqldump --no-
data db_name tbl_name. This is very easy to do and is a powerful way to get informa-
tion about any table in a database. The information will help us create a situation
matching the one you have.

n For speed-related bugs or problems with SELECT statements, you should always include
the output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT
statement produces. You should also include the output from SHOW CREATE TABLE
tbl_name for each involved table. The more information you give about your situation,
the more likely it is that someone can help you.

The following is an example of a very good bug report. It should be posted with the
mysqlbug script. The example uses the mysql command-line tool. Note the use of the \G
statement terminator for statements whose output width would otherwise exceed that of
an 80-column display device.
mysql> SHOW VARIABLES;

mysql> SHOW COLUMNS FROM ...\G

<output from SHOW COLUMNS>

mysql> EXPLAIN SELECT ...\G

<output from EXPLAIN>

mysql> FLUSH STATUS;

mysql> SELECT ...;

<A short version of the output from SELECT,

including the time taken to run the query>

mysql> SHOW STATUS;

<output from SHOW STATUS>

n If a bug or problem occurs while running mysqld, try to provide an input script that
will reproduce the anomaly. This script should include any necessary source files. The
more closely the script can reproduce your situation, the better. If you can make a
reproducible test case, you should post it on http://bugs.mysql.com/ for high-priority
treatment.

If you can’t provide a script, you should at least include the output from mysqladmin
variables extended-status processlist in your mail to provide some information on
how your system is performing.

02 6337 ch01 6/24/04 12:43 PM Page 39

TEAM LinG

40 CHAPTER 1 General Information

n If you can’t produce a test case with only a few rows, or if the test table is too big to be
mailed to the mailing list (more than 10 rows), you should dump your tables using
mysqldump and create a README file that describes your problem.

Create a compressed archive of your files using tar and gzip or zip, and use FTP to
transfer the archive to ftp://ftp.mysql.com/pub/mysql/upload/. Then enter the prob-
lem into our bugs database at http://bugs.mysql.com/.

n If you think that the MySQL server produces a strange result from a query, include not
only the result, but also your opinion of what the result should be, and an account
describing the basis for your opinion.

n When giving an example of the problem, it’s better to use the variable names, table
names, and so on that exist in your actual situation than to come up with new names.
The problem could be related to the name of a variable or table. These cases are rare,
perhaps, but it is better to be safe than sorry. After all, it should be easier for you to
provide an example that uses your actual situation, and it is by all means better for us.
In case you have data that you don’t want to show to others, you can use FTP to trans-
fer it to ftp://ftp.mysql.com/pub/mysql/upload/. If the information is really top secret
and you don’t want to show it even to us, then go ahead and provide an example using
other names, but please regard this as the last choice.

n Include all the options given to the relevant programs, if possible. For example, indicate
the options that you use when you start the mysqld server as well as the options that you
use to run any MySQL client programs. The options to programs such as mysqld and
mysql, and to the configure script, are often keys to answers and are very relevant. It is
never a bad idea to include them. If you use any modules, such as Perl or PHP, please
include the version numbers of those as well.

n If your question is related to the privilege system, please include the output of
mysqlaccess, the output of mysqladmin reload, and all the error messages you get
when trying to connect. When you test your privileges, you should first run
mysqlaccess. After this, execute mysqladmin reload version and try to connect with
the program that gives you trouble. mysqlaccess can be found in the bin directory
under your MySQL installation directory.

n If you have a patch for a bug, do include it. But don’t assume that the patch is all we
need, or that we will use it, if you don’t provide some necessary information such as test
cases showing the bug that your patch fixes. We might find problems with your patch
or we might not understand it at all; if so, we can’t use it.

If we can’t verify exactly what the purpose of the patch is, we won’t use it. Test cases
will help us here. Show that the patch will handle all the situations that may occur. If
we find a borderline case (even a rare one) where the patch won’t work, it may be
useless.

n Guesses about what the bug is, why it occurs, or what it depends on are usually wrong.
Even the MySQL team can’t guess such things without first using a debugger to deter-
mine the real cause of a bug.

02 6337 ch01 6/24/04 12:43 PM Page 40

TEAM LinG

411.7 MySQL Information Sources

n Indicate in your bug report that you have checked the reference manual and mail
archive so that others know you have tried to solve the problem yourself.

n If you get a parse error, please check your syntax closely. If you can’t find something
wrong with it, it’s extremely likely that your current version of MySQL Server doesn’t
support the syntax you are using. If you are using the current version and the manual at
http://dev.mysql.com/doc/ doesn’t cover the syntax you are using, MySQL Server
doesn’t support your query. In this case, your only options are to implement the syntax
yourself or email licensing@mysql.com and ask for an offer to implement it.

If the manual covers the syntax you are using, but you have an older version of MySQL
Server, you should check the MySQL change history to see when the syntax was imple-
mented. In this case, you have the option of upgrading to a newer version of MySQL
Server.

n If your problem is that your data appears corrupt or you get errors when you access a
particular table, you should first check and then try to repair your tables with CHECK
TABLE and REPAIR TABLE or with myisamchk.

If you are running Windows, please verify that lower_case_table_names is 1 or 2 with
SHOW VARIABLES LIKE ‘lower_case_table_names’.

n If you often get corrupted tables, you should try to find out when and why this happens.
In this case, the error log in the MySQL data directory may contain some information
about what happened. (This is the file with the .err suffix in the name.) Please include
any relevant information from this file in your bug report. Normally mysqld should never
crash a table if nothing killed it in the middle of an update. If you can find the cause of
mysqld dying, it’s much easier for us to provide you with a fix for the problem.

n If possible, download and install the most recent version of MySQL Server and check
whether it solves your problem. All versions of the MySQL software are thoroughly test-
ed and should work without problems. We believe in making everything as backward-
compatible as possible, and you should be able to switch MySQL versions without
difficulty.

If you are a support customer, please cross-post the bug report to mysql-support@mysql.com
for higher-priority treatment, as well as to the appropriate mailing list to see whether some-
one else has experienced (and perhaps solved) the problem.

When answers are sent to you individually and not to the mailing list, it is considered good
etiquette to summarize the answers and send the summary to the mailing list so that others
may have the benefit of responses you received that helped you solve your problem.

1.7.1.4 Guidelines for Answering Questions on the Mailing List
If you consider your answer to have broad interest, you may want to post it to the mailing
list instead of replying directly to the individual who asked. Try to make your answer general
enough that people other than the original poster may benefit from it. When you post to
the list, please make sure that your answer is not a duplication of a previous answer.

02 6337 ch01 6/24/04 12:43 PM Page 41

TEAM LinG

42 CHAPTER 1 General Information

Try to summarize the essential part of the question in your reply; don’t feel obliged to quote
the entire original message.

Please don’t post mail messages from your browser with HTML mode turned on. Many
users don’t read mail with a browser.

1.7.2 MySQL Community Support on IRC (Internet Relay Chat)
In addition to the various MySQL mailing lists, you can find experienced community people
on IRC (Internet Relay Chat). These are the best networks/channels currently known to us:

n freenode (see http://www.freenode.net/ for servers)
n #mysql Primarily MySQL questions, but other database and SQL questions are

welcome.
n #mysqlphp Questions about MySQL+PHP, a popular combination.
n #mysqlperl Questions about MySQL+Perl, another popular combination.

n EFnet (see http://www.efnet.org/ for servers)
n #mysql MySQL questions.

If you are looking for IRC client software to connect to an IRC network, take a look at X-
Chat (http://www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as for
Windows platforms.

1.8 MySQL Standards Compliance
This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL
Server has many extensions to the SQL standard, and here you will find out what they are
and how to use them. You will also find information about functionality missing from
MySQL Server, and how to work around some differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual,
“SQL-92” refers to the standard released in 1992, “SQL:1999” refers to the standard
released in 1999, and “SQL:2003” refers to the current version of the standard. We use the
phrase “the SQL standard” to mean the current version of the SQL Standard at any time.

Our goal is to not restrict MySQL Server usability for any usage without a very good reason
for doing so. Even if we don’t have the resources to perform development for every possible
use, we are always willing to help and offer suggestions to people who are trying to use
MySQL Server in new territories.

One of our main goals with the product is to continue to work toward compliance with the
SQL standard, but without sacrificing speed or reliability. We are not afraid to add exten-
sions to SQL or support for non-SQL features if this greatly increases the usability of
MySQL Server for a large segment of our user base. The HANDLER interface in MySQL
Server 4.0 is an example of this strategy.

02 6337 ch01 6/24/04 12:43 PM Page 42

TEAM LinG

431.8 MySQL Standards Compliance

We will continue to support transactional and non-transactional databases to satisfy both
mission-critical 24/7 usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium size databases (10-100 million
rows, or about 100MB per table) on small computer systems. Today MySQL Server handles
terabyte-size databases, but the code can also be compiled in a reduced version suitable for
hand-held and embedded devices. The compact design of the MySQL server makes devel-
opment in both directions possible without any conflicts in the source tree.

Currently, we are not targeting realtime support, although MySQL replication capabilities
already offer significant functionality.

Database cluster support is planned through integration of our acquired NDB Cluster tech-
nology into a new storage engine, available in 2004.

We are also looking at providing XML support in the database server.

1.8.1 What Standards MySQL Follows
We are aiming toward supporting the full ANSI/ISO SQL standard, but without making
concessions to speed and quality of the code.

ODBC levels 0–3.51.

1.8.2 Selecting SQL Modes
The MySQL server can operate in different SQL modes, and can apply these modes differ-
entially for different clients. This allows applications to tailor server operation to their own
requirements.

Modes define what SQL syntax MySQL should support and what kind of validation checks
it should perform on the data. This makes it easier to use MySQL in a lot of different envi-
ronments and to use MySQL together with other database servers.

You can set the default SQL mode by starting mysqld with the --sql-mode=”modes” option.
Beginning with MySQL 4.1, you can also change the mode after startup time by setting the
sql_mode variable with a SET [SESSION|GLOBAL] sql_mode=’modes’ statement.

1.8.3 Running MySQL in ANSI Mode
You can tell mysqld to use the ANSI mode with the --ansi startup option.

Running the server in ANSI mode is the same as starting it with these options (specify the
--sql_mode value on a single line):

--transaction-isolation=SERIALIZABLE

--sql-mode=REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,

IGNORE_SPACE,ONLY_FULL_GROUP_BY

02 6337 ch01 6/24/04 12:43 PM Page 43

TEAM LinG

44 CHAPTER 1 General Information

In MySQL 4.1, you can achieve the same effect with these two statements (specify the
sql_mode value on a single line):

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET GLOBAL sql_mode = ‘REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,

IGNORE_SPACE,ONLY_FULL_GROUP_BY’;

See Section 1.8.2, “Selecting SQL Modes.”

In MySQL 4.1.1, the sql_mode options shown can be also be set with this statement:

SET GLOBAL sql_mode=’ansi’;

In this case, the value of the sql_mode variable will be set to all options that are relevant for
ANSI mode. You can check the result like this:

mysql> SET GLOBAL sql_mode=’ansi’;

mysql> SELECT @@global.sql_mode;

-> ‘REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,

IGNORE_SPACE,ONLY_FULL_GROUP_BY,ANSI’;

1.8.4 MySQL Extensions to Standard SQL
MySQL Server includes some extensions that you probably will not find in other SQL data-
bases. Be warned that if you use them, your code will not be portable to other SQL servers.
In some cases, you can write code that includes MySQL extensions, but is still portable, by
using comments of the form /*! ... */. In this case, MySQL Server will parse and execute
the code within the comment as it would any other MySQL statement, but other SQL
servers will ignore the extensions. For example:

SELECT /*! STRAIGHT_JOIN */ col_name FROM table1,table2 WHERE ...

If you add a version number after the ‘!’ character, the syntax within the comment will be
executed only if the MySQL version is equal to or newer than the specified version number:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

This means that if you have Version 3.23.02 or newer, MySQL Server will use the TEMPORARY
keyword.

The following descriptions list MySQL extensions, organized by category.

n Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory,
and tables within a database to filenames in the database directory. This has a few
implications:

n Database names and table names are case sensitive in MySQL Server on operating
systems that have case-sensitive filenames (such as most Unix systems).

02 6337 ch01 6/24/04 12:43 PM Page 44

TEAM LinG

451.8 MySQL Standards Compliance

n You can use standard system commands to back up, rename, move, delete, and
copy tables that are managed by the MyISAM or ISAM storage engines. For example,
to rename a MyISAM table, rename the .MYD, .MYI, and .frm files to which the table
corresponds.

Database, table, index, column, or alias names may begin with a digit (but may not con-
sist solely of digits).

n General language syntax
n Strings may be enclosed by either ‘“’ or ‘’’, not just by ‘’’.
n Use of ‘\’ as an escape character in strings.
n In SQL statements, you can access tables from different databases with the

db_name.tbl_name syntax. Some SQL servers provide the same functionality but
call this User space. MySQL Server doesn’t support tablespaces such as used in
statements like this: CREATE TABLE ralph.my_table...IN my_tablespace.

n SQL statement syntax
n The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.
n The CREATE DATABASE and DROP DATABASE statements.
n The DO statement.
n EXPLAIN SELECT to get a description of how tables are joined.
n The FLUSH and RESET statements.
n The SET statement.
n The SHOW statement.
n Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle’s

LOAD DATA INFILE.
n Use of RENAME TABLE.
n Use of REPLACE instead of DELETE + INSERT.
n Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in an

ALTER TABLE statement. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an
ALTER TABLE statement.

n Use of index names, indexes on a prefix of a field, and use of INDEX or KEY in a
CREATE TABLE statement.

n Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.
n Use of IF EXISTS with DROP TABLE.
n You can drop multiple tables with a single DROP TABLE statement.
n The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.
n INSERT INTO ... SET col_name = ... syntax.
n The DELAYED clause of the INSERT and REPLACE statements.

02 6337 ch01 6/24/04 12:43 PM Page 45

TEAM LinG

46 CHAPTER 1 General Information

n The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.
n Use of INTO OUTFILE and STRAIGHT_JOIN in a SELECT statement.
n The SQL_SMALL_RESULT option in a SELECT statement.
n You don’t need to name all selected columns in the GROUP BY part. This gives better

performance for some very specific, but quite normal queries.
n You can specify ASC and DESC with GROUP BY.
n The ability to set variables in a statement with the := assignment operator:

mysql> SELECT @a:=SUM(total),@b=COUNT(*),@a/@b AS avg

-> FROM test_table;

mysql> SELECT @t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;

n Column types
n The column types MEDIUMINT, SET, ENUM, and the different BLOB and TEXT types.
n The column attributes AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL.

n Functions and operators
n To make it easier for users who come from other SQL environments, MySQL

Server supports aliases for many functions. For example, all string functions sup-
port both standard SQL syntax and ODBC syntax.

n MySQL Server understands the || and && operators to mean logical OR and
AND, as in the C programming language. In MySQL Server, || and OR are syn-
onyms, as are && and AND. Because of this nice syntax, MySQL Server doesn’t sup-
port the standard SQL || operator for string concatenation; use CONCAT() instead.
Because CONCAT() takes any number of arguments, it’s easy to convert use of the ||
operator to MySQL Server.

n Use of COUNT(DISTINCT list) where list has more than one element.
n All string comparisons are case-insensitive by default, with sort ordering deter-

mined by the current character set (ISO-8859-1 Latin1 by default). If you don’t
like this, you should declare your columns with the BINARY attribute or use the
BINARY cast, which causes comparisons to be done using the underlying character
code values rather then a lexical ordering.

n The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is
supported for C programmers and for compatibility with PostgreSQL.

n The =, <>, <=,<, >=,>, <<, >>, <=>, AND, OR, or LIKE operators may be used in column
comparisons to the left of the FROM in SELECT statements. For example:
mysql> SELECT col1=1 AND col2=2 FROM tbl_name;

n The LAST_INSERT_ID() function that returns the most recent AUTO_INCREMENT value.
n LIKE is allowed on numeric columns.
n The REGEXP and NOT REGEXP extended regular expression operators.

02 6337 ch01 6/24/04 12:43 PM Page 46

TEAM LinG

471.8 MySQL Standards Compliance

n CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL
Server, these functions can take any number of arguments.)

n The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(), ENCRYPT(),
MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(), TO_DAYS(), and WEEKDAY()
functions.

n Use of TRIM() to trim substrings. Standard SQL supports removal of single charac-
ters only.

n The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and
GROUP_CONCAT().

For a prioritized list indicating when new extensions will be added to MySQL Server, you
should consult the online MySQL TODO list at
http://dev.mysql.com/doc/mysql/en/TODO.html. That is the latest version of the TODO list
in this manual. See Section 1.6, “MySQL and the Future (the TODO).”

1.8.5 MySQL Differences from Standard SQL
We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL stan-
dard, but MySQL Server performs operations differently in some cases:

n For VARCHAR columns, trailing spaces are removed when the value is stored. See Section
1.8.7, “Known Errors and Design Deficiencies in MySQL.”

n In some cases, CHAR columns are silently converted to VARCHAR columns when you define
a table or alter its structure.

n Privileges for a table are not automatically revoked when you delete a table. You must
explicitly issue a REVOKE statement to revoke privileges for a table.

1.8.5.1 Subqueries
MySQL 4.1 supports subqueries and derived tables. A “subquery” is a SELECT statement
nested within another statement. A “derived table” (an unnamed view) is a subquery in the
FROM clause of another statement.

For MySQL versions older than 4.1, most subqueries can be rewritten using joins or other
methods.

1.8.5.2 SELECT INTO TABLE
MySQL Server doesn’t support the Sybase SQL extension: SELECT ... INTO TABLE
Instead, MySQL Server supports the standard SQL syntax INSERT INTO ... SELECT ...,
which is basically the same thing.

INSERT INTO tbl_temp2 (fld_id)

SELECT tbl_temp1.fld_order_id

FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

02 6337 ch01 6/24/04 12:43 PM Page 47

TEAM LinG

48 CHAPTER 1 General Information

Alternatively, you can use SELECT INTO OUTFILE ... or CREATE TABLE ... SELECT.

From Version 5.0, MySQL supports SELECT ... INTO with user variables. The same syntax
may also be used inside stored procedures using cursors and local variables.

1.8.5.3 Transactions and Atomic Operations
MySQL Server (Version 3.23-max and all Versions 4.0 and above) supports transactions with
the InnoDB and BDB transactional storage engines. InnoDB provides full ACID compliance.

The other non-transactional storage engines in MySQL Server (such as MyISAM) follow a dif-
ferent paradigm for data integrity called “atomic operations.” In transactional terms, MyISAM
tables effectively always operate in AUTOCOMMIT=1 mode. Atomic operations often offer com-
parable integrity with higher performance.

With MySQL Server supporting both paradigms, you can decide whether your applications
are best served by the speed of atomic operations or the use of transactional features. This
choice can be made on a per-table basis.

As noted, the trade-off for transactional versus non-transactional table types lies mostly in
performance. Transactional tables have significantly higher memory and diskspace require-
ments, and more CPU overhead. On the other hand, transactional table types such as InnoDB
also offer many significant features. MySQL Server’s modular design allows the concurrent
use of different storage engines to suit different requirements and deliver optimum perform-
ance in all situations.

But how do you use the features of MySQL Server to maintain rigorous integrity even with
the non-transactional MyISAM tables, and how do these features compare with the transac-
tional table types?

1. If your applications are written in a way that is dependent on being able to call
ROLLBACK rather than COMMIT in critical situations, transactions are more convenient.
Transactions also ensure that unfinished updates or corrupting activities are not com-
mitted to the database; the server is given the opportunity to do an automatic rollback
and your database is saved.

If you use non-transactional tables, MySQL Server in almost all cases allows you to
resolve potential problems by including simple checks before updates and by running
simple scripts that check the databases for inconsistencies and automatically repair or
warn if such an inconsistency occurs. Note that just by using the MySQL log or even
adding one extra log, you can normally fix tables perfectly with no data integrity loss.

2. More often than not, critical transactional updates can be rewritten to be atomic.
Generally speaking, all integrity problems that transactions solve can be done with LOCK
TABLES or atomic updates, ensuring that you never will get an automatic abort from the
server, which is a common problem with transactional database systems.

3. Even a transactional system can lose data if the server goes down. The difference between
different systems lies in just how small the time-lag is where they could lose data. No

02 6337 ch01 6/24/04 12:43 PM Page 48

TEAM LinG

491.8 MySQL Standards Compliance

system is 100% secure, only “secure enough.” Even Oracle, reputed to be the safest of
transactional database systems, is reported to sometimes lose data in such situations.

To be safe with MySQL Server, whether or not using transactional tables, you only
need to have backups and have binary logging turned on. With this, you can recover
from any situation that you could with any other transactional database system. It is
always good to have backups, regardless of which database system you use.

The transactional paradigm has its benefits and its drawbacks. Many users and application
developers depend on the ease with which they can code around problems where an abort
appears to be, or is necessary. However, even if you are new to the atomic operations para-
digm, or more familiar with transactions, do consider the speed benefit that non-transactional
tables can offer on the order of three to five times the speed of the fastest and most optimally
tuned transactional tables.

In situations where integrity is of highest importance, MySQL Server offers transaction-
level reliability and integrity even for non-transactional tables. If you lock tables with LOCK
TABLES, all updates will stall until any integrity checks are made. If you obtain a READ LOCAL
lock (as opposed to a write lock) for a table that allows concurrent inserts at the end of the
table, reads are allowed, as are inserts by other clients. The new inserted records will not be
seen by the client that has the read lock until it releases the lock. With INSERT DELAYED, you
can queue inserts into a local queue, until the locks are released, without having the client
wait for the insert to complete.

“Atomic,” in the sense that we mean it, is nothing magical. It only means that you can be
sure that while each specific update is running, no other user can interfere with it, and there
will never be an automatic rollback (which can happen with transactional tables if you are
not very careful). MySQL Server also guarantees that there will not be any dirty reads.

Following are some techniques for working with non-transactional tables:

n Loops that need transactions normally can be coded with the help of LOCK TABLES, and
you don’t need cursors to update records on the fly.

n To avoid using ROLLBACK, you can use the following strategy:

1. Use LOCK TABLES to lock all the tables you want to access.

2. Test the conditions that must be true before performing the update.

3. Update if everything is okay.

4. Use UNLOCK TABLES to release your locks.

This is usually a much faster method than using transactions with possible rollbacks,
although not always. The only situation this solution doesn’t handle is when someone
kills the threads in the middle of an update. In this case, all locks will be released but
some of the updates may not have been executed.

02 6337 ch01 6/24/04 12:43 PM Page 49

TEAM LinG

50 CHAPTER 1 General Information

n You can also use functions to update records in a single operation. You can get a very
efficient application by using the following techniques:

n Modify columns relative to their current value.
n Update only those columns that actually have changed.

For example, when we are doing updates to some customer information, we update
only the customer data that has changed and test only that none of the changed data,
or data that depends on the changed data, has changed compared to the original row.
The test for changed data is done with the WHERE clause in the UPDATE statement. If the
record wasn’t updated, we give the client a message: “Some of the data you have
changed has been changed by another user.” Then we show the old row versus the
new row in a window so that the user can decide which version of the customer record
to use.

This gives us something that is similar to column locking but is actually even better
because we only update some of the columns, using values that are relative to their cur-
rent values. This means that typical UPDATE statements look something like these:
UPDATE tablename SET pay_back=pay_back+125;

UPDATE customer

SET

customer_date=’current_date’,

address=’new address’,

phone=’new phone’,

money_owed_to_us=money_owed_to_us-125

WHERE

customer_id=id AND address=’old address’ AND phone=’old phone’;

This is very efficient and works even if another client has changed the values in the
pay_back or money_owed_to_us columns.

n In many cases, users have wanted LOCK TABLES and/or ROLLBACK for the purpose of man-
aging unique identifiers. This can be handled much more efficiently without locking or
rolling back by using an AUTO_INCREMENT column and either the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function.

You can generally code around the need for row-level locking. Some situations really do
need it, and InnoDB tables support row-level locking. With MyISAM tables, you can use a
flag column in the table and do something like the following:
UPDATE tbl_name SET row_flag=1 WHERE id=ID;

MySQL returns 1 for the number of affected rows if the row was found and row_flag
wasn’t already 1 in the original row.

You can think of it as though MySQL Server changed the preceding query to:
UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;

02 6337 ch01 6/24/04 12:43 PM Page 50

TEAM LinG

511.8 MySQL Standards Compliance

1.8.5.4 Stored Procedures and Triggers
Stored procedures are implemented in MySQL Version 5.0.

Triggers are scheduled for implementation in MySQL Version 5.1. A “trigger” is effectively
a type of stored procedure, one that is invoked when a particular event occurs. For example,
you could set up a stored procedure that is triggered each time a record is deleted from a
transactional table, and that stored procedure automatically deletes the corresponding cus-
tomer from a customer table when all their transactions are deleted.

1.8.5.5 Foreign Keys
In MySQL Server 3.23.44 and up, the InnoDB storage engine supports checking of foreign
key constraints, including CASCADE, ON DELETE, and ON UPDATE.

For storage engines other than InnoDB, MySQL Server parses the FOREIGN KEY syntax in
CREATE TABLE statements, but does not use or store it. In the future, the implementation will
be extended to store this information in the table specification file so that it may be
retrieved by mysqldump and ODBC. At a later stage, foreign key constraints will be imple-
mented for MyISAM tables as well.

Foreign key enforcement offers several benefits to database developers:

n Assuming proper design of the relationships, foreign key constraints make it more diffi-
cult for a programmer to introduce an inconsistency into the database.

n Centralized checking of constraints by the database server makes it unnecessary to per-
form these checks on the application side. This eliminates the possibility that different
applications may not all check the constraints in the same way.

n Using cascading updates and deletes can simplify the application code.
n Properly designed foreign key rules aid in documenting relationships between tables.

Do keep in mind that these benefits come at the cost of additional overhead for the database
server to perform the necessary checks. Additional checking by the server affects perform-
ance, which for some applications may be sufficiently undesirable as to be avoided if possible.
(Some major commercial applications have coded the foreign-key logic at the application
level for this reason.)

MySQL gives database developers the choice of which approach to use. If you don’t need
foreign keys and want to avoid the overhead associated with enforcing referential integrity,
you can choose another table type instead, such as MyISAM. (For example, the MyISAM storage
engine offers very fast performance for applications that perform only INSERT and SELECT
operations, because the inserts can be performed concurrently with retrievals.)

02 6337 ch01 6/24/04 12:43 PM Page 51

TEAM LinG

52 CHAPTER 1 General Information

If you choose not to take advantage of referential integrity checks, keep the following con-
siderations in mind:

n In the absence of server-side foreign key relationship checking, the application itself
must handle relationship issues. For example, it must take care to insert rows into tables
in the proper order, and to avoid creating orphaned child records. It must also be able
to recover from errors that occur in the middle of multiple-record insert operations.

n If ON DELETE is the only referential integrity capability an application needs, note that as
of MySQL Server 4.0, you can use multiple-table DELETE statements to delete rows
from many tables with a single statement.

n A workaround for the lack of ON DELETE is to add the appropriate DELETE statement to
your application when you delete records from a table that has a foreign key. In prac-
tice, this is often as quick as using foreign keys, and is more portable.

Be aware that the use of foreign keys can in some instances lead to problems:

n Foreign key support addresses many referential integrity issues, but it is still necessary
to design key relationships carefully to avoid circular rules or incorrect combinations of
cascading deletes.

n It is not uncommon for a DBA to create a topology of relationships that makes it diffi-
cult to restore individual tables from a backup. (MySQL alleviates this difficulty by
allowing you to temporarily disable foreign key checks when reloading a table that
depends on other tables. As of MySQL 4.1.1, mysqldump generates dump files that take
advantage of this capability automatically when reloaded.)

Note that foreign keys in SQL are used to check and enforce referential integrity, not to
join tables. If you want to get results from multiple tables from a SELECT statement, you do
this by performing a join between them:

SELECT * FROM t1, t2 WHERE t1.id = t2.id;

The FOREIGN KEY syntax without ON DELETE ... is often used by ODBC applications to pro-
duce automatic WHERE clauses.

1.8.5.6 Views
Views currently are being implemented, and will appear in the 5.0 Version of MySQL
Server. Unnamed views (derived tables, a subquery in the FROM clause of a SELECT) are already
implemented in Version 4.1.

Historically, MySQL Server has been most used in applications and on Web systems where
the application writer has full control over database usage. Usage has shifted over time, and
so we find that an increasing number of users now regard views as an important feature.

Views are useful for allowing users to access a set of relations (tables) as if it were a single
table, and limiting their access to just that. Views can also be used to restrict access to rows

02 6337 ch01 6/24/04 12:43 PM Page 52

TEAM LinG

531.8 MySQL Standards Compliance

(a subset of a particular table). To restrict access to columns, views are not required because
MySQL Server has a sophisticated privilege system.

Many DBMS don’t allow updates to a view. Instead, you have to perform the updates on the
individual tables. In designing an implementation of views, our goal, as much as is possible
within the confines of SQL, is full compliance with “Codd’s Rule #6” for relational database
systems: All views that are theoretically updatable, should in practice also be updatable.

1.8.5.7 ‘--’ as the Start of a Comment
Some other SQL databases use ‘--’ to start comments. MySQL Server uses ‘#’ as the start
comment character. You can also use the C comment style /* this is a comment */ with
MySQL Server.

MySQL Server 3.23.3 and above support the ‘--’ comment style, provided the comment is
followed by a space (or by a control character such as a newline). The requirement for a
space is to prevent problems with automatically generated SQL queries that have used
something like the following code, where we automatically insert the value of the payment
for !payment!:

UPDATE account SET credit=credit-!payment!

Think about what happens if the value of payment is a negative value such as -1:

UPDATE account SET credit=credit--1

credit--1 is a legal expression in SQL, but if -- is interpreted as the start of a comment,
part of the expression is discarded. The result is a statement that has a completely different
meaning than intended:

UPDATE account SET credit=credit

The statement produces no change in value at all! This illustrates that allowing comments to
start with ‘--’ can have serious consequences.

Using our implementation of this method of commenting in MySQL Server 3.23.3 and up,
credit--1 is actually safe.

Another safe feature is that the mysql command-line client removes all lines that start
with ‘--’.

The following information is relevant only if you are running a MySQL Version earlier than
3.23.3:

If you have an SQL program in a text file that contains ‘--’ comments, you should use the
replace utility as follows to convert the comments to use ‘#’ characters:

shell> replace “ --” “ #” < text-file-with-funny-comments.sql \

| mysql db_name

02 6337 ch01 6/24/04 12:43 PM Page 53

TEAM LinG

54 CHAPTER 1 General Information

instead of the usual:

shell> mysql db_name < text-file-with-funny-comments.sql

You can also edit the command file “in place” to change the ‘--’ comments to ‘#’ comments:

shell> replace “ --” “ #” -- text-file-with-funny-comments.sql

Change them back with this command:

shell> replace “ #” “ --” -- text-file-with-funny-comments.sql

1.8.6 How MySQL Deals with Constraints
MySQL allows you to work with both transactional tables that allow rollback and non-
transactional tables that do not, so constraint handling is a bit different in MySQL than in
other databases.

We have to handle the case when you have updated a lot of rows in a non-transactional table
that cannot roll back when an error occurs.

The basic philosophy is to try to give an error for anything that we can detect at compile
time but try to recover from any errors we get at runtime. We do this in most cases, but not
yet for all. See Section 1.6.4, “New Features Planned for the Near Future.”

The options MySQL has when an error occurs are to stop the statement in the middle or to
recover as well as possible from the problem and continue.

The following sections describe what happens for the different types of constraints.

1.8.6.1 Constraint PRIMARY KEY / UNIQUE
Normally, you will get an error when you try to INSERT or UPDATE a row that causes a pri-
mary key, unique key, or foreign key violation. If you are using a transactional storage
engine such as InnoDB, MySQL will automatically roll back the transaction. If you are using
a non-transactional storage engine, MySQL will stop at the incorrect row and leave any
remaining rows unprocessed.

To make life easier, MySQL supports an IGNORE keyword for most commands that can cause
a key violation (such as INSERT IGNORE and UPDATE IGNORE). In this case, MySQL will ignore
any key violation and continue with processing the next row. You can get information about
what MySQL did with the mysql_info() C API function. In MySQL 4.1 and up, you also
can use the SHOW WARNINGS statement.

Note that, for the moment, only InnoDB tables support foreign keys. Foreign key support in
MyISAM tables is scheduled for implementation in MySQL 5.1.

02 6337 ch01 6/24/04 12:43 PM Page 54

TEAM LinG

551.8 MySQL Standards Compliance

1.8.6.2 Constraint NOT NULL and DEFAULT Values
To be able to support easy handling of non-transactional tables, all columns in MySQL have
default values.

If you insert an “incorrect” value in a column, such as a NULL in a NOT NULL column or a too-
large numerical value in a numerical column, MySQL sets the column to the “best possible
value” instead of producing an error:

n If you try to store a value outside the range in a numerical column, MySQL Server
instead stores zero, the smallest possible value, or the largest possible value in the
column.

n For strings, MySQL Server stores either the empty string or the longest possible string
that can be in the column.

n If you try to store a string that doesn’t start with a number into a numerical column,
MySQL Server stores 0.

n If you try to store NULL into a column that doesn’t take NULL values, MySQL Server
stores 0 or ‘’ (the empty string) instead. This last behavior can, for single-row inserts,
be changed when MySQL is built by using the -DONT_USE_DEFAULT_FIELDS compile
option. This causes INSERT statements to generate an error unless you explicitly specify
values for all columns that require a non-NULL value.

n MySQL allows you to store some incorrect date values into DATE and DATETIME columns
(like ‘2000-02-31’ or ‘2000-02-00’). The idea is that it’s not the job of the SQL server
to validate dates. If MySQL can store a date value and retrieve exactly the same value,
MySQL stores it as given. If the date is totally wrong (outside the server’s ability to
store it), the special date value ‘0000-00-00’ is stored in the column instead.

The reason for the preceding rules is that we can’t check these conditions until the query
has begun executing. We can’t just roll back if we encounter a problem after updating a few
rows, because the table type may not support rollback. The option of terminating the state-
ment is not that good; in this case, the update would be “half done,” which is probably the
worst possible scenario. In this case, it’s better to “do the best you can” and then continue as
if nothing happened.

This means that you should generally not use MySQL to check column content. Instead,
the application should ensure that it passes only legal values to MySQL.

In MySQL 5.0, we plan to improve this by providing warnings when automatic column con-
versions occur, plus an option to let you roll back statements that attempt to perform a disal-
lowed column value assignment, as long as the statement uses only transactional tables.

02 6337 ch01 6/24/04 12:43 PM Page 55

TEAM LinG

56 CHAPTER 1 General Information

1.8.6.3 Constraint ENUM and SET
In MySQL 4.x, ENUM is not a real constraint, but is a more efficient way to define columns
that can contain only a given set of values. This is for same reasons that NOT NULL is not
honored.

If you insert an incorrect value into an ENUM column, it is set to the reserved enumeration
value of 0, which is displayed as an empty string in string context.

If you insert an incorrect value into a SET column, the incorrect value is ignored. For exam-
ple, if the column can contain the values ‘a’, ‘b’, and ‘c’, an attempt to assign ‘a,x,b,y’
results in a value of ‘a,b’.

1.8.7 Known Errors and Design Deficiencies in MySQL

1.8.7.1 Errors in 3.23 Fixed in a Later MySQL Version
The following known errors or bugs are not fixed in MySQL 3.23 because fixing them
would involve changing a lot of code that could introduce other even worse bugs. The bugs
are also classified as “not fatal” or “bearable.”

n You can get a deadlock (hung thread) if you use LOCK TABLE to lock multiple tables and
then in the same connection use DROP TABLE to drop one of them while another thread
is trying to lock it. (To break the deadlock, you can use KILL to terminate any of the
threads involved.) This issue is resolved as of MySQL 4.0.12.

n SELECT MAX(key_column) FROM t1,t2,t3... where one of the tables is empty doesn’t
return NULL but instead returns the maximum value for the column. This issue is
resolved as of MySQL 4.0.11.

n DELETE FROM heap_table without a WHERE clause doesn’t work on a locked HEAP table.

1.8.7.2 Errors in 4.0 Fixed in a Later MySQL Version
The following known errors or bugs are not fixed in MySQL 4.0 because fixing them would
involve changing a lot of code that could introduce other even worse bugs. The bugs are
also classified as “not fatal” or “bearable.”

n In a UNION, the first SELECT determines the type, max_length, and NULL properties for the
resulting columns. This issue is resolved as of MySQL 4.1.1; the property values are
based on the rows from all UNION parts.

n In DELETE with many tables, you can’t refer to tables to be deleted through an alias. This
is fixed as of MySQL 4.1.

02 6337 ch01 6/24/04 12:43 PM Page 56

TEAM LinG

571.8 MySQL Standards Compliance

1.8.7.3 Open Bugs and Design Deficiencies in MySQL
The following problems are known and fixing them is a high priority:

n Dropping a FOREIGN KEY constraint doesn’t work in replication because the constraint
may have another name on the slave.

n REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.
n You cannot mix UNION ALL and UNION DISTINCT in the same query. If you use ALL for one

UNION, it is used for all of them.
n If one user has a long-running transaction and another user drops a table that is updat-

ed in the transaction, there is small chance that the binary log may contain the DROP
TABLE command before the table is used in the transaction itself. We plan to fix this in
5.0 by having the DROP TABLE wait until the table is not used in any transaction.

n When inserting a big integer value (between 263 and 264–1) into a decimal/string col-
umn, it is inserted as a negative value because the number is evaluated in a signed inte-
ger context. We plan to fix this in MySQL 4.1.

n FLUSH TABLES WITH READ LOCK does not block CREATE TABLE or COMMIT, which may cause
a problem with the binary log position when doing a full backup of tables and the bina-
ry log.

n ANALYZE TABLE on a BDB table may in some cases make the table unusable until you
restart mysqld. If this happens, you will see errors of the following form in the MySQL
error file:
001207 22:07:56 bdb: log_flush: LSN past current end-of-log

n MySQL accepts parentheses in the FROM clause of a SELECT statement, but silently
ignores them. The reason for not giving an error is that many clients that automatically
generate queries add parentheses in the FROM clause even where they are not needed.

n Concatenating many RIGHT JOINS or combining LEFT and RIGHT join in the same query
may not give a correct answer because MySQL only generates NULL rows for the table
preceding a LEFT or before a RIGHT join. This will be fixed in 5.0 at the same time we
add support for parentheses in the FROM clause.

n Don’t execute ALTER TABLE on a BDB table on which you are running multiple-statement
transactions until all those transactions complete. (The transaction will probably be
ignored.)

n ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on tables for
which you are using INSERT DELAYED.

n Doing a LOCK TABLE ... and FLUSH TABLES ... doesn’t guarantee that there isn’t a half-
finished transaction in progress on the table.

n BDB tables are a bit slow to open. If you have many BDB tables in a database, it will take a
long time to use the mysql client on the database if you are not using the -A option or if
you are using rehash. This is especially noticeable when you have a large table cache.

02 6337 ch01 6/24/04 12:43 PM Page 57

TEAM LinG

58 CHAPTER 1 General Information

n Replication uses query-level logging: The master writes the executed queries to the
binary log. This is a very fast, compact, and efficient logging method that works per-
fectly in most cases. Although we have never heard of it actually occurring, it is theoret-
ically possible for the data on the master and slave to become different if a query is
designed in such a way that the data modification is non-deterministic; that is, left to
the will of the query optimizer. (That generally is not a good practice anyway, even out-
side of replication!) For example:

n CREATE ... SELECT or INSERT ... SELECT statements that insert zero or NULL values
into an AUTO_INCREMENT column.

n DELETE if you are deleting rows from a table that has foreign keys with ON DELETE
CASCADE properties.

n REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values in
the inserted data.

If and only if all these queries have no ORDER BY clause guaranteeing a determinis-
tic order.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a
different order (which will result in a row having different ranks, hence getting a differ-
ent number in the AUTO_INCREMENT column), depending on the choices made by the
optimizers on the master and slave. A query will be optimized differently on the master
and slave only if:

n The files used by the two queries are not exactly the same; for example, OPTIMIZE
TABLE was run on the master tables and not on the slave tables. (To fix this,
OPTIMIZE TABLE, ANALYZE TABLE, and REPAIR TABLE are written to the binary log
as of MySQL 4.1.1.)

n The table is stored using a different storage engine on the master than on the
slave. (It is possible to use different storage engines on the master and slave. For
example, you can use InnoDB on the master, but MyISAM on the slave if the slave has
less available disk space.)

n MySQL buffer sizes (key_buffer_size, and so on) are different on the master and
slave.

n The master and slave run different MySQL versions, and the optimizer code dif-
fers between these versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem in all cases is to add an ORDER BY clause to such
non-deterministic queries to ensure that the rows are always stored or modified in the
same order. In future MySQL versions, we will automatically add an ORDER BY clause
when needed.

02 6337 ch01 6/24/04 12:43 PM Page 58

TEAM LinG

591.8 MySQL Standards Compliance

The following problems are known and will be fixed in due time:

n Log filenames are based on the server hostname (if you don’t specify a filename with
the startup option). For now you have to use options like --log-bin=old_host_name-bin
if you change your hostname to something else. Another option is to just rename the
old files to reflect your hostname change.

n mysqlbinlog will not delete temporary files left after a LOAD DATA INFILE command.
n RENAME doesn’t work with TEMPORARY tables or tables used in a MERGE table.
n When using the RPAD() function in a query that has to be resolved by using a temporary

table, all resulting strings will have rightmost spaces removed. This is an example of
such a query:
SELECT RPAD(t1.column1, 50, ‘ ‘) AS f2, RPAD(t2.column2, 50, ‘ ‘) AS f1

FROM table1 as t1 LEFT JOIN table2 AS t2 ON t1.record=t2.joinID

ORDER BY t2.record;

The final result of this bug is that you will not be able to get spaces on the right side of
the resulting values. The problem also occurs for any other string function that adds
spaces to the right.

The reason for this is due to the fact that HEAP tables, which are used first for temporary
tables, are not capable of handling VARCHAR columns.

This behavior exists in all versions of MySQL. It will be fixed in one of the 4.1 series
releases.

n Due to the way table definition files are stored, you cannot use character 255
(CHAR(255)) in table names, column names, or enumerations. This is scheduled to be
fixed in Version 5.1 when we have new table definition format files.

n When using SET CHARACTER SET, you can’t use translated characters in database, table,
and column names.

n You can’t use ‘_’ or ‘%’ with ESCAPE in LIKE ... ESCAPE.
n If you have a DECIMAL column in which the same number is stored in different formats

(for example, +01.00, 1.00, 01.00), GROUP BY may regard each value as a different value.
n You cannot build the server in another directory when using MIT-pthreads. Because

this requires changes to MIT-pthreads, we are not likely to fix this.
n BLOB values can’t “reliably” be used in GROUP BY or ORDER BY or DISTINCT. Only the first

max_sort_length bytes are used when comparing BLOB values in these cases. The default
value of max_sort_length value is 1024. It can be changed at server startup time. A
workaround for most cases is to use a substring. For example: SELECT DISTINCT
LEFT(blob_col,2048) FROM tbl_name.

n Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long).
Which precision you get depends on the function. The general rule is that bit functions
are done with BIGINT precision, IF and ELT() with BIGINT or DOUBLE precision, and the

02 6337 ch01 6/24/04 12:43 PM Page 59

TEAM LinG

60 CHAPTER 1 General Information

rest with DOUBLE precision. You should try to avoid using unsigned long long values if
they resolve to be bigger than 63 bits (9223372036854775807) for anything other than
bit fields. MySQL Server 4.0 has better BIGINT handling than 3.23.

n All string columns, except BLOB and TEXT columns, automatically have all trailing spaces
removed when retrieved. For CHAR types, this is okay. The bug is that in MySQL Server,
VARCHAR columns are treated the same way.

n You can have only up to 255 ENUM and SET columns in one table.
n In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and

SET columns by their string value rather than by the string’s relative position in the set.
n mysqld_safe redirects all messages from mysqld to the mysqld log. One problem with

this is that if you execute mysqladmin refresh to close and reopen the log, stdout and
stderr are still redirected to the old log. If you use --log extensively, you should edit
mysqld_safe to log to host_name.err instead of host_name.log so that you can easily
reclaim the space for the old log by deleting the old one and executing mysqladmin
refresh.

n In the UPDATE statement, columns are updated from left to right. If you refer to an
updated column, you get the updated value instead of the original value. For example,
the following statement increments KEY by 2, not 1:
mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

n You can refer to multiple temporary tables in the same query, but you cannot refer to
any given temporary table more than once. For example, the following doesn’t work:
mysql> SELECT * FROM temp_table, temp_table AS t2;

ERROR 1137: Can’t reopen table: ‘temp_table’

n The optimizer may handle DISTINCT differently when you are using “hidden” columns
in a join than when you are not. In a join, hidden columns are counted as part of the
result (even if they are not shown), whereas in normal queries, hidden columns don’t
participate in the DISTINCT comparison. We will probably change this in the future to
never compare the hidden columns when executing DISTINCT.

An example of this is:
SELECT DISTINCT mp3id FROM band_downloads

WHERE userid = 9 ORDER BY id DESC;

and
SELECT DISTINCT band_downloads.mp3id

FROM band_downloads,band_mp3

WHERE band_downloads.userid = 9

AND band_mp3.id = band_downloads.mp3id

ORDER BY band_downloads.id DESC;

02 6337 ch01 6/24/04 12:43 PM Page 60

TEAM LinG

611.8 MySQL Standards Compliance

In the second case, you might in MySQL Server 3.23.x get two identical rows in the
result set (because the values in the hidden id column may differ).

Note that this happens only for queries where you don’t have the ORDER BY columns in
the result.

n Because MySQL Server allows you to work with table types that don’t support transac-
tions, and thus can’t roll back data, some things behave a little differently in MySQL
Server than in other SQL servers. This is just to ensure that MySQL Server never
needs to do a rollback for an SQL statement. This may be a little awkward at times
because column values must be checked in the application, but this will actually give
you a nice speed increase because it allows MySQL Server to do some optimizations
that otherwise would be very hard to do.

If you set a column to an incorrect value, MySQL Server will, instead of doing a roll-
back, store the “best possible value” in the column. For information about how this
occurs, see Section 1.8.6, “How MySQL Deals with Constraints.”

n If you execute a PROCEDURE on a query that returns an empty set, in some cases the
PROCEDURE will not transform the columns.

n Creation of a table of type MERGE doesn’t check whether the underlying tables are of
compatible types.

n If you use ALTER TABLE first to add a UNIQUE index to a table used in a MERGE table and then
to add a normal index on the MERGE table, the key order will be different for the tables if
there was an old key that was not unique in the table. This is because ALTER TABLE puts
UNIQUE indexes before normal indexes to be able to detect duplicate keys as early as possible.

The following are known bugs in earlier versions of MySQL:

n In the following case you can get a core dump:
n Delayed insert handler has pending inserts to a table.
n LOCK TABLE with WRITE.
n FLUSH TABLES.

n Before MySQL Server 3.23.2, an UPDATE that updated a key with a WHERE on the same
key may have failed because the key was used to search for records and the same row
may have been found multiple times:
UPDATE tbl_name SET KEY=KEY+1 WHERE KEY > 100;

A workaround is to use:
UPDATE tbl_name SET KEY=KEY+1 WHERE KEY+0 > 100;

This will work because MySQL Server will not use an index on expressions in the WHERE
clause.

n Before MySQL Server 3.23, all numeric types were treated as fixed-point fields. That
means you had to specify how many decimals a floating-point field should have. All
results were returned with the correct number of decimals.

02 6337 ch01 6/24/04 12:43 PM Page 61

TEAM LinG

02 6337 ch01 6/24/04 12:43 PM Page 62

TEAM LinG

2
Language Structure

This chapter discusses the rules for writing the following elements of SQL statements
when using MySQL:

n Literal values such as strings and numbers
n Identifiers such as table and column names
n User and system variables
n Comments
n Reserved words

2.1 Literal Values
This section describes how to write literal values in MySQL. These include strings, num-
bers, hexadecimal values, boolean values, and NULL. The section also covers the various
nuances and “gotchas” that you may run into when dealing with these basic types in
MySQL.

2.1.1 Strings
A string is a sequence of characters, surrounded by either single quote (‘’’) or double quote
(‘“’) characters. Examples:

‘a string’

“another string”

If the server SQL mode has ANSI_QUOTES enabled, string literals can be quoted only with sin-
gle quotes. A string quoted with double quotes will be interpreted as an identifier.

As of MySQL 4.1.1, string literals may have an optional character set introducer and
COLLATE clause:

[_charset_name]’string’ [COLLATE collation_name]

03 6337 ch02 6/24/04 12:45 PM Page 63

TEAM LinG

64 CHAPTER 2 Language Structure

Examples:

SELECT _latin1’string’;

SELECT _latin1’string’ COLLATE latin1_danish_ci;

For more information about these forms of string syntax, see Section 3.3.7, “Character
String Literal Character Set and Collation.”

Within a string, certain sequences have special meaning. Each of these sequences begins
with a backslash (‘\’), known as the escape character. MySQL recognizes the following escape
sequences:

\0 An ASCII 0 (NUL) character.

\’ A single quote (‘’’) character.

\” A double quote (‘“’) character.

\b A backspace character.

\n A newline (linefeed) character.

\r A carriage return character.

\t A tab character.

\z ASCII 26 (Control-Z). This character can be encoded as ‘\z’ to allow you to
work around the problem that ASCII 26 stands for END-OF-FILE on Windows.
(ASCII 26 will cause problems if you try to use mysql db_name < file_name.)

\\ A backslash (‘\’) character.

\% A ‘%’ character. See note following table.

_ A ‘_’ character. See note following table.

These sequences are case sensitive. For example, ‘\b’ is interpreted as a backslash, but ‘\B’ is
interpreted as ‘B’.

The ‘\%’ and ‘_’ sequences are used to search for literal instances of ‘%’ and ‘_’ in pattern-
matching contexts where they would otherwise be interpreted as wildcard characters. See
Section 5.3.1, “String Comparison Functions.” Note that if you use ‘\%’ or ‘_’ in other con-
texts, they return the strings ‘\%’ and ‘_’ and not ‘%’ and ‘_’.

In all other escape sequences, backslash is ignored. That is, the escaped character is inter-
preted as if it was not escaped.

There are several ways to include quotes within a string:

n A ‘’’ inside a string quoted with ‘’’ may be written as ‘’’’.
n A ‘“’ inside a string quoted with ‘“’ may be written as ‘“”’.
n You can precede the quote character with an escape character (‘\’).
n A ‘’’ inside a string quoted with ‘“’ needs no special treatment and need not be doubled

or escaped. In the same way, ‘“’ inside a string quoted with ‘’’ needs no special treat-
ment.

03 6337 ch02 6/24/04 12:45 PM Page 64

TEAM LinG

652.1 Literal Values

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT ‘hello’, ‘“hello”’, ‘“”hello””’, ‘hel’’lo’, ‘\’hello’;

+-------+---------+-----------+--------+--------+

| hello | “hello” | “”hello”” | hel’lo | ‘hello |

+-------+---------+-----------+--------+--------+

mysql> SELECT “hello”, “‘hello’”, “‘’hello’’”, “hel””lo”, “\”hello”;

+-------+---------+-----------+--------+--------+

| hello | ‘hello’ | ‘’hello’’ | hel”lo | “hello |

+-------+---------+-----------+--------+--------+

mysql> SELECT ‘This\nIs\nFour\nLines’;

+--------------------+

| This

Is

Four

Lines |

+--------------------+

If you want to insert binary data into a string column (such as a BLOB), the following charac-
ters must be represented by escape sequences:

NUL NUL byte (ASCII 0). Represent this character by ‘\0’ (a backslash followed by an ASCII ‘0’
character).

\ Backslash (ASCII 92). Represent this character by ‘\\’.

‘ Single quote (ASCII 39). Represent this character by ‘\’’.

“ Double quote (ASCII 34). Represent this character by ‘\”’.

When writing application programs, any string that might contain any of these special char-
acters must be properly escaped before the string is used as a data value in an SQL state-
ment that is sent to the MySQL server. You can do this in two ways:

n Process the string with a function that escapes the special characters. For example, in a
C program, you can use the mysql_real_escape_string() C API function to escape
characters. The Perl DBI interface provides a quote method to convert special charac-
ters to the proper escape sequences.

n As an alternative to explicitly escaping special characters, many MySQL APIs provide a
placeholder capability that allows you to insert special markers into a query string, and
then bind data values to them when you issue the query. In this case, the API takes care
of escaping special characters in the values for you.

03 6337 ch02 6/24/04 12:45 PM Page 65

TEAM LinG

66 CHAPTER 2 Language Structure

2.1.2 Numbers
Integers are represented as a sequence of digits. Floats use ‘.’ as a decimal separator. Either
type of number may be preceded by ‘-’ to indicate a negative value.

Examples of valid integers:

1221

0

-32

Examples of valid floating-point numbers:

294.42

-32032.6809e+10

148.00

An integer may be used in a floating-point context; it is interpreted as the equivalent
floating-point number.

2.1.3 Hexadecimal Values
MySQL supports hexadecimal values. In numeric contexts, these act like integers (64-bit
precision). In string contexts, these act like binary strings, where each pair of hex digits is
converted to a character:

mysql> SELECT x’4D7953514C’;

-> ‘MySQL’

mysql> SELECT 0xa+0;

-> 10

mysql> SELECT 0x5061756c;

-> ‘Paul’

In MySQL 4.1 (and in MySQL 4.0 when using the --new option), the default type of a hexa-
decimal value is a string. If you want to ensure that the value is treated as a number, you can
use CAST(... AS UNSIGNED):

mysql> SELECT 0x41, CAST(0x41 AS UNSIGNED);

-> ‘A’, 65

The 0x syntax is based on ODBC. Hexadecimal strings are often used by ODBC to supply val-
ues for BLOB columns. The x’hexstring’ syntax is new in 4.0 and is based on standard SQL.

Beginning with MySQL 4.0.1, you can convert a string or a number to a string in hexadeci-
mal format with the HEX() function:

mysql> SELECT HEX(‘cat’);

-> ‘636174’

mysql> SELECT 0x636174;

-> ‘cat’

03 6337 ch02 6/24/04 12:45 PM Page 66

TEAM LinG

672.2 Database, Table, Index, Column, and Alias Names

2.1.4 Boolean Values
Beginning with MySQL 4.1, the constant TRUE evaluates to 1 and the constant FALSE evalu-
ates to 0. The constant names can be written in any lettercase.

mysql> SELECT TRUE, true, FALSE, false;

-> 1, 1, 0, 0

2.1.5 NULL Values
The NULL value means “no data.” NULL can be written in any lettercase.

Be aware that the NULL value is different from values such as 0 for numeric types or the
empty string for string types. See section A.1.3, “Problems with NULL Values.”

For text file import or export operations performed with LOAD DATA INFILE or SELECT ...
INTO OUTFILE, NULL is represented by the \N sequence. See Section 6.1.5, “LOAD DATA INFILE
Syntax.”

2.2 Database, Table, Index, Column, and Alias
Names
Database, table, index, column, and alias names are identifiers. This section describes the
allowable syntax for identifiers in MySQL.

The following table describes the maximum length and allowable characters for each type of
identifier.

Maximum Length
Identifier (bytes) Allowed Characters

Database 64 Any character that is allowed in a directory name’
except ‘/’, ‘\’, or ‘.’

Table 64 Any character that is allowed in a filename, except
‘/’, ‘\’, or ‘.’

Column 64 All characters

Index 64 All characters

Alias 255 All characters

In addition to the restrictions noted in the table, no identifier can contain ASCII 0 or a byte
with a value of 255. Database, table, and column names should not end with space charac-
ters. Before MySQL 4.1, identifier quote characters should not be used in identifiers.

03 6337 ch02 6/24/04 12:45 PM Page 67

TEAM LinG

68 CHAPTER 2 Language Structure

Beginning with MySQL 4.1, identifiers are stored using Unicode (UTF8). This applies to identi-
fiers in table definitions stored in .frm files and to identifiers stored in the grant tables in the mysql
database. Although Unicode identifiers can include multi-byte characters, note that the maximum
lengths shown in the table are byte counts. If an identifier does contain multi-byte characters, the
number of characters allowed in the identifier is less than the value shown in the table.

An identifier may be quoted or unquoted. If an identifier is a reserved word or contains special
characters, you must quote it whenever you refer to it. For a list of reserved words, see Section
2.6, “Treatment of Reserved Words in MySQL.” Special characters are those outside the set of
alphanumeric characters from the current character set, ‘_’, and ‘$’.

The identifier quote character is the backtick (‘`’):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

If the server SQL mode includes the ANSI_QUOTES mode option, it is also allowable to quote
identifiers with double quotes:

mysql> CREATE TABLE “test” (col INT);

ERROR 1064: You have an error in your SQL syntax. (...)

mysql> SET sql_mode=’ANSI_QUOTES’;

mysql> CREATE TABLE “test” (col INT);

Query OK, 0 rows affected (0.00 sec)

See section 1.8.2, “Selecting SQL Modes.”

As of MySQL 4.1, identifier quote characters can be included within an identifier by quoting
the identifier. If the character to be included within the identifier is the same as that used to
quote the identifier itself, double the character. The following statement creates a table named
a`b that contains a column named c”d:

mysql> CREATE TABLE `a``b` (`c”d` INT);

Identifier quoting was introduced in MySQL 3.23.6 to allow use of identifiers that are reserved
words or that contain special characters. Before 3.23.6, you cannot use identifiers that require
quotes, so the rules for legal identifiers are more restrictive:

n A name may consist of alphanumeric characters from the current character set, ‘_’, and ‘$’.
The default character set is ISO-8859-1 (Latin1). This may be changed with the
--default-character-set option to mysqld.

n A name may start with any character that is legal in a name. In particular, a name may
start with a digit; this differs from many other database systems! However, an unquoted
name cannot consist only of digits.

n You cannot use the ‘.’ character in names because it is used to extend the format by which
you can refer to columns (see Section 2.2.1, “Identifier Qualifiers”).

It is recommended that you do not use names like 1e, because an expression like 1e+1 is ambigu-
ous. It might be interpreted as the expression 1e + 1 or as the number 1e+1, depending on context.

03 6337 ch02 6/24/04 12:45 PM Page 68

TEAM LinG

692.2 Database, Table, Index, Column, and Alias Names

2.2.1 Identifier Qualifiers
MySQL allows names that consist of a single identifier or multiple identifiers. The compo-
nents of a multiple-part name should be separated by period (‘.’) characters. The initial
parts of a multiple-part name act as qualifiers that affect the context within which the final
identifier is interpreted.

In MySQL you can refer to a column using any of the following forms:

Column Reference Meaning

col_name The column col_name from whichever table used in the query
contains a column of that name.

tbl_name.col_name The column col_name from table tbl_name of the default
database.

db_name.tbl_name.col_name The column col_name from table tbl_name of the database
db_name. This syntax is unavailable before MySQL 3.22.

If any components of a multiple-part name require quoting, quote them individually rather
than quoting the name as a whole. For example, `my-table`.`my-column` is legal, whereas
`my-table.my-column` is not.

You need not specify a tbl_name or db_name.tbl_name prefix for a column reference in a
statement unless the reference would be ambiguous. Suppose that tables t1 and t2 each con-
tain a column c, and you retrieve c in a SELECT statement that uses both t1 and t2. In this
case, c is ambiguous because it is not unique among the tables used in the statement. You
must qualify it with a table name as t1.c or t2.c to indicate which table you mean. Similarly,
to retrieve from a table t in database db1 and from a table t in database db2 in the same
statement, you must refer to columns in those tables as db1.t.col_name and db2.t.col_name.

The syntax .tbl_name means the table tbl_name in the current database. This syntax is
accepted for ODBC compatibility because some ODBC programs prefix table names with a
‘.’ character.

2.2.2 Identifier Case Sensitivity
In MySQL, databases correspond to directories within the data directory. Tables within a
database correspond to at least one file within the database directory (and possibly more,
depending on the storage engine). Consequently, the case sensitivity of the underlying oper-
ating system determines the case sensitivity of database and table names. This means data-
base and table names are not case sensitive in Windows, and case sensitive in most varieties
of Unix. One notable exception is Mac OS X, which is Unix-based but uses a default filesys-
tem type (HFS+) that is not case sensitive. However, Mac OS X also supports UFS volumes,
which are case sensitive just as on any Unix. See section 1.8.4, “MySQL Extensions to
Standard SQL.”

03 6337 ch02 6/24/04 12:45 PM Page 69

TEAM LinG

70 CHAPTER 2 Language Structure

Note: Although database and table names are not case sensitive on some platforms, you should
not refer to a given database or table using different cases within the same query. The follow-
ing query would not work because it refers to a table both as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column names, index names, and column aliases are not case sensitive on any platform.

Table aliases are case sensitive before MySQL 4.1.1. The following query would not work
because it refers to the alias both as a and as A:

mysql> SELECT col_name FROM tbl_name AS a

-> WHERE a.col_name = 1 OR A.col_name = 2;

If you have trouble remembering the allowable lettercase for database and table names, adopt a
consistent convention, such as always creating databases and tables using lowercase names.

How table names are stored on disk and used in MySQL is defined by the
lower_case_table_names system variable, which you can set when starting mysqld.
lower_case_table_names can take one of the following values:

Value Meaning

0 Table and database names are stored on disk using the lettercase specified in the
CREATE TABLE or CREATE DATABASE statement. Name comparisons are case sensi-
tive. This is the default on Unix systems. Note that if you force this to 0 with
--lower-case-table-names=0 on a case-insensitive filesystem and access MyISAM
table names using different lettercases, this may lead to index corruption.

1 Table names are stored in lowercase on disk and name comparisons are not case
sensitive. MySQL converts all table names to lowercase on storage and lookup. This
behavior also applies to database names as of MySQL 4.0.2, and to table aliases as of
4.1.1. This value is the default on Windows and Mac OS X systems.

2 Table and database names are stored on disk using the lettercase specified in the
CREATE TABLE or CREATE DATABASE statement, but MySQL converts them to lower-
case on lookup. Name comparisons are not case sensitive. Note: This works only on
filesystems that are not case sensitive! InnoDB table names are stored in lowercase,
as for lower_case_table_names=1. Setting lower_case_table_names to 2 can be
done as of MySQL 4.0.18.

If you are using MySQL on only one platform, you don’t normally have to change the
lower_case_table_names variable. However, you may encounter difficulties if you want to
transfer tables between platforms that differ in filesystem case sensitivity. For example, on
Unix, you can have two different tables named my_table and MY_TABLE, but on Windows
those names are considered the same. To avoid data transfer problems stemming from data-
base or table name lettercase, you have two options:

n Use lower_case_table_names=1 on all systems. The main disadvantage with this is that
when you use SHOW TABLES or SHOW DATABASES, you don’t see the names in their original
lettercase.

03 6337 ch02 6/24/04 12:45 PM Page 70

TEAM LinG

712.3 User Variables

n Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Windows.
This preserves the lettercase of database and table names. The disadvantage of this is
that you must ensure that your queries always refer to your database and table names
with the correct lettercase on Windows. If you transfer your queries to Unix, where let-
tercase is significant, they will not work if the lettercase is incorrect.

Note that before setting lower_case_table_names to 1 on Unix, you must first convert your
old database and table names to lowercase before restarting mysqld.

2.3 User Variables
MySQL supports user variables as of version 3.23.6. You can store a value in a user variable
and refer to it later, which allows you to pass values from one statement to another. User
variables are connection-specific. That is, a variable defined by one client cannot be seen or
used by other clients. All variables for a client connection are automatically freed when the
client exits.

User variables are written as @var_name, where the variable name var_name may consist of
alphanumeric characters from the current character set, ‘.’, ‘_’, and ‘$’. The default charac-
ter set is ISO-8859-1 (Latin1). This may be changed with the --default-character-set
option to mysqld. User variable names are not case sensitive beginning with MySQL 5.0.
Before that, they are case sensitive.

One way to set a user variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator. The expr assigned to each
variable can evaluate to an integer, real, string, or NULL value.

You can also assign a value to a user variable in statements other than SET. In this case, the
assignment operator must be := and not = because = is treated as a comparison operator in
non-SET statements:

mysql> SET @t1=0, @t2=0, @t3=0;

mysql> SELECT @t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;

+----------------------+------+------+------+

| @t1:=(@t2:=1)+@t3:=4 | @t1 | @t2 | @t3 |

+----------------------+------+------+------+

| 5 | 5 | 1 | 4 |

+----------------------+------+------+------+

User variables may be used where expressions are allowed. This does not currently include
contexts that explicitly require a number, such as in the LIMIT clause of a SELECT statement,
or the IGNORE number LINES clause of a LOAD DATA statement.

If you refer to a variable that has not been initialized, its value is NULL.

03 6337 ch02 6/24/04 12:45 PM Page 71

TEAM LinG

72 CHAPTER 2 Language Structure

Note: In a SELECT statement, each expression is evaluated only when sent to the client. This
means that in a HAVING, GROUP BY, or ORDER BY clause, you cannot refer to an expression that
involves variables that are set in the SELECT list. For example, the following statement will
not work as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;

The reference to b in the HAVING clause refers to an alias for an expression in the SELECT list
that uses @aa. This does not work as expected: @aa will not contain the value of the current
row, but the value of id from the previous selected row.

The general rule is to never assign and use the same variable in the same statement.

Another issue with setting a variable and using it in the same statement is that the default
result type of a variable is based on the type of the variable at the start of the statement. The
following example illustrates this:

mysql> SET @a=’test’;

mysql> SELECT @a,(@a:=20) FROM tbl_name;

For this SELECT statement, MySQL will report to the client that column one is a string and
convert all accesses of @a to strings, even though @a is set to a number for the second row.
After the SELECT statement executes, @a will be regarded as a number for the next statement.

To avoid problems with this behavior, either do not set and use the same variable within a
single statement, or else set the variable to 0, 0.0, or ‘’ to define its type before you use it.

An unassigned variable has a value of NULL with a type of string.

2.4 System Variables
Starting from MySQL 4.0.3, we provide better access to a lot of system and connection vari-
ables. Many variables can be changed dynamically while the server is running. This allows
you to modify server operation without having to stop and restart it.

The mysqld server maintains two kinds of variables. Global variables affect the overall opera-
tion of the server. Session variables affect its operation for individual client connections.

When the server starts, it initializes all global variables to their default values. These defaults
may be changed by options specified in option files or on the command line. After the server
starts, those global variables that are dynamic can be changed by connecting to the server
and issuing a SET GLOBAL var_name statement. To change a global variable, you must have
the SUPER privilege.

The server also maintains a set of session variables for each client that connects. The client’s
session variables are initialized at connect time using the current values of the corresponding
global variables. For those session variables that are dynamic, the client can change them by
issuing a SET SESSION var_name statement. Setting a session variable requires no special priv-
ilege, but a client can change only its own session variables, not those of any other client.

03 6337 ch02 6/24/04 12:45 PM Page 72

TEAM LinG

732.4 System Variables

A change to a global variable is visible to any client that accesses that global variable. However,
it affects the corresponding session variable that is initialized from the global variable only for
clients that connect after the change. It does not affect the session variable for any client that is
already connected (not even that of the client that issues the SET GLOBAL statement).

Global or session variables may be set or retrieved using several syntax forms. The following
examples use sort_buffer_size as a sample variable name.

To set the value of a GLOBAL variable, use one of the following syntaxes:

mysql> SET GLOBAL sort_buffer_size=value;

mysql> SET @@global.sort_buffer_size=value;

To set the value of a SESSION variable, use one of the following syntaxes:

mysql> SET SESSION sort_buffer_size=value;

mysql> SET @@session.sort_buffer_size=value;

mysql> SET sort_buffer_size=value;

LOCAL is a synonym for SESSION.

If you don’t specify GLOBAL, SESSION, or LOCAL when setting a variable, SESSION is the default.
See Section 6.5.3.1, “SET Syntax.”

To retrieve the value of a GLOBAL variable, use one of the following statements:

mysql> SELECT @@global.sort_buffer_size;

mysql> SHOW GLOBAL VARIABLES like ‘sort_buffer_size’;

To retrieve the value of a SESSION variable, use one of the following statements:

mysql> SELECT @@sort_buffer_size;

mysql> SELECT @@session.sort_buffer_size;

mysql> SHOW SESSION VARIABLES like ‘sort_buffer_size’;

Here, too, LOCAL is a synonym for SESSION.

When you retrieve a variable with SELECT @@var_name (that is, you do not specify global.,
session., or local.), MySQL returns the SESSION value if it exists and the GLOBAL value otherwise.

For SHOW VARIABLES, if you do not specify GLOBAL, SESSION, or LOCAL, MySQL returns the
SESSION value.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when
retrieving them is to prevent problems in the future. If we remove a SESSION variable with the
same name as a SESSION variable, a client with the SUPER privilege might accidentally change
the GLOBAL variable rather than just the SESSION variable for its own connection. If we add a
SESSION variable with the same name as a SESSION variable, a client that intends to change the
GLOBAL variable might find only its own SESSION variable changed.

Further information about system startup options and system variables can be found in the MySQL
Administrator’s Guide. A list of the variables that can be set at runtime is given there as well.

03 6337 ch02 6/24/04 12:45 PM Page 73

TEAM LinG

74 CHAPTER 2 Language Structure

2.4.1 Structured System Variables
Structured system variables are supported beginning with MySQL 4.1.1. A structured vari-
able differs from a regular system variable in two respects:

n Its value is a structure with components that specify server parameters considered to be
closely related.

n There might be several instances of a given type of structured variable. Each one has a
different name and refers to a different resource maintained by the server.

Currently, MySQL supports one structured variable type. It specifies parameters that govern
the operation of key caches. A key cache structured variable has these components:

n key_buffer_size

n key_cache_block_size

n key_cache_division_limit

n key_cache_age_threshold

The purpose of this section is to describe the syntax for referring to structured variables.
Key cache variables are used for syntax examples, but specific details about how key caches
operate are found in the MySQL Administrator’s Guide.

To refer to a component of a structured variable instance, you can use a compound name in
instance_name.component_name format. Examples:

hot_cache.key_buffer_size

hot_cache.key_cache_block_size

cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always prede-
fined. If you refer to a component of a structured variable without any instance name, the
default instance is used. Thus, default.key_buffer_size and key_buffer_size both refer to
the same system variable.

The naming rules for structured variable instances and components are as follows:

n For a given type of structured variable, each instance must have a name that is unique
within variables of that type. However, instance names need not be unique across struc-
tured variable types. For example, each structured variable will have an instance named
default, so default is not unique across variable types.

n The names of the components of each structured variable type must be unique across
all system variable names. If this were not true (that is, if two different types of struc-
tured variables could share component member names), it would not be clear which
default structured variable to use for references to member names that are not qualified
by an instance name.

03 6337 ch02 6/24/04 12:45 PM Page 74

TEAM LinG

752.4 System Variables

n If a structured variable instance name is not legal as an unquoted identifier, refer to
it as a quoted identifier using backticks. For example, hot-cache is not legal, but
`hot-cache` is.

n global, session, and local are not legal instance names. This avoids a conflict with
notation such as @@global.var_name for referring to non-structured system variables.

At the moment, the first two rules have no possibility of being violated because the only
structured variable type is the one for key caches. These rules will assume greater signifi-
cance if some other type of structured variable is created in the future.

With one exception, it is allowable to refer to structured variable components using com-
pound names in any context where simple variable names can occur. For example, you can
assign a value to a structured variable using a command-line option:

shell> mysqld --hot_cache.key_buffer_size=64K

In an option file, do this:

[mysqld]

hot_cache.key_buffer_size=64K

If you start the server with such an option, it creates a key cache named hot_cache with a
size of 64KB in addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

shell> mysqld --key_buffer_size=256K \

--extra_cache.key_buffer_size=128K \

--extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have
written --default.key_buffer_size=256K.) In addition, the server creates a second key cache
named extra_cache that has a size of 128KB, with the size of block buffers for caching table
index blocks set to 2048 bytes.

The following example starts the server with three different key caches having sizes in a
3:1:1 ratio:

shell> mysqld --key_buffer_size=6M \

--hot_cache.key_buffer_size=2M \

--cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a
key cache named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;

mysql> SET @@global.hot_cache.key_buffer_size = 10*1024*1024;

03 6337 ch02 6/24/04 12:45 PM Page 75

TEAM LinG

76 CHAPTER 2 Language Structure

To retrieve the cache size, do this:

mysql> SELECT @@global.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a com-
pound name, but as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE ‘hot_cache.key_buffer_size’;

This is the exception to being able to use structured variable names anywhere a simple vari-
able name may occur.

2.5 Comment Syntax
The MySQL server supports three comment styles:

n From a ‘#’ character to the end of the line.
n From a ‘-- ’ sequence to the end of the line. This style is supported as of MySQL

3.23.3. Note that the ‘-- ’ (double-dash) comment style requires the second dash to be
followed by at least one space (or by a control character such as a newline). This syntax
differs slightly from standard SQL comment syntax, as discussed in section 1.8.5.7,
“ ‘--’ as the Start of a Comment.”

n From a ‘/*’ sequence to the following ‘*/’ sequence. The closing sequence need not be
on the same line, so this syntax allows a comment to extend over multiple lines.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line

mysql> SELECT 1+1; -- This comment continues to the end of line

mysql> SELECT 1 /* this is an in-line comment */ + 1;

mysql> SELECT 1+

/*

this is a

multiple-line comment

*/

1;

The comment syntax just described applies to how the mysqld server parses SQL state-
ments. The mysql client program also performs some parsing of statements before sending
them to the server. (For example, it does this to determine statement boundaries within a
multiple-statement input line.) However, there are some limitations on the way that mysql
parses /* ... */ comments:

n A single-quote, double-quote, or backtick character is taken to indicate the beginning of a
quoted string or identifier, even within a comment. If the quote is not matched by a second
quote within the comment, the parser doesn’t realize the comment has ended. If you are
running mysql interactively, you can tell that it has gotten confused like this because the
prompt changes from mysql> to ‘>, “>, or `>. This problem was fixed in MySQL 4.1.1.

03 6337 ch02 6/24/04 12:45 PM Page 76

TEAM LinG

772.6 Treatment of Reserved Words in MySQL

n A semicolon within the comment is taken to indicate the end of the current SQL state-
ment and anything following it to indicate the beginning of the next statement. This
problem was fixed in MySQL 4.0.13.

For affected versions of MySQL, these limitations apply both when you run mysql interac-
tively and when you put commands in a file and use mysql in batch mode to process the file
with mysql < file_name.

2.6 Treatment of Reserved Words in MySQL
A common problem stems from trying to use an identifier such as a table or column name
that is the name of a built-in MySQL data type or function, such as TIMESTAMP or GROUP.
You’re allowed to do this (for example, ABS is allowed as a column name). However, by
default, no whitespace is allowed in function invocations between the function name and the
following ‘(’ character. This requirement allows a function call to be distinguished from a
reference to a column name.

A side effect of this behavior is that omitting a space in some contexts causes an identifier to
be interpreted as a function name. For example, this statement is legal:

mysql> CREATE TABLE abs (val INT);

But omitting the space after abs causes a syntax error because the statement then appears to
invoke the ABS() function:

mysql> CREATE TABLE abs(val INT);

If the server SQL mode includes the IGNORE_SPACE mode value, the server allows function
invocations to have whitespace between a function name and the following ‘(’ character.
This causes function names to be treated as reserved words. As a result, identifiers that are
the same as function names must be quoted as described in Section 2.2, “Database, Table,
Index, Column, and Alias Names.” The server SQL mode is controlled as described in
Section 1.8.2, “Selecting SQL Modes.”

The words in the following table are explicitly reserved in MySQL. Most of them are for-
bidden by standard SQL as column and/or table names (for example, GROUP). A few are
reserved because MySQL needs them and (currently) uses a yacc parser. A reserved word
can be used as an identifier by quoting it.

ADD ALL ALTER

ANALYZE AND AS

ASC ASENSITIVE AUTO_INCREMENT

BDB BEFORE BERKELEYDB

03 6337 ch02 6/24/04 12:45 PM Page 77

TEAM LinG

78 CHAPTER 2 Language Structure

BETWEEN BIGINT BINARY

BLOB BOTH BY

CALL CASCADE CASE

CHANGE CHAR CHARACTER

CHECK COLLATE COLUMN

COLUMNS CONDITION CONNECTION

CONSTRAINT CONTINUE CREATE

CROSS CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURSOR DATABASE

DATABASES DAY_HOUR DAY_MICROSECOND

DAY_MINUTE DAY_SECOND DEC

DECIMAL DECLARE DEFAULT

DELAYED DELETE DESC

DESCRIBE DETERMINISTIC DISTINCT

DISTINCTROW DIV DOUBLE

DROP ELSE ELSEIF

ENCLOSED ESCAPED EXISTS

EXIT EXPLAIN FALSE

FETCH FIELDS FLOAT

FOR FORCE FOREIGN

FOUND FRAC_SECOND FROM

FULLTEXT GRANT GROUP

HAVING HIGH_PRIORITY HOUR_MICROSECOND

HOUR_MINUTE HOUR_SECOND IF

IGNORE IN INDEX

INFILE INNER INNODB

INOUT INSENSITIVE INSERT

INT INTEGER INTERVAL

INTO IO_THREAD IS

ITERATE JOIN KEY

KEYS KILL LEADING

LEAVE LEFT LIKE

LIMIT LINES LOAD

LOCALTIME LOCALTIMESTAMP LOCK

LONG LONGBLOB LONGTEXT

LOOP LOW_PRIORITY MASTER_SERVER_ID

MATCH MEDIUMBLOB MEDIUMINT

MEDIUMTEXT MIDDLEINT MINUTE_MICROSECOND

MINUTE_SECOND MOD NATURAL

NOT NO_WRITE_TO_BINLOG NULL

03 6337 ch02 6/24/04 12:45 PM Page 78

TEAM LinG

792.6 Treatment of Reserved Words in MySQL

NUMERIC ON OPTIMIZE

OPTION OPTIONALLY OR

ORDER OUT OUTER

OUTFILE PRECISION PRIMARY

PRIVILEGES PROCEDURE PURGE

READ REAL REFERENCES

REGEXP RENAME REPEAT

REPLACE REQUIRE RESTRICT

RETURN REVOKE RIGHT

RLIKE SECOND_MICROSECOND SELECT

SENSITIVE SEPARATOR SET

SHOW SMALLINT SOME

SONAME SPATIAL SPECIFIC

SQL SQLEXCEPTION SQLSTATE

SQLWARNING SQL_BIG_RESULT SQL_CALC_FOUND_ROWS

SQL_SMALL_RESULT SQL_TSI_DAY SQL_TSI_FRAC_SECOND

SQL_TSI_HOUR SQL_TSI_MINUTE SQL_TSI_MONTH

SQL_TSI_QUARTER SQL_TSI_SECOND SQL_TSI_WEEK

SQL_TSI_YEAR SSL STARTING

STRAIGHT_JOIN STRIPED TABLE

TABLES TERMINATED THEN

TIMESTAMPADD TIMESTAMPDIFF TINYBLOB

TINYINT TINYTEXT TO

TRAILING TRUE UNDO

UNION UNIQUE UNLOCK

UNSIGNED UPDATE USAGE

USE USER_RESOURCES USING

UTC_DATE UTC_TIME UTC_TIMESTAMP

VALUES VARBINARY VARCHAR

VARCHARACTER VARYING WHEN

WHERE WHILE WITH

WRITE XOR YEAR_MONTH

ZEROFILL

The following keywords are allowed by MySQL as column/table names. This is because
they are very natural names and a lot of people have already used them.

n ACTION

n BIT

n DATE

n ENUM

n NO

n TEXT

n TIME

n TIMESTAMP

03 6337 ch02 6/24/04 12:45 PM Page 79

TEAM LinG

03 6337 ch02 6/24/04 12:45 PM Page 80

TEAM LinG

3
Character Set Support

Improved support for character set handling was added to MySQL in Version 4.1. The fea-
tures described here are as implemented in MySQL 4.1.1. (MySQL 4.1.0 has some but not
all of these features, and some of them are implemented differently.)

This chapter discusses the following topics:

n What are character sets and collations?
n The multiple-level default system
n New syntax in MySQL 4.1
n Affected functions and operations
n Unicode support
n The meaning of each individual character set and collation

Character set support currently is included in the MySISAM, MEMORY (HEAP), and (as of
MySQL 4.1.2) InnoDB storage engines. The ISAM storage engine does not include character
set support; there are no plans to change this, because ISAM is deprecated.

3.1 Character Sets and Collations in General
A character set is a set of symbols and encodings. A collation is a set of rules for compar-
ing characters in a character set. Let’s make the distinction clear with an example of an
imaginary character set.

Suppose that we have an alphabet with four letters: ‘A’, ‘B’, ‘a’, ‘b’. We give each letter a
number: ‘A’ = 0, ‘B’ = 1, ‘a’ = 2, ‘c’ = 3. The letter ‘A’ is a symbol, the number 0 is the encod-
ing for ‘A’, and the combination of all four letters and their encodings is a character set.

Now, suppose that we want to compare two string values, ‘A’ and ‘B’. The simplest way to do
this is to look at the encodings: 0 for ‘A’ and 1 for ‘B’. Because 0 is less than 1, we say ‘A’ is
less than ‘B’. Now, what we’ve just done is apply a collation to our character set. The colla-
tion is a set of rules (only one rule in this case): “compare the encodings.” We call this sim-
plest of all possible collations a binary collation.

04 6337 ch03 6/24/04 12:44 PM Page 81

TEAM LinG

82 CHAPTER 3 Character Set Support

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we
would have at least two rules: (1) treat the lowercase letters ‘a’ and ‘b’ as equivalent to ‘A’ and
‘B’; (2) then compare the encodings. We call this a case-insensitive collation. It’s a little
more complex than a binary collation.

In real life, most character sets have many characters: not just ‘A’ and ‘B’ but whole alpha-
bets, sometimes multiple alphabets or eastern writing systems with thousands of characters,
along with many special symbols and punctuation marks. Also in real life, most collations
have many rules: not just case insensitivity but also accent insensitivity (an “accent” is a mark
attached to a character as in German ‘ö’) and multiple-character mappings (such as the rule
that ‘ö’ = ‘OE’ in one of the two German collations).

MySQL 4.1 can do these things for you:

n Store strings using a variety of character sets
n Compare strings using a variety of collations
n Mix strings with different character sets or collations in the same server, the same data-

base, or even the same table
n Allow specification of character set and collation at any level

In these respects, not only is MySQL 4.1 far more flexible than MySQL 4.0, it also is far
ahead of other DBMSs. However, to use the new features effectively, you will need to learn
what character sets and collations are available, how to change their defaults, and what the
various string operators do with them.

3.2 Character Sets and Collations in MySQL
The MySQL server can support multiple character sets. To list the available character sets,
use the SHOW CHARACTER SET statement:

mysql> SHOW CHARACTER SET;

+----------+-----------------------------+---------------------+

| Charset | Description | Default collation |

+----------+-----------------------------+---------------------+

| big5 | Big5 Traditional Chinese | big5_chinese_ci |

| dec8 | DEC West European | dec8_swedish_ci |

| cp850 | DOS West European | cp850_general_ci |

| hp8 | HP West European | hp8_english_ci |

| koi8r | KOI8-R Relcom Russian | koi8r_general_ci |

| latin1 | ISO 8859-1 West European | latin1_swedish_ci |

| latin2 | ISO 8859-2 Central European | latin2_general_ci |

...

04 6337 ch03 6/24/04 12:44 PM Page 82

TEAM LinG

833.2 Character Sets and Collations in MySQL

The output actually includes another column that is not shown so that the example fits bet-
ter on the page.

Any given character set always has at least one collation. It may have several collations.

To list the collations for a character set, use the SHOW COLLATION statement. For example, to
see the collations for the latin1 (“ISO-8859-1 West European”) character set, use this state-
ment to find those collation names that begin with latin1:

mysql> SHOW COLLATION LIKE ‘latin1%’;

+-------------------+---------+----+---------+----------+---------+

| Collation | Charset | Id | Default | Compiled | Sortlen |

+-------------------+---------+----+---------+----------+---------+

| latin1_german1_ci | latin1 | 5 | | | 0 |

| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 1 |

| latin1_danish_ci | latin1 | 15 | | | 0 |

| latin1_german2_ci | latin1 | 31 | | Yes | 2 |

| latin1_bin | latin1 | 47 | | Yes | 1 |

| latin1_general_ci | latin1 | 48 | | | 0 |

| latin1_general_cs | latin1 | 49 | | | 0 |

| latin1_spanish_ci | latin1 | 94 | | | 0 |

+-------------------+---------+----+---------+----------+---------+

The latin1 collations have the following meanings:

Collation Meaning

latin1_bin Binary according to latin1 encoding

latin1_danish_ci Danish/Norwegian

latin1_general_ci Multilingual

latin1_general_cs Multilingual, case sensitive

latin1_german1_ci German DIN-1

latin1_german2_ci German DIN-2

latin1_spanish_ci Modern Spanish

latin1_swedish_ci Swedish/Finnish

Collations have these general characteristics:

n Two different character sets cannot have the same collation.
n Each character set has one collation that is the default collation. For example, the default

collation for latin1 is latin1_swedish_ci.
n There is a convention for collation names: They start with the name of the character

set with which they are associated, they usually include a language name, and they end
with _ci (case insensitive), _cs (case sensitive), _bin (binary), or _uca (Unicode
Collation Algorithm, http://www.unicode.org/reports/tr10/).

04 6337 ch03 6/24/04 12:44 PM Page 83

TEAM LinG

84 CHAPTER 3 Character Set Support

3.3 Determining the Default Character Set and
Collation
There are default settings for character sets and collations at four levels: server, database,
table, and connection. The following description may appear complex, but it has been found
in practice that multiple-level defaulting leads to natural and obvious results.

3.3.1 Server Character Set and Collation
The MySQL Server has a server character set and a server collation, which may not be null.

MySQL determines the server character set and server collation thus:

n According to the option settings in effect when the server starts
n According to the values set at runtime

At the server level, the decision is simple. The server character set and collation depend initial-
ly on the options that you use when you start mysqld. You can use --default-character-set
for the character set, and along with it you can add --default-collation for the collation. If
you don’t specify a character set, that is the same as saying --default-character-set=latin1.
If you specify only a character set (for example, latin1) but not a collation, that is the same
as saying --default-charset=latin1 --default-collation=latin1_swedish_ci because
latin1_swedish_ci is the default collation for latin1. Therefore, the following three com-
mands all have the same effect:

shell> mysqld

shell> mysqld --default-character-set=latin1

shell> mysqld --default-character-set=latin1 \

--default-collation=latin1_swedish_ci

One way to change the settings is by recompiling. If you want to change the default server
character set and collation when building from sources, use: --with-charset and --with-
collation as arguments for configure. For example:

shell> ./configure --with-charset=latin1

Or:

shell> ./configure --with-charset=latin1 \

--with-collation=latin1_german1_ci

Both mysqld and configure verify that the character set/collation combination is valid. If
not, each program displays an error message and terminates.

The current server character set and collation are available as the values of the
character_set_server and collation_server system variables. These variables can be
changed at runtime.

04 6337 ch03 6/24/04 12:44 PM Page 84

TEAM LinG

853.3 Determining the Default Character Set and Collation

3.3.2 Database Character Set and Collation
Every database has a database character set and a database collation, which may not be null.
The CREATE DATABASE and ALTER DATABASE statements have optional clauses for specifying
the database character set and collation:

CREATE DATABASE db_name

[[DEFAULT] CHARACTER SET charset_name]

[[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name

[[DEFAULT] CHARACTER SET charset_name]

[[DEFAULT] COLLATE collation_name]

Example:

CREATE DATABASE db_name

DEFAULT CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation thus:

n If both CHARACTER SET X and COLLATE Y were specified, then character set X and colla-
tion Y.

n If CHARACTER SET X was specified without COLLATE, then character set X and its default
collation.

n Otherwise, the server character set and server collation.

MySQL’s CREATE DATABASE ... DEFAULT CHARACTER SET ... syntax is analogous to the stan-
dard SQL CREATE SCHEMA ... CHARACTER SET ... syntax. Because of this, it is possible to
create databases with different character sets and collations on the same MySQL server.

The database character set and collation are used as default values if the table character set
and collation are not specified in CREATE TABLE statements. They have no other purpose.

The character set and collation for the default database are available as the values of the
character_set_database and collation_database system variables. The server sets these
variables whenever the default database changes. If there is no default database, the variables
have the same value as the corresponding server-level variables, character_set_server and
collation_server.

04 6337 ch03 6/24/04 12:44 PM Page 85

TEAM LinG

86 CHAPTER 3 Character Set Support

3.3.3 Table Character Set and Collation
Every table has a table character set and a table collation, which may not be null. The
CREATE TABLE and ALTER TABLE statements have optional clauses for specifying the table
character set and collation:

CREATE TABLE tbl_name (column_list)

[DEFAULT CHARACTER SET charset_name [COLLATE collation_name]]

ALTER TABLE tbl_name

[DEFAULT CHARACTER SET charset_name] [COLLATE collation_name]

Example:

CREATE TABLE t1 (...)

DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation thus:

n If both CHARACTER SET X and COLLATE Y were specified, then character set X and
collation Y.

n If CHARACTER SET X was specified without COLLATE, then character set X and its default
collation.

n Otherwise, the database character set and collation.

The table character set and collation are used as default values if the column character set
and collation are not specified in individual column definitions. The table character set and
collation are MySQL extensions; there are no such things in standard SQL.

3.3.4 Column Character Set and Collation
Every “character” column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column
character set and a column collation, which may not be null. Column definition syntax has
optional clauses for specifying the column character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)

[CHARACTER SET charset_name [COLLATE collation_name]]

Example:

CREATE TABLE Table1

(

column1 VARCHAR(5) CHARACTER SET latin1 COLLATE latin1_german1_ci

);

04 6337 ch03 6/24/04 12:44 PM Page 86

TEAM LinG

873.3 Determining the Default Character Set and Collation

MySQL chooses the column character set and collation thus:

n If both CHARACTER SET X and COLLATE Y were specified, then character set X and collation Y.
n If CHARACTER SET X was specified without COLLATE, then character set X and its default

collation.
n Otherwise, the table character set and collation.

The CHARACTER SET and COLLATE clauses are standard SQL.

3.3.5 Examples of Character Set and Collation Assignment
The following examples show how MySQL determines default character set and collation
values.

Example 1: Table + Column Definition
CREATE TABLE t1

(

c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci

) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The
definition is explicit, so that’s straightforward. Notice that there’s no problem storing a
latin1 column in a latin2 table.

Example 2: Table + Column Definition
CREATE TABLE t1

(

c1 CHAR(10) CHARACTER SET latin1

) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Now,
although it might seem natural, the default collation is not taken from the table level.
Instead, because the default collation for latin1 is always latin1_swedish_ci, column c1 will
have a collation of latin1_swedish_ci (not latin1_danish_ci).

Example 3: Table + Column Definition
CREATE TABLE t1

(

c1 CHAR(10)

) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance,
MySQL looks up to the table level for inspiration in determining the column character set and
collation. So, the character set for column c1 is latin1 and its collation is latin1_danish_ci.

04 6337 ch03 6/24/04 12:44 PM Page 87

TEAM LinG

88 CHAPTER 3 Character Set Support

Example 4: Database + Table + Column Definition
CREATE DATABASE d1

DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_ci;

USE d1;

CREATE TABLE t1

(

c1 CHAR(10)

);

We create a column without specifying its character set and collation. We’re also not speci-
fying a character set and a collation at the table level. In this circumstance, MySQL looks up
to the database level for inspiration. (The database’s settings become the table’s settings, and
thereafter become the column’s setting.) So, the character set for column c1 is latin2 and its
collation is latin2_czech_ci.

3.3.6 Connection Character Sets and Collations
Several character set and collation system variables relate to a client’s interaction with the
server. Some of these have already been mentioned in earlier sections:

n The server character set and collation are available as the values of the
character_set_server and collation_server variables.

n The character set and collation of the default database are available as the values of the
character_set_database and collation_database variables.

Additional character set and collation variables are involved in handling traffic for the con-
nection between a client and the server. Every client has connection-related character set
and collation variables.

Consider what a “connection” is: It’s what you make when you connect to the server. The
client sends SQL statements, such as queries, over the connection to the server. The server
sends responses, such as result sets, over the connection back to the client. This leads to sev-
eral questions about character set and collation handling for client connections, each of
which can be answered in terms of system variables:

n What character set is the query in when it leaves the client?

The server takes the character_set_client variable to be the character set in which
queries are sent by the client.

n What character set should the server translate a query to after receiving it?

For this, character_set_connection and collation_connection are used by the server.
It converts queries sent by the client from character_set_client to character_set_
connection (except for string literals that have an introducer such as _latin1 or _utf8).
collation_connection is important for comparisons of literal strings. For comparisons
of strings with column values, it does not matter because columns have a higher colla-
tion precedence.

04 6337 ch03 6/24/04 12:44 PM Page 88

TEAM LinG

893.3 Determining the Default Character Set and Collation

n What character set should the server translate to before shipping result sets or error
messages back to the client?

The character_set_results variable indicates the character set in which the server
returns query results to the client. This includes result data such as column values, and
result metadata such as column names.

You can fine-tune the settings for these variables, or you can depend on the defaults (in
which case, you can skip this section).

There are two statements that affect the connection character sets:

SET NAMES ‘charset_name’

SET CHARACTER SET charset_name

SET NAMES indicates what is in the SQL statements that the client sends. Thus, SET NAMES
‘cp1251’ tells the server “future incoming messages from this client will be in character set
cp1251.” It also specifies the character set for results that the server sends back to the client.
(For example, it indicates what character set column values will have if you use a SELECT
statement.)

A SET NAMES ‘x’ statement is equivalent to these three statements:

mysql> SET character_set_client = x;

mysql> SET character_set_results = x;

mysql> SET character_set_connection = x;

Setting character_set_connection to x also sets collation_connection to the default
collation for x.

SET CHARACTER SET is similar but sets the connection character set and collation to be those
of the default database. A SET CHARACTER SET x statement is equivalent to these three state-
ments:

mysql> SET character_set_client = x;

mysql> SET character_set_results = x;

mysql> SET collation_connection = @@collation_database;

When a client connects, it sends to the server the name of the character set that it wants to
use. The server sets the character_set_client, character_set_results, and
character_set_connection variables to that character set. (In effect, the server performs a
SET NAMES operation using the character set.)

With the mysql client, it is not necessary to execute SET NAMES every time you start up if you
want to use a character set different from the default. You can add the --default-character-
set option setting to your mysql statement line, or in your option file. For example, the fol-
lowing option file setting changes the three character set variables set to koi8r each time
you run mysql:

[mysql]

default-character-set=koi8r

04 6337 ch03 6/24/04 12:44 PM Page 89

TEAM LinG

90 CHAPTER 3 Character Set Support

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not
say SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server will send
back all the values for column1 using the character set that the client specified when it con-
nected. On the other hand, if you say SET NAMES ‘latin1’ or SET CHARACTER SET latin1,
then just before sending results back, the server will convert the latin2 values to latin1.
Conversion may be lossy if there are characters that are not in both character sets.

If you do not want the server to perform any conversion, set character_set_results to NULL:

mysql> SET character_set_results = NULL;

3.3.7 Character String Literal Character Set and Collation
Every character string literal has a character set and a collation, which may not be null.

A character string literal may have an optional character set introducer and COLLATE clause:

[_charset_name]’string’ [COLLATE collation_name]

Examples:

SELECT ‘string’;

SELECT _latin1’string’;

SELECT _latin1’string’ COLLATE latin1_danish_ci;

For the simple statement SELECT ‘string’, the string has the character set and collation
defined by the character_set_connection and collation_connection system variables.

The _charset_name expression is formally called an introducer. It tells the parser, “the string
that is about to follow is in character set X.” Because this has confused people in the past, we
emphasize that an introducer does not cause any conversion, it is strictly a signal that does
not change the string’s value. An introducer is also legal before standard hex literal and
numeric hex literal notation (x’literal’ and 0xnnnn), and before ? (parameter substitution
when using prepared statements within a programming language interface).

Examples:

SELECT _latin1 x’AABBCC’;

SELECT _latin1 0xAABBCC;

SELECT _latin1 ?;

MySQL determines a literal’s character set and collation thus:

n If both _X and COLLATE Y were specified, then character set X and collation Y
n If _X is specified but COLLATE is not specified, then character set X and its default

collation
n Otherwise, the character set and collation given by the character_set_connection and

collation_connection system variables

04 6337 ch03 6/24/04 12:44 PM Page 90

TEAM LinG

913.3 Determining the Default Character Set and Collation

Examples:

n A string with latin1 character set and latin1_german1_ci collation:
SELECT _latin1’Müller’ COLLATE latin1_german1_ci;

n A string with latin1 character set and its default collation (that is, latin1_swedish_ci):
SELECT _latin1’Müller’;

n A string with the connection default character set and collation:

SELECT ‘Müller’;

Character set introducers and the COLLATE clause are implemented according to standard
SQL specifications.

3.3.8 Using COLLATE in SQL Statements
With the COLLATE clause, you can override whatever the default collation is for a comparison.
COLLATE may be used in various parts of SQL statements. Here are some examples:

n With ORDER BY:
SELECT k

FROM t1

ORDER BY k COLLATE latin1_german2_ci;

n With AS:
SELECT k COLLATE latin1_german2_ci AS k1

FROM t1

ORDER BY k1;

n With GROUP BY:
SELECT k

FROM t1

GROUP BY k COLLATE latin1_german2_ci;

n With aggregate functions:
SELECT MAX(k COLLATE latin1_german2_ci)

FROM t1;

n With DISTINCT:
SELECT DISTINCT k COLLATE latin1_german2_ci

FROM t1;

n With WHERE:
SELECT *

FROM t1

WHERE _latin1 ‘Müller’ COLLATE latin1_german2_ci = k;

04 6337 ch03 6/24/04 12:44 PM Page 91

TEAM LinG

92 CHAPTER 3 Character Set Support

n With HAVING:
SELECT k

FROM t1

GROUP BY k

HAVING k = _latin1 ‘Müller’ COLLATE latin1_german2_ci;

3.3.9 COLLATE Clause Precedence
The COLLATE clause has high precedence (higher than ||), so the following two expressions
are equivalent:

x || y COLLATE z

x || (y COLLATE z)

3.3.10 BINARY Operator
The BINARY operator is a shorthand for a COLLATE clause. BINARY ‘x’ is equivalent to ‘x’ COLLATE

y, where y is the name of the binary collation for the character set of ‘x’. Every character set has
a binary collation. For example, the binary collation for the latin1 character set is latin1_bin, so
if the column a is of character set latin1, the following two statements have the same effect:

SELECT * FROM t1 ORDER BY BINARY a;

SELECT * FROM t1 ORDER BY a COLLATE latin1_bin;

3.3.11 Some Special Cases Where the Collation
Determination Is Tricky
In the great majority of queries, it is obvious what collation MySQL uses to resolve a com-
parison operation. For example, in the following cases, it should be clear that the collation
will be “the column collation of column x”:

SELECT x FROM T ORDER BY x;

SELECT x FROM T WHERE x = x;

SELECT DISTINCT x FROM T;

However, when multiple operands are involved, there can be ambiguity. For example:

SELECT x FROM T WHERE x = ‘Y’;

Should this query use the collation of the column x, or of the string literal ‘Y’?

Standard SQL resolves such questions using what used to be called “coercibility” rules. The
essence is: Because x and ‘Y’ both have collations, whose collation takes precedence? It’s
complex, but the following rules take care of most situations:

n An explicit COLLATE clause has a coercibility of 0. (Not coercible at all.)
n A concatenation of two strings with different collations has a coercibility of 1.

04 6337 ch03 6/24/04 12:44 PM Page 92

TEAM LinG

933.3 Determining the Default Character Set and Collation

n A column’s collation has a coercibility of 2.
n A literal’s collation has a coercibility of 3.

Those rules resolve ambiguities thus:

n Use the collation with the lowest coercibility value.
n If both sides have the same coercibility, then it is an error if the collations aren’t the

same.

Examples:

column1 = ‘A’ Use collation of column1

column1 = ‘A’ COLLATE x Use collation of ‘A’

column1 COLLATE x = ‘A’ COLLATE y Error

The COERCIBILITY() function can be used to determine the coercibility of a string expression:

mysql> SELECT COERCIBILITY(‘A’ COLLATE latin1_swedish_ci);

-> 0

mysql> SELECT COERCIBILITY(‘A’);

-> 3

See Section 5.8.3, “Information Functions.”

3.3.12 Collations Must Be for the Right Character Set
Recall that each character set has one or more collations, and each collation is associated
with one and only one character set. Therefore, the following statement causes an error
message because the latin2_bin collation is not legal with the latin1 character set:

mysql> SELECT _latin1 ‘x’ COLLATE latin2_bin;

ERROR 1251: COLLATION ‘latin2_bin’ is not valid

for CHARACTER SET ‘latin1’

In some cases, expressions that worked before MySQL 4.1 fail as of MySQL 4.1 if you do
not take character set and collation into account. For example, before 4.1, this statement
works as is:

mysql> SELECT SUBSTRING_INDEX(USER(),’@’,1);

+-------------------------------+

| SUBSTRING_INDEX(USER(),’@’,1) |

+-------------------------------+

| root |

+-------------------------------+

04 6337 ch03 6/24/04 12:44 PM Page 93

TEAM LinG

94 CHAPTER 3 Character Set Support

After an upgrade to MySQL 4.1, the statement fails:

mysql> SELECT SUBSTRING_INDEX(USER(),’@’,1);

ERROR 1267 (HY000): Illegal mix of collations

(utf8_general_ci,IMPLICIT) and (latin1_swedish_ci,COERCIBLE)

for operation ‘substr_index’

The reason this occurs is that usernames are stored using UTF8 (see Section 3.6, “UTF8
for Metadata”). As a result, the USER() function and the literal string ‘@’ have different char-
acter sets (and thus different collations):

mysql> SELECT COLLATION(USER()), COLLATION(‘@’);

+-------------------+-------------------+

| COLLATION(USER()) | COLLATION(‘@’) |

+-------------------+-------------------+

| utf8_general_ci | latin1_swedish_ci |

+-------------------+-------------------+

One way to deal with this is to tell MySQL to interpret the literal string as utf8:

mysql> SELECT SUBSTRING_INDEX(USER(),_utf8’@’,1);

+------------------------------------+

| SUBSTRING_INDEX(USER(),_utf8’@’,1) |

+------------------------------------+

| root |

+------------------------------------+

Another way is to change the connection character set and collation to utf8. You can do that
with SET NAMES ‘utf8’ or by setting the character_set_connection and collation_connection
system variables directly.

3.3.13 An Example of the Effect of Collation
Suppose that column X in table T has these latin1 column values:

Muffler

Müller

MX Systems

MySQL

And suppose that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

04 6337 ch03 6/24/04 12:44 PM Page 94

TEAM LinG

953.4 Operations Affected by Character Set Support

The resulting order of the values for different collations is shown in this table:

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The table is an example that shows what the effect would be if we used different collations
in an ORDER BY clause. The character that causes the different sort orders in this example is
the U with two dots over it, which the Germans call U-umlaut, but we’ll call it U-dieresis.

n The first column shows the result of the SELECT using the Swedish/Finnish collating
rule, which says that U-dieresis sorts with Y.

n The second column shows the result of the SELECT using the German DIN-1 rule,
which says that U-dieresis sorts with U.

n The third column shows the result of the SELECT using the German DIN-2 rule, which
says that U-dieresis sorts with UE.

Three different collations, three different results. That’s what MySQL is here to handle. By
using the appropriate collation, you can choose the sort order you want.

3.4 Operations Affected by Character Set
Support
This section describes operations that take character set information into account as of
MySQL 4.1.

3.4.1 Result Strings
MySQL has many operators and functions that return a string. This section answers the
question: What is the character set and collation of such a string?

For simple functions that take string input and return a string result as output, the output’s
character set and collation are the same as those of the principal input value. For example,
UPPER(X) returns a string whose character string and collation are the same as that of X. The
same applies for INSTR(), LCASE(), LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(),
RIGHT(), RPAD(), RTRIM(), SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UPPER(). (Also note:
The REPLACE() function, unlike all other functions, ignores the collation of the string input
and performs a case-insensitive comparison every time.)

04 6337 ch03 6/24/04 12:44 PM Page 95

TEAM LinG

96 CHAPTER 3 Character Set Support

For operations that combine multiple string inputs and return a single string output, the
“aggregation rules” of standard SQL apply:

n If an explicit COLLATE X occurs, then use X
n If an explicit COLLATE X and COLLATE Y occur, then error
n Otherwise, if all collations are X, then use X
n Otherwise, the result has no collation

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resultant
collation is X. The same applies for CASE, UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and
LEAST().

For operations that convert to character data, the character set and collation of the strings
that result from the operations are defined by the character_set_connection and collation_
connection system variables. This applies for CAST(), CHAR(), CONV(), FORMAT(), HEX(), and
SPACE().

3.4.2 CONVERT()
CONVERT() provides a way to convert data between different character sets. The syntax is:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT(_latin1’Müller’ USING utf8);

INSERT INTO utf8table (utf8column)

SELECT CONVERT(latin1field USING utf8) FROM latin1table;

CONVERT(... USING ...) is implemented according to the standard SQL specification.

3.4.3 CAST()
You may also use CAST() to convert a string to a different character set. The syntax is:

CAST(character_string AS character_data_type CHARACTER SET charset_name)

Example:

SELECT CAST(_latin1’test’ AS CHAR CHARACTER SET utf8);

If you use CAST() without specifying CHARACTER SET, the resulting character set and collation
are defined by the character_set_connection and collation_connection system variables. If
you use CAST() with CHARACTER SET X, then the resulting character set and collation are X
and the default collation of X.

04 6337 ch03 6/24/04 12:44 PM Page 96

TEAM LinG

973.4 Operations Affected by Character Set Support

You may not use a COLLATE clause inside a CAST(), but you may use it outside. That is,
CAST(... COLLATE ...) is illegal, but CAST(...) COLLATE ... is legal.

Example:

SELECT CAST(_latin1’test’ AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

3.4.4 SHOW Statements
Several SHOW statements are new or modified in MySQL 4.1 to provide additional character
set information. SHOW CHARACTER SET, SHOW COLLATION, and SHOW CREATE DATABASE are new.
SHOW CREATE TABLE and SHOW COLUMNS are modified.

The SHOW CHARACTER SET command shows all available character sets. It takes an optional
LIKE clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE ‘latin%’;

+---------+-----------------------------+-------------------+--------+

| Charset | Description | Default collation | Maxlen |

+---------+-----------------------------+-------------------+--------+

| latin1 | ISO 8859-1 West European | latin1_swedish_ci | 1 |

| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |

| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |

| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1 |

+---------+-----------------------------+-------------------+--------+

See Section 6.5.3.2, “SHOW CHARACTER SET Syntax.”

The output from SHOW COLLATION includes all available character sets. It takes an optional
LIKE clause that indicates which collation names to match. For example:

mysql> SHOW COLLATION LIKE ‘latin1%’;

+-------------------+---------+----+---------+----------+---------+

| Collation | Charset | Id | Default | Compiled | Sortlen |

+-------------------+---------+----+---------+----------+---------+

| latin1_german1_ci | latin1 | 5 | | | 0 |

| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 0 |

| latin1_danish_ci | latin1 | 15 | | | 0 |

| latin1_german2_ci | latin1 | 31 | | Yes | 2 |

| latin1_bin | latin1 | 47 | | Yes | 0 |

| latin1_general_ci | latin1 | 48 | | | 0 |

| latin1_general_cs | latin1 | 49 | | | 0 |

| latin1_spanish_ci | latin1 | 94 | | | 0 |

+-------------------+---------+----+---------+----------+---------+

04 6337 ch03 6/24/04 12:44 PM Page 97

TEAM LinG

98 CHAPTER 3 Character Set Support

See Section 6.5.3.3, “SHOW COLLATION Syntax.”

SHOW CREATE DATABASE displays the CREATE DATABASE statement that will create a given data-
base. The result includes all database options. DEFAULT CHARACTER SET and COLLATE are sup-
ported. All database options are stored in a text file named db.opt that can be found in the
database directory.

mysql> SHOW CREATE DATABASE a\G

*************************** 1. row ***************************

Database: a

Create Database: CREATE DATABASE `a`

/*!40100 DEFAULT CHARACTER SET macce */

See Section 6.5.3.5, “SHOW CREATE DATABASE Syntax.”

SHOW CREATE TABLE is similar, but displays the CREATE TABLE statement to create a given
table. The column definitions now indicate any character set specifications, and the table
options include character set information.

See Section 6.5.3.6, “SHOW CREATE TABLE Syntax.”

The SHOW COLUMNS statement displays the collations of a table’s columns when invoked as
SHOW FULL COLUMNS. Columns with CHAR, VARCHAR, or TEXT data types have non-NULL colla-
tions. Numeric and other non-character types have NULL collations. For example:

mysql> SHOW FULL COLUMNS FROM t;

+-------+---------+------------+------+-----+---------+-------+

| Field | Type | Collation | Null | Key | Default | Extra |

+-------+---------+------------+------+-----+---------+-------+

| a | char(1) | latin1_bin | YES | | NULL | |

| b | int(11) | NULL | YES | | NULL | |

+-------+---------+------------+------+-----+---------+-------+

The character set is not part of the display. (The character set name is implied by the colla-
tion name.)

See Section 6.5.3.4, “SHOW COLUMNS Syntax.”

3.5 Unicode Support
As of MySQL version 4.1, there are two new character sets for storing Unicode data:

n ucs2, the UCS-2 Unicode character set.
n utf8, the UTF8 encoding of the Unicode character set.

04 6337 ch03 6/24/04 12:44 PM Page 98

TEAM LinG

993.6 UTF8 for Metadata

In UCS-2 (binary Unicode representation), every character is represented by a two-byte
Unicode code with the most significant byte first. For example: “LATIN CAPITAL
LETTER A” has the code 0x0041 and it’s stored as a two-byte sequence: 0x00 0x41.
“CYRILLIC SMALL LETTER YERU” (Unicode 0x044B) is stored as a two-byte
sequence: 0x04 0x4B. For Unicode characters and their codes, please refer to the
Unicode Home Page (http://www.unicode.org/).

A temporary restriction is that UCS-2 cannot yet be used as a client character set. That
means that SET NAMES ‘ucs2’ will not work.

The UTF8 character set (transform Unicode representation) is an alternative way to store
Unicode data. It is implemented according to RFC2279. The idea of the UTF8 character
set is that various Unicode characters fit into byte sequences of different lengths:

n Basic Latin letters, digits, and punctuation signs use one byte.
n Most European and Middle East script letters fit into a two-byte sequence: extended

Latin letters (with tilde, macron, acute, grave, and other accents), Cyrillic, Greek,
Armenian, Hebrew, Arabic, Syriac, and others.

n Korean, Chinese, and Japanese ideographs use three-byte sequences.

Currently, MySQL UTF8 support does not include four-byte sequences.

Tip: To save space with UTF8, use VARCHAR instead of CHAR. Otherwise, MySQL has to
reserve 30 bytes for a CHAR(10) CHARACTER SET utf8 column, because that’s the maximum
possible length.

3.6 UTF8 for Metadata
The metadata is the data about the data. Anything that describes the database, as opposed to
being the contents of the database, is metadata. Thus column names, database names, user-
names, version names, and most of the string results from SHOW are metadata.

Representation of metadata must satisfy these requirements:

n All metadata must be in the same character set. Otherwise, SHOW wouldn’t work properly
because different rows in the same column would be in different character sets.

n Metadata must include all characters in all languages. Otherwise, users wouldn’t be able
to name columns and tables in their own languages.

In order to satisfy both requirements, MySQL stores metadata in a Unicode character set,
namely UTF8. This will not cause any disruption if you never use accented characters. But
if you do, you should be aware that metadata is in UTF8.

This means that the USER(), CURRENT_USER(), and VERSION() functions will have the UTF8
character set by default. So will any synonyms, such as the SESSION_USER() and SYSTEM_USER()
synonyms for USER().

04 6337 ch03 6/24/04 12:44 PM Page 99

TEAM LinG

100 CHAPTER 3 Character Set Support

The server sets the character_set_system system variable to the name of the metadata char-
acter set:

mysql> SHOW VARIABLES LIKE ‘character_set_system’;

+----------------------+-------+

| Variable_name | Value |

+----------------------+-------+

| character_set_system | utf8 |

+----------------------+-------+

Storage of metadata using Unicode does not mean that the headers of columns and the
results of DESCRIBE functions will be in the character_set_system character set by default.
When you say SELECT column1 FROM t, the name column1 itself will be returned from the
server to the client in the character set as determined by the SET NAMES statement. More
specifically, the character set used is determined by the value of the character_set_results
system variable. If this variable is set to NULL, no conversion is performed and the server
returns metadata using its original character set (the set indicated by character_set_system).

If you want the server to pass metadata results back in a non-UTF8 character set, then use
SET NAMES to force the server to perform character set conversion (see Section 3.3.6,
“Connection Character Sets and Collations”), or else set the client to do the conversion. It
is always more efficient to set the client to do the conversion, but this option will not be
available for many clients until late in the MySQL 4.x product cycle.

If you are just using, for example, the USER() function for comparison or assignment within
a single statement, don’t worry. MySQL will do some automatic conversion for you.

SELECT * FROM Table1 WHERE USER() = latin1_column;

This will work because the contents of latin1_column are automatically converted to UTF8
before the comparison.

INSERT INTO Table1 (latin1_column) SELECT USER();

This will work because the contents of USER() are automatically converted to latin1 before
the assignment. Automatic conversion is not fully implemented yet, but should work cor-
rectly in a later version.

Although automatic conversion is not in the SQL standard, the SQL standard document
does say that every character set is (in terms of supported characters) a “subset” of
Unicode. Since it is a well-known principle that “what applies to a superset can apply to
a subset,” we believe that a collation for Unicode can apply for comparisons with
non-Unicode strings.

04 6337 ch03 6/24/04 12:44 PM Page 100

TEAM LinG

1013.10 Upgrading from MySQL 4.0

3.7 Compatibility with Other DBMSs
For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(n) UNICODE);

CREATE TABLE t1 (f1 CHAR(n) CHARACTER SET ucs2);

3.8 New Character Set Configuration File Format
In MySQL 4.1, character set configuration is stored in XML files, one file per character set.
In previous versions, this information was stored in .conf files.

3.9 National Character Set
Before MySQL 4.1, NCHAR and CHAR were synonymous. ANSI defines NCHAR or NATIONAL
CHAR as a way to indicate that a CHAR column should use some predefined character set.
MySQL 4.1 and up uses utf8 as that predefined character set. For example, these column
type declarations are equivalent:

CHAR(10) CHARACTER SET utf8

NATIONAL CHARACTER(10)

NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8

NATIONAL VARCHAR(10)

NCHAR VARCHAR(10)

NATIONAL CHARACTER VARYING(10)

NATIONAL CHAR VARYING(10)

You can use N’literal’ to create a string in the national character set. These two statements
are equivalent:

SELECT N’some text’;

SELECT _utf8’some text’;

3.10 Upgrading Character Sets from MySQL 4.0
Now, what about upgrading from older versions of MySQL? MySQL 4.1 is almost upward
compatible with MySQL 4.0 and earlier for the simple reason that almost all the features are
new, so there’s nothing in earlier versions to conflict with. However, there are some differ-
ences and a few things to be aware of.

04 6337 ch03 6/24/04 12:44 PM Page 101

TEAM LinG

102 CHAPTER 3 Character Set Support

Most important: The “MySQL 4.0 character set” has the properties of both “MySQL 4.1
character sets” and “MySQL 4.1 collations.” You will have to unlearn this. Henceforth, we
will not bundle character set/collation properties in the same conglomerate object.

There is a special treatment of national character sets in MySQL 4.1. NCHAR is not the same
as CHAR, and N’...’ literals are not the same as ‘...’ literals.

Finally, there is a different file format for storing information about character sets and colla-
tions. Make sure that you have reinstalled the /share/mysql/charsets/ directory containing
the new configuration files.

If you want to start mysqld from a 4.1.x distribution with data created by MySQL 4.0, you
should start the server with the same character set and collation. In this case you won’t need
to reindex your data.

There are two ways to do so:

shell> ./configure --with-charset=... --with-collation=...

shell> ./mysqld --default-character-set=... --default-collation=...

If you used mysqld with, for example, the MySQL 4.0 danish character set, you should now
use the latin1 character set and the latin1_danish_ci collation:

shell> ./configure --with-charset=latin1 \

--with-collation=latin1_danish_ci

shell> ./mysqld --default-character-set=latin1 \

--default-collation=latin1_danish_ci

Use the table shown in Section 3.10.1, “4.0 Character Sets and Corresponding 4.1
Character Set/Collation Pairs,” to find old 4.0 character set names and their 4.1 character
set/collation pair equivalents.

If you have non-latin1 data stored in a 4.0 latin1 table and want to convert the table
column definitions to reflect the actual character set of the data, use the instructions in
Section 3.10.2, “Converting 4.0 Character Columns to 4.1 Format.”

3.10.1 4.0 Character Sets and Corresponding 4.1 Character
Set/Collation Pairs

ID 4.0 Character Set 4.1 Character Set 4.1 Collation

1 big5 big5 big5_chinese_ci

2 czech latin2 latin2_czech_ci

3 dec8 dec8 dec8_swedish_ci

4 dos cp850 cp850_general_ci

5 german1 latin1 latin1_german1_ci

6 hp8 hp8 hp8_english_ci

7 koi8_ru koi8r koi8r_general_ci

04 6337 ch03 6/24/04 12:44 PM Page 102

TEAM LinG

1033.10 Upgrading from MySQL 4.0

ID 4.0 Character Set 4.1 Character Set 4.1 Collation

8 latin1 latin1 latin1_swedish_ci

9 latin2 latin2 latin2_general_ci

10 swe7 swe7 swe7_swedish_ci

11 usa7 ascii ascii_general_ci

12 ujis ujis ujis_japanese_ci

13 sjis sjis sjis_japanese_ci

14 cp1251 cp1251 cp1251_bulgarian_ci

15 danish latin1 latin1_danish_ci

16 hebrew hebrew hebrew_general_ci

17 win1251 (removed) (removed)

18 tis620 tis620 tis620_thai_ci

19 euc_kr euckr euckr_korean_ci

20 estonia latin7 latin7_estonian_ci

21 hungarian latin2 latin2_hungarian_ci

22 koi8_ukr koi8u koi8u_ukrainian_ci

23 win1251ukr cp1251 cp1251_ukrainian_ci

24 gb2312 gb2312 gb2312_chinese_ci

25 greek greek greek_general_ci

26 win1250 cp1250 cp1250_general_ci

27 croat latin2 latin2_croatian_ci

28 gbk gbk gbk_chinese_ci

29 cp1257 cp1257 cp1257_lithuanian_ci

30 latin5 latin5 latin5_turkish_ci

31 latin1_de latin1 latin1_german2_ci

3.10.2 Converting 4.0 Character Columns to 4.1 Format
Normally, the server runs using the latin1 character set by default. If you have been storing
column data that actually is in some other character set that the 4.1 server now supports
directly, you can convert the column. However, you should avoid trying to convert directly
from latin1 to the “real” character set. This may result in data loss. Instead, convert the col-
umn to a binary column type, and then from the binary type to a non-binary type with the
desired character set. Conversion to and from binary involves no attempt at character value
conversion and preserves your data intact. For example, suppose that you have a 4.0 table
with three columns that are used to store values represented in latin1, latin2, and utf8:

CREATE TABLE t

(

latin1_col CHAR(50),

latin2_col CHAR(100),

utf8_col CHAR(150)

);

04 6337 ch03 6/24/04 12:44 PM Page 103

TEAM LinG

104 CHAPTER 3 Character Set Support

After upgrading to MySQL 4.1, you want to convert this table to leave latin1_col alone but
change the latin2_col and utf8_col columns to have character sets of latin2 and utf8.
First, back up your table, then convert the columns as follows:

ALTER TABLE t MODIFY latin2_col BINARY(100);

ALTER TABLE t MODIFY utf8_col BINARY(150);

ALTER TABLE t MODIFY latin2_col CHAR(100) CHARACTER SET latin2;

ALTER TABLE t MODIFY utf8_col CHAR(150) CHARACTER SET utf8;

The first two statements “remove” the character set information from the latin2_col and
utf8_col columns. The second two statements assign the proper character sets to the two
columns.

If you like, you can combine the to-binary conversions and from-binary conversions into
single statements:

ALTER TABLE t

MODIFY latin2_col BINARY(100),

MODIFY utf8_col BINARY(150);

ALTER TABLE t

MODIFY latin2_col CHAR(100) CHARACTER SET latin2,

MODIFY utf8_col CHAR(150) CHARACTER SET utf8;

3.11 Character Sets and Collations That MySQL
Supports
Here is an annotated list of character sets and collations that MySQL supports. Because
options and installation settings differ, some sites might not have all items listed, and some
sites might have items not listed.

MySQL supports 70+ collations for 30+ character sets. The character sets and their default
collations are displayed by the SHOW CHARACTER SET statement. (The output actually includes
another column that is not shown so that the example fits better on the page.)

mysql> SHOW CHARACTER SET;

+----------+-----------------------------+---------------------+

| Charset | Description | Default collation |

+----------+-----------------------------+---------------------+

| big5 | Big5 Traditional Chinese | big5_chinese_ci |

| dec8 | DEC West European | dec8_swedish_ci |

| cp850 | DOS West European | cp850_general_ci |

| hp8 | HP West European | hp8_english_ci |

| koi8r | KOI8-R Relcom Russian | koi8r_general_ci |

| latin1 | ISO 8859-1 West European | latin1_swedish_ci |

| latin2 | ISO 8859-2 Central European | latin2_general_ci |

| swe7 | 7bit Swedish | swe7_swedish_ci |

| ascii | US ASCII | ascii_general_ci |

04 6337 ch03 6/24/04 12:44 PM Page 104

TEAM LinG

1053.11 Character Sets and Collations That MySQL Supports

| ujis | EUC-JP Japanese | ujis_japanese_ci |

| sjis | Shift-JIS Japanese | sjis_japanese_ci |

| cp1251 | Windows Cyrillic | cp1251_bulgarian_ci |

| hebrew | ISO 8859-8 Hebrew | hebrew_general_ci |

| tis620 | TIS620 Thai | tis620_thai_ci |

| euckr | EUC-KR Korean | euckr_korean_ci |

| koi8u | KOI8-U Ukrainian | koi8u_general_ci |

| gb2312 | GB2312 Simplified Chinese | gb2312_chinese_ci |

| greek | ISO 8859-7 Greek | greek_general_ci |

| cp1250 | Windows Central European | cp1250_general_ci |

| gbk | GBK Simplified Chinese | gbk_chinese_ci |

| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci |

| armscii8 | ARMSCII-8 Armenian | armscii8_general_ci |

| utf8 | UTF-8 Unicode | utf8_general_ci |

| ucs2 | UCS-2 Unicode | ucs2_general_ci |

| cp866 | DOS Russian | cp866_general_ci |

| keybcs2 | DOS Kamenicky Czech-Slovak | keybcs2_general_ci |

| macce | Mac Central European | macce_general_ci |

| macroman | Mac West European | macroman_general_ci |

| cp852 | DOS Central European | cp852_general_ci |

| latin7 | ISO 8859-13 Baltic | latin7_general_ci |

| cp1256 | Windows Arabic | cp1256_general_ci |

| cp1257 | Windows Baltic | cp1257_general_ci |

| binary | Binary pseudo charset | binary |

| geostd8 | GEOSTD8 Georgian | geostd8_general_ci |

+----------+-----------------------------+---------------------+

3.11.1 Unicode Character Sets
MySQL has two Unicode character sets. You can store texts in about 650 languages using
these character sets. We have not added a large number of collations for these two new sets
yet, but that will be happening soon. Currently, they have default case-insensitive accent-
insensitive collations, plus the binary collation.

Currently, the ucs2_general_uca collation has only partial support for the Unicode Collation
Algorithm. Some characters are not supported yet.

n ucs2 (UCS-2 Unicode) collations:
n ucs2_bin

n ucs2_general_ci (default)
n ucs2_general_uca

n utf8 (UTF-8 Unicode) collations:
n utf8_bin

n utf8_general_ci (default)

04 6337 ch03 6/24/04 12:44 PM Page 105

TEAM LinG

106 CHAPTER 3 Character Set Support

3.11.2 West European Character Sets
West European Character Sets cover most West European languages, such as French,
Spanish, Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish,
Norwegian, Finnish, Faroese, Icelandic, Irish, Scottish, and English.

n ascii (US ASCII) collations:
n ascii_bin

n ascii_general_ci (default)
n cp850 (DOS West European) collations:

n cp850_bin

n cp850_general_ci (default)
n dec8 (DEC West European) collations:

n dec8_bin

n dec8_swedish_ci (default)
n hp8 (HP West European) collations:

n hp8_bin

n hp8_english_ci (default)
n latin1 (ISO 8859-1 West European) collations:

n latin1_bin

n latin1_danish_ci

n latin1_general_ci

n latin1_general_cs

n latin1_german1_ci

n latin1_german2_ci

n latin1_spanish_ci

n latin1_swedish_ci (default)

The latin1 is the default character set. The latin1_swedish_ci collation is the default
that probably is used by the majority of MySQL customers. It is constantly stated that
this is based on the Swedish/Finnish collation rules, but you will find Swedes and Finns
who disagree with that statement.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and
DIN-2 standards, where DIN stands for Deutsches Institut für Normung (that is, the
German answer to ANSI). DIN-1 is called the dictionary collation and DIN-2 is called
the phone-book collation.

n latin1_german1_ci (dictionary) rules:

‘Ä’ = ‘A’, ‘Ö’ = ‘O’, ‘Ü’ = ‘U’, ‘ß’ = ‘s’

04 6337 ch03 6/24/04 12:44 PM Page 106

TEAM LinG

1073.11 Character Sets and Collations That MySQL Supports

n latin1_german2_ci (phone-book) rules:

‘Ä’ = ‘AE’, ‘Ö’ = ‘OE’, ‘Ü’ = ‘UE’, ‘ß’ = ‘ss’

In the latin1_spanish_ci collation, ‘Ñ’ (N-tilde) is a separate letter between
‘N’ and ‘O’.

n macroman (Mac West European) collations:
n macroman_bin

n macroman_general_ci (default)
n swe7 (7-bit Swedish) collations:

n swe7_bin

n swe7_swedish_ci (default)

3.11.3 Central European Character Sets
We have some support for character sets used in the Czech Republic, Slovakia, Hungary,
Romania, Slovenia, Croatia, and Poland.

n cp1250 (Windows Central European) collations:
n cp1250_bin

n cp1250_czech_ci

n cp1250_general_ci (default)
n cp852 (DOS Central European) collations:

n cp852_bin

n cp852_general_ci (default)
n keybcs2 (DOS Kamenicky Czech-Slovak) collations:

n keybcs2_bin

n keybcs2_general_ci (default)
n latin2 (ISO 8859-2 Central European) collations:

n latin2_bin

n latin2_croatian_ci

n latin2_czech_ci

n latin2_general_ci (default)
n latin2_hungarian_ci

n macce (Mac Central European) collations:
n macce_bin

n macce_general_ci (default)

04 6337 ch03 6/24/04 12:44 PM Page 107

TEAM LinG

108 CHAPTER 3 Character Set Support

3.11.4 South European and Middle East Character Sets
n armscii8 (ARMSCII-8 Armenian) collations:

n armscii8_bin

n armscii8_general_ci (default)
n cp1256 (Windows Arabic) collations:

n cp1256_bin

n cp1256_general_ci (default)
n geostd8 (GEOSTD8 Georgian) collations:

n geostd8_bin

n geostd8_general_ci (default)
n greek (ISO 8859-7 Greek) collations:

n greek_bin

n greek_general_ci (default)
n hebrew (ISO 8859-8 Hebrew) collations:

n hebrew_bin

n hebrew_general_ci (default)
n latin5 (ISO 8859-9 Turkish) collations:

n latin5_bin

n latin5_turkish_ci (default)

3.11.5 Baltic Character Sets
The Baltic character sets cover Estonian, Latvian, and Lithuanian languages. There are two
Baltic character sets currently supported:

n cp1257 (Windows Baltic) collations:
n cp1257_bin

n cp1257_general_ci (default)
n cp1257_lithuanian_ci

n latin7 (ISO 8859-13 Baltic) collations:
n latin7_bin

n latin7_estonian_cs

n latin7_general_ci (default)
n latin7_general_cs

04 6337 ch03 6/24/04 12:44 PM Page 108

TEAM LinG

1093.11 Character Sets and Collations That MySQL Supports

3.11.6 Cyrillic Character Sets
Here are the Cyrillic character sets and collations for use with Belarusian, Bulgarian,
Russian, and Ukrainian languages.

n cp1251 (Windows Cyrillic) collations:
n cp1251_bin

n cp1251_bulgarian_ci

n cp1251_general_ci (default)
n cp1251_general_cs

n cp1251_ukrainian_ci

n cp866 (DOS Russian) collations:
n cp866_bin

n cp866_general_ci (default)
n koi8r (KOI8-R Relcom Russian) collations:

n koi8r_bin

n koi8r_general_ci (default)
n koi8u (KOI8-U Ukrainian) collations:

n koi8u_bin

n koi8u_general_ci (default)

3.11.7 Asian Character Sets
The Asian character sets that we support include Chinese, Japanese, Korean, and Thai.
These can be complicated. For example, the Chinese sets must allow for thousands of differ-
ent characters.

n big5 (Big5 Traditional Chinese) collations:
n big5_bin

n big5_chinese_ci (default)
n euckr (EUC-KR Korean) collations:

n euckr_bin

n euckr_korean_ci (default)
n gb2312 (GB2312 Simplified Chinese) collations:

n gb2312_bin

n gb2312_chinese_ci (default)

04 6337 ch03 6/24/04 12:44 PM Page 109

TEAM LinG

110 CHAPTER 3 Character Set Support

n gbk (GBK Simplified Chinese) collations:
n gbk_bin

n gbk_chinese_ci (default)
n sjis (Shift-JIS Japanese) collations:

n sjis_bin

n sjis_japanese_ci (default)
n tis620 (TIS620 Thai) collations:

n tis620_bin

n tis620_thai_ci (default)
n ujis (EUC-JP Japanese) collations:

n ujis_bin

n ujis_japanese_ci (default)

04 6337 ch03 6/24/04 12:44 PM Page 110

TEAM LinG

4
Column Types

MySQL supports a number of column types in several categories: numeric types, date and
time types, and string (character) types. This chapter first gives an overview of these column
types, and then provides a more detailed description of the properties of the types in each
category, and a summary of the column type storage requirements. The overview is inten-
tionally brief. The more detailed descriptions should be consulted for additional information
about particular column types, such as the allowable formats in which you can specify values.

MySQL versions 4.1 and up support extensions for handling spatial data. Information about
spatial types is provided in Chapter 7, “Spatial Extensions in MySQL.”

Several of the column type descriptions use these conventions:

n M

Indicates the maximum display size. The maximum legal display size is 255.
n D

Applies to floating-point and fixed-point types and indicates the number of digits fol-
lowing the decimal point. The maximum possible value is 30, but should be no greater
than M–2.

n Square brackets (‘[’ and ‘]’) indicate parts of type specifiers that are optional.

4.1 Column Type Overview

4.1.1 Overview of Numeric Types
A summary of the numeric column types follows. For additional information, see Section 4.2,
“Numeric Types.” Column storage requirements are given in Section 4.5, “Column Type
Storage Requirements.”

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED
attribute to the column.

05 6337 ch04 6/24/04 12:43 PM Page 111

TEAM LinG

112 CHAPTER 4 Column Types

Warning: You should be aware that when you use subtraction between integer values where
one is of type UNSIGNED, the result will be unsigned! See Section 5.7, “Cast Functions.”

n TINYINT[(M)] [UNSIGNED] [ZEROFILL]

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.
n BIT, BOOL, BOOLEAN

These are synonyms for TINYINT(1). The BOOLEAN synonym was added in MySQL 4.1.0.
A value of zero is considered false. Non-zero values are considered true.

In the future, full boolean type handling will be introduced in accordance with standard
SQL.

n SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.
n MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

A medium-size integer. The signed range is -8388608 to 8388607. The unsigned range is
0 to 16777215.

n INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned
range is 0 to 4294967295.

n INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This is a synonym for INT.
n BIGINT[(M)] [UNSIGNED] [ZEROFILL]

A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The
unsigned range is 0 to 18446744073709551615.

Some things you should be aware of with respect to BIGINT columns:
n All arithmetic is done using signed BIGINT or DOUBLE values, so you shouldn’t use

unsigned big integers larger than 9223372036854775807 (63 bits) except with bit
functions! If you do that, some of the last digits in the result may be wrong because
of rounding errors when converting a BIGINT value to a DOUBLE.

n MySQL 4.0 can handle BIGINT in the following cases:
n When using integers to store big unsigned values in a BIGINT column.
n In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT

column.
n When using operators (+, -, *, and so on) where both operands are integers.

n You can always store an exact integer value in a BIGINT column by storing it using a
string. In this case, MySQL performs a string-to-number conversion that involves
no intermediate double-precision representation.

n The -, +, and * operators will use BIGINT arithmetic when both operands are inte-
ger values! This means that if you multiply two big integers (or results from func-
tions that return integers), you may get unexpected results when the result is larger
than 9223372036854775807.

05 6337 ch04 6/24/04 12:43 PM Page 112

TEAM LinG

1134.1 Column Type Overview

n FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision. It can be from 0 to 24 for a single-
precision floating-point number and from 25 to 53 for a double-precision floating-point
number. These types are like the FLOAT and DOUBLE types described immediately follow-
ing. FLOAT(p) has the same range as the corresponding FLOAT and DOUBLE types, but the
display size and number of decimals are undefined.

As of MySQL 3.23, this is a true floating-point value. In earlier MySQL versions,
FLOAT(p) always has two decimals.

This syntax is provided for ODBC compatibility.

Using FLOAT might give you some unexpected problems because all calculations in
MySQL are done with double precision. See Section A.1.7, “Solving Problems with No
Matching Rows.”

n FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Allowable values are -3.402823466E+38
to -1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. If UNSIGNED is speci-
fied, negative values are disallowed. M is the display width and D is the number of deci-
mals. FLOAT without arguments or FLOAT(p) (where p is in the range from 0 to 24)
stands for a single-precision floating-point number.

n DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

A normal-size (double-precision) floating-point number. Allowable values are
-1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and 2.2250738585072014E-308
to 1.7976931348623157E+308. If UNSIGNED is specified, negative values are disallowed. M is the
display width and D is the number of decimals. DOUBLE without arguments or FLOAT(p)
(where p is in the range from 25 to 53) stands for a double-precision floating-point number.

n DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL]

REAL[(M,D)] [UNSIGNED] [ZEROFILL]

These are synonyms for DOUBLE. Exception: If the server SQL mode includes the
REAL_AS_FLOAT option, REAL is a synonym for FLOAT rather than DOUBLE.

n DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

An unpacked fixed-point number. Behaves like a CHAR column; “unpacked” means the
number is stored as a string, using one character for each digit of the value. M is the
total number of digits and D is the number of decimals. The decimal point and
(for negative numbers) the ‘-’ sign are not counted in M, although space for them is
reserved. If D is 0, values have no decimal point or fractional part. The maximum
range of DECIMAL values is the same as for DOUBLE, but the actual range for a given
DECIMAL column may be constrained by the choice of M and D. If UNSIGNED is specified,
negative values are disallowed.

If D is omitted, the default is 0. If M is omitted, the default is 10.

Prior to MySQL 3.23, the M argument must be large enough to include the space needed
for the sign and the decimal point.

05 6337 ch04 6/24/04 12:43 PM Page 113

TEAM LinG

114 CHAPTER 4 Column Types

n DEC[(M[,D])] [UNSIGNED] [ZEROFILL]

NUMERIC[(M[,D])] [UNSIGNED] [ZEROFILL]

FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These are synonyms for DECIMAL.

The FIXED synonym was added in MySQL 4.1.0 for compatibility with other servers.

4.1.2 Overview of Date and Time Types
A summary of the temporal column types follows. For additional information, see Section 4.3,
“Date and Time Types.” Column storage requirements are given in Section 4.5, “Column
Type Storage Requirements.”

n DATE

A date. The supported range is ‘1000-01-01’ to ‘9999-12-31’. MySQL displays DATE
values in ‘YYYY-MM-DD’ format, but allows you to assign values to DATE columns using
either strings or numbers.

n DATETIME

A date and time combination. The supported range is ‘1000-01-01 00:00:00’ to ‘9999-
12-31 23:59:59’. MySQL displays DATETIME values in ‘YYYY-MM-DD HH:MM:SS’ format,
but allows you to assign values to DATETIME columns using either strings or numbers.

n TIMESTAMP[(M)]

A timestamp. The range is ‘1970-01-01 00:00:00’ to partway through the year 2037.

A TIMESTAMP column is useful for recording the date and time of an INSERT or UPDATE
operation. The first TIMESTAMP column in a table is automatically set to the date and
time of the most recent operation if you don’t assign it a value yourself. You can also set
any TIMESTAMP column to the current date and time by assigning it a NULL value.

From MySQL 4.1 on, TIMESTAMP is returned as a string with the format ‘YYYY-MM-DD
HH:MM:SS’. If you want to obtain the value as a number, you should add +0 to the time-
stamp column. Different timestamp display widths are not supported.

In MySQL 4.0 and earlier, TIMESTAMP values are displayed in YYYYMMDDHHMMSS,
YYMMDDHHMMSS, YYYYMMDD, or YYMMDD format, depending on whether M is 14 (or missing),
12, 8, or 6, but allows you to assign values to TIMESTAMP columns using either strings or
numbers. The M argument affects only how a TIMESTAMP column is displayed, not stor-
age. Its values always are stored using four bytes each. From MySQL 4.0.12, the --new
option can be used to make the server behave as in MySQL 4.1.

Note that TIMESTAMP(M) columns where M is 8 or 14 are reported to be numbers, where-
as other TIMESTAMP(M) columns are reported to be strings. This is just to ensure that you
can reliably dump and restore the table with these types.

05 6337 ch04 6/24/04 12:43 PM Page 114

TEAM LinG

1154.1 Column Type Overview

n TIME

A time. The range is ‘-838:59:59’ to ‘838:59:59’. MySQL displays TIME values in
‘HH:MM:SS’ format, but allows you to assign values to TIME columns using either strings
or numbers.

n YEAR[(2|4)]

A year in two-digit or four-digit format. The default is four-digit format. In four-digit
format, the allowable values are 1901 to 2155, and 0000. In two-digit format, the allow-
able values are 70 to 69, representing years from 1970 to 2069. MySQL displays YEAR
values in YYYY format, but allows you to assign values to YEAR columns using either
strings or numbers. The YEAR type is unavailable prior to MySQL 3.22.

4.1.3 Overview of String Types
A summary of the string column types follows. For additional information, see Section 4.4,
“String Types.” Column storage requirements are given in Section 4.5, “Column Type
Storage Requirements.”

In some cases, MySQL may change a string column to a type different from that given in a
CREATE TABLE or ALTER TABLE statement. See Section 6.2.5.2, “Silent Column Specification
Changes.”

A change that affects many string column types is that, as of MySQL 4.1, character column
definitions can include a CHARACTER SET attribute to specify the character set and, optionally,
a collation. This applies to CHAR, VARCHAR, the TEXT types, ENUM, and SET. For example:

CREATE TABLE t

(

c1 CHAR(20) CHARACTER SET utf8,

c2 CHAR(20) CHARACTER SET latin1 COLLATE latin1_bin

);

This table definition creates a column named c1 that has a character set of utf8 with the
default collation for that character set, and a column named c2 that has a character set of
latin1 and the binary collation for the character set. The binary collation is not case sensi-
tive.

Character column sorting and comparison are based on the character set assigned to the col-
umn. Before MySQL 4.1, sorting and comparison are based on the collation of the server
character set. For CHAR and VARCHAR columns, you can declare the column with the BINARY
attribute to cause sorting and comparison to be case sensitive using the underlying character
code values rather then a lexical ordering.

For more details, see Chapter 3, “Character Set Support.”

05 6337 ch04 6/24/04 12:43 PM Page 115

TEAM LinG

116 CHAPTER 4 Column Types

Also as of 4.1, MySQL interprets length specifications in character column definitions in
characters. (Earlier versions interpret them in bytes.)

n [NATIONAL] CHAR(M) [BINARY | ASCII | UNICODE]

A fixed-length string that is always right-padded with spaces to the specified length
when stored. M represents the column length. The range of M is 0 to 255 characters (1 to
255 prior to MySQL 3.23).

Note: Trailing spaces are removed when CHAR values are retrieved.

From MySQL 4.1.0, a CHAR column with a length specification greater than 255 is con-
verted to the smallest TEXT type that can hold values of the given length. For example,
CHAR(500) is converted to TEXT, and CHAR(200000) is converted to MEDIUMTEXT. This is a
compatibility feature. However, this conversion causes the column to become a vari-
able-length column, and also affects trailing-space removal.

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is
the standard SQL way to define that a CHAR column should use the default character set.
This is the default in MySQL.

The BINARY attribute causes sorting and comparisons to be case sensitive.

From MySQL 4.1.0 on, the ASCII attribute can be specified. It assigns the latin1 char-
acter set to a CHAR column.

From MySQL 4.1.1 on, the UNICODE attribute can be specified. It assigns the ucs2 char-
acter set to a CHAR column.

MySQL allows you to create a column of type CHAR(0). This is mainly useful when you
have to be compliant with some old applications that depend on the existence of a col-
umn but that do not actually use the value. This is also quite nice when you need a col-
umn that can take only two values: A CHAR(0) column that is not defined as NOT NULL
occupies only one bit and can take only the values NULL and ‘’ (the empty string).

n CHAR

This is a synonym for CHAR(1).
n [NATIONAL] VARCHAR(M) [BINARY]

A variable-length string. M represents the maximum column length. The range of M is 0
to 255 characters (1 to 255 prior to MySQL 4.0.2).

Note: Trailing spaces are removed when VARCHAR values are stored, which differs from
the standard SQL specification.

From MySQL 4.1.0 on, a VARCHAR column with a length specification greater than 255 is
converted to the smallest TEXT type that can hold values of the given length. For example,
VARCHAR(500) is converted to TEXT, and VARCHAR(200000) is converted to MEDIUMTEXT. This
is a compatibility feature. However, this conversion affects trailing-space removal.

VARCHAR is shorthand for CHARACTER VARYING.

The BINARY attribute causes sorting and comparisons to be case sensitive.

05 6337 ch04 6/24/04 12:43 PM Page 116

TEAM LinG

1174.2 Numeric Types

n TINYBLOB, TINYTEXT

A BLOB or TEXT column with a maximum length of 255 (28 – 1) characters.
n BLOB, TEXT

A BLOB or TEXT column with a maximum length of 65,535 (216 – 1) characters.
n MEDIUMBLOB, MEDIUMTEXT

A BLOB or TEXT column with a maximum length of 16,777,215 (224 – 1) characters.
n LONGBLOB, LONGTEXT

A BLOB or TEXT column with a maximum length of 4,294,967,295 or 4GB (232 – 1) char-
acters. Up to MySQL 3.23, the client/server protocol and MyISAM tables had a limit of
16MB per communication packet / table row. From MySQL 4.0, the maximum allowed
length of LONGBLOB or LONGTEXT columns depends on the configured maximum packet
size in the client/server protocol and available memory.

n ENUM(‘value1’,’value2’,...)

An enumeration. A string object that can have only one value, chosen from the list of
values ‘value1’, ‘value2’, ..., NULL or the special ‘’ error value. An ENUM column can
have a maximum of 65,535 distinct values. ENUM values are represented internally as
integers.

n SET(‘value1’,’value2’,...)

A set. A string object that can have zero or more values, each of which must be chosen
from the list of values ‘value1’, ‘value2’, ... A SET column can have a maximum of 64
members. SET values are represented internally as integers.

4.2 Numeric Types
MySQL supports all of the standard SQL numeric data types. These types include the exact
numeric data types (INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate
numeric data types (FLOAT, REAL, and DOUBLE PRECISION). The keyword INT is a synonym for
INTEGER, and the keyword DEC is a synonym for DECIMAL.

As an extension to the SQL standard, MySQL also supports the integer types TINYINT,
MEDIUMINT, and BIGINT as listed in the following table.

Type Bytes Minimum Value (Signed) Maximum Value (Signed)

TINYINT 1 -128 127

SMALLINT 2 -32768 32767

MEDIUMINT 3 -8388608 8388607

INT 4 -2147483648 2147483647

BIGINT 8 -9223372036854775808 9223372036854775807

05 6337 ch04 6/24/04 12:43 PM Page 117

TEAM LinG

118 CHAPTER 4 Column Types

Another extension is supported by MySQL for optionally specifying the display width of an
integer value in parentheses following the base keyword for the type (for example, INT(4)).
This optional display width specification is used to left-pad the display of values having a
width less than the width specified for the column.

The display width does not constrain the range of values that can be stored in the column,
nor the number of digits that will be displayed for values having a width exceeding that
specified for the column.

When used in conjunction with the optional extension attribute ZEROFILL, the default
padding of spaces is replaced with zeros. For example, for a column declared as INT(5)
ZEROFILL, a value of 4 is retrieved as 00004. Note that if you store larger values than the dis-
play width in an integer column, you may experience problems when MySQL generates
temporary tables for some complicated joins, because in these cases MySQL trusts that the
data did fit into the original column width.

All integer types can have an optional (non-standard) attribute UNSIGNED. Unsigned values
can be used when you want to allow only non-negative numbers in a column and you need a
bigger upper numeric range for the column.

As of MySQL 4.0.2, floating-point and fixed-point types also can be UNSIGNED. As with inte-
ger types, this attribute prevents negative values from being stored in the column. However,
unlike the integer types, the upper range of column values remains the same.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED
attribute to the column.

The DECIMAL and NUMERIC types are implemented as the same type by MySQL. They are
used to store values for which it is important to preserve exact precision, for example with
monetary data. When declaring a column of one of these types, the precision and scale can
be (and usually is) specified; for example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of
significant decimal digits that will be stored for values, and the scale represents the number
of digits that will be stored following the decimal point.

MySQL stores DECIMAL and NUMERIC values as strings, rather than as binary floating-point
numbers, in order to preserve the decimal precision of those values. One character is used
for each digit of the value, the decimal point (if the scale is greater than 0), and the ‘-’ sign
(for negative numbers). If the scale is 0, DECIMAL and NUMERIC values contain no decimal
point or fractional part.

05 6337 ch04 6/24/04 12:43 PM Page 118

TEAM LinG

1194.2 Numeric Types

Standard SQL requires that the salary column be able to store any value with five digits
and two decimals. In this case, therefore, the range of values that can be stored in the salary
column is from -999.99 to 999.99. MySQL varies from this in two ways:

n On the positive end of the range, the column actually can store numbers up to 9999.99.
For positive numbers, MySQL uses the byte reserved for the sign to extend the upper
end of the range.

n DECIMAL columns in MySQL before 3.23 are stored differently and cannot represent all
the values required by standard SQL. This is because for a type of DECIMAL(M,D), the
value of M includes the bytes for the sign and the decimal point. The range of the
salary column before MySQL 3.23 would be -9.99 to 99.99.

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax
DECIMAL is equivalent to DECIMAL(M,0), where the implementation is allowed to decide the
value of M. As of MySQL 3.23.6, both of these variant forms of the DECIMAL and NUMERIC data
types are supported. The default value of M is 10. Before 3.23.6, M and D both must be speci-
fied explicitly.

The maximum range of DECIMAL and NUMERIC values is the same as for DOUBLE, but the actual
range for a given DECIMAL or NUMERIC column can be constrained by the precision or scale for
a given column. When such a column is assigned a value with more digits following the dec-
imal point than are allowed by the specified scale, the value is converted to that scale. (The
precise behavior is operating system-specific, but generally the effect is truncation to the
allowable number of digits.) When a DECIMAL or NUMERIC column is assigned a value that
exceeds the range implied by the specified (or default) precision and scale, MySQL stores
the value representing the corresponding end point of that range.

For floating-point column types, MySQL uses four bytes for single-precision values and
eight bytes for double-precision values.

The FLOAT type is used to represent approximate numeric data types. The SQL standard
allows an optional specification of the precision (but not the range of the exponent) in bits
following the keyword FLOAT in parentheses. The MySQL implementation also supports this
optional precision specification, but the precision value is used only to determine storage
size. A precision from 0 to 23 results in four-byte single-precision FLOAT column. A precision
from 24 to 53 results in eight-byte double-precision DOUBLE column.

When the keyword FLOAT is used for a column type without a precision specification,
MySQL uses four bytes to store the values. MySQL also supports variant syntax with two
numbers given in parentheses following the FLOAT keyword. The first number represents the
display width and the second number specifies the number of digits to be stored and dis-
played following the decimal point (as with DECIMAL and NUMERIC). When MySQL is asked to
store a number for such a column with more decimal digits following the decimal point than
specified for the column, the value is rounded to eliminate the extra digits when the value is
stored.

05 6337 ch04 6/24/04 12:43 PM Page 119

TEAM LinG

120 CHAPTER 4 Column Types

In standard SQL, the REAL and DOUBLE PRECISION types do not accept precision specifications.
MySQL supports a variant syntax with two numbers given in parentheses following the type
name. The first number represents the display width and the second number specifies the
number of digits to be stored and displayed following the decimal point. As an extension to
the SQL standard, MySQL recognizes DOUBLE as a synonym for the DOUBLE PRECISION type.
In contrast with the standard’s requirement that the precision for REAL be smaller than that
used for DOUBLE PRECISION, MySQL implements both as eight-byte double-precision floating-
point values (unless the server SQL mode includes the REAL_AS_FLOAT option).

For maximum portability, code requiring storage of approximate numeric data values should
use FLOAT or DOUBLE PRECISION with no specification of precision or number of decimal points.

When asked to store a value in a numeric column that is outside the column type’s allowable
range, MySQL clips the value to the appropriate endpoint of the range and stores the
resulting value instead.

For example, the range of an INT column is -2147483648 to 2147483647. If you try to insert
-9999999999 into an INT column, MySQL clips the value to the lower endpoint of the range
and stores -2147483648 instead. Similarly, if you try to insert 9999999999, MySQL clips the
value to the upper endpoint of the range and stores 2147483647 instead.

If the INT column is UNSIGNED, the size of the column’s range is the same but its endpoints
shift up to 0 and 4294967295. If you try to store -9999999999 and 9999999999, the values
stored in the column are 0 and 4294967296.

Conversions that occur due to clipping are reported as “warnings” for ALTER TABLE, LOAD
DATA INFILE, UPDATE, and multiple-row INSERT statements.

4.3 Date and Time Types
The date and time types for representing temporal values are DATETIME, DATE, TIMESTAMP,
TIME, and YEAR. Each temporal type has a range of legal values, as well as a “zero” value that
is used when you specify an illegal value that MySQL cannot represent. The TIMESTAMP type
has special automatic updating behavior, described later on.

MySQL allows you to store certain “not strictly legal” date values, such as ‘1999-11-31’.
The reason for this is that we consider date checking to be the responsibility of the applica-
tion, not the SQL server. To make date checking faster, MySQL verifies only that the
month is in the range from 0 to 12 and that the day is in the range from 0 to 31. These
ranges are defined to include zero because MySQL allows you to store dates where the day
or month and day are zero in a DATE or DATETIME column. This is extremely useful for appli-
cations that need to store a birthdate for which you don’t know the exact date. In this case,
you simply store the date like ‘1999-00-00’ or ‘1999-01-00’. If you store dates such as these,
you should not expect to get correct results for functions such as DATE_SUB() or DATE_ADD
that require complete dates.

05 6337 ch04 6/24/04 12:43 PM Page 120

TEAM LinG

1214.3 Date and Time Types

Here are some general considerations to keep in mind when working with date and time
types:

n MySQL retrieves values for a given date or time type in a standard output format, but
it attempts to interpret a variety of formats for input values that you supply (for exam-
ple, when you specify a value to be assigned to or compared to a date or time type).
Only the formats described in the following sections are supported. It is expected that
you will supply legal values, and unpredictable results may occur if you use values in
other formats.

n Dates containing two-digit year values are ambiguous because the century is unknown.
MySQL interprets two-digit year values using the following rules:

n Year values in the range 00-69 are converted to 2000-2069.
n Year values in the range 70-99 are converted to 1970-1999.

n Although MySQL tries to interpret values in several formats, dates always must be
given in year-month-day order (for example, ‘98-09-04’), rather than in the month-
day-year or day-month-year orders commonly used elsewhere (for example, ‘09-04-98’,
‘04-09-98’).

n MySQL automatically converts a date or time type value to a number if the value is
used in a numeric context and vice versa.

n When MySQL encounters a value for a date or time type that is out of range or other-
wise illegal for the type (as described at the beginning of this section), it converts the
value to the “zero” value for that type. The exception is that out-of-range TIME values
are clipped to the appropriate endpoint of the TIME range.

The following table shows the format of the “zero” value for each type:

Column Type “Zero” Value

DATETIME ‘0000-00-00 00:00:00’

DATE ‘0000-00-00’

TIMESTAMP 00000000000000

TIME ‘00:00:00’

YEAR 0000

n The “zero” values are special, but you can store or refer to them explicitly using the
values shown in the table. You can also do this using the values ‘0’ or 0, which are easi-
er to write.

n “Zero” date or time values used through Connector/ODBC are converted automatical-
ly to NULL in Connector/ODBC 2.50.12 and above, because ODBC can’t handle such
values.

05 6337 ch04 6/24/04 12:43 PM Page 121

TEAM LinG

122 CHAPTER 4 Column Types

4.3.1 The DATETIME, DATE, and TIMESTAMP Types
The DATETIME, DATE, and TIMESTAMP types are related. This section describes their character-
istics, how they are similar, and how they differ.

The DATETIME type is used when you need values that contain both date and time informa-
tion. MySQL retrieves and displays DATETIME values in ‘YYYY-MM-DD HH:MM:SS’ format. The
supported range is ‘1000-01-01 00:00:00’ to ‘9999-12-31 23:59:59’. (“Supported” means
that although earlier values might work, there is no guarantee that they will.)

The DATE type is used when you need only a date value, without a time part. MySQL
retrieves and displays DATE values in ‘YYYY-MM-DD’ format. The supported range is
‘1000-01-01’ to ‘9999-12-31’.

The TIMESTAMP column type has varying properties, depending on the MySQL version and
the SQL mode the server is running in. These properties are described later in this section.

You can specify DATETIME, DATE, and TIMESTAMP values using any of a common set of formats:

n As a string in either ‘YYYY-MM-DD HH:MM:SS’ or ‘YY-MM-DD HH:MM:SS’ format. A
“relaxed” syntax is allowed: Any punctuation character may be used as the delimiter
between date parts or time parts. For example, ‘98-12-31 11:30:45’, ‘98.12.31
11+30+45’, ‘98/12/31 11*30*45’, and ‘98@12@31 11^30^45’ are equivalent.

n As a string in either ‘YYYY-MM-DD’ or ‘YY-MM-DD’ format. A “relaxed” syntax is allowed
here, too. For example, ‘98-12-31’, ‘98.12.31’, ‘98/12/31’, and ‘98@12@31’ are
equivalent.

n As a string with no delimiters in either ‘YYYYMMDDHHMMSS’ or ‘YYMMDDHHMMSS’ format,
provided that the string makes sense as a date. For example, ‘19970523091528’ and
‘970523091528’ are interpreted as ‘1997-05-23 09:15:28’, but ‘971122129015’ is illegal
(it has a nonsensical minute part) and becomes ‘0000-00-00 00:00:00’.

n As a string with no delimiters in either ‘YYYYMMDD’ or ‘YYMMDD’ format, provided that
the string makes sense as a date. For example, ‘19970523’ and ‘970523’ are interpreted
as ‘1997-05-23’, but ‘971332’ is illegal (it has nonsensical month and day parts) and
becomes ‘0000-00-00’.

n As a number in either YYYYMMDDHHMMSS or YYMMDDHHMMSS format, provided that the num-
ber makes sense as a date. For example, 19830905132800 and 830905132800 are interpret-
ed as ‘1983-09-05 13:28:00’.

n As a number in either YYYYMMDD or YYMMDD format, provided that the number makes
sense as a date. For example, 19830905 and 830905 are interpreted as ‘1983-09-05’.

n As the result of a function that returns a value that is acceptable in a DATETIME, DATE, or
TIMESTAMP context, such as NOW() or CURRENT_DATE.

Illegal DATETIME, DATE, or TIMESTAMP values are converted to the “zero” value of the appropri-
ate type (‘0000-00-00 00:00:00’, ‘0000-00-00’, or 00000000000000).

05 6337 ch04 6/24/04 12:43 PM Page 122

TEAM LinG

1234.3 Date and Time Types

For values specified as strings that include date part delimiters, it is not necessary to specify two
digits for month or day values that are less than 10. ‘1979-6-9’ is the same as ‘1979-06-09’.
Similarly, for values specified as strings that include time part delimiters, it is not necessary to
specify two digits for hour, minute, or second values that are less than 10. ‘1979-10-30 1:2:3’ is
the same as ‘1979-10-30 01:02:03’.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 dig-
its long, it is assumed to be in YYYYMMDD or YYYYMMDDHHMMSS format and that the year is given
by the first 4 digits. If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or
YYMMDDHHMMSS format and that the year is given by the first 2 digits. Numbers that are not
one of these lengths are interpreted as though padded with leading zeros to the closest
length.

Values specified as non-delimited strings are interpreted using their length as given. If the
string is 8 or 14 characters long, the year is assumed to be given by the first 4 characters.
Otherwise, the year is assumed to be given by the first 2 characters. The string is interpreted
from left to right to find year, month, day, hour, minute, and second values, for as many
parts as are present in the string. This means you should not use strings that have fewer
than 6 characters. For example, if you specify ‘9903’, thinking that will represent March,
1999, you will find that MySQL inserts a “zero” date into your table. This is because the
year and month values are 99 and 03, but the day part is completely missing, so the value is
not a legal date. However, as of MySQL 3.23, you can explicitly specify a value of zero to
represent missing month or day parts. For example, you can use ‘990300’ to insert the value
‘1999-03-00’.

You can to some extent assign values of one date type to an object of a different date type.
However, there may be some alteration of the value or loss of information:

n If you assign a DATE value to a DATETIME or TIMESTAMP object, the time part of the result-
ing value is set to ‘00:00:00’ because the DATE value contains no time information.

n If you assign a DATETIME or TIMESTAMP value to a DATE object, the time part of the result-
ing value is deleted because the DATE type stores no time information.

n Remember that although DATETIME, DATE, and TIMESTAMP values all can be specified using
the same set of formats, the types do not all have the same range of values. For exam-
ple, TIMESTAMP values cannot be earlier than 1970 or later than 2037. This means that a
date such as ‘1968-01-01’, while legal as a DATETIME or DATE value, is not a valid
TIMESTAMP value and will be converted to 0 if assigned to such an object.

Be aware of certain pitfalls when specifying date values:

n The relaxed format allowed for values specified as strings can be deceiving. For exam-
ple, a value such as ‘10:11:12’ might look like a time value because of the ‘:’ delimiter,
but if used in a date context will be interpreted as the year ‘2010-11-12’. The value
‘10:45:15’ will be converted to ‘0000-00-00’ because ‘45’ is not a legal month.

05 6337 ch04 6/24/04 12:43 PM Page 123

TEAM LinG

124 CHAPTER 4 Column Types

n The MySQL server performs only basic checking on the validity of a date: The ranges
for year, month, and day are 1000 to 9999, 00 to 12, and 00 to 31, respectively. Any
date containing parts not within these ranges is subject to conversion to ‘0000-00-00’.
Please note that this still allows you to store invalid dates such as ‘2002-04-31’. To
ensure that a date is valid, perform a check in your application.

n Dates containing two-digit year values are ambiguous because the century is unknown.
MySQL interprets two-digit year values using the following rules:

n Year values in the range 00-69 are converted to 2000-2069.
n Year values in the range 70-99 are converted to 1970-1999.

4.3.1.1 TIMESTAMP Properties Prior to MySQL 4.1
The TIMESTAMP column type provides a type that you can use to automatically mark INSERT
or UPDATE operations with the current date and time. If you have multiple TIMESTAMP columns
in a table, only the first one is updated automatically.

Automatic updating of the first TIMESTAMP column in a table occurs under any of the follow-
ing conditions:

n You explicitly set the column to NULL.
n The column is not specified explicitly in an INSERT or LOAD DATA INFILE statement.
n The column is not specified explicitly in an UPDATE statement and some other column

changes value. An UPDATE that sets a column to the value it already has does not cause
the TIMESTAMP column to be updated; if you set a column to its current value, MySQL
ignores the update for efficiency.

TIMESTAMP columns other than the first can also be set to the current date and time. Just set
the column to NULL or to NOW().

You can set any TIMESTAMP column to a value different from the current date and time by set-
ting it explicitly to the desired value. This is true even for the first TIMESTAMP column. You
can use this property if, for example, you want a TIMESTAMP to be set to the current date and
time when you create a row, but not to be changed whenever the row is updated later:

n Let MySQL set the column when the row is created. This initializes it to the current
date and time.

n When you perform subsequent updates to other columns in the row, set the TIMESTAMP
column explicitly to its current value:

UPDATE tbl_name

SET timestamp_col = timestamp_col,

other_col1 = new_value1,

other_col2 = new_value2, ...

05 6337 ch04 6/24/04 12:43 PM Page 124

TEAM LinG

1254.3 Date and Time Types

Another way to maintain a column that records row-creation time is to use a DATETIME col-
umn that you initialize to NOW() when the row is created and leave alone for subsequent
updates.

TIMESTAMP values may range from the beginning of 1970 to partway through the year 2037,
with a resolution of one second. Values are displayed as numbers.

The format in which MySQL retrieves and displays TIMESTAMP values depends on the display
size, as illustrated by the following table. The “full” TIMESTAMP format is 14 digits, but
TIMESTAMP columns may be created with shorter display sizes:

Column Type Display Format

TIMESTAMP(14) YYYYMMDDHHMMSS

TIMESTAMP(12) YYMMDDHHMMSS

TIMESTAMP(10) YYMMDDHHMM

TIMESTAMP(8) YYYYMMDD

TIMESTAMP(6) YYMMDD

TIMESTAMP(4) YYMM

TIMESTAMP(2) YY

All TIMESTAMP columns have the same storage size, regardless of display size. The most com-
mon display sizes are 6, 8, 12, and 14. You can specify an arbitrary display size at table cre-
ation time, but values of 0 or greater than 14 are coerced to 14. Odd-valued sizes in the
range from 1 to 13 are coerced to the next higher even number.

TIMESTAMP columns store legal values using the full precision with which the value was speci-
fied, regardless of the display size. This has several implications:

n Always specify year, month, and day, even if your column types are TIMESTAMP(4) or
TIMESTAMP(2). Otherwise, the value is not a legal date and 0 will be stored.

n If you use ALTER TABLE to widen a narrow TIMESTAMP column, information will be dis-
played that previously was “hidden.”

n Similarly, narrowing a TIMESTAMP column does not cause information to be lost, except
in the sense that less information is shown when the values are displayed.

n Although TIMESTAMP values are stored to full precision, the only function that operates
directly on the underlying stored value is UNIX_TIMESTAMP(). Other functions operate on
the formatted retrieved value. This means you cannot use a function such as HOUR() or
SECOND() unless the relevant part of the TIMESTAMP value is included in the formatted
value. For example, the HH part of a TIMESTAMP column is not displayed unless the dis-
play size is at least 10, so trying to use HOUR() on shorter TIMESTAMP values produces a
meaningless result.

05 6337 ch04 6/24/04 12:43 PM Page 125

TEAM LinG

126 CHAPTER 4 Column Types

4.3.1.2 TIMESTAMP Properties as of MySQL 4.1
From MySQL 4.1.0 on, TIMESTAMP properties differ from those of earlier MySQL releases:

n TIMESTAMP columns are displayed in the same format as DATETIME columns.
n Display widths are not supported in the ways described in the preceding section. In

other words, you cannot use TIMESTAMP(2), TIMESTAMP(4), and so on.

In addition, if the MySQL server is running in MAXDB mode, TIMESTAMP is identical with
DATETIME. That is, if the server is running in MAXDB mode at the time that a table is created,
any TIMESTAMP columns are created as DATETIME columns. As a result, such columns use
DATETIME display format, have the same range of values, and no automatic updating occurs.

MySQL can be run in MAXDB mode as of version 4.1.1. To enable this mode, set the server
SQL mode to MAXDB at startup using the --sql-mode=MAXDB server option or by setting the
global sql_mode variable at runtime:

mysql> SET GLOBAL sql_mode=MAXDB;

A client can cause the server to run in MAXDB mode for its own connection as follows:

mysql> SET SESSION sql_mode=MAXDB;

4.3.2 The TIME Type
MySQL retrieves and displays TIME values in ‘HH:MM:SS’ format (or ‘HHH:MM:SS’ format for
large hours values). TIME values may range from ‘-838:59:59’ to ‘838:59:59’. The reason
the hours part may be so large is that the TIME type may be used not only to represent a time
of day (which must be less than 24 hours), but also elapsed time or a time interval between
two events (which may be much greater than 24 hours, or even negative).

You can specify TIME values in a variety of formats:

n As a string in ‘D HH:MM:SS.fraction’ format. You can also use one of the following
“relaxed” syntaxes: ‘HH:MM:SS.fraction’, ‘HH:MM:SS’, ‘HH:MM’, ‘D HH:MM:SS’, ‘D HH:MM’,
‘D HH’, or ‘SS’. Here D represents days and can have a value from 0 to 34. Note that
MySQL doesn’t yet store the fraction part.

n As a string with no delimiters in ‘HHMMSS’ format, provided that it makes sense as a
time. For example, ‘101112’ is understood as ‘10:11:12’, but ‘109712’ is illegal (it has a
nonsensical minute part) and becomes ‘00:00:00’.

n As a number in HHMMSS format, provided that it makes sense as a time. For example,
101112 is understood as ‘10:11:12’. The following alternative formats are also under-
stood: SS, MMSS, HHMMSS, HHMMSS.fraction. Note that MySQL doesn’t yet store the frac-
tion part.

n As the result of a function that returns a value that is acceptable in a TIME context, such
as CURRENT_TIME.

05 6337 ch04 6/24/04 12:43 PM Page 126

TEAM LinG

1274.3 Date and Time Types

For TIME values specified as strings that include a time part delimiter, it is not necessary to
specify two digits for hours, minutes, or seconds values that are less than 10. ‘8:3:2’ is the
same as ‘08:03:02’.

Be careful about assigning “short” TIME values to a TIME column. Without colons, MySQL
interprets values using the assumption that the rightmost digits represent seconds. (MySQL
interprets TIME values as elapsed time rather than as time of day.) For example, you might
think of ‘1112’ and 1112 as meaning ‘11:12:00’ (12 minutes after 11 o’clock), but MySQL
interprets them as ‘00:11:12’ (11 minutes, 12 seconds). Similarly, ‘12’ and 12 are interpret-
ed as ‘00:00:12’. TIME values with colons, by contrast, are always treated as time of the day.
That is ‘11:12’ will mean ‘11:12:00’, not ‘00:11:12’.

Values that lie outside the TIME range but are otherwise legal are clipped to the closest
endpoint of the range. For example, ‘-850:00:00’ and ‘850:00:00’ are converted to
‘-838:59:59’ and ‘838:59:59’.

Illegal TIME values are converted to ‘00:00:00’. Note that because ‘00:00:00’ is itself a legal
TIME value, there is no way to tell, from a value of ‘00:00:00’ stored in a table, whether the
original value was specified as ‘00:00:00’ or whether it was illegal.

4.3.3 The YEAR Type
The YEAR type is a one-byte type used for representing years.

MySQL retrieves and displays YEAR values in YYYY format. The range is 1901 to 2155.

You can specify YEAR values in a variety of formats:

n As a four-digit string in the range ‘1901’ to ‘2155’.
n As a four-digit number in the range 1901 to 2155.
n As a two-digit string in the range ‘00’ to ‘99’. Values in the ranges ‘00’ to ‘69’ and

‘70’ to ‘99’ are converted to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.
n As a two-digit number in the range 1 to 99. Values in the ranges 1 to 69 and 70 to 99 are

converted to YEAR values in the ranges 2001 to 2069 and 1970 to 1999. Note that the
range for two-digit numbers is slightly different from the range for two-digit strings,
because you cannot specify zero directly as a number and have it be interpreted as 2000.
You must specify it as a string ‘0’ or ‘00’ or it will be interpreted as 0000.

n As the result of a function that returns a value that is acceptable in a YEAR context, such
as NOW().

Illegal YEAR values are converted to 0000.

05 6337 ch04 6/24/04 12:43 PM Page 127

TEAM LinG

128 CHAPTER 4 Column Types

4.3.4 Y2K Issues and Date Types
MySQL itself is year 2000 (Y2K) safe (see Section 1.2.5, “Year 2000 Compliance”), but
input values presented to MySQL may not be. Any input containing two-digit year values is
ambiguous, because the century is unknown. Such values must be interpreted into four-digit
form because MySQL stores years internally using four digits.

For DATETIME, DATE, TIMESTAMP, and YEAR types, MySQL interprets dates with ambiguous year
values using the following rules:

n Year values in the range 00-69 are converted to 2000-2069.
n Year values in the range 70-99 are converted to 1970-1999.

Remember that these rules provide only reasonable guesses as to what your data values
mean. If the heuristics used by MySQL do not produce the correct values, you should pro-
vide unambiguous input containing four-digit year values.

ORDER BY properly sorts TIMESTAMP or YEAR values that have two-digit years.

Some functions like MIN() and MAX() will convert a TIMESTAMP or YEAR to a number. This
means that a value with a two-digit year will not work properly with these functions. The fix
in this case is to convert the YEAR or TIMESTAMP to four-digit year format or use something
like MIN(DATE_ADD(timestamp,INTERVAL 0 DAYS)).

4.4 String Types
The string types are CHAR, VARCHAR, BLOB, TEXT, ENUM, and SET. This section describes how
these types work and how to use them in your queries.

4.4.1 The CHAR and VARCHAR Types
The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved.

The length of a CHAR column is fixed to the length that you declare when you create the
table. The length can be any value from 0 to 255. (Before MySQL 3.23, the length of CHAR
may be from 1 to 255.) When CHAR values are stored, they are right-padded with spaces to
the specified length. When CHAR values are retrieved, trailing spaces are removed.

Values in VARCHAR columns are variable-length strings. You can declare a VARCHAR column to
be any length from 0 to 255, just as for CHAR columns. (Before MySQL 4.0.2, the length of
VARCHAR may be from 1 to 255.) However, in contrast to CHAR, VARCHAR values are stored
using only as many characters as are needed, plus one byte to record the length. Values are
not padded; instead, trailing spaces are removed when values are stored. This space removal
differs from the standard SQL specification.

No lettercase conversion takes place during storage or retrieval.

05 6337 ch04 6/24/04 12:43 PM Page 128

TEAM LinG

1294.4 String Types

If you assign a value to a CHAR or VARCHAR column that exceeds the column’s maximum
length, the value is truncated to fit.

If you need a column for which trailing spaces are not removed, consider using a BLOB or
TEXT type. If you want to store binary values such as results from an encryption or compres-
sion function that might contain arbitrary byte values, use a BLOB column rather than a CHAR
or VARCHAR column to avoid potential problems with trailing space removal that would
change data values.

The following table illustrates the differences between the two types of columns by showing
the result of storing various string values into CHAR(4) and VARCHAR(4) columns:

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

‘’ ‘ ‘ 4 bytes ‘’ 1 byte

‘ab’ ‘ab ’ 4 bytes ‘ab’ 3 bytes

‘abcd’ ‘abcd’ 4 bytes ‘abcd’ 5 bytes

‘abcdefgh’ ‘abcd’ 4 bytes ‘abcd’ 5 bytes

The values retrieved from the CHAR(4) and VARCHAR(4) columns will be the same in each
case, because trailing spaces are removed from CHAR columns upon retrieval.

As of MySQL 4.1, values in CHAR and VARCHAR columns are sorted and compared according
to the collation of the character set assigned to the column. Before MySQL 4.1, sorting and
comparison are based on the collation of the server character set; you can declare the col-
umn with the BINARY attribute to cause sorting and comparison to be case sensitive using the
underlying character code values rather then a lexical ordering. BINARY doesn’t affect how
the column is stored or retrieved.

From MySQL 4.1.0, column type CHAR BYTE is an alias for CHAR BINARY. This is a compati-
bility feature.

The BINARY attribute is sticky. This means that if a column marked BINARY is used in an
expression, the whole expression is treated as a BINARY value.

From MySQL 4.1.0 on, the ASCII attribute can be specified for CHAR. It assigns the latin1
character set.

From MySQL 4.1.1 on, the UNICODE attribute can be specified for CHAR. It assigns the ucs2
character set.

MySQL may silently change the type of a CHAR or VARCHAR column at table creation time.
See Section 6.2.5.2, “Silent Column Specification Changes.”

05 6337 ch04 6/24/04 12:43 PM Page 129

TEAM LinG

130 CHAPTER 4 Column Types

4.4.2 The BLOB and TEXT Types
A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types,
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB, differ only in the maximum length of the values
they can hold. See Section 4.5, “Column Type Storage Requirements.”

The four TEXT types, TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT, correspond to the four BLOB
types and have the same maximum lengths and storage requirements.

BLOB columns are treated as binary strings, whereas TEXT columns are treated according to
their character set. Sorting and comparison for BLOB values is not case sensitive. As of
MySQL 4.1, values in TEXT columns are sorted and compared according to the collation of
the character set assigned to the column. Before MySQL 4.1, TEXT sorting and comparison
are based on the collation of the server character set.

No lettercase conversion takes place during storage or retrieval.

If you assign a value to a BLOB or TEXT column that exceeds the column type’s maximum
length, the value is truncated to fit.

In most respects, you can regard a TEXT column as a VARCHAR column that can be as big as
you like. Similarly, you can regard a BLOB column as a VARCHAR BINARY column. The ways in
which BLOB and TEXT differ from CHAR and VARCHAR are:

n You can have indexes on BLOB and TEXT columns only as of MySQL 3.23.2. Older ver-
sions of MySQL did not support indexing these column types.

n For indexes on BLOB and TEXT columns, you must specify an index prefix length. For
CHAR and VARCHAR, a prefix length is optional.

n There is no trailing-space removal for BLOB and TEXT columns when values are stored or
retrieved. This differs from CHAR columns (trailing spaces are removed when values are
retrieved) and from VARCHAR columns (trailing spaces are removed when values are
stored).

n BLOB and TEXT columns cannot have DEFAULT values.

From MySQL 4.1.0, LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a com-
patibility feature.

Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as LONGVARCHAR.

Because BLOB and TEXT values may be extremely long, you may encounter some constraints
in using them:

n If you want to use GROUP BY or ORDER BY on a BLOB or TEXT column, you must convert
the column value into a fixed-length object. The standard way to do this is with the
SUBSTRING function. For example:
mysql> SELECT comment FROM tbl_name,SUBSTRING(comment,20) AS substr

-> ORDER BY substr;

05 6337 ch04 6/24/04 12:43 PM Page 130

TEAM LinG

1314.4 String Types

If you don’t do this, only the first max_sort_length bytes of the column are used when
sorting. The default value of max_sort_length is 1024; this value can be changed using
the --max_sort_length option when starting the mysqld server.

You can group on an expression involving BLOB or TEXT values by using an alias or by
specifying the column position:
mysql> SELECT id,SUBSTRING(blob_col,1,100) AS b

-> FROM tbl_name GROUP BY b;

mysql> SELECT id,SUBSTRING(blob_col,1,100)

-> FROM tbl_name GROUP BY 2;

n The maximum size of a BLOB or TEXT object is determined by its type, but the largest
value you actually can transmit between the client and server is determined by the
amount of available memory and the size of the communications buffers. You can
change the message buffer size by changing the value of the max_allowed_packet vari-
able, but you must do so for both the server and your client program. For example,
both mysql and mysqldump allow you to change the client-side max_allowed_packet value.

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in
contrast to all other column types, for which storage is allocated once per column when the
table is opened.

4.4.3 The ENUM Type
An ENUM is a string object with a value chosen from a list of allowed values that are enumer-
ated explicitly in the column specification at table creation time.

The value may also be the empty string (‘’) or NULL under certain circumstances:

n If you insert an invalid value into an ENUM (that is, a string not present in the list of
allowed values), the empty string is inserted instead as a special error value. This string
can be distinguished from a “normal” empty string by the fact that this string has the
numerical value 0. More about this later.

n If an ENUM column is declared to allow NULL, the NULL value is a legal value for the col-
umn, and the default value is NULL. If an ENUM column is declared NOT NULL, its default
value is the first element of the list of allowed values.

Each enumeration value has an index:

n Values from the list of allowable elements in the column specification are numbered
beginning with 1.

n The index value of the empty string error value is 0. This means that you can use the
following SELECT statement to find rows into which invalid ENUM values were assigned:
mysql> SELECT * FROM tbl_name WHERE enum_col=0;

n The index of the NULL value is NULL.

05 6337 ch04 6/24/04 12:43 PM Page 131

TEAM LinG

132 CHAPTER 4 Column Types

For example, a column specified as ENUM(‘one’, ‘two’, ‘three’) can have any of the values
shown here. The index of each value is also shown:

Value Index

NULL NULL

‘’ 0

‘one’ 1

‘two’ 2

‘three’ 3

An enumeration can have a maximum of 65,535 elements.

Starting from MySQL 3.23.51, trailing spaces are automatically deleted from ENUM member
values when the table is created.

Lettercase is irrelevant when you assign values to an ENUM column. However, values
retrieved from the column later are displayed using the lettercase that was used in the
column definition.

If you retrieve an ENUM value in a numeric context, the column value’s index is returned. For
example, you can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

If you store a number into an ENUM column, the number is treated as an index, and the value
stored is the enumeration member with that index. (However, this will not work with LOAD
DATA, which treats all input as strings.) It’s not advisable to define an ENUM column with enu-
meration values that look like numbers, because this can easily become confusing. For exam-
ple, the following column has enumeration members with string values of ‘0’, ‘1’, and ‘2’,
but numeric index values of 1, 2, and 3:

numbers ENUM(‘0’,’1’,’2’)

ENUM values are sorted according to the order in which the enumeration members were listed
in the column specification. (In other words, ENUM values are sorted according to their index
numbers.) For example, ‘a’ sorts before ‘b’ for ENUM(‘a’, ‘b’), but ‘b’ sorts before ‘a’ for
ENUM(‘b’, ‘a’). The empty string sorts before non-empty strings, and NULL values sort
before all other enumeration values. To prevent unexpected results, specify the ENUM list in
alphabetical order. You can also use GROUP BY CAST(col AS VARCHAR) or GROUP BY
CONCAT(col) to make sure that the column is sorted lexically rather than by index number.

If you want to determine all possible values for an ENUM column, use SHOW COLUMNS FROM
tbl_name LIKE enum_col and parse the ENUM definition in the second column of the output.

05 6337 ch04 6/24/04 12:43 PM Page 132

TEAM LinG

1334.4 String Types

4.4.4 The SET Type
A SET is a string object that can have zero or more values, each of which must be chosen
from a list of allowed values specified when the table is created. SET column values that
consist of multiple set members are specified with members separated by commas (‘,’). A
consequence of this is that SET member values cannot themselves contain commas.

For example, a column specified as SET(‘one’, ‘two’) NOT NULL can have any of these values:

‘’

‘one’

‘two’

‘one,two’

A SET can have a maximum of 64 different members.

Starting from MySQL 3.23.51, trailing spaces are automatically deleted from SET member
values when the table is created.

MySQL stores SET values numerically, with the low-order bit of the stored value correspon-
ding to the first set member. If you retrieve a SET value in a numeric context, the value
retrieved has bits set corresponding to the set members that make up the column value. For
example, you can retrieve numeric values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

If a number is stored into a SET column, the bits that are set in the binary representation of
the number determine the set members in the column value. For a column specified as
SET(‘a’,’b’,’c’,’d’), the members have the following decimal and binary values:

SET Member Decimal Value Binary Value

‘a’ 1 0001

‘b’ 2 0010

‘c’ 4 0100

‘d’ 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET
value members ‘a’ and ‘d’ are selected and the resulting value is ‘a,d’.

For a value containing more than one SET element, it does not matter what order the ele-
ments are listed in when you insert the value. It also does not matter how many times a
given element is listed in the value. When the value is retrieved later, each element in the
value will appear once, with elements listed according to the order in which they were speci-
fied at table creation time. If a column is specified as SET(‘a’,’b’,’c’,’d’), then ‘a,d’,
‘d,a’, and ‘d,a,a,d,d’ all will appear as ‘a,d’ when retrieved.

If you set a SET column to an unsupported value, the value will be ignored.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

05 6337 ch04 6/24/04 12:43 PM Page 133

TEAM LinG

134 CHAPTER 4 Column Types

Normally, you search for a set value using the FIND_IN_SET() function or the LIKE operator:

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET(‘value’,set_col)>0;

mysql> SELECT * FROM tbl_name WHERE set_col LIKE ‘%value%’;

The first statement finds rows where set_col contains the value set member. The second is
similar, but not the same: It finds rows where set_col contains value anywhere, even as a sub-
string of another set member.

The following statements also are legal:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;

mysql> SELECT * FROM tbl_name WHERE set_col = ‘val1,val2’;

The first of these statements looks for values containing the first set member. The second looks
for an exact match. Be careful with comparisons of the second type. Comparing set values to
‘val1,val2’ will return different results than comparing values to ‘val2,val1’. You should
specify the values in the same order they are listed in the column definition.

If you want to determine all possible values for a SET column, use SHOW COLUMNS FROM tbl_name
LIKE set_col and parse the SET definition in the second column of the output.

4.5 Column Type Storage Requirements
The storage requirements for each of the column types supported by MySQL are listed by category.

The maximum size of a row in a MyISAM table is 65,534 bytes. Each BLOB and TEXT column
accounts for only five to nine bytes toward this size.

If a MyISAM or ISAM table includes any variable-length column types, the record format will also
be variable length. When a table is created, MySQL may, under certain conditions, change a
column from a variable-length type to a fixed-length type or vice versa. See Section 6.2.5.2,
“Silent Column Specification Changes.”

Storage Requirements for Numeric Types
Column Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

DOUBLE [PRECISION], REAL 8 bytes

DECIMAL(M,D), NUMERIC(M,D) M+2 bytes if D > 0, M+1 bytes if D = 0 (D+2, if M < D)

05 6337 ch04 6/24/04 12:43 PM Page 134

TEAM LinG

1354.5 Column Type Storage Requirements

Storage Requirements for Date and Time Types
Column Type Storage Required

DATE 3 bytes

DATETIME 8 bytes

TIMESTAMP 4 bytes

TIME 3 bytes

YEAR 1 byte

Storage Requirements for String Types
Column Type Storage Required

CHAR(M) M bytes, 0 <= M <= 255

VARCHAR(M) L+1 bytes, where L <= M and 0 <= M <= 255

TINYBLOB, TINYTEXT L+1 bytes, where L < 28

BLOB, TEXT L+2 bytes, where L < 216

MEDIUMBLOB, MEDIUMTEXT L+3 bytes, where L < 224

LONGBLOB, LONGTEXT L+4 bytes, where L < 232

ENUM(‘value1’,’value2’,...) 1 or 2 bytes, depending on the number of enumeration
values (65,535 values maximum)

SET(‘value1’,’value2’,...) 1, 2, 3, 4, or 8 bytes, depending on the number of set
members (64 members maximum)

VARCHAR and the BLOB and TEXT types are variable-length types. For each, the storage require-
ments depend on the actual length of column values (represented by L in the preceding
table), rather than on the type’s maximum possible size. For example, a VARCHAR(10) column
can hold a string with a maximum length of 10 characters. The actual storage required is the
length of the string (L), plus 1 byte to record the length of the string. For the string ‘abcd’,
L is 4 and the storage requirement is 5 bytes.

The BLOB and TEXT types require 1, 2, 3, or 4 bytes to record the length of the column value,
depending on the maximum possible length of the type. See Section 4.4.2, “The BLOB and
TEXT Types.”

The size of an ENUM object is determined by the number of different enumeration values.
One byte is used for enumerations with up to 255 possible values. Two bytes are used for
enumerations with up to 65,535 values. See Section 4.4.3, “The ENUM Type.”

The size of a SET object is determined by the number of different set members. If the set
size is N, the object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can
have a maximum of 64 members. See Section 4.4.4, “The SET Type.”

05 6337 ch04 6/24/04 12:43 PM Page 135

TEAM LinG

136 CHAPTER 4 Column Types

4.6 Choosing the Right Type for a Column
For the most efficient use of storage, try to use the most precise type in all cases. For exam-
ple, if an integer column will be used for values in the range from 1 to 99999, MEDIUMINT
UNSIGNED is the best type. Of the types that represent all the required values, it uses the least
amount of storage.

Accurate representation of monetary values is a common problem. In MySQL, you should
use the DECIMAL type. This is stored as a string, so no loss of accuracy should occur.
(Calculations on DECIMAL values may still be done using double-precision operations, howev-
er.) If accuracy is not too important, the DOUBLE type may also be good enough.

For high precision, you can always convert to a fixed-point type stored in a BIGINT. This
allows you to do all calculations with integers and convert results back to floating-point val-
ues only when necessary.

4.7 Using Column Types from Other Database
Engines
To make it easier to use code written for SQL implementations from other vendors,
MySQL maps column types as shown in the following table. These mappings make it easier
to import table definitions from other database engines into MySQL:

Other Vendor Type MySQL Type

BINARY(M) CHAR(M) BINARY

CHAR VARYING(M) VARCHAR(M)

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT (MySQL 4.1.0 on)

MIDDLEINT MEDIUMINT

VARBINARY(M) VARCHAR(M) BINARY

Column type mapping occurs at table creation time, after which the original type specifica-
tions are discarded. If you create a table with types used by other vendors and then issue a
DESCRIBE tbl_name statement, MySQL reports the table structure using the equivalent
MySQL types.

05 6337 ch04 6/24/04 12:43 PM Page 136

TEAM LinG

5
Functions and Operators

Expressions can be used at several points in SQL statements, such as in the ORDER BY or
HAVING clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE state-
ment, or in SET statements. Expressions can be written using literal values, column values,
NULL, functions, and operators. This chapter describes the functions and operators that are
allowed for writing expressions in MySQL.

An expression that contains NULL always produces a NULL value unless otherwise indicated in
the documentation for a particular function or operator.

Note: By default, there must be no whitespace between a function name and the parenthesis
following it. This helps the MySQL parser distinguish between function calls and references
to tables or columns that happen to have the same name as a function. Spaces around func-
tion arguments are permitted, though.

You can tell the MySQL server to accept spaces after function names by starting it with the
--sql-mode=IGNORE_SPACE option. Individual client programs can request this behavior by
using the CLIENT_IGNORE_SPACE option for mysql_real_connect(). In either case, all function
names will become reserved words.

For the sake of brevity, most examples in this chapter display the output from the mysql pro-
gram in abbreviated form. Instead of showing examples in this format:

mysql> SELECT MOD(29,9);

+-----------+

| mod(29,9) |

+-----------+

| 2 |

+-----------+

1 rows in set (0.00 sec)

This format is used instead:

mysql> SELECT MOD(29,9);

-> 2

06 6337 ch05 6/24/04 12:42 PM Page 137

TEAM LinG

138 CHAPTER 5 Functions and Operators

5.1 Operators

5.1.1 Parentheses
n (...)

Use parentheses to force the order of evaluation in an expression. For example:

mysql> SELECT 1+2*3;

-> 7

mysql> SELECT (1+2)*3;

-> 9

5.1.2 Comparison Operators
Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations
work for both numbers and strings. Strings are automatically converted to numbers and
numbers to strings as necessary.

MySQL performs comparisons using the following rules:

n If one or both arguments are NULL, the result of the comparison is NULL, except for the
NULL-safe <=> equality comparison operator.

n If both arguments in a comparison operation are strings, they are compared as strings.
n If both arguments are integers, they are compared as integers.
n Hexadecimal values are treated as binary strings if not compared to a number.
n If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a

constant, the constant is converted to a timestamp before the comparison is performed.
This is done to be more ODBC-friendly.

n In all other cases, the arguments are compared as floating-point (real) numbers.

By default, string comparisons are not case sensitive and use the current character set
(ISO-8859-1 Latin1 by default, which also works excellently for English).

The following examples illustrate conversion of strings to numbers for comparison
operations:

mysql> SELECT 1 > ‘6x’;

-> 0

mysql> SELECT 7 > ‘6x’;

-> 1

mysql> SELECT 0 > ‘x6’;

-> 0

mysql> SELECT 0 = ‘x6’;

-> 1

06 6337 ch05 6/24/04 12:42 PM Page 138

TEAM LinG

1395.1 Operators

Note that when you are comparing a string column with a number, MySQL can’t use an
index on the column to quickly look up the value. If str_col is an indexed string column,
the index cannot be used when performing the lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1:
‘1’, ‘ 1’, ‘1a’, ...

n =

Equal:
mysql> SELECT 1 = 0;

-> 0

mysql> SELECT ‘0’ = 0;

-> 1

mysql> SELECT ‘0.0’ = 0;

-> 1

mysql> SELECT ‘0.01’ = 0;

-> 0

mysql> SELECT ‘.01’ = 0.01;

-> 1

n <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but
returns 1 rather than NULL if both operands are NULL, and 0 rather than NULL if one
operand is NULL.
mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;

-> 1, 1, 0

mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;

-> 1, NULL, NULL

<=> was added in MySQL 3.23.0.
n <>, !=

Not equal:
mysql> SELECT ‘.01’ <> ‘0.01’;

-> 1

mysql> SELECT .01 <> ‘0.01’;

-> 0

mysql> SELECT ‘zapp’ <> ‘zappp’;

-> 1

06 6337 ch05 6/24/04 12:42 PM Page 139

TEAM LinG

140 CHAPTER 5 Functions and Operators

n <=

Less than or equal:
mysql> SELECT 0.1 <= 2;

-> 1

n <

Less than:
mysql> SELECT 2 < 2;

-> 0

n >=

Greater than or equal:
mysql> SELECT 2 >= 2;

-> 1

n >

Greater than:
mysql> SELECT 2 > 2;

-> 0

n IS NULL, IS NOT NULL

Tests whether a value is or is not NULL.
mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;

-> 0, 0, 1

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;

-> 1, 1, 0

To be able to work well with ODBC programs, MySQL supports the following extra
features when using IS NULL:

n You can find the row that contains the most recent AUTO_INCREMENT value by issuing
a statement of the following form immediately after generating the value:
SELECT * FROM tbl_name WHERE auto_col IS NULL

This behavior can be disabled by setting SQL_AUTO_IS_NULL=0. See Section 6.5.3.1,
“SET Syntax.”

n For DATE and DATETIME columns that are declared as NOT NULL, you can find the spe-
cial date ‘0000-00-00’ by using a statement like this:
SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC doesn’t
support a ‘0000-00-00’ date value.

06 6337 ch05 6/24/04 12:42 PM Page 140

TEAM LinG

1415.1 Operators

n expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN
returns 1, otherwise it returns 0. This is equivalent to the expression (min <= expr AND

expr <= max) if all the arguments are of the same type. Otherwise type conversion takes
place according to the rules described at the beginning of this section, but applied to all
the three arguments. Note: Before MySQL 4.0.5, arguments were converted to the
type of expr instead.
mysql> SELECT 1 BETWEEN 2 AND 3;

-> 0

mysql> SELECT ‘b’ BETWEEN ‘a’ AND ‘c’;

-> 1

mysql> SELECT 2 BETWEEN 2 AND ‘3’;

-> 1

mysql> SELECT 2 BETWEEN 2 AND ‘x-3’;

-> 0

n expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).
n COALESCE(value,...)

Returns the first non-NULL value in the list.
mysql> SELECT COALESCE(NULL,1);

-> 1

mysql> SELECT COALESCE(NULL,NULL,NULL);

-> NULL

COALESCE() was added in MySQL 3.23.3.
n GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The
arguments are compared using the same rules as for LEAST().
mysql> SELECT GREATEST(2,0);

-> 2

mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);

-> 767.0

mysql> SELECT GREATEST(‘B’,’A’,’C’);

-> ‘C’

Before MySQL 3.22.5, you can use MAX() instead of GREATEST().
n expr IN (value,...)

Returns 1 if expr is any of the values in the IN list, else returns 0. If all values are con-
stants, they are evaluated according to the type of expr and sorted. The search for the
item then is done using a binary search. This means IN is very quick if the IN value list

06 6337 ch05 6/24/04 12:42 PM Page 141

TEAM LinG

142 CHAPTER 5 Functions and Operators

consists entirely of constants. If expr is a case-sensitive string expression, the string
comparison is performed in case-sensitive fashion.
mysql> SELECT 2 IN (0,3,5,’wefwf’);

-> 0

mysql> SELECT ‘wefwf’ IN (0,3,5,’wefwf’);

-> 1

The number of values in the IN list is only limited by the max_allowed_packet value.

To comply with the SQL standard, from MySQL 4.1 on IN returns NULL not only if the
expression on the left hand side is NULL, but also if no match is found in the list and one
of the expressions in the list is NULL.

From MySQL 4.1 on, IN() syntax also is used to write certain types of subqueries. See
Section 6.1.8.3, “Subqueries with ANY, IN, and SOME.”

n expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).
n ISNULL(expr)

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.
mysql> SELECT ISNULL(1+1);

-> 0

mysql> SELECT ISNULL(1/0);

-> 1

Note that a comparison of NULL values using = will always be false!
n INTERVAL(N,N1,N2,N3,...)

Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are treated as
integers. It is required that N1 < N2 < N3 < ... < Nn for this function to work correctly.
This is because a binary search is used (very fast).
mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);

-> 3

mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);

-> 2

mysql> SELECT INTERVAL(22, 23, 30, 44, 200);

-> 0

n LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The
arguments are compared using the following rules.

n If the return value is used in an INTEGER context or all arguments are integer-valued,
they are compared as integers.

n If the return value is used in a REAL context or all arguments are real-valued, they
are compared as reals.

06 6337 ch05 6/24/04 12:42 PM Page 142

TEAM LinG

1435.1 Operators

n If any argument is a case-sensitive string, the arguments are compared as case-
sensitive strings.

n In other cases, the arguments are compared as case-insensitive strings.
mysql> SELECT LEAST(2,0);

-> 0

mysql> SELECT LEAST(34.0,3.0,5.0,767.0);

-> 3.0

mysql> SELECT LEAST(‘B’,’A’,’C’);

-> ‘A’

Before MySQL 3.22.5, you can use MIN() instead of LEAST().

Note that the preceding conversion rules can produce strange results in some border-
line cases:
mysql> SELECT CAST(LEAST(3600, 9223372036854775808.0) as SIGNED);

-> -9223372036854775808

This happens because MySQL reads 9223372036854775808.0 in an integer context.
The integer representation is not good enough to hold the value, so it wraps to a signed
integer.

5.1.3 Logical Operators
In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In
MySQL, these are implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is com-
mon to different SQL database servers, although some servers may return any non-zero
value for TRUE.

n NOT, !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is non-zero, and
NOT NULL returns NULL.
mysql> SELECT NOT 10;

-> 0

mysql> SELECT NOT 0;

-> 1

mysql> SELECT NOT NULL;

-> NULL

mysql> SELECT ! (1+1);

-> 0

mysql> SELECT ! 1+1;

-> 1

The last example produces 1 because the expression evaluates the same way as (!1)+1.

06 6337 ch05 6/24/04 12:42 PM Page 143

TEAM LinG

144 CHAPTER 5 Functions and Operators

n AND, &&

Logical AND. Evaluates to 1 if all operands are non-zero and not NULL, to 0 if one or
more operands are 0, otherwise NULL is returned.
mysql> SELECT 1 && 1;

-> 1

mysql> SELECT 1 && 0;

-> 0

mysql> SELECT 1 && NULL;

-> NULL

mysql> SELECT 0 && NULL;

-> 0

mysql> SELECT NULL && 0;

-> 0

Please note that MySQL versions prior to 4.0.5 stop evaluation when a NULL is encoun-
tered, rather than continuing the process to check for possible 0 values. This means that
in these versions, SELECT (NULL AND 0) returns NULL instead of 0. As of MySQL 4.0.5,
the code has been re-engineered so that the result is always as prescribed by the SQL
standards while still using the optimization wherever possible.

n OR, ||

Logical OR. Evaluates to 1 if any operand is non-zero, to NULL if any operand is NULL,
otherwise 0 is returned.
mysql> SELECT 1 || 1;

-> 1

mysql> SELECT 1 || 0;

-> 1

mysql> SELECT 0 || 0;

-> 0

mysql> SELECT 0 || NULL;

-> NULL

mysql> SELECT 1 || NULL;

-> 1

n XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates
to 1 if an odd number of operands is non-zero, otherwise 0 is returned.

mysql> SELECT 1 XOR 1;

-> 0

mysql> SELECT 1 XOR 0;

-> 1

mysql> SELECT 1 XOR NULL;

-> NULL

mysql> SELECT 1 XOR 1 XOR 1;

-> 1

06 6337 ch05 6/24/04 12:42 PM Page 144

TEAM LinG

1455.2 Control Flow Functions

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

XOR was added in MySQL 4.0.2.

5.1.4 Case-Sensitivity Operators
n BINARY

The BINARY operator casts the string following it to a binary string. This is an easy way
to force a column comparison to be case sensitive even if the column isn’t defined as
BINARY or BLOB.
mysql> SELECT ‘a’ = ‘A’;

-> 1

mysql> SELECT BINARY ‘a’ = ‘A’;

-> 0

BINARY was added in MySQL 3.23.0. As of MySQL 4.0.2, BINARY str is a shorthand for
CAST(str AS BINARY). See Section 5.7, “Cast Functions.”

Note that in some contexts, if you cast an indexed column to BINARY, MySQL will not
be able to use the index efficiently.

If you want to compare a BLOB value in case-insensitive fashion, you can do so as follows:

n Before MySQL 4.1.1, use the UPPER() function to convert the BLOB value to uppercase
before performing the comparison:
SELECT ‘A’ LIKE UPPER(blob_col) FROM tbl_name;

If the comparison value is lowercase, convert the BLOB value using LOWER() instead.
n For MySQL 4.1.1 and up, BLOB columns have a character set of binary, which has no

concept of lettercase. To perform a case-insensitive comparison, use the CONVERT()
function to convert the BLOB value to a character set that is not case sensitive. The result
is a non-binary string, so the LIKE operation is not case sensitive:
SELECT ‘A’ LIKE CONVERT(blob_col USING latin1) FROM tbl_name;

To use a different character set, substitute its name for latin1 in the preceding statement.

CONVERT() can be used more generally for comparing strings that are represented in different
character sets.

5.2 Control Flow Functions
n CASE value WHEN [compare-value] THEN result [WHEN [compare-value] THEN

result ...] [ELSE result] END,

CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...]

[ELSE result] END

06 6337 ch05 6/24/04 12:42 PM Page 145

TEAM LinG

146 CHAPTER 5 Functions and Operators

The first version returns the result where value=compare-value. The second version
returns the result for the first condition that is true. If there was no matching result
value, the result after ELSE is returned, or NULL if there is no ELSE part.
mysql> SELECT CASE 1 WHEN 1 THEN ‘one’ WHEN 2 THEN ‘two’ ELSE ‘more’ END;

-> ‘one’

mysql> SELECT CASE WHEN 1>0 THEN ‘true’ ELSE ‘false’ END;

-> ‘true’

mysql> SELECT CASE BINARY ‘B’ WHEN ‘a’ THEN 1 WHEN ‘b’ THEN 2 END;

-> NULL

The type of the return value (INTEGER, DOUBLE, or STRING) is the same as the type of the
first returned value (the expression after the first THEN).

CASE was added in MySQL 3.23.3.
n IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2, else it
returns expr3. IF() returns a numeric or string value, depending on the context in
which it is used.
mysql> SELECT IF(1>2,2,3);

-> 3

mysql> SELECT IF(1<2,’yes’,’no’);

-> ‘yes’

mysql> SELECT IF(STRCMP(‘test’,’test1’),’no’,’yes’);

-> ‘no’

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the
type of non-NULL expression. (This behavior is new in MySQL 4.0.3.)

expr1 is evaluated as an integer value, which means that if you are testing floating-point
or string values, you should do so using a comparison operation.
mysql> SELECT IF(0.1,1,0);

-> 0

mysql> SELECT IF(0.1<>0,1,0);

-> 1

In the first case shown, IF(0.1) returns 0 because 0.1 is converted to an integer value,
resulting in a test of IF(0). This may not be what you expect. In the second case, the
comparison tests the original floating-point value to see whether it is non-zero. The
result of the comparison is used as an integer.

06 6337 ch05 6/24/04 12:42 PM Page 146

TEAM LinG

1475.2 Control Flow Functions

The default return type of IF() (which may matter when it is stored into a temporary
table) is calculated in MySQL 3.23 as follows:

Expression Return Value

expr2 or expr3 returns a string string

expr2 or expr3 returns a floating-point value floating-point

expr2 or expr3 returns an integer integer

If expr2 and expr3 are strings, the result is case sensitive if either string is case sensitive
(starting from MySQL 3.23.51).

n IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1, else it returns expr2. IFNULL() returns a
numeric or string value, depending on the context in which it is used.
mysql> SELECT IFNULL(1,0);

-> 1

mysql> SELECT IFNULL(NULL,10);

-> 10

mysql> SELECT IFNULL(1/0,10);

-> 10

mysql> SELECT IFNULL(1/0,’yes’);

-> ‘yes’

In MySQL 4.0.6 and above, the default result value of IFNULL(expr1,expr2) is the
more “general” of the two expressions, in the order STRING, REAL, or INTEGER. The
difference from earlier MySQL versions is mostly notable when you create a table
based on expressions or MySQL has to internally store a value from IFNULL() in a
temporary table.
CREATE TABLE tmp SELECT IFNULL(1,’test’) AS test;

As of MySQL 4.0.6, the type for the test column is CHAR(4), whereas in earlier versions
the type would be BIGINT.

n NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, else returns expr1. This is the same as CASE WHEN

expr1 = expr2 THEN NULL ELSE expr1 END.
mysql> SELECT NULLIF(1,1);

-> NULL

mysql> SELECT NULLIF(1,2);

-> 1

Note that MySQL evaluates expr1 twice if the arguments are not equal.

NULLIF() was added in MySQL 3.23.15.

06 6337 ch05 6/24/04 12:42 PM Page 147

TEAM LinG

148 CHAPTER 5 Functions and Operators

5.3 String Functions
String-valued functions return NULL if the length of the result would be greater than the
value of the max_allowed_packet system variable.

For functions that operate on string positions, the first position is numbered 1.

n ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is
the empty string. Returns NULL if str is NULL. ASCII() works for characters with numeric
values from 0 to 255.
mysql> SELECT ASCII(‘2’);

-> 50

mysql> SELECT ASCII(2);

-> 50

mysql> SELECT ASCII(‘dx’);

-> 100

See also the ORD() function.
n BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT)
number. This is equivalent to CONV(N,10,2). Returns NULL if N is NULL.
mysql> SELECT BIN(12);

-> ‘1100’

n BIT_LENGTH(str)

Returns the length of the string str in bits.
mysql> SELECT BIT_LENGTH(‘text’);

-> 32

BIT_LENGTH() was added in MySQL 4.0.2.
n CHAR(N,...)

CHAR() interprets the arguments as integers and returns a string consisting of the char-
acters given by the code values of those integers. NULL values are skipped.
mysql> SELECT CHAR(77,121,83,81,’76’);

-> ‘MySQL’

mysql> SELECT CHAR(77,77.3,’77.3’);

-> ‘MMM’

n CHAR_LENGTH(str)

Returns the length of the string str, measured in characters. A multi-byte character
counts as a single character. This means that for a string containing five two-byte char-
acters, LENGTH() returns 10, whereas CHAR_LENGTH() returns 5.

06 6337 ch05 6/24/04 12:42 PM Page 148

TEAM LinG

1495.3 String Functions

n CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().
n COMPRESS(string_to_compress)

Compresses a string. This function requires MySQL to have been compiled with a
compression library such as zlib. Otherwise, the return value is always NULL.
mysql> SELECT LENGTH(COMPRESS(REPEAT(‘a’,1000)));

-> 21

mysql> SELECT LENGTH(COMPRESS(‘’));

-> 0

mysql> SELECT LENGTH(COMPRESS(‘a’));

-> 13

mysql> SELECT LENGTH(COMPRESS(REPEAT(‘a’,16)));

-> 15

The compressed string contents are stored the following way:
n Empty strings are stored as empty strings.
n Non-empty strings are stored as a four-byte length of the uncompressed string

(low byte first), followed by the compressed string. If the string ends with space,
an extra ‘.’ character is added to avoid problems with endspace trimming should
the result be stored in a CHAR or VARCHAR column. (Use of CHAR or VARCHAR to
store compressed strings is not recommended. It is better to use a BLOB column
instead.)

COMPRESS() was added in MySQL 4.1.1.
n CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. Returns NULL if any
argument is NULL. May have one or more arguments. A numeric argument is converted
to its equivalent string form.
mysql> SELECT CONCAT(‘My’, ‘S’, ‘QL’);

-> ‘MySQL’

mysql> SELECT CONCAT(‘My’, NULL, ‘QL’);

-> NULL

mysql> SELECT CONCAT(14.3);

-> ‘14.3’

06 6337 ch05 6/24/04 12:42 PM Page 149

TEAM LinG

150 CHAPTER 5 Functions and Operators

n CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for CONCAT With Separator and is a special form of CONCAT().
The first argument is the separator for the rest of the arguments. The separator is
added between the strings to be concatenated. The separator can be a string as can the
rest of the arguments. If the separator is NULL, the result is NULL. The function skips any
NULL values after the separator argument.
mysql> SELECT CONCAT_WS(‘,’,’First name’,’Second name’,’Last Name’);

-> ‘First name,Second name,Last Name’

mysql> SELECT CONCAT_WS(‘,’,’First name’,NULL,’Last Name’);

-> ‘First name,Last Name’

Before MySQL 4.0.14, CONCAT_WS() skips empty strings as well as NULL values.
n CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of
the number N, converted from base from_base to base to_base. Returns NULL if any
argument is NULL. The argument N is interpreted as an integer, but may be specified as
an integer or a string. The minimum base is 2 and the maximum base is 36. If to_base is
a negative number, N is regarded as a signed number. Otherwise, N is treated as
unsigned. CONV() works with 64-bit precision.
mysql> SELECT CONV(‘a’,16,2);

-> ‘1010’

mysql> SELECT CONV(‘6E’,18,8);

-> ‘172’

mysql> SELECT CONV(-17,10,-18);

-> ‘-H’

mysql> SELECT CONV(10+’10’+’10’+0xa,10,10);

-> ‘40’

n ELT(N,str1,str2,str3,...)

Returns str1 if N = 1, str2 if N = 2, and so on. Returns NULL if N is less than 1 or greater
than the number of arguments. ELT() is the complement of FIELD().
mysql> SELECT ELT(1, ‘ej’, ‘Heja’, ‘hej’, ‘foo’);

-> ‘ej’

mysql> SELECT ELT(4, ‘ej’, ‘Heja’, ‘hej’, ‘foo’);

-> ‘foo’

n EXPORT_SET(bits,on,off,[separator,[number_of_bits]])

Returns a string in which for every bit set in bits, you get an on string and for every
reset bit you get an off string. Each string is separated by separator (default ‘,’), and
only number_of_bits (default 64) of bits is used.
mysql> SELECT EXPORT_SET(5,’Y’,’N’,’,’,4)

-> Y,N,Y,N

06 6337 ch05 6/24/04 12:42 PM Page 150

TEAM LinG

1515.3 String Functions

n FIELD(str,str1,str2,str3,...)

Returns the index of str in the str1, str2, str3, ... list. Returns 0 if str is not found.
FIELD() is the complement of ELT().
mysql> SELECT FIELD(‘ej’, ‘Hej’, ‘ej’, ‘Heja’, ‘hej’, ‘foo’);

-> 2

mysql> SELECT FIELD(‘fo’, ‘Hej’, ‘ej’, ‘Heja’, ‘hej’, ‘foo’);

-> 0

n FIND_IN_SET(str,strlist)

Returns a value 1 to N if the string str is in the string list strlist consisting of N sub-
strings. A string list is a string composed of substrings separated by ‘,’ characters. If
the first argument is a constant string and the second is a column of type SET, the
FIND_IN_SET() function is optimized to use bit arithmetic. Returns 0 if str is not in
strlist or if strlist is the empty string. Returns NULL if either argument is NULL.
This function will not work properly if the first argument contains a comma (‘,’)
character.
mysql> SELECT FIND_IN_SET(‘b’,’a,b,c,d’);

-> 2

n HEX(N_or_S)

If N_OR_S is a number, returns a string representation of the hexadecimal value of N,
where N is a longlong (BIGINT) number. This is equivalent to CONV(N,10,16).

From MySQL 4.0.1 and up, if N_OR_S is a string, returns a hexadecimal string of N_OR_S
where each character in N_OR_S is converted to two hexadecimal digits.
mysql> SELECT HEX(255);

-> ‘FF’

mysql> SELECT 0x616263;

-> ‘abc’

mysql> SELECT HEX(‘abc’);

-> 616263

n INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters
long replaced by the string newstr.
mysql> SELECT INSERT(‘Quadratic’, 3, 4, ‘What’);

-> ‘QuWhattic’

This function is multi-byte safe.

06 6337 ch05 6/24/04 12:42 PM Page 151

TEAM LinG

152 CHAPTER 5 Functions and Operators

n INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the
same as the two-argument form of LOCATE(), except that the arguments are swapped.
mysql> SELECT INSTR(‘foobarbar’, ‘bar’);

-> 4

mysql> SELECT INSTR(‘xbar’, ‘foobar’);

-> 0

This function is multi-byte safe. In MySQL 3.23, this function is case sensitive. For 4.0
on, it is case sensitive only if either argument is a binary string.

n LCASE(str)

LCASE() is a synonym for LOWER().
n LEFT(str,len)

Returns the leftmost len characters from the string str.
mysql> SELECT LEFT(‘foobarbar’, 5);

-> ‘fooba’

n LENGTH(str)

Returns the length of the string str, measured in bytes. A multi-byte character counts
as multiple bytes. This means that for a string containing five two-byte characters,
LENGTH() returns 10, whereas CHAR_LENGTH() returns 5.
mysql> SELECT LENGTH(‘text’);

-> 4

n LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. The file must be located on the
server, you must specify the full pathname to the file, and you must have the FILE privi-
lege. The file must be readable by all and be smaller than max_allowed_packet bytes.

If the file doesn’t exist or cannot be read because one of the preceding conditions is not
satisfied, the function returns NULL.
mysql> UPDATE tbl_name

SET blob_column=LOAD_FILE(‘/tmp/picture’)

WHERE id=1;

Before MySQL 3.23, you must read the file inside your application and create an
INSERT statement to update the database with the file contents. If you are using the
MySQL++ library, one way to do this can be found in the MySQL++ manual, available
at http://dev.mysql.com/doc.

06 6337 ch05 6/24/04 12:42 PM Page 152

TEAM LinG

1535.3 String Functions

n LOCATE(substr,str)

LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string
str. The second syntax returns the position of the first occurrence of substring substr
in string str, starting at position pos. Returns 0 if substr is not in str.
mysql> SELECT LOCATE(‘bar’, ‘foobarbar’);

-> 4

mysql> SELECT LOCATE(‘xbar’, ‘foobar’);

-> 0

mysql> SELECT LOCATE(‘bar’, ‘foobarbar’,5);

-> 7

This function is multi-byte safe. In MySQL 3.23, this function is case sensitive. For 4.0
on, it is case sensitive only if either argument is a binary string.

n LOWER(str)

Returns the string str with all characters changed to lowercase according to the current
character set mapping (the default is ISO-8859-1 Latin1).
mysql> SELECT LOWER(‘QUADRATICALLY’);

-> ‘quadratically’

This function is multi-byte safe.
n LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters.
If str is longer than len, the return value is shortened to len characters.
mysql> SELECT LPAD(‘hi’,4,’??’);

-> ‘??hi’

mysql> SELECT LPAD(‘hi’,1,’??’);

-> ‘h’

n LTRIM(str)

Returns the string str with leading space characters removed.
mysql> SELECT LTRIM(‘ barbar’);

-> ‘barbar’

This function is multi-byte safe.

06 6337 ch05 6/24/04 12:42 PM Page 153

TEAM LinG

154 CHAPTER 5 Functions and Operators

n MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by ‘,’ characters) consisting
of the strings that have the corresponding bit in bits set. str1 corresponds to bit 0,
str2 to bit 1, and so on. NULL values in str1, str2, ... are not appended to the result.
mysql> SELECT MAKE_SET(1,’a’,’b’,’c’);

-> ‘a’

mysql> SELECT MAKE_SET(1 | 4,’hello’,’nice’,’world’);

-> ‘hello,world’

mysql> SELECT MAKE_SET(1 | 4,’hello’,’nice’,NULL,’world’);

-> ‘hello’

mysql> SELECT MAKE_SET(0,’a’,’b’,’c’);

-> ‘’

n MID(str,pos,len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).
n OCT(N)

Returns a string representation of the octal value of N, where N is a longlong number.
This is equivalent to CONV(N,10,8). Returns NULL if N is NULL.
mysql> SELECT OCT(12);

-> ‘14’

n OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().
n ORD(str)

If the leftmost character of the string str is a multi-byte character, returns the code for
that character, calculated from the numeric values of its constituent bytes using this
formula:
(1st byte code * 256)

+ (2nd byte code * 2562)

+ (3rd byte code * 2563) ...

If the leftmost character is not a multi-byte character, ORD() returns the same value as
the ASCII() function.
mysql> SELECT ORD(‘2’);

-> 50

n POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

06 6337 ch05 6/24/04 12:42 PM Page 154

TEAM LinG

1555.3 String Functions

n QUOTE(str)

Quotes a string to produce a result that can be used as a properly escaped data value in
an SQL statement. The string is returned surrounded by single quotes and with each
instance of single quote (‘’’), backslash (‘\’), ASCII NUL, and Control-Z preceded by a
backslash. If the argument is NULL, the return value is the word “NULL” without sur-
rounding single quotes. The QUOTE() function was added in MySQL 4.0.3.
mysql> SELECT QUOTE(‘Don\’t’);

-> ‘Don\’t!’

mysql> SELECT QUOTE(NULL);

-> NULL

n REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count <= 0,
returns an empty string. Returns NULL if str or count are NULL.
mysql> SELECT REPEAT(‘MySQL’, 3);

-> ‘MySQLMySQLMySQL’

n REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string
to_str.
mysql> SELECT REPLACE(‘www.mysql.com’, ‘w’, ‘Ww’);

-> ‘WwWwWw.mysql.com’

This function is multi-byte safe.
n REVERSE(str)

Returns the string str with the order of the characters reversed.
mysql> SELECT REVERSE(‘abc’);

-> ‘cba’

This function is multi-byte safe.
n RIGHT(str,len)

Returns the rightmost len characters from the string str.
mysql> SELECT RIGHT(‘foobarbar’, 4);

-> ‘rbar’

This function is multi-byte safe.

06 6337 ch05 6/24/04 12:42 PM Page 155

TEAM LinG

156 CHAPTER 5 Functions and Operators

n RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len charac-
ters. If str is longer than len, the return value is shortened to len characters.
mysql> SELECT RPAD(‘hi’,5,’?’);

-> ‘hi???’

mysql> SELECT RPAD(‘hi’,1,’?’);

-> ‘h’

This function is multi-byte safe.
n RTRIM(str)

Returns the string str with trailing space characters removed.
mysql> SELECT RTRIM(‘barbar ‘);

-> ‘barbar’

This function is multi-byte safe.
n SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have
identical soundex strings. A standard soundex string is four characters long, but the
SOUNDEX() function returns an arbitrarily long string. You can use SUBSTRING() on the
result to get a standard soundex string. All non-alphabetic characters are ignored in the
given string. All international alphabetic characters outside the A-Z range are treated as
vowels.
mysql> SELECT SOUNDEX(‘Hello’);

-> ‘H400’

mysql> SELECT SOUNDEX(‘Quadratically’);

-> ‘Q36324’

Note: This function implements the original Soundex algorithm, not the more popular
enhanced version (also described by D. Knuth). The difference is that the original ver-
sion discards vowels first and then duplicates, whereas the enhanced version discards
duplicates first and then vowels.

n expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2). It is available only in MySQL
4.1 or later.

n SPACE(N)

Returns a string consisting of N space characters.
mysql> SELECT SPACE(6);

-> ‘ ‘

06 6337 ch05 6/24/04 12:42 PM Page 156

TEAM LinG

1575.3 String Functions

n SUBSTRING(str,pos)

SUBSTRING(str FROM pos)

SUBSTRING(str,pos,len)

SUBSTRING(str FROM pos FOR len)

The forms without a len argument return a substring from string str starting at posi-
tion pos. The forms with a len argument return a substring len characters long from
string str, starting at position pos. The forms that use FROM are standard SQL syntax.
mysql> SELECT SUBSTRING(‘Quadratically’,5);

-> ‘ratically’

mysql> SELECT SUBSTRING(‘foobarbar’ FROM 4);

-> ‘barbar’

mysql> SELECT SUBSTRING(‘Quadratically’,5,6);

-> ‘ratica’

This function is multi-byte safe.
n SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim.
If count is positive, everything to the left of the final delimiter (counting from the left)
is returned. If count is negative, everything to the right of the final delimiter (counting
from the right) is returned.
mysql> SELECT SUBSTRING_INDEX(‘www.mysql.com’, ‘.’, 2);

-> ‘www.mysql’

mysql> SELECT SUBSTRING_INDEX(‘www.mysql.com’, ‘.’, -2);

-> ‘mysql.com’

This function is multi-byte safe.
n TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

Returns the string str with all remstr prefixes and/or suffixes removed. If none of the
specifiers BOTH, LEADING, or TRAILING is given, BOTH is assumed. If remstr is not specified,
spaces are removed.
mysql> SELECT TRIM(‘ bar ‘);

-> ‘bar’

mysql> SELECT TRIM(LEADING ‘x’ FROM ‘xxxbarxxx’);

-> ‘barxxx’

mysql> SELECT TRIM(BOTH ‘x’ FROM ‘xxxbarxxx’);

-> ‘bar’

mysql> SELECT TRIM(TRAILING ‘xyz’ FROM ‘barxxyz’);

-> ‘barx’

This function is multi-byte safe.

06 6337 ch05 6/24/04 12:42 PM Page 157

TEAM LinG

158 CHAPTER 5 Functions and Operators

n UCASE(str)

UCASE() is a synonym for UPPER().
n UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a
compressed value, the result is NULL. This function requires MySQL to have been com-
piled with a compression library such as zlib. Otherwise, the return value is always
NULL.
mysql> SELECT UNCOMPRESS(COMPRESS(‘any string’));

-> ‘any string’

mysql> SELECT UNCOMPRESS(‘any string’);

-> NULL

UNCOMPRESS() was added in MySQL 4.1.1.
n UNCOMPRESSED_LENGTH(compressed_string)

Returns the length of a compressed string before compression.
mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT(‘a’,30)));

-> 30

UNCOMPRESSED_LENGTH() was added in MySQL 4.1.1.
n UNHEX(str)

Does the opposite of HEX(str). That is, it interprets each pair of hexadecimal digits in
the argument as a number and converts it to the character represented by the number.
The resulting characters are returned as a binary string.
mysql> SELECT UNHEX(‘4D7953514C’);

-> ‘MySQL’

mysql> SELECT 0x4D7953514C;

-> ‘MySQL’

mysql> SELECT UNHEX(HEX(‘string’));

-> ‘string’

mysql> SELECT HEX(UNHEX(‘1267’));

-> ‘1267’

UNHEX() was added in MySQL 4.1.2.
n UPPER(str)

Returns the string str with all characters changed to uppercase according to the cur-
rent character set mapping (the default is ISO-8859-1 Latin1).
mysql> SELECT UPPER(‘Hej’);

-> ‘HEJ’

This function is multi-byte safe.

06 6337 ch05 6/24/04 12:42 PM Page 158

TEAM LinG

1595.3 String Functions

5.3.1 String Comparison Functions
MySQL automatically converts numbers to strings as necessary, and vice versa.

mysql> SELECT 1+’1’;

-> 2

mysql> SELECT CONCAT(2,’ test’);

-> ‘2 test’

If you want to convert a number to a string explicitly, use the CAST() or CONCAT() function:

mysql> SELECT 38.8, CAST(38.8 AS CHAR);

-> 38.8, ‘38.8’

mysql> SELECT 38.8, CONCAT(38.8);

-> 38.8, ‘38.8’

CAST() is preferable, but it is unavailable before MySQL 4.0.2.

If a string function is given a binary string as an argument, the resulting string is also a bina-
ry string. A number converted to a string is treated as a binary string. This affects only com-
parisons.

Normally, if any expression in a string comparison is case sensitive, the comparison is per-
formed in case-sensitive fashion.

n expr LIKE pat [ESCAPE ‘escape-char’]

Pattern matching using SQL simple regular expression comparison. Returns 1 (TRUE)
or 0 (FALSE). If either expr or pat is NULL, the result is NULL.

With LIKE you can use the following two wildcard characters in the pattern:

Character Description

% Matches any number of characters, even zero characters

_ Matches exactly one character

mysql> SELECT ‘David!’ LIKE ‘David_’;

-> 1

mysql> SELECT ‘David!’ LIKE ‘%D%v%’;

-> 1

To test for literal instances of a wildcard character, precede the character with the
escape character. If you don’t specify the ESCAPE character, ‘\’ is assumed.

String Description

\% Matches one ‘%’ character

_ Matches one ‘_’ character

mysql> SELECT ‘David!’ LIKE ‘David_’;

-> 0

mysql> SELECT ‘David_’ LIKE ‘David_’;

-> 1

06 6337 ch05 6/24/04 12:42 PM Page 159

TEAM LinG

160 CHAPTER 5 Functions and Operators

To specify a different escape character, use the ESCAPE clause:
mysql> SELECT ‘David_’ LIKE ‘David|_’ ESCAPE ‘|’;

-> 1

The following two statements illustrate that string comparisons are not case sensitive
unless one of the operands is a binary string:
mysql> SELECT ‘abc’ LIKE ‘ABC’;

-> 1

mysql> SELECT ‘abc’ LIKE BINARY ‘ABC’;

-> 0

In MySQL, LIKE is allowed on numeric expressions. (This is an extension to the stan-
dard SQL LIKE.)
mysql> SELECT 10 LIKE ‘1%’;

-> 1

Note: Because MySQL uses the C escape syntax in strings (for example, ‘\n’ to repre-
sent newline), you must double any ‘\’ that you use in your LIKE strings. For example,
to search for ‘\n’, specify it as ‘\\n’. To search for ‘\’, specify it as ‘\\\\’ (the backslashes
are stripped once by the parser and another time when the pattern match is done, leav-
ing a single backslash to be matched).

n expr NOT LIKE pat [ESCAPE ‘escape-char’]

This is the same as NOT (expr LIKE pat [ESCAPE ‘escape-char’]).
n expr NOT REGEXP pat

expr NOT RLIKE pat

This is the same as NOT (expr REGEXP pat).
n expr REGEXP pat

expr RLIKE pat

Performs a pattern match of a string expression expr against a pattern pat. The pattern
can be an extended regular expression. The syntax for regular expressions is discussed
in Appendix B, “MySQL Regular Expressions.” Returns 1 if expr matches pat, other-
wise returns 0. If either expr or pat is NULL, the result is NULL. RLIKE is a synonym for
REGEXP, provided for mSQL compatibility. Note: Because MySQL uses the C escape syn-
tax in strings (for example, ‘\n’ to represent newline), you must double any ‘\’ that you
use in your REGEXP strings. As of MySQL 3.23.4, REGEXP is not case sensitive for normal
(not binary) strings.
mysql> SELECT ‘Monty!’ REGEXP ‘m%y%%’;

-> 0

06 6337 ch05 6/24/04 12:42 PM Page 160

TEAM LinG

1615.4 Numeric Functions

mysql> SELECT ‘Monty!’ REGEXP ‘.*’;

-> 1

mysql> SELECT ‘new*\n*line’ REGEXP ‘new*.*line’;

-> 1

mysql> SELECT ‘a’ REGEXP ‘A’, ‘a’ REGEXP BINARY ‘A’;

-> 1 0

mysql> SELECT ‘a’ REGEXP ‘^[a-d]’;

-> 1

REGEXP and RLIKE use the current character set (ISO-8859-1 Latin1 by default) when
deciding the type of a character. However, these operators are not multi-byte safe.

n STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the
second according to the current sort order, and 1 otherwise.

mysql> SELECT STRCMP(‘text’, ‘text2’);

-> -1

mysql> SELECT STRCMP(‘text2’, ‘text’);

-> 1

mysql> SELECT STRCMP(‘text’, ‘text’);

-> 0

As of MySQL 4.0, STRCMP() uses the current character set when performing compar-
isons. This makes the default comparison behavior case insensitive unless one or both
of the operands are binary strings. Before MySQL 4.0, STRCMP() is case sensitive.

5.4 Numeric Functions

5.4.1 Arithmetic Operators
The usual arithmetic operators are available. Note that in the case of -, +, and *, the result is
calculated with BIGINT (64-bit) precision if both arguments are integers. If one of the argu-
ments is an unsigned integer, and the other argument is also an integer, the result will be an
unsigned integer. See Section 5.7, “Cast Functions.”

n +

Addition:
mysql> SELECT 3+5;

-> 8

06 6337 ch05 6/24/04 12:42 PM Page 161

TEAM LinG

162 CHAPTER 5 Functions and Operators

n -

Subtraction:
mysql> SELECT 3-5;

-> -2

n -

Unary minus. Changes the sign of the argument.
mysql> SELECT - 2;

-> -2

Note that if this operator is used with a BIGINT, the return value is a BIGINT! This
means that you should avoid using - on integers that may have the value of -263!

n *

Multiplication:
mysql> SELECT 3*5;

-> 15

mysql> SELECT 18014398509481984*18014398509481984.0;

-> 324518553658426726783156020576256.0

mysql> SELECT 18014398509481984*18014398509481984;

-> 0

The result of the last expression is incorrect because the result of the integer multipli-
cation exceeds the 64-bit range of BIGINT calculations.

n /

Division:
mysql> SELECT 3/5;

-> 0.60

Division by zero produces a NULL result:
mysql> SELECT 102/(1-1);

-> NULL

A division will be calculated with BIGINT arithmetic only if performed in a context
where its result is converted to an integer!

n DIV

Integer division. Similar to FLOOR() but safe with BIGINT values.

mysql> SELECT 5 DIV 2;

-> 2

DIV is new in MySQL 4.1.0.

06 6337 ch05 6/24/04 12:42 PM Page 162

TEAM LinG

1635.4 Numeric Functions

5.4.2 Mathematical Functions
All mathematical functions return NULL in case of an error.

n ABS(X)

Returns the absolute value of X.
mysql> SELECT ABS(2);

-> 2

mysql> SELECT ABS(-32);

-> 32

This function is safe to use with BIGINT values.
n ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not
in the range -1 to 1.
mysql> SELECT ACOS(1);

-> 0.000000

mysql> SELECT ACOS(1.0001);

-> NULL

mysql> SELECT ACOS(0);

-> 1.570796

n ASIN(X)

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in
the range -1 to 1.
mysql> SELECT ASIN(0.2);

-> 0.201358

mysql> SELECT ASIN(‘foo’);

-> 0.000000

n ATAN(X)

Returns the arc tangent of X, that is, the value whose tangent is X.
mysql> SELECT ATAN(2);

-> 1.107149

mysql> SELECT ATAN(-2);

-> -1.107149

06 6337 ch05 6/24/04 12:42 PM Page 163

TEAM LinG

164 CHAPTER 5 Functions and Operators

n ATAN(Y,X)

ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc
tangent of Y / X, except that the signs of both arguments are used to determine the
quadrant of the result.
mysql> SELECT ATAN(-2,2);

-> -0.785398

mysql> SELECT ATAN2(PI(),0);

-> 1.570796

n CEILING(X)

CEIL(X)

Returns the smallest integer value not less than X.
mysql> SELECT CEILING(1.23);

-> 2

mysql> SELECT CEIL(-1.23);

-> -1

Note that the return value is converted to a BIGINT!

The CEIL() alias was added in MySQL 4.0.6.
n COS(X)

Returns the cosine of X, where X is given in radians.
mysql> SELECT COS(PI());

-> -1.000000

n COT(X)

Returns the cotangent of X.
mysql> SELECT COT(12);

-> -1.57267341

mysql> SELECT COT(0);

-> NULL

n CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The
result is NULL if the argument is NULL. The argument is expected to be a string and will
be treated as one if it is not.
mysql> SELECT CRC32(‘MySQL’);

-> 3259397556

CRC32() is available as of MySQL 4.1.0.

06 6337 ch05 6/24/04 12:42 PM Page 164

TEAM LinG

1655.4 Numeric Functions

n DEGREES(X)

Returns the argument X, converted from radians to degrees.
mysql> SELECT DEGREES(PI());

-> 180.000000

n EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X.
mysql> SELECT EXP(2);

-> 7.389056

mysql> SELECT EXP(-2);

-> 0.135335

n FLOOR(X)

Returns the largest integer value not greater than X.
mysql> SELECT FLOOR(1.23);

-> 1

mysql> SELECT FLOOR(-1.23);

-> -2

Note that the return value is converted to a BIGINT!
n LN(X)

Returns the natural logarithm of X.
mysql> SELECT LN(2);

-> 0.693147

mysql> SELECT LN(-2);

-> NULL

This function was added in MySQL 4.0.3. It is synonymous with LOG(X) in MySQL.
n LOG(X)

LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X.
mysql> SELECT LOG(2);

-> 0.693147

mysql> SELECT LOG(-2);

-> NULL

If called with two parameters, this function returns the logarithm of X for an arbitrary base B.
mysql> SELECT LOG(2,65536);

-> 16.000000

mysql> SELECT LOG(1,100);

-> NULL

The arbitrary base option was added in MySQL 4.0.3. LOG(B,X) is equivalent to
LOG(X)/LOG(B).

06 6337 ch05 6/24/04 12:42 PM Page 165

TEAM LinG

166 CHAPTER 5 Functions and Operators

n LOG2(X)

Returns the base-2 logarithm of X.
mysql> SELECT LOG2(65536);

-> 16.000000

mysql> SELECT LOG2(-100);

-> NULL

LOG2() is useful for finding out how many bits a number would require for storage.
This function was added in MySQL 4.0.3. In earlier versions, you can use
LOG(X)/LOG(2) instead.

n LOG10(X)

Returns the base-10 logarithm of X.
mysql> SELECT LOG10(2);

-> 0.301030

mysql> SELECT LOG10(100);

-> 2.000000

mysql> SELECT LOG10(-100);

-> NULL

n MOD(N,M)

N % M

N MOD M

Modulo (like the % operator in C). Returns the remainder of N divided by M.
mysql> SELECT MOD(234, 10);

-> 4

mysql> SELECT 253 % 7;

-> 1

mysql> SELECT MOD(29,9);

-> 2

mysql> SELECT 29 MOD 9;

-> 2

This function is safe to use with BIGINT values. The N MOD M syntax works only as of
MySQL 4.1.

n PI()

Returns the value of π. The default number of decimals displayed is five, but MySQL
internally uses the full double-precision value for π.
mysql> SELECT PI();

-> 3.141593

mysql> SELECT PI()+0.000000000000000000;

-> 3.141592653589793116

06 6337 ch05 6/24/04 12:42 PM Page 166

TEAM LinG

1675.4 Numeric Functions

n POW(X,Y)

POWER(X,Y)

Returns the value of X raised to the power of Y.
mysql> SELECT POW(2,2);

-> 4.000000

mysql> SELECT POW(2,-2);

-> 0.250000

n RADIANS(X)

Returns the argument X, converted from degrees to radians.
mysql> SELECT RADIANS(90);

-> 1.570796

n RAND()

RAND(N)

Returns a random floating-point value in the range from 0 to 1.0. If an integer argu-
ment N is specified, it is used as the seed value (producing a repeatable sequence).
mysql> SELECT RAND();

-> 0.9233482386203

mysql> SELECT RAND(20);

-> 0.15888261251047

mysql> SELECT RAND(20);

-> 0.15888261251047

mysql> SELECT RAND();

-> 0.63553050033332

mysql> SELECT RAND();

-> 0.70100469486881

You can’t use a column with RAND() values in an ORDER BY clause, because ORDER BY
would evaluate the column multiple times. As of MySQL 3.23, you can retrieve rows in
random order like this:
mysql> SELECT * FROM tbl_name ORDER BY RAND();

ORDER BY RAND() combined with LIMIT is useful for selecting a random sample of a set
of rows:
mysql> SELECT * FROM table1, table2 WHERE a=b AND c<d

-> ORDER BY RAND() LIMIT 1000;

Note that RAND() in a WHERE clause is re-evaluated every time the WHERE is executed.

RAND() is not meant to be a perfect random generator, but instead a fast way to generate
ad hoc random numbers that will be portable between platforms for the same MySQL
version.

06 6337 ch05 6/24/04 12:42 PM Page 167

TEAM LinG

168 CHAPTER 5 Functions and Operators

n ROUND(X)

ROUND(X,D)

Returns the argument X, rounded to the nearest integer. With two arguments, returns X
rounded to D decimals. If D is negative, the integer part of the number is zeroed out.
mysql> SELECT ROUND(-1.23);

-> -1

mysql> SELECT ROUND(-1.58);

-> -2

mysql> SELECT ROUND(1.58);

-> 2

mysql> SELECT ROUND(1.298, 1);

-> 1.3

mysql> SELECT ROUND(1.298, 0);

-> 1

mysql> SELECT ROUND(23.298, -1);

-> 20

Note that the behavior of ROUND() when the argument is halfway between two integers
depends on the C library implementation. Different implementations round to the
nearest even number, always up, always down, or always toward zero. If you need one
kind of rounding, you should use a well-defined function such as TRUNCATE() or FLOOR()
instead.

n SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative,
zero, or positive.
mysql> SELECT SIGN(-32);

-> -1

mysql> SELECT SIGN(0);

-> 0

mysql> SELECT SIGN(234);

-> 1

n SIN(X)

Returns the sine of X, where X is given in radians.
mysql> SELECT SIN(PI());

-> 0.000000

n SQRT(X)

Returns the non-negative square root of X.
mysql> SELECT SQRT(4);

-> 2.000000

mysql> SELECT SQRT(20);

-> 4.472136

06 6337 ch05 6/24/04 12:42 PM Page 168

TEAM LinG

1695.5 Date and Time Functions

n TAN(X)

Returns the tangent of X, where X is given in radians.
mysql> SELECT TAN(PI()+1);

-> 1.557408

n TRUNCATE(X,D)

Returns the number X, truncated to D decimals. If D is 0, the result will have no decimal
point or fractional part. If D is negative, the integer part of the number is zeroed out.
mysql> SELECT TRUNCATE(1.223,1);

-> 1.2

mysql> SELECT TRUNCATE(1.999,1);

-> 1.9

mysql> SELECT TRUNCATE(1.999,0);

-> 1

mysql> SELECT TRUNCATE(-1.999,1);

-> -1.9

mysql> SELECT TRUNCATE(122,-2);

-> 100

Starting from MySQL 3.23.51, all numbers are rounded toward zero.

Note that decimal numbers are normally not stored as exact numbers in computers, but
as double-precision values, so you may be surprised by the following result:
mysql> SELECT TRUNCATE(10.28*100,0);

-> 1027

This happens because 10.28 is actually stored as something like 10.2799999999999999.

5.5 Date and Time Functions
This section describes the functions that can be used to manipulate temporal values. See
Section 4.3, “Date and Time Types,” for a description of the range of values each date and
time type has and the valid formats in which values may be specified.

Here is an example that uses date functions. The following query selects all records with a
date_col value from within the last 30 days:

mysql> SELECT something FROM tbl_name

-> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

Note that the query also will select records with dates that lie in the future.

Functions that expect date values usually will accept datetime values and ignore the time
part. Functions that expect time values usually will accept datetime values and ignore the
date part.

06 6337 ch05 6/24/04 12:42 PM Page 169

TEAM LinG

170 CHAPTER 5 Functions and Operators

Functions that return the current date or time each are evaluated only once per query at the
start of query execution. This means that multiple references to a function such as NOW()
within a single query will always produce the same result. This principle also applies to
CURDATE(), CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to any of their
synonyms.

The return value ranges in the following function descriptions apply for complete dates. If a
date is a “zero” value or an incomplete date such as ‘2001-11-00’, functions that extract a
part of a date may return 0. For example, DAYOFMONTH(‘2001-11-00’) returns 0.

n ADDDATE(date,INTERVAL expr type)

ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym
for DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For infor-
mation on the INTERVAL argument, see the discussion for DATE_ADD().
mysql> SELECT DATE_ADD(‘1998-01-02’, INTERVAL 31 DAY);

-> ‘1998-02-02’

mysql> SELECT ADDDATE(‘1998-01-02’, INTERVAL 31 DAY);

-> ‘1998-02-02’

As of MySQL 4.1.1, the second syntax is allowed, where expr is a date or datetime
expression and days is the number of days to be added to expr.
mysql> SELECT ADDDATE(‘1998-01-02’, 31);

-> ‘1998-02-02’

n ADDTIME(expr,expr2)

ADDTIME() adds expr2 to expr and returns the result. expr is a date or datetime expres-
sion, and expr2 is a time expression.
mysql> SELECT ADDTIME(‘1997-12-31 23:59:59.999999’,

-> ‘1 1:1:1.000002’);

-> ‘1998-01-02 01:01:01.000001’

mysql> SELECT ADDTIME(‘01:00:00.999999’, ‘02:00:00.999998’);

-> ‘03:00:01.999997’

ADDTIME() was added in MySQL 4.1.1.
n CURDATE()

Returns the current date as a value in ‘YYYY-MM-DD’ or YYYYMMDD format, depending on
whether the function is used in a string or numeric context.
mysql> SELECT CURDATE();

-> ‘1997-12-15’

mysql> SELECT CURDATE() + 0;

-> 19971215

06 6337 ch05 6/24/04 12:42 PM Page 170

TEAM LinG

1715.5 Date and Time Functions

n CURRENT_DATE, CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().
n CURTIME()

Returns the current time as a value in ‘HH:MM:SS’ or HHMMSS format, depending on
whether the function is used in a string or numeric context.
mysql> SELECT CURTIME();

-> ‘23:50:26’

mysql> SELECT CURTIME() + 0;

-> 235026

n CURRENT_TIME, CURRENT_TIME()

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().
n CURRENT_TIMESTAMP, CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().
n DATE(expr)

Extracts the date part of the date or datetime expression expr.
mysql> SELECT DATE(‘2003-12-31 01:02:03’);

-> ‘2003-12-31’

DATE() is available as of MySQL 4.1.1.
n DATEDIFF(expr,expr2)

DATEDIFF() returns the number of days between the start date expr and the end date
expr2. expr and expr2 are date or date-and-time expressions. Only the date parts of the
values are used in the calculation.
mysql> SELECT DATEDIFF(‘1997-12-31 23:59:59’,’1997-12-30’);

-> 1

mysql> SELECT DATEDIFF(‘1997-11-30 23:59:59’,’1997-12-31’);

-> -31

DATEDIFF() was added in MySQL 4.1.1.
n DATE_ADD(date,INTERVAL expr type)

DATE_SUB(date,INTERVAL expr type)

These functions perform date arithmetic. date is a DATETIME or DATE value specifying the
starting date. expr is an expression specifying the interval value to be added or subtract-
ed from the starting date. expr is a string; it may start with a ‘-’ for negative intervals.
type is a keyword indicating how the expression should be interpreted.

The INTERVAL keyword and the type specifier are not case sensitive.

06 6337 ch05 6/24/04 12:42 PM Page 171

TEAM LinG

172 CHAPTER 5 Functions and Operators

The following table shows how the type and expr arguments are related:

type Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND ‘SECONDS.MICROSECONDS’

MINUTE_MICROSECOND ‘MINUTES.MICROSECONDS’

MINUTE_SECOND ‘MINUTES:SECONDS’

HOUR_MICROSECOND ‘HOURS.MICROSECONDS’

HOUR_SECOND ‘HOURS:MINUTES:SECONDS’

HOUR_MINUTE ‘HOURS:MINUTES’

DAY_MICROSECOND ‘DAYS.MICROSECONDS’

DAY_SECOND ‘DAYS HOURS:MINUTES:SECONDS’

DAY_MINUTE ‘DAYS HOURS:MINUTES’

DAY_HOUR ‘DAYS HOURS’

YEAR_MONTH ‘YEARS-MONTHS’

The type values DAY_MICROSECOND, HOUR_MICROSECOND, MINUTE_MICROSECOND,
SECOND_MICROSECOND, and MICROSECOND are allowed as of MySQL 4.1.1. The values
QUARTER and WEEK are allowed as of MySQL 5.0.0.

MySQL allows any punctuation delimiter in the expr format. Those shown in the table
are the suggested delimiters. If the date argument is a DATE value and your calculations
involve only YEAR, MONTH, and DAY parts (that is, no time parts), the result is a DATE value.
Otherwise, the result is a DATETIME value.

As of MySQL 3.23, INTERVAL expr type is allowed on either side of the + operator if the
expression on the other side is a date or datetime value. For the - operator, INTERVAL
expr type is allowed only on the right side, because it makes no sense to subtract a date
or datetime value from an interval. (See examples below.)
mysql> SELECT ‘1997-12-31 23:59:59’ + INTERVAL 1 SECOND;

-> ‘1998-01-01 00:00:00’

mysql> SELECT INTERVAL 1 DAY + ‘1997-12-31’;

-> ‘1998-01-01’

mysql> SELECT ‘1998-01-01’ - INTERVAL 1 SECOND;

-> ‘1997-12-31 23:59:59’

06 6337 ch05 6/24/04 12:42 PM Page 172

TEAM LinG

1735.5 Date and Time Functions

mysql> SELECT DATE_ADD(‘1997-12-31 23:59:59’,

-> INTERVAL 1 SECOND);

-> ‘1998-01-01 00:00:00’

mysql> SELECT DATE_ADD(‘1997-12-31 23:59:59’,

-> INTERVAL 1 DAY);

-> ‘1998-01-01 23:59:59’

mysql> SELECT DATE_ADD(‘1997-12-31 23:59:59’,

-> INTERVAL ‘1:1’ MINUTE_SECOND);

-> ‘1998-01-01 00:01:00’

mysql> SELECT DATE_SUB(‘1998-01-01 00:00:00’,

-> INTERVAL ‘1 1:1:1’ DAY_SECOND);

-> ‘1997-12-30 22:58:59’

mysql> SELECT DATE_ADD(‘1998-01-01 00:00:00’,

-> INTERVAL ‘-1 10’ DAY_HOUR);

-> ‘1997-12-30 14:00:00’

mysql> SELECT DATE_SUB(‘1998-01-02’, INTERVAL 31 DAY);

-> ‘1997-12-02’

mysql> SELECT DATE_ADD(‘1992-12-31 23:59:59.000002’,

-> INTERVAL ‘1.999999’ SECOND_MICROSECOND);

-> ‘1993-01-01 00:00:01.000001’

If you specify an interval value that is too short (does not include all the interval parts
that would be expected from the type keyword), MySQL assumes that you have left out
the leftmost parts of the interval value. For example, if you specify a type of DAY_SECOND,
the value of expr is expected to have days, hours, minutes, and seconds parts. If you
specify a value like ‘1:10’, MySQL assumes that the days and hours parts are missing
and the value represents minutes and seconds. In other words, ‘1:10’ DAY_SECOND is
interpreted in such a way that it is equivalent to ‘1:10’ MINUTE_SECOND. This is analo-
gous to the way that MySQL interprets TIME values as representing elapsed time rather
than as time of day.

If you add to or subtract from a date value something that contains a time part, the
result is automatically converted to a datetime value:
mysql> SELECT DATE_ADD(‘1999-01-01’, INTERVAL 1 DAY);

-> ‘1999-01-02’

mysql> SELECT DATE_ADD(‘1999-01-01’, INTERVAL 1 HOUR);

-> ‘1999-01-01 01:00:00’

If you use really malformed dates, the result is NULL. If you add MONTH, YEAR_MONTH, or
YEAR and the resulting date has a day that is larger than the maximum day for the new
month, the day is adjusted to the maximum days in the new month:
mysql> SELECT DATE_ADD(‘1998-01-30’, INTERVAL 1 MONTH);

-> ‘1998-02-28’

06 6337 ch05 6/24/04 12:42 PM Page 173

TEAM LinG

174 CHAPTER 5 Functions and Operators

n DATE_FORMAT(date,format)

Formats the date value according to the format string. The following specifiers may be
used in the format string:

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

%b Abbreviated month name (Jan..Dec)

%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, ...)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the week

%u Week (00..53), where Monday is the first day of the week

%V Week (01..53), where Sunday is the first day of the week; used with %X

%v Week (01..53), where Monday is the first day of the week; used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric, four
digits; used with %V

%x Year for the week, where Monday is the first day of the week, numeric, four
digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric, two digits

%% A literal ‘%’.

06 6337 ch05 6/24/04 12:42 PM Page 174

TEAM LinG

1755.5 Date and Time Functions

All other characters are copied to the result without interpretation.

The %v, %V, %x, and %X format specifiers are available as of MySQL 3.23.8. %f is available
as of MySQL 4.1.1.

As of MySQL 3.23, the ‘%’ character is required before format specifier characters. In
earlier versions of MySQL, ‘%’ was optional.

The reason the ranges for the month and day specifiers begin with zero is that MySQL
allows incomplete dates such as ‘2004-00-00’ to be stored as of MySQL 3.23.
mysql> SELECT DATE_FORMAT(‘1997-10-04 22:23:00’, ‘%W %M %Y’);

-> ‘Saturday October 1997’

mysql> SELECT DATE_FORMAT(‘1997-10-04 22:23:00’, ‘%H:%i:%s’);

-> ‘22:23:00’

mysql> SELECT DATE_FORMAT(‘1997-10-04 22:23:00’,

‘%D %y %a %d %m %b %j’);

-> ‘4th 97 Sat 04 10 Oct 277’

mysql> SELECT DATE_FORMAT(‘1997-10-04 22:23:00’,

‘%H %k %I %r %T %S %w’);

-> ‘22 22 10 10:23:00 PM 22:23:00 00 6’

mysql> SELECT DATE_FORMAT(‘1999-01-01’, ‘%X %V’);

-> ‘1998 52’

n DAY(date)

DAY() is a synonym for DAYOFMONTH(). It is available as of MySQL 4.1.1.
n DAYNAME(date)

Returns the name of the weekday for date.
mysql> SELECT DAYNAME(‘1998-02-05’);

-> ‘Thursday’

n DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31.
mysql> SELECT DAYOFMONTH(‘1998-02-03’);

-> 3

n DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, ..., 7 = Saturday). These
index values correspond to the ODBC standard.
mysql> SELECT DAYOFWEEK(‘1998-02-03’);

-> 3

n DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.
mysql> SELECT DAYOFYEAR(‘1998-02-03’);

-> 34

06 6337 ch05 6/24/04 12:42 PM Page 175

TEAM LinG

176 CHAPTER 5 Functions and Operators

n EXTRACT(type FROM date)

The EXTRACT() function uses the same kinds of interval type specifiers as DATE_ADD() or
DATE_SUB(), but extracts parts from the date rather than performing date arithmetic. See
the description of DATE_ADD() for information about type values.
mysql> SELECT EXTRACT(YEAR FROM ‘1999-07-02’);

-> 1999

mysql> SELECT EXTRACT(YEAR_MONTH FROM ‘1999-07-02 01:02:03’);

-> 199907

mysql> SELECT EXTRACT(DAY_MINUTE FROM ‘1999-07-02 01:02:03’);

-> 20102

mysql> SELECT EXTRACT(MICROSECOND

-> FROM ‘2003-01-02 10:30:00.00123’);

-> 123

EXTRACT() was added in MySQL 3.23.0.
n FROM_DAYS(N)

Given a daynumber N, returns a DATE value.
mysql> SELECT FROM_DAYS(729669);

-> ‘1997-10-07’

FROM_DAYS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582), because it does not take into account the days that were lost
when the calendar was changed.

n FROM_UNIXTIME(unix_timestamp)

FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in ‘YYYY-MM-DD
HH:MM:SS’ or YYYYMMDDHHMMSS format, depending on whether the function is used in a
string or numeric context.
mysql> SELECT FROM_UNIXTIME(875996580);

-> ‘1997-10-04 22:23:00’

mysql> SELECT FROM_UNIXTIME(875996580) + 0;

-> 19971004222300

If format is given, the result is formatted according to the format string. format may
contain the same specifiers as those listed in the entry for the DATE_FORMAT() function.
mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),

-> ‘%Y %D %M %h:%i:%s %x’);

-> ‘2003 6th August 06:22:58 2003’

06 6337 ch05 6/24/04 12:42 PM Page 176

TEAM LinG

1775.5 Date and Time Functions

n GET_FORMAT(DATE|TIME|TIMESTAMP, ‘EUR’|’USA’|’JIS’|’ISO’|’INTERNAL’)

Returns a format string. This function is useful in combination with the DATE_FORMAT()
and the STR_TO_DATE() functions.

The three possible values for the first argument and the five possible values for the sec-
ond argument result in 15 possible format strings (for the specifiers used, see the table
in the DATE_FORMAT() function description).

Function Call Result

GET_FORMAT(DATE,’USA’) ‘%m.%d.%Y’

GET_FORMAT(DATE,’JIS’) ‘%Y-%m-%d’

GET_FORMAT(DATE,’ISO’) ‘%Y-%m-%d’

GET_FORMAT(DATE,’EUR’) ‘%d.%m.%Y’

GET_FORMAT(DATE,’INTERNAL’) ‘%Y%m%d’

GET_FORMAT(TIMESTAMP,’USA’) ‘%Y-%m-%d-%H.%i.%s’

GET_FORMAT(TIMESTAMP,’JIS’) ‘%Y-%m-%d %H:%i:%s’

GET_FORMAT(TIMESTAMP,’ISO’) ‘%Y-%m-%d %H:%i:%s’

GET_FORMAT(TIMESTAMP,’EUR’) ‘%Y-%m-%d-%H.%i.%s’

GET_FORMAT(TIMESTAMP,’INTERNAL’) ‘%Y%m%d%H%i%s’

GET_FORMAT(TIME,’USA’) ‘%h:%i:%s %p’

GET_FORMAT(TIME,’JIS’) ‘%H:%i:%s’

GET_FORMAT(TIME,’ISO’) ‘%H:%i:%s’

GET_FORMAT(TIME,’EUR’) ‘%H.%i.%S’

GET_FORMAT(TIME,’INTERNAL’) ‘%H%i%s’

ISO format is ISO 9075, not ISO 8601.
mysql> SELECT DATE_FORMAT(‘2003-10-03’,GET_FORMAT(DATE,’EUR’));

-> ‘03.10.2003’

mysql> SELECT STR_TO_DATE(‘10.31.2003’,GET_FORMAT(DATE,’USA’));

-> 2003-10-31

GET_FORMAT() is available as of MySQL 4.1.1. See Section 6.5.3.1, “SET Syntax.”
n HOUR(time)

Returns the hour for time. The range of the return value will be 0 to 23 for time-of-day
values.
mysql> SELECT HOUR(‘10:05:03’);

-> 10

However, the range of TIME values actually is much larger, so HOUR can return values
greater than 23.
mysql> SELECT HOUR(‘272:59:59’);

-> 272

06 6337 ch05 6/24/04 12:42 PM Page 177

TEAM LinG

178 CHAPTER 5 Functions and Operators

n LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of
the month. Returns NULL if the argument is invalid.
mysql> SELECT LAST_DAY(‘2003-02-05’);

-> ‘2003-02-28’

mysql> SELECT LAST_DAY(‘2004-02-05’);

-> ‘2004-02-29’

mysql> SELECT LAST_DAY(‘2004-01-01 01:01:01’);

-> ‘2004-01-31’

mysql> SELECT LAST_DAY(‘2003-03-32’);

-> NULL

LAST_DAY() is available as of MySQL 4.1.1.
n LOCALTIME, LOCALTIME()

LOCALTIME and LOCALTIME() are synonyms for NOW(). They were added in MySQL 4.0.6.
n LOCALTIMESTAMP, LOCALTIMESTAMP()

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW(). They were added in
MySQL 4.0.6.

n MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or
the result will be NULL.
mysql> SELECT MAKEDATE(2001,31), MAKEDATE(2001,32);

-> ‘2001-01-31’, ‘2001-02-01’

mysql> SELECT MAKEDATE(2001,365), MAKEDATE(2004,365);

-> ‘2001-12-31’, ‘2004-12-30’

mysql> SELECT MAKEDATE(2001,0);

-> NULL

MAKEDATE() is available as of MySQL 4.1.1.
n MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments.
mysql> SELECT MAKETIME(12,15,30);

-> ‘12:15:30’

MAKETIME() is available as of MySQL 4.1.1.

06 6337 ch05 6/24/04 12:42 PM Page 178

TEAM LinG

1795.5 Date and Time Functions

n MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the
range from 0 to 999999.
mysql> SELECT MICROSECOND(‘12:00:00.123456’);

-> 123456

mysql> SELECT MICROSECOND(‘1997-12-31 23:59:59.000010’);

-> 10

MICROSECOND() is available as of MySQL 4.1.1.
n MINUTE(time)

Returns the minute for time, in the range 0 to 59.
mysql> SELECT MINUTE(‘98-02-03 10:05:03’);

-> 5

n MONTH(date)

Returns the month for date, in the range 1 to 12.
mysql> SELECT MONTH(‘1998-02-03’);

-> 2

n MONTHNAME(date)

Returns the full name of the month for date.
mysql> SELECT MONTHNAME(‘1998-02-05’);

-> ‘February’

n NOW()

Returns the current date and time as a value in ‘YYYY-MM-DD HH:MM:SS’ or YYYYMMDDHH-
MMSS format, depending on whether the function is used in a string or numeric context.
mysql> SELECT NOW();

-> ‘1997-12-15 23:50:26’

mysql> SELECT NOW() + 0;

-> 19971215235026

n PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format
YYYYMM. Note that the period argument P is not a date value.
mysql> SELECT PERIOD_ADD(9801,2);

-> 199803

n PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the
format YYMM or YYYYMM. Note that the period arguments P1 and P2 are not date values.
mysql> SELECT PERIOD_DIFF(9802,199703);

-> 11

06 6337 ch05 6/24/04 12:42 PM Page 179

TEAM LinG

180 CHAPTER 5 Functions and Operators

n QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.
mysql> SELECT QUARTER(‘98-04-01’);

-> 2

n SECOND(time)

Returns the second for time, in the range 0 to 59.
mysql> SELECT SECOND(‘10:05:03’);

-> 3

n SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a value in
‘HH:MM:SS’ or HHMMSS format, depending on whether the function is used in a string or
numeric context.
mysql> SELECT SEC_TO_TIME(2378);

-> ‘00:39:38’

mysql> SELECT SEC_TO_TIME(2378) + 0;

-> 3938

n STR_TO_DATE(str,format)

This is the reverse function of the DATE_FORMAT() function. It takes a string str and a
format string format, and returns a DATETIME value.

The date, time, or datetime values contained in str should be given in the format indi-
cated by format. For the specifiers that can be used in format, see the table in the
DATE_FORMAT() function description. All other characters are just taken verbatim, thus
not being interpreted. If str contains an illegal date, time, or datetime value,
STR_TO_DATE() returns NULL.
mysql> SELECT STR_TO_DATE(‘03.10.2003 09.20’,

-> ‘%d.%m.%Y %H.%i’);

-> ‘2003-10-03 09:20:00’

mysql> SELECT STR_TO_DATE(‘10arp’, ‘%carp’);

-> ‘0000-10-00 00:00:00’

mysql> SELECT STR_TO_DATE(‘2003-15-10 00:00:00’,

-> ‘%Y-%m-%d %H:%i:%s’);

-> NULL

STR_TO_DATE() is available as of MySQL 4.1.1.

06 6337 ch05 6/24/04 12:42 PM Page 180

TEAM LinG

1815.5 Date and Time Functions

n SUBDATE(date,INTERVAL expr type)

SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym
for DATE_SUB(). For information on the INTERVAL argument, see the discussion for
DATE_ADD().
mysql> SELECT DATE_SUB(‘1998-01-02’, INTERVAL 31 DAY);

-> ‘1997-12-02’

mysql> SELECT SUBDATE(‘1998-01-02’, INTERVAL 31 DAY);

-> ‘1997-12-02’

As of MySQL 4.1.1, the second syntax is allowed, where expr is a date or datetime
expression and days is the number of days to be subtracted from expr.
mysql> SELECT SUBDATE(‘1998-01-02 12:00:00’, 31);

-> ‘1997-12-02 12:00:00’

n SUBTIME(expr,expr2)

SUBTIME() subtracts expr2 from expr and returns the result. expr is a date or datetime
expression, and expr2 is a time expression.
mysql> SELECT SUBTIME(‘1997-12-31 23:59:59.999999’,

-> ‘1 1:1:1.000002’);

-> ‘1997-12-30 22:58:58.999997’

mysql> SELECT SUBTIME(‘01:00:00.999999’, ‘02:00:00.999998’);

-> ‘-00:59:59.999999’

SUBTIME() was added in MySQL 4.1.1.
n SYSDATE()

SYSDATE() is a synonym for NOW().
n TIME(expr)

Extracts the time part of the time or datetime expression expr.
mysql> SELECT TIME(‘2003-12-31 01:02:03’);

-> ‘01:02:03’

mysql> SELECT TIME(‘2003-12-31 01:02:03.000123’);

-> ‘01:02:03.000123’

TIME() is available as of MySQL 4.1.1.

06 6337 ch05 6/24/04 12:42 PM Page 181

TEAM LinG

182 CHAPTER 5 Functions and Operators

n TIMEDIFF(expr,expr2)

TIMEDIFF() returns the time between the start time expr and the end time expr2. expr
and expr2 are time or date-and-time expressions, but both must be of the same type.
mysql> SELECT TIMEDIFF(‘2000:01:01 00:00:00’,

-> ‘2000:01:01 00:00:00.000001’);

-> ‘-00:00:00.000001’

mysql> SELECT TIMEDIFF(‘1997-12-31 23:59:59.000001’,

-> ‘1997-12-30 01:01:01.000002’);

-> ‘46:58:57.999999’

TIMEDIFF() was added in MySQL 4.1.1.
n TIMESTAMP(expr)

TIMESTAMP(expr,expr2)

With one argument, returns the date or datetime expression expr as a datetime value.
With two arguments, adds the time expression expr2 to the date or datetime expression
expr and returns a datetime value.
mysql> SELECT TIMESTAMP(‘2003-12-31’);

-> ‘2003-12-31 00:00:00’

mysql> SELECT TIMESTAMP(‘2003-12-31 12:00:00’,’12:00:00’);

-> ‘2004-01-01 00:00:00’

TIMESTAMP() is available as of MySQL 4.1.1.
n TIMESTAMPADD(interval,int_expr,datetime_expr)

Adds the integer expression int_expr to the date or datetime expression datetime_expr.
The unit for int_expr is given by the interval argument, which should be one of the
following values: FRAC_SECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

The interval value may be specified using one of keywords as shown, or with a prefix
of SQL_TSI_. For example, DAY or SQL_TSI_DAY both are legal.
mysql> SELECT TIMESTAMPADD(MINUTE,1,’2003-01-02’);

-> ‘2003-01-02 00:01:00’

mysql> SELECT TIMESTAMPADD(WEEK,1,’2003-01-02’);

-> ‘2003-01-09’

TIMESTAMPADD() is available as of MySQL 5.0.0.

06 6337 ch05 6/24/04 12:42 PM Page 182

TEAM LinG

1835.5 Date and Time Functions

n TIMESTAMPDIFF(interval,datetime_expr1,datetime_expr2)

Returns the integer difference between the date or datetime expressions datetime_expr1
and datetime_expr2. The unit for the result is given by the interval argument. The
legal values for interval are the same as those listed in the description of the
TIMESTAMPADD() function.
mysql> SELECT TIMESTAMPDIFF(MONTH,’2003-02-01’,’2003-05-01’);

-> 3

mysql> SELECT TIMESTAMPDIFF(YEAR,’2002-05-01’,’2001-01-01’);

-> -1

TIMESTAMPDIFF() is available as of MySQL 5.0.0.
n TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain only
those format specifiers that handle hours, minutes, and seconds. Other specifiers pro-
duce a NULL value or 0.

If the time value contains an hour part that is greater than 23, the %H and %k hour for-
mat specifiers produce a value larger than the usual range of 0..23. The other hour for-
mat specifiers produce the hour value modulo 12.
mysql> SELECT TIME_FORMAT(‘100:00:00’, ‘%H %k %h %I %l’);

-> ‘100 100 04 04 4’

n TIME_TO_SEC(time)

Returns the time argument, converted to seconds.
mysql> SELECT TIME_TO_SEC(‘22:23:00’);

-> 80580

mysql> SELECT TIME_TO_SEC(‘00:39:38’);

-> 2378

n TO_DAYS(date)

Given a date date, returns a daynumber (the number of days since year 0).
mysql> SELECT TO_DAYS(950501);

-> 728779

mysql> SELECT TO_DAYS(‘1997-10-07’);

-> 729669

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian
calendar (1582), because it does not take into account the days that were lost when the
calendar was changed.

06 6337 ch05 6/24/04 12:42 PM Page 183

TEAM LinG

184 CHAPTER 5 Functions and Operators

Remember that MySQL converts two-digit year values in dates to four-digit form using
the rules in Section 4.3, “Date and Time Types.” For example, ‘1997-10-07’ and ‘97-
10-07’ are seen as identical dates:
mysql> SELECT TO_DAYS(‘1997-10-07’), TO_DAYS(‘97-10-07’);

-> 729669, 729669

For other dates before 1582, results from this function are undefined.
n UNIX_TIMESTAMP()

UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since ‘1970-01-01
00:00:00’ GMT) as an unsigned integer. If UNIX_TIMESTAMP() is called with a date argu-
ment, it returns the value of the argument as seconds since ‘1970-01-01 00:00:00’
GMT. date may be a DATE string, a DATETIME string, a TIMESTAMP, or a number in the
format YYMMDD or YYYYMMDD in local time.
mysql> SELECT UNIX_TIMESTAMP();

-> 882226357

mysql> SELECT UNIX_TIMESTAMP(‘1997-10-04 22:23:00’);

-> 875996580

When UNIX_TIMESTAMP is used on a TIMESTAMP column, the function returns the internal
timestamp value directly, with no implicit “string-to-Unix-timestamp” conversion. If
you pass an out-of-range date to UNIX_TIMESTAMP(), it returns 0, but please note that
only basic range checking is performed (year from 1970 to 2037, month from 01 to 12,
day from 01 from 31).

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast the result to
signed integers. See Section 5.7, “Cast Functions.”

n UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in ‘YYYY-MM-DD’ or YYYYMMDD format, depend-
ing on whether the function is used in a string or numeric context.
mysql> SELECT UTC_DATE(), UTC_DATE() + 0;

-> ‘2003-08-14’, 20030814

UTC_DATE() is available as of MySQL 4.1.1.
n UTC_TIME, UTC_TIME()

Returns the current UTC time as a value in ‘HH:MM:SS’ or HHMMSS format, depending on
whether the function is used in a string or numeric context.
mysql> SELECT UTC_TIME(), UTC_TIME() + 0;

-> ‘18:07:53’, 180753

UTC_TIME() is available as of MySQL 4.1.1.

06 6337 ch05 6/24/04 12:42 PM Page 184

TEAM LinG

1855.5 Date and Time Functions

n UTC_TIMESTAMP, UTC_TIMESTAMP()

Returns the current UTC date and time as a value in ‘YYYY-MM-DD HH:MM:SS’ or
YYYYMMDDHHMMSS format, depending on whether the function is used in a string or
numeric context.
mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;

-> ‘2003-08-14 18:08:04’, 20030814180804

UTC_TIMESTAMP() is available as of MySQL 4.1.1.
n WEEK(date[,mode])

The function returns the week number for date. The two-argument form of WEEK() allows
you to specify whether the week starts on Sunday or Monday and whether the return value
should be in the range from 0 to 53 or from 1 to 52. If the mode argument is omitted, the
value of the default_week_format system variable is used (or 0 before MySQL 4.0.14).

The following table describes how the mode argument works:

Value Meaning

0 Week starts on Sunday; return value range is 0 to 53; week 1 is the first week that
starts in this year

1 Week starts on Monday; return value range is 0 to 53; week 1 is the first week that
has more than three days in this year

2 Week starts on Sunday; return value range is 1 to 53; week 1 is the first week that
starts in this year

3 Week starts on Monday; return value range is 1 to 53; week 1 is the first week that
has more than three days in this year

4 Week starts on Sunday; return value range is 0 to 53; week 1 is the first week that
has more than three days in this year

5 Week starts on Monday; return value range is 0 to 53; week 1 is the first week that
starts in this year

6 Week starts on Sunday; return value range is 1 to 53; week 1 is the first week that
has more than three days in this year

7 Week starts on Monday; return value range is 1 to 53; week 1 is the first week that
starts in this year

The mode value of 3 can be used as of MySQL 4.0.5. Values of 4 and above can be used
as of MySQL 4.0.17.
mysql> SELECT WEEK(‘1998-02-20’);

-> 7

mysql> SELECT WEEK(‘1998-02-20’,0);

-> 7

mysql> SELECT WEEK(‘1998-02-20’,1);

-> 8

mysql> SELECT WEEK(‘1998-12-31’,1);

-> 53

06 6337 ch05 6/24/04 12:42 PM Page 185

TEAM LinG

186 CHAPTER 5 Functions and Operators

Note: In MySQL 4.0, WEEK(date,0) was changed to match the calendar in the USA.
Before that, WEEK() was calculated incorrectly for dates in the USA. (In effect,
WEEK(date) and WEEK(date,0) were incorrect for all cases.)

Note that if a date falls in the last week of the previous year, MySQL returns 0 if you
don’t use 2, 3, 6, or 7 as the optional mode argument:
mysql> SELECT YEAR(‘2000-01-01’), WEEK(‘2000-01-01’,0);

-> 2000, 0

One might argue that MySQL should return 52 for the WEEK() function, because the
given date actually occurs in the 52nd week of 1999. We decided to return 0 instead
because we want the function to return “the week number in the given year.” This
makes use of the WEEK() function reliable when combined with other functions that
extract a date part from a date.

If you would prefer the result to be evaluated with respect to the year that contains the
first day of the week for the given date, you should use 2, 3, 6, or 7 as the optional mode
argument.
mysql> SELECT WEEK(‘2000-01-01’,2);

-> 52

Alternatively, use the YEARWEEK() function:
mysql> SELECT YEARWEEK(‘2000-01-01’);

-> 199952

mysql> SELECT MID(YEARWEEK(‘2000-01-01’),5,2);

-> ‘52’

n WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, ... 6 = Sunday).
mysql> SELECT WEEKDAY(‘1998-02-03 22:23:00’);

-> 1

mysql> SELECT WEEKDAY(‘1997-11-05’);

-> 2

n WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53.
mysql> SELECT WEEKOFYEAR(‘1998-02-20’);

-> 8

WEEKOFYEAR() is available as of MySQL 4.1.1.

06 6337 ch05 6/24/04 12:42 PM Page 186

TEAM LinG

1875.6 Full-Text Search Functions

n YEAR(date)

Returns the year for date, in the range 1000 to 9999.
mysql> SELECT YEAR(‘98-02-03’);

-> 1998

n YEARWEEK(date)

YEARWEEK(date,start)

Returns year and week for a date. The start argument works exactly like the start
argument to WEEK(). The year in the result may be different from the year in the date
argument for the first and the last week of the year.
mysql> SELECT YEARWEEK(‘1987-01-01’);

-> 198653

Note that the week number is different from what the WEEK() function would return (0) for
optional arguments 0 or 1, as WEEK() then returns the week in the context of the given year.

YEARWEEK() was added in MySQL 3.23.8.

5.6 Full-Text Search Functions
n MATCH (col1,col2,...) AGAINST (expr [IN BOOLEAN MODE | WITH QUERY EXPANSION])

As of MySQL 3.23.23, MySQL has support for full-text indexing and searching. A full-
text index in MySQL is an index of type FULLTEXT. FULLTEXT indexes are used with
MyISAM tables only and can be created from CHAR, VARCHAR, or TEXT columns at CREATE
TABLE time or added later with ALTER TABLE or CREATE INDEX. For large datasets, it will
be much faster to load your data into a table that has no FULLTEXT index, then create the
index with ALTER TABLE (or CREATE INDEX). Loading data into a table that already has a
FULLTEXT index could be significantly slower.

Constraints on full-text searching are listed in Section 5.6.3, “Full-Text Restrictions.”

Full-text searching is performed with the MATCH() function.

mysql> CREATE TABLE articles (

-> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,

-> title VARCHAR(200),

-> body TEXT,

-> FULLTEXT (title,body)

->);

Query OK, 0 rows affected (0.00 sec)

06 6337 ch05 6/24/04 12:42 PM Page 187

TEAM LinG

188 CHAPTER 5 Functions and Operators

mysql> INSERT INTO articles (title,body) VALUES

-> (‘MySQL Tutorial’,’DBMS stands for DataBase ...’),

-> (‘How To Use MySQL Well’,’After you went through a ...’),

-> (‘Optimizing MySQL’,’In this tutorial we will show ...’),

-> (‘1001 MySQL Tricks’,’1. Never run mysqld as root. 2. ...’),

-> (‘MySQL vs. YourSQL’,’In the following database comparison ...’),

-> (‘MySQL Security’,’When configured properly, MySQL ...’);

Query OK, 6 rows affected (0.00 sec)

Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM articles

-> WHERE MATCH (title,body) AGAINST (‘database’);

+----+-------------------+--+

| id | title | body |

+----+-------------------+--+

| 5 | MySQL vs. YourSQL | In the following database comparison ... |

| 1 | MySQL Tutorial | DBMS stands for DataBase ... |

+----+-------------------+--+

2 rows in set (0.00 sec)

The MATCH() function performs a natural language search for a string against a text collec-
tion. A collection is a set of one or more columns included in a FULLTEXT index. The search
string is given as the argument to AGAINST(). The search is performed in case-insensitive
fashion. For every row in the table, MATCH() returns a relevance value, that is, a similarity
measure between the search string and the text in that row in the columns named in the
MATCH() list.

When MATCH() is used in a WHERE clause, as in the preceding example, the rows returned are
automatically sorted with the highest relevance first. Relevance values are non-negative
floating-point numbers. Zero relevance means no similarity. Relevance is computed based
on the number of words in the row, the number of unique words in that row, the total num-
ber of words in the collection, and the number of documents (rows) that contain a particular
word.

For natural-language full-text searches, it is a requirement that the columns named in the
MATCH() function be the same columns included in some FULLTEXT index in your table. For
the preceding query, note that the columns named in the MATCH() function (title and body)
are the same as those named in the definition of the article table’s FULLTEXT index. If you
wanted to search the title or body separately, you would need to create FULLTEXT indexes for
each column.

It is also possible to perform a boolean search or a search with query expansion. These
search types are described in Section 5.6.1, “Boolean Full-Text Searches,” and Section 5.6.2,
“Full-Text Searches with Query Expansion.”

The preceding example is a basic illustration showing how to use the MATCH() function
where rows are returned in order of decreasing relevance. The next example shows how to

06 6337 ch05 6/24/04 12:42 PM Page 188

TEAM LinG

1895.6 Full-Text Search Functions

retrieve the relevance values explicitly. Returned rows are not ordered because the SELECT
statement includes neither WHERE nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body) AGAINST (‘Tutorial’)

-> FROM articles;

+----+---+

| id | MATCH (title,body) AGAINST (‘Tutorial’) |

+----+---+

| 1 | 0.65545833110809 |

| 2 | 0 |

| 3 | 0.66266459226608 |

| 4 | 0 |

| 5 | 0 |

| 6 | 0 |

+----+---+

6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also
sorts the rows in order of decreasing relevance. To achieve this result, you should specify
MATCH() twice: once in the SELECT list and once in the WHERE clause. This causes no additional
overhead, because the MySQL optimizer notices that the two MATCH() calls are identical and
invokes the full-text search code only once.

mysql> SELECT id, body, MATCH (title,body) AGAINST

-> (‘Security implications of running MySQL as root’) AS score

-> FROM articles WHERE MATCH (title,body) AGAINST

-> (‘Security implications of running MySQL as root’);

+----+-------------------------------------+-----------------+

| id | body | score |

+----+-------------------------------------+-----------------+

| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |

| 6 | When configured properly, MySQL ... | 1.3114095926285 |

+----+-------------------------------------+-----------------+

2 rows in set (0.00 sec)

MySQL uses a very simple parser to split text into words. A “word” is any sequence of char-
acters consisting of letters, digits, ‘’’, or ‘_’. Some words are ignored in full-text searches:

n Any word that is too short is ignored. The default minimum length of words that will
be found by full-text searches is four characters.

n Words in the stopword list are ignored. A stopword is a word such as “the” or “some”
that is so common that it is considered to have zero semantic value. There is a built-in
stopword list.

The default minimum word length and stopword list can be changed as described in Section
5.6.4, “Fine-Tuning MySQL Full-Text Search.”

06 6337 ch05 6/24/04 12:42 PM Page 189

TEAM LinG

190 CHAPTER 5 Functions and Operators

Every correct word in the collection and in the query is weighted according to its signifi-
cance in the collection or query. This way, a word that is present in many documents has a
lower weight (and may even have a zero weight), because it has lower semantic value in this
particular collection. Conversely, if the word is rare, it receives a higher weight. The weights
of the words are then combined to compute the relevance of the row.

Such a technique works best with large collections (in fact, it was carefully tuned this way). For
very small tables, word distribution does not adequately reflect their semantic value, and this
model may sometimes produce bizarre results. For example, although the word “MySQL” is
present in every row of the articles table, a search for the word produces no results:

mysql> SELECT * FROM articles

-> WHERE MATCH (title,body) AGAINST (‘MySQL’);

Empty set (0.00 sec)

The search result is empty because the word “MySQL” is present in at least 50% of the
rows. As such, it is effectively treated as a stopword. For large datasets, this is the most
desirable behavior—a natural language query should not return every second row from a
1GB table. For small datasets, it may be less desirable.

A word that matches half of the rows in a table is less likely to locate relevant documents. In
fact, it will most likely find plenty of irrelevant documents. We all know this happens far too
often when we are trying to find something on the Internet with a search engine. It is with
this reasoning that rows containing the word are assigned a low semantic value for the partic-
ular dataset in which they occur. A given word may exceed the 50% threshold in one dataset
but not another.

The 50% threshold has a significant implication when you first try full-text searching to see
how it works: If you create a table and insert only one or two rows of text into it, every word
in the text occurs in at least 50% of the rows. As a result, no search returns any results. Be
sure to insert at least three rows, and preferably many more.

5.6.1 Boolean Full-Text Searches
As of Version 4.0.1, MySQL can also perform boolean full-text searches using the IN
BOOLEAN MODE modifier.

mysql> SELECT * FROM articles WHERE MATCH (title,body)

-> AGAINST (‘+MySQL -YourSQL’ IN BOOLEAN MODE);

+----+-----------------------+-------------------------------------+

| id | title | body |

+----+-----------------------+-------------------------------------+

| 1 | MySQL Tutorial | DBMS stands for DataBase ... |

| 2 | How To Use MySQL Well | After you went through a ... |

| 3 | Optimizing MySQL | In this tutorial we will show ... |

| 4 | 1001 MySQL Tricks | 1. Never run mysqld as root. 2. ... |

| 6 | MySQL Security | When configured properly, MySQL ... |

+----+-----------------------+-------------------------------------+

06 6337 ch05 6/24/04 12:42 PM Page 190

TEAM LinG

1915.6 Full-Text Search Functions

This query retrieves all the rows that contain the word “MySQL” but that do not contain
the word “YourSQL”.

Boolean full-text searches have these characteristics:

n They do not use the 50% threshold.
n They do not automatically sort rows in order of decreasing relevance. You can see this

from the preceding query result: The row with the highest relevance is the one that
contains “MySQL” twice, but it is listed last, not first.

n They can work even without a FULLTEXT index, although this would be slow.

The boolean full-text search capability supports the following operators:

n +

A leading plus sign indicates that this word must be present in every row returned.
n -

A leading minus sign indicates that this word must not be present in any row returned.
n (no operator)

By default (when neither + nor - is specified) the word is optional, but the rows that
contain it will be rated higher. This mimics the behavior of MATCH() ... AGAINST()
without the IN BOOLEAN MODE modifier.

n > <

These two operators are used to change a word’s contribution to the relevance value
that is assigned to a row. The > operator increases the contribution and the < operator
decreases it. See the example below.

n ()

Parentheses are used to group words into subexpressions. Parenthesized groups can be
nested.

n ~

A leading tilde acts as a negation operator, causing the word’s contribution to the row
relevance to be negative. It’s useful for marking noise words. A row that contains such a
word will be rated lower than others, but will not be excluded altogether, as it would be
with the - operator.

n *

An asterisk is the truncation operator. Unlike the other operators, it should be appended
to the word.

n “

A phrase that is enclosed within double quote (‘“’) characters matches only rows that
contain the phrase literally, as it was typed.

06 6337 ch05 6/24/04 12:42 PM Page 191

TEAM LinG

192 CHAPTER 5 Functions and Operators

The following examples demonstrate some search strings that use boolean full-text
operators:

n ‘apple banana’

Find rows that contain at least one of the two words.
n ‘+apple +juice’

Find rows that contain both words.
n ‘+apple macintosh’

Find rows that contain the word “apple”, but rank rows higher if they also contain
“macintosh”.

n ‘+apple -macintosh’

Find rows that contain the word “apple” but not “macintosh”.
n ‘+apple +(>turnover <strudel)’

Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in
any order), but rank “apple turnover” higher than “apple strudel”.

n ‘apple*’

Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.
n ‘“some words”’

Find rows that contain the exact phrase “some words” (for example, rows that contain
“some words of wisdom” but not “some noise words”). Note that the ‘“‘ characters that
surround the phrase are operator characters that delimit the phrase. They are not the
quotes that surround the search string itself.

5.6.2 Full-Text Searches with Query Expansion
As of MySQL 4.1.1, full-text search supports query expansion (in particular, its variant
“blind query expansion”). This is generally useful when a search phrase is too short, which
often means that the user is relying on implied knowledge that the full-text search engine
usually lacks. For example, a user searching for “database” may really mean that “MySQL”,
“Oracle”, “DB2”, and “RDBMS” all are phrases that should match “databases” and should
be returned, too. This is implied knowledge.

Blind query expansion (also known as automatic relevance feedback) is enabled by adding
WITH QUERY EXPANSION following the search phrase. It works by performing the search
twice, where the search phrase for the second search is the original search phrase concate-
nated with the few top found documents from the first search. Thus, if one of these docu-
ments contains the word “databases” and the word “MySQL”, the second search will find
the documents that contain the word “MySQL” even if they do not contain the word
“database”. The following example shows this difference:

06 6337 ch05 6/24/04 12:42 PM Page 192

TEAM LinG

1935.6 Full-Text Search Functions

mysql> SELECT * FROM articles

-> WHERE MATCH (title,body) AGAINST (‘database’);

+----+-------------------+--+

| id | title | body |

+----+-------------------+--+

| 5 | MySQL vs. YourSQL | In the following database comparison ... |

| 1 | MySQL Tutorial | DBMS stands for DataBase ... |

+----+-------------------+--+

2 rows in set (0.00 sec)

mysql> SELECT * FROM articles

-> WHERE MATCH (title,body)

-> AGAINST (‘database’ WITH QUERY EXPANSION);

+----+-------------------+--+

| id | title | body |

+----+-------------------+--+

| 1 | MySQL Tutorial | DBMS stands for DataBase ... |

| 5 | MySQL vs. YourSQL | In the following database comparison ... |

| 3 | Optimizing MySQL | In this tutorial we will show ... |

+----+-------------------+--+

3 rows in set (0.00 sec)

Another example could be searching for books by Georges Simenon about Maigret, when a
user is not sure how to spell “Maigret”. A search for “Megre and the reluctant witnesses”
will find only “Maigret and the Reluctant Witnesses” without query expansion. A search
with query expansion will find all books with the word “Maigret” on the second pass.

Note: Because blind query expansion tends to increase noise significantly by returning non-
relevant documents, it’s only meaningful to use when a search phrase is rather short.

5.6.3 Full-Text Restrictions
n Full-text searches are supported for MyISAM tables only.
n As of MySQL 4.1.1, full-text searches can be used with most multi-byte character sets.

The exception is that for Unicode, the utf8 character set can be used, but not the ucs2
character set.

n As of MySQL 4.1, the use of multiple character sets within a single table is supported.
However, all columns in a FULLTEXT index must have the same character set and collation.

n The MATCH() column list must exactly match the column list in some FULLTEXT index
definition for the table, unless this MATCH() is IN BOOLEAN MODE.

n The argument to AGAINST() must be a constant string.

06 6337 ch05 6/24/04 12:42 PM Page 193

TEAM LinG

194 CHAPTER 5 Functions and Operators

5.6.4 Fine-Tuning MySQL Full-Text Search
The MySQL full-text search capability has few user-tunable parameters yet, although
adding more is very high on the TODO. You can exert more control over full-text searching
behavior if you have a MySQL source distribution because some changes require source
code modifications.

Note that full-text search was carefully tuned for the best searching effectiveness. Modifying
the default behavior will, in most cases, make the search results worse. Do not alter the
MySQL sources unless you know what you are doing!

Most full-text variables described in the following items must be set at server startup time.
For these variables, a server restart is required to change them and you cannot modify them
dynamically while the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables.
Instructions for doing this are given at the end of this section.

n The minimum and maximum length of words to be indexed is defined by the
ft_min_word_len and ft_max_word_len system variables (available as of MySQL 4.0.0).
The default minimum value is four characters. The default maximum depends on your
version of MySQL. If you change either value, you must rebuild your FULLTEXT indexes.
For example, if you want three-character words to be searchable, you can set the
ft_min_word_len variable by putting the following lines in an option file:
[mysqld]

ft_min_word_len=3

Then restart the server and rebuild your FULLTEXT indexes. Also note particularly the
remarks regarding myisamchk in the instructions following this list.

n To override the default stopword list, set the ft_stopword_file system variable (avail-
able as of MySQL 4.0.10). The variable value should be the pathname of the file
containing the stopword list, or the empty string to disable stopword filtering. After
changing the value, rebuild your FULLTEXT indexes.

n The 50% threshold for natural language searches is determined by the particular
weighting scheme chosen. To disable it, look for the following line in myisam/ftdefs.h:
#define GWS_IN_USE GWS_PROB

Change the line to this:
#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case. Note:
By doing this you severely decrease MySQL’s capability to provide adequate relevance
values for the MATCH() function. If you really need to search for such common words, it
would be better to search using IN BOOLEAN MODE instead, which does not observe the
50% threshold.

06 6337 ch05 6/24/04 12:42 PM Page 194

TEAM LinG

1955.6 Full-Text Search Functions

n To change the operators used for boolean full-text searches, set the ft_boolean_syntax system
variable (available as of MySQL 4.0.1). The variable also can be changed while the server is
running, but you must have the SUPER privilege to do so. No index rebuilding is necessary.

If you modify full-text variables that affect indexing (ft_min_word_len, ft_max_word_len, or
ft_stopword_file), you must rebuild your FULLTEXT indexes after making the changes and
restarting the server. To rebuild the indexes in this case, it’s sufficient to do a QUICK repair
operation:

mysql> REPAIR TABLE tbl_name QUICK;

With regard specifically to using the IN BOOLEAN MODE capability, if you upgrade from MySQL
3.23 to 4.0 or later, it’s necessary to replace the index header as well. To do this, do a USE_FRM
repair operation:

mysql> REPAIR TABLE tbl_name USE_FRM;

This is necessary because boolean full-text searches require a flag in the index header that was
not present in MySQL 3.23, and that is not added if you do only a QUICK repair. If you
attempt a boolean full-text search without rebuilding the indexes this way, the search will
return incorrect results.

Note that if you use myisamchk to perform an operation that modifies table indexes (such as
repair or analyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values
for minimum and maximum word length and the stopword file unless you specify otherwise.
This can result in queries failing.

The problem occurs because these parameters are known only by the server. They are not
stored in MyISAM index files. To avoid the problem if you have modified the minimum or maxi-
mum word length or the stopword file in the server, specify the same ft_min_word_len,
ft_max_word_len, and ft_stopword_file values to myisamchk that you use for mysqld. For
example, if you have set the minimum word length to 3, you can repair a table with
myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can
place each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]

ft_min_word_len=3

[myisamchk]

ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE TABLE,
or ALTER TABLE. These statements are performed by the server, which knows the proper full-
text parameter values to use.

06 6337 ch05 6/24/04 12:42 PM Page 195

TEAM LinG

196 CHAPTER 5 Functions and Operators

5.6.5 Full-Text Search TODO
n Improved performance for all FULLTEXT operations.
n Proximity operators.
n Support for “always-index words.” These could be any strings the user wants to treat as

words, such as “C++”, “AS/400”, or “TCP/IP”.
n Support for full-text search in MERGE tables.
n Support for the ucs2 character set.
n Make the stopword list dependent on the language of the dataset.
n Stemming (dependent on the language of the dataset).
n Generic user-suppliable UDF preparser.
n Make the model more flexible (by adding some adjustable parameters to FULLTEXT in

CREATE TABLE and ALTER TABLE statements).

5.7 Cast Functions
n CAST(expr AS type)

CONVERT(expr,type)

CONVERT(expr USING transcoding_name)

The CAST() and CONVERT() functions may be used to take a value of one type and pro-
duce a value of another type.

The type can be one of the following values:
n BINARY

n CHAR

n DATE

n DATETIME

n SIGNED [INTEGER]

n TIME

n UNSIGNED [INTEGER]

CAST() and CONVERT() are available as of MySQL 4.0.2. The CHAR conversion type is
available as of 4.0.6. The USING form of CONVERT() is available as of 4.1.0.

CAST() and CONVERT(... USING ...) are standard SQL syntax. The non-USING form of
CONVERT() is ODBC syntax.

06 6337 ch05 6/24/04 12:42 PM Page 196

TEAM LinG

1975.7 Cast Functions

CONVERT() with USING is used to convert data between different character sets. In
MySQL, transcoding names are the same as the corresponding character set names. For
example, this statement converts the string ‘abc’ in the server’s default character set to
the corresponding string in the utf8 character set:

SELECT CONVERT(‘abc’ USING utf8);

The cast functions are useful when you want to create a column with a specific type in a
CREATE ... SELECT statement:

CREATE TABLE new_table SELECT CAST(‘2000-01-01’ AS DATE);

The functions also can be useful for sorting ENUM columns in lexical order. Normally sorting
of ENUM columns occurs using the internal numeric values. Casting the values to CHAR results
in a lexical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST(str AS BINARY) is the same thing as BINARY str. CAST(expr AS CHAR) treats the expres-
sion as a string with the default character set.

Note: In MysQL 4.0, a CAST() to DATE, DATETIME, or TIME only marks the column to be a
specific type but doesn’t change the value of the column.

As of MySQL 4.1.0, the value is converted to the correct column type when it’s sent to the
user (this is a feature of how the new protocol in 4.1 sends date information to the client):

mysql> SELECT CAST(NOW() AS DATE);

-> 2003-05-26

As of MySQL 4.1.1, CAST() also changes the result if you use it as part of a more complex
expression such as CONCAT(‘Date: ‘,CAST(NOW() AS DATE)).

You should not use CAST() to extract data in different formats but instead use string func-
tions like LEFT() or EXTRACT(). See Section 5.5, “Date and Time Functions.”

To cast a string to a numeric value, you don’t normally have to do anything. Just use the
string value as though it were a number:

mysql> SELECT 1+’1’;

-> 2

If you use a number in string context, the number automatically is converted to a BINARY
string.

mysql> SELECT CONCAT(‘hello you ‘,2);

-> ‘hello you 2’

06 6337 ch05 6/24/04 12:42 PM Page 197

TEAM LinG

198 CHAPTER 5 Functions and Operators

MySQL supports arithmetic with both signed and unsigned 64-bit values. If you are using
numerical operators (such as +) and one of the operands is an unsigned integer, the result is
unsigned. You can override this by using the SIGNED and UNSIGNED cast operators to cast the
operation to a signed or unsigned 64-bit integer, respectively.

mysql> SELECT CAST(1-2 AS UNSIGNED)

-> 18446744073709551615

mysql> SELECT CAST(CAST(1-2 AS UNSIGNED) AS SIGNED);

-> -1

Note that if either operand is a floating-point value, the result is a floating-point value and
is not affected by the preceding rule. (In this context, DECIMAL column values are regarded as
floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;

-> -1.0

If you are using a string in an arithmetic operation, this is converted to a floating-point number.

The handing of unsigned values was changed in MySQL 4.0 to be able to support BIGINT
values properly. If you have some code that you want to run in both MySQL 4.0 and 3.23,
you probably can’t use the CAST() function. You can use the following technique to get a
signed result when subtracting two unsigned integer columns ucol1 and ucol2:

mysql> SELECT (ucol1+0.0)-(ucol2+0.0) FROM ...;

The idea is that the columns are converted to floating-point values before the subtraction
occurs.

If you have a problem with UNSIGNED columns in old MySQL applications when porting
them to MySQL 4.0, you can use the --sql-mode=NO_UNSIGNED_SUBTRACTION option when
starting mysqld. However, as long as you use this option, you will not be able to make effi-
cient use of the BIGINT UNSIGNED column type.

5.8 Other Functions

5.8.1 Bit Functions
MySQL uses BIGINT (64-bit) arithmetic for bit operations, so these operators have a maxi-
mum range of 64 bits.

n |

Bitwise OR:
mysql> SELECT 29 | 15;

-> 31

The result is an unsigned 64-bit integer.

06 6337 ch05 6/24/04 12:42 PM Page 198

TEAM LinG

1995.8 Other Functions

n &

Bitwise AND:
mysql> SELECT 29 & 15;

-> 13

The result is an unsigned 64-bit integer.
n ^

Bitwise XOR:
mysql> SELECT 1 ^ 1;

-> 0

mysql> SELECT 1 ^ 0;

-> 1

mysql> SELECT 11 ^ 3;

-> 8

The result is an unsigned 64-bit integer.

Bitwise XOR was added in MySQL 4.0.2.
n <<

Shifts a longlong (BIGINT) number to the left.
mysql> SELECT 1 << 2;

-> 4

The result is an unsigned 64-bit integer.
n >>

Shifts a longlong (BIGINT) number to the right.
mysql> SELECT 4 >> 2;

-> 1

The result is an unsigned 64-bit integer.
n ~

Invert all bits.
mysql> SELECT 5 & ~1;

-> 4

The result is an unsigned 64-bit integer.
n BIT_COUNT(N)

Returns the number of bits that are set in the argument N.

mysql> SELECT BIT_COUNT(29);

-> 4

06 6337 ch05 6/24/04 12:42 PM Page 199

TEAM LinG

200 CHAPTER 5 Functions and Operators

5.8.2 Encryption Functions
The functions in this section encrypt and decrypt data values. If you want to store results
from an encryption function that might contain arbitrary byte values, use a BLOB column
rather than a CHAR or VARCHAR column to avoid potential problems with trailing space
removal that would change data values.

n AES_ENCRYPT(str,key_str)

AES_DECRYPT(crypt_str,key_str)

These functions allow encryption and decryption of data using the official AES
(Advanced Encryption Standard) algorithm, previously known as “Rijndael.” Encoding
with a 128-bit key length is used, but you can extend it up to 256 bits by modifying the
source. We chose 128 bits because it is much faster and it is usually secure enough.

The input arguments may be any length. If either argument is NULL, the result of this
function is also NULL.

Because AES is a block-level algorithm, padding is used to encode uneven length
strings and so the result string length may be calculated as
16*(trunc(string_length/16)+1).

If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL. However, it
is possible for AES_DECRYPT() to return a non-NULL value (possibly garbage) if the input
data or the key is invalid.

You can use the AES functions to store data in an encrypted form by modifying your
queries:
INSERT INTO t VALUES (1,AES_ENCRYPT(‘text’,’password’));

You can get even more security by not transferring the key over the connection for each
query, which can be accomplished by storing it in a server-side variable at connection
time. For example:
SELECT @password:=’my password’;

INSERT INTO t VALUES (1,AES_ENCRYPT(‘text’,@password));

AES_ENCRYPT() and AES_DECRYPT() were added in MySQL 4.0.2, and can be considered
the most cryptographically secure encryption functions currently available in MySQL.

n DECODE(crypt_str,pass_str)

Decrypts the encrypted string crypt_str using pass_str as the password. crypt_str
should be a string returned from ENCODE().

n ENCODE(str,pass_str)

Encrypt str using pass_str as the password. To decrypt the result, use DECODE().

The result is a binary string of the same length as str. If you want to save it in a col-
umn, use a BLOB column type.

06 6337 ch05 6/24/04 12:42 PM Page 200

TEAM LinG

2015.8 Other Functions

n DES_DECRYPT(crypt_str[,key_str])

Decrypts a string encrypted with DES_ENCRYPT(). On error, this function returns NULL.

Note that this function works only if MySQL has been configured with SSL support.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted
string to determine the DES key number that was used to encrypt the original string,
and then reads the key from the DES key file to decrypt the message. For this to work,
the user must have the SUPER privilege. The key file can be specified with the
--des-key-file server option.

If you pass this function a key_str argument, that string is used as the key for decrypt-
ing the message.

If the crypt_str argument doesn’t look like an encrypted string, MySQL will return the
given crypt_str.

DES_DECRYPT() was added in MySQL 4.0.1.
n DES_ENCRYPT(str[,(key_num|key_str)])

Encrypts the string with the given key using the Triple-DES algorithm. On error, this
function returns NULL.

Note that this function works only if MySQL has been configured with SSL support.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if
one was given:

Argument Description

No argument The first key from the DES key file is used.

key_num The given key number (0-9) from the DES key file is used.

key_str The given key string is used to encrypt str.

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128|key_num).

The 128 is added to make it easier to recognize an encrypted key. If you use a string
key, key_num will be 127.

The string length for the result will be new_len = orig_len + (8-(orig_len % 8))+1.

Each line in the DES key file has the following format:
key_num des_key_str

Each key_num must be a number in the range from 0 to 9. Lines in the file may be in
any order. des_key_str is the string that will be used to encrypt the message. Between
the number and the key there should be at least one space. The first key is the default
key that is used if you don’t specify any key argument to DES_ENCRYPT().

06 6337 ch05 6/24/04 12:42 PM Page 201

TEAM LinG

202 CHAPTER 5 Functions and Operators

You can tell MySQL to read new key values from the key file with the FLUSH
DES_KEY_FILE statement. This requires the RELOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for
the existence of encrypted column values, without giving the end user the right to
decrypt those values.
mysql> SELECT customer_address FROM customer_table WHERE

-> crypted_credit_card = DES_ENCRYPT(‘credit_card_number’);

DES_DECRYPT() was added in MySQL 4.0.1.
n ENCRYPT(str[,salt])

Encrypt str using the Unix crypt() system call. The salt argument should be a string
with two characters. (As of MySQL 3.22.16, salt may be longer than two characters.)
mysql> SELECT ENCRYPT(‘hello’);

-> ‘VxuFAJXVARROc’

ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This
behavior is determined by the implementation of the underlying crypt() system call.

If crypt() is not available on your system, ENCRYPT() always returns NULL. Because of
this, we recommend that you use MD5() or SHA1() instead, because those two functions
exist on all platforms.

n MD5(str)

Calculates an MD5 128-bit checksum for the string. The value is returned as a string of
32 hex digits, or NULL if the argument was NULL. The return value can, for example, be
used as a hash key.
mysql> SELECT MD5(‘testing’);

-> ‘ae2b1fca515949e5d54fb22b8ed95575’

This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”

MD5() was added in MySQL 3.23.2.
n OLD_PASSWORD(str)

OLD_PASSWORD() is available as of MySQL 4.1, when the implementation of PASSWORD()
was changed to improve security. OLD_PASSWORD() returns the value of the pre-4.1
implementation of PASSWORD().

n PASSWORD(str)

Calculates and returns a password string from the plaintext password str, or NULL if the
argument was NULL. This is the function that is used for encrypting MySQL passwords
for storage in the Password column of the user grant table.
mysql> SELECT PASSWORD(‘badpwd’);

-> ‘7f84554057dd964b’

06 6337 ch05 6/24/04 12:42 PM Page 202

TEAM LinG

2035.8 Other Functions

PASSWORD() encryption is one-way (not reversible).

PASSWORD() does not perform password encryption in the same way that Unix passwords
are encrypted. See ENCRYPT().

Note: The PASSWORD() function is used by the authentication system in MySQL Server,
you should not use it in your own applications. For that purpose, use MD5() or SHA1()
instead. Also see RFC 2195 for more information about handling passwords and
authentication securely in your application.

n SHA1(str)

SHA(str)

Calculates an SHA1 160-bit checksum for the string, as described in RFC 3174 (Secure
Hash Algorithm). The value is returned as a string of 40 hex digits, or NULL if the argu-
ment was NULL. One of the possible uses for this function is as a hash key. You can also
use it as a cryptographically safe function for storing passwords.
mysql> SELECT SHA1(‘abc’);

-> ‘a9993e364706816aba3e25717850c26c9cd0d89d’

SHA1() was added in MySQL 4.0.2, and can be considered a cryptographically more
secure equivalent of MD5(). SHA() is synonym for SHA1().

5.8.3 Information Functions
n BENCHMARK(count,expr)

The BENCHMARK() function executes the expression expr repeatedly count times. It may
be used to time how fast MySQL processes the expression. The result value is always
0. The intended use is from within the mysql client, which reports query execution
times:
mysql> SELECT BENCHMARK(1000000,ENCODE(‘hello’,’goodbye’));

+--+

| BENCHMARK(1000000,ENCODE(‘hello’,’goodbye’)) |

+--+

| 0 |

+--+

1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server end.
It is advisable to execute BENCHMARK() several times, and to interpret the result with
regard to how heavily loaded the server machine is.

06 6337 ch05 6/24/04 12:42 PM Page 203

TEAM LinG

204 CHAPTER 5 Functions and Operators

n CHARSET(str)

Returns the character set of the string argument.
mysql> SELECT CHARSET(‘abc’);

-> ‘latin1’

mysql> SELECT CHARSET(CONVERT(‘abc’ USING utf8));

-> ‘utf8’

mysql> SELECT CHARSET(USER());

-> ‘utf8’

CHARSET() was added in MySQL 4.1.0.
n COERCIBILITY(str)

Returns the collation coercibility value of the string argument.
mysql> SELECT COERCIBILITY(‘abc’ COLLATE latin1_swedish_ci);

-> 0

mysql> SELECT COERCIBILITY(‘abc’);

-> 3

mysql> SELECT COERCIBILITY(USER());

-> 2

The return values have the following meanings:

Coercibility Meaning

0 Explicit collation

1 No collation

2 Implicit collation

3 Coercible

Lower values have higher precedence.

COERCIBILITY() was added in MySQL 4.1.1.
n COLLATION(str)

Returns the collation for the character set of the string argument.
mysql> SELECT COLLATION(‘abc’);

-> ‘latin1_swedish_ci’

mysql> SELECT COLLATION(_utf8’abc’);

-> ‘utf8_general_ci’

COLLATION() was added in MySQL 4.1.0.
n CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has its
own unique ID.
mysql> SELECT CONNECTION_ID();

-> 23786

CONNECTION_ID() was added in MySQL 3.23.14.

06 6337 ch05 6/24/04 12:42 PM Page 204

TEAM LinG

2055.8 Other Functions

n CURRENT_USER()

Returns the username and hostname combination that the current session was authenti-
cated as. This value corresponds to the MySQL account that determines your access
privileges. It can be different from the value of USER().
mysql> SELECT USER();

-> ‘davida@localhost’

mysql> SELECT * FROM mysql.user;

ERROR 1044: Access denied for user: ‘@localhost’ to

database ‘mysql’

mysql> SELECT CURRENT_USER();

-> ‘@localhost’

The example illustrates that although the client specified a username of davida (as indi-
cated by the value of the USER() function), the server authenticated the client using an
anonymous user account (as seen by the empty username part of the CURRENT_USER()
value). One way this might occur is that there is no account listed in the grant tables for
davida.

CURRENT_USER() was added in MySQL 4.0.6.
n DATABASE()

Returns the default (current) database name.
mysql> SELECT DATABASE();

-> ‘test’

If there is no default database, DATABASE() returns NULL as of MySQL 4.1.1, and the
empty string before that.

n FOUND_ROWS()

A SELECT statement may include a LIMIT clause to restrict the number of rows the server
returns to the client. In some cases, it is desirable to know how many rows the state-
ment would have returned without the LIMIT, but without running the statement again.
To get this row count, include a SQL_CALC_FOUND_ROWS option in the SELECT statement,
then invoke FOUND_ROWS() afterward:
mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name

-> WHERE id > 100 LIMIT 10;

mysql> SELECT FOUND_ROWS();

The second SELECT will return a number indicating how many rows the first SELECT
would have returned had it been written without the LIMIT clause. (If the preceding
SELECT statement does not include the SQL_CALC_FOUND_ROWS option, then FOUND_ROWS()
may return a different result when LIMIT is used than when it is not.)

Note that if you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how
many rows are in the full result set. However, this is faster than running the query again
without LIMIT, because the result set need not be sent to the client.

06 6337 ch05 6/24/04 12:42 PM Page 205

TEAM LinG

206 CHAPTER 5 Functions and Operators

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to
restrict the number of rows that a query returns, but also determine the number of
rows in the full result set without running the query again. An example is a Web script
that presents a paged display containing links to the pages that show other sections of a
search result. Using FOUND_ROWS() allows you to determine how many other pages are
needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION queries
than for simple SELECT statements, because LIMIT may occur at multiple places in a
UNION. It may be applied to individual SELECT statements in the UNION, or global to the
UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that
would be returned without a global LIMIT. The conditions for use of
SQL_CALC_FOUND_ROWS with UNION are:

n The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.
n The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is

used, duplicate removal occurs and the value of FOUND_ROWS() is only approximate.
n If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the

number of rows in the temporary table that is created to process the UNION.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() are available starting at MySQL 4.0.0.
n LAST_INSERT_ID()

LAST_INSERT_ID(expr)

Returns the last automatically generated value that was inserted into an AUTO_INCREMENT
column.
mysql> SELECT LAST_INSERT_ID();

-> 195

The last ID that was generated is maintained in the server on a per-connection basis.
This means the value the function returns to a given client is the most recent
AUTO_INCREMENT value generated by that client. The value cannot be affected by other
clients, even if they generate AUTO_INCREMENT values of their own. This behavior ensures
that you can retrieve your own ID without concern for the activity of other clients, and
without the need for locks or transactions.

The value of LAST_INSERT_ID() is not changed if you update the AUTO_INCREMENT column
of a row with a non-magic value (that is, a value that is not NULL and not 0).

If you insert many rows at the same time with an insert statement, LAST_INSERT_ID()
returns the value for the first inserted row. The reason for this is to make it possible to
easily reproduce the same INSERT statement against some other server.

If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is
returned by the function and is remembered as the next value to be returned by
LAST_INSERT_ID(). This can be used to simulate sequences:

06 6337 ch05 6/24/04 12:42 PM Page 206

TEAM LinG

2075.8 Other Functions

n Create a table to hold the sequence counter and initialize it:
mysql> CREATE TABLE sequence (id INT NOT NULL);

mysql> INSERT INTO sequence VALUES (0);

n Use the table to generate sequence numbers like this:
mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);

mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to
LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that
value. The mysql_insert_id() C API function can also be used to get the value.

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the
function this way is that the ID value is maintained in the server as the last automatically
generated value. It is multi-user safe because multiple clients can issue the UPDATE state-
ment and get their own sequence value with the SELECT statement (or
mysql_insert_id()), without affecting or being affected by other clients that generate
their own sequence values.

Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so you
cannot use the C API function to retrieve the value for LAST_INSERT_ID(expr) after exe-
cuting other SQL statements like SELECT or SET.

n SESSION_USER()

SESSION_USER() is a synonym for USER().
n SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().
n USER()

Returns the current MySQL username and hostname.
mysql> SELECT USER();

-> ‘davida@localhost’

The value indicates the username you specified when connecting to the server, and the client
host from which you connected. The value can be different than that of CURRENT_USER().

Prior to MySQL 3.22.11, the function value does not include the client hostname. You
can extract just the username part, regardless of whether the value includes a hostname
part, like this:
mysql> SELECT SUBSTRING_INDEX(USER(),’@’,1);

-> ‘davida’

As of MySQL 4.1, USER() returns a value in the utf8 character set, so you should also
make sure that the ‘@’ string literal is interpreted in that character set:
mysql> SELECT SUBSTRING_INDEX(USER(),_utf8’@’,1);

-> ‘davida’

06 6337 ch05 6/24/04 12:42 PM Page 207

TEAM LinG

208 CHAPTER 5 Functions and Operators

n VERSION()

Returns a string that indicates the MySQL server version.
mysql> SELECT VERSION();

-> ‘4.1.2-alpha-log’

Note that if your version string ends with -log this means that logging is enabled.

5.8.4 Miscellaneous Functions
n FORMAT(X,D)

Formats the number X to a format like ‘#,###,###.##’, rounded to D decimals, and
returns the result as a string. If D is 0, the result will have no decimal point or fractional
part.
mysql> SELECT FORMAT(12332.123456, 4);

-> ‘12,332.1235’

mysql> SELECT FORMAT(12332.1,4);

-> ‘12,332.1000’

mysql> SELECT FORMAT(12332.2,0);

-> ‘12,332’

n GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, with a timeout of timeout
seconds. Returns 1 if the lock was obtained successfully, 0 if the attempt timed out (for
example, because another client has already locked the name), or NULL if an error
occurred (such as running out of memory or the thread was killed with mysqladmin
kill). If you have a lock obtained with GET_LOCK(), it is released when you execute
RELEASE_LOCK(), execute a new GET_LOCK(), or your connection terminates (either nor-
mally or abnormally).

This function can be used to implement application locks or to simulate record locks.
Names are locked on a server-wide basis. If a name has been locked by one client,
GET_LOCK() blocks any request by another client for a lock with the same name. This
allows clients that agree on a given lock name to use the name to perform cooperative
advisory locking.
mysql> SELECT GET_LOCK(‘lock1’,10);

-> 1

mysql> SELECT IS_FREE_LOCK(‘lock2’);

-> 1

mysql> SELECT GET_LOCK(‘lock2’,10);

-> 1

mysql> SELECT RELEASE_LOCK(‘lock2’);

-> 1

mysql> SELECT RELEASE_LOCK(‘lock1’);

-> NULL

06 6337 ch05 6/24/04 12:42 PM Page 208

TEAM LinG

2095.8 Other Functions

Note that the second RELEASE_LOCK() call returns NULL because the lock ‘lock1’ was
automatically released by the second GET_LOCK() call.

n INET_ATON(expr)

Given the dotted-quad representation of a network address as a string, returns an inte-
ger that represents the numeric value of the address. Addresses may be 4- or 8-byte
addresses.
mysql> SELECT INET_ATON(‘209.207.224.40’);

-> 3520061480

The generated number is always in network byte order. For the example just shown,
the number is calculated as 209*2563 + 207*2562 + 224*256 + 40.

As of MySQL 4.1.2, INET_ATON() also understands short-form IP addresses:
mysql> SELECT INET_ATON(‘127.0.0.1’), INET_ATON(‘127.1’);

-> 2130706433, 2130706433

INET_ATON() was added in MySQL 3.23.15.
n INET_NTOA(expr)

Given a numeric network address (4 or 8 byte), returns the dotted-quad representation
of the address as a string.
mysql> SELECT INET_NTOA(3520061480);

-> ‘209.207.224.40’

INET_NTOA() was added in MySQL 3.23.15.
n IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the
lock is free (no one is using the lock), 0 if the lock is in use, and NULL on errors (such as
incorrect arguments).

IS_FREE_LOCK() was added in MySQL 4.0.2.
n IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the con-
nection identifier of the client that holds the lock. Otherwise, it returns NULL.

IS_USED_LOCK() was added in MySQL 4.1.0.
n MASTER_POS_WAIT(log_name,log_pos[,timeout])

This function is useful for control of master/slave synchronization. It blocks until the
slave has read and applied all updates up to the specified position in the master log. The
return value is the number of log events it had to wait for to get to the specified posi-
tion. The function returns NULL if the slave’s SQL thread is not started, the slave’s mas-
ter information is not initialized, the arguments are incorrect, or an error occurs. It
returns -1 if the timeout has been exceeded. If the slave is already past the specified
position, the function returns immediately.

06 6337 ch05 6/24/04 12:42 PM Page 209

TEAM LinG

210 CHAPTER 5 Functions and Operators

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds
have elapsed. timeout must be greater than 0; a zero or negative timeout means no
timeout.

MASTER_POS_WAIT() was added in MySQL 3.23.32. The timeout argument was added in
4.0.10.

n RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1
if the lock was released, 0 if the lock wasn’t locked by this thread (in which case the lock
is not released), and NULL if the named lock didn’t exist. The lock will not exist if it was
never obtained by a call to GET_LOCK() or if it already has been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 6.1.2, “DO Syntax.”
n UUID()

Returns a Universal Unique Identifier (UUID) generated according to “DCE 1.1:
Remote Procedure Call” (Appendix A) CAE (Common Applications Environment)
Specifications published by The Open Group in October 1997 (Document Number
C706).

A UUID is designed as a number that is globally unique in space and time. Two calls to
UUID() are expected to generate two different values, even if these calls are performed
on two separate computers that are not connected to each other.

A UUID is a 128-bit number represented by a string of five hexadecimal numbers in
aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee format:

n The first three numbers are generated from a timestamp.
n The fourth number preserves temporal uniqueness in case the timestamp value

loses monotonicity (for example, due to daylight saving time).
n The fifth number is an IEEE 802 node number that provides spatial uniqueness. A

random number is substituted if the latter is not available (for example, because the
host computer has no Ethernet card, or we do not know how to find the hardware
address of an interface on your operating system). In this case, spatial uniqueness
cannot be guaranteed. Nevertheless, a collision should have very low probability.

Currently, the MAC address of an interface is taken into account only on FreeBSD
and Linux. On other operating systems, MySQL uses a randomly generated 48-bit
number.
mysql> SELECT UUID();

-> ‘6ccd780c-baba-1026-9564-0040f4311e29’

Note that UUID() does not yet work with replication.

UUID() was added in MySQL 4.1.2.

06 6337 ch05 6/24/04 12:42 PM Page 210

TEAM LinG

2115.9 Functions and Modifiers for Use with GROUP BY Clauses

5.9 Functions and Modifiers for Use with GROUP
BY Clauses

5.9.1 GROUP BY (Aggregate) Functions
If you use a group function in a statement containing no GROUP BY clause, it is equivalent to
grouping on all rows.

n AVG(expr)

Returns the average value of expr.
mysql> SELECT student_name, AVG(test_score)

-> FROM student

-> GROUP BY student_name;

n BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit
(BIGINT) precision.

As of MySQL 4.0.17, this function returns 18446744073709551615 if there were no
matching rows. (This is an unsigned BIGINT value with all bits set to 1.) Before 4.0.17,
the function returns -1 if there were no matching rows.

n BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit
(BIGINT) precision.

This function returns 0 if there were no matching rows.
n BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit
(BIGINT) precision.

This function returns 0 if there were no matching rows.

This function is available as of MySQL 4.1.1.
n COUNT(expr)

Returns a count of the number of non-NULL values in the rows retrieved by a SELECT
statement.
mysql> SELECT student.student_name,COUNT(*)

-> FROM student,course

-> WHERE student.student_id=course.student_id

-> GROUP BY student_name;

06 6337 ch05 6/24/04 12:42 PM Page 211

TEAM LinG

212 CHAPTER 5 Functions and Operators

COUNT(*) is somewhat different in that it returns a count of the number of rows
retrieved, whether or not they contain NULL values.

COUNT(*) is optimized to return very quickly if the SELECT retrieves from one table, no
other columns are retrieved, and there is no WHERE clause. For example:
mysql> SELECT COUNT(*) FROM student;

This optimization applies only to MyISAM and ISAM tables, because an exact record count
is stored for these table types and can be accessed very quickly. For transactional stor-
age engines (InnoDB, BDB), storing an exact row count is more problematic because mul-
tiple transactions may be occurring, each of which may affect the count.

n COUNT(DISTINCT expr,[expr...])

Returns a count of the number of different non-NULL values.
mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL, you can get the number of distinct expression combinations that don’t con-
tain NULL by giving a list of expressions. In standard SQL, you would have to do a con-
catenation of all expressions inside COUNT(DISTINCT ...).

COUNT(DISTINCT ...) was added in MySQL 3.23.2.
n GROUP_CONCAT(expr)

This function returns a string result with the concatenated values from a group. The
full syntax is as follows:
GROUP_CONCAT([DISTINCT] expr [,expr ...]

[ORDER BY {unsigned_integer | col_name | expr}

[ASC | DESC] [,col ...]]

[SEPARATOR str_val])

mysql> SELECT student_name,

-> GROUP_CONCAT(test_score)

-> FROM student

-> GROUP BY student_name;

Or:
mysql> SELECT student_name,

-> GROUP_CONCAT(DISTINCT test_score

-> ORDER BY test_score DESC SEPARATOR ‘ ‘)

-> FROM student

-> GROUP BY student_name;

06 6337 ch05 6/24/04 12:42 PM Page 212

TEAM LinG

2135.9 Functions and Modifiers for Use with GROUP BY Clauses

In MySQL, you can get the concatenated values of expression combinations. You can
eliminate duplicate values by using DISTINCT. If you want to sort values in the result,
you should use ORDER BY clause. To sort in reverse order, add the DESC (descending) key-
word to the name of the column you are sorting by in the ORDER BY clause. The default
is ascending order; this may be specified explicitly using the ASC keyword. SEPARATOR is
followed by the string value that should be inserted between values of result. The
default is a comma (‘,’). You can remove the separator altogether by specifying
SEPARATOR ‘’.

You can set a maximum allowed length with the group_concat_max_len system variable.
The syntax to do this at runtime is as follows, where val is an unsigned integer:
SET [SESSION | GLOBAL] group_concat_max_len = val;

If a maximum length has been set, the result is truncated to this maximum length.

Note: There are still some small limitations with GROUP_CONCAT() when it comes to
using DISTINCT together with ORDER BY and using BLOB values.

GROUP_CONCAT() was added in MySQL 4.1.
n MIN(expr)

MAX(expr)

Returns the minimum or maximum value of expr. MIN() and MAX() may take a string
argument; in such cases they return the minimum or maximum string value.
mysql> SELECT student_name, MIN(test_score), MAX(test_score)

-> FROM student

-> GROUP BY student_name;

For MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and
SET columns by their string value rather than by the string’s relative position in the set.
This differs from how ORDER BY compares them. This will be rectified.

n STD(expr)

STDDEV(expr)

Returns the standard deviation of expr (the square root of VARIANCE()). This is an
extension to standard SQL. The STDDEV() form of this function is provided for Oracle
compatibility.

n SUM(expr)

Returns the sum of expr. Note that if the return set has no rows, it returns NULL!
n VARIANCE(expr)

Returns the standard variance of expr (considering rows as the whole population, not as
a sample; so it has the number of rows as denominator). This is an extension to stan-
dard SQL, available only in MySQL 4.1 or later.

06 6337 ch05 6/24/04 12:42 PM Page 213

TEAM LinG

214 CHAPTER 5 Functions and Operators

5.9.2 GROUP BY Modifiers
As of MySQL 4.1.1, the GROUP BY clause allows a WITH ROLLUP modifier that causes extra rows
to be added to the summary output. These rows represent higher-level (or super-aggregate)
summary operations. ROLLUP thus allows you to answer questions at multiple levels of analysis
with a single query. It can be used, for example, to provide support for OLAP (Online
Analytical Processing) operations.

As an illustration, suppose that a table named sales has year, country, product, and profit
columns for recording sales profitability:

CREATE TABLE sales

(

year INT NOT NULL,

country VARCHAR(20) NOT NULL,

product VARCHAR(32) NOT NULL,

profit INT

);

The table’s contents can be summarized per year with a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;

+------+-------------+

| year | SUM(profit) |

+------+-------------+

| 2000 | 4525 |

| 2001 | 3010 |

+------+-------------+

This output shows the total profit for each year, but if you also want to determine the total profit
summed over all years, you must add up the individual values yourself or run an additional query.

Or you can use ROLLUP, which provides both levels of analysis with a single query. Adding a
WITH ROLLUP modifier to the GROUP BY clause causes the query to produce another row that
shows the grand total over all year values:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;

+------+-------------+

| year | SUM(profit) |

+------+-------------+

| 2000 | 4525 |

| 2001 | 3010 |

| NULL | 7535 |

+------+-------------+

The grand total super-aggregate line is identified by the value NULL in the year column.

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case,
each time there is a “break” (change in value) in any but the last grouping column, the query
produces an extra super-aggregate summary row.

06 6337 ch05 6/24/04 12:42 PM Page 214

TEAM LinG

2155.9 Functions and Modifiers for Use with GROUP BY Clauses

For example, without ROLLUP, a summary on the sales table based on year, country, and
product might look like this:

mysql> SELECT year, country, product, SUM(profit)

-> FROM sales

-> GROUP BY year, country, product;

+------+---------+------------+-------------+

| year | country | product | SUM(profit) |

+------+---------+------------+-------------+

| 2000 | Finland | Computer | 1500 |

| 2000 | Finland | Phone | 100 |

| 2000 | India | Calculator | 150 |

| 2000 | India | Computer | 1200 |

| 2000 | USA | Calculator | 75 |

| 2000 | USA | Computer | 1500 |

| 2001 | Finland | Phone | 10 |

| 2001 | USA | Calculator | 50 |

| 2001 | USA | Computer | 2700 |

| 2001 | USA | TV | 250 |

+------+---------+------------+-------------+

The output indicates summary values only at the year/country/product level of analysis.
When ROLLUP is added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit)

-> FROM sales

-> GROUP BY year, country, product WITH ROLLUP;

+------+---------+------------+-------------+

| year | country | product | SUM(profit) |

+------+---------+------------+-------------+

| 2000 | Finland | Computer | 1500 |

| 2000 | Finland | Phone | 100 |

| 2000 | Finland | NULL | 1600 |

| 2000 | India | Calculator | 150 |

| 2000 | India | Computer | 1200 |

| 2000 | India | NULL | 1350 |

| 2000 | USA | Calculator | 75 |

| 2000 | USA | Computer | 1500 |

| 2000 | USA | NULL | 1575 |

| 2000 | NULL | NULL | 4525 |

| 2001 | Finland | Phone | 10 |

| 2001 | Finland | NULL | 10 |

| 2001 | USA | Calculator | 50 |

| 2001 | USA | Computer | 2700 |

| 2001 | USA | TV | 250 |

| 2001 | USA | NULL | 3000 |

| 2001 | NULL | NULL | 3010 |

| NULL | NULL | NULL | 7535 |

+------+---------+------------+-------------+

06 6337 ch05 6/24/04 12:42 PM Page 215

TEAM LinG

216 CHAPTER 5 Functions and Operators

For this query, adding ROLLUP causes the output to include summary information at four lev-
els of analysis, not just one. Here’s how to interpret the ROLLUP output:

n Following each set of product rows for a given year and country, an extra summary row
is produced showing the total for all products. These rows have the product column set
to NULL.

n Following each set of rows for a given year, an extra summary row is produced showing
the total for all countries and products. These rows have the country and products
columns set to NULL.

n Finally, following all other rows, an extra summary row is produced showing the grand
total for all years, countries, and products. This row has the year, country, and
products columns set to NULL.

Other Considerations When Using ROLLUP
The following items list some behaviors specific to the MySQL implementation of ROLLUP:

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other
words, ROLLUP and ORDER BY are mutually exclusive. However, you still have some control
over sort order. GROUP BY in MySQL sorts results, and you can use explicit ASC and DESC key-
words with columns named in the GROUP BY list to specify sort order for individual columns.
(The higher-level summary rows added by ROLLUP still appear after the rows from which
they are calculated, regardless of the sort order.)

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after
ROLLUP, so the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit)

-> FROM sales

-> GROUP BY year, country, product WITH ROLLUP

-> LIMIT 5;

+------+---------+------------+-------------+

| year | country | product | SUM(profit) |

+------+---------+------------+-------------+

| 2000 | Finland | Computer | 1500 |

| 2000 | Finland | Phone | 100 |

| 2000 | Finland | NULL | 1600 |

| 2000 | India | Calculator | 150 |

| 2000 | India | Computer | 1200 |

+------+---------+------------+-------------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because
you have less context for understanding the super-aggregate rows.

The NULL indicators in each super-aggregate row are produced when the row is sent to the
client. The server looks at the columns named in the GROUP BY clause following the leftmost
one that has changed value. For any column in the result set with a name that is a lexical

06 6337 ch05 6/24/04 12:42 PM Page 216

TEAM LinG

2175.9 Functions and Modifiers for Use with GROUP BY Clauses

match to any of those names, its value is set to NULL. (If you specify grouping columns by
column number, the server identifies which columns to set to NULL by number.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a
late stage in query processing, you cannot test them as NULL values within the query itself.
For example, you cannot add HAVING product IS NULL to the query to eliminate from the
output all but the super-aggregate rows.

On the other hand, the NULL values do appear as NULL on the client side and can be tested as
such using any MySQL client programming interface.

5.9.3 GROUP BY with Hidden Fields
MySQL extends the use of GROUP BY so that you can use columns or calculations in the
SELECT list that don’t appear in the GROUP BY clause. This stands for any possible value for this
group. You can use this to get better performance by avoiding sorting and grouping on
unnecessary items. For example, you don’t need to group on customer.name in the following
query:

mysql> SELECT order.custid, customer.name, MAX(payments)

-> FROM order,customer

-> WHERE order.custid = customer.custid

-> GROUP BY order.custid;

In standard SQL, you would have to add customer.name to the GROUP BY clause. In MySQL,
the name is redundant if you don’t run in ANSI mode.

Do not use this feature if the columns you omit from the GROUP BY part are not unique in the
group! You will get unpredictable results.

In some cases, you can use MIN() and MAX() to obtain a specific column value even if it isn’t
unique. The following gives the value of column from the row containing the smallest value
in the sort column:

SUBSTR(MIN(CONCAT(RPAD(sort,6,’ ‘),column)),7)

Note that if you are using MySQL 3.22 (or earlier) or if you are trying to follow standard
SQL, you can’t use expressions in GROUP BY or ORDER BY clauses. You can work around this
limitation by using an alias for the expression:

mysql> SELECT id,FLOOR(value/100) AS val FROM tbl_name

-> GROUP BY id, val ORDER BY val;

In MySQL 3.23 and up, aliases are unnecessary. You can use expressions in GROUP BY and
ORDER BY clauses. For example:

mysql> SELECT id, FLOOR(value/100) FROM tbl_name ORDER BY RAND();

06 6337 ch05 6/24/04 12:42 PM Page 217

TEAM LinG

06 6337 ch05 6/24/04 12:42 PM Page 218

TEAM LinG

6
SQL Statement Syntax

This chapter describes the syntax for the SQL statements supported in MySQL.

6.1 Data Manipulation Statements

6.1.1 DELETE Syntax
Single-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name

[WHERE where_definition]

[ORDER BY ...]

[LIMIT row_count]

Multiple-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]

tbl_name[.*] [, tbl_name[.*] ...]

FROM table_references

[WHERE where_definition]

Or:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]

FROM tbl_name[.*] [, tbl_name[.*] ...]

USING table_references

[WHERE where_definition]

DELETE deletes rows from tbl_name that satisfy the condition given by where_definition, and
returns the number of records deleted.

If you issue a DELETE statement with no WHERE clause, all rows are deleted. A faster way to do
this, when you don’t want to know the number of deleted rows, is to use TRUNCATE table. See
Section 6.1.9, “TRUNCATE Syntax.”

In MySQL 3.23, DELETE without a WHERE clause returns zero as the number of affected
records.

07 6337 ch06 6/24/04 12:44 PM Page 219

TEAM LinG

220 CHAPTER 6 SQL Statement Syntax

In MySQL 3.2.3, if you really want to know how many records are deleted when you are
deleting all rows, and are willing to suffer a speed penalty, you can use a DELETE statement
that includes a WHERE clause with an expression that is true for every row. For example:

mysql> DELETE FROM tbl_name WHERE 1>0;

This is much slower than DELETE FROM tbl_name with no WHERE clause, because it deletes
rows one at a time.

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the
value will be reused for an ISAM or BDB table, but not for a MyISAM or InnoDB table. If you
delete all rows in the table with DELETE FROM tbl_name (without a WHERE) in AUTOCOMMIT
mode, the sequence starts over for all table types except for InnoDB and (as of MySQL 4.0)
MyISAM. There are some exceptions to this behavior for InnoDB tables, discussed in the InnoDB
chapter of the MySQL Administrator’s Guide.

For MyISAM and BDB tables, you can specify an AUTO_INCREMENT secondary column in a
multiple-column key. In this case, reuse of values deleted from the top of the sequence
occurs even for MyISAM tables.

The DELETE statement supports the following modifiers:

n If you specify the LOW_PRIORITY keyword, execution of the DELETE is delayed until no
other clients are reading from the table.

n For MyISAM tables, if you specify the QUICK keyword, the storage engine does not merge
index leaves during delete, which may speed up certain kinds of deletes.

n The IGNORE keyword causes MySQL to ignore all errors during the process of deleting
rows. (Errors encountered during the parsing stage are processed in the usual manner.)
Errors that are ignored due to the use of this option are returned as warnings. This
option first appeared in MySQL 4.1.1.

The speed of delete operations may also be affected by factors discussed in the optimization
chapter of the MySQL Administrator’s Guide.

In MyISAM tables, deleted records are maintained in a linked list and subsequent INSERT oper-
ations reuse old record positions. To reclaim unused space and reduce file sizes, use the
OPTIMIZE TABLE statement or the myisamchk utility to reorganize tables. OPTIMIZE TABLE is
easier, but myisamchk is faster. See Section 6.5.2.5, “OPTIMIZE TABLE Syntax.”

The MySQL-specific LIMIT row_count option to DELETE tells the server the maximum num-
ber of rows to be deleted before control is returned to the client. This can be used to ensure
that a specific DELETE statement doesn’t take too much time. You can simply repeat the
DELETE statement until the number of affected rows is less than the LIMIT value.

07 6337 ch06 6/24/04 12:44 PM Page 220

TEAM LinG

2216.1 Data Manipulation Statements

If the DELETE statement includes an ORDER BY clause, the rows are deleted in the order speci-
fied by the clause. This is really useful only in conjunction with LIMIT. For example, the fol-
lowing statement finds rows matching the WHERE clause, sorts them in timestamp order, and
deletes the first (oldest) one:

DELETE FROM somelog

WHERE user = ‘jcole’

ORDER BY timestamp

LIMIT 1

ORDER BY can be used with DELETE beginning with MySQL 4.0.0.

From MySQL 4.0, you can specify multiple tables in the DELETE statement to delete rows
from one or more tables depending on a particular condition in multiple tables. However,
you cannot use ORDER BY or LIMIT in a multiple-table DELETE.

The first multiple-table DELETE syntax is supported starting from MySQL 4.0.0. The second
is supported starting from MySQL 4.0.2. The table_references part lists the tables involved
in the join. Its syntax is described in Section 6.1.7.1, “JOIN Syntax.”

For the first syntax, only matching rows from the tables listed before the FROM clause are
deleted. For the second syntax, only matching rows from the tables listed in the FROM clause
(before the USING clause) are deleted. The effect is that you can delete rows from many
tables at the same time and also have additional tables that are used for searching:

DELETE t1,t2 FROM t1,t2,t3 WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1,t2 USING t1,t2,t3 WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three files when searching for rows to delete, but delete matching
rows only from tables t1 and t2.

The examples show inner joins using the comma operator, but multiple-table DELETE state-
ments can use any type of join allowed in SELECT statements, such as LEFT JOIN.

The syntax allows .* after the table names for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are for-
eign key constraints, the MySQL optimizer might process tables in an order that differs
from that of their parent/child relationship. In this case, the statement fails and rolls back.
Instead, delete from a single table and rely on the ON DELETE capabilities that InnoDB pro-
vides to cause the other tables to be modified accordingly.

Note: In MySQL 4.0, you should refer to the table names to be deleted with the true table
name. In MySQL 4.1, you must use the alias (if one was given) when referring to a table name:

In MySQL 4.0:

DELETE test FROM test AS t1, test2 WHERE ...

07 6337 ch06 6/24/04 12:44 PM Page 221

TEAM LinG

222 CHAPTER 6 SQL Statement Syntax

In MySQL 4.1:

DELETE t1 FROM test AS t1, test2 WHERE ...

The reason we didn’t make this change in 4.0 is that we didn’t want to break any old 4.0
applications that were using the old syntax.

6.1.2 DO Syntax
DO expr [, expr] ...

DO executes the expressions but doesn’t return any results. This is shorthand for SELECT
expr, ..., but has the advantage that it’s slightly faster when you don’t care about the result.

DO is useful mainly with functions that have side effects, such as RELEASE_LOCK().

6.1.3 HANDLER Syntax
HANDLER tbl_name OPEN [AS alias]

HANDLER tbl_name READ index_name { = | >= | <= | < } (value1,value2,...)

[WHERE where_condition] [LIMIT ...]

HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }

[WHERE where_condition] [LIMIT ...]

HANDLER tbl_name READ { FIRST | NEXT }

[WHERE where_condition] [LIMIT ...]

HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to table storage engine interfaces. It is avail-
able for MyISAM tables as MySQL 4.0.0 and InnoDB tables as of MySQL 4.0.3.

The HANDLER ... OPEN statement opens a table, making it accessible via subsequent HANDLER
... READ statements. This table object is not shared by other threads and is not closed until
the thread calls HANDLER ... CLOSE or the thread terminates. If you open the table using an
alias, further references to the table with other HANDLER statements must use the alias rather
than the table name.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given
values and the WHERE condition is met. If you have a multiple-column index, specify the index
column values as a comma-separated list. Either specify values for all the columns in the
index, or specify values for a leftmost prefix of the index columns. Suppose that an index
includes three columns named col_a, col_b, and col_c, in that order. The HANDLER statement
can specify values for all three columns in the index, or for the columns in a leftmost prefix.
For example:

HANDLER ... index_name = (col_a_val,col_b_val,col_c_val) ...

HANDLER ... index_name = (col_a_val,col_b_val) ...

HANDLER ... index_name = (col_a_val) ...

07 6337 ch06 6/24/04 12:44 PM Page 222

TEAM LinG

2236.1 Data Manipulation Statements

The second HANDLER ... READ syntax fetches a row from the table in index order that
matches the WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that
matches the WHERE condition. It is faster than HANDLER tbl_name READ index_name when a full
table scan is desired. Natural row order is the order in which rows are stored in a MyISAM
table data file. This statement works for InnoDB tables as well, but there is no such concept
because there is no separate data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available.
To return a specific number of rows, include a LIMIT clause. It has the same syntax as for the
SELECT statement. See Section 6.1.7, “SELECT Syntax.”

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

Note: To use the HANDLER interface to refer to a table’s PRIMARY KEY, use the quoted identifi-
er `PRIMARY`:

HANDLER tbl_name READ `PRIMARY` > (...);

HANDLER is a somewhat low-level statement. For example, it does not provide consistency.
That is, HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table.
This means that after a HANDLER ... OPEN statement is issued, table data can be modified (by
this or any other thread) and these modifications might appear only partially in HANDLER ...
NEXT or HANDLER ... PREV scans.

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

n HANDLER is faster than SELECT:
n A designated storage engine handler object is allocated for the HANDLER ... OPEN.

The object is reused for the following HANDLER statements for the table; it need not
be reinitialized for each one.

n There is less parsing involved.
n There is no optimizer or query-checking overhead.
n The table doesn’t have to be locked between two handler requests.
n The handler interface doesn’t have to provide a consistent look of the data (for

example, dirty reads are allowed), so the storage engine can use optimizations that
SELECT doesn’t normally allow.

n HANDLER makes it much easier to port applications that use an ISAM-like interface to
MySQL.

n HANDLER allows you to traverse a database in a manner that is not easy (or perhaps even
impossible) to do with SELECT. The HANDLER interface is a more natural way to look at
data when working with applications that provide an interactive user interface to the
database.

07 6337 ch06 6/24/04 12:44 PM Page 223

TEAM LinG

224 CHAPTER 6 SQL Statement Syntax

6.1.4 INSERT Syntax
INSERT [LOW_PRIORITY | DELAYED] [IGNORE]

[INTO] tbl_name [(col_name,...)]

VALUES ({expr | DEFAULT},...),(...),...

[ON DUPLICATE KEY UPDATE col_name=expr, ...]

Or:

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]

[INTO] tbl_name

SET col_name={expr | DEFAULT}, ...

[ON DUPLICATE KEY UPDATE col_name=expr, ...]

Or:

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]

[INTO] tbl_name [(col_name,...)]

SELECT ...

INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ... SET
forms of the statement insert rows based on explicitly specified values. The INSERT ...
SELECT form inserts rows selected from another table or tables. The INSERT ... VALUES form
with multiple value lists is supported in MySQL 3.22.5 or later. The INSERT ... SET syntax
is supported in MySQL 3.22.10 or later. INSERT ... SELECT is discussed further in See
Section 6.1.4.1, “INSERT ... SELECT Syntax.”

tbl_name is the table into which rows should be inserted. The columns for which the state-
ment provides values can be specified as follows:

n The column name list or the SET clause indicates the columns explicitly.
n If you do not specify the column list for INSERT ... VALUES or INSERT ... SELECT, val-

ues for every column in the table must be provided in the VALUES() list or by the
SELECT. If you don’t know the order of the columns in the table, use DESCRIBE tbl_name
to find out.

Column values can be given in several ways:

n Any column not explicitly given a value is set to its default value. For example, if you
specify a column list that doesn’t name all the columns in the table, unnamed columns
are set to their default values. Default value assignment is described in Section 6.2.5,
“CREATE TABLE Syntax.”

MySQL always has a default value for all columns. This is something that is imposed
on MySQL to be able to work with both transactional and non-transactional tables.

Our view is that column content checking should be done in the application and not in
the database server.

07 6337 ch06 6/24/04 12:44 PM Page 224

TEAM LinG

2256.1 Data Manipulation Statements

Note: If you want INSERT statements to generate an error unless you explicitly specify
values for all columns that require a non-NULL value, you can configure MySQL using
the DONT_USE_DEFAULT_FIELDS compile option. This behavior is available only if you
compile MySQL from source.

n You can use the keyword DEFAULT to explicitly set a column to its default value. (New in
MySQL 4.0.3.) This makes it easier to write INSERT statements that assign values to all
but a few columns, because it allows you to avoid writing an incomplete VALUES list that
does not include a value for each column in the table. Otherwise, you would have to
write out the list of column names corresponding to each value in the VALUES list.

n If both the column list and the VALUES list are empty, INSERT creates a row with each
column set to its default value.
mysql> INSERT INTO tbl_name () VALUES();

n An expression expr can refer to any column that was set earlier in a value list. For
example, you can do this because the value for col2 refers to col1, which has already
been assigned:
mysql> INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But you cannot do this because the value for col1 refers to col2, which is assigned after
col1:
mysql> INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

The INSERT statement supports the following modifiers:

n If you specify the DELAYED keyword, the server puts the row or rows to be inserted into a
buffer, and the client issuing the INSERT DELAYED statement then can continue on. If the
table is busy, the server holds the rows. When the table becomes free, it begins insert-
ing rows, checking periodically to see whether there are new read requests for the table.
If there are, the delayed row queue is suspended until the table becomes free again. See
Section 6.1.4.2, “INSERT DELAYED Syntax.”

n If you specify the LOW_PRIORITY keyword, execution of the INSERT is delayed until no
other clients are reading from the table. This includes other clients that began reading
while existing clients are reading, and while the INSERT LOW_PRIORITY statement is wait-
ing. It is possible, therefore, for a client that issues an INSERT LOW_PRIORITY statement
to wait for a very long time (or even forever) in a read-heavy environment. (This is in
contrast to INSERT DELAYED, which lets the client continue at once.) See Section 6.1.4.2,
“INSERT DELAYED Syntax.” Note that LOW_PRIORITY should normally not be used with
MyISAM tables because doing so disables concurrent inserts.

n If you specify the IGNORE keyword in an INSERT with many rows, any rows that duplicate
an existing UNIQUE index or PRIMARY KEY value in the table are ignored and are not
inserted. If you do not specify IGNORE, the insert is aborted if there is any row that
duplicates an existing key value. You can determine with the mysql_info() C API func-
tion how many rows were inserted into the table.

07 6337 ch06 6/24/04 12:44 PM Page 225

TEAM LinG

226 CHAPTER 6 SQL Statement Syntax

If you specify the ON DUPLICATE KEY UPDATE clause (new in MySQL 4.1.0), and a row is
inserted that would cause a duplicate value in a UNIQUE index or PRIMARY KEY, an UPDATE of
the old row is performed. For example, if column a is declared as UNIQUE and already con-
tains the value 1, the following two statements have identical effect:

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3)

-> ON DUPLICATE KEY UPDATE c=c+1;

mysql> UPDATE table SET c=c+1 WHERE a=1;

Note: If column b is unique too, the INSERT would be equivalent to this UPDATE statement
instead:

mysql> UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

If a=1 OR b=2 matches several rows, only one row is updated! In general, you should try to
avoid using the ON DUPLICATE KEY clause on tables with multiple UNIQUE keys.

As of MySQL 4.1.1, you can use the VALUES(col_name) function in the UPDATE clause to refer
to column values from the INSERT part of the INSERT ... UPDATE statement. In other words,
VALUES(col_name) in the UPDATE clause refers to the value of col_name that would be inserted
if no duplicate-key conflict occurred. This function is especially useful in multiple-row
inserts. The VALUES() function is meaningful only in INSERT ... UPDATE statements and
returns NULL otherwise.

Example:

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)

-> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3)

-> ON DUPLICATE KEY UPDATE c=3;

mysql> INSERT INTO table (a,b,c) VALUES (4,5,6)

-> ON DUPLICATE KEY UPDATE c=9;

When you use ON DUPLICATE KEY UPDATE, the DELAYED option is ignored.

You can find the value used for an AUTO_INCREMENT column by using the LAST_INSERT_ID()
function. From within the C API, use the mysql_insert_id() function. However, note that
the two functions do not behave quite identically under all circumstances. The behavior of
INSERT statements with respect to AUTO_INCREMENT columns is discussed further in Section
5.8.3, “Information Functions.”

If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SELECT,
the statement returns an information string in this format:

Records: 100 Duplicates: 0 Warnings: 0

07 6337 ch06 6/24/04 12:44 PM Page 226

TEAM LinG

2276.1 Data Manipulation Statements

Records indicates the number of rows processed by the statement. (This is not necessarily
the number of rows actually inserted. Duplicates can be non-zero.) Duplicates indicates the
number of rows that couldn’t be inserted because they would duplicate some existing unique
index value. Warnings indicates the number of attempts to insert column values that were
problematic in some way. Warnings can occur under any of the following conditions:

n Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT
statements or INSERT ... SELECT statements, the column is set to the default value
appropriate for the column type. This is 0 for numeric types, the empty string (‘’) for
string types, and the “zero” value for date and time types.

n Setting a numeric column to a value that lies outside the column’s range. The value is
clipped to the closest endpoint of the range.

n Assigning a value such as ‘10.34 a’ to a numeric column. The trailing non-numeric
text is stripped off and the remaining numeric part is inserted. If the string value has no
leading numeric part, the column is set to 0.

n Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the
column’s maximum length. The value is truncated to the column’s maximum length.

n Inserting a value into a date or time column that is illegal for the column type. The col-
umn is set to the appropriate zero value for the type.

If you are using the C API, the information string can be obtained by invoking the
mysql_info() function.

6.1.4.1 INSERT ... SELECT Syntax
INSERT [LOW_PRIORITY] [IGNORE] [INTO] tbl_name [(column_list)]

SELECT ...

With INSERT ... SELECT, you can quickly insert many rows into a table from one or many
tables.

For example:

INSERT INTO tbl_temp2 (fld_id)

SELECT tbl_temp1.fld_order_id

FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

The following conditions hold for an INSERT ... SELECT statement:

n Prior to MySQL 4.0.1, INSERT ... SELECT implicitly operates in IGNORE mode. As of
MySQL 4.0.1, specify IGNORE explicitly to ignore records that would cause duplicate-
key violations.

n Do not use DELAYED with INSERT ... SELECT.
n Prior to MySQL 4.0.14, the target table of the INSERT statement cannot appear in the

FROM clause of the SELECT part of the query. This limitation is lifted in 4.0.14.

07 6337 ch06 6/24/04 12:44 PM Page 227

TEAM LinG

228 CHAPTER 6 SQL Statement Syntax

n AUTO_INCREMENT columns work as usual.
n To ensure that the binary log can be used to re-create the original tables, MySQL will

not allow concurrent inserts during INSERT ... SELECT.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to
INSERT IGNORE in the treatment of new rows that contain unique key values that duplicate
old rows: The new rows are used to replace the old rows rather than being discarded.

6.1.4.2 INSERT DELAYED Syntax
INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL that is
very useful if you have clients that can’t wait for the INSERT to complete. This is a common
problem when you use MySQL for logging and you also periodically run SELECT and UPDATE
statements that take a long time to complete. DELAYED was introduced in MySQL 3.22.15.

When a client uses INSERT DELAYED, it gets an okay from the server at once, and the row is
queued to be inserted when the table is not in use by any other thread.

Another major benefit of using INSERT DELAYED is that inserts from many clients are bundled
together and written in one block. This is much faster than doing many separate inserts.

There are some constraints on the use of DELAYED:

n INSERT DELAYED works only with MyISAM and ISAM tables. For MyISAM tables, if there are
no free blocks in the middle of the data file, concurrent SELECT and INSERT statements
are supported. Under these circumstances, you very seldom need to use INSERT DELAYED
with MyISAM.

n INSERT DELAYED should be used only for INSERT statements that specify value lists. This
is enforced as of MySQL 4.0.18. The server ignores DELAYED for INSERT DELAYED ...
SELECT statements.

n The server ignores DELAYED for INSERT DELAYED ... ON DUPLICATE UPDATE statements.
n Because the statement returns immediately before the rows are inserted, you cannot use

LAST_INSERT_ID() to get the AUTO_INCREMENT value the statement might generate.
n DELAYED rows are not visible to SELECT statements until they actually have been inserted.

Note that currently the queued rows are held only in memory until they are inserted into
the table. This means that if you terminate mysqld forceably (for example, with kill -9) or
if mysqld dies unexpectedly, any queued rows that have not been written to disk are lost!

The following describes in detail what happens when you use the DELAYED option to INSERT
or REPLACE. In this description, the “thread” is the thread that received an INSERT DELAYED
statement and “handler” is the thread that handles all INSERT DELAYED statements for a par-
ticular table.

07 6337 ch06 6/24/04 12:44 PM Page 228

TEAM LinG

2296.1 Data Manipulation Statements

n When a thread executes a DELAYED statement for a table, a handler thread is created to
process all DELAYED statements for the table, if no such handler already exists.

n The thread checks whether the handler has acquired a DELAYED lock already; if not, it
tells the handler thread to do so. The DELAYED lock can be obtained even if other
threads have a READ or WRITE lock on the table. However, the handler will wait for all
ALTER TABLE locks or FLUSH TABLES to ensure that the table structure is up to date.

n The thread executes the INSERT statement, but instead of writing the row to the table, it
puts a copy of the final row into a queue that is managed by the handler thread. Any
syntax errors are noticed by the thread and reported to the client program.

n The client cannot obtain from the server the number of duplicate records or the
AUTO_INCREMENT value for the resulting row, because the INSERT returns before the insert
operation has been completed. (If you use the C API, the mysql_info() function doesn’t
return anything meaningful, for the same reason.)

n The binary log is updated by the handler thread when the row is inserted into the table.
In case of multiple-row inserts, the binary log is updated when the first row is inserted.

n After every delayed_insert_limit rows are written, the handler checks whether any
SELECT statements are still pending. If so, it allows these to execute before continuing.

n When the handler has no more rows in its queue, the table is unlocked. If no new
INSERT DELAYED statements are received within delayed_insert_timeout seconds, the
handler terminates.

n If more than delayed_queue_size rows are pending already in a specific handler queue,
the thread requesting INSERT DELAYED waits until there is room in the queue. This is done
to ensure that the mysqld server doesn’t use all memory for the delayed memory queue.

n The handler thread shows up in the MySQL process list with delayed_insert in the
Command column. It will be killed if you execute a FLUSH TABLES statement or kill it with
KILL thread_id. However, before exiting, it will first store all queued rows into the table.
During this time it will not accept any new INSERT statements from another thread. If you
execute an INSERT DELAYED statement after this, a new handler thread will be created.

Note that this means that INSERT DELAYED statements have higher priority than normal
INSERT statements if there is an INSERT DELAYED handler already running! Other update
statements will have to wait until the INSERT DELAYED queue is empty, someone termi-
nates the handler thread (with KILL thread_id), or someone executes FLUSH TABLES.

n The following status variables provide information about INSERT DELAYED statements:

Status Variable Meaning

Delayed_insert_threads Number of handler threads

Delayed_writes Number of rows written with INSERT DELAYED

Not_flushed_delayed_rows Number of rows waiting to be written

You can view these variables by issuing a SHOW STATUS statement or by executing a
mysqladmin extended-status command.

07 6337 ch06 6/24/04 12:44 PM Page 229

TEAM LinG

230 CHAPTER 6 SQL Statement Syntax

Note that INSERT DELAYED is slower than a normal INSERT if the table is not in use. There is
also the additional overhead for the server to handle a separate thread for each table for
which there are delayed rows. This means that you should use INSERT DELAYED only when
you are really sure that you need it!

6.1.5 LOAD DATA INFILE Syntax
LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE ‘file_name.txt’

[REPLACE | IGNORE]

INTO TABLE tbl_name

[FIELDS

[TERMINATED BY ‘\t’]

[[OPTIONALLY] ENCLOSED BY ‘’]

[ESCAPED BY ‘\\’]

]

[LINES

[STARTING BY ‘’]

[TERMINATED BY ‘\n’]

]

[IGNORE number LINES]

[(col_name,...)]

The LOAD DATA INFILE statement reads rows from a text file into a table at a very high speed.

You can also load data files by using the mysqlimport utility; it operates by sending a LOAD
DATA INFILE statement to the server. The --local option causes mysqlimport to read data
files from the client host. You can specify the --compress option to get better performance
over slow networks if the client and server support the compressed protocol.

If you specify the LOW_PRIORITY keyword, execution of the LOAD DATA statement is delayed
until no other clients are reading from the table.

If you specify the CONCURRENT keyword with a MyISAM table that satisfies the condition for
concurrent inserts (that is, it contains no free blocks in the middle), then other threads can
retrieve data from the table while LOAD DATA is executing. Using this option affects the per-
formance of LOAD DATA a bit, even if no other thread is using the table at the same time.

If the LOCAL keyword is specified, it is interpreted with respect to the client end of the con-
nection:

n If LOCAL is specified, the file is read by the client program on the client host and sent to
the server.

n If LOCAL is not specified, the file must be located on the server host and is read directly
by the server.

07 6337 ch06 6/24/04 12:44 PM Page 230

TEAM LinG

2316.1 Data Manipulation Statements

LOCAL is available in MySQL 3.22.6 or later.

For security reasons, when reading text files located on the server, the files must either
reside in the database directory or be readable by all. Also, to use LOAD DATA INFILE on serv-
er files, you must have the FILE privilege.

Using LOCAL is a bit slower than letting the server access the files directly, because the con-
tents of the file must be sent over the connection by the client to the server. On the other
hand, you do not need the FILE privilege to load local files.

As of MySQL 3.23.49 and MySQL 4.0.2 (4.0.13 on Windows), LOCAL works only if your
server and your client both have been enabled to allow it. For example, if mysqld was started
with --local-infile=0, LOCAL will not work.

If you need LOAD DATA to read from a pipe, you can use the following technique:

mkfifo /mysql/db/x/x

chmod 666 /mysql/db/x/x

cat < /dev/tcp/10.1.1.12/4711 > /mysql/db/x/x

mysql -e “LOAD DATA INFILE ‘x’ INTO TABLE x” x

If you are using a version of MySQL older than 3.23.25, you can use this technique only
with LOAD DATA LOCAL INFILE.

If you are using MySQL before Version 3.23.24, you can’t read from a FIFO with LOAD DATA
INFILE. If you need to read from a FIFO (for example, the output from gunzip), use LOAD
DATA LOCAL INFILE instead.

When locating files on the server host, the server uses the following rules:

n If an absolute pathname is given, the server uses the pathname as is.
n If a relative pathname with one or more leading components is given, the server search-

es for the file relative to the server’s data directory.
n If a filename with no leading components is given, the server looks for the file in the

database directory of the default database.

Note that these rules mean that a file named as ./myfile.txt is read from the server’s data
directory, whereas the same file named as myfile.txt is read from the database directory of
the default database. For example, the following LOAD DATA statement reads the file data.txt
from the database directory for db1 because db1 is the current database, even though the
statement explicitly loads the file into a table in the db2 database:

mysql> USE db1;

mysql> LOAD DATA INFILE ‘data.txt’ INTO TABLE db2.my_table;

The REPLACE and IGNORE keywords control handling of input records that duplicate existing
records on unique key values.

07 6337 ch06 6/24/04 12:44 PM Page 231

TEAM LinG

232 CHAPTER 6 SQL Statement Syntax

If you specify REPLACE, input rows replace existing rows (in other words, rows that have the
same value for a primary or unique index as an existing row). See Section 6.1.6, “REPLACE
Syntax.”

If you specify IGNORE, input rows that duplicate an existing row on a unique key value are
skipped. If you don’t specify either option, the behavior depends on whether or not the
LOCAL keyword is specified. Without LOCAL, an error occurs when a duplicate key value is
found, and the rest of the text file is ignored. With LOCAL, the default behavior is the same as
if IGNORE is specified; this is because the server has no way to stop transmission of the file in
the middle of the operation.

If you want to ignore foreign key constraints during the load operation, you can issue a SET
FOREIGN_KEY_CHECKS=0 statement before executing LOAD DATA.

If you use LOAD DATA INFILE on an empty MyISAM table, all non-unique indexes are created in
a separate batch (as for REPAIR TABLE). This normally makes LOAD DATA INFILE much faster
when you have many indexes. Normally this is very fast, but in some extreme cases, you can
create the indexes even faster by turning them off with ALTER TABLE .. DISABLE KEYS before
loading the file into the table and using ALTER TABLE .. ENABLE KEYS to re-create the index-
es after loading the file.

LOAD DATA INFILE is the complement of SELECT ... INTO OUTFILE. See Section 6.1.7,
“SELECT Syntax.” To write data from a table to a file, use SELECT ... INTO OUTFILE. To read
the file back into a table, use LOAD DATA INFILE. The syntax of the FIELDS and LINES clauses
is the same for both statements. Both clauses are optional, but FIELDS must precede LINES if
both are specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] ENCLOSED
BY, and ESCAPED BY) is also optional, except that you must specify at least one of them.

If you don’t specify a FIELDS clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY ‘\t’ ENCLOSED BY ‘’ ESCAPED BY ‘\\’

If you don’t specify a LINES clause, the default is the same as if you had written this:

LINES TERMINATED BY ‘\n’ STARTING BY ‘’

In other words, the defaults cause LOAD DATA INFILE to act as follows when reading input:

n Look for line boundaries at newlines.
n Do not skip over any line prefix.
n Break lines into fields at tabs.
n Do not expect fields to be enclosed within any quoting characters.
n Interpret occurrences of tab, newline, or ‘\’ preceded by ‘\’ as literal characters that are

part of field values.

07 6337 ch06 6/24/04 12:44 PM Page 232

TEAM LinG

2336.1 Data Manipulation Statements

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing
output:

n Write tabs between fields.
n Do not enclose fields within any quoting characters.
n Use ‘\’ to escape instances of tab, newline, or ‘\’ that occur within field values.
n Write newlines at the ends of lines.

Note that to write FIELDS ESCAPED BY ‘\\’, you must specify two backslashes for the value
to be read as a single backslash.

Note: If you have generated the text file on a Windows system, you might have to use LINES
TERMINATED BY ‘\r\n’ to read the file properly, because Windows programs typically use
two characters as a line terminator. Some programs, such as WordPad, might use \r as a line
terminator when writing files. To read such files, use LINES TERMINATED BY ‘\r’.

If all the lines you want to read in have a common prefix that you want to ignore, you can
use LINES STARTING BY ‘prefix_string’ to skip over the prefix. If a line doesn’t include the
prefix, the entire line is skipped.

The IGNORE number LINES option can be used to ignore lines at the start of the file. For
example, you can use IGNORE 1 LINES to skip over an initial header line containing column
names:

mysql> LOAD DATA INFILE ‘/tmp/test.txt’

-> INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA INFILE to write data
from a database into a file and then read the file back into the database later, the field- and
line-handling options for both statements must match. Otherwise, LOAD DATA INFILE will not
interpret the contents of the file properly. Suppose that you use SELECT ... INTO OUTFILE to
write a file with fields delimited by commas:

mysql> SELECT * INTO OUTFILE ‘data.txt’

-> FIELDS TERMINATED BY ‘,’

-> FROM table2;

To read the comma-delimited file back in, the correct statement would be:

mysql> LOAD DATA INFILE ‘data.txt’ INTO TABLE table2

-> FIELDS TERMINATED BY ‘,’;

If instead you tried to read in the file with the statement shown here, it wouldn’t work
because it instructs LOAD DATA INFILE to look for tabs between fields:

mysql> LOAD DATA INFILE ‘data.txt’ INTO TABLE table2

-> FIELDS TERMINATED BY ‘\t’;

The likely result is that each input line would be interpreted as a single field.

07 6337 ch06 6/24/04 12:44 PM Page 233

TEAM LinG

234 CHAPTER 6 SQL Statement Syntax

LOAD DATA INFILE can be used to read files obtained from external sources, too. For exam-
ple, a file in dBASE format will have fields separated by commas and enclosed within double
quotes. If lines in the file are terminated by newlines, the statement shown here illustrates
the field- and line-handling options you would use to load the file:

mysql> LOAD DATA INFILE ‘data.txt’ INTO TABLE tbl_name

-> FIELDS TERMINATED BY ‘,’ ENCLOSED BY ‘“‘

-> LINES TERMINATED BY ‘\n’;

Any of the field- or line-handling options can specify an empty string (‘’). If not empty, the
FIELDS [OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single character.
The FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMINATED BY values can be
more than one character. For example, to write lines that are terminated by carriage
return/linefeed pairs, or to read a file containing such lines, specify a LINES TERMINATED BY
‘\r\n’ clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

mysql> CREATE TABLE jokes

-> (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

-> joke TEXT NOT NULL);

mysql> LOAD DATA INFILE ‘/tmp/jokes.txt’ INTO TABLE jokes

-> FIELDS TERMINATED BY ‘’

-> LINES TERMINATED BY ‘\n%%\n’ (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ... INTO
OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY charac-
ter. An example of such output (using a comma as the field delimiter) is shown here:

“1”,”a string”,”100.20”

“2”,”a string containing a , comma”,”102.20”

“3”,”a string containing a \” quote”,”102.20”

“4”,”a string containing a \”, quote and comma”,”102.20”

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose CHAR and
VARCHAR fields:

1,”a string”,100.20

2,”a string containing a , comma”,102.20

3,”a string containing a \” quote”,102.20

4,”a string containing a \”, quote and comma”,102.20

Note that occurrences of the ENCLOSED BY character within a field value are escaped by pre-
fixing them with the ESCAPED BY character. Also note that if you specify an empty ESCAPED BY
value, it is possible to generate output that cannot be read properly by LOAD DATA INFILE.

07 6337 ch06 6/24/04 12:44 PM Page 234

TEAM LinG

2356.1 Data Manipulation Statements

For example, the preceding output just shown would appear as follows if the escape charac-
ter is empty. Observe that the second field in the fourth line contains a comma following the
quote, which (erroneously) appears to terminate the field:

1,”a string”,100.20

2,”a string containing a , comma”,102.20

3,”a string containing a “ quote”,102.20

4,”a string containing a “, quote and comma”,102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values.
(This is true whether or not OPTIONALLY is specified; OPTIONALLY has no effect on input inter-
pretation.) Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character
are interpreted as part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized
as terminating a field value only if followed by the field or line TERMINATED BY sequence. To
avoid ambiguity, occurrences of the ENCLOSED BY character within a field value can be dou-
bled and will be interpreted as a single instance of the character. For example, if ENCLOSED BY
‘“‘ is specified, quotes are handled as shown here:

“The “”BIG”” boss” -> The “BIG” boss

The “BIG” boss -> The “BIG” boss

The “”BIG”” boss -> The “”BIG”” boss

FIELDS ESCAPED BY controls how to write or read special characters. If the FIELDS ESCAPED
BY character is not empty, it is used to prefix the following characters on output:

n The FIELDS ESCAPED BY character
n The FIELDS [OPTIONALLY] ENCLOSED BY character
n The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values
n ASCII 0 (what is actually written following the escape character is ASCII ‘0’, not a zero-

valued byte)

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly
if field values in your data contain any of the characters in the list just given.

For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are
stripped and the following character is taken literally as part of a field value. The exceptions
are an escaped ‘0’ or ‘N’ (for example, \0 or \N if the escape character is ‘\’). These sequences
are interpreted as ASCII NUL (a zero-valued byte) and NULL. The rules for NULL handling
are described later in this section.

For more information about ‘\’-escape syntax, see Section 2.1, “Literal Values.”

07 6337 ch06 6/24/04 12:44 PM Page 235

TEAM LinG

236 CHAPTER 6 SQL Statement Syntax

In certain cases, field- and line-handling options interact:

n If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is non-empty,
lines are also terminated with FIELDS TERMINATED BY.

n If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (‘’), a
fixed-row (non-delimited) format is used. With fixed-row format, no delimiters are used
between fields (but you can still have a line terminator). Instead, column values are
written and read using the “display” widths of the columns. For example, if a column is
declared as INT(7), values for the column are written using seven-character fields. On
input, values for the column are obtained by reading seven characters.

LINES TERMINATED BY is still used to separate lines. If a line doesn’t contain all fields, the
rest of the columns are set to their default values. If you don’t have a line terminator,
you should set this to ‘’. In this case, the text file must contain all fields for each row.

Fixed-row format also affects handling of NULL values, as described later. Note that
fixed-size format will not work if you are using a multi-byte character set.

Handling of NULL values varies according to the FIELDS and LINES options in use:

n For the default FIELDS and LINES values, NULL is written as a field value of \N for output,
and a field value of \N is read as NULL for input (assuming that the ESCAPED BY character
is ‘\’).

n If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value
is read as a NULL value. This differs from the word NULL enclosed within FIELDS
ENCLOSED BY characters, which is read as the string ‘NULL’.

n If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.
n With fixed-row format (which happens when FIELDS TERMINATED BY and FIELDS

ENCLOSED BY are both empty), NULL is written as an empty string. Note that this causes
both NULL values and empty strings in the table to be indistinguishable when written to
the file because they are both written as empty strings. If you need to be able to tell the
two apart when reading the file back in, you should not use fixed-row format.

Some cases are not supported by LOAD DATA INFILE:

n Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and BLOB
or TEXT columns.

n If you specify one separator that is the same as or a prefix of another, LOAD DATA INFILE
won’t be able to interpret the input properly. For example, the following FIELDS clause
would cause problems:
FIELDS TERMINATED BY ‘“‘ ENCLOSED BY ‘“‘

n If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS
ENCLOSED BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value will
cause LOAD DATA INFILE to stop reading a field or line too early. This happens because
LOAD DATA INFILE cannot properly determine where the field or line value ends.

07 6337 ch06 6/24/04 12:44 PM Page 236

TEAM LinG

2376.1 Data Manipulation Statements

The following example loads all columns of the persondata table:

mysql> LOAD DATA INFILE ‘persondata.txt’ INTO TABLE persondata;

By default, when no column list is provided at the end of the LOAD DATA INFILE statement,
input lines are expected to contain a field for each table column. If you want to load only
some of a table’s columns, specify a column list:

mysql> LOAD DATA INFILE ‘persondata.txt’

-> INTO TABLE persondata (col1,col2,...);

You must also specify a column list if the order of the fields in the input file differs from the
order of the columns in the table. Otherwise, MySQL cannot tell how to match up input
fields with table columns.

If an input line has too many fields, the extra fields are ignored and the number of warnings
is incremented.

If an input line has too few fields, the table columns for which input fields are missing are
set to their default values. Default value assignment is described in Section 6.2.5, “CREATE
TABLE Syntax.”

An empty field value is interpreted differently than if the field value is missing:

n For string types, the column is set to the empty string.
n For numeric types, the column is set to 0.
n For date and time types, the column is set to the appropriate “zero” value for the type.

See Section 4.3, “Date and Time Types.”

These are the same values that result if you assign an empty string explicitly to a string,
numeric, or date or time type explicitly in an INSERT or UPDATE statement.

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the
column (that is, \N), or (for the first TIMESTAMP column only) if the TIMESTAMP column is
omitted from the field list when a field list is specified.

LOAD DATA INFILE regards all input as strings, so you can’t use numeric values for ENUM or SET
columns the way you can with INSERT statements. All ENUM and SET values must be specified
as strings!

When the LOAD DATA INFILE statement finishes, it returns an information string in the fol-
lowing format:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

If you are using the C API, you can get information about the statement by calling the
mysql_info() C API function.

07 6337 ch06 6/24/04 12:44 PM Page 237

TEAM LinG

238 CHAPTER 6 SQL Statement Syntax

Warnings occur under the same circumstances as when values are inserted via the INSERT
statement (see Section 6.1.4, “INSERT Syntax”), except that LOAD DATA INFILE also generates
warnings when there are too few or too many fields in the input row. The warnings are not
stored anywhere; the number of warnings can be used only as an indication of whether
everything went well.

From MySQL 4.1.1 on, you can use SHOW WARNINGS to get a list of the first max_error_count
warnings as information about what went wrong. See Section 6.5.3.20, “SHOW WARNINGS
Syntax.”

Before MySQL 4.1.1, only a warning count is available to indicate that something went
wrong. If you get warnings and want to know exactly why you got them, one way to do this
is to dump the table into another file using SELECT ... INTO OUTFILE and compare the file
to your original input file.

6.1.6 REPLACE Syntax
REPLACE [LOW_PRIORITY | DELAYED]

[INTO] tbl_name [(col_name,...)]

VALUES ({expr | DEFAULT},...),(...),...

Or:

REPLACE [LOW_PRIORITY | DELAYED]

[INTO] tbl_name

SET col_name={expr | DEFAULT}, ...

Or:

REPLACE [LOW_PRIORITY | DELAYED]

[INTO] tbl_name [(col_name,...)]

SELECT ...

REPLACE works exactly like INSERT, except that if an old record in the table has the same value
as a new record for a PRIMARY KEY or a UNIQUE index, the old record is deleted before the new
record is inserted. See Section 6.1.4, “INSERT Syntax.”

Note that unless the table has a PRIMARY KEY or UNIQUE index, using a REPLACE statement
makes no sense. It becomes equivalent to INSERT, because there is no index to be used to
determine whether a new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any
missing columns are set to their default values, just as happens for INSERT. You can’t refer to
values from the old row and use them in the new row. It appeared that you could do this in
some old MySQL versions, but that was a bug that has been corrected.

To be able to use REPLACE, you must have INSERT and DELETE privileges for the table.

07 6337 ch06 6/24/04 12:44 PM Page 238

TEAM LinG

2396.1 Data Manipulation Statements

The REPLACE statement returns a count to indicate the number of rows affected. This is the
sum of the rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was
inserted and no rows were deleted. If the count is greater than 1, one or more old rows were
deleted before the new row was inserted. It is possible for a single row to replace more than
one old row if the table contains multiple unique indexes and the new row duplicates values
for different old rows in different unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or
whether it also replaced any rows: Check whether the count is 1 (added) or greater
(replaced).

If you are using the C API, the affected-rows count can be obtained using the
mysql_affected_rows() function.

Here follows in more detail the algorithm that is used (it is also used with LOAD DATA ...
REPLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary or unique
key:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

6.1.7 SELECT Syntax
SELECT

[ALL | DISTINCT | DISTINCTROW]

[HIGH_PRIORITY]

[STRAIGHT_JOIN]

[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]

[SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]

select_expr,...

[INTO OUTFILE ‘file_name’ export_options

| INTO DUMPFILE ‘file_name’]

[FROM table_references

[WHERE where_definition]

[GROUP BY {col_name | expr | position}

[ASC | DESC], ... [WITH ROLLUP]]

[HAVING where_definition]

[ORDER BY {col_name | expr | position}

[ASC | DESC] ,...]

[LIMIT [offset,{] row_count | row_count OFFSET offset}]

[PROCEDURE procedure_name(argument_list)]

[FOR UPDATE | LOCK IN SHARE MODE]]

07 6337 ch06 6/24/04 12:44 PM Page 239

TEAM LinG

240 CHAPTER 6 SQL Statement Syntax

SELECT is used to retrieve rows selected from one or more tables. Support for UNION state-
ments and subqueries is available as of MySQL 4.0 and 4.1, respectively. See Section 6.1.7.2,
“UNION Syntax,” and Section 6.1.8, “Subquery Syntax.”

n Each select_expr indicates a column you want to retrieve.
n table_references indicates the table or tables from which to retrieve rows. Its syntax is

described in Section 6.1.7.1, “JOIN Syntax.”
n where_definition indicates any conditions that selected rows must satisfy.

SELECT can also be used to retrieve rows computed without reference to any table.

For example:

mysql> SELECT 1 + 1;

-> 2

All clauses used must be given in exactly the order shown in the syntax description. For
example, a HAVING clause must come after any GROUP BY clause and before any ORDER BY clause.

n A select_expr can be given an alias using AS alias_name. The alias is used as the
expression’s column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For
example:
mysql> SELECT CONCAT(last_name,’, ‘,first_name) AS full_name

-> FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr. The preceding example could
have been written like this:
mysql> SELECT CONCAT(last_name,’, ‘,first_name) full_name

-> FROM mytable ORDER BY full_name;

Because the AS is optional, a subtle problem can occur if you forget the comma between
two SELECT expressions: MySQL interprets the second as an alias name. For example, in
the following statement, columnb is treated as an alias name:
mysql> SELECT columna columnb FROM mytable;

n It is not allowable to use a column alias in a WHERE clause, because the column value
might not yet be determined when the WHERE clause is executed. See Section A.1.4,
“Problems with Column Aliases.”

n The FROM table_references clause indicates the tables from which to retrieve rows. If
you name more than one table, you are performing a join. For information on join
syntax, see Section 6.1.7.1, “JOIN Syntax.” For each table specified, you can optionally
specify an alias.
tbl_name [[AS] alias]

[[USE INDEX (key_list)]

| [IGNORE INDEX (key_list)]

| [FORCE INDEX (key_list)]]

07 6337 ch06 6/24/04 12:44 PM Page 240

TEAM LinG

2416.1 Data Manipulation Statements

The use of USE INDEX, IGNORE INDEX, FORCE INDEX to give the optimizer hints about how
to choose indexes is described in Section 6.1.7.1, “JOIN Syntax.”

As of MySQL 4.0.14, you can use SET max_seeks_for_key=value as an alternative way to
force MySQL to prefer key scans instead of table scans.

n You can refer to a table within the current database as tbl_name (within the current data-
base), or as db_name.tbl_name to explicitly specify a database. You can refer to a column
as col_name, tbl_name.col_name, or db_name.tbl_name.col_name. You need not specify a
tbl_name or db_name.tbl_name prefix for a column reference unless the reference would
be ambiguous. See Section 2.2, “Database, Table, Index, Column, and Alias Names,” for
examples of ambiguity that require the more explicit column reference forms.

n From MySQL 4.1.0 on, you are allowed to specify DUAL as a dummy table name in situ-
ations where no tables are referenced:
mysql> SELECT 1 + 1 FROM DUAL;

-> 2

DUAL is purely a compatibility feature. Some other servers require this syntax.
n A table reference can be aliased using tbl_name [AS] alias_name:

mysql> SELECT t1.name, t2.salary FROM employee AS t1, info AS t2

-> WHERE t1.name = t2.name;

mysql> SELECT t1.name, t2.salary FROM employee t1, info t2

-> WHERE t1.name = t2.name;

n In the WHERE clause, you can use any of the functions that MySQL supports, except for
aggregate (summary) functions. See Chapter 5, “Functions and Operators.”

n Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using
column names, column aliases, or column positions. Column positions are integers and
begin with 1:
mysql> SELECT college, region, seed FROM tournament

-> ORDER BY region, seed;

mysql> SELECT college, region AS r, seed AS s FROM tournament

-> ORDER BY r, s;

mysql> SELECT college, region, seed FROM tournament

-> ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column
in the ORDER BY clause that you are sorting by. The default is ascending order; this can
be specified explicitly using the ASC keyword.

Use of column positions is deprecated because the syntax has been removed from the
SQL standard.

n If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you
had an ORDER BY for the same columns. MySQL has extended the GROUP BY clause as of ver-
sion 3.23.34 so that you can also specify ASC and DESC after columns named in the clause:
SELECT a, COUNT(b) FROM test_table GROUP BY a DESC

07 6337 ch06 6/24/04 12:44 PM Page 241

TEAM LinG

242 CHAPTER 6 SQL Statement Syntax

n MySQL extends the use of GROUP BY to allow you to select fields that are not mentioned
in the GROUP BY clause. If you are not getting the results you expect from your query,
please read the GROUP BY description. See Section 5.9, “Functions and Modifiers for Use
with GROUP BY Clauses.”

n As of MySQL 4.1.1, GROUP BY allows a WITH ROLLUP modifier. See Section 5.9.2, “GROUP
BY Modifiers.”

n The HAVING clause can refer to any column or alias named in a select_expr. It is applied
nearly last, just before items are sent to the client, with no optimization. (LIMIT is
applied after HAVING.)

n Don’t use HAVING for items that should be in the WHERE clause. For example, do not write
this:
mysql> SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:
mysql> SELECT col_name FROM tbl_name WHERE col_name > 0;

n The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:
mysql> SELECT user, MAX(salary) FROM users

-> GROUP BY user HAVING MAX(salary)>10;

However, that does not work in older MySQL servers (before version 3.22.5). Instead,
you can use a column alias in the select list and refer to the alias in the HAVING clause:
mysql> SELECT user, MAX(salary) AS max_salary FROM users

-> GROUP BY user HAVING max_salary>10;

n The LIMIT clause can be used to constrain the number of rows returned by the SELECT
statement. LIMIT takes one or two numeric arguments, which must be integer constants.

With two arguments, the first argument specifies the offset of the first row to return,
and the second specifies the maximum number of rows to return. The offset of the ini-
tial row is 0 (not 1):
mysql> SELECT * FROM table LIMIT 5,10; # Retrieve rows 6-15

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET

offset syntax.

To retrieve all rows from a certain offset up to the end of the result set, you can use
some large number for the second parameter. This statement retrieves all rows from the
96th row to the last:
mysql> SELECT * FROM table LIMIT 95,18446744073709551615;

07 6337 ch06 6/24/04 12:44 PM Page 242

TEAM LinG

2436.1 Data Manipulation Statements

With one argument, the value specifies the number of rows to return from the begin-
ning of the result set:
mysql> SELECT * FROM table LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT n is equivalent to LIMIT 0,n.
n The SELECT ... INTO OUTFILE ‘file_name’ syntax writes the selected rows to a file.

The file is created on the server host, so you must have the FILE privilege to use this
form of SELECT. The file cannot already exist, which among other things prevents files
such as /etc/passwd and database tables from being destroyed.

The SELECT ... INTO OUTFILE statement is intended primarily to let you very quickly
dump a table on the server machine. If you want to create the resulting file on some
client host other than the server host, you can’t use SELECT ... INTO OUTFILE. In that
case, you should instead use some command like mysql -e “SELECT ...” > file_name

on the client host to generate the file.

SELECT ... INTO OUTFILE is the complement of LOAD DATA INFILE; the syntax for the
export_options part of the statement consists of the same FIELDS and LINES clauses that
are used with the LOAD DATA INFILE statement. See Section 6.1.5, “LOAD DATA INFILE
Syntax.”

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY
character is not empty, it is used to prefix the following characters on output:

n The FIELDS ESCAPED BY character
n The FIELDS [OPTIONALLY] ENCLOSED BY character
n The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values
n ASCII 0 (what is actually written following the escape character is ASCII ‘0’, not a

zero-valued byte)

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is out-
put as NULL, not \N. It is probably not a good idea to specify an empty escape character,
particularly if field values in your data contain any of the characters in the list just given.

The reason for the above is that you must escape any FIELDS TERMINATED BY, ENCLOSED
BY, ESCAPED BY, or LINES TERMINATED BY characters to reliably be able to read the file
back. ASCII NUL is escaped to make it easier to view with some pagers.

The resulting file doesn’t have to conform to SQL syntax, so nothing else need be
escaped.

Here is an example that produces a file in the comma-separated values format used by
many programs:
SELECT a,b,a+b INTO OUTFILE ‘/tmp/result.text’

FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘“‘

LINES TERMINATED BY ‘\n’

FROM test_table;

07 6337 ch06 6/24/04 12:44 PM Page 243

TEAM LinG

244 CHAPTER 6 SQL Statement Syntax

n If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the
file, without any column or line termination and without performing any escape pro-
cessing. This is useful if you want to store a BLOB value in a file.

n Note: Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users on the
server host. The reason for this is that the MySQL server can’t create a file that is
owned by anyone other than the user it’s running as (you should never run mysqld as
root). The file thus must be world-writable so that you can manipulate its contents.

n A PROCEDURE clause names a procedure that should process the data in the result set.
n If you use FOR UPDATE on a storage engine that uses page or row locks, rows examined

by the query are write-locked until the end of the current transaction.

Following the SELECT keyword, you can give a number of options that affect the operation of
the statement.

The ALL, DISTINCT, and DISTINCTROW options specify whether duplicate rows should be
returned. If none of these options are given, the default is ALL (all matching rows are
returned). DISTINCT and DISTINCTROW are synonyms and specify that duplicate rows in the
result set should be removed.

HIGH_PRIORITY, STRAIGHT_JOIN, and options beginning with SQL_ are MySQL extensions to
standard SQL.

n HIGH_PRIORITY will give the SELECT higher priority than a statement that updates a table.
You should use this only for queries that are very fast and must be done at once. A
SELECT HIGH_PRIORITY query that is issued while the table is locked for reading will run
even if there is already an update statement waiting for the table to be free.

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.
n STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are list-

ed in the FROM clause. You can use this to speed up a query if the optimizer joins the
tables in non-optimal order. STRAIGHT_JOIN also can be used in the table_references
list. See Section 6.1.7.1, “JOIN Syntax.”

n SQL_BIG_RESULT can be used with GROUP BY or DISTINCT to tell the optimizer that the
result set will have many rows. In this case, MySQL will directly use disk-based tempo-
rary tables if needed. MySQL will also, in this case, prefer sorting to using a temporary
table with a key on the GROUP BY elements.

n SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps
MySQL free the table locks early and helps in cases where it takes a long time to send
the result set to the client.

n SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the optimizer that the
result set will be small. In this case, MySQL uses fast temporary tables to store the
resulting table instead of using sorting. In MySQL 3.23 and up, this shouldn’t normally
be needed.

07 6337 ch06 6/24/04 12:44 PM Page 244

TEAM LinG

2456.1 Data Manipulation Statements

n SQL_CALC_FOUND_ROWS (available in MySQL 4.0.0 and up) tells MySQL to calculate how
many rows there would be in the result set, disregarding any LIMIT clause. The number
of rows can then be retrieved with SELECT FOUND_ROWS(). See Section 5.8.3,
“Information Functions.”

Before MySQL 4.1.0, this option does not work with LIMIT 0, which is optimized to
return instantly (resulting in a row count of 0).

n SQL_CACHE tells MySQL to store the query result in the query cache if you are using a
query_cache_type value of 2 or DEMAND. For a query that uses UNION or subqueries, this
option takes effect to be used in any SELECT of the query.

n SQL_NO_CACHE tells MySQL not to store the query result in the query cache. For a query
that uses UNION or subqueries, this option takes effect to be used in any SELECT of the
query.

6.1.7.1 JOIN Syntax
MySQL supports the following JOIN syntaxes for the table_references part of SELECT state-
ments and multiple-table DELETE and UPDATE statements:

table_reference, table_reference

table_reference [INNER | CROSS] JOIN table_reference [join_condition]

table_reference STRAIGHT_JOIN table_reference

table_reference LEFT [OUTER] JOIN table_reference [join_condition]

table_reference NATURAL [LEFT [OUTER]] JOIN table_reference

{ OJ table_reference LEFT OUTER JOIN table_reference

ON conditional_expr }

table_reference RIGHT [OUTER] JOIN table_reference [join_condition]

table_reference NATURAL [RIGHT [OUTER]] JOIN table_reference

table_reference is defined as:

tbl_name [[AS] alias]

[[USE INDEX (key_list)]

| [IGNORE INDEX (key_list)]

| [FORCE INDEX (key_list)]]

join_condition is defined as:

ON conditional_expr | USING (column_list)

You should generally not have any conditions in the ON part that are used to restrict which
rows you want in the result set, but rather specify these conditions in the WHERE clause.
There are exceptions to this rule.

Note that INNER JOIN syntax allows a join_condition only from MySQL 3.23.17 on. The
same is true for JOIN and CROSS JOIN only as of MySQL 4.0.11.

07 6337 ch06 6/24/04 12:44 PM Page 245

TEAM LinG

246 CHAPTER 6 SQL Statement Syntax

The { OJ ... LEFT OUTER JOIN ...} syntax shown in the preceding list exists only for com-
patibility with ODBC.

n A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:
mysql> SELECT t1.name, t2.salary FROM employee AS t1, info AS t2

-> WHERE t1.name = t2.name;

mysql> SELECT t1.name, t2.salary FROM employee t1, info t2

-> WHERE t1.name = t2.name;

n The ON conditional is any conditional expression of the form that can be used in a WHERE
clause.

n If there is no matching record for the right table in the ON or USING part in a LEFT JOIN,
a row with all columns set to NULL is used for the right table. You can use this fact to
find records in a table that have no counterpart in another table:
mysql> SELECT table1.* FROM table1

-> LEFT JOIN table2 ON table1.id=table2.id

-> WHERE table2.id IS NULL;

This example finds all rows in table1 with an id value that is not present in table2 (that
is, all rows in table1 with no corresponding row in table2). This assumes that
table2.id is declared NOT NULL.

n The USING (column_list) clause names a list of columns that must exist in both tables.
The following two clauses are semantically identical:
a LEFT JOIN b USING (c1,c2,c3)

a LEFT JOIN b ON a.c1=b.c1 AND a.c2=b.c2 AND a.c3=b.c3

n The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an
INNER JOIN or a LEFT JOIN with a USING clause that names all columns that exist in both
tables.

n INNER JOIN and , (comma) are semantically equivalent in the absence of a join condi-
tion: both will produce a Cartesian product between the specified tables (that is, each
and every row in the first table will be joined onto all rows in the second table).

n RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it’s
recommended to use LEFT JOIN instead of RIGHT JOIN.

n STRAIGHT_JOIN is identical to JOIN, except that the left table is always read before the
right table. This can be used for those (few) cases for which the join optimizer puts the
tables in the wrong order.

As of MySQL 3.23.12, you can give hints about which index MySQL should use when
retrieving information from a table. By specifying USE INDEX (key_list), you can tell
MySQL to use only one of the possible indexes to find rows in the table. The alternative
syntax IGNORE INDEX (key_list) can be used to tell MySQL to not use some particular
index. These hints are useful if EXPLAIN shows that MySQL is using the wrong index from
the list of possible indexes.

07 6337 ch06 6/24/04 12:44 PM Page 246

TEAM LinG

2476.1 Data Manipulation Statements

From MySQL 4.0.9 on, you can also use FORCE INDEX. This acts likes USE INDEX (key_list)
but with the addition that a table scan is assumed to be very expensive. In other words, a table
scan will only be used if there is no way to use one of the given indexes to find rows in the table.

USE KEY, IGNORE KEY, and FORCE KEY are synonyms for USE INDEX, IGNORE INDEX, and FORCE
INDEX.

Note: USE INDEX, IGNORE INDEX, and FORCE INDEX only affect which indexes are used when
MySQL decides how to find rows in the table and how to do the join. They do not affect
whether an index will be used when resolving an ORDER BY or GROUP BY.

Some join examples:

mysql> SELECT * FROM table1,table2 WHERE table1.id=table2.id;

mysql> SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id;

mysql> SELECT * FROM table1 LEFT JOIN table2 USING (id);

mysql> SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id

-> LEFT JOIN table3 ON table2.id=table3.id;

mysql> SELECT * FROM table1 USE INDEX (key1,key2)

-> WHERE key1=1 AND key2=2 AND key3=3;

mysql> SELECT * FROM table1 IGNORE INDEX (key3)

-> WHERE key1=1 AND key2=2 AND key3=3;

6.1.7.2 UNION Syntax
SELECT ...

UNION [ALL | DISTINCT]

SELECT ...

[UNION [ALL | DISTINCT]

SELECT ...]

UNION is used to combine the result from many SELECT statements into one result set. UNION is
available from MySQL 4.0.0 on.

Selected columns listed in corresponding positions of each SELECT statement should have the
same type. (For example, the first column selected by the first statement should have the
same type as the first column selected by the other statements.) The column names used in
the first SELECT statement are used as the column names for the results returned.

The SELECT statements are normal select statements, but with the following restrictions:

n Only the last SELECT statement can have INTO OUTFILE.
n HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION. If you

specify it for the first SELECT, it has no effect. If you specify it for any subsequent SELECT
statements, a syntax error results.

If you don’t use the keyword ALL for the UNION, all returned rows will be unique, as if you
had done a DISTINCT for the total result set. If you specify ALL, you will get all matching rows
from all the used SELECT statements.

07 6337 ch06 6/24/04 12:44 PM Page 247

TEAM LinG

248 CHAPTER 6 SQL Statement Syntax

The DISTINCT keyword is an optional word (introduced in MySQL 4.0.17). It does nothing,
but is allowed in the syntax as required by the SQL standard.

Note: You cannot mix UNION ALL and UNION DISTINCT in the same query yet. If you use ALL
for one UNION then it is used for all of them.

If you want to use an ORDER BY to sort the entire UNION result, you should use parentheses:

(SELECT a FROM tbl_name WHERE a=10 AND B=1 ORDER BY a LIMIT 10)

UNION

(SELECT a FROM tbl_name WHERE a=11 AND B=2 ORDER BY a LIMIT 10)

ORDER BY a;

The types and lengths of the columns in the result set of a UNION take into account the val-
ues retrieved by all the SELECT statements. Before MySQL 4.1.1, a limitation of UNION is that
only the values from the first SELECT are used to determine result column types and lengths.
This could result in value truncation if, for example, the first SELECT retrieves shorter values
than the second SELECT:

mysql> SELECT REPEAT(‘a’,1) UNION SELECT REPEAT(‘b’,10);

+---------------+

| REPEAT(‘a’,1) |

+---------------+

| a |

| b |

+---------------+

That limitation has been removed as of MySQL 4.1.1:

mysql> SELECT REPEAT(‘a’,1) UNION SELECT REPEAT(‘b’,10);

+---------------+

| REPEAT(‘a’,1) |

+---------------+

| a |

| bbbbbbbbbb |

+---------------+

6.1.8 Subquery Syntax
A subquery is a SELECT statement inside another statement.

Starting with MySQL 4.1, all subquery forms and operations that the SQL standard
requires are supported, as well as a few features that are MySQL-specific.

With earlier MySQL versions, it was necessary to work around or avoid the use of sub-
queries, but people starting to write code now will find that subqueries are a very useful part
of the MySQL toolkit.

07 6337 ch06 6/24/04 12:44 PM Page 248

TEAM LinG

2496.1 Data Manipulation Statements

For MySQL versions prior to 4.1, most subqueries can be successfully rewritten using joins
and other methods. See Section 6.1.8.11, “Rewriting Subqueries as Joins for Earlier MySQL
Versions.”

Here is an example of a subquery:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT
column1 FROM t2) is the subquery. We say that the subquery is nested in the outer query, and
in fact it’s possible to nest subqueries within other subqueries, to a great depth. A subquery
must always appear within parentheses.

The main advantages of subqueries are:

n They allow queries that are structured so that it’s possible to isolate each part of a state-
ment.

n They provide alternative ways to perform operations that would otherwise require com-
plex joins and unions.

n They are, in many people’s opinion, readable. Indeed, it was the innovation of sub-
queries that gave people the original idea of calling the early SQL “Structured Query
Language.”

Here is an example statement that shows the major points about subquery syntax as specified
by the SQL standard and supported in MySQL:

DELETE FROM t1

WHERE s11 > ANY

(SELECT COUNT(*) /* no hint */ FROM t2

WHERE NOT EXISTS

(SELECT * FROM t3

WHERE ROW(5*t2.s1,77)=

(SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM

(SELECT * FROM t5) AS t5)));

6.1.8.1 The Subquery as Scalar Operand
In its simplest form (the scalar subquery as opposed to the row or table subqueries that are
discussed later), a subquery is a simple operand. Thus, you can use it wherever a column
value or literal is legal, and you can expect it to have those characteristics that all operands
have: a data type, a length, an indication whether it can be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);

SELECT (SELECT s2 FROM t1);

07 6337 ch06 6/24/04 12:44 PM Page 249

TEAM LinG

250 CHAPTER 6 SQL Statement Syntax

The subquery in this SELECT has a data type of CHAR, a length of 5, a character set and colla-
tion equal to the defaults in effect at CREATE TABLE time, and an indication that the value in
the column can be NULL. In fact, almost all subqueries can be NULL, because if the table is
empty, as in the example, the value of the subquery will be NULL. There are few restrictions.

n A subquery’s outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET,
or DO.

n A subquery can contain any of the keywords or clauses that an ordinary SELECT can con-
tain: DISTINCT, GROUP BY, ORDER BY, LIMIT, joins, hints, UNION constructs, comments,
functions, and so on.

So, when you see examples in the following sections that contain the rather spartan con-
struct (SELECT column1 FROM t1), imagine that your own code will contain much more
diverse and complex constructions.

For example, suppose that we make two tables:

CREATE TABLE t1 (s1 INT);

INSERT INTO t1 VALUES (1);

CREATE TABLE t2 (s1 INT);

INSERT INTO t2 VALUES (2);

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result will be 2 because there is a row in t2 containing a column s1 that has a value of 2.

The subquery can be part of an expression. If it is an operand for a function, don’t forget the
parentheses. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

6.1.8.2 Comparisons Using Subqueries
The most common use of a subquery is in the form:

non_subquery_operand comparison_operator (subquery)

Where comparison_operator is one of:

= > < >= <= <>

For example:

... ‘a’ = (SELECT column1 FROM t1)

At one time the only legal place for a subquery was on the right side of a comparison, and
you might still find some old DBMSs that insist on this.

07 6337 ch06 6/24/04 12:44 PM Page 250

TEAM LinG

2516.1 Data Manipulation Statements

Here is an example of a common-form subquery comparison that you cannot do with a join.
It finds all the values in table t1 that are equal to a maximum value in table t2:

SELECT column1 FROM t1

WHERE column1 = (SELECT MAX(column2) FROM t2);

Here is another example, which again is impossible with a join because it involves aggregat-
ing for one of the tables. It finds all rows in table t1 containing a value that occurs twice:

SELECT * FROM t1

WHERE 2 = (SELECT COUNT(column1) FROM t1);

6.1.8.3 Subqueries with ANY, IN, and SOME
Syntax:

operand comparison_operator ANY (subquery)

operand IN (subquery)

operand comparison_operator SOME (subquery)

The ANY keyword, which must follow a comparison operator, means “return TRUE if the com-
parison is TRUE for ANY of the rows that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2
contains (21,14,7) because there is a value 7 in t2 that is less than 10. The expression is
FALSE if table t2 contains (20,10), or if table t2 is empty. The expression is UNKNOWN if table
t2 contains (NULL,NULL,NULL).

The word IN is an alias for = ANY, so these two statements are the same:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);

SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

The word SOME is an alias for ANY, so these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);

SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but the preceding example shows why it might be useful. To
most people’s ears, the English phrase “a is not equal to any b” means “there is no b which is
equal to a,” but that isn’t what is meant by the SQL syntax. Using <> SOME instead helps
ensure that everyone understands the true meaning of the query.

07 6337 ch06 6/24/04 12:44 PM Page 251

TEAM LinG

252 CHAPTER 6 SQL Statement Syntax

6.1.8.4 Subqueries with ALL
Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means “return TRUE if the compar-
ison is TRUE for ALL of the rows that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2
contains (-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE
if table t2 contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is
greater than 10. The expression is UNKNOWN if table t2 contains (0,NULL,1).

Finally, if table t2 is empty, the result is TRUE. You might think the result should be UNKNOWN,
but sorry, it’s TRUE. So, rather oddly, the following statement is TRUE when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

But this statement is UNKNOWN when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following statement is UNKNOWN when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables with NULL values and empty tables are edge cases. When writing subquery
code, always consider whether you have taken those two possibilities into account.

6.1.8.5 Correlated Subqueries
A correlated subquery is a subquery that contains a reference to a column that also appears in
the outer query. For example:

SELECT * FROM t1 WHERE column1 = ANY

(SELECT column1 FROM t2 WHERE t2.column2 = t1.column2);

Notice that the subquery contains a reference to a column of t1, even though the subquery’s
FROM clause doesn’t mention a table t1. So, MySQL looks outside the subquery, and finds t1
in the outer query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table
t2 contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE
column1 = ANY (SELECT column1 FROM t2) would be TRUE, but in this example, the WHERE
clause within the subquery is FALSE (because 7 ≠ 5), so the subquery as a whole is FALSE.

07 6337 ch06 6/24/04 12:44 PM Page 252

TEAM LinG

2536.1 Data Manipulation Statements

Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x

WHERE x.column1 = (SELECT column1 FROM t2 AS x

WHERE x.column1 = (SELECT column1 FROM t3

WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2
AS x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ... is
an outer query that is farther out.

For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the
outer select list.

For certain cases, a correlated subquery is optimized. For example:

val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)

Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might
improve performance.

6.1.8.6 EXISTS and NOT EXISTS
If a subquery returns any values at all, then EXISTS subquery is TRUE, and NOT EXISTS
subquery is FALSE. For example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or
SELECT column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it
doesn’t matter.

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values,
then the EXISTS condition is TRUE. This is actually an unlikely example, since almost always a
[NOT] EXISTS subquery will contain correlations. Here are some more realistic examples:

n What kind of store is present in one or more cities?
SELECT DISTINCT store_type FROM Stores

WHERE EXISTS (SELECT * FROM Cities_Stores

WHERE Cities_Stores.store_type = Stores.store_type);

n What kind of store is present in no cities?
SELECT DISTINCT store_type FROM Stores

WHERE NOT EXISTS (SELECT * FROM Cities_Stores

WHERE Cities_Stores.store_type = Stores.store_type);

07 6337 ch06 6/24/04 12:44 PM Page 253

TEAM LinG

254 CHAPTER 6 SQL Statement Syntax

n What kind of store is present in all cities?
SELECT DISTINCT store_type FROM Stores S1

WHERE NOT EXISTS (

SELECT * FROM Cities WHERE NOT EXISTS (

SELECT * FROM Cities_Stores

WHERE Cities_Stores.city = Cities.city

AND Cities_Stores.store_type = Stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause
within a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store
that is not in Stores?” But it’s easier to say that a nested NOT EXISTS answers the question “is
x TRUE for all y?”

6.1.8.7 Row Subqueries
The discussion to this point has been of column (or scalar) subqueries: subqueries that return a
single column value. A row subquery is a subquery variant that returns a single row value and
can thus return more than one column value. Here are two examples:

SELECT * FROM t1 WHERE (1,2) = (SELECT column1, column2 FROM t2);

SELECT * FROM t1 WHERE ROW(1,2) = (SELECT column1, column2 FROM t2);

The queries here are both TRUE if table t2 has a row where column1 = 1 and column2 = 2.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are
equivalent. They are legal in other contexts, too. For example, the following two statements
are semantically equivalent (although currently only the second one can be optimized):

SELECT * FROM t1 WHERE (column1,column2) = (1,1);

SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The normal use of row constructors, though, is for comparisons with subqueries that return
two or more columns. For example, the following query answers the request, “find all rows
in table t1 that also exist in table t2”:

SELECT column1,column2,column3

FROM t1

WHERE (column1,column2,column3) IN

(SELECT column1,column2,column3 FROM t2);

6.1.8.8 Subqueries in the FROM clause
Subqueries are legal in a SELECT statement’s FROM clause. The syntax that you’ll actually
see is:

SELECT ... FROM (subquery) AS name ...

The AS name clause is mandatory, because every table in a FROM clause must have a name.
Any columns in the subquery select list must have unique names.

07 6337 ch06 6/24/04 12:44 PM Page 254

TEAM LinG

2556.1 Data Manipulation Statements

For illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here’s how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,’1’,1.0);

INSERT INTO t1 VALUES (2,’2’,2.0);

SELECT sb1,sb2,sb3

FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb

WHERE sb1 > 1;

Result: 2, ‘2’, 4.0.

Here’s another example: Suppose that you want to know the average of a set of sums for a
grouped table. This won’t work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

But this query will provide the desired information:

SELECT AVG(sum_column1)

FROM (SELECT SUM(column1) AS sum_column1

FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the
outer query.

At the moment, subqueries in the FROM clause cannot be correlated subqueries.

Subquery in the FROM clause will be executed (that is, derived temporary tables will be built)
even for the EXPLAIN statement, because upper level queries need information about all
tables during optimization phase.

6.1.8.9 Subquery Errors
There are some new error returns that apply only to subqueries. This section groups them
together because reviewing them will help remind you of some points.

n Unsupported subquery syntax:
ERROR 1235 (ER_NOT_SUPPORTED_YET)

SQLSTATE = 42000

Message = “This version of MySQL doesn’t yet support

‘LIMIT & IN/ALL/ANY/SOME subquery’”

This means that statements of the following form will not work, although this happens
only in some early versions, such as MySQL 4.1.1:
SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

07 6337 ch06 6/24/04 12:44 PM Page 255

TEAM LinG

256 CHAPTER 6 SQL Statement Syntax

n Incorrect number of columns from subquery:
ERROR 1241 (ER_OPERAND_COLUMNF)

SQLSTATE = 21000

Message = “Operand should contain 1 column(s)”

This error will occur in cases like this:
SELECT (SELECT column1, column2 FROM t2) FROM t1;

It’s okay to use a subquery that returns multiple columns, if the purpose is comparison.
See Section 6.1.8.7, “Row Subqueries.” But in other contexts, the subquery must be a
scalar operand.

n Incorrect number of rows from subquery:
ERROR 1242 (ER_SUBSELECT_NO_1_ROW)

SQLSTATE = 21000

Message = “Subquery returns more than 1 row”

This error will occur for statements such as the following one, but only when there is
more than one row in t2:
SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

That means this error might occur in code that had been working for years, because
somebody happened to make a change that affected the number of rows that the sub-
query can return. Remember that if the object is to find any number of rows, not just
one, then the correct statement would look like this:
SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

n Incorrectly used table in subquery:
Error 1093 (ER_UPDATE_TABLE_USED)

SQLSTATE = HY000

Message = “You can’t specify target table ‘x’

for update in FROM clause”

This error will occur in cases like this:
UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

It’s okay to use a subquery for assignment within an UPDATE statement, since subqueries
are legal in UPDATE and DELETE statements as well as in SELECT statements. However, you
cannot use the same table, in this case table t1, for both the subquery’s FROM clause and
the update target.

Usually, failure of a subquery causes the entire statement to fail.

07 6337 ch06 6/24/04 12:44 PM Page 256

TEAM LinG

2576.1 Data Manipulation Statements

6.1.8.10 Optimizing Subqueries
Development is ongoing, so no optimization tip is reliable for the long term. Some interest-
ing tricks that you might want to play with are:

n Use subquery clauses that affect the number or order of the rows in the subquery. For
example:
SELECT * FROM t1 WHERE t1.column1 IN

(SELECT column1 FROM t2 ORDER BY column1);

SELECT * FROM t1 WHERE t1.column1 IN

(SELECT DISTINCT column1 FROM t2);

SELECT * FROM t1 WHERE EXISTS

(SELECT * FROM t2 LIMIT 1);

n Replace a join with a subquery. For example, use this query:
SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (

SELECT column1 FROM t2);

Instead of this query:
SELECT DISTINCT t1.column1 FROM t1, t2

WHERE t1.column1 = t2.column1;

n Move clauses from outside to inside the subquery. For example, use this query:
SELECT * FROM t1

WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

Instead of this query:
SELECT * FROM t1

WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:
SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:
SELECT (SELECT column1 FROM t1) + 5 FROM t2;

n Use a row subquery instead of a correlated subquery. For example, use this query:
SELECT * FROM t1

WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

Instead of this query:
SELECT * FROM t1

WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1

AND t2.column2=t1.column2);

07 6337 ch06 6/24/04 12:44 PM Page 257

TEAM LinG

258 CHAPTER 6 SQL Statement Syntax

n Use NOT (a = ANY (...)) rather than a <> ALL (...).
n Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.
n Use = ANY rather than EXISTS.

These tricks might cause programs to go faster or slower. Using MySQL facilities like the
BENCHMARK() function, you can get an idea about what helps in your own situation. Don’t
worry too much about transforming to joins except for compatibility with older versions of
MySQL before 4.1 that do not support subqueries.

Some optimizations that MySQL itself makes are:

n MySQL executes non-correlated subqueries only once. Use EXPLAIN to make sure that a
given subquery really is non-correlated.

n MySQL rewrites IN/ALL/ANY/SOME subqueries in an attempt to take advantage of the
possibility that the select-list columns in the subquery are indexed.

n MySQL replaces subqueries of the following form with an index-lookup function,
which EXPLAIN will describe as a special join type:
... IN (SELECT indexed_column FROM single_table ...)

n MySQL enhances expressions of the following form with an expression involving MIN()
or MAX(), unless NULL values or empty sets are involved:
value {ALL|ANY|SOME} {> | < | >= | <=} (non-correlated subquery)

For example, this WHERE clause:
WHERE 5 > ALL (SELECT x FROM t)

might be treated by the optimizer like this:

WHERE 5 > (SELECT MAX(x) FROM t)

There is a chapter titled “How MySQL Transforms Subqueries” in the MySQL Internals
Manual. You can obtain this document by downloading the MySQL source package and
looking for a file named internals.texi in the Docs directory.

6.1.8.11 Rewriting Subqueries as Joins for Earlier MySQL Versions
Before MySQL 4.1, only nested queries of the form INSERT ... SELECT ... and REPLACE
... SELECT ... are supported. The IN() construct can be used in other contexts to test
membership in a set of values.

It is often possible to rewrite a query without a subquery:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

This can be rewritten as:

SELECT DISTINCT t1.* FROM t1,t2 WHERE t1.id=t2.id;

07 6337 ch06 6/24/04 12:44 PM Page 258

TEAM LinG

2596.1 Data Manipulation Statements

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);

SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be rewritten as:

SELECT table1.* FROM table1 LEFT JOIN table2 ON table1.id=table2.id

WHERE table2.id IS NULL;

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be
able to optimize it better—a fact that is not specific to MySQL Server alone. Prior to SQL-
92, outer joins did not exist, so subqueries were the only way to do certain things in those
bygone days. Today, MySQL Server and many other modern database systems offer a whole
range of outer join types.

For more complicated subqueries, you can often create temporary tables to hold the sub-
query. In some cases, however, this option will not work. The most frequently encountered
of these cases arises with DELETE statements, for which standard SQL does not support joins
(except in subqueries). For this situation, there are three options available:

n The first option is to upgrade to MySQL 4.1, which does support subqueries in DELETE
statements.

n The second option is to use a procedural programming language (such as Perl or PHP)
to submit a SELECT query to obtain the primary keys for the records to be deleted, and
then use these values to construct the DELETE statement (DELETE FROM ... WHERE
key_col IN (key1, key2, ...)).

n The third option is to use interactive SQL to construct a set of DELETE statements auto-
matically, using the MySQL extension CONCAT() (in lieu of the standard || operator).
For example:
SELECT

CONCAT(‘DELETE FROM table1 WHERE pkid = ‘, “‘“, table1.pkid, “‘“, ‘;’)

FROM table1, table2

WHERE table1.column1 = table2.column2;

You can place this query in a script file, use the file as input to one instance of the mysql
program, and use the program output as input to a second instance of mysql:

shell> mysql --skip-column-names mydb < myscript.sql | mysql mydb

MySQL Server 4.0 supports multiple-table DELETE statements that can be used to efficiently
delete rows based on information from one table or even from many tables at the same time.
Multiple-table UPDATE statements are also supported as of MySQL 4.0.

07 6337 ch06 6/24/04 12:44 PM Page 259

TEAM LinG

260 CHAPTER 6 SQL Statement Syntax

6.1.9 TRUNCATE Syntax
TRUNCATE TABLE tbl_name

TRUNCATE TABLE empties a table completely. Logically, this is equivalent to a DELETE state-
ment that deletes all rows, but there are practical differences under some circumstances.

For InnoDB, TRUNCATE TABLE is mapped to DELETE, so there is no difference. For other storage
engines, TRUNCATE TABLE differs from DELETE FROM ... in the following ways from MySQL
4.0 and up:

n Truncate operations drop and re-create the table, which is much faster than deleting
rows one by one.

n Truncate operations are not transaction-safe; you will get an error if you have an active
transaction or an active table lock.

n The number of deleted rows is not returned.
n As long as the table definition file tbl_name.frm is valid, the table can be re-created as

an empty table with TRUNCATE TABLE, even if the data or index files have become cor-
rupted.

n The table handler does not remember the last used AUTO_INCREMENT value, but starts
counting from the beginning. This is true even for MyISAM, which normally does not
reuse sequence values.

In MySQL 3.23, TRUNCATE TABLE is mapped to COMMIT; DELETE FROM tbl_name, so it behaves
like DELETE. See Section 6.1.1, “DELETE Syntax.”

TRUNCATE TABLE is an Oracle SQL extension. This statement was added in MySQL 3.23.28,
although from 3.23.28 to 3.23.32, the keyword TABLE must be omitted.

6.1.10 UPDATE Syntax
Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name

SET col_name1=expr1 [, col_name2=expr2 ...]

[WHERE where_definition]

[ORDER BY ...]

[LIMIT row_count]

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name [, tbl_name ...]

SET col_name1=expr1 [, col_name2=expr2 ...]

[WHERE where_definition]

07 6337 ch06 6/24/04 12:44 PM Page 260

TEAM LinG

2616.1 Data Manipulation Statements

The UPDATE statement updates columns in existing table rows with new values. The SET
clause indicates which columns to modify and the values they should be given. The WHERE
clause, if given, specifies which rows should be updated. Otherwise, all rows are updated. If
the ORDER BY clause is specified, the rows will be updated in the order that is specified. The
LIMIT clause places a limit on the number of rows that can be updated.

The UPDATE statement supports the following modifiers:

n If you specify the LOW_PRIORITY keyword, execution of the UPDATE is delayed until no
other clients are reading from the table.

n If you specify the IGNORE keyword, the update statement will not abort even if
duplicate-key errors occur during the update. Rows for which conflicts occur are
not updated.

If you access a column from tbl_name in an expression, UPDATE uses the current value of the
column. For example, the following statement sets the age column to one more than its cur-
rent value:

mysql> UPDATE persondata SET age=age+1;

UPDATE assignments are evaluated from left to right. For example, the following statement
doubles the age column, then increments it:

mysql> UPDATE persondata SET age=age*2, age=age+1;

If you set a column to the value it currently has, MySQL notices this and doesn’t update it.

If you update a column that has been declared NOT NULL by setting to NULL, the column is set
to the default value appropriate for the column type and the warning count is incremented.
The default value is 0 for numeric types, the empty string (‘’) for string types, and the
“zero” value for date and time types.

UPDATE returns the number of rows that were actually changed. In MySQL 3.22 or later, the
mysql_info() C API function returns the number of rows that were matched and updated
and the number of warnings that occurred during the UPDATE.

Starting from MySQL 3.23, you can use LIMIT row_count to restrict the scope of the UPDATE.
A LIMIT clause works as follows:

n Before MySQL 4.0.13, LIMIT is a rows-affected restriction. The statement stops as soon
as it has changed row_count rows that satisfy the WHERE clause.

n From 4.0.13 on, LIMIT is a rows-matched restriction. The statement stops as soon as it
has found row_count rows that satisfy the WHERE clause, whether or not they actually
were changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order speci-
fied by the clause. ORDER BY can be used from MySQL 4.0.0.

07 6337 ch06 6/24/04 12:44 PM Page 261

TEAM LinG

262 CHAPTER 6 SQL Statement Syntax

Starting with MySQL 4.0.4, you can also perform UPDATE operations that cover multiple
tables:

UPDATE items,month SET items.price=month.price

WHERE items.id=month.id;

The example shows an inner join using the comma operator, but multiple-table UPDATE state-
ments can use any type of join allowed in SELECT statements, such as LEFT JOIN.

Note: You cannot use ORDER BY or LIMIT with multiple-table UPDATE.

Before MySQL 4.0.18, you need the UPDATE privilege for all tables used in a multiple-table
UPDATE, even if they were not updated. As of MySQL 4.0.18, you need only the SELECT privi-
lege for any columns that are read but not modified.

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are for-
eign key constraints, the MySQL optimizer might process tables in an order that differs
from that of their parent/child relationship. In this case, the statement will fail and roll back.
Instead, update a single table and rely on the ON UPDATE capabilities that InnoDB provides to
cause the other tables to be modified accordingly.

6.2 Data Definition Statements

6.2.1 ALTER DATABASE Syntax
ALTER DATABASE db_name

alter_specification [, alter_specification] ...

alter_specification:

[DEFAULT] CHARACTER SET charset_name

| [DEFAULT] COLLATE collation_name

ALTER DATABASE allows you to change the overall characteristics of a database. These charac-
teristics are stored in the db.opt file in the database directory. To use ALTER DATABASE, you
need the ALTER privilege on the database.

The CHARACTER SET clause changes the default database character set. The COLLATE clause
changes the default database collation. Character set and collation names are discussed in
Chapter 3, “Character Set Support.”

ALTER DATABASE was added in MySQL 4.1.1.

07 6337 ch06 6/24/04 12:44 PM Page 262

TEAM LinG

2636.2 Data Definition Statements

6.2.2 ALTER TABLE Syntax
ALTER [IGNORE] TABLE tbl_name

alter_specification [, alter_specification] ...

alter_specification:

ADD [COLUMN] column_definition [FIRST | AFTER col_name]

| ADD [COLUMN] (column_definition,...)

| ADD INDEX [index_name] [index_type] (index_col_name,...)

| ADD [CONSTRAINT [symbol]]

PRIMARY KEY [index_type] (index_col_name,...)

| ADD [CONSTRAINT [symbol]]

UNIQUE [index_name] [index_type] (index_col_name,...)

| ADD [FULLTEXT|SPATIAL] [index_name] (index_col_name,...)

| ADD [CONSTRAINT [symbol]]

FOREIGN KEY [index_name] (index_col_name,...)

[reference_definition]

| ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}

| CHANGE [COLUMN] old_col_name column_definition

[FIRST|AFTER col_name]

| MODIFY [COLUMN] column_definition [FIRST | AFTER col_name]

| DROP [COLUMN] col_name

| DROP PRIMARY KEY

| DROP INDEX index_name

| DROP FOREIGN KEY fk_symbol

| DISABLE KEYS

| ENABLE KEYS

| RENAME [TO] new_tbl_name

| ORDER BY col_name

| CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]

| [DEFAULT] CHARACTER SET charset_name [COLLATE collation_name]

| DISCARD TABLESPACE

| IMPORT TABLESPACE

| table_options

ALTER TABLE allows you to change the structure of an existing table. For example, you can add
or delete columns, create or destroy indexes, change the type of existing columns, or rename
columns or the table itself. You can also change the comment for the table and type of the table.

The syntax for many of the allowable alterations is similar to clauses of the CREATE TABLE
statement. See Section 6.2.5, “CREATE TABLE Syntax.”

If you use ALTER TABLE to change a column specification but DESCRIBE tbl_name indicates
that your column was not changed, it is possible that MySQL ignored your modification for
one of the reasons described in Section 6.2.5.2, “Silent Column Specification Changes.” For
example, if you try to change a VARCHAR column to CHAR, MySQL will still use VARCHAR if the
table contains other variable-length columns.

07 6337 ch06 6/24/04 12:44 PM Page 263

TEAM LinG

264 CHAPTER 6 SQL Statement Syntax

ALTER TABLE works by making a temporary copy of the original table. The alteration is per-
formed on the copy, then the original table is deleted and the new one is renamed. While
ALTER TABLE is executing, the original table is readable by other clients. Updates and writes
to the table are stalled until the new table is ready, then are automatically redirected to the
new table without any failed updates.

Note that if you use any other option to ALTER TABLE than RENAME, MySQL always creates a
temporary table, even if the data wouldn’t strictly need to be copied (such as when you
change the name of a column). We plan to fix this in the future, but because ALTER TABLE is
not a statement that is normally used frequently, this isn’t high on our TODO list. For
MyISAM tables, you can speed up the index re-creation operation (which is the slowest part of
the alteration process) by setting the myisam_sort_buffer_size system variable to a high
value.

n To use ALTER TABLE, you need ALTER, INSERT, and CREATE privileges for the table.
n IGNORE is a MySQL extension to standard SQL. It controls how ALTER TABLE works if

there are duplicates on unique keys in the new table. If IGNORE isn’t specified, the copy
is aborted and rolled back if duplicate-key errors occur. If IGNORE is specified, then for
rows with duplicates on a unique key, only the first row is used. The others are deleted.

n You can issue multiple ADD, ALTER, DROP, and CHANGE clauses in a single ALTER TABLE
statement. This is a MySQL extension to standard SQL, which allows only one of each
clause per ALTER TABLE statement.

n CHANGE col_name, DROP col_name, and DROP INDEX are MySQL extensions to standard
SQL.

n MODIFY is an Oracle extension to ALTER TABLE.
n The word COLUMN is purely optional and can be omitted.
n If you use ALTER TABLE tbl_name RENAME TO new_tbl_name without any other options,

MySQL simply renames any files that correspond to the table tbl_name. There is no
need to create a temporary table. (You can also use the RENAME TABLE statement to
rename tables. See Section 6.2.9, “RENAME TABLE Syntax.”)

n column_definition clauses use the same syntax for ADD and CHANGE as for CREATE TABLE.
Note that this syntax includes the column name, not just the column type. See Section
6.2.5, “CREATE TABLE Syntax.”

n You can rename a column using a CHANGE old_col_name column_definition clause. To
do so, specify the old and new column names and the type that the column currently
has. For example, to rename an INTEGER column from a to b, you can do this:
mysql> ALTER TABLE t1 CHANGE a b INTEGER;

If you want to change a column’s type but not the name, CHANGE syntax still requires an
old and a new column name, even if they are the same. For example:
mysql> ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;

07 6337 ch06 6/24/04 12:44 PM Page 264

TEAM LinG

2656.2 Data Definition Statements

However, as of MySQL 3.22.16a, you can also use MODIFY to change a column’s type
without renaming it:
mysql> ALTER TABLE t1 MODIFY b BIGINT NOT NULL;

n If you use CHANGE or MODIFY to shorten a column for which an index exists on part of the
column (for example, if you have an index on the first 10 characters of a VARCHAR col-
umn), you cannot make the column shorter than the number of characters that are
indexed.

n When you change a column type using CHANGE or MODIFY, MySQL tries to convert exist-
ing column values to the new type as well as possible.

n In MySQL 3.22 or later, you can use FIRST or AFTER col_name to add a column at a spe-
cific position within a table row. The default is to add the column last. From MySQL
4.0.1 on, you can also use FIRST and AFTER in CHANGE or MODIFY operations.

n ALTER COLUMN specifies a new default value for a column or removes the old default
value. If the old default is removed and the column can be NULL, the new default is NULL.
If the column cannot be NULL, MySQL assigns a default value, as described in Section
6.2.5, “CREATE TABLE Syntax.”

n DROP INDEX removes an index. This is a MySQL extension to standard SQL. See
Section 6.2.7, “DROP INDEX Syntax.”

n If columns are dropped from a table, the columns are also removed from any index of
which they are a part. If all columns that make up an index are dropped, the index is
dropped as well.

n If a table contains only one column, the column cannot be dropped. If what you intend
is to remove the table, use DROP TABLE instead.

n DROP PRIMARY KEY drops the primary index. (Prior to MySQL 4.1.2, if no primary index
exists, DROP PRIMARY KEY drops the first UNIQUE index in the table. MySQL marks the
first UNIQUE key as the PRIMARY KEY if no PRIMARY KEY was specified explicitly.)

If you add a UNIQUE INDEX or PRIMARY KEY to a table, it is stored before any non-unique
index so that MySQL can detect duplicate keys as early as possible.

n ORDER BY allows you to create the new table with the rows in a specific order. Note that
the table will not remain in this order after inserts and deletes. This option is mainly
useful when you know that you are mostly going to query the rows in a certain order;
by using this option after big changes to the table, you might be able to get higher per-
formance. In some cases, it might make sorting easier for MySQL if the table is in
order by the column that you want to order it by later.

n If you use ALTER TABLE on a MyISAM table, all non-unique indexes are created in a sepa-
rate batch (as for REPAIR TABLE). This should make ALTER TABLE much faster when you
have many indexes.

07 6337 ch06 6/24/04 12:44 PM Page 265

TEAM LinG

266 CHAPTER 6 SQL Statement Syntax

As of MySQL 4.0, this feature can be activated explicitly. ALTER TABLE ...
DISABLE KEYS tells MySQL to stop updating non-unique indexes for a MyISAM table.
ALTER TABLE ... ENABLE KEYS then should be used to re-create missing indexes.
MySQL does this with a special algorithm that is much faster than inserting keys one
by one, so disabling keys before performing bulk insert operations should give a con-
siderable speedup.

n The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB storage engine,
which implements ADD [CONSTRAINT [symbol]] FOREIGN KEY (...) REFERENCES ...
(...). For other storage engines, the clauses are parsed but ignored. The CHECK
clause is parsed but ignored by all storage engines. See Section 6.2.5, “CREATE TABLE
Syntax.” The reason for accepting but ignoring syntax clauses is for compatibility, to
make it easier to port code from other SQL servers, and to run applications that cre-
ate tables with references. See Section 1.8.5, “MySQL Differences from Standard
SQL.”

n Starting from MySQL 4.0.13, InnoDB supports the use of ALTER TABLE to drop foreign
keys:
ALTER TABLE yourtablename DROP FOREIGN KEY fk_symbol:

n ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.
n From MySQL 4.1.2 on, if you want to change all character columns (CHAR, VARCHAR,

TEXT) to a new character set, use a statement like this:
ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name;

This is useful, for example, after upgrading from MySQL 4.0.x to 4.1.x. See Section
3.10, “Upgrading Character Sets from MySQL 4.0.”

Warning: The preceding operation will convert column values between the character
sets. This is not what you want if you have a column in one character set (like latin1)
but the stored values actually use some other, incompatible character set (like utf8). In
this case, you have to do the following for each such column:
ALTER TABLE t1 CHANGE c1 c1 BLOB;

ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;

The reason this works is that there is no conversion when you convert to or from BLOB
columns.

To change only the default character set for a table, use this statement:
ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

The word DEFAULT is optional. The default character set is the character set that is used
if you don’t specify the character set for a new column you add to a table (for example,
with ALTER TABLE ... ADD column).

07 6337 ch06 6/24/04 12:44 PM Page 266

TEAM LinG

2676.2 Data Definition Statements

Warning: From MySQL 4.1.2 and up, ALTER TABLE ... DEFAULT CHARACTER SET and
ALTER TABLE ... CHARACTER SET are equivalent and change only the default table charac-
ter set. In MySQL 4.1 releases before 4.1.2, ALTER TABLE ... DEFAULT CHARACTER SET
changes the default character set, but ALTER TABLE ... CHARACTER SET (without DEFAULT)
changes the default character set and also converts all columns to the new character set.

n For an InnoDB table that is created with its own tablespace in an .ibd file, that file can
be discarded and imported. To discard the .ibd file, use this statement:
ALTER TABLE tbl_name DISCARD TABLESPACE;

This deletes the current .ibd file, so be sure that you have a backup first. Attempting to
access the table while the tablespace file is discarded results in an error.

To import the backup .ibd file back into the table, copy it into the database directory,
then issue this statement:
ALTER TABLE tbl_name IMPORT TABLESPACE;

n With the mysql_info() C API function, you can find out how many records were
copied, and (when IGNORE is used) how many records were deleted due to duplication of
unique key values.

Here are some examples that show uses of ALTER TABLE. Begin with a table t1 that is created
as shown here:

mysql> CREATE TABLE t1 (a INTEGER,b CHAR(10));

To rename the table from t1 to t2:

mysql> ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to
change column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

mysql> ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

mysql> ALTER TABLE t2 ADD d TIMESTAMP;

To add indexes on column d and on column a:

mysql> ALTER TABLE t2 ADD INDEX (d), ADD INDEX (a);

To remove column c:

mysql> ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

mysql> ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,

-> ADD PRIMARY KEY (c);

07 6337 ch06 6/24/04 12:44 PM Page 267

TEAM LinG

268 CHAPTER 6 SQL Statement Syntax

Note that we indexed c (as a PRIMARY KEY), because AUTO_INCREMENT columns must be
indexed, and also that we declare c as NOT NULL, because primary key columns cannot be
NULL.

When you add an AUTO_INCREMENT column, column values are filled in with sequence num-
bers for you automatically. For MyISAM tables, you can set the first sequence number by exe-
cuting SET INSERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table
option. See Section 6.5.3.1, “SET Syntax.”

With MyISAM tables, if you don’t change the AUTO_INCREMENT column, the sequence number
will not be affected. If you drop an AUTO_INCREMENT column and then add another
AUTO_INCREMENT column, the numbers are resequenced beginning with 1.

Starting from MySQL 3.23.50, InnoDB allows you to add a new foreign key constraint to a
table by using ALTER TABLE:

ALTER TABLE yourtablename

ADD [CONSTRAINT symbol] FOREIGN KEY [id] (index_col_name, ...)

REFERENCES tbl_name (index_col_name, ...)

[ON DELETE {CASCADE | SET NULL | NO ACTION | RESTRICT}]

[ON UPDATE {CASCADE | SET NULL | NO ACTION | RESTRICT}]

Remember to create the required indexes first. You can also add a self-referential for-
eign key constraint to a table using ALTER TABLE.

Starting from MySQL 4.0.13, InnoDB supports the use of ALTER TABLE to drop foreign keys:

ALTER TABLE yourtablename DROP FOREIGN KEY fk_symbol:

If the FOREIGN KEY clause included a CONSTRAINT name when you created the foreign key, you
can refer to that name to drop the foreign key. (A constraint name can be given as of
MySQL 4.0.18.) Otherwise, the fk_symbol value is internally generated by InnoDB when the
foreign key is created. To find out the symbol when you want to drop a foreign key, use the
SHOW CREATE TABLE statement. An example:

mysql> SHOW CREATE TABLE ibtest11c\G

*************************** 1. row ***************************

Table: ibtest11c

Create Table: CREATE TABLE `ibtest11c` (

`A` int(11) NOT NULL auto_increment,

`D` int(11) NOT NULL default ‘0’,

`B` varchar(200) NOT NULL default ‘’,

`C` varchar(175) default NULL,

PRIMARY KEY (`A`,`D`,`B`),

KEY `B` (`B`,`C`),

KEY `C` (`C`),

CONSTRAINT `0_38775` FOREIGN KEY (`A`, `D`)

07 6337 ch06 6/24/04 12:44 PM Page 268

TEAM LinG

2696.2 Data Definition Statements

REFERENCES `ibtest11a` (`A`, `D`)

ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT `0_38776` FOREIGN KEY (`B`, `C`)

REFERENCES `ibtest11a` (`B`, `C`)

ON DELETE CASCADE ON UPDATE CASCADE

) TYPE=InnoDB CHARSET=latin1

1 row in set (0.01 sec)

mysql> ALTER TABLE ibtest11c DROP FOREIGN KEY 0_38775;

Before MySQL 3.23.50, ALTER TABLE or CREATE INDEX should not be used in connection with
tables that have foreign key constraints or that are referenced in foreign key constraints: Any
ALTER TABLE removes all foreign key constraints defined for the table. You should not use
ALTER TABLE with the referenced table, either. Instead, use DROP TABLE and CREATE TABLE to
modify the schema. When MySQL does an ALTER TABLE it may internally use RENAME TABLE,
and that will confuse the foreign key constraints that refer to the table. In MySQL, a CREATE
INDEX statement is processed as an ALTER TABLE, so the same considerations apply.

See Section A.3.1, “Problems with ALTER TABLE.”

6.2.3 CREATE DATABASE Syntax
CREATE DATABASE [IF NOT EXISTS] db_name

[create_specification [, create_specification] ...]

create_specification:

[DEFAULT] CHARACTER SET charset_name

| [DEFAULT] COLLATE collation_name

CREATE DATABASE creates a database with the given name. To use CREATE DATABASE, you need
the CREATE privilege on the database.

Rules for allowable database names are given in Section 2.2, “Database, Table, Index,
Column, and Alias Names.” An error occurs if the database already exists and you didn’t
specify IF NOT EXISTS.

As of MySQL 4.1.1, create_specification options can be given to specify database charac-
teristics. Database characteristics are stored in the db.opt file in the database directory. The
CHARACTER SET clause specifies the default database character set. The COLLATE clause speci-
fies the default database collation. Character set and collation names are discussed in
Chapter 3, “Character Set Support.”

Databases in MySQL are implemented as directories containing files that correspond to
tables in the database. Because there are no tables in a database when it is initially created,
the CREATE DATABASE statement only creates a directory under the MySQL data directory
(and the db.opt file, for MySQL 4.1.1 and up).

You can also use the mysqladmin program to create databases.

07 6337 ch06 6/24/04 12:44 PM Page 269

TEAM LinG

270 CHAPTER 6 SQL Statement Syntax

6.2.4 CREATE INDEX Syntax
CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name [index_type]

ON tbl_name (index_col_name,...)

index_col_name:

col_name [(length)] [ASC | DESC]

In MySQL 3.22 or later, CREATE INDEX is mapped to an ALTER TABLE statement to create
indexes. See Section 6.2.2, “ALTER TABLE Syntax.” The CREATE INDEX statement doesn’t do
anything prior to MySQL 3.22.

Normally, you create all indexes on a table at the time the table itself is created with CREATE
TABLE. See Section 6.2.5, “CREATE TABLE Syntax.” CREATE INDEX allows you to add indexes to
existing tables.

A column list of the form (col1,col2,...) creates a multiple-column index. Index values are
formed by concatenating the values of the given columns.

For CHAR and VARCHAR columns, indexes can be created that use only part of a column, using
col_name(length) syntax to index a prefix consisting of the first length characters of each
column value. BLOB and TEXT columns also can be indexed, but a prefix length must be given.

The statement shown here creates an index using the first 10 characters of the name column:

CREATE INDEX part_of_name ON customer (name(10));

Because most names usually differ in the first 10 characters, this index should not be much
slower than an index created from the entire name column. Also, using partial columns for
indexes can make the index file much smaller, which could save a lot of disk space and might
also speed up INSERT operations!

Prefixes can be up to 255 bytes long (or 1000 bytes for MyISAM and InnoDB tables as of
MySQL 4.1.2). Note that prefix limits are measured in bytes, whereas the prefix length in
CREATE INDEX statements is interpreted as number of characters. Take this into account when
specifying a prefix length for a column that uses a multi-byte character set.

Note that you can add an index on a column that can have NULL values only if you are using
MySQL 3.23.2 or newer and are using the MyISAM, InnoDB, or BDB table type. You can only
add an index on a BLOB or TEXT column if you are using MySQL 3.23.2 or newer and are
using the MyISAM or BDB table type, or MySQL 4.0.14 or newer and the InnoDB table type.

An index_col_name specification can end with ASC or DESC. These keywords are allowed for
future extensions for specifying ascending or descending index value storage. Currently, they
are parsed but ignored; index values are always stored in ascending order.

FULLTEXT indexes can index only CHAR, VARCHAR, and TEXT columns, and only in MyISAM tables.
FULLTEXT indexes are available in MySQL 3.23.23 and later. Section 5.6, “Full-Text Search
Functions.”

07 6337 ch06 6/24/04 12:44 PM Page 270

TEAM LinG

2716.2 Data Definition Statements

SPATIAL indexes can index only spatial columns, and only in MyISAM tables. SPATIAL indexes
are available in MySQL 4.1 or later. Spatial column types are described in Chapter 7,
“Spatial Extensions in MySQL.”

6.2.5 CREATE TABLE Syntax
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name

[(create_definition,...)]

[table_options] [select_statement]

Or:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name

[(] LIKE old_tbl_name [)];

create_definition:

column_definition

| [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)

| KEY [index_name] [index_type] (index_col_name,...)

| INDEX [index_name] [index_type] (index_col_name,...)

| [CONSTRAINT [symbol]] UNIQUE [INDEX]

[index_name] [index_type] (index_col_name,...)

| [FULLTEXT|SPATIAL] [INDEX] [index_name] (index_col_name,...)

| [CONSTRAINT [symbol]] FOREIGN KEY

[index_name] (index_col_name,...) [reference_definition]

| CHECK (expr)

column_definition:

col_name type [NOT NULL | NULL] [DEFAULT default_value]

[AUTO_INCREMENT] [[PRIMARY] KEY] [COMMENT ‘string’]

[reference_definition]

type:

TINYINT[(length)] [UNSIGNED] [ZEROFILL]

| SMALLINT[(length)] [UNSIGNED] [ZEROFILL]

| MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]

| INT[(length)] [UNSIGNED] [ZEROFILL]

| INTEGER[(length)] [UNSIGNED] [ZEROFILL]

| BIGINT[(length)] [UNSIGNED] [ZEROFILL]

| REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]

| DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]

| FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]

| DECIMAL(length,decimals) [UNSIGNED] [ZEROFILL]

| NUMERIC(length,decimals) [UNSIGNED] [ZEROFILL]

| DATE

| TIME

07 6337 ch06 6/24/04 12:44 PM Page 271

TEAM LinG

272 CHAPTER 6 SQL Statement Syntax

| TIMESTAMP

| DATETIME

| CHAR(length) [BINARY | ASCII | UNICODE]

| VARCHAR(length) [BINARY]

| TINYBLOB

| BLOB

| MEDIUMBLOB

| LONGBLOB

| TINYTEXT

| TEXT

| MEDIUMTEXT

| LONGTEXT

| ENUM(value1,value2,value3,...)

| SET(value1,value2,value3,...)

| spatial_type

index_col_name:

col_name [(length)] [ASC | DESC]

reference_definition:

REFERENCES tbl_name [(index_col_name,...)]

[MATCH FULL | MATCH PARTIAL]

[ON DELETE reference_option]

[ON UPDATE reference_option]

reference_option:

RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

table_options: table_option [table_option] ...

table_option:

{ENGINE|TYPE} = {BDB|HEAP|ISAM|InnoDB|MERGE|MRG_MYISAM|MYISAM}

| AUTO_INCREMENT = value

| AVG_ROW_LENGTH = value

| CHECKSUM = {0 | 1}

| COMMENT = ‘string’

| MAX_ROWS = value

| MIN_ROWS = value

| PACK_KEYS = {0 | 1 | DEFAULT}

| PASSWORD = ‘string’

| DELAY_KEY_WRITE = {0 | 1}

| ROW_FORMAT = { DEFAULT | DYNAMIC | FIXED | COMPRESSED }

| RAID_TYPE = { 1 | STRIPED | RAID0 }

RAID_CHUNKS = value

RAID_CHUNKSIZE = value

07 6337 ch06 6/24/04 12:44 PM Page 272

TEAM LinG

2736.2 Data Definition Statements

| UNION = (tbl_name[,tbl_name]...)

| INSERT_METHOD = { NO | FIRST | LAST }

| DATA DIRECTORY = ‘absolute path to directory’

| INDEX DIRECTORY = ‘absolute path to directory’

| [DEFAULT] CHARACTER SET charset_name [COLLATE collation_name]

select_statement:

[IGNORE | REPLACE] [AS] SELECT ... (Some legal select statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the
table.

Rules for allowable table names are given in Section 2.2, “Database, Table, Index, Column,
and Alias Names.” By default, the table is created in the current database. An error occurs if
the table already exists, if there is no current database, or if the database does not exist.

In MySQL 3.22 or later, the table name can be specified as db_name.tbl_name to create the
table in a specific database. This works whether or not there is a current database. If you use
quoted identifiers, quote the database and table names separately. For example,
`mydb`.`mytbl` is legal, but `mydb.mytbl` is not.

From MySQL 3.23 on, you can use the TEMPORARY keyword when creating a table. A TEMPO-
RARY table is visible only to the current connection, and is dropped automatically when the
connection is closed. This means that two different connections can use the same temporary
table name without conflicting with each other or with an existing non-TEMPORARY table of
the same name. (The existing table is hidden until the temporary table is dropped.) From
MySQL 4.0.2 on, you must have the CREATE TEMPORARY TABLES privilege to be able to create
temporary tables.

In MySQL 3.23 or later, you can use the keywords IF NOT EXISTS so that an error does not
occur if the table already exists. Note that there is no verification that the existing table has
a structure identical to that indicated by the CREATE TABLE statement.

MySQL represents each table by an .frm table format (definition) file in the database direc-
tory. The storage engine for the table might create other files as well. In the case of MyISAM
tables, the storage engine creates three files for a table named tbl_name:

File Purpose

tbl_name.frm Table format (definition) file

tbl_name.MYD Data file

tbl_name.MYI Index file

The files created by each storage engine to represent tables are described in the MySQL
Administrator’s Guide.

07 6337 ch06 6/24/04 12:44 PM Page 273

TEAM LinG

274 CHAPTER 6 SQL Statement Syntax

For general information on the properties of the various column types, see Chapter 4,
“Column Types.” For information about spatial column types, see Chapter 7, “Spatial
Extensions in MySQL.”

n If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been
specified.

n An integer column can have the additional attribute AUTO_INCREMENT. When you insert a
value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column
is set to the next sequence value. Typically, this is value+1, where value is the largest
value for the column currently in the table. AUTO_INCREMENT sequences begin with 1.

As of MySQL 4.1.1, specifying the NO_AUTO_VALUE_ON_ZERO flag for the --sql-mode serv-
er option or the sql_mode system variable allows you to store 0 in AUTO_INCREMENT
columns as 0 without generating a new sequence value.

Note: There can be only one AUTO_INCREMENT column per table, it must be indexed, and
it cannot have a DEFAULT value. As of MySQL 3.23, an AUTO_INCREMENT column will
work properly only if it contains only positive values. Inserting a negative number is
regarded as inserting a very large positive number. This is done to avoid precision
problems when numbers “wrap” over from positive to negative and also to ensure that
you don’t accidentally get an AUTO_INCREMENT column that contains 0.

For MyISAM and BDB tables, you can specify an AUTO_INCREMENT secondary column in a
multiple-column key.

To make MySQL compatible with some ODBC applications, you can find the
AUTO_INCREMENT value for the last inserted row with the following query:
SELECT * FROM tbl_name WHERE auto_col IS NULL

n As of MySQL 4.1, character column definitions can include a CHARACTER SET attribute
to specify the character set and, optionally, a collation for the column. For details, see
Chapter 3, “Character Set Support.”
CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);

Also as of 4.1, MySQL interprets length specifications in character column definitions
in characters. (Earlier versions interpret them in bytes.)

n NULL values are handled differently for TIMESTAMP columns than for other column types.
You cannot store a literal NULL in a TIMESTAMP column; setting the column to NULL sets it
to the current date and time. Because TIMESTAMP columns behave this way, the NULL and
NOT NULL attributes do not apply in the normal way and are ignored if you specify them.

On the other hand, to make it easier for MySQL clients to use TIMESTAMP columns, the
server reports that such columns can be assigned NULL values (which is true), even
though TIMESTAMP never actually will contain a NULL value. You can see this when you
use DESCRIBE tbl_name to get a description of your table.

Note that setting a TIMESTAMP column to 0 is not the same as setting it to NULL, because
0 is a valid TIMESTAMP value.

07 6337 ch06 6/24/04 12:44 PM Page 274

TEAM LinG

2756.2 Data Definition Statements

n A DEFAULT value must be a constant; it cannot be a function or an expression. This
means, for example, that you cannot set the default for a date column to be the value of
a function such as NOW() or CURRENT_DATE.

If no DEFAULT value is specified for a column, MySQL automatically assigns one, as
follows.

If the column can take NULL as a value, the default value is NULL.

If the column is declared as NOT NULL, the default value depends on the column type:
n For numeric types other than those declared with the AUTO_INCREMENT attribute, the

default is 0. For an AUTO_INCREMENT column, the default value is the next value in
the sequence.

n For date and time types other than TIMESTAMP, the default is the appropriate “zero”
value for the type. For the first TIMESTAMP column in a table, the default value is the
current date and time. See Section 4.3, “Date and Time Types.”

n For string types other than ENUM, the default value is the empty string. For ENUM,
the default is the first enumeration value.

BLOB and TEXT columns cannot be assigned a default value.
n A comment for a column can be specified with the COMMENT option. The comment is

displayed by the SHOW CREATE TABLE and SHOW FULL COLUMNS statements. This option is
operational as of MySQL 4.1. (It is allowed but ignored in earlier versions.)

n From MySQL 4.1.0 on, the attribute SERIAL can be used as an alias for BIGINT UNSIGNED
NOT NULL AUTO_INCREMENT UNIQUE. This is a compatibility feature.

n KEY is normally a synonym for INDEX. From MySQL 4.1, the key attribute PRIMARY KEY
can also be specified as just KEY when given in a column definition. This was imple-
mented for compatibility with other database systems.

n In MySQL, a UNIQUE index is one in which all values in the index must be distinct. An
error occurs if you try to add a new row with a key that matches an existing row. The
exception to this is that if a column in the index is allowed to contain NULL values, it can
contain multiple NULL values. This exception does not apply to BDB tables, for which
indexed columns allow only a single NULL.

n A PRIMARY KEY is a unique KEY where all key columns must be defined as NOT NULL. If
they are not explicitly declared as NOT NULL, MySQL will declare them so implicitly
(and silently). A table can have only one PRIMARY KEY. If you don’t have a PRIMARY KEY
and an application asks for the PRIMARY KEY in your tables, MySQL returns the first
UNIQUE index that has no NULL columns as the PRIMARY KEY.

n In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and
then the non-unique indexes. This helps the MySQL optimizer to prioritize which
index to use and also more quickly to detect duplicated UNIQUE keys.

07 6337 ch06 6/24/04 12:44 PM Page 275

TEAM LinG

276 CHAPTER 6 SQL Statement Syntax

n A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-
column index using the PRIMARY KEY key attribute in a column specification. Doing so
will mark only that single column as primary. You must use a separate PRIMARY
KEY(index_col_name, ...) clause.

n If a PRIMARY KEY or UNIQUE index consists of only one column that has an integer type,
you can also refer to the column as _rowid in SELECT statements (new in MySQL
3.23.11).

n In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you don’t assign
a name, the index is assigned the same name as the first indexed column, with an
optional suffix (_2, _3, ...) to make it unique. You can see index names for a table using
SHOW INDEX FROM tbl_name. See Section 6.5.3.7, “SHOW DATABASES Syntax.”

n From MySQL 4.1.0 on, some storage engines allow you to specify an index type when
creating an index. The syntax for the index_type specifier is USING type_name. The
allowable type_name values supported by different storage engines are shown in the fol-
lowing table. Where multiple index types are listed, the first one is the default when no
index_type specifier is given.

Storage Engine Allowable Index Types

MyISAM BTREE

InnoDB BTREE

MEMORY/HEAP HASH, BTREE

Example:
CREATE TABLE lookup

(id INT, INDEX USING BTREE (id))

ENGINE = MEMORY;

TYPE type_name can be used as a synonym for USING type_name to specify an index type.
However, USING is the preferred form. Also, the index name that precedes the index
type in the index specification syntax is not optional with TYPE. This is because, unlike
USING, TYPE is not a reserved word and thus is interpreted as an index name.

If you specify an index type that is not legal for a storage engine, but there is another
index type available that the engine can use without affecting query results, the engine
will use the available type.

n Only the MyISAM, InnoDB, BDB, and (as of MySQL 4.0.2) MEMORY storage engines support
indexes on columns that can have NULL values. In other cases, you must declare indexed
columns as NOT NULL or an error results.

n With col_name(length) syntax in an index specification, you can create an index that
uses only the first length bytes of a CHAR or VARCHAR column. Indexing only a prefix of
column values like this can make the index file much smaller.

07 6337 ch06 6/24/04 12:44 PM Page 276

TEAM LinG

2776.2 Data Definition Statements

The MyISAM and (as of MySQL 4.0.14) InnoDB storage engines also support indexing on
BLOB and TEXT columns. When indexing a BLOB or TEXT column, you must specify a prefix
length for the index. For example:
CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 255 bytes long (or 1000 bytes for MyISAM and InnoDB tables as
of MySQL 4.1.2). Note that prefix limits are measured in bytes, whereas the prefix
length in CREATE TABLE statements is interpreted as number of characters. Take this
into account when specifying a prefix length for a column that uses a multi-byte
character set.

n An index_col_name specification can end with ASC or DESC. These keywords are allowed
for future extensions for specifying ascending or descending index value storage.
Currently, they are parsed but ignored; index values are always stored in ascending
order.

n When you use ORDER BY or GROUP BY with a TEXT or BLOB column, the server sorts values
using only the initial number of bytes indicated by the max_sort_length system variable.
See Section 4.4.2, “The BLOB and TEXT Types.”

n In MySQL 3.23.23 or later, you can create special FULLTEXT indexes. They are used for
full-text search. Only the MyISAM table type supports FULLTEXT indexes. They can be cre-
ated only from CHAR, VARCHAR, and TEXT columns. Indexing always happens over the
entire column; partial indexing is not supported and any prefix length is ignored if spec-
ified. See Section 5.6, “Full-Text Search Functions,” for details of operation.

n In MySQL 4.1 or later, you can create special SPATIAL indexes on spatial column types.
Spatial types are supported only for MyISAM tables and indexed columns must be
declared as NOT NULL. See Chapter 7, “Spatial Extensions in MySQL.”

n In MySQL 3.23.44 or later, InnoDB tables support checking of foreign key constraints.
Note that the FOREIGN KEY syntax in InnoDB is more restrictive than the syntax presented
for the CREATE TABLE statement at the beginning of this section: The columns of the
referenced table must always be explicitly named. InnoDB supports both ON DELETE and
ON UPDATE actions on foreign keys as of MySQL 3.23.50 and 4.0.8, respectively. For the
precise syntax, see Section 6.2.5.1, “Creating Foreign Keys.”

For other storage engines, MySQL Server parses the FOREIGN KEY and REFERENCES syn-
tax in CREATE TABLE statements, but without further action being taken. The CHECK
clause is parsed but ignored by all storage engines.

n For MyISAM and ISAM tables, each NULL column takes one bit extra, rounded up to the
nearest byte. The maximum record length in bytes can be calculated as follows:

row length = 1

+ (sum of column lengths)

+ (number of NULL columns + delete_flag + 7)/8

+ (number of variable-length columns)

07 6337 ch06 6/24/04 12:44 PM Page 277

TEAM LinG

278 CHAPTER 6 SQL Statement Syntax

delete_flag is 1 for tables with static record format. Static tables use a bit in the row
record for a flag that indicates whether the row has been deleted. delete_flag is 0 for
dynamic tables because the flag is stored in the dynamic row header.

These calculations do not apply for InnoDB tables, for which storage size is no different
for NULL columns than for NOT NULL columns.

The table_options part of the CREATE TABLE syntax can be used in MySQL 3.23 and above.

The ENGINE and TYPE options specify the storage engine for the table. ENGINE was added in
MySQL 4.0.18 (for 4.0) and 4.1.2 (for 4.1). It is the preferred option name as of those ver-
sions, and TYPE has become deprecated. TYPE will be supported throughout the 4.x series, but
likely will be removed in MySQL 5.1.

The ENGINE and TYPE options take the following values:

Storage Engine Description

BDB Transaction-safe tables with page locking.

BerkeleyDB An alias for BDB.

HEAP The data for this table is stored only in memory.

ISAM The original MySQL storage engine.

InnoDB Transaction-safe tables with row locking and foreign keys.

MEMORY An alias for HEAP. (Actually, as of MySQL 4.1, MEMORY is the preferred term.)

MERGE A collection of MyISAM tables used as one table.

MRG_MyISAM An alias for MERGE.

MyISAM The binary portable storage engine that is the improved replacement for ISAM.

If a storage engine is specified that is not available, MySQL uses MyISAM instead. For exam-
ple, if a table definition includes the ENGINE=BDB option but the MySQL server does not
support BDB tables, the table is created as a MyISAM table. This makes it possible to have a
replication setup where you have transactional tables on the master but tables created on the
slave are non-transactional (to get more speed). In MySQL 4.1.1, a warning occurs if the
storage engine specification is not honored.

Storage engine characteristics are discussed in detail in the MySQL Administrator’s Guide.

The other table options are used to optimize the behavior of the table. In most cases, you
don’t have to specify any of them. The options work for all storage engines unless otherwise
indicated:

n AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. This works for MyISAM only. To set the
first auto-increment value for an InnoDB table, insert a dummy row with a value one less
than the desired value after creating the table, and then delete the dummy row.

07 6337 ch06 6/24/04 12:44 PM Page 278

TEAM LinG

2796.2 Data Definition Statements

n AVG_ROW_LENGTH

An approximation of the average row length for your table. You need to set this only for
large tables with variable-size records.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and
AVG_ROW_LENGTH options to decide how big the resulting table will be. If you don’t speci-
fy either option, the maximum size for a table will be 4GB (or 2GB if your operating
system only supports 2GB tables). The reason for this is just to keep down the pointer
sizes to make the index smaller and faster if you don’t really need big files. If you want
all your tables to be able to grow above the 4GB limit and are willing to have your
smaller tables slightly slower and larger than necessary, you may increase the default
pointer size by setting the myisam_data_pointer_size system variable, which was added
in MySQL 4.1.2.

n CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a
checksum that MySQL updates automatically as the table changes). This makes the
table a little slower to update, but also makes it easier to find corrupted tables. The
CHECKSUM TABLE statement reports the checksum. (MyISAM only.)

n COMMENT

A comment for your table, up to 60 characters long.
n MAX_ROWS

The maximum number of rows you plan to store in the table.
n MIN_ROWS

The minimum number of rows you plan to store in the table.
n PACK_KEYS

Set this option to 1 if you want to have smaller indexes. This usually makes updates
slower and reads faster. Setting the option to 0 disables all packing of keys. Setting it to
DEFAULT (MySQL 4.0) tells the storage engine to only pack long CHAR/VARCHAR columns.
(MyISAM and ISAM only.)

If you don’t use PACK_KEYS, the default is to only pack strings, not numbers. If you use
PACK_KEYS=1, numbers will be packed as well.

When packing binary number keys, MySQL uses prefix compression:
n Every key needs one extra byte to indicate how many bytes of the previous key are

the same for the next key.
n The pointer to the row is stored in high-byte-first order directly after the key, to

improve compression.

07 6337 ch06 6/24/04 12:44 PM Page 279

TEAM LinG

280 CHAPTER 6 SQL Statement Syntax

This means that if you have many equal keys on two consecutive rows, all following
“same” keys will usually only take two bytes (including the pointer to the row).
Compare this to the ordinary case where the following keys will take
storage_size_for_key + pointer_size (where the pointer size is usually 4). Conversely,
you will get a big benefit from prefix compression only if you have many numbers that
are the same. If all keys are totally different, you will use one byte more per key, if the
key isn’t a key that can have NULL values. (In this case, the packed key length will be
stored in the same byte that is used to mark if a key is NULL.)

n PASSWORD

Encrypt the .frm file with a password. This option doesn’t do anything in the standard
MySQL version.

n DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed.
(MyISAM only.)

n ROW_FORMAT

Defines how the rows should be stored. Currently, this option works only with MyISAM
tables. The option value can be FIXED or DYNAMIC for static or variable-length row for-
mat. myisampack sets the type to COMPRESSED.

n RAID_TYPE

The RAID_TYPE option can help you to exceed the 2GB/4GB limit for the MyISAM data
file (not the index file) on operating systems that don’t support big files. This option is
unnecessary and not recommended for filesystems that support big files.

You can get more speed from the I/O bottleneck by putting RAID directories on differ-
ent physical disks. For now, the only allowed RAID_TYPE is STRIPED. 1 and RAID0 are
aliases for STRIPED.

If you specify the RAID_TYPE option for a MyISAM table, specify the RAID_CHUNKS and
RAID_CHUNKSIZE options as well. The maximum RAID_CHUNKS value is 255. MyISAM will
create RAID_CHUNKS subdirectories named 00, 01, 02, ... 09, 0a, 0b, ... in the database
directory. In each of these directories, MyISAM will create a file tbl_name.MYD. When
writing data to the data file, the RAID handler maps the first RAID_CHUNKSIZE*1024 bytes
to the first file, the next RAID_CHUNKSIZE*1024 bytes to the next file, and so on.

RAID_TYPE works on any operating system, as long as you have built MySQL with the
--with-raid option to configure. To determine whether a server supports RAID tables,
use SHOW VARIABLES LIKE ‘have_raid’ to see whether the variable value is YES.

n UNION

UNION is used when you want to use a collection of identical tables as one. This works
only with MERGE tables.

For the moment, you must have SELECT, UPDATE, and DELETE privileges for the tables you
map to a MERGE table. Originally, all used tables had to be in the same database as the
MERGE table itself. This restriction has been lifted as of MySQL 4.1.1.

07 6337 ch06 6/24/04 12:44 PM Page 280

TEAM LinG

2816.2 Data Definition Statements

n INSERT_METHOD

If you want to insert data in a MERGE table, you have to specify with INSERT_METHOD into
which table the row should be inserted. INSERT_METHOD is an option useful for MERGE
tables only. This option was introduced in MySQL 4.0.0.

n DATA DIRECTORY, INDEX DIRECTORY

By using DATA DIRECTORY=’directory’ or INDEX DIRECTORY=’directory’ you can specify
where the MyISAM storage engine should put a table’s data file and index file. Note that
the directory should be a full path to the directory (not a relative path).

These options work only for MyISAM tables from MySQL 4.0 on, when you are not
using the --skip-symbolic-links option. Your operating system must also have a work-
ing, thread-safe realpath() call.

As of MySQL 3.23, you can create one table from another by adding a SELECT statement at
the end of the CREATE TABLE statement:

CREATE TABLE new_tbl SELECT * FROM orig_tbl;

MySQL will create new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,

-> PRIMARY KEY (a), KEY(b))

-> TYPE=MyISAM SELECT b,c FROM test2;

This creates a MyISAM table with three columns, a, b, and c. Notice that the columns from
the SELECT statement are appended to the right side of the table, not overlapped onto it.
Take the following example:

mysql> SELECT * FROM foo;

+---+

| n |

+---+

| 1 |

+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;

Query OK, 1 row affected (0.02 sec)

Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM bar;

+------+---+

| m | n |

+------+---+

| NULL | 1 |

+------+---+

1 row in set (0.00 sec)

07 6337 ch06 6/24/04 12:44 PM Page 281

TEAM LinG

282 CHAPTER 6 SQL Statement Syntax

For each row in table foo, a row is inserted in bar with the values from foo and default val-
ues for the new columns.

If any errors occur while copying the data to the table, it is automatically dropped and not
created.

CREATE TABLE ... SELECT will not automatically create any indexes for you. This is done
intentionally to make the statement as flexible as possible. If you want to have indexes in the
created table, you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

Some conversion of column types might occur. For example, the AUTO_INCREMENT attribute is
not preserved, and VARCHAR columns can become CHAR columns.

When creating a table with CREATE ... SELECT, make sure to alias any function calls or
expressions in the query. If you do not, the CREATE statement might fail or result in undesir-
able column names.

CREATE TABLE artists_and_works

SELECT artist.name, COUNT(work.artist_id) AS number_of_works

FROM artist LEFT JOIN work ON artist.id = work.artist_id

GROUP BY artist.id;

As of MySQL 4.1, you can explicitly specify the type for a generated column:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

In MySQL 4.1, you can also use LIKE to create an empty table based on the definition of
another table, including any column attributes and indexes the original table has:

CREATE TABLE new_tbl LIKE orig_tbl;

CREATE TABLE ... LIKE does not copy any DATA DIRECTORY or INDEX DIRECTORY table options
that were specified for the original table.

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle records that
duplicate unique key values. With IGNORE, new records that duplicate an existing record on a
unique key value are discarded. With REPLACE, new records replace records that have the
same unique key value. If neither IGNORE nor REPLACE is specified, duplicate unique key val-
ues result in an error.

To ensure that the update log/binary log can be used to re-create the original tables,
MySQL will not allow concurrent inserts during CREATE TABLE ... SELECT.

07 6337 ch06 6/24/04 12:44 PM Page 282

TEAM LinG

2836.2 Data Definition Statements

6.2.5.1 Creating Foreign Keys
Starting from MySQL 3.23.44, InnoDB features foreign key constraints.

The syntax of a foreign key constraint definition in InnoDB looks like this:

[CONSTRAINT symbol] FOREIGN KEY [id] (index_col_name, ...)

REFERENCES tbl_name (index_col_name, ...)

[ON DELETE {CASCADE | SET NULL | NO ACTION | RESTRICT | SET DEFAULT}]

[ON UPDATE {CASCADE | SET NULL | NO ACTION | RESTRICT | SET DEFAULT}]

Both tables must be InnoDB type. In the referencing table, there must be an index where the
foreign key columns are listed as the first columns in the same order. In the referenced table,
there must be an index where the referenced columns are listed as the first columns in the
same order. Index prefix columns on foreign keys are not supported.

InnoDB needs indexes on foreign keys and referenced keys so that foreign key checks can be
fast and not require a table scan. Starting with MySQL 4.1.2, these indexes are created auto-
matically. In older versions, the indexes must be created explicitly or the creation of foreign
key constraints will fail.

Corresponding columns in the foreign key and the referenced key must have similar internal
data types inside InnoDB so that they can be compared without a type conversion. The size
and the signedness of integer types has to be the same. The length of string types need
not be the same. If you specify a SET NULL action, make sure you have not declared the
columns in the child table as NOT NULL.

If MySQL reports an error number 1005 from a CREATE TABLE statement, and the error
message string refers to errno 150, this means that the table creation failed because a foreign
key constraint was not correctly formed. Similarly, if an ALTER TABLE fails and it refers to
errno 150, that means a foreign key definition would be incorrectly formed for the altered
table. Starting from MySQL 4.0.13, you can use SHOW INNODB STATUS to display a detailed
explanation of the latest InnoDB foreign key error in the server.

Starting from MySQL 3.23.50, InnoDB does not check foreign key constraints on those for-
eign key or referenced key values that contain a NULL column.

A deviation from SQL standards: If in the parent table there are several rows that have
the same referenced key value, then InnoDB acts in foreign key checks as if the other parent
rows with the same key value do not exist. For example, if you have defined a RESTRICT type
constraint, and there is a child row with several parent rows, InnoDB does not allow the dele-
tion of any of those parent rows.

Starting from MySQL 3.23.50, you can also associate the ON DELETE CASCADE or ON DELETE
SET NULL clause with the foreign key constraint. Corresponding ON UPDATE options are avail-
able starting from 4.0.8. If ON DELETE CASCADE is specified, and a row in the parent table is
deleted, InnoDB automatically deletes also all those rows in the child table whose foreign key
values are equal to the referenced key value in the parent row. If ON DELETE SET NULL is
specified, the child rows are automatically updated so that the columns in the foreign key
are set to the SQL NULL value. SET DEFAULT is parsed but ignored.

07 6337 ch06 6/24/04 12:44 PM Page 283

TEAM LinG

284 CHAPTER 6 SQL Statement Syntax

InnoDB performs cascading operations through a depth-first algorithm, based on records in
the indexes corresponding to the foreign key constraints.

A deviation from SQL standards: If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to
update the same table it has already updated during the cascade, it acts like RESTRICT. This
means that you cannot use self-referential ON UPDATE CASCADE or ON UPDATE SET NULL opera-
tions. This is to prevent infinite loops resulting from cascaded updates. A self-referential ON
DELETE SET NULL, on the other hand, is possible from 4.0.13. A self-referential ON DELETE
CASCADE has been possible since ON DELETE was implemented.

A simple example that relates parent and child tables through a single-column foreign key:

CREATE TABLE parent(id INT NOT NULL,

PRIMARY KEY (id)

) TYPE=INNODB;

CREATE TABLE child(id INT, parent_id INT,

INDEX par_ind (parent_id),

FOREIGN KEY (parent_id) REFERENCES parent(id)

ON DELETE CASCADE

) TYPE=INNODB;

A more complex example is one in which a product_order table has foreign keys for two
other tables. One foreign key references a two-column index in the product table. The other
references a single-column index in the customer table:

CREATE TABLE product (category INT NOT NULL, id INT NOT NULL,

price DECIMAL,

PRIMARY KEY(category, id)) TYPE=INNODB;

CREATE TABLE customer (id INT NOT NULL,

PRIMARY KEY (id)) TYPE=INNODB;

CREATE TABLE product_order (no INT NOT NULL AUTO_INCREMENT,

product_category INT NOT NULL,

product_id INT NOT NULL,

customer_id INT NOT NULL,

PRIMARY KEY(no),

INDEX (product_category, product_id),

FOREIGN KEY (product_category, product_id)

REFERENCES product(category, id)

ON UPDATE CASCADE ON DELETE RESTRICT,

INDEX (customer_id),

FOREIGN KEY (customer_id)

REFERENCES customer(id)) TYPE=INNODB;

Starting from MySQL 3.23.50, the InnoDB parser allows you to use backticks around table
and column names in a FOREIGN KEY ... REFERENCES ... clause. Starting from MySQL
4.0.5, the InnoDB parser also takes into account the lower_case_table_names system variable
setting.

07 6337 ch06 6/24/04 12:44 PM Page 284

TEAM LinG

2856.2 Data Definition Statements

6.2.5.2 Silent Column Specification Changes
In some cases, MySQL silently changes column specifications from those given in a CREATE
TABLE or ALTER TABLE statement:

n VARCHAR columns with a length less than four are changed to CHAR.
n If any column in a table has a variable length, the entire row becomes variable-length as

a result. Therefore, if a table contains any variable-length columns (VARCHAR, TEXT, or
BLOB), all CHAR columns longer than three characters are changed to VARCHAR columns.
This doesn’t affect how you use the columns in any way; in MySQL, VARCHAR is just a
different way to store characters. MySQL performs this conversion because it saves
space and makes table operations faster.

n From MySQL 4.1.0 on, a CHAR or VARCHAR column with a length specification greater
than 255 is converted to the smallest TEXT type that can hold values of the given length.
For example, VARCHAR(500) is converted to TEXT, and VARCHAR(200000) is converted to
MEDIUMTEXT. This is a compatibility feature.

n TIMESTAMP display sizes are discarded from MySQL 4.1 on, due to changes made to the
TIMESTAMP column type in that version. Before MySQL 4.1, TIMESTAMP display sizes
must be even and in the range from 2 to 14. If you specify a display size of 0 or greater
than 14, the size is coerced to 14. Odd-valued sizes in the range from 1 to 13 are
coerced to the next higher even number.

n You cannot store a literal NULL in a TIMESTAMP column; setting it to NULL sets it to the
current date and time. Because TIMESTAMP columns behave this way, the NULL and NOT
NULL attributes do not apply in the normal way and are ignored if you specify them.
DESCRIBE tbl_name always reports that a TIMESTAMP column can be assigned NULL values.

n Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that
way.

n Starting from MySQL 3.23.51, trailing spaces are automatically deleted from ENUM and
SET member values when the table is created.

n MySQL maps certain column types used by other SQL database vendors to MySQL
types. See Section 4.7, “Using Column Types from Other Database Engines.”

n If you include a USING clause to specify an index type that is not legal for a storage
engine, but there is another index type available that the engine can use without affect-
ing query results, the engine will use the available type.

To see whether MySQL used a column type other than the one you specified, issue a
DESCRIBE or SHOW CREATE TABLE statement after creating or altering your table.

Certain other column type changes can occur if you compress a table using myisampack.

07 6337 ch06 6/24/04 12:44 PM Page 285

TEAM LinG

286 CHAPTER 6 SQL Statement Syntax

6.2.6 DROP DATABASE Syntax
DROP DATABASE [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with
this statement! To use DROP DATABASE, you need the DROP privilege on the database.

In MySQL 3.22 or later, you can use the keywords IF EXISTS to prevent an error from
occurring if the database doesn’t exist.

If you use DROP DATABASE on a symbolically linked database, both the link and the original
database are deleted.

As of MySQL 4.1.2, DROP DATABASE returns the number of tables that were removed. This
corresponds to the number of .frm files removed.

The DROP DATABASE statement removes from the given database directory those files and
directories that MySQL itself may create during normal operation:

n All files with these extensions:
.BAK .DAT .HSH .ISD

.ISM .ISM .MRG .MYD

.MYI .db .frm

n All subdirectories with names that consist of two hex digits 00-ff. These are sub-
directories used for RAID tables.

n The db.opt file, if it exists.

If other files or directories remain in the database directory after MySQL removes those just
listed, the database directory cannot be removed. In this case, you must remove any remain-
ing files or directories manually and issue the DROP DATABASE statement again.

You can also drop databases with mysqladmin.

6.2.7 DROP INDEX Syntax
DROP INDEX index_name ON tbl_name

DROP INDEX drops the index named index_name from the table tbl_name. In MySQL 3.22 or
later, DROP INDEX is mapped to an ALTER TABLE statement to drop the index. See Section
6.2.2, “ALTER TABLE Syntax.” DROP INDEX doesn’t do anything prior to MySQL 3.22.

07 6337 ch06 6/24/04 12:44 PM Page 286

TEAM LinG

2876.2 Data Definition Statements

6.2.8 DROP TABLE Syntax
DROP [TEMPORARY] TABLE [IF EXISTS]

tbl_name [, tbl_name] ...

[RESTRICT | CASCADE]

DROP TABLE removes one or more tables. You must have the DROP privilege for each table. All
table data and the table definition are removed, so be careful with this statement!

In MySQL 3.22 or later, you can use the keywords IF EXISTS to prevent an error from
occurring for tables that don’t exist. As of MySQL 4.1, a NOTE is generated for each non-
existent table when using IF EXISTS. See Section 6.5.3.20, “SHOW WARNINGS Syntax.”

RESTRICT and CASCADE are allowed to make porting easier. For the moment, they do nothing.

Note: DROP TABLE automatically commits the current active transaction, unless you are using
MySQL 4.1 or higher and the TEMPORARY keyword.

The TEMPORARY keyword is ignored in MySQL 4.0. As of 4.1, it has the following effect:

n The statement drops only TEMPORARY tables.
n The statement doesn’t end a running transaction.
n No access rights are checked. (A TEMPORARY table is visible only to the client that created

it, so no check is necessary.)

Using TEMPORARY is a good way to ensure that you don’t accidentally drop a non-TEMPORARY
table.

6.2.9 RENAME TABLE Syntax
RENAME TABLE tbl_name TO new_tbl_name

[, tbl_name2 TO new_tbl_name2] ...

This statement renames one or more tables. It was added in MySQL 3.23.23.

The rename operation is done atomically, which means that no other thread can access any
of the tables while the rename is running. For example, if you have an existing table
old_table, you can create another table new_table that has the same structure but is empty,
and then replace the existing table with the empty one as follows:

CREATE TABLE new_table (...);

RENAME TABLE old_table TO backup_table, new_table TO old_table;

If the statement renames more than one table, renaming operations are done from left to
right. If you want to swap two table names, you can do so like this (assuming that no table
named tmp_table currently exists):

RENAME TABLE old_table TO tmp_table,

new_table TO old_table,

tmp_table TO new_table;

07 6337 ch06 6/24/04 12:44 PM Page 287

TEAM LinG

288 CHAPTER 6 SQL Statement Syntax

As long as two databases are on the same filesystem, you can also rename a table to move it
from one database to another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

When you execute RENAME, you can’t have any locked tables or active transactions. You must
also have the ALTER and DROP privileges on the original table, and the CREATE and INSERT priv-
ileges on the new table.

If MySQL encounters any errors in a multiple-table rename, it will do a reverse rename for
all renamed tables to get everything back to the original state.

6.3 MySQL Utility Statements

6.3.1 DESCRIBE Syntax (Get Information About Columns)
{DESCRIBE | DESC} tbl_name [col_name | wild]

DESCRIBE provides information about a table’s columns. It is a shortcut for SHOW COLUMNS
FROM.

See Section 6.5.3.4, “SHOW COLUMNS Syntax.”

col_name can be a column name, or a string containing the SQL ‘%’ and ‘_’ wildcard charac-
ters to obtain output only for the columns with names matching the string. There is no need
to enclose the string in quotes unless it contains spaces or other special characters.

If the column types are different from what you expect them to be based on a CREATE TABLE
statement, note that MySQL sometimes changes column types. See Section 6.2.5.2, “Silent
Column Specification Changes.”

The DESCRIBE statement is provided for Oracle compatibility.

The SHOW CREATE TABLE and SHOW TABLE STATUS statements also provide information about
tables. See Section 6.5.3, “SET and SHOW Syntax.”

6.3.2 USE Syntax
USE db_name

The USE db_name statement tells MySQL to use the db_name database as the default (current)
database for subsequent statements. The database remains the default until the end of the
session or until another USE statement is issued:

mysql> USE db1;

mysql> SELECT COUNT(*) FROM mytable; # selects from db1.mytable

mysql> USE db2;

mysql> SELECT COUNT(*) FROM mytable; # selects from db2.mytable

07 6337 ch06 6/24/04 12:44 PM Page 288

TEAM LinG

2896.4 MySQL Transactional and Locking Statements

Making a particular database current by means of the USE statement does not preclude you
from accessing tables in other databases. The following example accesses the author table
from the db1 database and the editor table from the db2 database:

mysql> USE db1;

mysql> SELECT author_name,editor_name FROM author,db2.editor

-> WHERE author.editor_id = db2.editor.editor_id;

The USE statement is provided for Sybase compatibility.

6.4 MySQL Transactional and Locking Statements

6.4.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax
By default, MySQL runs with autocommit mode enabled. This means that as soon as you
execute a statement that updates (modifies) a table, MySQL stores the update on disk.

If you are using transaction-safe tables (like InnoDB or BDB), you can disable autocommit
mode with the following statement:

SET AUTOCOMMIT=0;

After disabling autocommit mode by setting the AUTOCOMMIT variable to zero, you must use
COMMIT to store your changes to disk or ROLLBACK if you want to ignore the changes you have
made since the beginning of your transaction.

If you want to disable autocommit mode for a single series of statements, you can use the
START TRANSACTION statement:

START TRANSACTION;

SELECT @A:=SUM(salary) FROM table1 WHERE type=1;

UPDATE table2 SET summary=@A WHERE type=1;

COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with
COMMIT or ROLLBACK. The autocommit mode then reverts to its previous state.

BEGIN and BEGIN WORK can be used instead of START TRANSACTION to initiate a transaction.
START TRANSACTION was added in MySQL 4.0.11. This is standard SQL syntax and is the rec-
ommended way to start an ad-hoc transaction. BEGIN and BEGIN WORK are available from
MySQL 3.23.17 and 3.23.19, respectively.

Note that if you are not using transaction-safe tables, any changes are stored at once,
regardless of the status of autocommit mode.

If you issue a ROLLBACK statement after updating a non-transactional table within a transac-
tion, an ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe
tables will be rolled back, but not changes to non-transaction-safe tables.

07 6337 ch06 6/24/04 12:44 PM Page 289

TEAM LinG

290 CHAPTER 6 SQL Statement Syntax

If you are using START TRANSACTION or SET AUTOCOMMIT=0, you should use the MySQL binary
log for backups instead of the older update log. Transactions are stored in the binary log in
one chunk, upon COMMIT. Transactions that are rolled back are not logged. (Exception:
Modifications to non-transactional tables cannot be rolled back. If a transaction that is rolled
back includes modifications to non-transactional tables, the entire transaction is logged with a
ROLLBACK statement at the end to ensure that the modifications to those tables are replicated.
This is true as of MySQL 4.0.15.)

You can change the isolation level for transactions with SET TRANSACTION ISOLATION LEVEL.
See Section 6.4.6, “SET TRANSACTION Syntax.”

6.4.2 Statements That Cannot Be Rolled Back
Some statements cannot be rolled back. In general, these include data definition language
(DDL) statements, such as those that create or drop databases, or those that create, drop, or
alter tables.

You should design your transactions not to include such statements. If you issue a statement
early in a transaction that cannot be rolled back, and then another statement later fails, the
full effect of the transaction cannot be rolled back by issuing a ROLLBACK statement.

6.4.3 Statements That Cause an Implicit Commit
The following statements implicitly end a transaction (as if you had done a COMMIT before
executing the statement):

ALTER TABLE BEGIN CREATE INDEX

DROP DATABASE DROP INDEX DROP TABLE

LOAD MASTER DATA LOCK TABLES RENAME TABLE

SET AUTOCOMMIT=1 START TRANSACTION TRUNCATE TABLE

UNLOCK TABLES also ends a transaction if any tables currently are locked. Prior to MySQL
4.0.13, CREATE TABLE ends a transaction if the binary update log is enabled.

Transactions cannot be nested. This is a consequence of the implicit COMMIT performed
for any current transaction when you issue a START TRANSACTION statement or one of its
synonyms.

6.4.4 SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax
SAVEPOINT identifier

ROLLBACK TO SAVEPOINT identifier

Starting from MySQL 4.0.14 and 4.1.1, InnoDB supports the SQL statements SAVEPOINT and
ROLLBACK TO SAVEPOINT.

07 6337 ch06 6/24/04 12:44 PM Page 290

TEAM LinG

2916.4 MySQL Transactional and Locking Statements

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If
the current transaction already has a savepoint with the same name, the old savepoint is
deleted and a new one is set.

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint.
Modifications that the current transaction made to rows after the savepoint was set are
undone in the rollback, but InnoDB does not release the row locks that were stored in memo-
ry after the savepoint. (Note that for a new inserted row, the lock information is carried by
the transaction ID stored in the row; the lock is not separately stored in memory. In this
case, the row lock is released in the undo.) Savepoints that were set at a later time than the
named savepoint are deleted.

If the statement returns the following error, it means that no savepoint with the specified
name exists:

ERROR 1181: Got error 153 during ROLLBACK

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK
that does not name a savepoint.

6.4.5 LOCK TABLES and UNLOCK TABLES Syntax
LOCK TABLES

tbl_name [AS alias] {READ [LOCAL] | [LOW_PRIORITY] WRITE}

[, tbl_name [AS alias] {READ [LOCAL] | [LOW_PRIORITY] WRITE}] ...

UNLOCK TABLES

LOCK TABLES locks tables for the current thread. UNLOCK TABLES releases any locks held by the
current thread. All tables that are locked by the current thread are implicitly unlocked when
the thread issues another LOCK TABLES, or when the connection to the server is closed.

Note: LOCK TABLES is not transaction-safe and implicitly commits any active transactions
before attempting to lock the tables.

As of MySQL 4.0.2, to use LOCK TABLES you must have the LOCK TABLES privilege and a
SELECT privilege for the involved tables. In MySQL 3.23, you must have SELECT, INSERT,
DELETE, and UPDATE privileges for the tables.

The main reasons to use LOCK TABLES are for emulating transactions or to get more speed
when updating tables. This is explained in more detail later.

If a thread obtains a READ lock on a table, that thread (and all other threads) can only read
from the table. If a thread obtains a WRITE lock on a table, only the thread holding the lock
can read from or write to the table. Other threads are blocked.

The difference between READ LOCAL and READ is that READ LOCAL allows non-conflicting
INSERT statements (concurrent inserts) to execute while the lock is held. However, this can’t
be used if you are going to manipulate the database files outside MySQL while you hold
the lock.

07 6337 ch06 6/24/04 12:44 PM Page 291

TEAM LinG

292 CHAPTER 6 SQL Statement Syntax

When you use LOCK TABLES, you must lock all tables that you are going to use in your
queries. If you are using a table multiple times in a query (with aliases), you must get a lock
for each alias. While the locks obtained with a LOCK TABLES statement are in effect, you can-
not access any tables that were not locked by the statement.

If your queries refer to a table using an alias, then you must lock the table using that same
alias. It will not work to lock the table without specifying the alias:

mysql> LOCK TABLE t READ;

mysql> SELECT * FROM t AS myalias;

ERROR 1100: Table ‘myalias’ was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your queries using that
alias:

mysql> LOCK TABLE t AS myalias READ;

mysql> SELECT * FROM t;

ERROR 1100: Table ‘t’ was not locked with LOCK TABLES

mysql> SELECT * FROM t AS myalias;

WRITE locks normally have higher priority than READ locks to ensure that updates are
processed as soon as possible. This means that if one thread obtains a READ lock and then
another thread requests a WRITE lock, subsequent READ lock requests will wait until the WRITE
thread has gotten the lock and released it. You can use LOW_PRIORITY WRITE locks to allow
other threads to obtain READ locks while the thread is waiting for the WRITE lock. You should
use LOW_PRIORITY WRITE locks only if you are sure that there will eventually be a time when
no threads will have a READ lock.

LOCK TABLES works as follows:

1. Sort all tables to be locked in an internally defined order. From the user standpoint, this
order is undefined.

2. If a table is locked with a read and a write lock, put the write lock before the read lock.

3. Lock one table at a time until the thread gets all locks.

This policy ensures that table locking is deadlock free. There are, however, other things you
need to be aware of about this policy:

If you are using a LOW_PRIORITY WRITE lock for a table, it means only that MySQL will wait
for this particular lock until there are no threads that want a READ lock. When the thread has
gotten the WRITE lock and is waiting to get the lock for the next table in the lock table list, all
other threads will wait for the WRITE lock to be released. If this becomes a serious problem
with your application, you should consider converting some of your tables to transaction-
safe tables.

You can safely use KILL to terminate a thread that is waiting for a table lock. See Section
6.5.4.3, “KILL Syntax.”

07 6337 ch06 6/24/04 12:44 PM Page 292

TEAM LinG

2936.4 MySQL Transactional and Locking Statements

Note that you should not lock any tables that you are using with INSERT DELAYED because in
that case the INSERT is done by a separate thread.

Normally, you don’t have to lock tables, because all single UPDATE statements are atomic; no
other thread can interfere with any other currently executing SQL statement. There are a
few cases when you would like to lock tables anyway:

n If you are going to run many operations on a set of MyISAM tables, it’s much faster to
lock the tables you are going to use. Locking MyISAM tables speeds up inserting, updat-
ing, or deleting on them. The downside is that no thread can update a READ-locked
table (including the one holding the lock) and no thread can access a WRITE-locked table
other than the one holding the lock.

The reason some MyISAM operations are faster under LOCK TABLES is that MySQL will
not flush the key cache for the locked tables until UNLOCK TABLES is called. Normally,
the key cache is flushed after each SQL statement.

n If you are using a storage engine in MySQL that doesn’t support transactions, you must
use LOCK TABLES if you want to ensure that no other thread comes between a SELECT and
an UPDATE. The example shown here requires LOCK TABLES to execute safely:
mysql> LOCK TABLES trans READ, customer WRITE;

mysql> SELECT SUM(value) FROM trans WHERE customer_id=some_id;

mysql> UPDATE customer

-> SET total_value=sum_from_previous_statement

-> WHERE customer_id=some_id;

mysql> UNLOCK TABLES;

Without LOCK TABLES, it is possible that another thread might insert a new row in the
trans table between execution of the SELECT and UPDATE statements.

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer
SET value=value+new_value) or the LAST_INSERT_ID() function, See Section 1.8.5.3,
“Transactions and Atomic Operations.”

You can also avoid locking tables in some cases by using the user-level advisory lock func-
tions GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and
implemented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See
Section 5.8.4, “Miscellaneous Functions.”

You can lock all tables in all databases with read locks with the FLUSH TABLES WITH READ
LOCK statement. See Section 6.5.4.2, “FLUSH Syntax.” This is a very convenient way to get
backups if you have a filesystem such as Veritas that can take snapshots in time.

Note: If you use ALTER TABLE on a locked table, it may become unlocked. See Section A.3.1,
“Problems with ALTER TABLE.”

07 6337 ch06 6/24/04 12:44 PM Page 293

TEAM LinG

294 CHAPTER 6 SQL Statement Syntax

6.4.6 SET TRANSACTION Syntax
SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL

{ READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SERIALIZABLE }

This statement sets the transaction isolation level for the next transaction, globally, or for
the current session.

The default behavior of SET TRANSACTION is to set the isolation level for the next (not yet
started) transaction. If you use the GLOBAL keyword, the statement sets the default transaction
level globally for all new connections created from that point on. Existing connections are
unaffected. You need the SUPER privilege to do this. Using the SESSION keyword sets the
default transaction level for all future transactions performed on the current connection.

For descriptions of each InnoDB transaction isolation level, see the MySQL Administrator’s
Guide. InnoDB supports each of these levels from MySQL 4.0.5 on. The default level is
REPEATABLE READ.

You can set the initial default global isolation level for mysqld with the
--transaction-isolation option.

6.5 Database Administration Statements

6.5.1 Account Management Statements

6.5.1.1 DROP USER Syntax
DROP USER user

The DROP USER statement deletes a MySQL account that doesn’t have any privileges. It
serves to remove the account record from the user table. The account is named using the
same format as for GRANT or REVOKE; for example, ‘jeffrey’@’localhost’. The user and host
parts of the account name correspond to the User and Host column values of the user table
record for the account.

To remove a MySQL user account, you should use the following procedure, performing the
steps in the order shown:

1. Use SHOW GRANTS to determine what privileges the account has. See Section 6.5.3.10,
“SHOW GRANTS Syntax.”

2. Use REVOKE to revoke the privileges displayed by SHOW GRANTS. This removes records for
the account from all the grant tables except the user table, and revokes any global privi-
leges listed in the user table. See Section 6.5.1.2, “GRANT and REVOKE Syntax.”

3. Delete the account by using DROP USER to remove the user table record.

07 6337 ch06 6/24/04 12:44 PM Page 294

TEAM LinG

2956.5 Database Administration Statements

The DROP USER statement was added in MySQL 4.1.1. Before 4.1.1, you should first revoke
the account privileges as just described. Then delete the user table record and flush the
grant tables like this:

mysql> DELETE FROM mysql.user

-> WHERE User=’user_name’ and Host=’host_name’;

mysql> FLUSH PRIVILEGES;

6.5.1.2 GRANT and REVOKE Syntax
GRANT priv_type [(column_list)] [, priv_type [(column_list)]] ...

ON {tbl_name | * | *.* | db_name.*}

TO user [IDENTIFIED BY [PASSWORD] ‘password’]

[, user [IDENTIFIED BY [PASSWORD] ‘password’]] ...

[REQUIRE

NONE |

[{SSL| X509}]

[CIPHER ‘cipher‘ [AND]]

[ISSUER ‘issuer‘ [AND]]

[SUBJECT ‘subject‘]]

[WITH [GRANT OPTION | MAX_QUERIES_PER_HOUR count |

MAX_UPDATES_PER_HOUR count |

MAX_CONNECTIONS_PER_HOUR count]]

REVOKE priv_type [(column_list)] [, priv_type [(column_list)]] ...

ON {tbl_name | * | *.* | db_name.*}

FROM user [, user] ...

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

The GRANT and REVOKE statements allow system administrators to create MySQL user
accounts and to grant rights to and revoke them from accounts. GRANT and REVOKE are
implemented in MySQL 3.22.11 or later. For earlier MySQL versions, these statements
do nothing.

MySQL account information is stored in the tables of the mysql database. This database and
the access control system are discussed extensively in the MySQL Administrator’s Guide,
which you should consult for additional details.

Privileges can be granted at four levels:

n Global level

Global privileges apply to all databases on a given server. These privileges are stored in
the mysql.user table. GRANT ALL ON *.* and REVOKE ALL ON *.* grant and revoke only
global privileges.

07 6337 ch06 6/24/04 12:44 PM Page 295

TEAM LinG

296 CHAPTER 6 SQL Statement Syntax

n Database level

Database privileges apply to all tables in a given database. These privileges are stored in
the mysql.db and mysql.host tables. GRANT ALL ON db_name.* and REVOKE ALL ON
db_name.* grant and revoke only database privileges.

n Table level

Table privileges apply to all columns in a given table. These privileges are stored in the
mysql.tables_priv table. GRANT ALL ON db_name.tbl_name and REVOKE ALL ON
db_name.tbl_name grant and revoke only table privileges.

n Column level

Column privileges apply to single columns in a given table. These privileges are stored
in the mysql.columns_priv table. When using REVOKE, you must specify the same
columns that were granted.

To make it easy to revoke all privileges, MySQL 4.1.2 has added the following syntax, which
drops all database-, table-, and column-level privileges for the named users:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

Before MySQL 4.1.2, all privileges cannot be dropped at once. Two statements are
necessary:

REVOKE ALL PRIVILEGES FROM user [, user] ...

REVOKE GRANT OPTION FROM user [, user] ...

For the GRANT and REVOKE statements, priv_type can be specified as any of the following:

Privilege Meaning

ALL [PRIVILEGES] Sets all simple privileges except GRANT OPTION

ALTER Allows use of ALTER TABLE

CREATE Allows use of CREATE TABLE

CREATE TEMPORARY TABLES Allows use of CREATE TEMPORARY TABLE

DELETE Allows use of DELETE

DROP Allows use of DROP TABLE

EXECUTE Allows the user to run stored procedures (MySQL 5.0)

FILE Allows use of SELECT ... INTO OUTFILE and LOAD DATA
INFILE

INDEX Allows use of CREATE INDEX and DROP INDEX

INSERT Allows use of INSERT

LOCK TABLES Allows use of LOCK TABLES on tables for which you have the
SELECT privilege

PROCESS Allows use of SHOW FULL PROCESSLIST

REFERENCES Not yet implemented

07 6337 ch06 6/24/04 12:44 PM Page 296

TEAM LinG

2976.5 Database Administration Statements

Privilege Meaning

RELOAD Allows use of FLUSH

REPLICATION CLIENT Allows the user to ask where the slave or master servers are

REPLICATION SLAVE Needed for replication slaves (to read binary log events from the
master)

SELECT Allows use of SELECT

SHOW DATABASES SHOW DATABASES shows all databases

SHUTDOWN Allows use of mysqladmin shutdown

SUPER Allows use of CHANGE MASTER, KILL, PURGE MASTER LOGS, and
SET GLOBAL statements, the mysqladmin debug
command; allows you to connect (once) even if
max_connections is reached

UPDATE Allows use of UPDATE

USAGE Synonym for “no privileges”

GRANT OPTION Allows privileges to be granted

USAGE can be used when you want to create a user that has no privileges.

The privileges CREATE TEMPORARY TABLES, EXECUTE, LOCK TABLES, REPLICATION ..., SHOW
DATABASES, and SUPER are new in MySQL 4.0.2. To use these new privileges after upgrading
to 4.0.2, you must run the mysql_fix_privilege_tables script.

In older MySQL versions that do not have the SUPER privilege, the PROCESS privilege can be
used instead.

You can assign global privileges by using ON *.* syntax or database privileges by using ON
db_name.* syntax. If you specify ON * and you have a current database, the privileges will be
granted in that database. (Warning: If you specify ON * and you don’t have a current data-
base, the privileges granted will be global!)

The EXECUTION, FILE, PROCESS, RELOAD, REPLICATION CLIENT, REPLICATION SLAVE, SHOW
DATABASES, SHUTDOWN, and SUPER privileges are administrative privileges that can only be
granted globally (using ON *.* syntax).

Other privileges can be granted globally or at more specific levels.

The only priv_type values you can specify for a table are SELECT, INSERT, UPDATE, DELETE,
CREATE, DROP, GRANT OPTION, INDEX, and ALTER.

The only priv_type values you can specify for a column (that is, when you use a column_list
clause) are SELECT, INSERT, and UPDATE.

GRANT ALL assigns only the privileges that exist at the level you are granting. For example, if
you use GRANT ALL ON db_name.*, that is a database-level statement, so none of the global-
only privileges such as FILE will be granted.

07 6337 ch06 6/24/04 12:44 PM Page 297

TEAM LinG

298 CHAPTER 6 SQL Statement Syntax

MySQL allows you to create database-level privileges even if the database doesn’t exist, to
make it easy to prepare for database use. However, MySQL currently does not allow you to
create table-level privileges if the table doesn’t exist.

MySQL does not automatically revoke any privileges even if you drop a table or drop a
database.

Note: the ‘_’ and ‘%’ wildcards are allowed when specifying database names in GRANT state-
ments that grant privileges at the global or database levels. This means, for example, that if
you want to use a ‘_’ character as part of a database name, you should specify it as ‘_’ in the
GRANT statement, to prevent the user from being able to access additional databases matching
the wildcard pattern; for example, GRANT ... ON `foo_bar`.* TO

In order to accommodate granting rights to users from arbitrary hosts, MySQL supports
specifying the user value in the form user_name@host_name. If you want to specify a
user_name string containing special characters (such as ‘-’), or a host_name string containing
special characters or wildcard characters (such as ‘%’), you can quote the username or host-
name (for example, ‘test-user’@’test-hostname’). Quote the username and hostname
separately.

You can specify wildcards in the hostname. For example, user_name@’%.loc.gov’ applies to
user_name for any host in the loc.gov domain, and user_name@’144.155.166.%’ applies to
user_name for any host in the 144.155.166 class C subnet.

The simple form user_name is a synonym for user_name@’%’.

MySQL doesn’t support wildcards in usernames. Anonymous users are defined by inserting
entries with User=’’ into the mysql.user table or creating a user with an empty name with
the GRANT statement:

mysql> GRANT ALL ON test.* TO ‘’@’localhost’ ...

Warning: If you allow anonymous users to connect to the MySQL server, you should also
grant privileges to all local users as user_name@localhost. Otherwise, the anonymous-user
account for the local host in the mysql.user table will be used when named users try to log
in to the MySQL server from the local machine! (This anonymous-user account is created
during MySQL installation.)

You can determine whether this applies to you by executing the following query:

mysql> SELECT Host, User FROM mysql.user WHERE User=’’;

If you want to delete the local anonymous-user account to avoid the problem just described,
use these statements:

mysql> DELETE FROM mysql.user WHERE Host=’localhost’ AND User=’’;

mysql> FLUSH PRIVILEGES;

For the moment, GRANT only supports host, table, database, and column names up to 60
characters long. A username can be up to 16 characters.

07 6337 ch06 6/24/04 12:44 PM Page 298

TEAM LinG

2996.5 Database Administration Statements

The privileges for a table or column are formed additively from the logical OR of the privi-
leges at each of the four privilege levels. For example, if the mysql.user table specifies that a
user has a global SELECT privilege, the privilege cannot be denied by an entry at the database,
table, or column level.

The privileges for a column can be calculated as follows:

global privileges

OR (database privileges AND host privileges)

OR table privileges

OR column privileges

In most cases, you grant rights to a user at only one of the privilege levels, so life isn’t nor-
mally this complicated.

If you grant privileges for a username/hostname combination that does not exist in the
mysql.user table, an entry is added and remains there until deleted with a DELETE statement.
In other words, GRANT may create user table entries, but REVOKE will not remove them; you
must do that explicitly using DROP USER or DELETE.

In MySQL 3.22.12 or later, if a new user is created or if you have global grant privileges, the
user’s password is set to the password specified by the IDENTIFIED BY clause, if one is given.
If the user already had a password, it is replaced by the new one.

Warning: If you create a new user but do not specify an IDENTIFIED BY clause, the user has
no password. This is insecure.

Passwords can also be set with the SET PASSWORD statement. See Section 6.5.1.3, “SET
PASSWORD Syntax.”

If you don’t want to send the password in clear text, you can use the PASSWORD keyword fol-
lowed by a scrambled password from the PASSWORD() SQL function or the
make_scrambled_password() C API function.

If you grant privileges for a database, an entry in the mysql.db table is created if needed. If
all privileges for the database are removed with REVOKE, this entry is deleted.

If a user has no privileges for a table, the table name is not displayed when the user requests
a list of tables (for example, with a SHOW TABLES statement). If a user has no privileges for a
database, the database name is not displayed by SHOW DATABASES unless the user has the SHOW
DATABASES privilege.

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges
the user has at the specified privilege level. You should be careful to whom you give the
GRANT OPTION privilege, because two users with different privileges may be able to join
privileges!

You cannot grant another user a privilege you don’t have yourself; the GRANT OPTION privi-
lege allows you to give away only those privileges you possess.

07 6337 ch06 6/24/04 12:44 PM Page 299

TEAM LinG

300 CHAPTER 6 SQL Statement Syntax

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege
level, any privileges the user already possesses (or is given in the future!) at that level are also
grantable by that user. Suppose that you grant a user the INSERT privilege on a database. If
you then grant the SELECT privilege on the database and specify WITH GRANT OPTION, the user
can give away not only the SELECT privilege, but also INSERT. If you then grant the UPDATE
privilege to the user on the database, the user can give away INSERT, SELECT, and UPDATE.

You should not grant ALTER privileges to a normal user. If you do that, the user can try to
subvert the privilege system by renaming tables!

The MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count, and MAX_CONNECTIONS_PER_HOUR
count options are new in MySQL 4.0.2. They limit the number of queries, updates, and logins a
user can perform during one hour. If count is 0 (the default), this means there is no limitation
for that user. Note: To specify any of these options for an existing user without affecting exist-
ing privileges, use GRANT USAGE ON *.* ... WITH MAX_....

MySQL can check X509 certificate attributes in addition to the usual authentication that is
based on the username and password. To specify SSL-related options for a MySQL account,
use the REQUIRE clause of the GRANT statement.

There are different possibilities for limiting connection types for an account:

n If an account has no SSL or X509 requirements, unencrypted connections are allowed
if the username and password are valid. However, encrypted connections also can be
used at the client’s option, if the client has the proper certificate and key files.

n The REQUIRE SSL option tells the server to allow only SSL-encrypted connections for
the account. Note that this option can be omitted if there are any access-control
records that allow non-SSL connections.
mysql> GRANT ALL PRIVILEGES ON test.* TO ‘root‘@‘localhost‘

-> IDENTIFIED BY ‘goodsecret‘ REQUIRE SSL;

n REQUIRE X509 means that the client must have a valid certificate but that the exact cer-
tificate, issuer, and subject do not matter. The only requirement is that it should be
possible to verify its signature with one of the CA certificates.
mysql> GRANT ALL PRIVILEGES ON test.* TO ‘root‘@‘localhost‘

-> IDENTIFIED BY ‘goodsecret‘ REQUIRE X509;

n REQUIRE ISSUER ‘issuer’ places the restriction on connection attempts that the client
must present a valid X509 certificate issued by CA ‘issuer’. If the client presents a cer-
tificate that is valid but has a different issuer, the server rejects the connection. Use of
X509 certificates always implies encryption, so the SSL option is unnecessary.
mysql> GRANT ALL PRIVILEGES ON test.* TO ‘root‘@‘localhost‘

-> IDENTIFIED BY ‘goodsecret‘

-> REQUIRE ISSUER ‘/C=FI/ST=Some-State/L=Helsinki/

O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com‘;

Note that the ISSUER value should be entered as a single string.

07 6337 ch06 6/24/04 12:44 PM Page 300

TEAM LinG

3016.5 Database Administration Statements

n REQUIRE SUBJECT ‘subject’ places the restriction on connection attempts that the client
must present a valid X509 certificate with subject ‘subject’ in it. If the client presents a
certificate that is valid but has a different subject, the server rejects the connection.
mysql> GRANT ALL PRIVILEGES ON test.* TO ‘root‘@‘localhost‘

-> IDENTIFIED BY ‘goodsecret‘

-> REQUIRE SUBJECT ‘/C=EE/ST=Some-State/L=Tallinn/

O=MySQL demo client certificate/

CN=Tonu Samuel/Email=tonu@example.com‘;

Note that the SUBJECT value should be entered as a single string.
n REQUIRE CIPHER ‘cipher’ is needed to ensure that strong enough ciphers and key

lengths will be used. SSL itself can be weak if old algorithms with short encryption
keys are used. Using this option, you can ask for some exact cipher method to allow a
connection.

mysql> GRANT ALL PRIVILEGES ON test.* TO ‘root‘@‘localhost‘

-> IDENTIFIED BY ‘goodsecret‘

-> REQUIRE CIPHER ‘EDH-RSA-DES-CBC3-SHA‘;

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like this:

mysql> GRANT ALL PRIVILEGES ON test.* TO ‘root‘@‘localhost‘

-> IDENTIFIED BY ‘goodsecret‘

-> REQUIRE SUBJECT ‘/C=EE/ST=Some-State/L=Tallinn/

O=MySQL demo client certificate/

CN=Tonu Samuel/Email=tonu@example.com‘

-> AND ISSUER ‘/C=FI/ST=Some-State/L=Helsinki/

O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com‘

-> AND CIPHER ‘EDH-RSA-DES-CBC3-SHA‘;

Note that the SUBJECT and ISSUER values each should be entered as a single string.

Starting from MySQL 4.0.4, the AND keyword is optional between REQUIRE options.

The order of the options does not matter, but no option can be specified twice.

When mysqld starts, all privileges are read into memory. Database, table, and column privi-
leges take effect at once, and user-level privileges take effect the next time the user connects.
Modifications to the grant tables that you perform using GRANT or REVOKE are noticed by the
server immediately. If you modify the grant tables manually (using INSERT, UPDATE, and so
on), you should execute a FLUSH PRIVILEGES statement or run mysqladmin flush-privileges
to tell the server to reload the grant tables.

Note that if you are using table or column privileges for even one user, the server examines
table and column privileges for all users and this slows down MySQL a bit. Similarly, if you
limit the number of queries, updates, or connections for any users, the server must monitor
these values.

07 6337 ch06 6/24/04 12:44 PM Page 301

TEAM LinG

302 CHAPTER 6 SQL Statement Syntax

The biggest differences between the standard SQL and MySQL versions of GRANT are:

n In MySQL, privileges are associated with a username/hostname combination and not
with only a username.

n Standard SQL doesn’t have global or database-level privileges, nor does it support all
the privilege types that MySQL supports.

n MySQL doesn’t support the standard SQL TRIGGER or UNDER privileges.
n Standard SQL privileges are structured in a hierarchical manner. If you remove a user,

all privileges the user has been granted are revoked. In MySQL, the granted privileges
are not automatically revoked; you must revoke them yourself.

n With standard SQL, when you drop a table, all privileges for the table are revoked.
With standard SQL, when you revoke a privilege, all privileges that were granted based
on the privilege are also revoked. In MySQL, privileges can be dropped only with
explicit REVOKE statements or by manipulating the MySQL grant tables.

n In MySQL, if you have the INSERT privilege on only some of the columns in a table,
you can execute INSERT statements on the table; the columns for which you don’t have
the INSERT privilege will be set to their default values. Standard SQL requires you to
have the INSERT privilege on all columns.

6.5.1.3 SET PASSWORD Syntax
SET PASSWORD = PASSWORD(‘some password’)

SET PASSWORD FOR user = PASSWORD(‘some password’)

The SET PASSWORD statement assigns a password to an existing MySQL user account.

The first syntax sets the password for the current user. Any client that has connected to the
server using a non-anonymous account can change the password for that account.

The second syntax sets the password for a specific account on the current server host.
Only clients with access to the mysql database can do this. The user value should be given
in user_name@host_name format, where user_name and host_name are exactly as they are
listed in the User and Host columns of the mysql.user table entry. For example, if you had
an entry with User and Host column values of ‘bob’ and ‘%.loc.gov’, you would write the
statement like this:

mysql> SET PASSWORD FOR ‘bob’@’%.loc.gov’ = PASSWORD(‘newpass’);

That is equivalent to the following statements:

mysql> UPDATE mysql.user SET Password=PASSWORD(‘newpass’)

-> WHERE User=’bob’ AND Host=’%.loc.gov’;

mysql> FLUSH PRIVILEGES;

07 6337 ch06 6/24/04 12:44 PM Page 302

TEAM LinG

3036.5 Database Administration Statements

6.5.2 Table Maintenance Statements

6.5.2.1 ANALYZE TABLE Syntax
ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

This statement analyzes and stores the key distribution for a table. During the analysis, the
table is locked with a read lock. This works on MyISAM and BDB tables and (as of MySQL
4.0.13) InnoDB tables. For MyISAM tables, this statement is equivalent to using myisamchk -a.

MySQL uses the stored key distribution to decide the order in which tables should be joined
when you perform a join on something other than a constant.

The statement returns a table with the following columns:

Column Value

Table The table name

Op Always analyze

Msg_type One of status, error, info, or warning

Msg_text The message

You can check the stored key distribution with the SHOW INDEX statement. See Section
6.5.3.7, “SHOW DATABASES Syntax.”

If the table hasn’t changed since the last ANALYZE TABLE statement, the table will not be ana-
lyzed again.

Before MySQL 4.1.1, ANALYZE TABLE statements are not written to the binary log. As of
MySQL 4.1.1, they are written to the binary log unless the optional NO_WRITE_TO_BINLOG
keyword (or its alias LOCAL) is used.

6.5.2.2 BACKUP TABLE Syntax
BACKUP TABLE tbl_name [, tbl_name] ... TO ‘/path/to/backup/directory’

Note: This statement is deprecated. We are working on a better replacement for it that will
provide online backup capabilities. In the meantime, the mysqlhotcopy script can be used
instead.

BACKUP TABLE copies to the backup directory the minimum number of table files needed
to restore the table, after flushing any buffered changes to disk. The statement works
only for MyISAM tables. It copies the .frm definition and .MYD data files. The .MYI index file
can be rebuilt from those two files. The directory should be specified as a full pathname.

07 6337 ch06 6/24/04 12:44 PM Page 303

TEAM LinG

304 CHAPTER 6 SQL Statement Syntax

During the backup, a read lock is held for each table, one at time, as they are being backed
up. If you want to back up several tables as a snapshot (preventing any of them from being
changed during the backup operation), you must first issue a LOCK TABLES statement to
obtain a read lock for every table in the group.

The statement returns a table with the following columns:

Column Value

Table The table name

Op Always backup

Msg_type One of status, error, info, or warning

Msg_text The message

BACKUP TABLE is available in MySQL 3.23.25 and later.

6.5.2.3 CHECK TABLE Syntax
CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option = {QUICK | FAST | MEDIUM | EXTENDED | CHANGED}

CHECK TABLE works only on MyISAM and InnoDB tables. On MyISAM tables, it’s the same thing as
running myisamchk --medium-check tbl_name on the table.

If you don’t specify any option, MEDIUM is used.

Checks the table or tables for errors. For MyISAM tables, the key statistics are updated. The
statement returns a table with the following columns:

Column Value

Table The table name

Op Always check

Msg_type One of status, error, info, or warning

Msg_text The message

Note that the statement might produce many rows of information for each checked table.
The last row will have a Msg_type value of status and the Msg_text normally should be OK. If
you don’t get OK, or Table is already up to date, you should normally run a repair of the
table. Table is already up to date means that the storage engine for the table indicated
that there was no need to check the table.

07 6337 ch06 6/24/04 12:44 PM Page 304

TEAM LinG

3056.5 Database Administration Statements

The different check types are as follows:

Type Meaning

QUICK Don’t scan the rows to check for incorrect links.

FAST Only check tables that haven’t been closed properly.

CHANGED Only check tables that have been changed since the last check or haven’t been
closed properly.

MEDIUM Scan rows to verify that deleted links are okay. This also calculates a key check-
sum for the rows and verifies this with a calculated checksum for the keys.

EXTENDED Do a full key lookup for all keys for each row. This ensures that the table is 100%
consistent, but will take a long time!

If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for
dynamic-format MyISAM tables is MEDIUM. The default check type also is MEDIUM for static-
format MyISAM tables, unless CHANGED or FAST is specified. In that case, the default is QUICK.
The row scan is skipped for CHANGED and FAST because the rows are very seldom corrupted.

You can combine check options, as in the following example, which does a quick check on
the table to see whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note: In some cases, CHECK TABLE will change the table! This happens if the table is marked
as “corrupted” or “not closed properly” but CHECK TABLE doesn’t find any problems in the
table. In this case, CHECK TABLE marks the table as okay.

If a table is corrupted, it’s most likely that the problem is in the indexes and not in the data
part. All of the preceding check types check the indexes thoroughly and should thus find
most errors.

If you just want to check a table that you assume is okay, you should use no check options or
the QUICK option. The latter should be used when you are in a hurry and can take the very
small risk that QUICK doesn’t find an error in the data file. (In most cases, MySQL should
find, under normal usage, any error in the data file. If this happens, the table is marked as
“corrupted” and cannot be used until it’s repaired.)

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed
from cron) if you want to check your table from time to time. In most cases, FAST is to be
preferred over CHANGED. (The only case when it isn’t preferred is when you suspect that you
have found a bug in the MyISAM code.)

EXTENDED is to be used only after you have run a normal check but still get strange errors
from a table when MySQL tries to update a row or find a row by key. (This is very unlikely
if a normal check has succeeded!)

07 6337 ch06 6/24/04 12:44 PM Page 305

TEAM LinG

306 CHAPTER 6 SQL Statement Syntax

Some problems reported by CHECK TABLE can’t be corrected automatically:

n Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column
contains the value 0. (It’s possible to create a row where the AUTO_INCREMENT column is 0
by explicitly setting the column to 0 with an UPDATE statement.)

This isn’t an error in itself, but could cause trouble if you decide to dump the table and
restore it or do an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column
will change value according to the rules of AUTO_INCREMENT columns, which could cause
problems such as a duplicate-key error.

To get rid of the warning, just execute an UPDATE statement to set the column to some
other value than 0.

6.5.2.4 CHECKSUM TABLE Syntax
CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

Reports a table checksum.

If QUICK is specified, the live table checksum is reported if it is available, or NULL otherwise.
This is very fast. A live checksum is enabled by specifying the CHECKSUM=1 table option, cur-
rently supported only for MyISAM tables. See Section 6.2.5, “CREATE TABLE Syntax.”

In EXTENDED mode the whole table is read row by row and the checksum is calculated. This
can be very slow for large tables.

By default, if neither QUICK nor EXTENDED is specified, MySQL returns a live checksum if the
table storage engine supports it and scans the table otherwise.

This statement is implemented in MySQL 4.1.1.

6.5.2.5 OPTIMIZE TABLE Syntax
OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

OPTIMIZE TABLE should be used if you have deleted a large part of a table or if you have
made many changes to a table with variable-length rows (tables that have VARCHAR, BLOB, or
TEXT columns). Deleted records are maintained in a linked list and subsequent INSERT opera-
tions reuse old record positions. You can use OPTIMIZE TABLE to reclaim the unused space
and to defragment the data file.

In most setups, you need not run OPTIMIZE TABLE at all. Even if you do a lot of updates to
variable-length rows, it’s not likely that you need to do this more than once a week or
month and only on certain tables.

For the moment, OPTIMIZE TABLE works only on MyISAM and BDB tables. For BDB tables,
OPTIMIZE TABLE is currently mapped to ANALYZE TABLE. See Section 6.5.2.1, “ANALYZE TABLE
Syntax.”

07 6337 ch06 6/24/04 12:44 PM Page 306

TEAM LinG

3076.5 Database Administration Statements

You can get OPTIMIZE TABLE to work on other table types by starting mysqld with the --skip-
new or --safe-mode option, but in this case, OPTIMIZE TABLE is just mapped to ALTER TABLE.

OPTIMIZE TABLE works as follows:

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the statistics are not up to date (and the repair couldn’t be done by sorting the index),
update them.

Note that MySQL locks the table during the time OPTIMIZE TABLE is running.

Before MySQL 4.1.1, OPTIMIZE TABLE statements are not written to the binary log. As of
MySQL 4.1.1, they are written to the binary log unless the optional NO_WRITE_TO_BINLOG
keyword (or its alias LOCAL) is used.

6.5.2.6 REPAIR TABLE Syntax
REPAIR [LOCAL | NO_WRITE_TO_BINLOG] TABLE

tbl_name [, tbl_name] ... [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table. By default, it has the same effect as
myisamchk --recover tbl_name. REPAIR TABLE works only on MyISAM tables.

Normally, you should never have to run this statement. However, if disaster strikes, REPAIR
TABLE is very likely to get back all your data from a MyISAM table. If your tables become cor-
rupted often, you should try to find the reason for it, to eliminate the need to use REPAIR
TABLE.

The statement returns a table with the following columns:

Column Value

Table The table name

Op Always repair

Msg_type One of status, error, info, or warning

Msg_text The message

The REPAIR TABLE statement might produce many rows of information for each repaired
table. The last row will have a Msg_type value of status and Msg_test normally should be OK.
If you don’t get OK, you should try repairing the table with myisamchk --safe-recover,
because REPAIR TABLE does not yet implement all the options of myisamchk. We plan to make
it more flexible in the future.

If QUICK is given, REPAIR TABLE tries to repair only the index tree. This type of repair is like
that done by myisamchk --recover --quick.

07 6337 ch06 6/24/04 12:44 PM Page 307

TEAM LinG

308 CHAPTER 6 SQL Statement Syntax

If you use EXTENDED, MySQL creates the index row by row instead of creating one index at a
time with sorting. (Before MySQL 4.1, this might be better than sorting on fixed-length
keys if you have long CHAR keys that compress very well.) This type of repair is like that done
by myisamchk --safe-recover.

As of MySQL 4.0.2, there is a USE_FRM mode for REPAIR TABLE. Use it if the .MYI index file is
missing or if its header is corrupted. In this mode, MySQL will re-create the .MYI file using
information from the .frm file. This kind of repair cannot be done with myisamchk.

Warning: If the server dies during a REPAIR TABLE operation, it’s essential after restarting it
that you immediately execute another REPAIR TABLE statement for the table before perform-
ing any other operations on it. (It’s always good to start by making a backup.) In the worst
case, you might have a new clean index file without information about the data file, and then
the next operation you perform could overwrite the data file. This is an unlikely, but possi-
ble scenario.

Before MySQL 4.1.1, REPAIR TABLE statements are not written to the binary log. As of
MySQL 4.1.1, they are written to the binary log unless the optional NO_WRITE_TO_BINLOG
keyword (or its alias LOCAL) is used.

6.5.2.7 RESTORE TABLE Syntax
RESTORE TABLE tbl_name [, tbl_name] ... FROM ‘/path/to/backup/directory’

Restores the table or tables from a backup that was made with BACKUP TABLE. Existing tables
will not be overwritten; if you try to restore over an existing table, you will get an error. Just
as BACKUP TABLE, RESTORE TABLE currently works only for MyISAM tables. The directory should
be specified as a full pathname.

The backup for each table consists of its .frm format file and .MYD data file. The restore
operation restores those files, then uses them to rebuild the .MYI index file. Restoring takes
longer than backing up due to the need to rebuild the indexes. The more indexes the table
has, the longer it will take.

The statement returns a table with the following columns:

Column Value

Table The table name

Op Always restore

Msg_type One of status, error, info, or warning

Msg_text The message

07 6337 ch06 6/24/04 12:44 PM Page 308

TEAM LinG

3096.5 Database Administration Statements

6.5.3 SET and SHOW Syntax
SET allows you to set variables and options.

SHOW has many forms that provide information about databases, tables, columns, or status
information about the server. This section describes those following:

SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [LIKE ‘pattern’]

SHOW CREATE DATABASE db_name

SHOW CREATE TABLE tbl_name

SHOW DATABASES [LIKE ‘pattern’]

SHOW [STORAGE] ENGINES

SHOW ERRORS [LIMIT [offset,] row_count]

SHOW GRANTS FOR user

SHOW INDEX FROM tbl_name [FROM db_name]

SHOW INNODB STATUS

SHOW [BDB] LOGS

SHOW PRIVILEGES

SHOW [FULL] PROCESSLIST

SHOW STATUS [LIKE ‘pattern’]

SHOW TABLE STATUS [FROM db_name] [LIKE ‘pattern’]

SHOW [OPEN] TABLES [FROM db_name] [LIKE ‘pattern’]

SHOW [GLOBAL | SESSION] VARIABLES [LIKE ‘pattern’]

SHOW WARNINGS [LIMIT [offset,] row_count]

If the syntax for a given SHOW statement includes a LIKE ‘pattern’ part, ‘pattern’ is a string
that can contain the SQL ‘%’ and ‘_’ wildcard characters. The pattern is useful for restricting
statement output to matching values.

Note that there are other forms of these statements described elsewhere:

n The SET PASSWORD statement for assigning account passwords is described in
Section 6.5.1.3, “SET PASSWORD Syntax.”

n The SHOW statement has forms that provide information about replication master and
slave servers:
SHOW BINLOG EVENTS

SHOW MASTER LOGS

SHOW MASTER STATUS

SHOW SLAVE HOSTS

SHOW SLAVE STATUS

These forms of SHOW are described in Section 6.6, “Replication Statements.”

07 6337 ch06 6/24/04 12:44 PM Page 309

TEAM LinG

310 CHAPTER 6 SQL Statement Syntax

6.5.3.1 SET Syntax
SET variable_assignment [, variable_assignment] ...

variable_assignment:

user_var_name = expr

| [GLOBAL | SESSION] system_var_name = expr

| @@[global. | session.]system_var_name = expr

SET sets different types of variables that affect the operation of the server or your client. It
can be used to assign values to user variables or system variables.

In MySQL 4.0.3, we added the GLOBAL and SESSION options and allowed most important sys-
tem variables to be changed dynamically at runtime.

In older versions of MySQL, SET OPTION is used instead of SET, but this is now deprecated;
just leave out the word OPTION.

The following examples show the different syntaxes you can use to set variables.

A user variable is written as @var_name and can be set as follows:

SET @var_name = expr;

Further information about user variables is given in Section 2.3, “User Variables.”

System variables can be referred to in SET statements as var_name. The name optionally can
be preceded by GLOBAL or @@global. to indicate explicitly that the variable is a global vari-
able, or by SESSION, @@session., or @@ to indicate that it is a session variable. LOCAL and
@@local. are synonyms for SESSION and @@session.. If no modifier is present, SET sets the
session variable.

The @@var_name syntax for system variables is supported to make MySQL syntax compatible
with some other database systems.

If you set several system variables in the same statement, the last used GLOBAL or SESSION
option is used for variables that have no mode specified.

SET sort_buffer_size=10000;

SET @@local.sort_buffer_size=10000;

SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;

SET @@sort_buffer_size=1000000;

SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

If you set a system variable using SESSION (the default), the value remains in effect until the
current session ends or until you set the variable to a different value. If you set a system vari-
able using GLOBAL, which requires the SUPER privilege, the value is remembered and used for
new connections until the server restarts. If you want to make a variable setting permanent,
you should put it in an option file.

07 6337 ch06 6/24/04 12:44 PM Page 310

TEAM LinG

3116.5 Database Administration Statements

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable
that can only be used with SET SESSION or if you do not specify GLOBAL when setting a global
variable.

If you want to set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in
MySQL default value, you can set it to DEFAULT. For example, the following two statements
are identical in setting the session value of max_join_size to the global value:

SET max_join_size=DEFAULT;

SET @@session.max_join_size=@@global.max_join_size;

You can get a list of most system variables with SHOW VARIABLES. See Section 6.5.3.19, “SHOW
VARIABLES Syntax.” To get a specific variable name or list of names that match a pattern, use
a LIKE clause:

SHOW VARIABLES LIKE ‘max_join_size’;

SHOW GLOBAL VARIABLES LIKE ‘max_join_size’;

You can also get the value for a specific value by using the @@[global.|local.]var_name syn-
tax with SELECT:

SELECT @@max_join_size, @@global.max_join_size;

When you retrieve a variable with SELECT @@var_name (that is, you do not specify global.,
session., or local.), MySQL returns the SESSION value if it exists and the GLOBAL value oth-
erwise.

The following list describes variables that have non-standard syntax or that are not
described in the list of system variables that is found in the MySQL Administrator’s Guide.
Although these variables are not displayed by SHOW VARIABLES, you can obtain their values
with SELECT (with the exception of CHARACTER SET and NAMES). For example:

mysql> SELECT @@AUTOCOMMIT;

+--------------+

| @@autocommit |

+--------------+

| 1 |

+--------------+

n AUTOCOMMIT = {0 | 1}

Set the autocommit mode. If set to 1, all changes to a table take effect immediately. If
set to 0, you have to use COMMIT to accept a transaction or ROLLBACK to cancel it. If you
change AUTOCOMMIT mode from 0 to 1, MySQL performs an automatic COMMIT of any
open transaction. Another way to begin a transaction is to use a START TRANSACTION or
BEGIN statement. See Section 6.4.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax.”

07 6337 ch06 6/24/04 12:44 PM Page 311

TEAM LinG

312 CHAPTER 6 SQL Statement Syntax

n BIG_TABLES = {0 | 1}

If set to 1, all temporary tables are stored on disk rather than in memory. This is a little
slower, but the error The table tbl_name is full will not occur for SELECT operations
that require a large temporary table. The default value for a new connection is 0 (use
in-memory temporary tables). As of MySQL 4.0, you should normally never need to set
this variable, because MySQL automatically converts in-memory tables to disk-based
tables as necessary. This variable previously was named SQL_BIG_TABLES.

n CHARACTER SET {charset_name | DEFAULT}

This maps all strings from and to the client with the given mapping. Before MySQL
4.1, the only allowable value for charset_name is cp1251_koi8, but you can add new
mappings by editing the sql/convert.cc file in the MySQL source distribution. As of
MySQL 4.1.1, SET CHARACTER SET sets three session system variables:
character_set_client and character_set_results are set to the given character set, and
character_set_connection to the value of character_set_database.

The default mapping can be restored by using a value of DEFAULT.

Note that the syntax for SET CHARACTER SET differs from that for setting most other
options.

n FOREIGN_KEY_CHECKS = {0 | 1}

If set to 1 (the default), foreign key constraints for InnoDB tables are checked. If set to 0,
they are ignored. Disabling foreign key checking can be useful for reloading InnoDB
tables in an order different than that required by their parent/child relationships. This
variable was added in MySQL 3.23.52.

n IDENTITY = value

The variable is a synonym for the LAST_INSERT_ID variable. It exists for compatibility
with other databases. As of MySQL 3.23.25, you can read its value with SELECT
@@IDENTITY. As of MySQL 4.0.3, you can also set its value with SET IDENTITY.

n INSERT_ID = value

Set the value to be used by the following INSERT or ALTER TABLE statement when insert-
ing an AUTO_INCREMENT value. This is mainly used with the binary log.

n LAST_INSERT_ID = value

Set the value to be returned from LAST_INSERT_ID(). This is stored in the binary log
when you use LAST_INSERT_ID() in a statement that updates a table. Setting this variable
does not update the value returned by the mysql_insert_id() C API function.

n NAMES {‘charset_name’ | DEFAULT}

SET NAMES sets the three session system variables character_set_client,
character_set_connection, and character_set_results to the given character set.

The default mapping can be restored by using a value of DEFAULT.

Note that the syntax for SET NAMES differs from that for setting most other options.
This statement is available as of MySQL 4.1.0.

07 6337 ch06 6/24/04 12:44 PM Page 312

TEAM LinG

3136.5 Database Administration Statements

n SQL_AUTO_IS_NULL = {0 | 1}

If set to 1 (the default), you can find the last inserted row for a table that contains an
AUTO_INCREMENT column by using the following construct:
WHERE auto_increment_column IS NULL

This behavior is used by some ODBC programs, such as Access. SQL_AUTO_IS_NULL was
added in MySQL 3.23.52.

n SQL_BIG_SELECTS = {0 | 1}

If set to 0, MySQL aborts SELECT statements that probably will take a very long time
(that is, statements for which the optimizer estimates that the number of examined rows
will exceed the value of max_join_size). This is useful when an inadvisable WHERE state-
ment has been issued. The default value for a new connection is 1, which allows all
SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT,
SQL_BIG_SELECTS will be set to 0.

n SQL_BUFFER_RESULT = {0 | 1}

SQL_BUFFER_RESULT forces results from SELECT statements to be put into temporary tables.
This helps MySQL free the table locks early and can be beneficial in cases where it takes
a long time to send results to the client. This variable was added in MySQL 3.23.13.

n SQL_LOG_BIN = {0 | 1}

If set to 0, no logging is done to the binary log for the client. The client must have the
SUPER privilege to set this option. This variable was added in MySQL 3.23.16.

n SQL_LOG_OFF = {0 | 1}

If set to 1, no logging is done to the general query log for this client. The client must
have the SUPER privilege to set this option.

n SQL_LOG_UPDATE = {0 | 1}

If set to 0, no logging is done to the update log for the client. The client must have the
SUPER privilege to set this option. This variable was added in MySQL 3.22.5. Starting
from MySQL 5.0.0, it is deprecated and is mapped to SQL_LOG_BIN.

n SQL_QUOTE_SHOW_CREATE = {0 | 1}

If set to 1, SHOW CREATE TABLE quotes table and column names. If set to 0, quoting is
disabled. This option is enabled by default so that replication will work for tables with
table and column names that require quoting. This variable was added in MySQL
3.23.26. Section 6.5.3.6, “SHOW CREATE TABLE Syntax.”

n SQL_SAFE_UPDATES = {0 | 1}

If set to 1, MySQL aborts UPDATE or DELETE statements that do not use a key in the
WHERE clause or a LIMIT clause. This makes it possible to catch UPDATE or DELETE state-
ments where keys are not used properly and that would probably change or delete a
large number of rows. This variable was added in MySQL 3.22.32.

07 6337 ch06 6/24/04 12:44 PM Page 313

TEAM LinG

314 CHAPTER 6 SQL Statement Syntax

n SQL_SELECT_LIMIT = {value | DEFAULT}

The maximum number of records to return from SELECT statements. The default value
for a new connection is “unlimited.” If you have changed the limit, the default value can
be restored by using a SQL_SELECT_LIMIT value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of
SQL_SELECT_LIMIT.

n SQL_WARNINGS = {0 | 1}

This variable controls whether single-row INSERT statements produce an information
string if warnings occur. The default is 0. Set the value to 1 to produce an information
string. This variable was added in MySQL 3.22.11.

n TIMESTAMP = {timestamp_value | DEFAULT}

Set the time for this client. This is used to get the original timestamp if you use the
binary log to restore rows. timestamp_value should be a Unix epoch timestamp, not a
MySQL timestamp.

n UNIQUE_CHECKS = {0 | 1}

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are
performed. If set to 0, no uniqueness checks are done. This variable was added in
MySQL 3.23.52.

6.5.3.2 SHOW CHARACTER SET Syntax
SHOW CHARACTER SET [LIKE ‘pattern’]

The SHOW CHARACTER SET statement shows all available character sets. It takes an optional
LIKE clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE ‘latin%’;

+---------+-----------------------------+-------------------+--------+

| Charset | Description | Default collation | Maxlen |

+---------+-----------------------------+-------------------+--------+

| latin1 | ISO 8859-1 West European | latin1_swedish_ci | 1 |

| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |

| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |

| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1 |

+---------+-----------------------------+-------------------+--------+

The Maxlen column shows the maximum number of bytes used to store one character.

SHOW CHARACTER SET is available as of MySQL 4.1.0.

07 6337 ch06 6/24/04 12:44 PM Page 314

TEAM LinG

3156.5 Database Administration Statements

6.5.3.3 SHOW COLLATION Syntax
SHOW COLLATION [LIKE ‘pattern’]

The output from SHOW COLLATION includes all available character sets. It takes an optional
LIKE clause that indicates which collation names to match. For example:

mysql> SHOW COLLATION LIKE ‘latin1%’;

+-------------------+---------+----+---------+----------+---------+

| Collation | Charset | Id | Default | Compiled | Sortlen |

+-------------------+---------+----+---------+----------+---------+

| latin1_german1_ci | latin1 | 5 | | | 0 |

| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 0 |

| latin1_danish_ci | latin1 | 15 | | | 0 |

| latin1_german2_ci | latin1 | 31 | | Yes | 2 |

| latin1_bin | latin1 | 47 | | Yes | 0 |

| latin1_general_ci | latin1 | 48 | | | 0 |

| latin1_general_cs | latin1 | 49 | | | 0 |

| latin1_spanish_ci | latin1 | 94 | | | 0 |

+-------------------+---------+----+---------+----------+---------+

The Default column indicates whether a collation is the default for its character set.
Compiled indicates whether the character set is compiled into the server. Sortlen is related to
the amount of memory required to sort strings expressed in the character set.

SHOW COLLATION is available as of MySQL 4.1.0.

6.5.3.4 SHOW COLUMNS Syntax
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [LIKE ‘pattern’]

SHOW COLUMNS lists the columns in a given table. If the column types differ from what you
expect them to be based on your CREATE TABLE statement, note that MySQL sometimes
changes column types when you create or alter a table. The conditions for which this occurs
are described in Section 6.2.5.2, “Silent Column Specification Changes.”

The FULL keyword can be used from MySQL 3.23.32 on. It causes the output to include the
privileges you have for each column. As of MySQL 4.1, FULL also causes any per-column
comments to be displayed.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. These
two statements are equivalent:

mysql> SHOW COLUMNS FROM mytable FROM mydb;

mysql> SHOW COLUMNS FROM mydb.mytable;

SHOW FIELDS is a synonym for SHOW COLUMNS. You can also list a table’s columns with the
mysqlshow db_name tbl_name command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 6.3.1,
“DESCRIBE Syntax (Get Information About Columns).”

07 6337 ch06 6/24/04 12:44 PM Page 315

TEAM LinG

316 CHAPTER 6 SQL Statement Syntax

6.5.3.5 SHOW CREATE DATABASE Syntax
SHOW CREATE DATABASE db_name

Shows a CREATE DATABASE statement that will create the given database. It was added in
MySQL 4.1.

mysql> SHOW CREATE DATABASE test\G

*************************** 1. row ***************************

Database: test

Create Database: CREATE DATABASE `test`

/*!40100 DEFAULT CHARACTER SET latin1 */

6.5.3.6 SHOW CREATE TABLE Syntax
SHOW CREATE TABLE tbl_name

Shows a CREATE TABLE statement that will create the given table. It was added in MySQL
3.23.20.

mysql> SHOW CREATE TABLE t\G

*************************** 1. row ***************************

Table: t

Create Table: CREATE TABLE t (

id INT(11) default NULL auto_increment,

s char(60) default NULL,

PRIMARY KEY (id)

) TYPE=MyISAM

SHOW CREATE TABLE quotes table and column names according to the value of the
SQL_QUOTE_SHOW_CREATE option. Section 6.5.3.1, “SET Syntax.”

6.5.3.7 SHOW DATABASES Syntax
SHOW DATABASES [LIKE ‘pattern’]

SHOW DATABASES lists the databases on the MySQL server host. You can also get this list using
the mysqlshow command. As of MySQL 4.0.2, you will see only those databases for which
you have some kind of privilege, if you don’t have the global SHOW DATABASES privilege.

If the server was started with the --skip-show-database option, you cannot use this state-
ment at all unless you have the SHOW DATABASES privilege.

07 6337 ch06 6/24/04 12:44 PM Page 316

TEAM LinG

3176.5 Database Administration Statements

6.5.3.8 SHOW ENGINES Syntax
SHOW [STORAGE] ENGINES

SHOW ENGINES shows you status information about the storage engines. This is particularly
useful for checking whether a storage engine is supported, or to see what the default engine
is. This statement is implemented in MySQL 4.1.2. SHOW TABLE TYPES is a deprecated syn-
onym.

mysql> SHOW ENGINES\G

*************************** 1. row ***************************

Type: MyISAM

Support: DEFAULT

Comment: Default type from 3.23 with great performance

*************************** 2. row ***************************

Type: HEAP

Support: YES

Comment: Hash based, stored in memory, useful for temporary tables

*************************** 3. row ***************************

Type: MEMORY

Support: YES

Comment: Alias for HEAP

*************************** 4. row ***************************

Type: MERGE

Support: YES

Comment: Collection of identical MyISAM tables

*************************** 5. row ***************************

Type: MRG_MYISAM

Support: YES

Comment: Alias for MERGE

*************************** 6. row ***************************

Type: ISAM

Support: NO

Comment: Obsolete table type; Is replaced by MyISAM

*************************** 7. row ***************************

Type: MRG_ISAM

Support: NO

Comment: Obsolete table type; Is replaced by MRG_MYISAM

*************************** 8. row ***************************

Type: InnoDB

Support: YES

Comment: Supports transactions, row-level locking and foreign keys

*************************** 9. row ***************************

Type: INNOBASE

Support: YES

Comment: Alias for INNODB

07 6337 ch06 6/24/04 12:44 PM Page 317

TEAM LinG

318 CHAPTER 6 SQL Statement Syntax

*************************** 10. row ***************************

Type: BDB

Support: YES

Comment: Supports transactions and page-level locking

*************************** 11. row ***************************

Type: BERKELEYDB

Support: YES

Comment: Alias for BDB

A Support value indicates whether the particular storage engine is supported, and which is
the default engine. For example, if the server is started with the --default-table-type=
InnoDB option, then the Support value for the InnoDB row will have the value DEFAULT.

6.5.3.9 SHOW ERRORS Syntax
SHOW ERRORS [LIMIT [offset,] row_count]

SHOW COUNT(*) ERRORS

This statement is similar to SHOW WARNINGS, except that instead of displaying errors, warn-
ings, and notes, it displays only errors. SHOW ERRORS is available as of MySQL 4.1.0.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 6.1.7, “SELECT
Syntax.”

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve
this number from the error_count variable:

SHOW COUNT(*) ERRORS;

SELECT @@error_count;

For more information, see Section 6.5.3.20, “SHOW WARNINGS Syntax.”

6.5.3.10 SHOW GRANTS Syntax
SHOW GRANTS FOR user

This statement lists the GRANT statements that must be issued to duplicate the privileges for a
MySQL user account.

mysql> SHOW GRANTS FOR ‘root’@’localhost’;

+---+

| Grants for root@localhost |

+---+

| GRANT ALL PRIVILEGES ON *.* TO ‘root’@’localhost’ WITH GRANT OPTION |

+---+

07 6337 ch06 6/24/04 12:44 PM Page 318

TEAM LinG

3196.5 Database Administration Statements

As of MySQL 4.1.2, to list privileges for the current session, you can use any of the follow-
ing statements:

SHOW GRANTS;

SHOW GRANTS FOR CURRENT_USER;

SHOW GRANTS FOR CURRENT_USER();

Before MySQL 4.1.2, you can find out what user the session was authenticated as by select-
ing the value of the CURRENT_USER() function (new in MySQL 4.0.6). Then use that value in
the SHOW GRANTS statement. See Section 5.8.3, “Information Functions.”

SHOW GRANTS is available as of MySQL 3.23.4.

6.5.3.11 SHOW INDEX Syntax
SHOW INDEX FROM tbl_name [FROM db_name]

SHOW INDEX returns table index information in a format that resembles the SQLStatistics call
in ODBC.

SHOW INDEX returns the following fields:

n Table

The name of the table.
n Non_unique

0 if the index can’t contain duplicates, 1 if it can.
n Key_name

The name of the index.
n Seq_in_index

The column sequence number in the index, starting with 1.
n Column_name

The column name.
n Collation

How the column is sorted in the index. In MySQL, this can have values ‘A’ (Ascending)
or NULL (Not sorted).

n Cardinality

The number of unique values in the index. This is updated by running ANALYZE TABLE
or myisamchk -a. Cardinality is counted based on statistics stored as integers, so it’s not
necessarily accurate for small tables.

n Sub_part

The number of indexed characters if the column is only partly indexed. NULL if the
entire column is indexed.

07 6337 ch06 6/24/04 12:44 PM Page 319

TEAM LinG

320 CHAPTER 6 SQL Statement Syntax

n Packed

Indicates how the key is packed. NULL if it is not.
n Null

Contains YES if the column may contain NULL, “ if not.
n Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).
n Comment

Various remarks. Before MySQL 4.0.2 when the Index_type column was added,
Comment indicates whether an index is FULLTEXT.

The Packed and Comment columns were added in MySQL 3.23.0. The Null and Index_type
columns were added in MySQL 4.0.2.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. These
two statements are equivalent:

mysql> SHOW INDEX FROM mytable FROM mydb;

mysql> SHOW INDEX FROM mydb.mytable;

SHOW KEYS is a synonym for SHOW INDEX. You can also list a table’s indexes with the mysqlshow
-k db_name tbl_name command.

6.5.3.12 SHOW INNODB STATUS Syntax
SHOW INNODB STATUS

This statement shows extensive information about the state of the InnoDB storage engine.

6.5.3.13 SHOW LOGS Syntax
SHOW [BDB] LOGS

SHOW LOGS displays status information about existing log files. It was implemented in
MySQL 3.23.29. Currently, it displays only information about Berkeley DB log files, so an
alias for it (available as of MySQL 4.1.1) is SHOW BDB LOGS.

SHOW LOGS returns the following fields:

n File

The full path to the log file.
n Type

The log file type (BDB for Berkeley DB log files).
n Status

The status of the log file (FREE if the file can be removed, or IN USE if the file is needed
by the transaction subsystem).

07 6337 ch06 6/24/04 12:44 PM Page 320

TEAM LinG

3216.5 Database Administration Statements

6.5.3.14 SHOW PRIVILEGES Syntax
SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the underlying MySQL server sup-
ports. This statement is implemented as of MySQL 4.1.0.

mysql> SHOW PRIVILEGES\G

*************************** 1. row ***************************

Privilege: Select

Context: Tables

Comment: To retrieve rows from table

*************************** 2. row ***************************

Privilege: Insert

Context: Tables

Comment: To insert data into tables

*************************** 3. row ***************************

Privilege: Update

Context: Tables

Comment: To update existing rows

*************************** 4. row ***************************

Privilege: Delete

Context: Tables

Comment: To delete existing rows

*************************** 5. row ***************************

Privilege: Index

Context: Tables

Comment: To create or drop indexes

*************************** 6. row ***************************

Privilege: Alter

Context: Tables

Comment: To alter the table

*************************** 7. row ***************************

Privilege: Create

Context: Databases,Tables,Indexes

Comment: To create new databases and tables

*************************** 8. row ***************************

Privilege: Drop

Context: Databases,Tables

Comment: To drop databases and tables

*************************** 9. row ***************************

Privilege: Grant

Context: Databases,Tables

Comment: To give to other users those privileges you possess

*************************** 10. row ***************************

Privilege: References

Context: Databases,Tables

Comment: To have references on tables

07 6337 ch06 6/24/04 12:44 PM Page 321

TEAM LinG

322 CHAPTER 6 SQL Statement Syntax

*************************** 11. row ***************************

Privilege: Reload

Context: Server Admin

Comment: To reload or refresh tables, logs and privileges

*************************** 12. row ***************************

Privilege: Shutdown

Context: Server Admin

Comment: To shutdown the server

*************************** 13. row ***************************

Privilege: Process

Context: Server Admin

Comment: To view the plain text of currently executing queries

*************************** 14. row ***************************

Privilege: File

Context: File access on server

Comment: To read and write files on the server

6.5.3.15 SHOW PROCESSLIST Syntax
SHOW [FULL] PROCESSLIST

SHOW PROCESSLIST shows you which threads are running. You can also get this information
using the mysqladmin processlist statement. If you have the SUPER privilege, you can see all
threads. Otherwise, you can see only your own threads (that is, threads associated with the
MySQL account that you are using). See Section 6.5.4.3, “KILL Syntax.” If you don’t use the
FULL keyword, only the first 100 characters of each query are shown.

Starting from MySQL 4.0.12, the statement reports the hostname for TCP/IP connections
in host_name:client_port format to make it easier to determine which client is doing what.

This statement is very useful if you get the “too many connections” error message and want
to find out what is going on. MySQL reserves one extra connection to be used by accounts
that have the SUPER privilege, to ensure that administrators should always be able to connect
and check the system (assuming that you are not giving this privilege to all your users).

Some states commonly seen in the output from SHOW PROCESSLIST:

n Checking table

The thread is performing (automatic) checking of the table.
n Closing tables

Means that the thread is flushing the changed table data to disk and closing the used
tables. This should be a fast operation. If not, then you should verify that you don’t
have a full disk and that the disk is not in very heavy use.

n Connect Out

Slave connecting to master.

07 6337 ch06 6/24/04 12:44 PM Page 322

TEAM LinG

3236.5 Database Administration Statements

n Copying to tmp table on disk

The temporary result set was larger than tmp_table_size and the thread is now chang-
ing the temporary table from in-memory to disk-based format to save memory.

n Creating tmp table

The thread is creating a temporary table to hold a part of the result for the query.
n deleting from main table

The server is executing the first part of a multiple-table delete and deleting only from
the first table.

n deleting from reference tables

The server is executing the second part of a multiple-table delete and deleting the
matched rows from the other tables.

n Flushing tables

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables.
n Killed

Someone has sent a kill to the thread and it should abort next time it checks the kill
flag. The flag is checked in each major loop in MySQL, but in some cases it might still
take a short time for the thread to die. If the thread is locked by some other thread, the
kill takes effect as soon as the other thread releases its lock.

n Sending data

The thread is processing rows for a SELECT statement and also is sending data to the
client.

n Sorting for group

The thread is doing a sort to satisfy a GROUP BY.
n Sorting for order

The thread is doing a sort to satisfy an ORDER BY.
n Opening tables

The thread is trying to open a table. This is should be a very fast procedure, unless
something prevents opening. For example, an ALTER TABLE or a LOCK TABLE statement
can prevent opening a table until the statement is finished.

n Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL couldn’t optimize
away the distinct operation at an early stage. Because of this, MySQL requires an extra
stage to remove all duplicated rows before sending the result to the client.

n Reopen table

The thread got a lock for the table, but noticed after getting the lock that the under-
lying table structure changed. It has freed the lock, closed the table, and is now trying
to reopen it.

07 6337 ch06 6/24/04 12:44 PM Page 323

TEAM LinG

324 CHAPTER 6 SQL Statement Syntax

n Repair by sorting

The repair code is using sorting to create indexes.
n Repair with keycache

The repair code is using creating keys one by one through the key cache. This is much
slower than Repair by sorting.

n Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This
has to be done if the UPDATE is changing the index that is used to find the involved rows.

n Sleeping

The thread is waiting for the client to send a new statement to it.
n System lock

The thread is waiting to get an external system lock for the table. If you are not using
multiple mysqld servers that are accessing the same tables, you can disable system locks
with the --skip-external-locking option.

n Upgrading lock

The INSERT DELAYED handler is trying to get a lock for the table to insert rows.
n Updating

The thread is searching for rows to update and updating them.
n User Lock

The thread is waiting on a GET_LOCK().
n Waiting for tables

The thread got a notification that the underlying structure for a table has changed and
it needs to reopen the table to get the new structure. However, to be able to reopen the
table, it must wait until all other threads have closed the table in question.

This notification happens if another thread has used FLUSH TABLES or one of the follow-
ing statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME
TABLE, REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

n waiting for handler insert

The INSERT DELAYED handler has processed all pending inserts and is waiting for new
ones.

Most states correspond to very quick operations. If a thread stays in any of these states for
many seconds, there might be a problem that needs to be investigated.

There are some other states that are not mentioned in the preceding list, but many of them
are useful only for finding bugs in the server.

07 6337 ch06 6/24/04 12:44 PM Page 324

TEAM LinG

3256.5 Database Administration Statements

6.5.3.16 SHOW STATUS Syntax
SHOW STATUS [LIKE ‘pattern’]

SHOW STATUS provides server status information. This information also can be obtained using
the mysqladmin extended-status command.

Partial output is shown here. The list of variables and their values may be different for your
server. The meaning of each variable is given in the MySQL Administrator’s Guide.

mysql> SHOW STATUS;

+--------------------------+------------+

| Variable_name | Value |

+--------------------------+------------+

| Aborted_clients | 0 |

| Aborted_connects | 0 |

| Bytes_received | 155372598 |

| Bytes_sent | 1176560426 |

| Connections | 30023 |

| Created_tmp_disk_tables | 0 |

| Created_tmp_tables | 8340 |

| Created_tmp_files | 60 |

...

| Open_tables | 1 |

| Open_files | 2 |

| Open_streams | 0 |

| Opened_tables | 44600 |

| Questions | 2026873 |

...

| Table_locks_immediate | 1920382 |

| Table_locks_waited | 0 |

| Threads_cached | 0 |

| Threads_created | 30022 |

| Threads_connected | 1 |

| Threads_running | 1 |

| Uptime | 80380 |

+--------------------------+------------+

With a LIKE clause, the statement displays only those variables that match the pattern:

mysql> SHOW STATUS LIKE ‘Key%’;

+--------------------+----------+

| Variable_name | Value |

+--------------------+----------+

| Key_blocks_used | 14955 |

| Key_read_requests | 96854827 |

| Key_reads | 162040 |

| Key_write_requests | 7589728 |

| Key_writes | 3813196 |

+--------------------+----------+

07 6337 ch06 6/24/04 12:44 PM Page 325

TEAM LinG

326 CHAPTER 6 SQL Statement Syntax

6.5.3.17 SHOW TABLE STATUS Syntax
SHOW TABLE STATUS [FROM db_name] [LIKE ‘pattern’]

SHOW TABLE STATUS (new in MySQL 3.23) works likes SHOW TABLE, but provides a lot of
information about each table. You can also get this list using the mysqlshow --status
db_name command.

SHOW TABLE STATUS returns the following fields:

n Name

The name of the table.
n Type

The type of the table.
n Row_format

The row storage format (Fixed, Dynamic, or Compressed).
n Rows

The number of rows.
n Avg_row_length

The average row length.
n Data_length

The length of the data file.
n Max_data_length

The maximum length of the data file. For fixed-row formats, this is the maximum num-
ber of rows in the table. For dynamic-row formats, this is the total number of data
bytes that can be stored in the table, given the data pointer size used.

n Index_length

The length of the index file.
n Data_free

The number of allocated but unused bytes.
n Auto_increment

The next AUTO_INCREMENT value.
n Create_time

When the table was created.
n Update_time

When the data file was last updated.
n Check_time

When the table was last checked.

07 6337 ch06 6/24/04 12:44 PM Page 326

TEAM LinG

3276.5 Database Administration Statements

n Collation

The table’s character set and collation. (New in 4.1.1)
n Checksum

The live checksum value (if any). (New in 4.1.1)
n Create_options

Extra options used with CREATE TABLE.
n Comment

The comment used when creating the table (or some information why MySQL couldn’t
access the table information).

In the table comment, InnoDB tables will report the free space of the tablespace to which the
table belongs. For a table located in the shared tablespace, this is the free space of the shared
tablespace. If you are using multiple tablespaces and the table has its own tablespace, the
freespace is for just that table.

For MEMORY (HEAP) tables, the Data_length, Max_data_length, and Index_length values approx-
imate the actual amount of allocated memory. The allocation algorithm reserves memory in
large amounts to reduce the number of allocation operations.

6.5.3.18 SHOW TABLES Syntax
SHOW [OPEN] TABLES [FROM db_name] [LIKE ‘pattern’]

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list
using the mysqlshow db_name command.

Note: If you have no privileges for a table, the table will not show up in the output from
SHOW TABLES or mysqlshow db_name.

SHOW OPEN TABLES lists the tables that are currently open in the table cache. The Comment
field in the output tells how many times the table is cached and in_use. OPEN can be used
from MySQL 3.23.33 on.

6.5.3.19 SHOW VARIABLES Syntax
SHOW [GLOBAL | SESSION] VARIABLES [LIKE ‘pattern’]

SHOW VARIABLES shows the values of some MySQL system variables. This information also
can be obtained using the mysqladmin variables command.

The GLOBAL and SESSION options are new in MySQL 4.0.3. With GLOBAL, you will get the
values that will be used for new connections to MySQL. With SESSION, you will get the val-
ues that are in effect for the current connection. If you use neither option, the default is
SESSION. LOCAL is a synonym for SESSION.

07 6337 ch06 6/24/04 12:44 PM Page 327

TEAM LinG

328 CHAPTER 6 SQL Statement Syntax

If the default values are unsuitable, you can set most of these variables using command-line
options when mysqld starts or at runtime with the SET statement. See Section 6.5.3.1, “SET
Syntax.”

Partial output is shown here. The list of variables and their values may be different for your
server. The meaning of each variable is given in the MySQL Administrator’s Guide, as is
information about tuning them.

mysql> SHOW VARIABLES;

+---------------------------------+------------------------------+

| Variable_name | Value |

+---------------------------------+------------------------------|

| back_log | 50 |

| basedir | /usr/local/mysql |

| bdb_cache_size | 8388572 |

| bdb_log_buffer_size | 32768 |

| bdb_home | /usr/local/mysql |

...

| max_connections | 100 |

| max_connect_errors | 10 |

| max_delayed_threads | 20 |

| max_error_count | 64 |

| max_heap_table_size | 16777216 |

| max_join_size | 4294967295 |

| max_relay_log_size | 0 |

| max_sort_length | 1024 |

...

| timezone | EEST |

| tmp_table_size | 33554432 |

| tmpdir | /tmp/:/mnt/hd2/tmp/ |

| version | 4.0.4-beta |

| wait_timeout | 28800 |

+---------------------------------+------------------------------+

With a LIKE clause, the statement displays only those variables that match the pattern:

mysql> SHOW VARIABLES LIKE ‘have%’;

+--------------------+----------+

| Variable_name | Value |

+--------------------+----------+

| have_bdb | YES |

| have_innodb | YES |

| have_isam | YES |

| have_raid | NO |

| have_symlink | DISABLED |

| have_openssl | YES |

| have_query_cache | YES |

+--------------------+----------+

07 6337 ch06 6/24/04 12:44 PM Page 328

TEAM LinG

3296.5 Database Administration Statements

6.5.3.20 SHOW WARNINGS Syntax
SHOW WARNINGS [LIMIT [offset,] row_count]

SHOW COUNT(*) WARNINGS

SHOW WARNINGS shows the error, warning, and note messages that resulted from the last state-
ment that generated messages, or nothing if the last statement that used a table generated
no messages. This statement is implemented as of MySQL 4.1.0. A related statement, SHOW
ERRORS, shows only the errors. See Section 6.5.3.9, “SHOW ERRORS Syntax.”

The list of messages is reset for each new statement that uses a table.

The SHOW COUNT(*) WARNINGS statement displays the total number of errors, warnings, and
notes. You can also retrieve this number from the warning_count variable:

SHOW COUNT(*) WARNINGS;

SELECT @@warning_count;

The value of warning_count might be greater than the number of messages displayed by
SHOW WARNINGS if the max_error_count system variable is set low enough that not all messages
are stored. An example shown later in this section demonstrates how this can happen.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 6.1.7, “SELECT
Syntax.”

The MySQL server sends back the total number of errors, warnings, and notes resulting
from the last statement. If you are using the C API, this value can be obtained by calling
mysql_warning_count().

Note that the framework for warnings was added in MySQL 4.1.0, at which point many
statements did not generate warnings. In 4.1.1, the situation is much improved, with warn-
ings generated for statements such as LOAD DATA INFILE and DML statements such as
INSERT, UPDATE, CREATE TABLE, and ALTER TABLE.

The following DROP TABLE statement results in a note:

mysql> DROP TABLE IF EXISTS no_such_table;

mysql> SHOW WARNINGS;

+-------+------+-------------------------------+

| Level | Code | Message |

+-------+------+-------------------------------+

| Note | 1051 | Unknown table ‘no_such_table’ |

+-------+------+-------------------------------+

Here is a simple example that shows a syntax warning for CREATE TABLE and conversion
warnings for INSERT:

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4)) TYPE=MyISAM;

Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G

07 6337 ch06 6/24/04 12:44 PM Page 329

TEAM LinG

330 CHAPTER 6 SQL Statement Syntax

*************************** 1. row ***************************

Level: Warning

Code: 1287

Message: ‘TYPE=storage_engine’ is deprecated, use

‘ENGINE=storage_engine’ instead

1 row in set (0.00 sec)

mysql> INSERT INTO t1 VALUES(10,’mysql’),(NULL,’test’),

-> (300,’open source’);

Query OK, 3 rows affected, 4 warnings (0.01 sec)

Records: 3 Duplicates: 0 Warnings: 4

mysql> SHOW WARNINGS\G

*************************** 1. row ***************************

Level: Warning

Code: 1265

Message: Data truncated for column ‘b’ at row 1

*************************** 2. row ***************************

Level: Warning

Code: 1263

Message: Data truncated, NULL supplied to NOT NULL column ‘a’ at row 2

*************************** 3. row ***************************

Level: Warning

Code: 1264

Message: Data truncated, out of range for column ‘a’ at row 3

*************************** 4. row ***************************

Level: Warning

Code: 1265

Message: Data truncated for column ‘b’ at row 3

4 rows in set (0.00 sec)

The maximum number of error, warning, and note messages to store is controlled by the
max_error_count system variable. By default, its value is 64. To change the number of mes-
sages you want stored, change the value of max_error_count. In the following example, the
ALTER TABLE statement produces three warning messages, but only one is stored because
max_error_count has been set to 1:

mysql> SHOW VARIABLES LIKE ‘max_error_count’;

+-----------------+-------+

| Variable_name | Value |

+-----------------+-------+

| max_error_count | 64 |

+-----------------+-------+

1 row in set (0.00 sec)

mysql> SET max_error_count=1;

Query OK, 0 rows affected (0.00 sec)

07 6337 ch06 6/24/04 12:44 PM Page 330

TEAM LinG

3316.5 Database Administration Statements

mysql> ALTER TABLE t1 MODIFY b CHAR;

Query OK, 3 rows affected, 3 warnings (0.00 sec)

Records: 3 Duplicates: 0 Warnings: 3

mysql> SELECT @@warning_count;

+-----------------+

| @@warning_count |

+-----------------+

| 3 |

+-----------------+

1 row in set (0.01 sec)

mysql> SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1263 | Data truncated for column ‘b’ at row 1 |

+---------+------+--+

1 row in set (0.00 sec)

To disable warnings, set max_error_count to 0. In this case, warning_count still indicates how
many warnings have occurred, but none of the messages are stored.

6.5.4 Other Administrative Statements

6.5.4.1 CACHE INDEX Syntax
CACHE INDEX

tbl_index_list [, tbl_index_list] ...

IN key_cache_name

tbl_index_list:

tbl_name [[INDEX] (index_name[, index_name] ...)]

The CACHE INDEX statement assigns table indexes to a specific key cache. It is used only for
MyISAM tables.

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache
named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;

+---------+--------------------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------+--------------------+----------+----------+

| test.t1 | assign_to_keycache | status | OK |

| test.t2 | assign_to_keycache | status | OK |

| test.t3 | assign_to_keycache | status | OK |

+---------+--------------------+----------+----------+

07 6337 ch06 6/24/04 12:44 PM Page 331

TEAM LinG

332 CHAPTER 6 SQL Statement Syntax

The syntax of CACHE INDEX allows you to specify that only particular indexes from a table
should be assigned to the cache. However, the current implementation assigns all the table’s
indexes to the cache, so there is no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with
a parameter setting statement or in the server parameter settings. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters can be accessed as members of a structured system variable. See
Section 2.4.1, “Structured System Variables.”

A key cache must exist before you can assign indexes to it:

mysql> CACHE INDEX t1 in non_existent_cache;

ERROR 1283 (HY000): Unknown key cache ‘non_existent_cache’

By default, table indexes are assigned to the main (default) key cache created at the server
startup. When a key cache is destroyed, all indexes assigned to it become assigned to the
default key cache again.

Index assignment affects the server globally: If one client assigns an index to a given cache,
this cache is used for all queries involving the index, no matter what client issues the queries.

CACHE INDEX was added in MySQL 4.1.1.

6.5.4.2 FLUSH Syntax
FLUSH [LOCAL | NO_WRITE_TO_BINLOG] flush_option [, flush_option] ...

You should use the FLUSH statement if you want to clear some of the internal caches MySQL
uses. To execute FLUSH, you must have the RELOAD privilege.

flush_option can be any of the following:

n HOSTS

Empties the host cache tables. You should flush the host tables if some of your hosts
change IP number or if you get the error message Host ... is blocked. When more
than max_connect_errors errors occur successively for a given host while connecting to
the MySQL server, MySQL assumes that something is wrong and blocks the host from
further connection requests. Flushing the host tables allows the host to attempt to
connect again. You can start mysqld with --max_connect_errors=999999999 to avoid this
error message.

n DES_KEY_FILE

Reloads the DES keys from the file that was specified with the --des-key-file option
at server startup time.

07 6337 ch06 6/24/04 12:44 PM Page 332

TEAM LinG

3336.5 Database Administration Statements

n LOGS

Closes and reopens all log files. If you have specified an update log file or a binary log
file without an extension, the extension number of the log file will be incremented by
one relative to the previous file. If you have used an extension in the file name, MySQL
will close and reopen the update log or binary log file. On Unix, this is the same thing
as sending a SIGHUP signal to the mysqld server.

n PRIVILEGES

Reloads the privileges from the grant tables in the mysql database.
n QUERY CACHE

Defragment the query cache to better utilize its memory. This statement does not
remove any queries from the cache, unlike RESET QUERY CACHE.

n STATUS

Resets most status variables to zero. This is something you should use only when
debugging a query. See Section 1.7.1.3, “How to Report Bugs or Problems.”

n {TABLE | TABLES} [tbl_name [, tbl_name] ...]

When no tables are named, closes all open tables and forces all tables in use to be
closed. This also flushes the query cache. With one or more table names, flushes only
the given tables. FLUSH TABLES also removes all query results from the query cache, like
the RESET QUERY CACHE statement.

n TABLES WITH READ LOCK

Closes all open tables and locks all tables for all databases with a read lock until you
execute UNLOCK TABLES. This is a very convenient way to get backups if you have a
filesystem such as Veritas that can take snapshots in time.

n USER_RESOURCES

Resets all user resources to zero. This enables clients that have reached their hourly
connection, query, or update limits to resume activity. See Section 6.5.1.2, “GRANT and
REVOKE Syntax.”

Before MySQL 4.1.1, FLUSH statements are not written to the binary log. As of MySQL
4.1.1, they are written to the binary log unless the optional NO_WRITE_TO_BINLOG keyword (or
its alias LOCAL) is used. Exceptions are that FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and
FLUSH TABLES WITH READ LOCK are not logged in any case because they would cause prob-
lems if replicated to a slave.

You can also access some of these statements with the mysqladmin utility, using the flush-
hosts, flush-logs, flush-privileges, flush-status, or flush-tables commands.

Take also a look at the RESET statement used with replication. See Section 6.5.4.5, “RESET
Syntax.”

07 6337 ch06 6/24/04 12:44 PM Page 333

TEAM LinG

334 CHAPTER 6 SQL Statement Syntax

6.5.4.3 KILL Syntax
KILL [CONNECTION | QUERY] thread_id

Each connection to mysqld runs in a separate thread. You can see which threads are running
with the SHOW PROCESSLIST statement and kill a thread with the KILL thread_id statement.

As of MySQL 5.0.0, KILL allows the optional CONNECTION or QUERY modifiers:

n KILL CONNECTION is the same as KILL with no modifier: It terminates the connection
associated with the given thread_id.

n KILL QUERY terminates the statement that the connection currently is executing, but
leaves the connection intact.

If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege,
you can kill all threads and statements. Otherwise, you can see and kill only your own
threads and statements.

You can also use the mysqladmin processlist and mysqladmin kill commands to examine
and kill threads.

Note: You currently cannot use KILL with the Embedded MySQL Server library, because
the embedded server merely runs inside the threads of the host application, it does not cre-
ate connection threads of its own.

When you do a KILL, a thread-specific kill flag is set for the thread. In most cases, it
might take some time for the thread to die, because the kill flag is checked only at specific
intervals:

n In SELECT, ORDER BY and GROUP BY loops, the flag is checked after reading a block of
rows. If the kill flag is set, the statement is aborted.

n During ALTER TABLE, the kill flag is checked before each block of rows is read from the
original table. If the kill flag was set, the statement is aborted and the temporary table is
deleted.

n During UPDATE or DELETE, the kill flag is checked after each block read and after each
updated or deleted row. If the kill flag is set, the statement is aborted. Note that if you
are not using transactions, the changes will not be rolled back!

n GET_LOCK() will abort and return NULL.
n An INSERT DELAYED thread will quickly flush all rows it has in memory and terminate.
n If the thread is in the table lock handler (state: Locked), the table lock will be quickly

aborted.
n If the thread is waiting for free disk space in a write call, the write is aborted with a

“disk full” error message.

07 6337 ch06 6/24/04 12:44 PM Page 334

TEAM LinG

3356.5 Database Administration Statements

6.5.4.4 LOAD INDEX INTO CACHE Syntax
LOAD INDEX INTO CACHE

tbl_index_list [, tbl_index_list] ...

tbl_index_list:

tbl_name

[[INDEX] (index_name[, index_name] ...)]

[IGNORE LEAVES]

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it
has been assigned by an explicit CACHE INDEX statement, or into the default key cache other-
wise. LOAD INDEX INTO CACHE is used only for MyISAM tables.

The IGNORE LEAVES modifier causes only blocks for the non-leaf nodes of the index to be
preloaded.

The following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;

+---------+--------------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------+--------------+----------+----------+

| test.t1 | preload_keys | status | OK |

| test.t2 | preload_keys | status | OK |

+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the non-leaf
nodes from t2.

The syntax of LOAD INDEX INTO CACHE allows you to specify that only particular indexes from
a table should be preloaded. However, the current implementation preloads all the table’s
indexes into the cache, so there is no reason to specify anything other than the table name.

LOAD INDEX INTO CACHE was added in MySQL 4.1.1.

6.5.4.5 RESET Syntax
RESET reset_option [, reset_option] ...

The RESET statement is used to clear the state of various server operations. It also acts as a
stronger version of the FLUSH statement. See Section 6.5.4.2, “FLUSH Syntax.”

To execute RESET, you must have the RELOAD privilege.

reset_option can be any of the following:

n MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be
empty, and creates a new binary log file. Previously named FLUSH MASTER. See Section
6.6.1, “SQL Statements for Controlling Master Servers.”

07 6337 ch06 6/24/04 12:44 PM Page 335

TEAM LinG

336 CHAPTER 6 SQL Statement Syntax

n QUERY CACHE

Removes all query results from the query cache.
n SLAVE

Makes the slave forget its replication position in the master binary logs. Previously
named FLUSH SLAVE. See Section 6.6.2, “SQL Statements for Controlling Slave
Servers.”

6.6 Replication Statements
This section describes replication-related SQL statements. One group of statements is used
for controlling master servers. The other is used for controlling slave servers.

6.6.1 SQL Statements for Controlling Master Servers
Replication can be controlled through the SQL interface. This section discusses statements
for managing master replication servers. Section 6.6.2, “SQL Statements for Controlling
Slave Servers,” discusses statements for managing slave servers.

6.6.1.1 PURGE MASTER LOGS Syntax
PURGE {MASTER | BINARY} LOGS TO ‘log_name’

PURGE {MASTER | BINARY} LOGS BEFORE ‘date’

Deletes all the binary logs listed in the log index that are strictly prior to the specified log or
date. The logs also are removed from the list recorded in the log index file, so that the given
log becomes the first.

Examples:

PURGE MASTER LOGS TO ‘mysql-bin.010’;

PURGE MASTER LOGS BEFORE ‘2003-04-02 22:46:26’;

The BEFORE variant is available as of MySQL 4.1. Its date argument can be in ‘YYYY-MM-DD
hh:mm:ss’ format. MASTER and BINARY are synonyms, but BINARY can be used only as of
MySQL 4.1.1.

If you have an active slave that currently is reading one of the logs you are trying to delete,
this statement does nothing and fails with an error. However, if a slave is dormant and you
happen to purge one of the logs it wants to read, the slave will be unable to replicate once it
comes up. The statement is safe to run while slaves are replicating. You do not need to stop
them.

07 6337 ch06 6/24/04 12:44 PM Page 336

TEAM LinG

3376.6 Replication Statements

To purge logs, follow this procedure:

1. On each slave server, use SHOW SLAVE STATUS to check which log it is reading.

2. Obtain a listing of the logs on the master server with SHOW MASTER LOGS.

3. Determine the earliest log among all the slaves. This is the target log. If all the slaves
are up to date, this will be the last log on the list.

4. Make a backup of all the logs you are about to delete. (The step is optional, but a good
idea.)

5. Purge all logs up to but not including the target log.

6.6.1.2 RESET MASTER Syntax
RESET MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty,
and creates a new binary log file.

This statement was named FLUSH MASTER before MySQL 3.23.26.

6.6.1.3 SET SQL_LOG_BIN Syntax
SET SQL_LOG_BIN = {0|1}

Disables or enables binary logging for the current connection (SQL_LOG_BIN is a session vari-
able) if the client connects using an account that has the SUPER privilege. The statement is
refused with an error if the client does not have that privilege. (Before MySQL 4.1.2, the
statement was simply ignored in that case.)

6.6.1.4 SHOW BINLOG EVENTS Syntax
SHOW BINLOG EVENTS

[IN ‘log_name’] [FROM pos] [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify ‘log_name’, the first binary log is
displayed.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 6.1.7, “SELECT
Syntax.”

This statement is available as of MySQL 4.0.

6.6.1.5 SHOW MASTER LOGS Syntax
SHOW MASTER LOGS

Lists the binary log files on the master. This statement is used as part of the procedure
described in Section 6.6.1.1, “PURGE MASTER LOGS Syntax,” for determining which logs can be
purged.

07 6337 ch06 6/24/04 12:44 PM Page 337

TEAM LinG

338 CHAPTER 6 SQL Statement Syntax

6.6.1.6 SHOW MASTER STATUS Syntax
SHOW MASTER STATUS

Provides status information on the binary log files of the master.

6.6.1.7 SHOW SLAVE HOSTS Syntax
SHOW SLAVE HOSTS

Displays a list of slaves currently registered with the master. Any slave not started with the
--report-host=slave_name option will not be visible in that list.

6.6.2 SQL Statements for Controlling Slave Servers
Replication can be controlled through the SQL interface. This section discusses statements
for managing slave replication servers. Section 6.6.1, “SQL Statements for Controlling
Master Servers,” discusses statements for managing master servers.

6.6.2.1 CHANGE MASTER TO Syntax
CHANGE MASTER TO master_def [, master_def] ...

master_def:

MASTER_HOST = ‘host_name’

| MASTER_USER = ‘user_name’

| MASTER_PASSWORD = ‘password’

| MASTER_PORT = port_num

| MASTER_CONNECT_RETRY = count

| MASTER_LOG_FILE = ‘master_log_name’

| MASTER_LOG_POS = master_log_pos

| RELAY_LOG_FILE = ‘relay_log_name’

| RELAY_LOG_POS = relay_log_pos

| MASTER_SSL = {0|1}

| MASTER_SSL_CA = ‘ca_file_name’

| MASTER_SSL_CAPATH = ‘ca_directory_name’

| MASTER_SSL_CERT = ‘cert_file_name’

| MASTER_SSL_KEY = ‘key_file_name’

| MASTER_SSL_CIPHER = ‘cipher_list’

Changes the parameters that the slave server uses for connecting to and communicating
with the master server.

MASTER_USER, MASTER_PASSWORD, MASTER_SSL, MASTER_SSL_CA, MASTER_SSL_CAPATH,
MASTER_SSL_CERT, MASTER_SSL_KEY, and MASTER_SSL_CIPHER provide information for the slave
about how to connect to its master.

The relay log options (RELAY_LOG_FILE and RELAY_LOG_POS) are available beginning with
MySQL 4.0.

07 6337 ch06 6/24/04 12:44 PM Page 338

TEAM LinG

3396.6 Replication Statements

The SSL options (MASTER_SSL, MASTER_SSL_CA, MASTER_SSL_CAPATH, MASTER_SSL_CERT, MASTER_
SSL_KEY, and MASTER_SSL_CIPHER) are available beginning with MySQL 4.1.1. You can change
these options even on slaves that are compiled without SSL support. They are saved to the
master.info file, but are ignored until you use a server that has SSL support enabled.

If you don’t specify a given parameter, it keeps its old value, except as indicated in the fol-
lowing discussion. For example, if the password to connect to your MySQL master has
changed, you just need to issue these statements to tell the slave about the new password:

mysql> STOP SLAVE; -- if replication was running

mysql> CHANGE MASTER TO MASTER_PASSWORD=’new3cret’;

mysql> START SLAVE; -- if you want to restart replication

There is no need to specify the parameters that do not change (host, port, user, and so
forth).

MASTER_HOST and MASTER_PORT are the hostname (or IP address) of the master host and its
TCP/IP port. Note that if MASTER_HOST is equal to localhost, then, like in other parts of
MySQL, the port may be ignored (if Unix socket files can be used, for example).

If you specify MASTER_HOST or MASTER_PORT, the slave assumes that the master server is differ-
ent than before (even if you specify a host or port value that is the same as the current
value). In this case, the old values for the master binary log name and position are consid-
ered no longer applicable, so if you do not specify MASTER_LOG_FILE and MASTER_LOG_POS in
the statement, MASTER_LOG_FILE=’’ and MASTER_LOG_POS=4 are silently appended to it.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the slave I/O thread
should begin reading from the master the next time the thread starts. If you specify either of
them, you can’t specify RELAY_LOG_FILE or RELAY_LOG_POS. If neither of MASTER_LOG_FILE or
MASTER_LOG_POS are specified, the slave uses last coordinates of the slave SQL thread before
CHANGE MASTER was issued. This ensures that replication has no discontinuity, even if the
slave SQL thread was late compared to the slave I/O thread, when you just want to change,
say, the password to use. This safe behavior was introduced starting from MySQL 4.0.17
and 4.1.1. (Before these versions, the coordinates used were the last coordinates of the
slave I/O thread before CHANGE MASTER was issued. This caused the SQL thread to possibly
lose some events from the master, thus breaking replication.)

CHANGE MASTER deletes all relay log files and starts a new one, unless you specify RELAY_LOG_FILE
or RELAY_LOG_POS. In that case, relay logs are kept; as of MySQL 4.1.1, the relay_log_purge
global variable is silently set to 0.

CHANGE MASTER TO updates the contents of the master.info and relay-log.info files.

CHANGE MASTER is useful for setting up a slave when you have the snapshot of the master and
have recorded the log and the offset corresponding to it. After loading the snapshot into the
slave, you can run CHANGE MASTER TO MASTER_LOG_FILE=’log_name_on_master’,
MASTER_LOG_POS=log_offset_on_master on the slave.

07 6337 ch06 6/24/04 12:44 PM Page 339

TEAM LinG

340 CHAPTER 6 SQL Statement Syntax

Examples:

mysql> CHANGE MASTER TO

-> MASTER_HOST=’master2.mycompany.com’,

-> MASTER_USER=’replication’,

-> MASTER_PASSWORD=’bigs3cret’,

-> MASTER_PORT=3306,

-> MASTER_LOG_FILE=’master2-bin.001’,

-> MASTER_LOG_POS=4,

-> MASTER_CONNECT_RETRY=10;

mysql> CHANGE MASTER TO

-> RELAY_LOG_FILE=’slave-relay-bin.006’,

-> RELAY_LOG_POS=4025;

The first example changes the master and master’s binary log coordinates. This is used when
you want to set up the slave to replicate the master.

The second example shows an operation that is less frequently used. It is done when the
slave has relay logs that you want it to execute again for some reason. To do this, the master
need not be reachable. You just have to use CHANGE MASTER TO and start the SQL thread
(START SLAVE SQL_THREAD).

You can even use the second operation in a non-replication setup with a standalone, non-slave
server, to recover after a crash. Suppose that your server has crashed and you have restored a
backup. You want to replay the server’s own binary logs (not relay logs, but regular binary
logs), supposedly named myhost-bin.*. First, make a backup copy of these binary logs in some
safe place, in case you don’t exactly follow the procedure below and accidentally have the serv-
er purge the binary logs. If using MySQL 4.1.1 or newer, use SET GLOBAL relay_log_purge=0
for additional safety. Then start the server without the --log-bin option, with a new (different
from before) server ID, with --relay-log=myhost-bin (to make the server believe that these
regular binary logs are relay logs) and with --skip-slave-start. After the server starts, issue
these statements:

mysql> CHANGE MASTER TO

-> RELAY_LOG_FILE=’myhost-bin.153’,

-> RELAY_LOG_POS=410,

-> MASTER_HOST=’some_dummy_string’;

mysql> START SLAVE SQL_THREAD;

The server will read and execute its own binary logs, thus achieving crash recovery. Once
the recovery is finished, run STOP SLAVE, shut down the server, delete master.info and
relay-log.info, and restart the server with its original options.

For the moment, specifying MASTER_HOST (even with a dummy value) is required to make the
server think it is a slave. Giving the server a new, different from before, server ID is also
required or the server will see events with its ID and think it is in a circular replication setup
and skip the events, which is unwanted. In the future, we plan to add options to get rid of
these small constraints.

07 6337 ch06 6/24/04 12:44 PM Page 340

TEAM LinG

3416.6 Replication Statements

6.6.2.2 LOAD DATA FROM MASTER Syntax
LOAD DATA FROM MASTER

Takes a snapshot of the master and copies it to the slave. It updates the values of
MASTER_LOG_FILE and MASTER_LOG_POS so that the slave will start replicating from the correct
position. Any table and database exclusion rules specified with the --replicate-*-do-* and
--replicate-*-ignore-* options are honored. --replicate-rewrite-db is not taken into
account (because one user could, with this option, set up a non-unique mapping such as
--replicate-rewrite-db=db1->db3 and --replicate-rewrite-db=db2->db3, which would
confuse the slave when it loads the master’s tables).

Use of this statement is subject to the following conditions:

n It works only with MyISAM tables.
n It acquires a global read lock on the master while taking the snapshot, which prevents

updates on the master during the load operation.

In the future, it is planned to make this statement work with InnoDB tables and to remove
the need for a global read lock by using non-blocking online backup.

If you are loading big tables, you might have to increase the values of net_read_timeout and
net_write_timeout on both your master and slave servers.

Note that LOAD DATA FROM MASTER does not copy any tables from the mysql database. This
makes it easy to have different users and privileges on the master and the slave.

The LOAD DATA FROM MASTER statement requires the replication account that is used to connect
to the master to have the RELOAD and SUPER privileges on the master and the SELECT privilege for
all master tables you want to load. All master tables for which the user does not have the SELECT
privilege are ignored by LOAD DATA FROM MASTER. This is because the master will hide them
from the user: LOAD DATA FROM MASTER calls SHOW DATABASES to know the master databases to
load, but SHOW DATABASES returns only databases for which the user has some privilege. See
Section 6.5.3.7, “SHOW DATABASES Syntax.” On the slave’s side, the user that issues LOAD DATA
FROM MASTER should have grants to drop and create the databases and tables that are copied.

6.6.2.3 LOAD TABLE tbl_name FROM MASTER Syntax
LOAD TABLE tbl_name FROM MASTER

Transfers a copy of the table from master to the slave. This statement is implemented main-
ly for debugging of LOAD DATA FROM MASTER. It requires that the account used for connecting
to the master server has the RELOAD and SUPER privileges on the master and the SELECT privi-
lege on the master table to load. On the slave side, the user that issues LOAD TABLE FROM
MASTER should have privileges to drop and create the table.

The conditions for LOAD DATA FROM MASTER apply here, too. For example, LOAD TABLE FROM
MASTER works only for MyISAM tables. The timeout notes for LOAD DATA FROM MASTER apply
as well.

07 6337 ch06 6/24/04 12:44 PM Page 341

TEAM LinG

342 CHAPTER 6 SQL Statement Syntax

6.6.2.4 MASTER_POS_WAIT() Syntax
SELECT MASTER_POS_WAIT(‘master_log_file’, master_log_pos)

This is a function, not a statement. It is used to ensure that the slave has read and executed
events up to a given position in the master’s binary log. See Section 5.8.4, “Miscellaneous
Functions,” for a full description.

6.6.2.5 RESET SLAVE Syntax
RESET SLAVE

Makes the slave forget its replication position in the master’s binary logs. This statement is
meant to be used for a clean start: It deletes the master.info and relay-log.info files, all
the relay logs, and starts a new relay log.

Note: All relay logs are deleted, even if they have not been totally executed by the slave
SQL thread. (This is a condition likely to exist on a replication slave if you have issued a
STOP SLAVE statement or if the slave is highly loaded.)

Connection information stored in the master.info file is immediately reset using any values
specified in the corresponding startup options. This information includes values such as
master host, master port, master user, and master password. If the slave SQL thread was in
the middle of replicating temporary tables when it was stopped, and RESET SLAVE is issued,
these replicated temporary tables are deleted on the slave.

This statement was named FLUSH SLAVE before MySQL 3.23.26.

6.6.2.6 SET GLOBAL SQL_SLAVE_SKIP_COUNTER Syntax
SET GLOBAL SQL_SLAVE_SKIP_COUNTER = n

Skip the next n events from the master. This is useful for recovering from replication stops
caused by a statement.

This statement is valid only when the slave thread is not running. Otherwise, it produces an
error.

Before MySQL 4.0, omit the GLOBAL keyword from the statement.

07 6337 ch06 6/24/04 12:44 PM Page 342

TEAM LinG

3436.6 Replication Statements

6.6.2.7 SHOW SLAVE STATUS Syntax
SHOW SLAVE STATUS

Provides status information on essential parameters of the slave threads. If you issue this
statement using the mysql client, you can use a \G statement terminator rather than semi-
colon to get a more readable vertical layout:

mysql> SHOW SLAVE STATUS\G

*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event

Master_Host: localhost

Master_User: root

Master_Port: 3306

Connect_Retry: 3

Master_Log_File: gbichot-bin.005

Read_Master_Log_Pos: 79

Relay_Log_File: gbichot-relay-bin.005

Relay_Log_Pos: 548

Relay_Master_Log_File: gbichot-bin.005

Slave_IO_Running: Yes

Slave_SQL_Running: Yes

Replicate_Do_DB:

Replicate_Ignore_DB:

Last_Errno: 0

Last_Error:

Skip_Counter: 0

Exec_Master_Log_Pos: 79

Relay_Log_Space: 552

Until_Condition: None

Until_Log_File:

Until_Log_Pos: 0

Master_SSL_Allowed: No

Master_SSL_CA_File:

Master_SSL_CA_Path:

Master_SSL_Cert:

Master_SSL_Cipher:

Master_SSL_Key:

Seconds_Behind_Master: 8

Depending on your version of MySQL, you may not see all the fields just shown. In particu-
lar, several fields are present only as of MySQL 4.1.1.

07 6337 ch06 6/24/04 12:44 PM Page 343

TEAM LinG

344 CHAPTER 6 SQL Statement Syntax

SHOW SLAVE STATUS returns the following fields:

n Slave_IO_State

A copy of the State field of the output of SHOW PROCESSLIST for the slave I/O thread.
This tells you if the thread is trying to connect to the master, waiting for events from
the master, reconnecting to the master, and so on. Looking at this field is necessary
because, for example, the thread can be running but unsuccessfully trying to connect to
the master; only this field will make you aware of the connection problem. The state of
the SQL thread is not copied because it is simpler. If it is running, there is no problem;
if it is not, you will find the error in the Last_Error field (described below).

This field is present beginning with MySQL 4.1.1.
n Master_Host

The current master host.
n Master_User

The current user used to connect to the master.
n Master_Port

The current master port.
n Connect_Retry

The current value of the --master-connect-retry option.
n Master_Log_File

The name of the master binary log file from which the I/O thread is currently reading.
n Read_Master_Log_Pos

The position up to which the I/O thread has read in the current master binary log.
n Relay_Log_File

The name of the relay log file from which the SQL thread is currently reading and exe-
cuting.

n Relay_Log_Pos

The position up to which the SQL thread has read and executed in the current relay
log.

n Relay_Master_Log_File

The name of the master binary log file that contains the last event executed by the SQL
thread.

n Slave_IO_Running

Whether or not the I/O thread is started.
n Slave_SQL_Running

Whether or not the SQL thread is started.

07 6337 ch06 6/24/04 12:44 PM Page 344

TEAM LinG

3456.6 Replication Statements

n Replicate_Do_DB, Replicate_Ignore_DB

The lists of databases that were specified with the --replicate-do-db and --replicate-
ignore-db options, if any.

These fields are present beginning with MySQL 4.1.1.
n Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table,

Replicate_Wild_Ignore_Table

The lists of tables that were specified with the --replicate-do-table, --replicate-
ignore-table, --replicate-wild-do-table, and --replicate-wild-ignore_table
options, if any.

These fields are present beginning with MySQL 4.1.1.
n Last_Errno, Last_Error

The error number and error message returned by the most recently executed query. An
error number of 0 and message of the empty string mean “no error.” If the Last_Error
value is not empty, it will also appear as a message in the slave’s error log.

For example:
Last_Errno: 1051

Last_Error: error ‘Unknown table ‘z’’ on query ‘drop table z’

The message indicates that the table z existed on the master and was dropped there, but
it did not exist on the slave, so DROP TABLE failed on the slave. (This might occur, for
example, if you forget to copy the table to the slave when setting up replication.)

n Skip_Counter

The last used value for SQL_SLAVE_SKIP_COUNTER.
n Exec_Master_Log_Pos

The position of the last event executed by the SQL thread from the master’s binary log
(Relay_Master_Log_File). (Relay_Master_Log_File, Exec_Master_Log_Pos) in the master’s
binary log corresponds to (Relay_Log_File, Relay_Log_Pos) in the relay log.

n Relay_Log_Space

The total combined size of all existing relay logs.
n Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START SLAVE statement.

Until_Condition has these values:
n None if no UNTIL clause was specified
n Master if the slave is reading until a given position in the master’s binary logs
n Relay if the slave is reading until a given position in its relay logs

Until_Log_File and Until_Log_Pos indicate the log filename and position values that
define the point at which the SQL thread will stop executing.

These fields are present beginning with MySQL 4.1.1.

07 6337 ch06 6/24/04 12:44 PM Page 345

TEAM LinG

346 CHAPTER 6 SQL Statement Syntax

n Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Master_SSL_Cert,

Master_SSL_Cipher, Master_SSL_Key

These fields show the SSL parameters used by the slave to connect to the master, if any.

Master_SSL_Allowed has these values:
n Yes if an SSL connection to the master is allowed
n No if an SSL connection to the master is not allowed
n Ignored if an SSL connection is allowed but the slave server does not have SSL

support enabled

The values of the other SSL-related fields correspond to the values of the --master-ca,
--master-capath, --master-cert, --master-cipher, and --master-key options.

These fields are present beginning with MySQL 4.1.1.
n Seconds_Behind_Master

The number of seconds that have elapsed since the timestamp of the last master’s event
executed by the slave SQL thread. This will be NULL when no event has been executed
yet, or after CHANGE MASTER and RESET SLAVE. This field can be used to know how “late”
your slave is. It will work even though your master and slave don’t have identical clocks.

This field is present beginning with MySQL 4.1.1.

6.6.2.8 START SLAVE Syntax
START SLAVE [thread_type [, thread_type] ...]

START SLAVE [SQL_THREAD] UNTIL

MASTER_LOG_FILE = ‘log_name’, MASTER_LOG_POS = log_pos

START SLAVE [SQL_THREAD] UNTIL

RELAY_LOG_FILE = ‘log_name’, RELAY_LOG_POS = log_pos

thread_type: IO_THREAD | SQL_THREAD

START SLAVE with no options starts both of the slave threads. The I/O thread reads queries
from the master server and stores them in the relay log. The SQL thread reads the relay log
and executes the queries. START SLAVE requires the SUPER privilege.

If START SLAVE succeeds in starting the slave threads, it returns without any error. However,
even in that case, it might be that the slave threads start and then later stop (for example,
because they don’t manage to connect to the master or read its binary logs, or some other
problem). START SLAVE will not warn you about this. You must check your slave’s error log
for error messages generated by the slave threads, or check that they are running fine with
SHOW SLAVE STATUS.

As of MySQL 4.0.2, you can add IO_THREAD and SQL_THREAD options to the statement to
name which of the threads to start.

07 6337 ch06 6/24/04 12:44 PM Page 346

TEAM LinG

3476.6 Replication Statements

As of MySQL 4.1.1, an UNTIL clause may be added to specify that the slave should start and
run until the SQL thread reaches a given point in the master binary logs or in the slave relay
logs. When the SQL thread reaches that point, it stops. If the SQL_THREAD option is specified
in the statement, it starts only the SQL thread. Otherwise, it starts both slave threads. If the
SQL thread is already running, the UNTIL clause is ignored and a warning is issued.

With an UNTIL clause, you must specify both a log filename and position. Do not mix master
and relay log options.

Any UNTIL condition is reset by a subsequent STOP SLAVE statement, a START SLAVE statement
that includes no UNTIL clause, or a server restart.

The UNTIL clause can be useful for debugging replication, or to cause replication to proceed
until just before the point where you want to avoid having the slave replicate a statement.
For example, if an unwise DROP TABLE statement was executed on the master, you can use
UNTIL to tell the slave to execute up to that point but no farther. To find what the event is,
use mysqlbinlog with the master logs or slave relay logs, or by using a SHOW BINLOG EVENTS
statement.

If you are using UNTIL to have the slave process replicated queries in sections, it is recom-
mended that you start the slave with the --skip-slave-start option to prevent the SQL
thread from running when the slave server starts. It is probably best to use this option in an
option file rather than on the command line, so that an unexpected server restart does not
cause it to be forgotten.

The SHOW SLAVE STATUS statement includes output fields that display the current values of
the UNTIL condition.

This statement is called SLAVE START before MySQL 4.0.5. For the moment, SLAVE START is
still accepted for backward compatibility, but is deprecated.

6.6.2.9 STOP SLAVE Syntax
STOP SLAVE [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

Stops the slave threads. STOP SLAVE requires the SUPER privilege.

Like START SLAVE, as of MySQL 4.0.2, this statement may be used with the IO_THREAD and
SQL_THREAD options to name the thread or threads to stop.

This statement is called SLAVE STOP before MySQL 4.0.5. For the moment, SLAVE STOP is
still accepted for backward compatibility, but is deprecated.

07 6337 ch06 6/24/04 12:44 PM Page 347

TEAM LinG

07 6337 ch06 6/24/04 12:44 PM Page 348

TEAM LinG

7
Spatial Extensions in MySQL

MySQL 4.1 introduces spatial extensions to allow the generation, storage, and analysis of
geographic features. Currently, these features are available for MyISAM tables only.

This chapter covers the following topics:

n The basis of these spatial extensions in the OpenGIS geometry model
n Data formats for representing spatial data
n How to use spatial data in MySQL
n Use of indexing for spatial data
n MySQL differences from the OpenGIS specification

7.1 Introduction
MySQL implements spatial extensions following the specification of the Open GIS
Consortium, Inc. (OGC). This is an international consortium of more than 250 companies,
agencies, and universities participating in the development of publicly available conceptual
solutions that can be useful with all kinds of applications that manage spatial data. The
OGC maintains a Web site at http://www.opengis.org/.

In 1997, the Open GIS Consortium published the “OpenGIS ® Simple Features
Specifications For SQL,” a document that proposes several conceptual ways for extending
an SQL RDBMS to support spatial data. This specification is available from the Open GIS
Web site at http://www.opengis.org/docs/99-049.pdf. It contains additional information
relevant to this chapter.

MySQL implements a subset of the SQL with Geometry Types environment proposed by
OGC. This term refers to an SQL environment that has been extended with a set of geome-
try types. A geometry-valued SQL column is implemented as a column that has a geometry
type. The specifications describe a set of SQL geometry types, as well as functions on those
types to create and analyze geometry values.

08 6337 ch07 6/24/04 12:43 PM Page 349

TEAM LinG

350 CHAPTER 7 Spatial Extensions in MySQL

A geographic feature is anything in the world that has a location. A feature can be:

n An entity. For example, a mountain, a pond, a city.
n A space. For example, a postcode area, the tropics.
n A definable location. For example, a crossroad, as a particular place where two streets

intersect.

You can also find documents that use the term geospatial feature to refer to geographic
features.

Geometry is another word that denotes a geographic feature. Originally, the word geome-
try meant measurement of the earth. Another meaning comes from cartography, referring to
the geometric features that cartographers use to map the world.

This chapter uses all of these terms synonymously: geographic feature, geospatial feature,
feature, or geometry. The term most commonly used here is geometry.

Let’s define a geometry as a point or an aggregate of points representing anything in the world
that has a location.

7.2 The OpenGIS Geometry Model
The set of geometry types proposed by OGC’s SQL with Geometry Types environment is
based on the OpenGIS Geometry Model. In this model, each geometric object has the fol-
lowing general properties:

n It is associated with a Spatial Reference System, which describes the coordinate space in
which the object is defined.

n It belongs to some geometry class.

7.2.1 The Geometry Class Hierarchy
The geometry classes define a hierarchy as follows:

n Geometry (non-instantiable)
n Point (instantiable)
n Curve (non-instantiable)

n LineString (instantiable)
n Line

n LinearRing

n Surface (non-instantiable)
n Polygon (instantiable)

08 6337 ch07 6/24/04 12:43 PM Page 350

TEAM LinG

3517.2 The OpenGIS Geometry Model

n GeometryCollection (instantiable)
n MultiPoint (instantiable)
n MultiCurve (non-instantiable)
n MultiLineString (instantiable)

n MultiSurface (non-instantiable)
n MultiPolygon (instantiable)

It is not possible to create objects in non-instantiable classes. It is possible to create objects
in instantiable classes. All classes have properties, and instantiable classes may also have
assertions (rules that define valid class instances).

Geometry is the base class. It’s an abstract class. The instantiable subclasses of Geometry
are restricted to zero-, one-, and two-dimensional geometric objects that exist in two-
dimensional coordinate space. All instantiable geometry classes are defined so that valid
instances of a geometry class are topologically closed (that is, all defined geometries
include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:

n Point represents zero-dimensional objects.
n Curve represents one-dimensional objects, and has subclass LineString, with sub-sub-

classes Line and LinearRing.
n Surface is designed for two-dimensional objects and has subclass Polygon.
n GeometryCollection has specialized zero-, one-, and two-dimensional collection classes

named MultiPoint, MultiLineString, and MultiPolygon for modeling geometries corre-
sponding to collections of Points, LineStrings, and Polygons, respectively. MultiCurve
and MultiSurface are introduced as abstract superclasses that generalize the collection
interfaces to handle Curves and Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as non-instantiable
classes. They define a common set of methods for their subclasses and are included for
extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and
MultiPolygon are instantiable classes.

7.2.2 Class Geometry
Geometry is the root class of the hierarchy. It is a non-instantiable class but has a number of
properties that are common to all geometry values created from any of the Geometry sub-
classes. These properties are described in the following list. (Particular subclasses have their
own specific properties, described later.)

08 6337 ch07 6/24/04 12:43 PM Page 351

TEAM LinG

352 CHAPTER 7 Spatial Extensions in MySQL

Geometry Properties
A geometry value has the following properties:

n Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.
n Its SRID, or Spatial Reference Identifier. This value identifies the geometry’s associated

Spatial Reference System that describes the coordinate space in which the geometry
object is defined.

n Its coordinates in its Spatial Reference System, represented as double-precision (eight-
byte) numbers. All non-empty geometries include at least one pair of (X,Y) coordinates.
Empty geometries contain no coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the
distance between two objects may differ even when objects have the same coordinates,
because the distance on the planar coordinate system and the distance on the geocen-
tric system (coordinates on the Earth’s surface) are different things.

n Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space
not occupied by the geometry. The interior is the space occupied by the geometry. The
boundary is the interface between the geometry’s interior and exterior.

n Its MBR (Minimum Bounding Rectangle), or Envelope. This is the bounding geometry,
formed by the minimum and maximum (X,Y) coordinates:
((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

n The quality of being simple or non-simple. Geometry values of types (LineString,
MultiPoint, MultiLineString) are either simple or non-simple. Each type determines its
own assertions for being simple or non-simple.

n The quality of being closed or not closed. Geometry values of types (LineString,
MultiString) are either closed or not closed. Each type determines its own assertions
for being closed or not closed.

n The quality of being empty or not empty. A geometry is empty if it does not have any
points. Exterior, interior, and boundary of an empty geometry are not defined (that is,
they are represented by a NULL value). An empty geometry is defined to be always sim-
ple and has an area of 0.

n Its dimension. A geometry can have a dimension of –1, 0, 1, or 2:
n –1 for an empty geometry.
n 0 for a geometry with no length and no area.
n 1 for a geometry with non-zero length and zero area.
n 2 for a geometry with non-zero area.

Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon
objects have a dimension of 2. The dimensions of MultiPoint, MultiLineString, and
MultiPolygon objects are the same as the dimensions of the elements they consist of.

08 6337 ch07 6/24/04 12:43 PM Page 352

TEAM LinG

3537.2 The OpenGIS Geometry Model

7.2.3 Class Point
A Point is a geometry that represents a single location in coordinate space.

Point Examples
n Imagine a large-scale map of the world with many cities. A Point object could represent

each city.
n On a city map, a Point object could represent a bus stop.

Point Properties
n X-coordinate value.
n Y-coordinate value.
n Point is defined as a zero-dimensional geometry.
n The boundary of a Point is the empty set.

7.2.4 Class Curve
A Curve is a one-dimensional geometry, usually represented by a sequence of points.
Particular subclasses of Curve define the type of interpolation between points. Curve is a
non-instantiable class.

Curve Properties
n A Curve has the coordinates of its points.
n A Curve is defined as a one-dimensional geometry.
n A Curve is simple if it does not pass through the same point twice.
n A Curve is closed if its start point is equal to its end point.
n The boundary of a closed Curve is empty.
n The boundary of a non-closed Curve consists of its two end points.
n A Curve that is simple and closed is a LinearRing.

7.2.5 Class LineString
A LineString is a Curve with linear interpolation between points.

LineString Examples
n On a world map, LineString objects could represent rivers.
n In a city map, LineString objects could represent streets.

08 6337 ch07 6/24/04 12:43 PM Page 353

TEAM LinG

354 CHAPTER 7 Spatial Extensions in MySQL

LineString Properties
n A LineString has coordinates of segments, defined by each consecutive pair of points.
n A LineString is a Line if it consists of exactly two points.
n A LineString is a LinearRing if it is both closed and simple.

7.2.6 Class Surface
A Surface is a two-dimensional geometry. It is a non-instantiable class. Its only instantiable
subclass is Polygon.

Surface Properties
n A Surface is defined as a two-dimensional geometry.
n The OpenGIS specification defines a simple Surface as a geometry that consists of a

single “patch” that is associated with a single exterior boundary and zero or more inte-
rior boundaries.

n The boundary of a simple Surface is the set of closed curves corresponding to its exteri-
or and interior boundaries.

7.2.7 Class Polygon
A Polygon is a planar Surface representing a multisided geometry. It is defined by a single
exterior boundary and zero or more interior boundaries, where each interior boundary
defines a hole in the Polygon.

Polygon Examples
n On a region map, Polygon objects could represent forests, districts, and so on.

Polygon Assertions
n The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString

objects that are both simple and closed) that make up its exterior and interior bound-
aries.

n A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect
at a Point, but only as a tangent.

n A Polygon has no lines, spikes, or punctures.
n A Polygon has an interior that is a connected point set.
n A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each

hole defines a connected component of the exterior.

The preceding assertions make a Polygon a simple geometry.

08 6337 ch07 6/24/04 12:43 PM Page 354

TEAM LinG

3557.2 The OpenGIS Geometry Model

7.2.8 Class GeometryCollection
A GeometryCollection is a geometry that is a collection of one or more geometries of any
class.

All the elements in a GeometryCollection must be in the same Spatial Reference System
(that is, in the same coordinate system). There are no other constraints on the elements of a
GeometryCollection, although the subclasses of GeometryCollection described in the follow-
ing sections may restrict membership. Restrictions may be based on:

n Element type (for example, a MultiPoint may contain only Point elements)
n Dimension
n Constraints on the degree of spatial overlap between elements

7.2.9 Class MultiPoint
A MultiPoint is a geometry collection composed of Point elements. The points are not con-
nected or ordered in any way.

MultiPoint Examples
n On a world map, a MultiPoint could represent a chain of small islands.
n On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties
n A MultiPoint is a zero-dimensional geometry.
n A MultiPoint is simple if no two of its Point values are equal (have identical coordinate

values).
n The boundary of a MultiPoint is the empty set.

7.2.10 Class MultiCurve
A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a non-
instantiable class.

MultiCurve Properties
n A MultiCurve is a one-dimensional geometry.
n A MultiCurve is simple if and only if all of its elements are simple; the only intersec-

tions between any two elements occur at points that are on the boundaries of both
elements.

08 6337 ch07 6/24/04 12:43 PM Page 355

TEAM LinG

356 CHAPTER 7 Spatial Extensions in MySQL

n A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as
the “odd-even rule”): A point is in the boundary of a MultiCurve if it is in the bound-
aries of an odd number of MultiCurve elements.

n A MultiCurve is closed if all of its elements are closed.
n The boundary of a closed MultiCurve is always empty.

7.2.11 Class MultiLineString
A MultiLineString is a MultiCurve geometry collection composed of LineString elements.

MultiLineString Examples
n On a region map, a MultiLineString could represent a river system or a highway system.

7.2.12 Class MultiSurface
A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a
non-instantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions
n Two MultiSurface surfaces have no interiors that intersect.
n Two MultiSurface elements have boundaries that intersect at most at a finite number of

points.

7.2.13 Class MultiPolygon
A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples
n On a region map, a MultiPolygon could represent a system of lakes.

MultiPolygon Assertions
n A MultiPolygon has no two Polygon elements with interiors that intersect.
n A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by

the previous assertion), or that touch at an infinite number of points.
n A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regu-

lar, closed point set.
n A MultiPolygon that has more than one Polygon has an interior that is not connected.

The number of connected components of the interior of a MultiPolygon is equal to the
number of Polygon values in the MultiPolygon.

08 6337 ch07 6/24/04 12:43 PM Page 356

TEAM LinG

3577.3 Supported Spatial Data Formats

MultiPolygon Properties
n A MultiPolygon is a two-dimensional geometry.
n A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to

the boundaries of its Polygon elements.
n Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one

Polygon element.
n Every Curve in the boundary of a Polygon element is in the boundary of the

MultiPolygon.

7.3 Supported Spatial Data Formats
This section describes the standard spatial data formats that are used to represent geometry
objects in queries. They are:

n Well-Known Text (WKT) format
n Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT
or WKB format.

7.3.1 Well-Known Text (WKT) Format
The Well-Known Text (WKT) representation of geometry is designed to exchange geome-
try data in ASCII form.

Examples of WKT representations of geometry objects are:

n A Point:
POINT(15 20)

Note that point coordinates are specified with no separating comma.
n A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

Note that point coordinate pairs are separated by commas.
n A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

n A MultiPoint with three Point values:
MULTIPOINT(0 0, 20 20, 60 60)

n A MultiLineString with two LineString values:
MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

08 6337 ch07 6/24/04 12:43 PM Page 357

TEAM LinG

358 CHAPTER 7 Spatial Extensions in MySQL

n A MultiPolygon with two Polygon values:
MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

n A GeometryCollection consisting of two Point values and one LineString:
GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

A Backus-Naur grammar that specifies the formal production rules for writing WKT values
can be found in the OGC specification document referenced near the beginning of this
chapter.

7.3.2 Well-Known Binary (WKB) Format
The Well-Known Binary (WKB) representation for geometric values is defined by the
OpenGIS specifications. It is also defined in the ISO “SQL/MM Part 3: Spatial” standard.

WKB is used to exchange geometry data as binary streams represented by BLOB values con-
taining geometric WKB information.

WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision
numbers (IEEE 754 format). A byte is 8 bits.

For example, a WKB value that corresponds to POINT(1 1) consists of this sequence of 21
bytes (each represented here by two hex digits):

0101000000000000000000F03F000000000000F03F

The sequence may be broken down into these components:

Byte order : 01

WKB type : 01000000

X : 000000000000F03F

Y : 000000000000F03F

Component representation is as follows:

n The byte order may be either 0 or 1 to indicate little-endian or big-endian storage. The
little-endian and big-endian byte orders are also known as Network Data
Representation (NDR) and External Data Representation (XDR), respectively.

n The WKB type is a code that indicates the geometry type. Values from 1 through 7
indicate Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection.

n A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values are represented by more complex data
structures, as detailed in the OpenGIS specification.

08 6337 ch07 6/24/04 12:43 PM Page 358

TEAM LinG

3597.4 Creating a Spatially Enabled MySQL Database

7.4 Creating a Spatially Enabled MySQL Database
This section describes the data types you can use for representing spatial data in MySQL,
and the functions available for creating and retrieving spatial values.

7.4.1 MySQL Spatial Data Types
MySQL has data types that correspond to OpenGIS classes. Some of these types hold single
geometry values:

n GEOMETRY

n POINT

n LINESTRING

n POLYGON

GEOMETRY can store geometry values of any type. The other single-value types, POINT and
LINESTRING and POLYGON, restrict their values to a particular geometry type.

The other data types hold collections of values:

n MULTIPOINT

n MULTILINESTRING

n MULTIPOLYGON

n GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types,
MULTIPOINT and MULTILINESTRING and MULTIPOLYGON and GEOMETRYCOLLECTION, restrict collec-
tion members to those having a particular geometry type.

7.4.2 Creating Spatial Values
This section describes how to create spatial values using Well-Known Text and Well-Known
Binary functions that are defined in the OpenGIS standard, and using MySQL-specific
functions.

7.4.2.1 Creating Geometry Values Using WKT Functions
MySQL provides a number of functions that take as input parameters a Well-Known Text
representation and, optionally, a spatial reference system identifier (SRID). They return the
corresponding geometry.

08 6337 ch07 6/24/04 12:43 PM Page 359

TEAM LinG

360 CHAPTER 7 Spatial Extensions in MySQL

GeomFromText() accepts a WKT of any geometry type as its first argument. An implementa-
tion also provides type-specific construction functions for construction of geometry values of
each geometry type.

n GeomCollFromText(wkt[,srid]), GeometryCollectionFromText(wkt[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKT representation and SRID.
n GeomFromText(wkt[,srid]), GeometryFromText(wkt[,srid])

Constructs a geometry value of any type using its WKT representation and SRID.
n LineFromText(wkt[,srid]), LineStringFromText(wkt[,srid])

Constructs a LINESTRING value using its WKT representation and SRID.
n MLineFromText(wkt[,srid]), MultiLineStringFromText(wkt[,srid])

Constructs a MULTILINESTRING value using its WKT representation and SRID.
n MPointFromText(wkt[,srid]), MultiPointFromText(wkt[,srid])

Constructs a MULTIPOINT value using its WKT representation and SRID.
n MPolyFromText(wkt[,srid]), MultiPolygonFromText(wkt[,srid])

Constructs a MULTIPOLYGON value using its WKT representation and SRID.
n PointFromText(wkt[,srid])

Constructs a POINT value using its WKT representation and SRID.
n PolyFromText(wkt[,srid]), PolygonFromText(wkt[,srid])

Constructs a POLYGON value using its WKT representation and SRID.

The OpenGIS specification also describes optional functions for constructing Polygon or
MultiPolygon values based on the WKT representation of a collection of rings or closed
LineString values. These values may intersect. MySQL does not implement these functions:

n BdMPolyFromText(wkt,srid)

Constructs a MultiPolygon value from a MultiLineString value in WKT format con-
taining an arbitrary collection of closed LineString values.

n BdPolyFromText(wkt,srid)

Constructs a Polygon value from a MultiLineString value in WKT format containing
an arbitrary collection of closed LineString values.

08 6337 ch07 6/24/04 12:43 PM Page 360

TEAM LinG

3617.4 Creating a Spatially Enabled MySQL Database

7.4.2.2 Creating Geometry Values Using WKB Functions
MySQL provides a number of functions that take as input parameters a BLOB containing a
Well-Known Binary representation and, optionally, a spatial reference system identifier
(SRID). They return the corresponding geometry.

GeomFromWKT() accepts a WKB of any geometry type as its first argument. An implementa-
tion also provides type-specific construction functions for construction of geometry values of
each geometry type.

n GeomCollFromWKB(wkb[,srid]), GeometryCollectionFromWKB(wkt[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKB representation and SRID.
n GeomFromWKB(wkb[,srid]), GeometryFromWKB(wkt[,srid])

Constructs a geometry value of any type using its WKB representation and SRID.
n LineFromWKB(wkb[,srid]), LineStringFromWKB(wkb[,srid])

Constructs a LINESTRING value using its WKB representation and SRID.
n MLineFromWKB(wkb[,srid]), MultiLineStringFromWKB(wkb[,srid])

Constructs a MULTILINESTRING value using its WKB representation and SRID.
n MPointFromWKB(wkb[,srid]), MultiPointFromWKB(wkb[,srid])

Constructs a MULTIPOINT value using its WKB representation and SRID.
n MPolyFromWKB(wkb[,srid]), MultiPolygonFromWKB(wkb[,srid])

Constructs a MULTIPOLYGON value using its WKB representation and SRID.
n PointFromWKB(wkb[,srid])

Constructs a POINT value using its WKB representation and SRID.
n PolyFromWKB(wkb[,srid]), PolygonFromWKB(wkb[,srid])

Constructs a POLYGON value using its WKB representation and SRID.

The OpenGIS specification also describes optional functions for constructing Polygon or
MultiPolygon values based on the WKB representation of a collection of rings or closed
LineString values. These values may intersect. MySQL does not implement these functions:

n BdMPolyFromWKB(wkb,srid)

Constructs a MultiPolygon value from a MultiLineString value in WKB format con-
taining an arbitrary collection of closed LineString values.

n BdPolyFromWKB(wkb,srid)

Constructs a Polygon value from a MultiLineString value in WKB format containing an
arbitrary collection of closed LineString values.

08 6337 ch07 6/24/04 12:43 PM Page 361

TEAM LinG

362 CHAPTER 7 Spatial Extensions in MySQL

7.4.2.3 Creating Geometry Values Using MySQL-Specific Functions
Note: MySQL does not implement the functions listed in this section.

MySQL provides a set of useful functions for creating geometry WKB representations. The
functions described in this section are MySQL extensions to the OpenGIS specifications.
The results of these functions are BLOB values containing WKB representations of geometry
values with no SRID. The results of these functions can be substituted as the first argument
for any function in the GeomFromWKB() function family.

n GeometryCollection(g1,g2,...)

Constructs a WKB GeometryCollection. If any argument is not a well-formed WKB
representation of a geometry, the return value is NULL.

n LineString(pt1,pt2,...)

Constructs a WKB LineString value from a number of WKB Point arguments. If any
argument is not a WKB Point, the return value is NULL. If the number of Point argu-
ments is less than two, the return value is NULL.

n MultiLineString(ls1,ls2,...)

Constructs a WKB MultiLineString value using WKB LineString arguments. If any
argument is not a WKB LineString, the return value is NULL.

n MultiPoint(pt1,pt2,...)

Constructs a WKB MultiPoint value using WKB Point arguments. If any argument is
not a WKB Point, the return value is NULL.

n MultiPolygon(poly1,poly2,...)

Constructs a WKB MultiPolygon value from a set of WKB Polygon arguments. If any
argument is not a WKB Polygon, the return value is NULL.

n Point(x,y)

Constructs a WKB Point using its coordinates.
n Polygon(ls1,ls2,...)

Constructs a WKB Polygon value from a number of WKB LineString arguments. If
any argument does not represent the WKB of a LinearRing (that is, not a closed and
simple LineString) the return value is NULL.

7.4.3 Creating Spatial Columns
MySQL provides a standard way of creating spatial columns for geometry types, for exam-
ple, with CREATE TABLE or ALTER TABLE. Currently, spatial columns are supported only for
MyISAM tables.

n Use the CREATE TABLE statement to create a table with a spatial column:
mysql> CREATE TABLE geom (g GEOMETRY);

Query OK, 0 rows affected (0.02 sec)

08 6337 ch07 6/24/04 12:43 PM Page 362

TEAM LinG

3637.4 Creating a Spatially Enabled MySQL Database

n Use the ALTER TABLE statement to add or drop a spatial column to or from an existing
table:
mysql> ALTER TABLE geom ADD pt POINT;

Query OK, 0 rows affected (0.00 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE geom DROP pt;

Query OK, 0 rows affected (0.00 sec)

Records: 0 Duplicates: 0 Warnings: 0

7.4.4 Populating Spatial Columns
After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that for-
mat from either Well-Known Text (WKT) or Well-Known Binary (WKB) format. The fol-
lowing examples demonstrate how to insert geometry values into a table by converting
WKT values into internal geometry format.

You can perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (GeomFromText(‘POINT(1 1)’));

SET @g = ‘POINT(1 1)’;

INSERT INTO geom VALUES (GeomFromText(@g));

Or you can perform the conversion prior to the INSERT:

SET @g = GeomFromText(‘POINT(1 1)’);

INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = ‘LINESTRING(0 0,1 1,2 2)’;

INSERT INTO geom VALUES (GeomFromText(@g));

SET @g = ‘POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))’;

INSERT INTO geom VALUES (GeomFromText(@g));

SET @g =

‘GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))’;

INSERT INTO geom VALUES (GeomFromText(@g));

The preceding examples all use GeomFromText() to create geometry values. You can also use
type-specific functions:

SET @g = ‘POINT(1 1)’;

INSERT INTO geom VALUES (PointFromText(@g));

08 6337 ch07 6/24/04 12:43 PM Page 363

TEAM LinG

364 CHAPTER 7 Spatial Extensions in MySQL

SET @g = ‘LINESTRING(0 0,1 1,2 2)’;

INSERT INTO geom VALUES (LineStringFromText(@g));

SET @g = ‘POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))’;

INSERT INTO geom VALUES (PolygonFromText(@g));

SET @g =

GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))’;

INSERT INTO geom VALUES (GeomCollFromText(@g));

Note that if a client application program wants to use WKB representations of geometry
values, it is responsible for sending correctly formed WKB in queries to the server.
However, there are several ways of satisfying this requirement. For example:

n Inserting a POINT(1 1) value with hex literal syntax:
mysql> INSERT INTO geom VALUES

-> (GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));

n An ODBC application can send a WKB representation, binding it to a placeholder
using an argument of BLOB type:
INSERT INTO geom VALUES (GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.
n In a C program, you can escape a binary value using mysql_real_escape_string() and

include the result in a query string that is sent to the server.

7.4.5 Fetching Spatial Data
Geometry values stored in a table can be fetched in internal format. You can also convert
them into WKT or WKB format.

7.4.5.1 Fetching Spatial Data in Internal Format
Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

7.4.5.2 Fetching Spatial Data in WKT Format
The AsText() function converts a geometry from internal format into a WKT string.

mysql> SELECT AsText(g) FROM geom;

+-------------------------+

| AsText(p1) |

+-------------------------+

| POINT(1 1) |

| LINESTRING(0 0,1 1,2 2) |

+-------------------------+

08 6337 ch07 6/24/04 12:43 PM Page 364

TEAM LinG

3657.5 Analyzing Spatial Information

7.4.5.3 Fetching Spatial Data in WKB Format
The AsBinary() function converts a geometry from internal format into a BLOB containing
the WKB value.

SELECT AsBinary(g) FROM geom;

7.5 Analyzing Spatial Information
After populating spatial columns with values, you are ready to query and analyze them.
MySQL provides a set of functions to perform various operations on spatial data. These
functions can be grouped into four major categories according to the type of operation they
perform:

n Functions that convert geometries between various formats
n Functions that provide access to qualitative or quantitative properties of a geometry
n Functions that describe relations between two geometries
n Functions that create new geometries from existing ones

Spatial analysis functions can be used in many contexts, such as:

n Any interactive SQL program, such as mysql or MySQLCC
n Application programs written in any language that supports a MySQL client API

7.5.1 Geometry Format Conversion Functions
MySQL supports the following functions for converting geometry values between internal
format and either WKT or WKB format:

n AsBinary(g)

Converts a value in internal geometry format to its WKB representation and returns
the binary result.

n AsText(g)

Converts a value in internal geometry format to its WKT representation and returns
the string result.
mysql> SET @g = ‘LineString(1 1,2 2,3 3)’;

mysql> SELECT AsText(GeomFromText(@g));

+--------------------------+

| AsText(GeomFromText(@G)) |

+--------------------------+

| LINESTRING(1 1,2 2,3 3) |

+--------------------------+

08 6337 ch07 6/24/04 12:43 PM Page 365

TEAM LinG

366 CHAPTER 7 Spatial Extensions in MySQL

n GeomFromText(wkt[,srid])

Converts a string value from its WKT representation into internal geometry format
and returns the result. A number of type-specific functions are also supported, such as
PointFromText() and LineFromText(); see Section 7.4.2.1, “Creating Geometry Values
Using WKT Functions.”

n GeomFromWKB(wkb[,srid])

Converts a binary value from its WKB representation into internal geometry format
and returns the result. A number of type-specific functions are also supported, such as
PointFromWKB() and LineFromWKB(); see Section 7.4.2.2, “Creating Geometry Values
Using WKB Functions.”

7.5.2 Geometry Functions
Each function that belongs to this group takes a geometry value as its argument and returns
some qualitative or quantitative property of the geometry. Some functions restrict their
argument type. Such functions return NULL if the argument is of an incorrect geometry type.
For example, Area() returns NULL if the object type is neither Polygon nor MultiPolygon.

7.5.2.1 General Geometry Functions
The functions listed in this section do not restrict their argument and accept a geometry
value of any type.

n Dimension(g)

Returns the inherent dimension of the geometry value g. The result can be –1, 0, 1, or
2. (The meaning of these values is given in Section 7.2.2, “Class Geometry.”)
mysql> SELECT Dimension(GeomFromText(‘LineString(1 1,2 2)’));

+--+

| Dimension(GeomFromText(‘LineString(1 1,2 2)’)) |

+--+

| 1 |

+--+

n Envelope(g)

Returns the Minimum Bounding Rectangle (MBR) for the geometry value g. The result
is returned as a Polygon value.
mysql> SELECT AsText(Envelope(GeomFromText(‘LineString(1 1,2 2)’)));

+---+

| AsText(Envelope(GeomFromText(‘LineString(1 1,2 2)’))) |

+---+

| POLYGON((1 1,2 1,2 2,1 2,1 1)) |

+---+

08 6337 ch07 6/24/04 12:43 PM Page 366

TEAM LinG

3677.5 Analyzing Spatial Information

The polygon is defined by the corner points of the bounding box:
POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

n GeometryType(g)

Returns as a string the name of the geometry type of which the geometry instance g is a
member. The name will correspond to one of the instantiable Geometry subclasses.
mysql> SELECT GeometryType(GeomFromText(‘POINT(1 1)’));

+--+

| GeometryType(GeomFromText(‘POINT(1 1)’)) |

+--+

| POINT |

+--+

n SRID(g)

Returns an integer indicating the Spatial Reference System ID for the geometry
value g.
mysql> SELECT SRID(GeomFromText(‘LineString(1 1,2 2)’,101));

+---+

| SRID(GeomFromText(‘LineString(1 1,2 2)’,101)) |

+---+

| 101 |

+---+

The OpenGIS specification also defines the following functions, which MySQL does not
implement:

n Boundary(g)

Returns a geometry that is the closure of the combinatorial boundary of the geometry
value g.

n IsEmpty(g)

Returns 1 if the geometry value g is the empty geometry, 0 if it is not empty, and –1 if
the argument is NULL. If the geometry is empty, it represents the empty point set.

n IsSimple(g)

Currently, this function is a placeholder and should not be used. If implemented, its
behavior will be as described in the next paragraph.

Returns 1 if the geometry value g has no anomalous geometric points, such as self-
intersection or self-tangency. IsSimple() returns 0 if the argument is not simple, and –1
if it is NULL.

The description of each instantiable geometric class given earlier in the chapter
includes the specific conditions that cause an instance of that class to be classified as not
simple.

08 6337 ch07 6/24/04 12:43 PM Page 367

TEAM LinG

368 CHAPTER 7 Spatial Extensions in MySQL

7.5.2.2 Point Functions
A Point consists of X and Y coordinates, which may be obtained using the following
functions:

n X(p)

Returns the X-coordinate value for the point p as a double-precision number.
mysql> SELECT X(GeomFromText(‘Point(56.7 53.34)’));

+--------------------------------------+

| X(GeomFromText(‘Point(56.7 53.34)’)) |

+--------------------------------------+

| 56.7 |

+--------------------------------------+

n Y(p)

Returns the Y-coordinate value for the point p as a double-precision number.

mysql> SELECT Y(GeomFromText(‘Point(56.7 53.34)’));

+--------------------------------------+

| Y(GeomFromText(‘Point(56.7 53.34)’)) |

+--------------------------------------+

| 53.34 |

+--------------------------------------+

7.5.2.3 LineString Functions
A LineString consists of Point values. You can extract particular points of a LineString,
count the number of points that it contains, or obtain its length.

n EndPoint(ls)

Returns the Point that is the end point of the LineString value ls.
mysql> SET @ls = ‘LineString(1 1,2 2,3 3)’;

mysql> SELECT AsText(EndPoint(GeomFromText(@ls)));

+-------------------------------------+

| AsText(EndPoint(GeomFromText(@ls))) |

+-------------------------------------+

| POINT(3 3) |

+-------------------------------------+

08 6337 ch07 6/24/04 12:43 PM Page 368

TEAM LinG

3697.5 Analyzing Spatial Information

n GLength(ls)

Returns as a double-precision number the length of the LineString value ls in its asso-
ciated spatial reference.
mysql> SET @ls = ‘LineString(1 1,2 2,3 3)’;

mysql> SELECT GLength(GeomFromText(@ls));

+----------------------------+

| GLength(GeomFromText(@ls)) |

+----------------------------+

| 2.8284271247462 |

+----------------------------+

n IsClosed(ls)

Returns 1 if the LineString value ls is closed (that is, its StartPoint() and EndPoint()
values are the same). Returns 0 if ls is not closed, and –1 if it is NULL.
mysql> SET @ls = ‘LineString(1 1,2 2,3 3)’;

mysql> SELECT IsClosed(GeomFromText(@ls));

+-----------------------------+

| IsClosed(GeomFromText(@ls)) |

+-----------------------------+

| 0 |

+-----------------------------+

n NumPoints(ls)

Returns the number of points in the LineString value ls.
mysql> SET @ls = ‘LineString(1 1,2 2,3 3)’;

mysql> SELECT NumPoints(GeomFromText(@ls));

+------------------------------+

| NumPoints(GeomFromText(@ls)) |

+------------------------------+

| 3 |

+------------------------------+

n PointN(ls,n)

Returns the n-th point in the Linestring value ls. Point numbers begin at 1.
mysql> SET @ls = ‘LineString(1 1,2 2,3 3)’;

mysql> SELECT AsText(PointN(GeomFromText(@ls),2));

+-------------------------------------+

| AsText(PointN(GeomFromText(@ls),2)) |

+-------------------------------------+

| POINT(2 2) |

+-------------------------------------+

08 6337 ch07 6/24/04 12:43 PM Page 369

TEAM LinG

370 CHAPTER 7 Spatial Extensions in MySQL

n StartPoint(ls)

Returns the Point that is the start point of the LineString value ls.

mysql> SET @ls = ‘LineString(1 1,2 2,3 3)’;

mysql> SELECT AsText(StartPoint(GeomFromText(@ls)));

+---------------------------------------+

| AsText(StartPoint(GeomFromText(@ls))) |

+---------------------------------------+

| POINT(1 1) |

+---------------------------------------+

The OpenGIS specification also defines the following function, which MySQL does not
implement:

n IsRing(ls)

Returns 1 if the LineString value ls is closed (that is, its StartPoint() and EndPoint()
values are the same) and is simple (does not pass through the same point more than
once). Returns 0 if ls is not a ring, and –1 if it is NULL.

7.5.2.4 MultiLineString Functions
n GLength(mls)

Returns as a double-precision number the length of the MultiLineString value mls. The
length of mls is equal to the sum of the lengths of its elements.
mysql> SET @mls = ‘MultiLineString((1 1,2 2,3 3),(4 4,5 5))’;

mysql> SELECT GLength(GeomFromText(@mls));

+-----------------------------+

| GLength(GeomFromText(@mls)) |

+-----------------------------+

| 4.2426406871193 |

+-----------------------------+

n IsClosed(mls)

Returns 1 if the MultiLineString value mls is closed (that is, the StartPoint() and
EndPoint() values are the same for each LineString in mls). Returns 0 if mls is not
closed, and –1 if it is NULL.

mysql> SET @mls = ‘MultiLineString((1 1,2 2,3 3),(4 4,5 5))’;

mysql> SELECT IsClosed(GeomFromText(@mls));

+------------------------------+

| IsClosed(GeomFromText(@mls)) |

+------------------------------+

| 0 |

+------------------------------+

08 6337 ch07 6/24/04 12:43 PM Page 370

TEAM LinG

3717.5 Analyzing Spatial Information

7.5.2.5 Polygon Functions
n Area(poly)

Returns as a double-precision number the area of the Polygon value poly, as measured
in its spatial reference system.
mysql> SET @poly = ‘Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))’;

mysql> SELECT Area(GeomFromText(@poly));

+---------------------------+

| Area(GeomFromText(@poly)) |

+---------------------------+

| 4 |

+---------------------------+

n ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString.
mysql> SET @poly =

-> ‘Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’;

mysql> SELECT AsText(ExteriorRing(GeomFromText(@poly)));

+---+

| AsText(ExteriorRing(GeomFromText(@poly))) |

+---+

| LINESTRING(0 0,0 3,3 3,3 0,0 0) |

+---+

n InteriorRingN(poly,n)

Returns the n-th interior ring for the Polygon value poly as a LineString. Ring numbers
begin at 1.
mysql> SET @poly =

-> ‘Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’;

mysql> SELECT AsText(InteriorRingN(GeomFromText(@poly),1));

+--+

| AsText(InteriorRingN(GeomFromText(@poly),1)) |

+--+

| LINESTRING(1 1,1 2,2 2,2 1,1 1) |

+--+

n NumInteriorRings(poly)

Returns the number of interior rings in the Polygon value poly.

mysql> SET @poly =

-> ‘Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’;

mysql> SELECT NumInteriorRings(GeomFromText(@poly));

+---------------------------------------+

| NumInteriorRings(GeomFromText(@poly)) |

+---------------------------------------+

| 1 |

+---------------------------------------+

08 6337 ch07 6/24/04 12:43 PM Page 371

TEAM LinG

372 CHAPTER 7 Spatial Extensions in MySQL

7.5.2.6 MultiPolygon Functions
n Area(mpoly)

Returns as a double-precision number the area of the MultiPolygon value mpoly, as
measured in its spatial reference system.

mysql> SET @mpoly =

-> ‘MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))’;

mysql> SELECT Area(GeomFromText(@mpoly));

+----------------------------+

| Area(GeomFromText(@mpoly)) |

+----------------------------+

| 8 |

+----------------------------+

The OpenGIS specification also defines the following functions, which MySQL does not
implement:

n Centroid(mpoly)

Returns the mathematical centroid for the MultiPolygon value mpoly as a Point. The
result is not guaranteed to be on the MultiPolygon.

n PointOnSurface(mpoly)

Returns a Point value that is guaranteed to be on the MultiPolygon value mpoly.

7.5.2.7 GeometryCollection Functions
n GeometryN(gc,n)

Returns the n-th geometry in the GeometryCollection value gc. Geometry numbers
begin at 1.
mysql> SET @gc = ‘GeometryCollection(Point(1 1),LineString(2 2, 3 3))’;

mysql> SELECT AsText(GeometryN(GeomFromText(@gc),1));

+--+

| AsText(GeometryN(GeomFromText(@gc),1)) |

+--+

| POINT(1 1) |

+--+

08 6337 ch07 6/24/04 12:43 PM Page 372

TEAM LinG

3737.5 Analyzing Spatial Information

n NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc.

mysql> SET @gc = ‘GeometryCollection(Point(1 1),LineString(2 2, 3 3))’;

mysql> SELECT NumGeometries(GeomFromText(@gc));

+----------------------------------+

| NumGeometries(GeomFromText(@gc)) |

+----------------------------------+

| 2 |

+----------------------------------+

7.5.3 Functions That Create New Geometries from Existing
Ones

7.5.3.1 Geometry Functions That Produce New Geometries
In Section 7.5.2, “Geometry Functions,” we’ve already discussed some functions that can con-
struct new geometries from the existing ones:

n Envelope(g)

n StartPoint(ls)

n EndPoint(ls)

n PointN(ls,n)

n ExteriorRing(poly)

n InteriorRingN(poly,n)

n GeometryN(gc,n)

7.5.3.2 Spatial Operators
OpenGIS proposes a number of other functions that can produce geometries. They are
designed to implement spatial operators.

These functions are not implemented in MySQL. They may appear in future releases.

n Buffer(g,d)

Returns a geometry that represents all points whose distance from the geometry value g
is less than or equal to a distance of d.

n ConvexHull(g)

Returns a geometry that represents the convex hull of the geometry value g.

08 6337 ch07 6/24/04 12:43 PM Page 373

TEAM LinG

374 CHAPTER 7 Spatial Extensions in MySQL

n Difference(g1,g2)

Returns a geometry that represents the point set difference of the geometry value g1
with g2.

n Intersection(g1,g2)

Returns a geometry that represents the point set intersection of the geometry values g1
with g2.

n SymDifference(g1,g2)

Returns a geometry that represents the point set symmetric difference of the geometry
value g1 with g2.

n Union(g1,g2)

Returns a geometry that represents the point set union of the geometry values g1
and g2.

7.5.4 Functions for Testing Spatial Relations Between
Geometric Objects
The functions described in these sections take two geometries as input parameters and
return a qualitative or quantitative relation between them.

7.5.5 Relations on Geometry Minimal Bounding Rectangles
(MBRs)
MySQL provides some functions that can test relations between minimal bounding rectan-
gles of two geometries g1 and g2. They include:

n MBRContains(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangle of g1 con-
tains the Minimum Bounding Rectangle of g2.
mysql> SET @g1 = GeomFromText(‘Polygon((0 0,0 3,3 3,3 0,0 0))’);

mysql> SET @g2 = GeomFromText(‘Point(1 1)’);

mysql> SELECT MBRContains(@g1,@g2), MBRContains(@g2,@g1);

----------------------+----------------------+

| MBRContains(@g1,@g2) | MBRContains(@g2,@g1) |

+----------------------+----------------------+

| 1 | 0 |

+----------------------+----------------------+

08 6337 ch07 6/24/04 12:43 PM Page 374

TEAM LinG

3757.5 Analyzing Spatial Information

n MBRDisjoint(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles of the
two geometries g1 and g2 are disjointed (do not intersect).

n MBREqual(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles of the
two geometries g1 and g2 are the same.

n MBRIntersects(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles of the
two geometries g1 and g2 intersect.

n MBROverlaps(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles of the
two geometries g1 and g2 overlap.

n MBRTouches(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles of the
two geometries g1 and g2 touch.

n MBRWithin(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangle of g1 is
within the Minimum Bounding Rectangle of g2.

mysql> SET @g1 = GeomFromText(‘Polygon((0 0,0 3,3 3,3 0,0 0))’);

mysql> SET @g2 = GeomFromText(‘Polygon((0 0,0 5,5 5,5 0,0 0))’);

mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);

+--------------------+--------------------+

| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |

+--------------------+--------------------+

| 1 | 0 |

+--------------------+--------------------+

7.5.6 Functions That Test Spatial Relationships Between
Geometries
The OpenGIS specification defines the following functions. Currently, MySQL does not
implement them according to the specification. Those that are implemented return the same
result as the corresponding MBR-based functions. This includes functions in the following
list other than Distance() and Related().

These functions may be implemented in future releases with full support for spatial analysis,
not just MBR-based support.

08 6337 ch07 6/24/04 12:43 PM Page 375

TEAM LinG

376 CHAPTER 7 Spatial Extensions in MySQL

The functions operate on two geometry values g1 and g2.

n Contains(g1,g2)

Returns 1 or 0 to indicate whether or not g1 completely contains g2.
n Crosses(g1,g2)

Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or
if g2 is a Point or a MultiPoint. Otherwise, returns 0.

The term spatially crosses denotes a spatial relation between two given geometries that
has the following properties:

n The two geometries intersect
n Their intersection results in a geometry that has a dimension that is one less than

the maximum dimension of the two given geometries
n Their intersection is not equal to either of the two given geometries

n Disjoint(g1,g2)

Returns 1 or 0 to indicate whether or not g1 is spatially disjointed from (does not inter-
sect) g2.

n Distance(g1,g2)

Returns as a double-precision number the shortest distance between any two points in
the two geometries.

n Equals(g1,g2)

Returns 1 or 0 to indicate whether or not g1 is spatially equal to g2.
n Intersects(g1,g2)

Returns 1 or 0 to indicate whether or not g1 spatially intersects g2.
n Overlaps(g1,g2)

Returns 1 or 0 to indicate whether or not g1 spatially overlaps g2. The term spatially
overlaps is used if two geometries intersect and their intersection results in a geometry
of the same dimension but not equal to either of the given geometries.

n Related(g1,g2,pattern_matrix)

Returns 1 or 0 to indicate whether or not the spatial relationship specified by
pattern_matrix exists between g1 and g2. Returns –1 if the arguments are NULL. The
pattern matrix is a string. Its specification will be noted here if this function is imple-
mented.

08 6337 ch07 6/24/04 12:43 PM Page 376

TEAM LinG

3777.6 Optimizing Spatial Analysis

n Touches(g1,g2)

Returns 1 or 0 to indicate whether or not g1 spatially touches g2. Two geometries spa-
tially touch if the interiors of the geometries do not intersect, but the boundary of one of
the geometries intersects either the boundary or the interior of the other.

n Within(g1,g2)

Returns 1 or 0 to indicate whether or not g1 is spatially within g2.

7.6 Optimizing Spatial Analysis
Search operations in non-spatial databases can be optimized using indexes. This is true for
spatial databases as well. With the help of a great variety of multi-dimensional indexing
methods that have already been designed, it is possible to optimize spatial searches. The
most typical of these are:

n Point queries that search for all objects that contain a given point
n Region queries that search for all objects that overlap a given region

MySQL uses R-Trees with quadratic splitting to index spatial columns. A spatial index is
built using the MBR of a geometry. For most geometries, the MBR is a minimum rectangle
that surrounds the geometries. For a horizontal or a vertical linestring, the MBR is a rectan-
gle degenerated into the linestring. For a point, the MBR is a rectangle degenerated into the
point.

7.6.1 Creating Spatial Indexes
MySQL can create spatial indexes using syntax similar to that for creating regular indexes,
but extended with the SPATIAL keyword. Spatial columns that are indexed currently must be
declared NOT NULL. The following examples demonstrate how to create spatial indexes.

n With CREATE TABLE:
mysql> CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g));

n With ALTER TABLE:
mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);

n With CREATE INDEX:

mysql> CREATE SPATIAL INDEX sp_index ON geom (g);

08 6337 ch07 6/24/04 12:43 PM Page 377

TEAM LinG

378 CHAPTER 7 Spatial Extensions in MySQL

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

n With ALTER TABLE:
mysql> ALTER TABLE geom DROP INDEX g;

n With DROP INDEX:

mysql> DROP INDEX sp_index ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored
in the column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for stor-
ing object ID values.

mysql> DESCRIBE geom;

+-------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------+----------+------+-----+---------+----------------+

| fid | int(11) | | PRI | NULL | auto_increment |

| g | geometry | | | | |

+-------+----------+------+-----+---------+----------------+

2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;

+----------+

| count(*) |

+----------+

| 32376 |

+----------+

1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);

Query OK, 32376 rows affected (4.05 sec)

Records: 32376 Duplicates: 0 Warnings: 0

08 6337 ch07 6/24/04 12:43 PM Page 378

TEAM LinG

3797.6 Optimizing Spatial Analysis

7.6.2 Using a Spatial Index
The optimizer investigates whether available spatial indexes can be involved in the search for
queries that use a function such as MBRContains() or MBRWithin() in the WHERE clause. For exam-
ple, let’s say we want to find all objects that are in the given rectangle:

mysql> SELECT fid,AsText(g) FROM geom WHERE

mysql> MBRContains(GeomFromText(‘Polygon((30000 15000,31000 15000,31000

➥16000,30000 16000,30000 15000))’),g);

+-----+---+

| fid | AsText(g) |

+-----+---+

| 21 | LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30333.8 15828.8) |

| 22 | LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8,30334 15871.4) |

| 23 | LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4,30334 15914.2) |

| 24 | LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4,30273.4 15823) |

| 25 | LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882.4,30274.8 15866.2) |

| 26 | LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4,30275 15918.2) |

| 249 | LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946.8,30320.4 15938.4) |

| 1 | LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136.4,30240 15127.2) |

| 2 | LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136,30210.4 15121) |

| 3 | LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,30169 15113) |

| 4 | LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30157 15111.6) |

| 5 | LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4,30194.2 15075.2) |

| 6 | LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,30244.6 15077) |

| 7 | LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8,30201.2 15049.4) |

| 10 | LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6,30189.6 15019) |

| 11 | LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2,30151.2 15009.8) |

| 13 | LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,30114.6 15067.8) |

| 154 | LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30278 15134) |

| 155 | LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30259 15083.4) |

| 157 | LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4,30128.8 15001) |

+-----+---+

20 rows in set (0.00 sec)

Now let’s use EXPLAIN to check the way this query is executed (the id output column has been
removed so the output better fits the page):

mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE

mysql> MBRContains(GeomFromText(‘Polygon((30000 15000,31000 15000,31000

➥16000,30000 16000,30000 15000))’),g);

+-------------+-------+-------+---------------+------+---------+------+------+-------------+

| select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------------+-------+-------+---------------+------+---------+------+------+-------------+

| SIMPLE | geom | range | g | g | 32 | NULL | 50 | Using where |

+-------------+-------+-------+---------------+------+---------+------+------+-------------+

1 row in set (0.00 sec)

08 6337 ch07 6/24/04 12:43 PM Page 379

TEAM LinG

380 CHAPTER 7 Spatial Extensions in MySQL

Now let’s check what would happen without a spatial index:

mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE

mysql> MBRContains(GeomFromText(‘Polygon((30000 15000,31000 15000,31000

➥16000,30000 16000,30000 15000))’),g);

+-------------+-------+------+---------------+------+---------+------+-------+-------------+

| select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------------+-------+------+---------------+------+---------+------+-------+-------------+

| SIMPLE | geom | ALL | NULL | NULL | NULL | NULL | 32376 | Using where |

+-------------+-------+------+---------------+------+---------+------+-------+-------------+

1 row in set (0.00 sec)

Let’s execute the SELECT statement, ignoring the spatial key we have:

mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE

mysql> MBRContains(GeomFromText(‘Polygon((30000 15000,31000 15000,31000

➥16000,30000 16000,30000 15000))’),g);

+-----+---+

| fid | AsText(g) |

+-----+---+

| 1 | LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136.4,30240 15127.2) |

| 2 | LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136,30210.4 15121) |

| 3 | LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,30169 15113) |

| 4 | LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30157 15111.6) |

| 5 | LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4,30194.2 15075.2) |

| 6 | LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,30244.6 15077) |

| 7 | LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8,30201.2 15049.4) |

| 10 | LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6,30189.6 15019) |

| 11 | LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2,30151.2 15009.8) |

| 13 | LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,30114.6 15067.8) |

| 21 | LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30333.8 15828.8) |

| 22 | LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8,30334 15871.4) |

| 23 | LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4,30334 15914.2) |

| 24 | LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4,30273.4 15823) |

| 25 | LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882.4,30274.8 15866.2) |

| 26 | LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4,30275 15918.2) |

| 154 | LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30278 15134) |

| 155 | LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30259 15083.4) |

| 157 | LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4,30128.8 15001) |

| 249 | LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946.8,30320.4 15938.4) |

+-----+---+

20 rows in set (0.46 sec)

When the index is not used, the execution time for this query rises from 0.00 seconds to 0.46
seconds.

08 6337 ch07 6/24/04 12:43 PM Page 380

TEAM LinG

3817.7 MySQL Conformance and Compatibility

In future releases, spatial indexes may also be used for optimizing other functions. See
Section 7.5.4, “Functions for Testing Spatial Relations Between Geometric Objects.”

7.7 MySQL Conformance and Compatibility

7.7.1 GIS Features That Are Not Yet Implemented
n Additional Metadata Views

OpenGIS specifications propose several additional metadata views. For example, a sys-
tem view named GEOMETRY_COLUMNS contains a description of geometry columns, one
row for each geometry column in the database.

n The OpenGIS function Length() on LineString and MultiLineString currently should
be called in MySQL as GLength().

The problem is that there is an existing SQL function Length() which calculates the
length of string values, and sometimes it is not possible to distinguish whether the func-
tion is called in a textual or spatial context. We need either to solve this somehow, or
decide on another function name.

08 6337 ch07 6/24/04 12:43 PM Page 381

TEAM LinG

08 6337 ch07 6/24/04 12:43 PM Page 382

TEAM LinG

8
Stored Procedures

and Functions

Stored procedures and functions are a new feature in MySQL version 5.0. A stored proce-
dure is a set of SQL statements that can be stored in the server. Once this has been done,
clients don’t need to keep reissuing the individual statements but can refer to the stored pro-
cedure instead.

Some situations where stored procedures can be particularly useful:

n When multiple client applications are written in different languages or work on differ-
ent platforms, but need to perform the same database operations.

n When security is paramount. Banks, for example, use stored procedures for all common
operations. This provides a consistent and secure environment, and procedures can
ensure that each operation is properly logged. In such a setup, applications and users
would not get any access to the database tables directly, but can only execute specific
stored procedures.

Stored procedures can provide improved performance because less information needs to be
sent between the server and the client. The tradeoff is that this does increase the load on the
database server system because more of the work is done on the server side and less is done
on the client (application) side. Consider this if many client machines (such as Web servers)
are serviced by only one or a few database servers.

Stored procedures also allow you to have libraries of functions in the database server. This is
a feature shared by modern application languages that allow such design internally with, for
example, classes. Using these client application language features is beneficial for the pro-
grammer even outside the scope of database use.

09 6337 ch08 6/24/04 12:44 PM Page 383

TEAM LinG

384 CHAPTER 8 Stored Procedures and Functions

MySQL follows the SQL:2003 syntax for stored procedures, which is also used by IBM’s
DB2.

The MySQL implementation of stored procedures is still in progress. All syntax described
in this chapter is supported and any limitations and extensions are documented where
appropriate.

Stored procedures require the proc table in the mysql database. This table is created during
the MySQL 5.0 installation procedure. If you are upgrading to MySQL 5.0 from an earlier
version, be sure to update your grant tables to make sure the proc table exists.

8.1 Stored Procedure Syntax
Stored procedures and functions are routines that are created with CREATE PROCEDURE and
CREATE FUNCTION statements. A routine is either a procedure or a function. A procedure is
invoked using a CALL statement, and can only pass back values using output variables.
Functions may return a scalar value and can be called from inside a statement just like any
other function (that is, by invoking the function’s name). Stored routines may call other
stored routines.

At present, MySQL preserves context only for the default database. That is, if you say USE
db_name within a procedure, the original default database is restored upon routine exit. A
routine inherits the default database from the caller, so generally routines should either issue
a USE db_name statement, or specify all tables with an explicit database reference; for exam-
ple, db_name.tbl_name.

MySQL supports the very useful extension that allows the use of regular SELECT statements
(that is, without using cursors or local variables) inside a stored procedure. The result set of
such a query is simply sent directly to the client. Multiple SELECT statements generate multi-
ple result sets, so the client must use a MySQL client library that supports multiple result
sets. This means the client must use a client library from a version of MySQL at least as
recent as 4.1.

The following section describes the syntax used to create, alter, drop, and query stored pro-
cedures and functions.

8.1.1 Maintaining Stored Procedures

8.1.1.1 CREATE PROCEDURE and CREATE FUNCTION
CREATE PROCEDURE sp_name ([parameter[,...]])

[characteristic ...] routine_body

CREATE FUNCTION sp_name ([parameter[,...]])

[RETURNS type]

[characteristic ...] routine_body

09 6337 ch08 6/24/04 12:44 PM Page 384

TEAM LinG

3858.1 Stored Procedure Syntax

parameter:

[IN | OUT | INOUT] param_name type

type:

Any valid MySQL data type

characteristic:

LANGUAGE SQL

| [NOT] DETERMINISTIC

| SQL SECURITY {DEFINER | INVOKER}

| COMMENT ‘string‘

routine_body:

Valid SQL procedure statement(s)

The RETURNS clause may be specified only for a FUNCTION. It is used to indicate the return
type of the function, and the function body must contain a RETURN value statement.

The parameter list enclosed within parentheses must always be present. If there are no
parameters, an empty parameter list of () should be used. Each parameter is an IN parame-
ter by default. To specify otherwise for a parameter, use the keyword OUT or INOUT before the
parameter name. Specifying IN, OUT, or INOUT is only valid for a PROCEDURE.

The CREATE FUNCTION statement is used in earlier versions of MySQL to support UDFs
(User Defined Functions). UDFs continue to be supported, even with the existence of
stored functions. A UDF can be regarded as an external stored function. However, do note
that stored functions share their namespace with UDFs.

A framework for external stored procedures will be introduced in the near future. This will
allow you to write stored procedures in languages other than SQL. Most likely, one of the
first languages to be supported will be PHP because the core PHP engine is small, thread-
safe, and can easily be embedded. Because the framework will be public, it is expected that
many other languages will also be supported.

A function is considered “deterministic” if it always returns the same result for the same
input parameters, and “not deterministic” otherwise. Currently, the DETERMINISTIC charac-
teristic is accepted, but not yet used by the optimizer.

The SQL SECURITY characteristic can be used to specify whether the routine should be exe-
cuted using the permissions of the user who creates the routine or the user who invokes it.
The default value is DEFINER. This feature is new in SQL:2003.

MySQL does not yet use the GRANT EXECUTE privilege.

MySQL stores the sql_mode system variable setting that is in effect at the time a routine is
created, and will always execute the routine with this setting in force.

The COMMENT clause is a MySQL extension, and may be used to describe the stored proce-
dure. This information is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE
FUNCTION statements.

09 6337 ch08 6/24/04 12:44 PM Page 385

TEAM LinG

386 CHAPTER 8 Stored Procedures and Functions

MySQL allows routines to contain DDL statements (such as CREATE and DROP) and SQL
transaction statements (such as COMMIT). This is not required by the standard and is therefore
implementation-specific.

Note: Currently, stored functions created with CREATE FUNCTION may not contain references
to tables. Please note that this includes some SET statements, but excludes some SELECT state-
ments. This limitation will be lifted as soon as possible.

The following is an example of a simple stored procedure that uses an OUT parameter. The
example uses the mysql client delimiter command to change the statement delimiter from ;
to // while the procedure is being defined. This allows the ; delimiter used in the procedure
body to be passed through to the server rather than being interpreted by mysql itself.

mysql> delimiter //

mysql> CREATE PROCEDURE simpleproc (OUT param1 INT)

-> BEGIN

-> SELECT COUNT(*) INTO param1 FROM t;

-> END

-> //

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL simpleproc(@a);

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @a;

+------+

| @a |

+------+

| 3 |

+------+

1 row in set (0.00 sec)

The following is an example of a function that takes a parameter, performs an operation
using an SQL function, and returns the result:

mysql> delimiter //

mysql> CREATE FUNCTION hello (s CHAR(20)) RETURNS CHAR(50)

-> RETURN CONCAT(‘Hello, ‘,s,’!’);

-> //

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

09 6337 ch08 6/24/04 12:44 PM Page 386

TEAM LinG

3878.1 Stored Procedure Syntax

mysql> SELECT hello(‘world’);

+----------------+

| hello(‘world’) |

+----------------+

| Hello, world! |

+----------------+

1 row in set (0.00 sec)

8.1.1.2 ALTER PROCEDURE and ALTER FUNCTION
ALTER {PROCEDURE | FUNCTION} sp_name [characteristic ...]

characteristic:

NAME new_name

| SQL SECURITY {DEFINER | INVOKER}

| COMMENT ‘string‘

This statement can be used to rename a stored procedure or function, and to change its
characteristics. More than one change may be specified in an ALTER PROCEDURE or ALTER
FUNCTION statement.

8.1.1.3 DROP PROCEDURE and DROP FUNCTION
DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

This statement is used to drop a stored procedure or function. That is, the specified routine
is removed from the server.

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the pro-
cedure or function does not exist. A warning is produced that can be viewed with SHOW
WARNINGS.

8.1.1.4 SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION
SHOW CREATE {PROCEDURE | FUNCTION} sp_name

This statement is a MySQL extension. Similar to SHOW CREATE TABLE, it returns the exact
string that can be used to re-create the named routine.

8.1.2 SHOW PROCEDURE STATUS and SHOW FUNCTION
STATUS
SHOW {PROCEDURE | FUNCTION} STATUS [LIKE ‘pattern’]

This statement is a MySQL extension. It returns characteristics of routines, such as the
name, type, creator, and creation and modification dates. If no pattern is specified, the infor-
mation for all stored procedures or all stored functions is listed, depending on which state-
ment you use.

09 6337 ch08 6/24/04 12:44 PM Page 387

TEAM LinG

388 CHAPTER 8 Stored Procedures and Functions

8.1.3 CALL
CALL sp_name([parameter[,...]])

The CALL statement is used to invoke a procedure that was defined previously with CREATE
PROCEDURE.

8.1.4 BEGIN ... END Compound Statement
[begin_label:] BEGIN

statement(s)

END [end_label]

Stored routines may contain multiple statements, using a BEGIN ... END compound state-
ment.

begin_label and end_label must be the same, if both are specified.

Please note that the optional [NOT] ATOMIC clause is not yet supported. This means that no
transactional savepoint is set at the start of the instruction block and the BEGIN clause used in
this context has no effect on the current transaction.

Using multiple statements requires that a client is able to send query strings containing the
; statement delimiter. This is handled in the mysql command-line client with the delimiter
command. Changing the ; end-of-query delimiter (for example, to //) allows ; to be used in
a routine body.

8.1.5 DECLARE Statement
The DECLARE statement is used to define various items local to a routine: local variables (see
Section 8.1.6, “Variables in Stored Procedures”), conditions and handlers (see Section 8.1.7,
“Conditions and Handlers”), and cursors (see Section 8.1.8, “Cursors”). SIGNAL and RESIGNAL
statements are not currently supported.

DECLARE may be used only inside a BEGIN ... END compound statement and must be at its
start, before any other statements.

8.1.6 Variables in Stored Procedures
You may declare and use variables within a routine.

8.1.6.1 DECLARE Local Variables
DECLARE var_name[,...] type [DEFAULT value]

This statement is used to declare local variables. The scope of a variable is within the BEGIN
... END block.

09 6337 ch08 6/24/04 12:44 PM Page 388

TEAM LinG

3898.1 Stored Procedure Syntax

8.1.6.2 Variable SET Statement
SET var_name = expr [,var_name = expr] ...]

The SET statement in stored procedures is an extended version of the general SET statement.
Referenced variables may be ones declared inside a routine, or global server variables.

The SET statement in stored procedures is implemented as part of the pre-existing SET
syntax. This allows an extended syntax of SET a=x, b=y, ... where different variable
types (locally declared variables, server variables, and global and session server variables)
can be mixed. This also allows combinations of local variables and some options that
make sense only for global/system variables; in that case, the options are accepted but
ignored.

8.1.6.3 SELECT ... INTO Statement
SELECT col_name[,...] INTO var_name[,...] table_expr

This SELECT syntax stores selected columns directly into variables. Therefore, only a single
row may be retrieved. This statement is also extremely useful when used in combination
with cursors.

SELECT id,data INTO x,y FROM test.t1 LIMIT 1;

8.1.7 Conditions and Handlers
Certain conditions may require specific handling. These conditions can relate to errors, as
well as general flow control inside a routine.

8.1.7.1 DECLARE Conditions
DECLARE condition_name CONDITION FOR condition_value

condition_value:

SQLSTATE [VALUE] sqlstate_value

| mysql_error_code

This statement specifies conditions that will need specific handling. It associates a name
with a specified error condition. The name can subsequently be used in a DECLARE HANDLER
statement. See Section 8.1.7.2, “DECLARE Handlers.”

In addition to SQLSTATE values, MySQL error codes are also supported.

09 6337 ch08 6/24/04 12:44 PM Page 389

TEAM LinG

390 CHAPTER 8 Stored Procedures and Functions

8.1.7.2 DECLARE Handlers
DECLARE handler_type HANDLER FOR condition_value[,...] sp_statement

handler_type:

CONTINUE

| EXIT

| UNDO

condition_value:

SQLSTATE [VALUE] sqlstate_value

| condition_name

| SQLWARNING

| NOT FOUND

| SQLEXCEPTION

| mysql_error_code

This statement specifies handlers that each may deal with one or more conditions. If one of
these conditions occurs, the specified statement is executed.

For a CONTINUE handler, execution of the current routine continues after execution of the
handler statement. For an EXIT handler, execution of the current BEGIN...END compound
statement is terminated. The UNDO handler type is not yet supported.

n SQLWARNING is shorthand for all SQLSTATE codes that begin with 01.
n NOT FOUND is shorthand for all SQLSTATE codes that begin with 02.
n SQLEXCEPTION is shorthand for all SQLSTATE codes not caught by SQLWARNING or

NOT FOUND.

In addition to SQLSTATE values, MySQL error codes are also supported.

For example:

mysql> CREATE TABLE test.t (s1 int,primary key (s1));

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()

-> BEGIN

-> DECLARE CONTINUE HANDLER FOR SQLSTATE ‘23000’ SET @x2 = 1;

-> SET @x = 1;

-> INSERT INTO test.t VALUES (1);

-> SET @x = 2;

-> INSERT INTO test.t VALUES (1);

-> SET @x = 3;

-> END;

09 6337 ch08 6/24/04 12:44 PM Page 390

TEAM LinG

3918.1 Stored Procedure Syntax

-> //

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL handlerdemo();

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;

+------+

| @x |

+------+

| 3 |

+------+

1 row in set (0.00 sec)

Notice that @x is 3, which shows that MySQL executed to the end of the procedure. If the
line DECLARE CONTINUE HANDLER FOR SQLSTATE ‘23000’ SET @x2 = 1; had not been present,
MySQL would have taken the default (EXIT) path after the second INSERT failed due to the
PRIMARY KEY constraint, and SELECT @x would have returned 2.

8.1.8 Cursors
Simple cursors are supported inside stored procedures and functions. The syntax is as in
embedded SQL. Cursors are currently asensitive, read-only, and non-scrolling. Asensitive
means that the server may or may not make a copy of its result table.

For example:

CREATE PROCEDURE curdemo()

BEGIN

DECLARE done INT DEFAULT 0;

DECLARE CONTINUE HANDLER FOR SQLSTATE ‘02000’ SET done = 1;

DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;

DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;

DECLARE a CHAR(16);

DECLARE b,c INT;

OPEN cur1;

OPEN cur2;

REPEAT

FETCH cur1 INTO a, b;

FETCH cur2 INTO c;

IF NOT done THEN

IF b < c THEN

INSERT INTO test.t3 VALUES (a,b);

09 6337 ch08 6/24/04 12:44 PM Page 391

TEAM LinG

392 CHAPTER 8 Stored Procedures and Functions

ELSE

INSERT INTO test.t3 VALUES (a,c);

END IF;

END IF;

UNTIL done END REPEAT;

CLOSE cur1;

CLOSE cur2;

END

8.1.8.1 Declaring Cursors
DECLARE cursor_name CURSOR FOR sql_statement

Multiple cursors may be defined in a routine, but each must have a unique name.

8.1.8.2 Cursor OPEN Statement
OPEN cursor_name

This statement opens a previously declared cursor.

8.1.8.3 Cursor FETCH Statement
FETCH cursor_name INTO var_name [, var_name] ...

This statement fetches the next row (if a row exists) using the specified open cursor, and
advances the cursor pointer.

8.1.8.4 Cursor CLOSE Statement
CLOSE cursor_name

This statement closes a previously opened cursor.

8.1.9 Flow Control Constructs
The IF, CASE, LOOP, WHILE, ITERATE, and LEAVE constructs are fully implemented.

These constructs may each contain either a single statement, or a block of statements using
the BEGIN ... END compound statement. Constructs may be nested.

FOR loops are not currently supported.

8.1.9.1 IF Statement
IF search_condition THEN statement(s)

[ELSEIF search_condition THEN statement(s)]

...

[ELSE statement(s)]

END IF

09 6337 ch08 6/24/04 12:44 PM Page 392

TEAM LinG

3938.1 Stored Procedure Syntax

IF implements a basic conditional construct. If the search_condition evaluates to true, the
corresponding SQL statement is executed. If no search_condition matches, the statement in
the ELSE clause is executed.

Please note that there is also an IF() function. See Section 5.2, “Control Flow Functions.”

8.1.9.2 CASE Statement
CASE case_value

WHEN when_value THEN statement

[WHEN when_value THEN statement ...]

[ELSE statement]

END CASE

Or:

CASE

WHEN search_condition THEN statement

[WHEN search_condition THEN statement ...]

[ELSE statement]

END CASE

CASE implements a complex conditional construct. If a search_condition evaluates to true,
the corresponding SQL statement is executed. If no search condition matches, the statement
in the ELSE clause is executed.

Note: The syntax of a CASE statement inside a stored procedure differs slightly from that of
the SQL CASE expression. The CASE statement cannot have an ELSE NULL clause, and it is ter-
minated with END CASE instead of END. See Section 5.2, “Control Flow Functions.”

8.1.9.3 LOOP Statement
[begin_label:] LOOP

statement(s)

END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of a particular state-
ment or group of statements. The statements within the loop are repeated until the loop is
exited; usually this is accomplished with a LEAVE statement.

begin_label and end_label must be the same, if both are specified.

8.1.9.4 LEAVE Statement
LEAVE label

This statement is used to exit any flow control construct.

09 6337 ch08 6/24/04 12:44 PM Page 393

TEAM LinG

394 CHAPTER 8 Stored Procedures and Functions

8.1.9.5 ITERATE Statement
ITERATE label

ITERATE can only appear within LOOP, REPEAT, and WHILE statements. ITERATE means “do the
loop iteration again.”

For example:

CREATE PROCEDURE doiterate(p1 INT)

BEGIN

label1: LOOP

SET p1 = p1 + 1;

IF p1 < 10 THEN ITERATE label1; END IF;

LEAVE label1;

END LOOP label1;

SET @x = p1;

END

8.1.9.6 REPEAT Statement
[begin_label:] REPEAT

statement(s)

UNTIL search_condition

END REPEAT [end_label]

The statements within a REPEAT statement are repeated until the search_condition is true.

begin_label and end_label must be the same, if both are specified.

For example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)

-> BEGIN

-> SET @x = 0;

-> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;

-> END

-> //

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL dorepeat(1000);

Query OK, 0 rows affected (0.00 sec)

09 6337 ch08 6/24/04 12:44 PM Page 394

TEAM LinG

3958.1 Stored Procedure Syntax

mysql> SELECT @x;

+------+

| @x |

+------+

| 1001 |

+------+

1 row in set (0.00 sec)

8.1.9.7 WHILE Statement
[begin_label:] WHILE search_condition DO

statement(s)

END WHILE [end_label]

The statements within a WHILE statement are repeated as long as the search_condition is
true.

begin_label and end_label must be the same, if both are specified.

For example:

CREATE PROCEDURE dowhile()

BEGIN

DECLARE v1 INT DEFAULT 5;

WHILE v1 > 0 DO

...

SET v1 = v1 - 1;

END WHILE;

END

09 6337 ch08 6/24/04 12:44 PM Page 395

TEAM LinG

09 6337 ch08 6/24/04 12:44 PM Page 396

TEAM LinG

9
Error Handling in MySQL

This chapter lists the errors that MySQL can return.

9.1 Error Returns
The following are error codes that may appear when you call MySQL from any host language.

The Name and Error Code columns correspond to definitions in the include/mysqld_error.h
MySQL source file.

The SQLSTATE column corresponds to definitions in the include/sql_state.h MySQL source
file.

The SQLSTATE error code is displayed only if you use MySQL version 4.1 and up. SQLSTATE
codes were added for compatibility with X/Open, ANSI, and ODBC behavior.

A suggested text for each error code can be found in section 9.2, “Error Messages.”

Because updates are frequent, it is possible that these files will contain additional error codes
not listed here.

Name Error Code SQLSTATE
ER_HASHCHK 1000 HY000

ER_NISAMCHK 1001 HY000

ER_NO 1002 HY000

ER_YES 1003 HY000

ER_CANT_CREATE_FILE 1004 HY000

ER_CANT_CREATE_TABLE 1005 HY000

ER_CANT_CREATE_DB 1006 HY000

ER_DB_CREATE_EXISTS 1007 HY000

ER_DB_DROP_EXISTS 1008 HY000

ER_DB_DROP_DELETE 1009 HY000

ER_DB_DROP_RMDIR 1010 HY000

ER_CANT_DELETE_FILE 1011 HY000

ER_CANT_FIND_SYSTEM_REC 1012 HY000

ER_CANT_GET_STAT 1013 HY000

ER_CANT_GET_WD 1014 HY000

10 6337 ch09 6/24/04 12:42 PM Page 397

TEAM LinG

398 CHAPTER 9 Error Handling in MySQL

Name Error Code SQLSTATE
ER_CANT_LOCK 1015 HY000

ER_CANT_OPEN_FILE 1016 HY000

ER_FILE_NOT_FOUND 1017 HY000

ER_CANT_READ_DIR 1018 HY000

ER_CANT_SET_WD 1019 HY000

ER_CHECKREAD 1020 HY000

ER_DISK_FULL 1021 HY000

ER_DUP_KEY 1022 23000

ER_ERROR_ON_CLOSE 1023 HY000

ER_ERROR_ON_READ 1024 HY000

ER_ERROR_ON_RENAME 1025 HY000

ER_ERROR_ON_WRITE 1026 HY000

ER_FILE_USED 1027 HY000

ER_FILSORT_ABORT 1028 HY000

ER_FORM_NOT_FOUND 1029 HY000

ER_GET_ERRNO 1030 HY000

ER_ILLEGAL_HA 1031 HY000

ER_KEY_NOT_FOUND 1032 HY000

ER_NOT_FORM_FILE 1033 HY000

ER_NOT_KEYFILE 1034 HY000

ER_OLD_KEYFILE 1035 HY000

ER_OPEN_AS_READONLY 1036 HY000

ER_OUTOFMEMORY 1037 HY001

ER_OUT_OF_SORTMEMORY 1038 HY001

ER_UNEXPECTED_EOF 1039 HY000

ER_CON_COUNT_ERROR 1040 08004

ER_OUT_OF_RESOURCES 1041 08004

ER_BAD_HOST_ERROR 1042 08S01

ER_HANDSHAKE_ERROR 1043 08S01

ER_DBACCESS_DENIED_ERROR 1044 42000

ER_ACCESS_DENIED_ERROR 1045 42000

ER_NO_DB_ERROR 1046 42000

ER_UNKNOWN_COM_ERROR 1047 08S01

ER_BAD_NULL_ERROR 1048 23000

ER_BAD_DB_ERROR 1049 42000

ER_TABLE_EXISTS_ERROR 1050 42S01

ER_BAD_TABLE_ERROR 1051 42S02

ER_NON_UNIQ_ERROR 1052 23000

ER_SERVER_SHUTDOWN 1053 08S01

ER_BAD_FIELD_ERROR 1054 42S22

ER_WRONG_FIELD_WITH_GROUP 1055 42000

ER_WRONG_GROUP_FIELD 1056 42000

ER_WRONG_SUM_SELECT 1057 42000

ER_WRONG_VALUE_COUNT 1058 21S01

ER_TOO_LONG_IDENT 1059 42000

ER_DUP_FIELDNAME 1060 42S21

10 6337 ch09 6/24/04 12:42 PM Page 398

TEAM LinG

3999.1 Error Returns

Name Error Code SQLSTATE
ER_DUP_KEYNAME 1061 42000

ER_DUP_ENTRY 1062 23000

ER_WRONG_FIELD_SPEC 1063 42000

ER_PARSE_ERROR 1064 42000

ER_EMPTY_QUERY 1065 42000

ER_NONUNIQ_TABLE 1066 42000

ER_INVALID_DEFAULT 1067 42000

ER_MULTIPLE_PRI_KEY 1068 42000

ER_TOO_MANY_KEYS 1069 42000

ER_TOO_MANY_KEY_PARTS 1070 42000

ER_TOO_LONG_KEY 1071 42000

ER_KEY_COLUMN_DOES_NOT_EXIST 1072 42000

ER_BLOB_USED_AS_KEY 1073 42000

ER_TOO_BIG_FIELDLENGTH 1074 42000

ER_WRONG_AUTO_KEY 1075 42000

ER_READY 1076 00000

ER_NORMAL_SHUTDOWN 1077 00000

ER_GOT_SIGNAL 1078 00000

ER_SHUTDOWN_COMPLETE 1079 00000

ER_FORCING_CLOSE 1080 08S01

ER_IPSOCK_ERROR 1081 08S01

ER_NO_SUCH_INDEX 1082 42S12

ER_WRONG_FIELD_TERMINATORS 1083 42000

ER_BLOBS_AND_NO_TERMINATED 1084 42000

ER_TEXTFILE_NOT_READABLE 1085 HY000

ER_FILE_EXISTS_ERROR 1086 HY000

ER_LOAD_INFO 1087 HY000

ER_ALTER_INFO 1088 HY000

ER_WRONG_SUB_KEY 1089 HY000

ER_CANT_REMOVE_ALL_FIELDS 1090 42000

ER_CANT_DROP_FIELD_OR_KEY 1091 42000

ER_INSERT_INFO 1092 HY000

ER_UPDATE_TABLE_USED 1093 HY000

ER_NO_SUCH_THREAD 1094 HY000

ER_KILL_DENIED_ERROR 1095 HY000

ER_NO_TABLES_USED 1096 HY000

ER_TOO_BIG_SET 1097 HY000

ER_NO_UNIQUE_LOGFILE 1098 HY000

ER_TABLE_NOT_LOCKED_FOR_WRITE 1099 HY000

ER_TABLE_NOT_LOCKED 1100 HY000

ER_BLOB_CANT_HAVE_DEFAULT 1101 42000

ER_WRONG_DB_NAME 1102 42000

ER_WRONG_TABLE_NAME 1103 42000

ER_TOO_BIG_SELECT 1104 42000

ER_UNKNOWN_ERROR 1105 HY000

ER_UNKNOWN_PROCEDURE 1106 42000

10 6337 ch09 6/24/04 12:42 PM Page 399

TEAM LinG

400 CHAPTER 9 Error Handling in MySQL

Name Error Code SQLSTATE
ER_WRONG_PARAMCOUNT_TO_PROCEDURE 1107 42000

ER_WRONG_PARAMETERS_TO_PROCEDURE 1108 HY000

ER_UNKNOWN_TABLE 1109 42S02

ER_FIELD_SPECIFIED_TWICE 1110 42000

ER_INVALID_GROUP_FUNC_USE 1111 42000

ER_UNSUPPORTED_EXTENSION 1112 42000

ER_TABLE_MUST_HAVE_COLUMNS 1113 42000

ER_RECORD_FILE_FULL 1114 HY000

ER_UNKNOWN_CHARACTER_SET 1115 42000

ER_TOO_MANY_TABLES 1116 HY000

ER_TOO_MANY_FIELDS 1117 HY000

ER_TOO_BIG_ROWSIZE 1118 42000

ER_STACK_OVERRUN 1119 HY000

ER_WRONG_OUTER_JOIN 1120 42000

ER_NULL_COLUMN_IN_INDEX 1121 42000

ER_CANT_FIND_UDF 1122 HY000

ER_CANT_INITIALIZE_UDF 1123 HY000

ER_UDF_NO_PATHS 1124 HY000

ER_UDF_EXISTS 1125 HY000

ER_CANT_OPEN_LIBRARY 1126 HY000

ER_CANT_FIND_DL_ENTRY 1127 HY000

ER_FUNCTION_NOT_DEFINED 1128 HY000

ER_HOST_IS_BLOCKED 1129 HY000

ER_HOST_NOT_PRIVILEGED 1130 HY000

ER_PASSWORD_ANONYMOUS_USER 1131 42000

ER_PASSWORD_NOT_ALLOWED 1132 42000

ER_PASSWORD_NO_MATCH 1133 42000

ER_UPDATE_INFO 1134 HY000

ER_CANT_CREATE_THREAD 1135 HY000

ER_WRONG_VALUE_COUNT_ON_ROW 1136 21S01

ER_CANT_REOPEN_TABLE 1137 HY000

ER_INVALID_USE_OF_NULL 1138 42000

ER_REGEXP_ERROR 1139 42000

ER_MIX_OF_GROUP_FUNC_AND_FIELDS 1140 42000

ER_NONEXISTING_GRANT 1141 42000

ER_TABLEACCESS_DENIED_ERROR 1142 42000

ER_COLUMNACCESS_DENIED_ERROR 1143 42000

ER_ILLEGAL_GRANT_FOR_TABLE 1144 42000

ER_GRANT_WRONG_HOST_OR_USER 1145 42000

ER_NO_SUCH_TABLE 1146 42S02

ER_NONEXISTING_TABLE_GRANT 1147 42000

ER_NOT_ALLOWED_COMMAND 1148 42000

ER_SYNTAX_ERROR 1149 42000

ER_DELAYED_CANT_CHANGE_LOCK 1150 HY000

ER_TOO_MANY_DELAYED_THREADS 1151 HY000

ER_ABORTING_CONNECTION 1152 08S01

10 6337 ch09 6/24/04 12:42 PM Page 400

TEAM LinG

4019.1 Error Returns

Name Error Code SQLSTATE
ER_NET_PACKET_TOO_LARGE 1153 08S01

ER_NET_READ_ERROR_FROM_PIPE 1154 08S01

ER_NET_FCNTL_ERROR 1155 08S01

ER_NET_PACKETS_OUT_OF_ORDER 1156 08S01

ER_NET_UNCOMPRESS_ERROR 1157 08S01

ER_NET_READ_ERROR 1158 08S01

ER_NET_READ_INTERRUPTED 1159 08S01

ER_NET_ERROR_ON_WRITE 1160 08S01

ER_NET_WRITE_INTERRUPTED 1161 08S01

ER_TOO_LONG_STRING 1162 42000

ER_TABLE_CANT_HANDLE_BLOB 1163 42000

ER_TABLE_CANT_HANDLE_AUTO_INCREMENT 1164 42000

ER_DELAYED_INSERT_TABLE_LOCKED 1165 HY000

ER_WRONG_COLUMN_NAME 1166 42000

ER_WRONG_KEY_COLUMN 1167 42000

ER_WRONG_MRG_TABLE 1168 HY000

ER_DUP_UNIQUE 1169 23000

ER_BLOB_KEY_WITHOUT_LENGTH 1170 42000

ER_PRIMARY_CANT_HAVE_NULL 1171 42000

ER_TOO_MANY_ROWS 1172 42000

ER_REQUIRES_PRIMARY_KEY 1173 42000

ER_NO_RAID_COMPILED 1174 HY000

ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE 1175 HY000

ER_KEY_DOES_NOT_EXITS 1176 HY000

ER_CHECK_NO_SUCH_TABLE 1177 42000

ER_CHECK_NOT_IMPLEMENTED 1178 42000

ER_CANT_DO_THIS_DURING_AN_TRANSACTION 1179 25000

ER_ERROR_DURING_COMMIT 1180 HY000

ER_ERROR_DURING_ROLLBACK 1181 HY000

ER_ERROR_DURING_FLUSH_LOGS 1182 HY000

ER_ERROR_DURING_CHECKPOINT 1183 HY000

ER_NEW_ABORTING_CONNECTION 1184 08S01

ER_DUMP_NOT_IMPLEMENTED 1185 HY000

ER_FLUSH_MASTER_BINLOG_CLOSED 1186 HY000

ER_INDEX_REBUILD 1187 HY000

ER_MASTER 1188 HY000

ER_MASTER_NET_READ 1189 08S01

ER_MASTER_NET_WRITE 1190 08S01

ER_FT_MATCHING_KEY_NOT_FOUND 1191 HY000

ER_LOCK_OR_ACTIVE_TRANSACTION 1192 HY000

ER_UNKNOWN_SYSTEM_VARIABLE 1193 HY000

ER_CRASHED_ON_USAGE 1194 HY000

ER_CRASHED_ON_REPAIR 1195 HY000

ER_WARNING_NOT_COMPLETE_ROLLBACK 1196 HY000

ER_TRANS_CACHE_FULL 1197 HY000

ER_SLAVE_MUST_STOP 1198 HY000

10 6337 ch09 6/24/04 12:42 PM Page 401

TEAM LinG

402 CHAPTER 9 Error Handling in MySQL

Name Error Code SQLSTATE
ER_SLAVE_NOT_RUNNING 1199 HY000

ER_BAD_SLAVE 1200 HY000

ER_MASTER_INFO 1201 HY000

ER_SLAVE_THREAD 1202 HY000

ER_TOO_MANY_USER_CONNECTIONS 1203 42000

ER_SET_CONSTANTS_ONLY 1204 HY000

ER_LOCK_WAIT_TIMEOUT 1205 HY000

ER_LOCK_TABLE_FULL 1206 HY000

ER_READ_ONLY_TRANSACTION 1207 25000

ER_DROP_DB_WITH_READ_LOCK 1208 HY000

ER_CREATE_DB_WITH_READ_LOCK 1209 HY000

ER_WRONG_ARGUMENTS 1210 HY000

ER_NO_PERMISSION_TO_CREATE_USER 1211 42000

ER_UNION_TABLES_IN_DIFFERENT_DIR 1212 HY000

ER_LOCK_DEADLOCK 1213 40001

ER_TABLE_CANT_HANDLE_FULLTEXT 1214 HY000

ER_CANNOT_ADD_FOREIGN 1215 HY000

ER_NO_REFERENCED_ROW 1216 23000

ER_ROW_IS_REFERENCED 1217 23000

ER_CONNECT_TO_MASTER 1218 08S01

ER_QUERY_ON_MASTER 1219 HY000

ER_ERROR_WHEN_EXECUTING_COMMAND 1220 HY000

ER_WRONG_USAGE 1221 HY000

ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT 1222 21000

ER_CANT_UPDATE_WITH_READLOCK 1223 HY000

ER_MIXING_NOT_ALLOWED 1224 HY000

ER_DUP_ARGUMENT 1225 HY000

ER_USER_LIMIT_REACHED 1226 42000

ER_SPECIFIC_ACCESS_DENIED_ERROR 1227 HY000

ER_LOCAL_VARIABLE 1228 HY000

ER_GLOBAL_VARIABLE 1229 HY000

ER_NO_DEFAULT 1230 42000

ER_WRONG_VALUE_FOR_VAR 1231 42000

ER_WRONG_TYPE_FOR_VAR 1232 42000

ER_VAR_CANT_BE_READ 1233 HY000

ER_CANT_USE_OPTION_HERE 1234 42000

ER_NOT_SUPPORTED_YET 1235 42000

ER_MASTER_FATAL_ERROR_READING_BINLOG 1236 HY000

ER_SLAVE_IGNORED_TABLE 1237 HY000

ER_INCORRECT_GLOBAL_LOCAL_VAR 1238 HY000

ER_WRONG_FK_DEF 1239 42000

ER_KEY_REF_DO_NOT_MATCH_TABLE_REF 1240 HY000

ER_OPERAND_COLUMNS 1241 21000

ER_SUBQUERY_NO_1_ROW 1242 21000

ER_UNKNOWN_STMT_HANDLER 1243 HY000

ER_CORRUPT_HELP_DB 1244 HY000

10 6337 ch09 6/24/04 12:42 PM Page 402

TEAM LinG

4039.1 Error Returns

Name Error Code SQLSTATE
ER_CYCLIC_REFERENCE 1245 HY000

ER_AUTO_CONVERT 1246 HY000

ER_ILLEGAL_REFERENCE 1247 42S22

ER_DERIVED_MUST_HAVE_ALIAS 1248 42000

ER_SELECT_REDUCED 1249 01000

ER_TABLENAME_NOT_ALLOWED_HERE 1250 42000

ER_NOT_SUPPORTED_AUTH_MODE 1251 08004

ER_SPATIAL_CANT_HAVE_NULL 1252 42000

ER_COLLATION_CHARSET_MISMATCH 1253 42000

ER_SLAVE_WAS_RUNNING 1254 HY000

ER_SLAVE_WAS_NOT_RUNNING 1255 HY000

ER_TOO_BIG_FOR_UNCOMPRESS 1256 HY000

ER_ZLIB_Z_MEM_ERROR 1257 HY000

ER_ZLIB_Z_BUF_ERROR 1258 HY000

ER_ZLIB_Z_DATA_ERROR 1259 HY000

ER_CUT_VALUE_GROUP_CONCAT 1260 HY000

ER_WARN_TOO_FEW_RECORDS 1261 01000

ER_WARN_TOO_MANY_RECORDS 1262 01000

ER_WARN_NULL_TO_NOTNULL 1263 01000

ER_WARN_DATA_OUT_OF_RANGE 1264 01000

ER_WARN_DATA_TRUNCATED 1265 01000

ER_WARN_USING_OTHER_HANDLER 1266 HY000

ER_CANT_AGGREGATE_2COLLATIONS 1267 HY000

ER_DROP_USER 1268 HY000

ER_REVOKE_GRANTS 1269 HY000

ER_CANT_AGGREGATE_3COLLATIONS 1270 HY000

ER_CANT_AGGREGATE_NCOLLATIONS 1271 HY000

ER_VARIABLE_IS_NOT_STRUCT 1272 HY000

ER_UNKNOWN_COLLATION 1273 HY000

ER_SLAVE_IGNORED_SSL_PARAMS 1274 HY000

ER_SERVER_IS_IN_SECURE_AUTH_MODE 1275 HY000

ER_WARN_FIELD_RESOLVED 1276 HY000

ER_BAD_SLAVE_UNTIL_COND 1277 HY000

ER_MISSING_SKIP_SLAVE 1278 HY000

ER_UNTIL_COND_IGNORED 1279 HY000

ER_WRONG_NAME_FOR_INDEX 1280 42000

ER_WRONG_NAME_FOR_CATALOG 1281 42000

ER_WARN_QC_RESIZE 1282 HY000

ER_BAD_FT_COLUMN 1283 HY000

ER_UNKNOWN_KEY_CACHE 1284 HY000

ER_WARN_HOSTNAME_WONT_WORK 1285 HY000

ER_UNKNOWN_STORAGE_ENGINE 1286 42000

ER_WARN_DEPRECATED_SYNTAX 1287 HY000

ER_NON_UPDATABLE_TABLE 1288 HY000

ER_FEATURE_DISABLED 1289 HY000

ER_OPTION_PREVENTS_STATEMENT 1290 HY000

10 6337 ch09 6/24/04 12:42 PM Page 403

TEAM LinG

404 CHAPTER 9 Error Handling in MySQL

Name Error Code SQLSTATE
ER_DUPLICATED_VALUE_IN_TYPE 1291 HY000

ER_TRUNCATED_WRONG_VALUE 1292 HY000

ER_TOO_MUCH_AUTO_TIMESTAMP_COLS 1293 HY000

ER_INVALID_ON_UPDATE 1294 HY000

ER_UNSUPPORTED_PS 1295 HY000

ER_SP_NO_RECURSIVE_CREATE 1296 2F003

ER_SP_ALREADY_EXISTS 1297 42000

ER_SP_DOES_NOT_EXIST 1298 42000

ER_SP_DROP_FAILED 1299 HY000

ER_SP_STORE_FAILED 1300 HY000

ER_SP_LILABEL_MISMATCH 1301 42000

ER_SP_LABEL_REDEFINE 1302 42000

ER_SP_LABEL_MISMATCH 1303 42000

ER_SP_UNINIT_VAR 1304 01000

ER_SP_BADSELECT 1305 0A000

ER_SP_BADRETURN 1306 42000

ER_SP_BADSTATEMENT 1307 0A000

ER_UPDATE_LOG_DEPRECATED_IGNORED 1308 42000

ER_UPDATE_LOG_DEPRECATED_TRANSLATED 1309 42000

ER_QUERY_INTERRUPTED 1310 70100

ER_SP_WRONG_NO_OF_ARGS 1311 42000

ER_SP_COND_MISMATCH 1312 42000

ER_SP_NORETURN 1313 42000

ER_SP_NORETURNEND 1314 2F005

ER_SP_BAD_CURSOR_QUERY 1315 42000

ER_SP_BAD_CURSOR_SELECT 1316 42000

ER_SP_CURSOR_MISMATCH 1317 42000

ER_SP_CURSOR_ALREADY_OPEN 1318 24000

ER_SP_CURSOR_NOT_OPEN 1319 24000

ER_SP_UNDECLARED_VAR 1320 42000

ER_SP_WRONG_NO_OF_FETCH_ARGS 1321 HY000

ER_SP_FETCH_NO_DATA 1322 02000

ER_SP_DUP_PARAM 1323 42000

ER_SP_DUP_VAR 1324 42000

ER_SP_DUP_COND 1325 42000

ER_SP_DUP_CURS 1326 42000

ER_SP_CANT_ALTER 1327 HY000

ER_SP_SUBSELECT_NYI 1328 0A000

ER_SP_NO_USE 1329 42000

ER_SP_VARCOND_AFTER_CURSHNDLR 1330 42000

ER_SP_CURSOR_AFTER_HANDLER 1331 42000

ER_SP_CASE_NOT_FOUND 1332 20000

ER_FPARSER_TOO_BIG_FILE 1333 HY000

ER_FPARSER_BAD_HEADER 1334 HY000

ER_FPARSER_EOF_IN_COMMENT 1335 HY000

ER_FPARSER_ERROR_IN_PARAMETER 1336 HY000

ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER 1337 HY000

10 6337 ch09 6/24/04 12:42 PM Page 404

TEAM LinG

4059.2 Error Messages

9.2 Error Messages
Following are error messages that may appear when you call MySQL from any host
language. %d or %s represent numbers or strings that are substituted into the messages.

Error Code Error Message
1000 hashchk

1001 isamchk

1002 NO

1003 YES

1004 Can’t create file ‘%s’ (errno: %d)

1005 Can’t create table ‘%s’ (errno: %d)

1006 Can’t create database ‘%s’ (errno: %d)

1007 Can’t create database ‘%s’; database exists

1008 Can’t drop database ‘%s’; database doesn’t exist

1009 Error dropping database (can’t delete ‘%s’, errno: %d)

1010 Error dropping database (can’t rmdir ‘%s’, errno: %d)

1011 Error on delete of ‘%s’ (errno: %d)

1012 Can’t read record in system table

1013 Can’t get status of ‘%s’ (errno: %d)

1014 Can’t get working directory (errno: %d)

1015 Can’t lock file (errno: %d)

1016 Can’t open file: ‘%s’ (errno: %d)

1017 Can’t find file: ‘%s’ (errno: %d)

1018 Can’t read dir of ‘%s’ (errno: %d)

1019 Can’t change dir to ‘%s’ (errno: %d)

1020 Record has changed since last read in table ‘%s’

1021 Disk full (%s); waiting for someone to free some space...

1022 Can’t write; duplicate key in table ‘%s’

1023 Error on close of ‘%s’ (errno: %d)

1024 Error reading file ‘%s’ (errno: %d)

1025 Error on rename of ‘%s’ to ‘%s’ (errno: %d)

1026 Error writing file ‘%s’ (errno: %d)

1027 ‘%s’ is locked against change

1028 Sort aborted

1029 View ‘%s’ doesn’t exist for ‘%s’

1030 Got error %d from storage engine

1031 Table storage engine for ‘%s’ doesn’t have this option

1032 Can’t find record in ‘%s’

1033 Incorrect information in file: ‘%s’

1034 Incorrect key file for table ‘%s’; try to repair it

1035 Old key file for table ‘%s’; repair it!

1036 Table ‘%s’ is read only

1037 Out of memory; restart server and try again (needed %d bytes)

1038 Out of sort memory; increase server sort buffer size

1039 Unexpected EOF found when reading file ‘%s’ (errno: %d)

1040 Too many connections

10 6337 ch09 6/24/04 12:42 PM Page 405

TEAM LinG

406 CHAPTER 9 Error Handling in MySQL

Error Code Error Message
1041 Out of memory; check if mysqld or some other process uses all

available memory; if not, you may have to use ‘ulimit’ to
allow mysqld to use more memory or you can add more swap space

1042 Can’t get hostname for your address

1043 Bad handshake

1044 Access denied for user ‘%s’@’%s’ to database ‘%s’

1045 Access denied for user ‘%s’@’%s’ (using password: %s)

1046 No database selected

1047 Unknown command

1048 Column ‘%s’ cannot be null

1049 Unknown database ‘%s’

1050 Table ‘%s’ already exists

1051 Unknown table ‘%s’

1052 Column ‘%s’ in %s is ambiguous

1053 Server shutdown in progress

1054 Unknown column ‘%s’ in ‘%s’

1055 ‘%s’ isn’t in GROUP BY

1056 Can’t group on ‘%s’

1057 Statement has sum functions and columns in same statement

1058 Column count doesn’t match value count

1059 Identifier name ‘%s’ is too long

1060 Duplicate column name ‘%s’

1061 Duplicate key name ‘%s’

1062 Duplicate entry ‘%s’ for key %d

1063 Incorrect column specifier for column ‘%s’

1064 %s near ‘%s’ at line %d

1065 Query was empty

1066 Not unique table/alias: ‘%s’

1067 Invalid default value for ‘%s’

1068 Multiple primary key defined

1069 Too many keys specified; max %d keys allowed

1070 Too many key parts specified; max %d parts allowed

1071 Specified key was too long; max key length is %d bytes

1072 Key column ‘%s’ doesn’t exist in table

1073 BLOB column ‘%s’ can’t be used in key specification with the
used table type

1074 Column length too big for column ‘%s’ (max = %d); use BLOB
instead

1075 Incorrect table definition; there can be only one auto column
and it must be defined as a key

1076 %s: ready for connections. Version: ‘%s’ socket: ‘%s’
port: %d

1077 %s: Normal shutdown

1078 %s: Got signal %d. Aborting!

1079 %s: Shutdown complete

1080 %s: Forcing close of thread %ld user: ‘%s’

10 6337 ch09 6/24/04 12:42 PM Page 406

TEAM LinG

4079.2 Error Messages

Error Code Error Message
1081 Can’t create IP socket

1082 Table ‘%s’ has no index like the one used in CREATE INDEX;
:ecreate the table

1083 Field separator argument is not what is expected; check the
manual

1084 You can’t use fixed rowlength with BLOBs; please use ‘fields
terminated by’

1085 The file ‘%s’ must be in the database directory or be readable
by all

1086 File ‘%s’ already exists

1087 Records: %ld Deleted: %ld Skipped: %ld Warnings: %ld

1088 Records: %ld Duplicates: %ld

1089 Incorrect sub part key; the used key part isn’t a string, the
used length is longer than the key part, or the storage engine
doesn’t support unique sub keys

1090 You can’t delete all columns with ALTER TABLE; use DROP TABLE
instead

1091 Can’t DROP ‘%s’; check that column/key exists

1092 Records: %ld Duplicates: %ld Warnings: %ld

1093 You can’t specify target table ‘%s’ for update in FROM clause

1094 Unknown thread id: %lu

1095 You are not owner of thread %lu

1096 No tables used

1097 Too many strings for column %s and SET

1098 Can’t generate a unique log-filename %s.(1-999)

1099 Table ‘%s’ was locked with a READ lock and can’t be updated

1100 Table ‘%s’ was not locked with LOCK TABLES

1101 BLOB/TEXT column ‘%s’ can’t have a default value

1102 Incorrect database name ‘%s’

1103 Incorrect table name ‘%s’

1104 The SELECT would examine more than MAX_JOIN_SIZE rows; check
your WHERE and use SET SQL_BIG_SELECTS=1 or SET
SQL_MAX_JOIN_SIZE=# if the SELECT is okay

1105 Unknown error

1106 Unknown procedure ‘%s’

1107 Incorrect parameter count to procedure ‘%s’

1108 Incorrect parameters to procedure ‘%s’

1109 Unknown table ‘%s’ in %s

1110 Column ‘%s’ specified twice

1111 Invalid use of group function

1112 Table ‘%s’ uses an extension that doesn’t exist in this MySQL
version

1113 A table must have at least 1 column

1114 The table ‘%s’ is full

1115 Unknown character set: ‘%s’

1116 Too many tables; MySQL can only use %d tables in a join

1117 Too many columns

10 6337 ch09 6/24/04 12:42 PM Page 407

TEAM LinG

408 CHAPTER 9 Error Handling in MySQL

Error Code Error Message
1118 Row size too large. The maximum row size for the used table

type, not counting BLOBs, is %ld. You have to change some
columns to TEXT or BLOBs

1119 Thread stack overrun: Used: %ld of a %ld stack. Use ‘mysqld
-O thread_stack=#’ to specify a bigger stack if needed

1120 Cross dependency found in OUTER JOIN; examine your ON condi-
tions

1121 Column ‘%s’ is used with UNIQUE or INDEX but is not defined as
NOT NULL

1122 Can’t load function ‘%s’

1123 Can’t initialize function ‘%s’; %s

1124 No paths allowed for shared library

1125 Function ‘%s’ already exists

1126 Can’t open shared library ‘%s’ (errno: %d %s)

1127 Can’t find function ‘%s’ in library’

1128 Function ‘%s’ is not defined

1129 Host ‘%s’ is blocked because of many connection errors;
unblock with ‘mysqladmin flush-hosts’

1130 Host ‘%s’ is not allowed to connect to this MySQL server

1131 You are using MySQL as an anonymous user and anonymous users
are not allowed to change passwords

1132 You must have privileges to update tables in the mysql data-
base to be able to change passwords for others

1133 Can’t find any matching row in the user table

1134 Rows matched: %ld Changed: %ld Warnings: %ld

1135 Can’t create a new thread (errno %d); if you are not out of
available memory, you can consult the manual for a possible
OS-dependent bug

1136 Column count doesn’t match value count at row %ld

1137 Can’t reopen table: ‘%s’

1138 Invalid use of NULL value

1139 Got error ‘%s’ from regexp

1140 Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no
GROUP columns is illegal if there is no GROUP BY clause

1141 There is no such grant defined for user ‘%s’ on host ‘%s’

1142 %s command denied to user ‘%s’@’%s’ for table ‘%s’

1143 %s command denied to user ‘%s’@’%s’ for column ‘%s’ in table
‘%s’

1144 Illegal GRANT/REVOKE command; please consult the manual to see
which privileges can be used

1145 The host or user argument to GRANT is too long

1146 Table ‘%s.%s’ doesn’t exist

1147 There is no such grant defined for user ‘%s’ on host ‘%s’ on
table ‘%s’

1148 The used command is not allowed with this MySQL version

10 6337 ch09 6/24/04 12:42 PM Page 408

TEAM LinG

4099.2 Error Messages

Error Code Error Message
1149 You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right syntax
to use

1150 Delayed insert thread couldn’t get requested lock for table %s

1151 Too many delayed threads in use

1152 Aborted connection %ld to db: ‘%s’ user: ‘%s’ (%s)

1153 Got a packet bigger than ‘max_allowed_packet’ bytes

1154 Got a read error from the connection pipe

1155 Got an error from fcntl()

1156 Got packets out of order

1157 Couldn’t uncompress communication packet

1158 Got an error reading communication packets

1159 Got timeout reading communication packets

1160 Got an error writing communication packets

1161 Got timeout writing communication packets

1162 Result string is longer than ‘max_allowed_packet’ bytes

1163 The used table type doesn’t support BLOB/TEXT columns

1164 The used table type doesn’t support AUTO_INCREMENT columns

1165 INSERT DELAYED can’t be used with table ‘%s’ because it is
locked with LOCK TABLES

1166 Incorrect column name ‘%s’

1167 The used storage engine can’t index column ‘%s’

1168 All tables in the MERGE table are not identically defined

1169 Can’t write, because of unique constraint, to table ‘%s’

1170 BLOB/TEXT column ‘%s’ used in key specification without a key
length

1171 All parts of a PRIMARY KEY must be NOT NULL; if you need NULL
in a key, use UNIQUE instead

1172 Result consisted of more than one row

1173 This table type requires a primary key

1174 This version of MySQL is not compiled with RAID support

1175 You are using safe update mode and you tried to update a table
without a WHERE that uses a KEY column

1176 Key ‘%s’ doesn’t exist in table ‘%s’

1177 Can’t open table

1178 The storage engine for the table doesn’t support %s

1179 You are not allowed to execute this command in a transaction

1180 Got error %d during COMMIT

1181 Got error %d during ROLLBACK

1182 Got error %d during FLUSH_LOGS

1183 Got error %d during CHECKPOINT

1184 Aborted connection %ld to db: ‘%s’ user: ‘%s’ host: `%s’ (%s)

1185 The storage engine for the table does not support binary table
dump

10 6337 ch09 6/24/04 12:42 PM Page 409

TEAM LinG

410 CHAPTER 9 Error Handling in MySQL

Error Code Error Message
1186 Binlog closed, cannot RESET MASTER

1187 Failed rebuilding the index of dumped table ‘%s’

1188 Error from master: ‘%s’

1189 Net error reading from master

1190 Net error writing to master

1191 Can’t find FULLTEXT index matching the column list

1192 Can’t execute the given command because you have active locked
tables or an active transaction

1193 Unknown system variable ‘%s’

1194 Table ‘%s’ is marked as crashed and should be repaired

1195 Table ‘%s’ is marked as crashed and last (automatic?) repair
failed

1196 Some non-transactional changed tables couldn’t be rolled back

1197 Multi-statement transaction required more than
‘max_binlog_cache_size’ bytes of storage; increase this mysqld
variable and try again

1198 This operation cannot be performed with a running slave; run
STOP SLAVE first

1199 This operation requires a running slave; configure slave and
do START SLAVE

1200 The server is not configured as slave; fix in config file or
with CHANGE MASTER TO

1201 Could not initialize master info structure; more error mes-
sages can be found in the MySQL error log

1202 Could not create slave thread; check system resources

1203 User %s has already more than ‘max_user_connections’ active
connections

1204 You may only use constant expressions with SET

1205 Lock wait timeout exceeded; try restarting transaction

1206 The total number of locks exceeds the lock table size

1207 Update locks cannot be acquired during a READ UNCOMMITTED
transaction

1208 DROP DATABASE not allowed while thread is holding global read
lock

1209 CREATE DATABASE not allowed while thread is holding global
read lock

1210 Incorrect arguments to %s

1211 ‘%s’@’%s’ is not allowed to create new users

1212 Incorrect table definition; all MERGE tables must be in the
same database

1213 Deadlock found when trying to get lock; try restarting trans-
action

1214 The used table type doesn’t support FULLTEXT indexes

1215 Cannot add foreign key constraint

1216 Cannot add or update a child row: a foreign key constraint
fails

1217 Cannot delete or update a parent row: a foreign key constraint
fails

10 6337 ch09 6/24/04 12:42 PM Page 410

TEAM LinG

4119.2 Error Messages

Error Code Error Message
1218 Error connecting to master: %s

1219 Error running query on master: %s

1220 Error when executing command %s: %s

1221 Incorrect usage of %s and %s

1222 The used SELECT statements have a different number of columns

1223 Can’t execute the query because you have a conflicting read
lock

1224 Mixing of transactional and non-transactional tables is dis-
abled

1225 Option ‘%s’ used twice in statement

1226 User ‘%s’ has exceeded the ‘%s’ resource (current value: %ld)

1227 Access denied; you need the %s privilege for this operation

1228 Variable ‘%s’ is a SESSION variable and can’t be used with SET
GLOBAL

1229 Variable ‘%s’ is a GLOBAL variable and should be set with SET
GLOBAL

1230 Variable ‘%s’ doesn’t have a default value

1231 Variable ‘%s’ can’t be set to the value of ‘%s’

1232 Incorrect argument type to variable ‘%s’

1233 Variable ‘%s’ can only be set, not read

1234 Incorrect usage/placement of ‘%s’

1235 This version of MySQL doesn’t yet support ‘%s’

1236 Got fatal error %d: ‘%s’ from master when reading data from
binary log

1237 Slave SQL thread ignored the query because of replicate-*-
table rules

1238 Variable ‘%s’ is a %s variable

1239 Incorrect foreign key definition for ‘%s’: %s

1240 Key reference and table reference don’t match

1241 Operand should contain %d column(s)

1242 Subquery returns more than 1 row

1243 Unknown prepared statement handler (%.*s) given to %s

1244 Help database is corrupt or does not exist

1245 Cyclic reference on subqueries

1246 Converting column ‘%s’ from %s to %s

1247 Reference ‘%s’ not supported (%s)

1248 Every derived table must have its own alias

1249 Select %u was reduced during optimization

1250 Table ‘%s’ from one of the SELECTs cannot be used in %s

1251 Client does not support authentication protocol requested by
server; consider upgrading MySQL client

1252 All parts of a SPATIAL index must be NOT NULL

1253 COLLATION ‘%s’ is not valid for CHARACTER SET ‘%s’

1254 Slave is already running

1255 Slave has already been stopped

1256 Uncompressed data size too large; the maximum size is %d
(probably, length of uncompressed data was corrupted)

10 6337 ch09 6/24/04 12:42 PM Page 411

TEAM LinG

412 CHAPTER 9 Error Handling in MySQL

Error Code Error Message
1257 ZLIB: Not enough memory

1258 ZLIB: Not enough room in the output buffer (probably, length
of uncompressed data was corrupted)

1259 ZLIB: Input data corrupted

1260 %d line(s) were cut by GROUP_CONCAT()

1261 Row %ld doesn’t contain data for all columns

1262 Row %ld was truncated; it contained more data than there were
input columns

1263 Data truncated; NULL supplied to NOT NULL column ‘%s’ at row
%ld

1264 Data truncated; out of range for column ‘%s’ at row %ld

1265 Data truncated for column ‘%s’ at row %ld

1266 Using storage engine %s for table ‘%s’

1267 Illegal mix of collations (%s,%s) and (%s,%s) for operation
‘%s’

1268 Can’t drop one or more of the requested users

1269 Can’t revoke all privileges, grant for one or more of the
requested users

1270 Illegal mix of collations (%s,%s), (%s,%s), (%s,%s) for opera-
tion ‘%s’

1271 Illegal mix of collations for operation ‘%s’

1272 Variable ‘%s’ is not a variable component (can’t be used as
XXXX.variable_name)

1273 Unknown collation: ‘%s’

1274 SSL parameters in CHANGE MASTER are ignored because this MySQL
slave was compiled without SSL support; they can be used later
if MySQL slave with SSL is started

1275 Server is running in —secure-auth mode, but ‘%s’@’%s’ has a
password in the old format; please change the password to the
new format

1276 Field or reference ‘%s%s%s%s%s’ of SELECT #%d was resolved in
SELECT #%d

1277 Incorrect parameter or combination of parameters for START
SLAVE UNTIL

1278 It is recommended to use —skip-slave-start when doing step-by-
step replication with START SLAVE UNTIL; otherwise, you will
get problems if you get an unexpected slave’s mysqld restart

1279 SQL thread is not to be started so UNTIL options are ignored

1280 Incorrect index name ‘%s’

1281 Incorrect catalog name ‘%s’

1282 Query cache failed to set size %lu; new query cache size is
%lu

1283 Column ‘%s’ cannot be part of FULLTEXT index

1284 Unknown key cache ‘%s’

1285 MySQL is started in —skip-name-resolve mode; you must restart
it without this switch for this grant to work

1286 Unknown table engine ‘%s’

1287 ‘%s’ is deprecated; use ‘%s’ instead

10 6337 ch09 6/24/04 12:42 PM Page 412

TEAM LinG

4139.2 Error Messages

Error Code Error Message
1288 The target table %s of the %s is not updatable

1289 The ‘%s’ feature is disabled; you need MySQL built with ‘%s’
to have it working

1290 The MySQL server is running with the %s option so it cannot
execute this statement

1291 Column ‘%s’ has duplicated value ‘%s’ in %s

1292 Truncated incorrect %s value: ‘%s’

1293 Incorrect table definition; there can be only one TIMESTAMP
column with CURRENT_TIMESTAMP in DEFAULT or ON UPDATE clause

1294 Invalid ON UPDATE clause for ‘%s’ column

1295 This command is not supported in the prepared statement proto-
col yet

1296 Can’t create a %s from within another stored routine

1297 %s %s already exists

1298 %s %s does not exist

1299 Failed to DROP %s %s

1300 Failed to CREATE %s %s

1301 %s with no matching label: %s

1302 Redefining label %s

1303 End-label %s without match

1304 Referring to uninitialized variable %s

1305 SELECT in a stored procedure must have INTO

1306 RETURN is only allowed in a FUNCTION

1307 Statements like SELECT, INSERT, UPDATE (and others) are not
allowed in a FUNCTION

1308 The update log is deprecated and replaced by the binary log;
SET SQL_LOG_UPDATE has been ignored

1309 The update log is deprecated and replaced by the binary log;
SET SQL_LOG_UPDATE has been translated to SET SQL_LOG_BIN

1310 Query execution was interrupted

1311 Incorrect number of arguments for %s %s; expected %u, got %u

1312 Undefined CONDITION: %s

1313 No RETURN found in FUNCTION %s

1314 FUNCTION %s ended without RETURN

1315 Cursor statement must be a SELECT

1316 Cursor SELECT must not have INTO

1317 Undefined CURSOR: %s

1318 Cursor is already open

1319 Cursor is not open

1320 Undeclared variable: %s

1321 Incorrect number of FETCH variables

1322 No data to FETCH

1323 Duplicate parameter: %s

1324 Duplicate variable: %s

1325 Duplicate condition: %s

1326 Duplicate cursor: %s

10 6337 ch09 6/24/04 12:42 PM Page 413

TEAM LinG

414 CHAPTER 9 Error Handling in MySQL

Error Code Error Message
1327 Failed to ALTER %s %s

1328 Subselect value not supported

1329 USE is not allowed in a stored procedure

1330 Variable or condition declaration after cursor or handler dec-
laration

1331 Cursor declaration after handler declaration

1332 Case not found for CASE statement

1333 Configuration file ‘%s’ is too big

1334 Malformed file type header in file ‘%s’

1335 Unexpected end of file while parsing comment ‘%s’

1336 Error while parsing parameter ‘%s’ (line: ‘%s’)

1337 Unexpected end of file while skipping unknown parameter ‘%s’

10 6337 ch09 6/24/04 12:42 PM Page 414

TEAM LinG

A
Troubleshooting Query

Problems

This appendix lists some common problems and error messages that you may encounter
when executing SQL statements and what to do to solve them.

A.1 Query-Related Issues

A.1.1 Case Sensitivity in Searches
By default, MySQL searches are not case sensitive (although there are some character sets
that are never case insensitive, such as czech). This means that if you search with col_name
LIKE ‘a%’, you will get all column values that start with A or a. If you want to make this
search case sensitive, make sure that one of the operands is a binary string. You can do this
with the BINARY operator. Write the condition as either BINARY col_name LIKE ‘a%’ or
col_name LIKE BINARY ‘a%’.

If you want a column always to be treated in case-sensitive fashion, declare it as BINARY. See
Section 6.2.5, “CREATE TABLE Syntax.”

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each
character’s “sort value.” Characters with the same sort value (such as ‘E’, ‘e’, and ‘é’) are
treated as the same character.

If you are using Chinese data in the so-called big5 encoding, you want to make all character
columns BINARY. This works because the sorting order of big5 encoding characters is based
on the order of ASCII codes. As of MySQL 4.1, you can explicitly declare that a column
should use the big5 character set:

CREATE TABLE t (name CHAR(40) CHARACTER SET big5);

11 6337 appA 6/24/04 12:43 PM Page 415

TEAM LinG

416 APPENDIX A Troubleshooting Query Problems

A.1.2 Problems Using DATE Columns
The format of a DATE value is ‘YYYY-MM-DD’. According to standard SQL, no other format is
allowed. You should use this format in UPDATE expressions and in the WHERE clause of SELECT
statements. For example:

mysql> SELECT * FROM tbl_name WHERE date >= ‘2003-05-05’;

As a convenience, MySQL automatically converts a date to a number if the date is used in a
numeric context (and vice versa). It is also smart enough to allow a “relaxed” string form
when updating and in a WHERE clause that compares a date to a TIMESTAMP, DATE, or
DATETIME column. (“Relaxed form” means that any punctuation character may be used as
the separator between parts. For example, ‘2004-08-15’ and ‘2004#08#15’ are equivalent.)
MySQL can also convert a string containing no separators (such as ‘20040815’), provided
it makes sense as a date.

The special date ‘0000-00-00’ can be stored and retrieved as ‘0000-00-00’. When using a
‘0000-00-00’ date through Connector/ODBC, it is automatically converted to NULL in
Connector/ODBC 2.50.12 and above, because ODBC can’t handle this kind of date.

Because MySQL performs the conversions described above, the following statements
work:

mysql> INSERT INTO tbl_name (idate) VALUES (19970505);

mysql> INSERT INTO tbl_name (idate) VALUES (‘19970505’);

mysql> INSERT INTO tbl_name (idate) VALUES (‘97-05-05’);

mysql> INSERT INTO tbl_name (idate) VALUES (‘1997.05.05’);

mysql> INSERT INTO tbl_name (idate) VALUES (‘1997 05 05’);

mysql> INSERT INTO tbl_name (idate) VALUES (‘0000-00-00’);

mysql> SELECT idate FROM tbl_name WHERE idate >= ‘1997-05-05’;

mysql> SELECT idate FROM tbl_name WHERE idate >= 19970505;

mysql> SELECT MOD(idate,100) FROM tbl_name WHERE idate >= 19970505;

mysql> SELECT idate FROM tbl_name WHERE idate >= ‘19970505’;

However, the following will not work:

mysql> SELECT idate FROM tbl_name WHERE STRCMP(idate,’20030505’)=0;

STRCMP() is a string function, so it converts idate to a string in ‘YYYY-MM-DD’ format and per-
forms a string comparison. It does not convert ‘20030505’ to the date ‘2003-05-05’ and per-
form a date comparison.

11 6337 appA 6/24/04 12:43 PM Page 416

TEAM LinG

417A.1 Query-Related Issues

The MySQL server packs dates for storage, so it can’t store a given date if the date would
not fit onto the result buffer. MySQL does very limited checking of whether the date is cor-
rect. If you store an incorrect date, such as ‘2004-2-31’, MySQL stores it as given. The
rules for accepting a date are:

n If MySQL can store and retrieve a given date as given, the date is accepted for DATE and
DATETIME columns even if it is not strictly legal.

n Day values from 0 to 31 are accepted for any date. This makes it very convenient for
Web applications where you ask year, month, and day in three different fields.

n The day or month value may be zero. This is convenient if you want to store a birth-
date in a DATE column and you know only part of the date.

If the date cannot be converted to any reasonable value, a 0 is stored in the DATE column,
which will be retrieved as ‘0000-00-00’. This is both a speed and a convenience issue. We
believe that the database server’s responsibility is to retrieve the same date you stored (even
if the data was not logically correct in all cases). We think it is up to the application and not
the server to check the dates.

A.1.3 Problems with NULL Values
The concept of the NULL value is a common source of confusion for newcomers to SQL,
who often think that NULL is the same thing as an empty string ‘’. This is not the case. For
example, the following statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);

mysql> INSERT INTO my_table (phone) VALUES (‘’);

Both statements insert a value into the phone column, but the first inserts a NULL value and
the second inserts an empty string. The meaning of the first can be regarded as “phone
number is not known” and the meaning of the second can be regarded as “the person is
known to have no phone, and thus no phone number.”

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the
IFNULL() function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expres-
sion that contains NULL always produces a NULL value unless otherwise indicated in the docu-
mentation for the operators and functions involved in the expression. All columns in the
following example return NULL:

mysql> SELECT NULL, 1+NULL, CONCAT(‘Invisible’,NULL);

If you want to search for column values that are NULL, you cannot use an expr = NULL test. The
following statement returns no rows, because expr = NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

11 6337 appA 6/24/04 12:43 PM Page 417

TEAM LinG

418 APPENDIX A Troubleshooting Query Problems

To look for NULL values, you must use the IS NULL test. The following statements show how
to find the NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;

mysql> SELECT * FROM my_table WHERE phone = ‘’;

You can add an index on a column that can have NULL values if you are using MySQL 3.23.2
or newer and are using the MyISAM, InnoDB, or BDB storage engine. As of MySQL 4.0.2, the
MEMORY storage engine also supports NULL values in indexes. Otherwise, you must declare an
indexed column NOT NULL and you cannot insert NULL into the column.

When reading data with LOAD DATA INFILE, empty or missing columns are updated with ‘’. If
you want a NULL value in a column, you should use \N in the data file. The literal word “NULL”
may also be used under some circumstances. See Section 6.1.5, “LOAD DATA INFILE Syntax.”

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in
descending order. Exception: In MySQL 4.0.2 through 4.0.10, NULL values sort first regard-
less of sort order.

Aggregate (summary) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The
exception to this is COUNT(*), which counts rows and not individual column values. For exam-
ple, the following statement produces two counts. The first is a count of the number of rows
in the table, and the second is a count of the number of non-NULL values in the age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some column types, MySQL handles NULL values specially. If you insert NULL into a
TIMESTAMP column, the current date and time are inserted. If you insert NULL into an integer
column that has the AUTO_INCREMENT attribute, the next number in the sequence is inserted.

A.1.4 Problems with Column Aliases
You can use an alias to refer to a column in GROUP BY, ORDER BY, or HAVING clauses. Aliases
can also be used to give columns better names:

SELECT SQRT(a*b) AS route FROM tbl_name GROUP BY route HAVING route > 0;

SELECT id, COUNT(*) AS cnt FROM tbl_name GROUP BY id HAVING cnt > 0;

SELECT id AS ‘Customer identity’ FROM tbl_name;

Standard SQL doesn’t allow you to refer to a column alias in a WHERE clause. This is because
when the WHERE code is executed, the column value may not yet be determined. For example,
the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name WHERE cnt > 0 GROUP BY id;

The WHERE statement is executed to determine which rows should be included in the GROUP
BY part, whereas HAVING is used to decide which rows from the result set should be used.

11 6337 appA 6/24/04 12:43 PM Page 418

TEAM LinG

419A.1 Query-Related Issues

A.1.5 Rollback Failure for Non-Transactional Tables
If you receive the following message when trying to perform a ROLLBACK, it means that one
or more of the tables you used in the transaction do not support transactions:

Warning: Some non-transactional changed tables couldn’t be rolled back

These non-transactional tables will not be affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and non-transactional tables within the
transaction, the most likely cause for this message is that a table you thought was transac-
tional actually is not. This can happen if you try to create a table using a transactional stor-
age engine that is not supported by your mysqld server (or that was disabled with a startup
option). If mysqld doesn’t support a storage engine, it will instead create the table as a MyISAM
table, which is non-transactional.

You can check the table type for a table by using either of these statements:

SHOW TABLE STATUS LIKE ‘tbl_name’;

SHOW CREATE TABLE tbl_name;

See Section 6.5.3.17, “SHOW TABLE STATUS Syntax,” and Section 6.5.3.6, “SHOW CREATE TABLE
Syntax.”

You can check which storage engines your mysqld server supports by using this statement:

SHOW ENGINES;

Before MySQL 4.1.2, SHOW ENGINES is unavailable. Use the following statement instead and
check the value of the variable that is associated with the storage engine in which you are
interested:

SHOW VARIABLES LIKE ‘have_%’;

For example, to determine whether the InnoDB storage engine is available, check the value of
the have_innodb variable.

See Section 6.5.3.8, “SHOW ENGINES Syntax,” and Section 6.5.3.19, “SHOW VARIABLES Syntax.”

A.1.6 Deleting Rows from Related Tables
MySQL does not support subqueries prior to Version 4.1, or the use of more than one table
in the DELETE statement prior to Version 4.0. If your version of MySQL does not support
subqueries or multiple-table DELETE statements, you can use the following approach to delete
rows from two related tables:

1. SELECT the rows based on some WHERE condition in the main table.

2. DELETE the rows in the main table based on the same condition.

3. DELETE FROM related_table WHERE related_column IN (selected_rows).

11 6337 appA 6/24/04 12:43 PM Page 419

TEAM LinG

420 APPENDIX A Troubleshooting Query Problems

If the total length of the DELETE statement for related_table is more than 1MB (the default
value of the max_allowed_packet system variable), you should split it into smaller parts and
execute multiple DELETE statements. You will probably get the fastest DELETE by specifying
only 100 to 1,000 related_column values per statement if the related_column is indexed. If
the related_column isn’t indexed, the speed is independent of the number of arguments in
the IN clause.

A.1.7 Solving Problems with No Matching Rows
If you have a complicated query that uses many tables but that doesn’t return any rows, you
should use the following procedure to find out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously
wrong.

2. Select only those columns that are used in the WHERE clause.

3. Remove one table at a time from the query until it returns some rows. If the tables are
large, it’s a good idea to use LIMIT 10 with the query.

4. Issue a SELECT for the column that should have matched a row against the table that was
last removed from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you
can’t use equality (=) comparisons. This problem is common in most computer lan-
guages because not all floating-point values can be stored with exact precision. In some
cases, changing the FLOAT to a DOUBLE will fix this. See Section A.1.8, “Problems with
Floating-Point Comparisons.”

6. If you still can’t figure out what’s wrong, create a minimal test that can be run with mysql
test < query.sql that shows your problems. You can create a test file by dumping the
tables with mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql. Open
the file in an editor, remove some insert lines (if there are more than needed to demon-
strate the problem), and add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:
shell> mysqladmin create test2

shell> mysql test2 < query.sql

Post the test file using mysqlbug to the general MySQL mailing list. See Section 1.7.1.1,
“The MySQL Mailing Lists.”

A.1.8 Problems with Floating-Point Comparisons
Floating-point numbers sometimes cause confusion because they are not stored as exact val-
ues inside computer architecture. What you can see on the screen usually is not the exact
value of the number. The column types FLOAT, DOUBLE, and DECIMAL are such. DECIMAL

11 6337 appA 6/24/04 12:43 PM Page 420

TEAM LinG

421A.1 Query-Related Issues

columns store values with exact precision because they are represented as strings, but calcu-
lations on DECIMAL values may be done using floating-point operations.

The following example demonstrates the problem. It shows that even for the DECIMAL col-
umn type, calculations that are done using floating-point operations are subject to floating-
point error.

mysql> CREATE TABLE t1 (i INT, d1 DECIMAL(9,2), d2 DECIMAL(9,2));

mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),

-> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),

-> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),

-> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),

-> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),

-> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b

-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+-------+

| i | a | b |

+------+--------+-------+

| 1 | 21.40 | 21.40 |

| 2 | 76.80 | 76.80 |

| 3 | 7.40 | 7.40 |

| 4 | 15.40 | 15.40 |

| 5 | 7.20 | 7.20 |

| 6 | -51.40 | 0.00 |

+------+--------+-------+

The result is correct. Although the first five records look like they shouldn’t pass the com-
parison test (the values of a and b do not appear to be different), they may do so because the
difference between the numbers shows up around the tenth decimal or so, depending on
computer architecture.

The problem cannot be solved by using ROUND() or similar functions, because the result is
still a floating-point number:

mysql> SELECT i, ROUND(SUM(d1), 2) AS a, ROUND(SUM(d2), 2) AS b

-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+-------+

| i | a | b |

+------+--------+-------+

| 1 | 21.40 | 21.40 |

| 2 | 76.80 | 76.80 |

| 3 | 7.40 | 7.40 |

| 4 | 15.40 | 15.40 |

| 5 | 7.20 | 7.20 |

| 6 | -51.40 | 0.00 |

+------+--------+-------+

11 6337 appA 6/24/04 12:43 PM Page 421

TEAM LinG

422 APPENDIX A Troubleshooting Query Problems

This is what the numbers in column a look like when displayed with more decimal places:

mysql> SELECT i, ROUND(SUM(d1), 2)*1.0000000000000000 AS a,

-> ROUND(SUM(d2), 2) AS b FROM t1 GROUP BY i HAVING a <> b;

+------+----------------------+-------+

| i | a | b |

+------+----------------------+-------+

| 1 | 21.3999999999999986 | 21.40 |

| 2 | 76.7999999999999972 | 76.80 |

| 3 | 7.4000000000000004 | 7.40 |

| 4 | 15.4000000000000004 | 15.40 |

| 5 | 7.2000000000000002 | 7.20 |

| 6 | -51.3999999999999986 | 0.00 |

+------+----------------------+-------+

Depending on your computer architecture, you may or may not see similar results. Different
CPUs may evaluate floating-point numbers differently. For example, on some machines you
may get the “correct” results by multiplying both arguments by 1, as the following example
shows.

Warning: Never use this method in your applications. It is not an example of a trustworthy
method!

mysql> SELECT i, ROUND(SUM(d1), 2)*1 AS a, ROUND(SUM(d2), 2)*1 AS b

-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+------+

| i | a | b |

+------+--------+------+

| 6 | -51.40 | 0.00 |

+------+--------+------+

The reason that the preceding example seems to work is that on the particular machine where
the test was done, CPU floating-point arithmetic happens to round the numbers to the same
value. However, there is no rule that any CPU should do so, so this method cannot be trusted.

The correct way to do floating-point number comparison is to first decide on an acceptable
tolerance for differences between the numbers and then do the comparison against the tol-
erance value. For example, if we agree that floating-point numbers should be regarded the
same if they are the same within a precision of one in ten thousand (0.0001), the comparison
should be written to find differences larger than the tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1

-> GROUP BY i HAVING ABS(a - b) > 0.0001;

+------+--------+------+

| i | a | b |

+------+--------+------+

| 6 | -51.40 | 0.00 |

+------+--------+------+

1 row in set (0.00 sec)

11 6337 appA 6/24/04 12:43 PM Page 422

TEAM LinG

423A.2 Optimizer-Related Issues

Conversely, to get rows where the numbers are the same, the test should find differences
within the tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1

-> GROUP BY i HAVING ABS(a - b) <= 0.0001;

+------+-------+-------+

| i | a | b |

+------+-------+-------+

| 1 | 21.40 | 21.40 |

| 2 | 76.80 | 76.80 |

| 3 | 7.40 | 7.40 |

| 4 | 15.40 | 15.40 |

| 5 | 7.20 | 7.20 |

+------+-------+-------+

A.2 Optimizer-Related Issues
MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many
cases, MySQL can calculate the best possible query plan, but sometimes MySQL doesn’t
have enough information about the data at hand and has to make “educated” guesses about
the data.

For the cases when MySQL does not do the “right” thing, tools that you have available to
help MySQL are:

n Use the EXPLAIN statement to get information about how MySQL will process a query.
To use it, just add the keyword EXPLAIN to the front of your SELECT statement:
mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in the MySQL Administrator’s Guide.
n Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See

Section 6.5.2.1, “ANALYZE TABLE Syntax.”
n Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expen-

sive compared to using the given index. See Section 6.1.7, “SELECT Syntax.”
SELECT * FROM t1, t2 FORCE INDEX (index_for_column)

WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful.
n Global and table-level STRAIGHT_JOIN. See Section 6.1.7, “SELECT Syntax.”
n You can tune global or thread-specific system variables. For example, start mysqld with

the --max-seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the
optimizer to assume that no key scan will cause more than 1,000 key seeks.

11 6337 appA 6/24/04 12:43 PM Page 423

TEAM LinG

424 APPENDIX A Troubleshooting Query Problems

A.3 Table Definition-Related Issues

A.3.1 Problems with ALTER TABLE
ALTER TABLE changes a table to the current character set. If you get a duplicate-key error
during ALTER TABLE, the cause is either that the new character set maps two keys to the same
value or that the table is corrupted. In the latter case, you should run REPAIR TABLE on the
table.

If ALTER TABLE dies with the following error, the problem may be that MySQL crashed dur-
ing an earlier ALTER TABLE operation and there is an old table named A-xxx or B-xxx lying
around:

Error on rename of ‘./database/name.frm’

to ‘./database/B-xxx.frm’ (Errcode: 17)

In this case, go to the MySQL data directory and delete all files that have names starting
with A- or B-. (You may want to move them elsewhere instead of deleting them.)

ALTER TABLE works in the following way:

n Create a new table named A-xxx with the requested structural changes.
n Copy all rows from the original table to A-xxx.
n Rename the original table to B-xxx.
n Rename A-xxx to your original table name.
n Delete B-xxx.

If something goes wrong with the renaming operation, MySQL tries to undo the changes. If
something goes seriously wrong (although this shouldn’t happen), MySQL may leave the old
table as B-xxx. A simple rename of the table files at the system level should get your data
back.

If you use ALTER TABLE on a transactional table or if you are using Windows or OS/2, ALTER
TABLE will UNLOCK the table if you had done a LOCK TABLE on it. This is because InnoDB and
these operating systems cannot drop a table that is in use.

A.3.2 How to Change the Order of Columns in a Table
First, consider whether you really need to change the column order in a table. The whole
point of SQL is to abstract the application from the data storage format. You should always
specify the order in which you wish to retrieve your data. The first of the following state-
ments returns columns in the order col_name1, col_name2, col_name3, whereas the second
returns them in the order col_name1, col_name3, col_name2:

mysql> SELECT col_name1, col_name2, col_name3 FROM tbl_name;

mysql> SELECT col_name1, col_name3, col_name2 FROM tbl_name;

11 6337 appA 6/24/04 12:43 PM Page 424

TEAM LinG

425A.3 Table Definition-Related Issues

If you decide to change the order of table columns anyway, you can do so as follows:

1. Create a new table with the columns in the new order.

2. Execute this statement:
mysql> INSERT INTO new_table

-> SELECT columns-in-new-order FROM old_table;

3. Drop or rename old_table.

4. Rename the new table to the original name:

mysql> ALTER TABLE new_table RENAME old_table;

SELECT * is quite suitable for testing queries. However, in an application, you should never
rely on using SELECT * and retrieving the columns based on their position. The order and
position in which columns are returned will not remain the same if you add, move, or delete
columns. A simple change to your table structure will cause your application to fail.

A.3.3 TEMPORARY TABLE Problems
The following list indicates limitations on the use of TEMPORARY tables:

n A TEMPORARY table can only be of type HEAP, ISAM, MyISAM, MERGE, or InnoDB.
n You cannot refer to a TEMPORARY table more than once in the same query. For example,

the following does not work:
mysql> SELECT * FROM temp_table, temp_table AS t2;

ERROR 1137: Can’t reopen table: ‘temp_table’

n The SHOW TABLES statement does not list TEMPORARY tables.
n You cannot use RENAME to rename a TEMPORARY table. However, you can use ALTER TABLE

instead:

mysql> ALTER TABLE orig_name RENAME new_name;

11 6337 appA 6/24/04 12:43 PM Page 425

TEAM LinG

11 6337 appA 6/24/04 12:43 PM Page 426

TEAM LinG

B
MySQL Regular Expressions

A regular expression is a powerful way of specifying a pattern for a complex search.

MySQL uses Henry Spencer’s implementation of regular expressions, which is aimed at
conformance with POSIX 1003.2. MySQL uses the extended version to support pattern-
matching operations performed with the REGEXP operator in SQL statements.

This appendix is a summary, with examples, of the special characters and constructs that can
be used in MySQL for REGEXP operations. It does not contain all the details that can be
found in Henry Spencer’s regex(7) manual page. That manual page is included in MySQL
source distributions, in the regex.7 file under the regex directory.

A regular expression describes a set of strings. The simplest regular expression is one that
has no special characters in it. For example, the regular expression hello matches hello and
nothing else.

Non-trivial regular expressions use certain special constructs so that they can match more
than one string. For example, the regular expression hello|word matches either the string
hello or the string word.

As a more complex example, the regular expression B[an]*s matches any of the strings
Bananas, Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing
any number of a or n characters in between.

A regular expression for the REGEXP operator may use any of the following special characters
and constructs:

n ^

Match the beginning of a string.
mysql> SELECT ‘fo\nfo’ REGEXP ‘^fo$’; -> 0

mysql> SELECT ‘fofo’ REGEXP ‘^fo’; -> 1

n $

Match the end of a string.
mysql> SELECT ‘fo\no’ REGEXP ‘^fo\no$’; -> 1

mysql> SELECT ‘fo\no’ REGEXP ‘^fo$’; -> 0

12 6337 appB 6/24/04 12:43 PM Page 427

TEAM LinG

428 APPENDIX B MySQL Regular Expressions

n .

Match any character (including carriage return and newline).
mysql> SELECT ‘fofo’ REGEXP ‘^f.*$’; -> 1

mysql> SELECT ‘fo\r\nfo’ REGEXP ‘^f.*$’; -> 1

n a*

Match any sequence of zero or more a characters.
mysql> SELECT ‘Ban’ REGEXP ‘^Ba*n’; -> 1

mysql> SELECT ‘Baaan’ REGEXP ‘^Ba*n’; -> 1

mysql> SELECT ‘Bn’ REGEXP ‘^Ba*n’; -> 1

n a+

Match any sequence of one or more a characters.
mysql> SELECT ‘Ban’ REGEXP ‘^Ba+n’; -> 1

mysql> SELECT ‘Bn’ REGEXP ‘^Ba+n’; -> 0

n a?

Match either zero or one a character.
mysql> SELECT ‘Bn’ REGEXP ‘^Ba?n’; -> 1

mysql> SELECT ‘Ban’ REGEXP ‘^Ba?n’; -> 1

mysql> SELECT ‘Baan’ REGEXP ‘^Ba?n’; -> 0

n de|abc

Match either of the sequences de or abc.
mysql> SELECT ‘pi’ REGEXP ‘pi|apa’; -> 1

mysql> SELECT ‘axe’ REGEXP ‘pi|apa’; -> 0

mysql> SELECT ‘apa’ REGEXP ‘pi|apa’; -> 1

mysql> SELECT ‘apa’ REGEXP ‘^(pi|apa)$’; -> 1

mysql> SELECT ‘pi’ REGEXP ‘^(pi|apa)$’; -> 1

mysql> SELECT ‘pix’ REGEXP ‘^(pi|apa)$’; -> 0

n (abc)*

Match zero or more instances of the sequence abc.
mysql> SELECT ‘pi’ REGEXP ‘^(pi)*$’; -> 1

mysql> SELECT ‘pip’ REGEXP ‘^(pi)*$’; -> 0

mysql> SELECT ‘pipi’ REGEXP ‘^(pi)*$’; -> 1

12 6337 appB 6/24/04 12:43 PM Page 428

TEAM LinG

429MySQL Regular Expressions

n {1}, {2,3}

{n} or {m,n} notation provides a more general way of writing regular expressions that
match many occurrences of the previous atom (or “piece”) of the pattern. m and n are
integers.

n a*

Can be written as a{0,}.
n a+

Can be written as a{1,}.
n a?

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more
instances of a. a{m,n} matches m through n instances of a, inclusive.

m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive. If both m and
n are given, m must be less than or equal to n.
mysql> SELECT ‘abcde’ REGEXP ‘a[bcd]{2}e’; -> 0

mysql> SELECT ‘abcde’ REGEXP ‘a[bcd]{3}e’; -> 1

mysql> SELECT ‘abcde’ REGEXP ‘a[bcd]{1,10}e’; -> 1

n [a-dX], [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character
between two other characters forms a range that matches all characters from the first
character to the second. For example, [0-9] matches any decimal digit. To include a lit-
eral] character, it must immediately follow the opening bracket [. To include a literal -
character, it must be written first or last. Any character that does not have a special
defined meaning inside a [] pair matches only itself.
mysql> SELECT ‘aXbc’ REGEXP ‘[a-dXYZ]’; -> 1

mysql> SELECT ‘aXbc’ REGEXP ‘^[a-dXYZ]$’; -> 0

mysql> SELECT ‘aXbc’ REGEXP ‘^[a-dXYZ]+$’; -> 1

mysql> SELECT ‘aXbc’ REGEXP ‘^[^a-dXYZ]+$’; -> 0

mysql> SELECT ‘gheis’ REGEXP ‘^[^a-dXYZ]+$’; -> 1

mysql> SELECT ‘gheisa’ REGEXP ‘^[^a-dXYZ]+$’; -> 0

n [.characters.]

Within a bracket expression (written using [and]), matches the sequence of characters
of that collating element. characters is either a single character or a character name
like newline. You can find the full list of character names in the regexp/cname.h file.
mysql> SELECT ‘~’ REGEXP ‘[[.~.]]’; -> 1

mysql> SELECT ‘~’ REGEXP ‘[[.tilde.]]’; -> 1

12 6337 appB 6/24/04 12:43 PM Page 429

TEAM LinG

430 APPENDIX B MySQL Regular Expressions

n [=character_class=]

Within a bracket expression (written using [and]), [=character_class=] represents an
equivalence class. It matches all characters with the same collation value, including
itself. For example, if o and (+) are the members of an equivalence class, then [[=o=]],
[[=(+)=]], and [o(+)] are all synonymous. An equivalence class may not be used as an
endpoint of a range.

n [:character_class:]

Within a bracket expression (written using [and]), [:character_class:] represents a
character class that matches all characters belonging to that class. The standard class
names are:
alnum Alphanumeric characters

alpha Alphabetic characters

blank Whitespace characters

cntrl Control characters

digit Digit characters

graph Graphic characters

lower Lowercase alphabetic characters

print Graphic or space characters

punct Punctuation characters

space Space, tab, newline, and carriage return

upper Uppercase alphabetic characters

xdigit Hexadecimal digit characters

These stand for the character classes defined in the ctype(3) manual page. A particular
locale may provide other class names. A character class may not be used as an endpoint
of a range.
mysql> SELECT ‘justalnums’ REGEXP ‘[[:alnum:]]+’; -> 1

mysql> SELECT ‘!!’ REGEXP ‘[[:alnum:]]+’; -> 0

n [[:<:]], [[:>:]]

These markers stand for word boundaries. They match the beginning and end of
words, respectively. A word is a sequence of word characters that is not preceded by or
followed by word characters. A word character is an alphanumeric character in the
alnum class or an underscore (_).

mysql> SELECT ‘a word a’ REGEXP ‘[[:<:]]word[[:>:]]’; -> 1

mysql> SELECT ‘a xword a’ REGEXP ‘[[:<:]]word[[:>:]]’; -> 0

12 6337 appB 6/24/04 12:43 PM Page 430

TEAM LinG

431MySQL Regular Expressions

To use a literal instance of a special character in a regular expression, precede it by two
backslash (\) characters. The MySQL parser interprets one of the backslashes, and the regu-
lar expression library interprets the other. For example, to match the string 1+2 that contains
the special + character, only the last of the following regular expressions is the correct one:

mysql> SELECT ‘1+2’ REGEXP ‘1+2’; -> 0

mysql> SELECT ‘1+2’ REGEXP ‘1\+2’; -> 0

mysql> SELECT ‘1+2’ REGEXP ‘1\\+2’; -> 1

12 6337 appB 6/24/04 12:43 PM Page 431

TEAM LinG

12 6337 appB 6/24/04 12:43 PM Page 432

TEAM LinG

SYMBOLS
& (bitwise AND) operator, 199

&& (AND) operator, 144

* (multiplication) operator, 162

\ (backslash) in strings, 64-65

^ (bitwise XOR) operator, 199

| (bitwise OR) operator, 198

|| (OR) operator, 144

= (equal) operator, 139. See also != (not
equal) operator

> (greater than) operator, 140

>= (greater than or equal) operator, 140

>> (right shift) operator, 140

! (NOT) operator, 143

!= (not equal) operator, 139

/ (division) operator, 162

- (subtraction) operator, 162

- (unary minus) operator, 162

- - (start comment characters), 53

< (less than) operator, 140

<= (less than or equal) operator, 140

<=> (null safe equal) operator, 139

<< (left shift) operator, 199

() (parenthesis)

in functions, 137

operators, 138

% (MOD) function, 166

+ (addition) operator, 161

(start comment character), 53

“” (double quotes) in strings, 63-65

‘’ (single quotes) in strings, 63-65

~ operator, 199

A
ABS function, 163

account management statements

DROP USER statement, syntax of,
294-295

GRANT statement

IDENTIFIED BY clause, 299

MAX_CONNECTIONS_PER_
HOUR clause, 300

MAX_QUERIES_PER_HOUR
clause, 300

MAX_UPDATES_PER_HOUR
clause, 300

REQUIRE CIPHER clause, 301

REQUIRE ISSUER clause, 300

REQUIRE SSL clause, 300

REQUIRE SUBJECT clause, 301

REQUIRE X509 clause, 300

specifying privileges, 296-297

Index

13 6337 index 6/24/04 12:42 PM Page 433

TEAM LinG

syntax of, 295-302

wildcards, 298

WITH GRANT OPTION clause,
299-300

REVOKE statement

REQUIRE CIPHER clause, 301

REQUIRE ISSUER clause, 300

REQUIRE SSL clause, 300

REQUIRE SUBJECT clause, 301

REQUIRE X509 clause, 300

specifying privileges, 296-297

syntax of, 295-302

SET PASSWORD statement, syntax of,
302

ACOS function, 163

ADDATE function, 170

addition (+) operator, 161

ADDTIME function, 170

administration statements

CACHE INDEX statement, syntax of,
331-332

FLUSH statement

DES_KEY_FILE clause, 332

HOSTS clause, 332

LOGS clause, 333

PRIVILEGES clause, 333

QUERY CACHE clause, 333

STATUS clause, 333

syntax of, 332-333

TABLE clause, 333

TABLES WITH READ LOCK
clause, 333

USER_RESOURCES clause, 333

KILL statement, syntax of, 334

LOAD INDEX INTO CACHE state-
ment, syntax of, 335

RESET statement

MASTER clause, 335

QUERY CACHE clause, 336

SLAVE clause, 336

syntax of, 335-336

AES_DECRYPT function, 200

AES_ENCRYPT function, 200

aliases

as expressions, 240

column aliases, troubleshooting, 418

naming, 67

table aliases, 70, 241

ALL clause, SELECT statement, 244

ALL keyword, subqueries, 252

ALTER COLUMN clause, 265

ALTER DATABASE statement, 262

ALTER FUNCTION statements,
stored procedures, 387

ALTER PROCEDURE statements,
stored procedures, 387

ALTER TABLE statement

ALTER COLUMN clause, 265

DROP INDEX clause, 265

DROP PRIMARY KEY clause, 265

DROP TABLE clause, 265

FOREIGN KEY clause, 266-268

ORDER BY clause, 265

434 account management statements

13 6337 index 6/24/04 12:42 PM Page 434

TEAM LinG

PRIMARY KEY clause, 265

REFERENCES clause, 266

syntax of, 263-269

troubleshooting, 424

UNIQUE INDEX clause, 265

ANALYZE TABLE statement, syntax
of, 303

AND (&&) operator, 144

ANSI mode, 43-44

ANSI/ISO SQL standards, MySQL
compatibility, 42

ANY keyword, subqueries, 251

Area function, 371-372

arithmetic operators

addition (+), 161

DIV, 162

division (/), 162

multiplication (*), 162

subtraction (-), 162

unary minus (-), 162

AS clause, 240

AsBinary function, geometry value
conversion, 365

ASCII function, 148

Asian character sets, 109-110

ASIN function, 163

assigning

character sets, examples of, 87

collations, examples of, 87

database privileges, 297

global privileges, 297

AsText function, geometry value con-
version, 364-365

ATAN function, 163

ATAN2 function, 164

atomic operations, 48-49

AUTOCOMMIT variable, SET state-
ment, 311

AUTO_INCREMENT clause, 278

AVG function, 211

AVG_ROW_LENGTH clause, 279

B
backslash (\) in strings, 64-65

BACKUP TABLE statement, syntax of,
303

Baltic character sets, 108

BEGIN, END compound statement,
stored procedures, 388

BENCHMARK function, 203

benchmarks, publishing, 17

BETWEEN, AND operator, 141

BIG_TABLES variable, SET statement,
312

BIGINT column type, 112, 117

BIN function, 148

binary collations, 81

BINARY operator, 92, 145

bit functions

bitwise OR (|), 198-199

bitwise XOR (^), 199

How can we make this index more useful? Email us at indexes@samspublishing.com

435bit functions

13 6337 index 6/24/04 12:42 PM Page 435

TEAM LinG

BIT_COUNT, 199

invert (), 199

left shift (<<), 199

right shift (>>), 199

BIT column type, 112

bitwise AND (|) operator, 199

bitwise OR (|) operator, 198

bitwise XOR (^) operator, 199

BIT_AND function, 211

BIT_COUNT function, 199

BIT_LENGTH function, 148

BIT_OR function, 211

BIT_XOR function, 211

BLOB columns, 277

BLOB column type, 117, 130-131, 135

BOOL column type, 112

boolean full-text search functions,
190-192

BOOLEAN column type, 112

boolean values, 67

Boundary function, 367

Buffer function, 373

bug reports, 36-41

C
CACHE INDEX statement, syntax of,

331-332

CALL statement, stored procedures,
388

CASE function, 146

case sensitivity, 3

database names, 44

searches, troubleshooting in, 415

string comparison functions, 159

table names, 44

CASE flow control statement, 393

case insensitive collations, 82

case sensitivity operator, BINARY, 145

CAST function, 96-97, 196-197

CEIL function, 164

CEILING function, 164

Central European character sets, 107

Centroid function, 372

certification (MySQL), 14-16

CHANGE MASTER TO statement,
syntax of, 338-340

CHANGED option (CHECK TABLE
statement), 305

changing table, troubleshooting, 424

CHAR column type, 116, 128-129

CHAR columns, 47

CHAR function, 148

character sets, supported collations,
104

CHARACTER SET clause, 262

character sets, 81

Asian character sets, 109-110

assigning, examples of, 87

available sets, listing, 82

Baltic character sets, 108

CAST function, 96-97

Central European character sets, 107

436 bit functions

13 6337 index 6/24/04 12:42 PM Page 436

TEAM LinG

changing, troubleshooting, 424

character string literal character sets,
90-91

collations

assigning, examples of, 87

binary collations, 81

BINARY operator, 92

case insensitive collations, 82

CAST function, 96-97

character string literal collations,
90-91

characteristics of, 83

COLLATE clause, 91-92

column collation, 86-87

connection collation, 88-90

CONVERT function, 96

database collation, 85

default collation, 83

determining, 92-93

effects of, 94-95

naming conventions, 83

result strings, 95

server collation, 84

showing, 83

table collation, 86

UTF8, 94

column character set, 86-87

connection character set, 88-90

CONVERT function, 96

Cyrillic character set, 109

data, converting, 96

database character set, 85

list of supported character sets, 104

Middle Eastern character sets, 108

NCHAR, 101

result strings, 95

MaxDB compatibility, 101

server character set, 84

SHOW CHARACTER SET state-
ment, 97

SHOW COLLATION statement,
97-98

SHOW COLUMNS statement, 98

SHOW CREATE DATABASE state-
ment, 98

SHOW CREATE TABLE statement,
98

South European character sets, 108

strings, converting to, 96-97

table character set, 86

UCS-2 Unicode character set, 98, 105

UTF8 Unicode character set, 98-100,
105

West European character sets, 106-107

character string literal character set,
90-91

character string literal collation, 90-91

CHARACTER_LENGTH function. See
CHAR_LENGTH function

CHARSET function, 204

CHAR_LENGTH function, 148

CHECK TABLE statement, 304-305

CHECKSUM clause, 279

How can we make this index more useful? Email us at indexes@samspublishing.com

437CHECKSUM clause

13 6337 index 6/24/04 12:42 PM Page 437

TEAM LinG

CHECKSUM TABLE statement, syn-
tax of, 306

class Curve (OpenGIS Geometry
Model), properties of, 353

class Geometry (OpenGIS Geometry
Model), 351

Boundary function, 367

Dimension function, 366

Envelope function, 366-367

GeometryType function, 367

IsEmpty function, 367

IsSimple function, 367

properties of, 352

SRID function, 367

class GeometryCollection (OpenGIS
Geometry Model), 355

GeometryN function, 372

NumGeometries function, 373

class LineString (OpenGIS Geometry
Model)

EndPoint function, 368

GLength function, 369

IsClosed function, 369

IsRing function, 370

NumPoints function, 369

PointN function, 369

properties of, 354

StartPoint function, 370

class MultiCurve (OpenGIS Geometry
Model), properties of, 355

class MultiLineString (OpenGIS
Geometry Model)

examples of, 356

GLength function, 370

IsClosed function, 370

class MultiPoint (OpenGIS Geometry
Model), 355

class MultiPolygon (OpenGIS
Geometry Model)

Area function, 372

assertions of, 356

Centroid function, 372

examples of, 356

PointOnSurface function, 372

properties of, 357

class MultiSurface (OpenGIS Geometry
Model), assertions of, 356

class Point (OpenGIS Geometry
Model)

properties of, 353

X function, 368

Y function, 368

class Polygon (OpenGIS Geometry
Model)

Area function, 371

assertions of, 354

ExteriorRing function, 371

InteriorRingN function, 371

NumInteriorRings function, 371

438 CHECKSUM TABLE statement

13 6337 index 6/24/04 12:42 PM Page 438

TEAM LinG

class Surface (OpenGIS Geometry
Model), properties of, 354

CLOSE statement, cursor, 392

COALESCE function, 141

COERCIBILITY function, 93, 204

COLLATE clause

ALTER DATABASE statement, 262

BINARY operator, 92

precedence of, 92

SQL statements, 91-92

COLLATION function, 204

collations, 81, 93

accent insensitivity, 82

assigning, examples of, 87

binary collation, 81

BINARY operators, 92

case insensitive collations, 82

CAST function, 96-97

character string literal collation, 90-91

characteristics of, 83

COLLATE clause, 91-92

column collation, 86-87

connection collation, 88-90

CONVERT function, 96

database collation, 85

default collation, 83

determining, 92-93

effects of, examples, 94-95

list of supported collations, 104

multiple-character mappings, 82

naming conventions, 83

result strings, 95

server collation, 84

showing, 83

table collation, 86

UTF8, 94

column character set, 86-87

column collation, 86-87

column names, 67, 79

column privileges, 296, 299

column types, 111

choosing, 136

date and time types, 120-121

DATE, 114, 121-124, 128

DATETIME, 114, 121-124, 128

storage requirements, 135

TIME, 115, 121, 126-127

TIMESTAMP, 114, 121-126, 128

YEAR, 115, 121, 127-128

mapping, 136

numeric types, 117

BIGINT, 112, 117

BIT, 112

BOOL, 112

BOOLEAN, 112

DEC, 114

DECIMAL, 113, 118-119

DOUBLE, 113

DOUBLE PRECISION, 113, 120

FIXED, 114

FLOAT, 113, 119

INT, 112

How can we make this index more useful? Email us at indexes@samspublishing.com

439column types

13 6337 index 6/24/04 12:42 PM Page 439

TEAM LinG

INTEGER, 112

MEDIUMINT, 112, 117

NUMERIC, 114, 118-119

REAL, 113, 120

SMALLINT, 112, 117

storage requirements, 134

TINYINT, 112, 117

UNSIGNED attribute, 118, 120

ZEROFILL attribute, 118

storage requirements, 134

string types, 115, 128

BLOB, 117, 130-131, 135

CHAR, 116, 128-129

ENUM, 117, 131-132, 135

LONGBLOB, 117

LONGTEXT, 117

MEDIUMBLOB, 117

MEDIUMTEXT, 117

SET, 117, 133-135

storage requirements, 135

TEXT, 117, 130-131, 135

TINYBLOB, 117

TINYTEXT, 117

VARCHAR, 116, 128-129, 135

columns

aliases, troubleshooting, 418

BLOB columns, 277

DATE columns, troubleshooting,
416-417

silent specification changes, 285

spatial columns

creating, 362

populating, 363-364

spatial indexes, adding to, 378

table order, troubleshooting, 424

TEXT columns, 277

command prompts, 2

command syntax, 3

COMMENT clause, 279

comments

start comment character, 53

syntax of, 76-77

commercial licenses (MySQL), 15-16,
19

COMMIT statement, 289-290

comparison operators

BETWEEN, AND, 141

COALESCE, 141

equal (=), 139

GREATEST, 141

IN, 141-142

INTERVAL, 142

IS NOT NULL, 140

IS NULL, 140

ISNULL, 142

LEAST, 142-143

less than (<), 140

less than or equal (<=), 140

NOT BETWEEN, AND, 141

not equal (!=), 139

NOT IN, 142

string to number conversions, 138-139

440 column types

13 6337 index 6/24/04 12:42 PM Page 440

TEAM LinG

comparisons in subqueries, 250-251

compatibility, MySQL standards, 42

compound statements

BEGIN, END compound statement,
388

SELECT, INTO compound statement,
389

COMPRESS function, 149

CONCAT function, 149

CONCAT_WS function, 150

conditions, DECLARE statement, 389

connection character set, 88-90

connection collation, 88-90

CONNECTION_ID function, 204

Connector/ODBC (MyODBC) errors,
38

constraints

DEFAULT, 55

ENUM, 56

NOT NULL, 55

PRIMARY KEY, 54

SET, 56

UNIQUE, 54

consulting services (MySQL), 15-16

Contains function, 376

control flow functions, 146-147

CONV function, 150

CONVERT function, 96, 145, 196-198

converting

character set data, 96

geometry values

AsBinary function, 365

AsText function, 364-365

GeomFromText function, 366

GeomFromWKB function, 366

MySQL 4.0 character column to
MySQL 4.1, 103

numbers to hexadecimal values, 66

strings

character sets, 96-97

to hexadecimal values, 66

to numbers in comparisons, 138-139

ConvexHull function, 373

copying tables, 281-282

copyrights, 18

corrections (reference manual), submit-
ting, 17

correlated subqueries, 252-253

COS function, 164

COT function, 164

COUNT(*) function, 211-212

COUNT(DISTINCT) function, 212

CRC32 function, 164

CREATE DATABASE statement, syn-
tax of, 269

CREATE FUNCTION statement,
stored procedures, 384-387

How can we make this index more useful? Email us at indexes@samspublishing.com

441CREATE FUNCTION statement

13 6337 index 6/24/04 12:42 PM Page 441

TEAM LinG

CREATE INDEX statement

FULLTEXT index, 270

SPATIAL index, 271

syntax of, 270-271

CREATE PROCEDURE statement

CALL statement, 388

stored procedures, 384-387

CREATE TABLE SELECT SQL
extension, 48

CREATE TABLE statement

AUTO_INCREMENT clause, 278

AVG_ROW_LENGTH clause, 279

CHECKSUM clause, 279

columns silent specification changes,
285

COMMENT clause, 279

DATA DIRECTORY clause, 281

DELAY_KEY_WRITE clause, 280

ENGINE clause, 278

foreign keys, creating, 283-284

INDEX DIRECTORY clause, 281

INSERT_METHOD clause, 281

KEY clause, 275

MAX_ROWS clause, 279

MIN_ROWS clause, 279

ODBC compatibility, 274

PACK_KEYS clause, 279-280

PASSWORD clause, 280

PRIMARY KEY clause, 275

RAID_TYPE clause, 280

ROW_FORMAT clause, 280

syntax of, 271-282

tables, copying, 281-282

TYPE clause, 278

UNION clause, 280

Crosses function, 376

CURDATE function, 170

CURRENT_DATE function.
See CURDATE function

CURRENT_TIME function.
See CURTIME function

CURRENT_TIMESTAMP function.
See NOW function

CURRENT_USER function, 205

cursor, 391-392

CURTIME function, 171

Curve (OpenGIS Geometry Model),
properties of, 353

customer support

commercial licenses, 15

consulting services, 15

errors, reporting, 36-41

IRC, 42

MySQL certification, 14

MySQL training, 14

partnering program, 15

Cyrillic character set, 109

442 CREATE INDEX statement

13 6337 index 6/24/04 12:42 PM Page 442

TEAM LinG

D
data definition statements

ALTER DATABASE statement, 262

ALTER TABLE statement

ALTER COLUMN clause, 265

DROP INDEX clause, 265

DROP PRIMARY KEY clause, 265

DROP TABLE clause, 265

FOREIGN KEY clause, 266-268

ORDER BY clause, 265

PRIMARY KEY clause, 265

REFERENCES clause, 266

syntax of, 263-269

UNIQUE INDEX clause, 265

CREATE DATABASE statement, syn-
tax of, 269

CREATE INDEX statement, 270-271

CREATE TABLE statement

AUTO_INCREMENT clause, 278

AVG_ROW_LENGTH clause, 279

CHECKSUM clause, 279

COMMENT clause, 279

copying tables, 281-282

creating foreign keys, 283-284

DATA DIRECTORY clause, 281

DELAY_KEY_WRITE clause, 280

ENGINE clause, 278

INDEX DIRECTORY clause, 281

INSERT_METHOD clause, 281

KEY clause, 275

MAX_ROWS clause, 279

MIN_ROWS clause, 279

ODBC compatibility, 274

PACK_KEYS clause, 279-280

PASSWORD clause, 280

PRIMARY KEY clause, 275

RAID_TYPE clause, 280

ROW_FORMAT clause, 280

silent column specification changes,
285

syntax of, 271-282

TYPE clause, 278

UNION clause, 280

DROP DATABASE statement, syntax
of, 286

DROP INDEX statement, syntax of,
286

DROP TABLE statement, syntax of,
287

RENAME TABLE statement, syntax
of, 287-288

DATA DIRECTORY clause, 281

data manipulation statements

DELETE statement, syntax of,
219-222

DO statement, syntax of, 222

HANDLER statement, syntax of,
222-223

HANDLER, CLOSE statement, syntax
of, 223

HANDLER, OPEN statement, syntax
of, 222-223

How can we make this index more useful? Email us at indexes@samspublishing.com

443data manipulation statements

13 6337 index 6/24/04 12:42 PM Page 443

TEAM LinG

HANDLER, READ statement, syntax
of, 222

INNER JOIN statement, syntax of,
245-246

INSERT DELAYED statement, syntax
of, 225, 228-230

INSERT statement, syntax of, 224-227

INSERT, SELECT statement, syntax
of, 224, 226-227

INSERT, UPDATE statement, syntax
of, 226

INSERT, VALUES statement, syntax
of, 224-226

JOIN statements

FORCE INDEX clause, 247

IGNORE INDEX clause, 246-247

rewriting subqueries as, 258-259

syntax of, 245-247

USE INDEX clause, 246-247

LEFT OUTER JOIN statement, 246

LOAD DATA INFILE statement, syn-
tax of, 230-237

NATURAL LEFT JOIN statement,
syntax of, 246

REPLACE statement, syntax of,
238-239

RIGHT JOIN statement, syntax of, 246

SELECT statements

aliases as expressions, 240

aliases for tables, 241

ALL clause, 244

AS clause, 240

DISTINCT clause, 244

DISTINCTROW clause, 244

FIELDS ESCAPED BY character,
243

FORCE INDEX clause, 241

FROM clause, 240

GROUP BY clause, 241

HAVING clause, 242

HIGH_PRIORITY clause, 244

IGNORE INDEX clause, 241

LIMIT clause, 242

PROCEDURE clause, 244

SQL_BIG_RESULT clause, 244

SQL_BUFFER_RESULT clause,
244

SQL_CACHE clause, 245

SQL_CALC_FOUND_ROWS
clause, 245

SQL_NO_CACHE clause, 245

SQL_SMALL_RESULT clause, 244

STRAIGHT_JOIN clause, 244

subqueries, 248-259

syntax of, 239-245

USE INDEX clause, 241

WHERE clause, 241

SELECT, INTO DUMPFILE state-
ment, syntax of, 244

SELECT, INTO OUTFILE state-
ment, syntax of, 243-244

STRAIGHT_JOIN statement, syntax
of, 246

444 data manipulation statements

13 6337 index 6/24/04 12:42 PM Page 444

TEAM LinG

TRUNCATE TABLE statement, syn-
tax of, 260

UNION statement, syntax of, 247-248

UPDATE statement, syntax of, 260-262

database administration statements

account management statements

DROP USER statement, 294-295

GRANT statement, 295-302

REVOKE statement, 295-302

SET PASSWORD statement, 302

SET statements

AUTOCOMMIT variable, 311

BIG_TABLES variable, 312

CHARACTER SET, 312

FOREIGN_KEY_CHECKS vari-
able, 312

IDENTITY variable, 312

INSERT_ID variable, 312

LAST_INSERT_ID variable, 312

NAMES, 312

SQL_AUTO_IS_NULL variable,
313

SQL_BIG_SELECTS variable, 313

SQL_BUFFER_RESULT variable,
313

SQL_LOG_BIN variable, 313

SQL_LOG_OFF variable, 313

SQL_LOG_UPDATE variable, 313

SQL_QUOTE_SHOW_CREATE
variable, 313

SQL_SAFE_UPDATES variable,
313

SQL_SELECT_LIMIT variable,
314

SQL_WARNINGS variable, 314

syntax of, 309-314

TIMESTAMP variable, 314

UNQUE_CHECKS variable, 314

SHOW CHARACTER SET state-
ment, syntax of, 314

SHOW COLLATION statement, syn-
tax of, 315

SHOW COLUMNS statement, syntax
of, 315

SHOW CREATE DATABASE state-
ment, syntax of, 316

SHOW CREATE TABLE statement,
syntax of, 316

SHOW DATABASES statement, syntax
of, 316

SHOW ENGINES statement, syntax
of, 317-318

SHOW ERRORS statement, syntax of,
318

SHOW GRANTS statement, syntax of,
318-319

SHOW INDEX statement, syntax of,
319-320

SHOW INNODB statement, syntax of,
320

SHOW LOGS statement, syntax of,
320

How can we make this index more useful? Email us at indexes@samspublishing.com

445database administration statements

13 6337 index 6/24/04 12:42 PM Page 445

TEAM LinG

SHOW PRIVILEGES statement, syn-
tax of, 321-322

SHOW PROCESSLIST statement,
322-324

SHOW statement, syntax of, 309

SHOW STATUS statement, 325

SHOW TABLE STATUS statement,
syntax of, 326-327

SHOW TABLES statement, syntax of,
327

SHOW VARIABLES statement,
327-328

SHOW WARNINGS statement,
329-331

table maintenance statements

ANALYZE TABLE statement, 303

BACKUP TABLE statement, 303

CHECK TABLE statement,
304-305

CHECKSUM TABLE statement,
306

OPTIMIZE TABLE statement,
306-307

REPAIR TABLE statement,
307-308

RESTORE TABLE statement, 308

DATABASE function, 205

databases

character sets, 85

collations, 85

naming, 44, 67-71

privileges, assigning, 296-297

relational databases, defining, 4

date and time column types, 120

DATE, 114, 121-124, 128

DATETIME, 114, 121-124, 128

storage requirements, 135

TIME, 115, 121, 126-127

TIMESTAMP, 114, 121-128

YEAR, 115, 121, 127-128

DATE columns, troubleshooting,
416-417

date functions, 169

ADDATE, 170

CURDATE, 170

DATE, 171

DATEDIFF, 171

DATE_ADD, 171-173

DATE_FORMAT, 174-175

DATE_SUB, 171-173

DAY, 175

DAYNAME, 175

DAYOFMONTH, 175

DAYOFWEEK, 175

DAYOFYEAR, 175

EXTRACT, 176

FROM_DAYS, 176

GET_FORMAT, 177

LAST_DAY, 178

MAKEDATE, 178

MONTH, 179

MONTHNAME, 179

PERIOD_ADD, 179

PERIOD_DIFF, 179

446 database administration statements

13 6337 index 6/24/04 12:42 PM Page 446

TEAM LinG

QUARTER, 180

STR_TO_DATE, 180

SUBDATE, 181

TO_DAYS, 183

UTC_DATE, 184

WEEK, 185-186

WEEKDAY, 186

WEEKOFYEAR, 186

YEAR, 187

YEARWEEK, 186-187

DATE column type, 114, 121-124, 128

DATEDIFF function, 171

DATETIME column type, 114,
121-124, 128

DATE_ADD function, 171-173

DATE_FORMAT function, 174-175

DATE_SUB function, 171-173

DAY function, 175

DAYNAME function, 175

DAYOFMONTH function, 175

DAYOFWEEK function, 175

DAYOFYEAR function, 175

DEC column type, 114

DECIMAL column type, 113, 118-119

DECLARE statement

conditions, 389

handlers, 390

local variables, 388

SELECT, INTO compound statement,
389

SET statement, 389

stored procedures, 388

declaring cursors, 392

DECODE function, 200

default character set

column character set, 86-87

connection character set, 88-90

database character set, 85

server character set, 84

table character set, 86

default collation, 83

column collation, 86-87

connection collation, 88-90

database collation, 85

server collation, 84

table collation, 86

DEFAULT constraint, 55

DEGREES function, 165

DELAY_KEY_WRITE clause, 280

DELETE statement, syntax of, 219-222

deleting rows in related tables, trou-
bleshooting, 419

DESCRIBE statement, syntax of, 288

DES_DECRYPT function, 201-202

DES_ENCRYPT function, 201

DES_KEY_FILE clause, 332

determining collations, 92-93

development of MySQL, 5, 22

development of MySQL 5.0, 27

Difference function, 374

Dimension function, 366

Disjoint function, 376

displaying privileges, 318-319

How can we make this index more useful? Email us at indexes@samspublishing.com

447displaying privileges

13 6337 index 6/24/04 12:42 PM Page 447

TEAM LinG

Distance function, 376

DISTINCT clause, 244

DISTINCTROW clause, 244

DIV operator, 162

division (/) operator, 162

DO statement, syntax of, 222

DOUBLE column type, 113

DOUBLE PRECISION column type,
113, 120

double quotes (“”) in strings, 63-65

downloading MySQL 4.0, 23

DROP DATABASE statement, syntax
of, 286

DROP FUNCTION statement, stored
procedures, 387

DROP INDEX clause, 265

DROP INDEX statement, syntax of,
286

DROP PRIMARY KEY clause, 265

DROP PROCEDURE statement,
stored procedures, 387

DROP TABLE clause, 265

DROP TABLE statement, syntax of,
287

DROP USER statement, syntax of,
294-295

E
ELT function, 150

embedded MySQL Server, 24

ENCODE function, 200

ENCRYPT function, 202

encryption functions

AES_DECRYPT, 200

AES_ENCRYPT, 200

DECODE, 200

DES_DECRYPT, 201-202

DES_ENCRYPT, 201

ENCODE, 200

ENCRYPT, 202

MD5, 202

OLD_PASSWORD, 202

PASSWORD, 202

SHA1, 203

END statement. See BEGIN, END
compound statement

EndPoint function, 368

ENGINE clause, 278

ENUM column type, 117, 131-132, 135

ENUM constraint, 56

Envelope function, 366-367

equal (=) operator, 139. See also not
equal (!=) operator

Equals function, 376

error codes, 397-404

errors

error codes, 397-404

error messages, 405-414

MySQL 3.23 known errors, 56

MySQL 3.23.2 open errors, 61

MySQL 4.0 known errors, 56

MySQL open errors, 57-61

reporting, 17, 36-41

subqueries, 255-256

448 Distance function

13 6337 index 6/24/04 12:42 PM Page 448

TEAM LinG

escape character in string, 64-65

EXISTS clauses, subqueries, 253-254

EXP function, 165

EXPORT_SET function, 150

expressions

aliases for, 240

functions

bit function, 198-199

CAST functions, 196-197

control flow functions, 146-147

CONVERT function, 196-198

date functions, 169-187

encryption functions, 200-203

FORMAT function, 208

full-text functions, 187-195

GET_LOCK function, 208-209

GROUP BY (aggregate) functions,
211-217

INET_ATON function, 209

INET_NTOA function, 209

information functions, 203-208

IS_FREE_LOCK function, 209

IS_USED_LOCK function, 209

MASTER_POS_WAIT function,
209

mathematical functions, 163-169

parentheses (), 137

RELEASE_LOCK function, 210

string comparison function, 159-161

string functions, 148-158

time functions, 169-171, 176-184

timestamp functions, 177-178,
182-185

UUID function, 210

grouping, 138

operators

arithmetic, 161-162

case-sensitivity, 145

comparison, 138-143

logical, 143-145

parentheses (), 138

user variables as, 71

EXTENDED option (CHECK TABLE
statements), 305

ExteriorRing function, 371

EXTRACT function, 176

F
FAST option (CHECK TABLE state-

ment), 305

FETCH statement, cursor, 392

fetching spatial data

in Internal format, 364

in WKB format, 365

in WKT format, 364

FIELD function, 151

FIELDS ESCAPED BY character,
SELECT statement, 243

FIND_IN_SET function, 151

fine-tuning full-text search functions,
194-195

FIXED column type, 114

How can we make this index more useful? Email us at indexes@samspublishing.com

449FIXED column type

13 6337 index 6/24/04 12:42 PM Page 449

TEAM LinG

FLOAT column type, 113, 119

floating-point number comparisons,
troubleshooting, 420-422

FLOOR function, 165

FLOSS (Free/Libre and Open Source
Software) licenses, 19-20

flow control statements

CASE, 393

IF, 393

ITERATE, 394

LEAVE, 393

LOOP, 393

REPEAT, 394

WHILE, 395

FLUSH SLAVE statement. See RESET
SLAVE statement

FLUSH statement, 332-333

FORCE INDEX clause

JOIN statement, 247

SELECT statement, 241

FORCE KEY clause, 247

FOREIGN KEY clause, 266-268

foreign keys, 51

creating, 283-284

referential integrity checks, 52

FOREIGN_KEY_CHECKS variable,
SET statement, 312

FORMAT function, 208

FOUND_ROWS function, 205

free MySQL software usage, 20

FROM clause

SELECT statement, 240

subqueries, 254-255

FROM_DAYS function, 176

FROM_UNIXTIME function, 176

full-text search functions

boolean function, 190-192

fine-tuning, 194-195

MATCH function, 187-190

MATCH, AGAINST function, 187

restrictions, 193

with query expansion, 192-193

FULLTEXT index, 270, 277

G
geographic features, 350

geometry, 350

MySQL-specific functions, 362

spatial relationships, testing, 376-377

values, converting

AsBinary function, 365

AsText function, 364-365

GeomFromText function, 366

GeomFromWKB function, 366

WKB functions, 361

WKT functions, 359-360

Geometry (OpenGIS Geometry
Model), 351

Boundary function, 367

Dimension function, 366

Envelope function, 366-367

GeometryType function, 367

IsEmpty function, 367

IsSimple function, 367

450 FLOAT column type

13 6337 index 6/24/04 12:42 PM Page 450

TEAM LinG

properties of, 352

SRID function, 367

Geometry class hierarchy (OpenGIS
Geometry Model), 350

class Curve

properties of, 353

class Geometry, 351

Boundary function, 367

Dimension function, 366

Envelope function, 366-367

GeometryType function, 367

IsEmpty function, 367

IsSimple function, 367

properties of, 352

SRID function, 367

class GeometryCollection, 355

GeometryN function, 372

NumGeometries function, 373

class LineString

EndPoint function, 368

GLength function, 369

IsClosed function, 369

IsRing function, 370

NumPoints function, 369

PointN function, 369

properties of, 354

StartPoint function, 370

class MultiCurve, properties of, 355

class MultiLineString

examples of, 356

GLength function, 370

IsClosed function, 370

class MultiPoint, 355

class MultiPolygon

Area function, 372

assertions of, 356

Centroid function, 372

examples of, 356

PointOnSurface function, 372

properties of, 357

class MultiSurface, assertions of, 356

class Point

properties of, 353

X function, 368

Y function, 368

class Polygon

Area function, 371

assertions of, 354

ExteriorRing function, 371

InteriorRingN function, 371

NumInteriorRings function, 371

class surface, properties of, 354

GeometryCollection (OpenGIS
Geometry Model), 355

GeometryN function, 372

NumGeometries function, 373

GeometryN function, 372

GeometryType function, 367

GeomFromText function, geometry
value conversion, 366

GeomFromWKB function, geometry
value conversion, 366

geospatial features, 350

GET_FORMAT function, 177

How can we make this index more useful? Email us at indexes@samspublishing.com

451GET_FORMAT function

13 6337 index 6/24/04 12:42 PM Page 451

TEAM LinG

GET_LOCK function, 208-209

GLength function, 369-370, 381

global privileges, 295-297

global variables, 72-73

GPL (GNU General Public License), 4,
15, 18-20

GRANT statement

IDENTIFIED BY clause, 299

MAX_CONNECTIONS_PER_HOU
R clause, 300

MAX_QUERIES_PER_HOUR clause,
300

MAX_UPDATES_PER_HOUR clause,
300

privileges, specifying, 296-297

REQUIRE CIPHER clause, 301

REQUIRE ISSUER clause, 300

REQUIRE SSL clause, 300

REQUIRE SUBJECT clause, 301

REQUIRE X509 clause, 300

syntax of, 295-302

wildcards, 298

WITH GRANT OPTION clause,
299-300

greater than (>) operator, 140

greater than or equal (>=) operator, 140

GREATEST function, 141

GROUP BY (aggregate) functions

AVG, 211

BIT_AND, 211

BIT_OR, 211

BIT_XOR, 211

COUNT(*), 211-212

COUNT(DISTINCT), 212

GROUP_CONCAT, 212-213

hidden fields, 217

MAX, 213

MIN, 213

ROLLUP modifier, 214-216

STD, 213

STDDEV, 213

SUM, 213

VARIANCE, 213

WITH ROLLUP modifier, 214

GROUP BY clause, 241, 277

grouping expressions, 138

GROUP_CONCAT function, 212-213

H - I
HANDLER statement, syntax of,

222-223

HANDLER, CLOSE statement, syntax
of, 223

HANDLER, OPEN statement, syntax of,
222-223

HANDLER, READ statement, syntax of,
222

handlers, DECLARE statements, 390

HAVING clause, 242

HEX() function, 66, 151

hexadecimal values, 66

hidden fields, GROUP BY functions, 217

HIGH_PRIORITY clause, 244

HOST clause, 332

HOUR function, 177

452 GET_LOCK function

13 6337 index 6/24/04 12:42 PM Page 452

TEAM LinG

IDENTIFIED BY clause, 299

identifiers

alias names, 67

allowable characters, 67

as functions, 77

case sensitivity, 69-71

column names, 67

database names, 67

index names, 67

length of, 67

multiple identifiers, 69

qualifiers, 69

quoting in, 68

special characters, 68

storing, 68

table names, 67

IDENTITY variable, SET statement,
312

IF function, 146-147

IF flow control statement, 393

IFNULL function, 147

IGNORE INDEX clause

JOIN statement, 246-247

SELECT statement, 241

IGNORE KEY clause, 247

implicit commits, 290

IN keyword, subqueries, 251

IN operator, 141-142

INDEX DIRECTORY clause, 281

indexes

BLOB columns, 277

FULLTEXT, 277

naming, 67

NULL values, 276

SPATIAL, 277

spatial indexes

adding to columns, 378

creating, 377

query searches, 379-381

storing, 276

TEXT columns, 277

INET_ATON function, 209

INET_NTOA function, 209

information functions

BENCHMARK, 203

CHARSET, 204

COERCIBILITY, 204

COLLATION, 204

CONNECTION_ID, 204

CURRENT_USER, 205

DATABASE, 205

FOUND_ROWS, 205

LAST_INSERT_ID, 206

SQL_CALC_FOUND_ROWS clause,
205-206

USER, 207

VERSION, 208

How can we make this index more useful? Email us at indexes@samspublishing.com

453information functions

13 6337 index 6/24/04 12:42 PM Page 453

TEAM LinG

INNER JOIN statement, syntax of,
245-246

InnoDB storage engine, foreign keys,
51-52

InnoDB tables, size limitations, 10

INSERT DELAYED statement, syntax
of, 225, 228-230

INSERT function, 151

INSERT INTO SELECT SQL exten-
sion, MySQL Server, 47

INSERT statement, syntax of, 224-227

INSERT, SELECT statement, syntax
of, 224-227

INSERT, UPDATE statement, syntax
of, 226

INSERT, VALUES statement, syntax
of, 224-226

INSERT_ID variable, SET statement,
312

INSERT_METHOD clause, CREATE
TABLE statement, 281

INSTR function, 152

INT column type, 112

INTEGER column type, 112

integers, 66

InteriorRingN function, 371

Intersection function, 374

Intersects function, 376

INTERVAL operator, 142

INTO statement. See SELECT, INTO
compound statement

IRC (Internet Relay Chat), 42

IS NOT NULL operator, 140

IS NULL operator, 140

IsClosed function, 369-370

IsEmpty function, 367

ISNULL function, 142

ISP (Internet service providers),
MySQL support, 20

IsRing function, 370

IsSimple function, 367

IS_FREE_LOCK function, 209

IS_USED_LOCK function, 209

ITERATE flow control statement, 394

J – K - L
JOIN statements

FORCE INDEX clause, 247

IGNORE INDEX clause, 246-247

subqueries, rewriting as, 258-259

syntax of, 245-247

USE INDEX clause, 246-247

key cache structured system variables,
74-75

KEY clause, 275

KILL statement, syntax of, 334

LAST_DAY function, 178

LAST_INSERT_ID variable, SET
statement, 312

LAST_INSERT_ID function, 206, 226

LCASE function. See LOWER function

LEAST function, 142-143

454 INNER JOIN statement

13 6337 index 6/24/04 12:42 PM Page 454

TEAM LinG

LEAVE flow control statement, 393

LEFT function, 152

LEFT OUTER JOIN statement, 246

left shift (<<) function, 199

LENGTH function, 152

less than (<) operator, 140

less than or equal (<=) operator, 140

licenses

FLOSS licenses, 19-20

MySQL commercial licenses, 15, 18-19

LIKE clause

SHOW STATUS statement, 325

SHOW VARIABLES statement, 328

LIKE operator, 160

LIMIT clause

SELECT statement, 242

SHOW BINLOG EVENTS state-
ment, 337

SHOW WARNINGS statement, 329

LineString (OpenGIS Geometry
Model)

EndPoint function, 368

GLength function, 369

IsClosed function, 369

IsRing function, 370

NumPoints function, 369

PointN function, 369

properties of, 354

StartPoint function, 370

listing available character set, 82

literal values

boolean values, 67

hexadecimal values, 66

NULL values, 67

numbers, 66

strings, 63-65

LN function, 165

LOAD DATA FROM MASTER state-
ment, syntax of, 341

LOAD DATA INFILE statement,
syntax of, 230-237

LOAD INDEX INTO CACHE
statement, syntax of, 335

LOAD TABLE FROM MASTER state-
ment, syntax of, 341

LOAD_FILE function, 152

local variables. See session variables

LOCALTIME function, 178

LOCALTIMESTAMP function, 178

LOCATE function, 153

LOCK TABLES statement, syntax of,
291-293

LOG function, 165

LOG10 function, 166

LOG2 function, 166

logical operators

AND (&&), 144

NOT (!), 143

OR (||), 144

XOR, 144-145

How can we make this index more useful? Email us at indexes@samspublishing.com

455logical operators

13 6337 index 6/24/04 12:42 PM Page 455

TEAM LinG

LOGS clause, 333

LONGBLOB column type, 117

LONGTEXT column type, 117

LOOP flow control statement, 393

LOWER function, 153

lower_case_table_names variable,
70-71

LPAD function, 153

LTRIM function, 153

M
mailing lists (MySQL), 34-36

guidelines, 41

subscribing to, 33

MAKEDATE function, 178

MAKETIME function, 178

MAKE_SET function, 154

manual

additions/corrections, submitting, 17

case sensitivity, 3

command prompts, 2

syntax descriptions, 3

typographical conventions, 2

Web site, 1

mapping column types, 136

MASTER clause, 335

master server control statements

PURGE MASTER LOGS statement,
syntax of, 336

RESET MASTER statement, syntax of,
337

SET SQL LOG BIN statement, syntax
of, 337

SHOW BINLOG EVENTS state-
ment, 337

SHOW MASTER LOGS statement,
syntax of, 337

SHOW MASTER STATUS statement,
syntax of, 338

SHOW SLAVE HOSTS statement,
syntax of, 338

MASTER_POS_WAIT function, 209

MATCH function, 187-190

MATCH, AGAINST function, 187

matching rows, troubleshooting, 420

mathematical functions

ABS, 163

ACOS, 163

ASIN, 163

ATAN, 163

ATAN2, 164

CEILING, 164

COS, 164

COT, 164

CRC32, 164

DEGREES, 165

EXP, 165

FLOOR, 165

456 LOGS clause

13 6337 index 6/24/04 12:42 PM Page 456

TEAM LinG

LN, 165

LOG, 165

LOG10, 166

LOG2, 166

MOD (%), 166

PI, 166

POW, 167

POWER, 167

RADIANS, 167

RAND, 167

ROUND, 168

SIGN, 168

SIN, 168

SORT, 168

TAN, 169

TRUNCATE, 169

MaxDB, character set compatibility,
101

MAX function. See GREATEST func-
tion

MAX_CONNECTIONS_PER_HOUR
clause, 300

MAX_QUERIES_PER_HOUR clause,
300

MAX_ROWS clause, 279

MAX_UPDATES_PER_HOUR clause,
300

MBR (Minimal Bounding Rectangle),
374-375

MBRContains function, 374

MBRDisjoint function, 375

MBREqual function, 375

MBRIntersects function, 375

MBROverlaps function, 375

MBRTouches function, 375

MBRWithin function, 375

MD5 function, 202

MEDIUM option (CHECK TABLE
statement), 305

MEDIUMBLOB column type, 117

MEDIUMINT column type, 112, 117

MEDIUMTEXT column type, 117

metadata, UTF8 Unicode character set,
99-100

MICROSECOND function, 179

MID function, 154

Middle Eastern character sets, 108

MIN function, 213

MINUTE function, 179

MIN_ROWS clause, 279

MOD (%) function, 166

modules (MySQL Server), list of, 9

MONTH function, 179

MONTHNAME function, 179

MultiCurve (OpenGIS Geometry
Model), properties of, 355

MultiLineString (OpenGIS Geometry
Model)

examples of, 356

GLength function, 370

IsClosed function, 370

multiple identifiers, quoting, 69

multiplication (*) operator, 162

MultiPoint (OpenGIS Geometry
Model), 355

How can we make this index more useful? Email us at indexes@samspublishing.com

457MultiPoint

13 6337 index 6/24/04 12:42 PM Page 457

TEAM LinG

MultiPolygon (OpenGIS Geometry
Model)

Area function, 372

assertions of, 356

Centroid function, 372

examples of, 356

PointOnSurface function, 372

properties of, 357

MultiSurface (OpenGIS Geometry
Model), assertions of, 356

MyISAM tables, size limitations, 10

MyODBC trace files, 38

MySQL

certification, 14

constraints

DEFAULT, 55

ENUM, 56

NOT NULL, 55

PRIMARY KEY, 54

SET, 56

UNIQUE, 54

copyrights, 18

customer support

IRC, 42

reporting errors, 36-41

defining, 4

development of, 5, 22

embedded MySQL Server, 24

features of, 6-8

free usage, 20

ISP, 20

licensing, 18-19

locking statements, 291-294

logos, usage of, 21-22

mailing lists, 34-36

guidelines, 41

subscribing to, 33

open errors, 57-61

Oracle compatibility, 45-46

planned features for, 29-32

PostgreSQL compatibility, 46-47

pronunciation of, 5

SQL compatibility, 44-45

stability of, 8-9

standards compliance, 42

stored procedures, 51

table size limitation, 10

technical support

IRC, 42

reporting errors, 36-41

term usage, 22

trademarks, 16-18

training, 14

transactional statements

COMMIT statement, 289-290

ROLLBACK statement, 289-290

ROLLBACK TO SAVEPOINT
statement, syntax of, 291

SAVEPOINT statement, syntax of,
291

START TRANSACTION state-
ment, syntax of, 289-290

458 MultiPolygon

13 6337 index 6/24/04 12:42 PM Page 458

TEAM LinG

triggers, 51

utility statements

DESCRIBE statement, syntax of,
288

USE statement, syntax of, 288-289

views, 52-53

Web site, 16

MySQL 3.23, known errors, 56

MySQL 3.23.2, open errors, 61

MySQL 4.0

character columns, converting to
MySQL 4.1, 103

downloading, 23

features of, 23-24

known errors, 56

MySQL 4.1, upgrading to, 101-103

MySQL 4.1

features of, 25-26

MySQL 4.0

character columns, converting to,
103

upgrading to, 101-103

planned features for, 27

subqueries, 47

MySQL 5.0, 27-28

MySQL 5.1, planned features for, 28-29

MySQL AB

business model, 13

contact information, 16-17

core values of, 13

customer support

commercial licenses, 15

consulting services, 15

contact information, 16

MySQL certification, 14

MySQL training, 14

partnering program, 15

defining, 13

logos, 22

privacy policy, 17

technical support, 17-18

MySQL Database Software Web site, 1

MySQL Server

CHAR column, 47

CREATE TABLE SELECT SQL
extension, 48

embedded MySQL Server, 24

features of, 4-5

foreign keys, 51-52

INSERT INTO SELECT SQL exten-
sion, 47

modules, list of, 9

non-transactional table, 48-50

REVOKE statement, 47

SQL mode, 43-44

stability of, 8-9

start comment character, 53

transactional tables, 48-49

VARCHAR column, 47

Y2K compliance, 11-12

mysqlbug script, 37

How can we make this index more useful? Email us at indexes@samspublishing.com

459mysqlbug script

13 6337 index 6/24/04 12:42 PM Page 459

TEAM LinG

N
names

collations, 83

databases, case sensitivity, 44

structured system variables, 74

tables, case sensitivity, 44

NATURAL LEFT JOIN statement,
syntax of, 246

NCHAR (National Character set), 101

news releases (MySQL AB), contact
information, 16

no matching row scenarios, trou-
bleshooting, 420

non-delimited strings, 123

non-transactional tables

atomic operations, 48-49

records, updating, 50

row-level locking, 50

troubleshooting, 419

versus transactional tables, 48-49

NOT (!) operator, 143

NOT BETWEEN, AND operator, 141

not equal (!=) operator, 139

NOT EXISTS clause, subqueries,
253-254

NOT IN operator, 142

NOT LIKE function, 160

NOT NULL constraint, 55

NOT REGEXP function, 160

NOT RLIKE function, 160

NOW function, 179

NULL values

indexes, 276

literal values, 67

troubleshooting, 417-418

null safe equal (<=>) operator, 139

NULLIF function, 147

numbers, 66

numeric column types

BIGINT, 112, 117

BIT, 112

BOOL, 112

BOOLEAN, 112

DEC, 114

DECIMAL, 113, 118-119

DOUBLE, 113

DOUBLE PRECISION, 113, 120

FIXED, 114

FLOAT, 113, 119

INT, 112

INTEGER, 112

MEDIUMINT, 112, 117

NUMERIC, 114, 118-119

REAL, 113, 120

SMALLINT, 112, 117

storage requirements, 134

TINYINT, 112, 117

UNSIGNED attribute, 118-120

ZEROFILL attribute, 118

NUMERIC column type, 114, 118-119

NumGeometries function, 373

NumInteriorRings function, 371

NumPoints function, 369

460 names

13 6337 index 6/24/04 12:42 PM Page 460

TEAM LinG

O
OCT function, 154

OCTET_LENGTH function. See
LENGTH function

ODBC (Open Database Connectivity)

CREATE TABLE statement compati-
bility, 274

LEFT OUTER JOIN statement, 246

OGC (Open GIS Consortium, Inc.),
349

OLD_PASSWORD function, 202

ON DELETE CASCADE clause, 283

ON DELETE SET NULL clause, 283

Open Source, defining, 4

OPEN statement, cursors, 392

OpenGIS Geometry Model, Geometry
class hierarchy, 350

class Curve, 353

class Geometry, 351-352

class GeometryCollection, 355

class LineString, 354

class MultiCurve, 355

class MultiLineString, 356

class MultiPoint, 355

class MultiPolygon, 356-357

class MultiSurface, 356

class Point, 353

class Polygon, 354

class Surface, 354

operators

addition (+), 161

AND (&&), 144

arithmetic, 161-162

BETWEEN, AND, 141

BINARY, 145

case sensitivity, 145

comparison, 138-143

DIV operators, 162

division (/), 162

equal (=), 139

IN, 141-142

INTERVAL, 142

IS NOT NULL, 140

IS NULL, 140

less than (<), 140

less than or equal (<=), 140

logical operator, 143-145

multiplication (*), 162

NOT (!), 143

NOT BETWEEN, AND, 141

not equal (!=), 139

NOT IN, 142

OR (||), 144

parentheses (), 138

subtraction (-), 162

unary minus (-), 162

XOR, 144-145

How can we make this index more useful? Email us at indexes@samspublishing.com

461operators

13 6337 index 6/24/04 12:42 PM Page 461

TEAM LinG

OPTIMIZE TABLE statement, syntax
of, 306-307

optimizer, troubleshooting, 423

optimizing subqueries, 257-258

OR (||) operator, 144

Oracle, MySQL compatibility, 45-46

ORD function, 154

ORDER BY clause

ALTER TABLE statement, 265

BLOB columns, 277

TEXT columns, 277

Overlaps function, 376

P
PACK_KEYS clause, 279-280

parentheses ()

in functions, 137

operators, 138

partnering programs (MySQL), contact
information, 15-16

partnership logos (MySQL AB), 22

PASSWORD clause, 280

PASSWORD function, 202

PERIOD_ADD function, 179

PERIOD_DIFF function, 179

permissions (MySQL logos), 21-22

PI function, 166

Point (OpenGIS Geometry Model)

properties of, 353

X function, 368

Y function, 368

PointN function, 369

PointOnSurface function, 372

Polygon (OpenGIS Geometry Model)

Area function, 371

assertions of, 354

ExteriorRing function, 371

InteriorRingN function, 371

NumInteriorRings function, 371

populating spatial columns, 363-364

POSITION function. See LOCATE
function

PostgreSQL, MySQL compatibility,
46-47

POW function, 167

POWER function, 167

press services (MySQL), contact infor-
mation, 16

PRIMARY KEY clause

ALTER TABLE statement, 265

CREATE TABLE statement, 275

PRIMARY KEY constraint, 54

privacy policy (MySQL AB), 17

privileges

column privileges, 296, 299

database privileges, assigning, 296-297

displaying, 318-319

global privileges, assigning, 295-297

table privileges, 296

PRIVILEGES clause, FLUSH state-
ment, 333

PROCEDURE clause, 244

462 OPTIMIZE TABLE statement

13 6337 index 6/24/04 12:42 PM Page 462

TEAM LinG

procedures

stored, 383

ALTER FUNCTION statement,
387

ALTER PROCEDURE statement,
387

BEGIN, END compound state-
ment, 388

CALL statement, 388

CREATE FUNCTION statement,
384-387

CREATE PROCEDURE state-
ment, 384-387

cursors, 391-392

DECLARE statement, 388-390

DROP FUNCTION statement, 387

DROP PROCEDURE statement,
387

flow control statements, 393-395

SELECT, INTO compound state-
ment, 389

SET statement, 389

SHOW CREATE FUNCTION
statement, 387

SHOW CREATE PROCEDURE
statement, 387

SHOW FUNCTION STATUS
statement, 387

SHOW PROCEDURE STATUS
statement, 387

uses for, 383

publishing benchmarks, 17

PURGE MASTER LOGS statement,
syntax of, 336

Q - R
QUARTER function, 180

QUERY CACHE clause

FLUSH statement, 333

RESET statement, 336

QUICK option (CHECK TABLE state-
ment), 305

QUOTE function, 155

quotes

double quote (“”) in strings, 63-65

single quote (‘’) in strings, 63-65

quoting

identifier qualifiers, 69

in identifiers, 68

strings, 64-65

RADIANS function, 167

RAID_TYPE clause, 280

RAND function, 167

REAL column type, 113, 120

records, updating in non-transactional
tables, 50

reference manual

additions/corrections, submitting, 17

case sensitivity, 3

command prompts, 2

syntax descriptions, 3

typographical conventions, 2

Web site, 1

How can we make this index more useful? Email us at indexes@samspublishing.com

463reference manual

13 6337 index 6/24/04 12:42 PM Page 463

TEAM LinG

REFERENCES clause, 266

referential integrity check, 52

REGEXP operator, 160, 427-431

regular expressions, special characters,
427-431

Related function, 376

related tables, troubleshooting row dele-
tion, 419

relational databases, defining, 4

RELEASE_LOCK function, 210

RENAME TABLE statement, syntax of,
287-288

REPAIR TABLE statement, syntax of,
307-308

REPEAT function, 155

REPEAT flow control statement, 394

REPLACE function, 155

REPLACE statement, syntax of, 238-239

replication statements

master server control statements

PURGE MASTER LOGS statement,
336

RESET MASTER statement, 337

SET SQL LOG BIN statement, 337

SHOW BINLOG EVENTS state-
ment, 337

SHOW MASTER LOGS statement,
337

SHOW MASTER STATUS state-
ment, 338

SHOW SLAVE HOSTS statement,
338

slave server control statements

CHANGE MASTER TO state-
ment, 338-340

LOAD DATA FROM MASTER
statement, 341

LOAD TABLE FROM MASTER
statement, 341

RESET SLAVE statement, 342

SET GLOBAL SQL SLAVE SKIP
COUNTER statement, 342

SHOW SLAVE STATUS state-
ment, 343-346

START SLAVE statement, 346-347

STOP SLAVE statement, 347

reporting errors, 17, 36-41

REQUIRE CIPHER clause, 301

REQUIRE ISSUER clause, 300

REQUIRE SSL clause, 300

REQUIRE SUBJECT clause, 301

REQUIRE X509 clause, 300

reserved words, 77-79

RESET MASTER statement, syntax of,
337

RESET SLAVE statement, syntax of,
342

RESET statement, 335-336

RESTORE TABLE statement, syntax
of, 308

REVERSE function, 155

REVOKE statement

privileges, specifying, 296-297

REQUIRE CIPHER clause, 301

REQUIRE ISSUER clause, 300

464 REFERENCES clause

13 6337 index 6/24/04 12:42 PM Page 464

TEAM LinG

REQUIRE SSL clause, 300

REQUIRE SUBJECT clause, 301

REQUIRE X509 clause, 300

syntax of, 295-302

rewriting subqueries as JOIN state-
ments, 258-259

RIGHT function, 155

right shift (>>) operator, 199

RIGHT JOIN statement, syntax of, 246

RLIKE operator, 160

ROLLBACK statement

syntax of, 289-290

troubleshooting, 419

ROLLBACK TO SAVEPOINT state-
ment, syntax of, 291

ROLLUP modifiers (GROUP BY func-
tion), 214-216

ROUND function, 168

rows

no matching row scenarios,
troubleshooting, 420

related table deletion, troubleshooting,
419

row-level locking, non-transactional
tables, 50

subqueries, 254

ROW_FORMAT clause, 280

RPAD function, 156

RTRIM function, 156

S
Sakila, 5

SAVEPOINT statement, syntax of, 291

scalar operands, subqueries as, 249-250

SECOND function, 180

SEC_TO_TIME function, 180

SELECT, INTO compound statement,
stored procedures, 389

SELECT INTO OUTFILE SQL exten-
sion, MySQL Server, 48

SELECT INTO TABLE SQL exten-
sion, MySQL Server, 47

SELECT statements

aliases

as expressions, 240

table, 241

ALL clause, 244

AS clause, 240

DISTINCT clause, 244

DISTINCTROW clause, 244

FIELDS ESCAPED BY character, 243

FORCE INDEX clause, 241

FROM clause, 240

GROUP BY clause, 241

HAVING clause, 242

HIGH_PRIORITY clause, 244

IGNORE INDEX clause, 241

LIMIT clause, 242

PROCEDURE clause, 244

SQL_BIG_RESULT clause, 244

How can we make this index more useful? Email us at indexes@samspublishing.com

465SELECT statements

13 6337 index 6/24/04 12:42 PM Page 465

TEAM LinG

SQL_BUFFER_RESULT clause, 244

SQL_CACHE clause, 245

SQL_CALC_FOUND_ROWS clause,
245

SQL_NO_CACHE clause, 245

SQL_SMALL_RESULT clause, 244

STRAIGHT_JOIN clause, 244

subqueries

as scalar operands, 249-250

comparisons, 250-251

correlated subqueries, 252-253

errors, 255-256

EXISTS clause, 253-254

FROM clause, 254-255

MySQL support, 47

NOT EXISTS clause, 253-254

optimizing, 257-258

rewriting as join statements, 258-259

row subqueries, 254

syntax of, 248-252

syntax of, 239-245

USE INDEX clause, 241

WHERE clause, 241

SELECT, INTO DUMPFILE state-
ment, syntax of, 244

SELECT, INTO OUTFILE statement,
syntax of, 243-244

server

character set, 84

collation, 84

embedded MySQL Server, 24

MySQL Server

CHAR columns, 47

CREATE TABLE SELECT SQL
extension, 48

features of, 4-5

foreign keys, 51-52

INSERT INTO SELECT SQL
extension, 47

list of modules, 9

non-transactional tables, 48-50

REVOKE statement, 47

running in ANSI mode, 43-44

stability of, 8-9

start comment character, 53

transactional tables, 48-49

VARCHAR columns, 47

Y2K compliance, 11-12

session variables, 72-73

SESSION_USER function. See USER
function

SET CHARACTER SET statement,
connection character set, 89-90

SET constraint, 56

SET GLOBAL
SQL_SLAVE_SKIP_COUNTER
statement, syntax of, 342

SET column type, 117, 133-135

SET NAMES statement, connection
character set, 89-90

SET PASSWORD statement, syntax of,
302

SET SQL_LOG_BIN statement, syntax
of, 337

466 SELECT statements

13 6337 index 6/24/04 12:42 PM Page 466

TEAM LinG

SET statement

AUTOCOMMIT variable, 311

BIG_TABLES variable, 312

CHARACTER SET, 312

FOREIGN_KEY_CHECKS variable,
312

IDENTITY variable, 312

INSERT_ID variable, 312

LAST_INSERT_ID variables, 312

NAMES, 312

SQL_AUTO_IS_NULL variable, 313

SQL_BIG_SELECTS variable, 313

SQL_BUFFER_RESULT variable, 313

SQL_LOG_BIN variable, 313

SQL_LOG_OFF variable, 313

SQL_LOG_UPDATE variable, 313

SQL_QUOTE_SHOW_CREATE
variable, 313

SQL_SAFE_UPDATES variable, 313

SQL_SELECT_LIMIT variable, 314

SQL_WARNINGS variable, 314

stored procedures, 389

syntax of, 309-314

TIMESTAMP variable, 314

UNIQUE_CHECKS variable, 314

user variables, 71

SET TRANSACTION statement, syn-
tax of, 294

SHA1 function, 203

shell syntax, 3

SHOW BINLOG EVENTS statement,
337

SHOW CHARACTER SET statement,
97, 314

SHOW COLLATION statement, 83,
97-98, 315

SHOW COLUMNS statement, 98, 315

SHOW CREATE DATABASE
statement, 98, 316

SHOW CREATE FUNCTION
statement, stored procedures, 387

SHOW CREATE PROCEDURE
statement, stored procedures, 387

SHOW CREATE TABLE statement,
98, 316

SHOW DATABASES statement, syntax
of, 316

SHOW ENGINES statement, syntax
of, 317-318

SHOW ERRORS statement, syntax of,
318

SHOW FUNCTION STATUS state-
ment, stored procedures, 387

SHOW GRANTS statement, syntax of,
318-319

SHOW INDEX statement, syntax of,
319-320

SHOW INNODB STATUS statement,
syntax of, 320

SHOW LOGS statement, syntax of, 320

SHOW MASTER LOGS statement,
syntax of, 337

SHOW MASTER STATUS statement,
syntax of, 338

SHOW PRIVILEGES statement,
syntax of, 321-322

SHOW PROCEDURE STATUS state-
ment, stored procedures, 387

How can we make this index more useful? Email us at indexes@samspublishing.com

467SHOW PROCEDURE STATUS statement

13 6337 index 6/24/04 12:42 PM Page 467

TEAM LinG

SHOW PROCESSLIST statement,
322-324

SHOW SLAVE HOSTS statement,
syntax of, 338

SHOW SLAVE STATUS statement,
syntax of, 343-346

SHOW statement, syntax of, 309

SHOW STATUS statement, 325

SHOW TABLE STATUS statement,
syntax of, 326-327

SHOW TABLES statement, syntax of,
327

SHOW VARIABLES statement,
327-328

SHOW WARNINGS statement,
329-331

SIGN function, 168

SIN function, 168

single quotes (‘’) in strings, 63-65

SLAVE clause, 336

slave server control statements

CHANGE MASTER TO statement,
syntax of, 338-340

LOAD DATA FROM MASTER state-
ment, syntax of, 341

LOAD TABLE FROM MASTER
statement, syntax of, 341

RESET SLAVE statement, syntax of,
342

SET GLOBAL SQL SLAVE SKIP
COUNTER statement, syntax of, 342

SHOW SLAVE STATUS statement,
syntax of, 343-346

START SLAVE statement, 346-347

STOP SLAVE statement, syntax of,
347

SLAVE STOP statement. See STOP
SLAVE statement

SMALLINT column type, 112, 117

software

free usage, 20

licensing, 18-19

SOME keyword, subqueries, 251

SORT function, 168

SOUNDEX function, 156

SOUNDS LIKE function, 156

South European character sets, 108

SPACE function, 156

spatial columns

creating, 362

populating, 363-364

spatial data, fetching

in internal format, 364

in WKB format, 365

in WKT format, 364

spatial data types, 359

spatial extensions

OGC, 349

OpenGIS Geometry Model

geometry class hierarchy, 350-351

geometry class hierarchy, class
Curve, 353

geometry class hierarchy, class
Geometry, 351-352

geometry class hierarchy, class
GeometryCollection, 355

geometry class hierarchy, class
LineString, 354

geometry class hierarchy, class
MultiCurve, 355

468 SHOW PROCESSLIST statement

13 6337 index 6/24/04 12:42 PM Page 468

TEAM LinG

geometry class hierarchy, class
MultiLineString, 356

geometry class hierarchy, class
MultiPoint, 355

geometry class hierarchy, class
MultiPolygon, 356-357

geometry class hierarchy, class
MultiSurface, 356

geometry class hierarchy, class Point,
353

geometry class hierarchy, class
Polygon, 354

geometry class hierarchy, class
Surface, 354

spatial columns, creating, 362

spatial columns, populating, 363-364

spatial data types, 359

spatial data, fetching

in internal format, 364

in WKB format, 365

in WKT format, 364

spatial values, creating

via MySQL-specific functions, 362

via WKB functions, 361

via WKT functions, 359-360

WKB spatial data format, 358, 361

WKT spatial data format, 357-360

SPATIAL index, 271, 277

spatial indexes

columns, adding to, 378

creating, 377

query searches, 379-381

spatial operators, 373-374

spatial values, creating

via MySQL-specific functions, 362

via WKB functions, 361

via WKT functions, 359-360

special characters, regular expressions,
427-431

SQL

defining, 4

MySQL compatibility, 44-45

SQL statements

administration statements

CACHE INDEX, 331-332

FLUSH, 332-333

KILL, 334

LOAD INDEX INTO CACHE,
335

RESET, 335-336

ALTER DATABASE, 262

ALTER TABLE

ALTER COLUMN clause, 265

DROP INDEX clause, 265

DROP PRIMARY KEY clause, 265

DROP TABLE clause, 265

FOREIGN KEY clause, 266-268

ORDER BY clause, 265

PRIMARY KEY clause, 265

REFERENCES clause, 266

syntax of, 263-269

UNIQUE INDEX clause, 265

How can we make this index more useful? Email us at indexes@samspublishing.com

469SQL statements

13 6337 index 6/24/04 12:42 PM Page 469

TEAM LinG

ANALYZE TABLE, 303

BACKUP TABLE, 303

CACHE INDEX, 331-332

CHANGE MASTER TO, 338-340

CHECK TABLE, 304-305

CHECKSUM TABLE, 306

COLLATE clause, 91-92

COMMIT, 289-290

CREATE DATABASE, 269

CREATE INDEX, 270-271

CREATE TABLE

AUTO_INCREMENT clause, 278

AVG_ROW_LENGTH clause, 279

CHECKSUM clause, 279

COMMENT clause, 279

copying tables, 281-282

creating foreign keys, 283-284

DATA DIRECTORY clause, 281

DELAY_KEY_WRITE clause, 280

ENGINE clause, 278

INDEX DIRECTORY clause, 281

INSERT_METHOD clause, 281

KEY clause, 275

MAX_ROWS clause, 279

MIN_ROWS clause, 279

ODBC compatibility, 274

PACK_KEYS clause, 279-280

PASSWORD clause, 280

PRIMARY KEY clause, 275

RAID_TYPE clause, 280

ROW_FORMAT clause, 280

silent column specification changes,
285

syntax of, 271-282

TYPE clause, 278

UNION clause, 280

data definition statements

ALTER DATABASE, 262

ALTER TABLE, 263-269

CREATE DATABASE, 269

CREATE INDEX, 270-271

CREATE TABLE, 271-285

DROP DATABASE, 286

DROP INDEX, 286

DROP TABLE, 287

RENAME TABLE, 287-288

data manipulation statements

DELETE, 219-222

DO, 222

HANDLER, 222-223

HANDLER, CLOSE, 223

HANDLER, OPEN, 222-223

HANDLER, READ, 222

INNER JOIN, 245-246

INSERT DELAYED, 225, 228-230

INSERT, 224-227

INSERT, SELECT, 224-227

INSERT, UPDATE, 226

INSERT, VALUES, 224-226

JOIN, 245-247, 258-259

LEFT OUTER JOIN, 246

LOAD DATA INFILE, 230-237

470 SQL statements

13 6337 index 6/24/04 12:42 PM Page 470

TEAM LinG

NATURAL LEFT JOIN, 246

REPLACE, 238-239

RIGHT JOIN, 246

SELECT, 239-245

SELECT, INTO DUMPFILE, 244

SELECT, INTO OUTFILE,
243-244

STRAIGHT_JOIN, 246

TRUNCATE TABLE, 260

UNION, 247-248

UPDATE, 260-262

database administration statements

account management, 294-302

SET, 309-314

SHOW CHARACTER SET, 314

SHOW COLLATION, 315

SHOW COLUMNS, 315

SHOW CREATE DATABASE, 316

SHOW CREATE TABLE, 316

SHOW DATABASES, 316

SHOW ENGINES, 317-318

SHOW ERRORS, 318

SHOW GRANTS, 318-319

SHOW INDEX, 319-320

SHOW INNODB STATUS, 320

SHOW LOGS, 320

SHOW PRIVILEGES, 321-322

SHOW PROCESSLIST, 322-324

SHOW, 309

SHOW STATUS, 325

SHOW TABLE STATUS, 326-327

SHOW TABLES, 327

SHOW VARIABLES, 327-328

SHOW WARNINGS, 329-331

table maintenance statements,
303-308

DELETE, 219-222

DESCRIBE, 288

DO, 222

DROP DATABASE, 286

DROP INDEX, 286

DROP TABLE, 287

DROP USER, 294-295

FLUSH, 332-333

GRANT statement

IDENTIFIED BY clause, 299

MAX_CONNECTIONS_PER_HO
UR clause, 300

MAX_QUERIES_PER_HOUR
clause, 300

MAX_UPDATES_PER_HOUR
clause, 300

REQUIRE CIPHER clause, 301

REQUIRE ISSUER clause, 300

REQUIRE SSL clause, 300

REQUIRE SUBJECT clause, 301

REQUIRE X509 clause, 300

specifying privileges, 296-297

syntax of, 295-302

wildcards, 298

WITH GRANT OPTION clause,
299-300

How can we make this index more useful? Email us at indexes@samspublishing.com

471SQL statements

13 6337 index 6/24/04 12:42 PM Page 471

TEAM LinG

HANDLER, 222-223

HANDLER, CLOSE, 223

HANDLER, OPEN, 222-223

HANDLER, READ, 222

INNER JOIN, 245-246

INSERT DELAYED, 225, 228-230

INSERT, 224-227

INSERT, SELECT, 224-227

INSERT, UPDATE, 226

INSERT, VALUES, 224-226

JOIN statements

FORCE INDEX clause, 247

IGNORE INDEX clause, 246-247

rewriting subqueries as, 258-259

syntax of, 245-247

USE INDEX clause, 246-247

KILL, 334

LEFT OUTER JOIN, 246

LOAD DATA FROM MASTER, 341

LOAD DATA INFILE, 230-237

LOAD INDEX INTO CACHE, 335

LOAD TABLE FROM MASTER, 341

LOCK TABLES, 291-293

MySQL locking statements

LOCK TABLES, 291-293

SET TRANSACTION, 294

UNLOCK TABLES, 291-293

MySQL transactional statements

COMMIT, 289-290

ROLLBACK, 289-290

ROLLBACK TO SAVEPOINT,
291

SAVEPOINT, 291

START TRANSACTION, 289-290

MySQL utility statements, 288-289

NATURAL LEFT JOIN, 246

OPTIMIZE TABLE, 306-307

PURGE MASTER LOGS, 336

RENAME TABLE, 287-288

REPAIR TABLE, 307-308

REPLACE, 238-239

replication statements

master server control, 336-338

slave server control, 338-347

RESET MASTER, 337

RESET SLAVE, 342

RESET, 335-336

RESTORE TABLE, 308

REVOKE statements

REQUIRE CIPHER clause, 301

REQUIRE ISSUER clause, 300

REQUIRE SSL clause, 300

REQUIRE SUBJECT clause, 301

REQUIRE X509 clause, 300

specifying privileges, 296-297

syntax of, 295-302

RIGHT JOIN, 246

ROLLBACK, 289-290

ROLLBACK TO SAVEPOINT, 291

SAVEPOINT, 291

SELECT statements

aliases as expressions, 240

aliases for tables, 241

ALL clause, 244

472 SQL statements

13 6337 index 6/24/04 12:42 PM Page 472

TEAM LinG

AS clause, 240

DISTINCT clause, 244

DISTINCTROW clause, 244

FIELDS ESCAPED BY character,
243

FORCE INDEX clause, 241

FROM clause, 240

GROUP BY clause, 241

HAVING clause, 242

HIGH_PRIORITY clause, 244

IGNORE INDEX clause, 241

LIMIT clause, 242

PROCEDURE clause, 244

SQL_BIG_RESULT clause, 244

SQL_BUFFER_RESULT clause,
244

SQL_CACHE clause, 245

SQL_CALC_FOUND_ROWS
clause, 245

SQL_NO_CACHE clause, 245

SQL_SMALL_RESULT clause, 244

STRAIGHT_JOIN clause, 244

subqueries, as scalar operands,
249-250

subqueries, comparisons, 250-251

subqueries, correlated subqueries,
252-253

subqueries, errors, 255-256

subqueries, EXISTS clause, 253-254

subqueries, FROM clause, 254-255

subqueries, NOT EXISTS clause,
253-254

subqueries, optimizing, 257-258

subqueries, rewriting as join state-
ments, 258-259

subqueries, row subqueries, 254

subqueries, syntax of, 248-252

syntax of, 239-245

USE INDEX clause, 241

WHERE clause, 241

SELECT, INTO DUMPFILE, 244

SELECT, INTO OUTFILE, 243-244

SET GLOBAL
SQL_SLAVE_SKIP_COUNTER,
342

SET PASSWORD, 302

SET SQL_LOG_BIN, 337

SET statement

AUTOCOMMIT variable, 311

BIG_TABLES variable, 312

CHARACTER SET, 312

FOREIGN_KEY_CHECKS vari-
able, 312

IDENTITY variable, 312

INSERT_ID variable, 312

LAST_INSERT_ID variable, 312

NAMES, 312

SQL_AUTO_IS_NULL variable,
313

SQL_BIG_SELECTS variable, 313

SQL_BUFFER_RESULT variable,
313

SQL_LOG_BIN variable, 313

SQL_LOG_OFF variable, 313

SQL_LOG_UPDATE variable, 313

How can we make this index more useful? Email us at indexes@samspublishing.com

473SQL statements

13 6337 index 6/24/04 12:42 PM Page 473

TEAM LinG

SQL_QUOTE_SHOW_CREATE
variable, 313

SQL_SAFE_UPDATES variable,
313

SQL_SELECT_LIMIT variable,
314

SQL_WARNINGS variable, 314

syntax of, 309-314

TIMESTAMP variables, 314

UNIQUE_CHECKS variable, 314

SET TRANSACTION, 294

SHOW BINLOG EVENTS, 337

SHOW CHARACTER SET, 314

SHOW COLLATION, 315

SHOW COLUMNS, 315

SHOW CREATE DATABASE, 316

SHOW CREATE TABLE, 316

SHOW DATABASES, 316

SHOW ENGINES, 317-318

SHOW ERRORS, 318

SHOW GRANTS, 318-319

SHOW INDEX, 319-320

SHOW INNODB STATUS, 320

SHOW LOGS, 320

SHOW MASTER LOGS, 337

SHOW MASTER STATUS, 338

SHOW PRIVILEGES, 321-322

SHOW PROCESSLIST, 322-324

SHOW SLAVE HOSTS, 338

SHOW SLAVE STATUS, 343-346

SHOW, 309

SHOW STATUS, 325

SHOW TABLE STATUS, 326-327

SHOW TABLES, 327

SHOW VARIABLES, 327-328

SHOW WARNINGS, 329-331

START SLAVE, 346-347

START TRANSACTION, 289-290

STOP SLAVE, 347

STRAIGHT_JOIN, 246

TRUNCATE TABLE, 260

UNION, 247-248

UNLOCK TABLES, 291-293

UPDATE, 260-262

USE, 288-289

SQL_AUTO_IS_NULL variable, SET
statement, 313

SQL_BIG_RESULT clause, 244

SQL_BIG_SELECTS variable, SET
statement, 313

SQL_BUFFER_RESULT clause, 244

SQL_BUFFER_RESULT variable, SET
statement, 313

SQL_CACHE clause, 245

SQL_CALC_FOUND_ROWS clause,
205-206, 245

SQL_LOG_BIN variable, SET state-
ment, 313

SQL_LOG_OFF variable, SET state-
ment, 313

SQL_LOG_UPDATE variable, SET
statement, 313

SQL_NO_CACHE clause, 245

SQL_QUOTE_SHOW_CREATE vari-
able, SET statement, 313

SQL_SAFE_UPDATES variable, SET
statement, 313

474 SQL statements

13 6337 index 6/24/04 12:42 PM Page 474

TEAM LinG

SQL_SELECT_LIMIT variable, SET
statement, 314

SQL_SMALL_RESULT clause, 244

SQL_WARNINGS variable, SET state-
ment, 314

SRID function, 367

start comment character, 53

START SLAVE statement, 346-347

START TRANSACTION statement,
syntax of, 289-290

StartPoint function, 370

STATUS clause, 333

STD function, 213

STDDEV function, 213

STOP SLAVE statement, syntax of, 347

stored procedures, 51, 383

ALTER FUNCTION statement, 387

ALTER PROCEDURE statement, 387

BEGIN, END compound statement,
388

CALL statement, 388

CREATE FUNCTION statement,
384-387

CREATE PROCEDURE statement,
384-387

cursors, 391-392

DECLARE statement

conditions, 389

handlers, 390

local variables, 388

SELECT, INTO compound state-
ments, 389

SET statement, 389

DROP FUNCTION statement, 387

DROP PROCEDURE statement, 387

flow control statements

CASE, 393

IF, 393

ITERATE, 394

LEAVE, 393

LOOP, 393

REPEAT, 394

WHILE, 395

SELECT, INTO compound statement,
389

SET statement, 389

SHOW CREATE FUNCTION state-
ment, 387

SHOW CREATE PROCEDURE
statement, 387

SHOW FUNCTION STATUS state-
ment, 387

SHOW PROCEDURE STATUS
statement, 387

uses for, 383

storing

identifiers, 68

indexes, 276

STRAIGHT_JOIN clause, 244

STRAIGHT_JOIN statement, syntax
of, 246

STRCMP function, 161

string column types, 115, 128

BLOB, 117, 130-131, 135

CHAR, 116, 128-129

ENUM, 117, 131-132, 135

How can we make this index more useful? Email us at indexes@samspublishing.com

475string column types

13 6337 index 6/24/04 12:42 PM Page 475

TEAM LinG

LONGBLOB, 117

LONGTEXT, 117

MEDIUMBLOB, 117

MEDIUMTEXT, 117

SET, 117, 133-135

storage requirements, 135

TEXT, 117, 130-131, 135

TINYBLOB, 117

TINYTEXT, 117

VARCHAR, 116, 128-129, 135

string comparison functions, 159-161

string functions

ASCII, 148

BIN, 148

BIT_LENGTH, 148

CHAR, 148

CHAR_LENGTH, 148

COMPRESS, 149

CONCAT, 149

CONCAT_WS, 150

CONV, 150

ELT, 150

EXPORT_SET, 150

FIELD, 151

FIND_IN_SET, 151

HEX, 151

INSERT, 151

INSTR, 152

LEFT, 152

LENGTH, 152

LOAD_FILE, 152

LOCATE, 153

LOWER, 153

LPAD, 153

LTRIM, 153

MAKE_SET, 154

MID, 154

OCT, 154

ORD, 154

QUOTE, 155

REPEAT, 155

REPLACE, 155

REVERSE, 155

RIGHT, 155

RPAD, 156

RTRIM, 156

SOUNDEX, 156

SOUNDS LIKE, 156

SPACE, 156

SUBSTRING, 157

SUBSTRING_INDEX, 157

TRIM, 157

UNCOMPRESS, 158

UNCOMPRESSED_LENGTH, 158

UNHEX, 158

UPPER, 158

strings, 63

character sets, converting to, 96-97

escape characters, 64-65

hexadecimal values, converting to, 66

non-delimited strings, 123

number conversions (comparison oper-
ators), 138-139

quoting, 64-65

476 string column types

13 6337 index 6/24/04 12:42 PM Page 476

TEAM LinG

structured system variables, 74-75

STR_TO_DATE function, 180

SUBDATE functions, 181

subqueries

as scalar operands, 249-250

comparisons, 250-251

correlated subqueries, 252-253

errors, 255-256

EXISTS clause, 253-254

FROM clause, 254-255

join statements, rewriting as, 258-259

MySQL support, 47

NOT EXISTS clause, 253-254

optimizing, 257-258

row subqueries, 254

syntax of, 248-252

subscribing to MySQL mailing lists, 33

SUBSTRING function, 157

SUBSTRING_INDEX function, 157

SUBTIME function, 181

subtraction (-) operator, 162

SUM function, 213

Surface (OpenGIS Geometry Model),
properties of, 354

SymDifference function, 374

SYSDATE function. See NOW function

system variables, 72-73. See also struc-
tured system variables

SYSTEM_USER function. See USER
function

T
TABLE clause, 333

table maintenance statements

ANALYZE TABLE, 303

BACKUP TABLE, 303

CHECK TABLE, 304-305

CHECKSUM TABLE, 306

OPTIMIZE TABLE, 306-307

REPAIR TABLE, 307-308

RESTORE TABLE, 308

tables

aliases, 70, 241

changing, troubleshooting, 424

character set, 86

collation, 86

column order, troubleshooting, 424

copying, 281-282

InnoDB tables, size limitations, 10

MyISAM tables, size limitations, 10

names

case sensitivity, 44, 69-71

keywords, 79

non-transactional tables

atomic operations, 48-49

row-level locking, 50

updating records, 50

versus transactional tables, 48-49

privileges, 296

size limitations, 10

TEMPORARY TABLE statement,
troubleshooting, 425

transactional tables, 48-49

How can we make this index more useful? Email us at indexes@samspublishing.com

477tables

13 6337 index 6/24/04 12:42 PM Page 477

TEAM LinG

TABLES WITH READ LOCK clause,
333

TAN function, 169

technical support, 17-18

errors, reporting, 36-41

IRC, 42

TEMPORARY TABLE statement,
troubleshooting, 425

testing geometry spatial relationships,
376-377

text, case sensitivity, 3

TEXT columns, 277

TEXT column type, 117, 130-131, 135

time functions, 169

ADDTIME,170

CURTIME,171

FROM_UNIXTIME,176

GET_FORMAT,177

HOUR,177

LOCALTIME,178

MAKETIME,178

MICROSECOND,179

MINUTE,179

NOW,179

SECOND,180

SEC_TO_TIME,180

SUBTIME,181

TIME,181

TIMEDIFF,182

TIME_FORMAT,183

TIME_TO_SEC,183

UTC_TIME,184

TIME column type, 115, 121, 126-127

TIMEDIFF function, 182

TIMESTAMP function, 182

timestamp functions

GET_FORMAT, 177

LOCALTIMESTAMP, 178

TIMESTAMPADD, 182

TIMESTAMPDIFF, 183

UNIX_TIMESTAMP, 184

UTC_TIMESTAMP, 185

TIMESTAMP column type, 114,
121-128

TIMESTAMP variable, SET statement,
314

TIMESTAMPADD function, 182

TIMESTAMPDIFF function, 183

TIME_FORMAT function, 183

TIME_TO_SEC function, 183

TINYBLOB column type, 117

TINYINT column type, 112, 117

TINYTEXT column type, 117

Touches function, 377

TO_DAYS function, 183

trademarks (MySQL), 18

contact information, 16

usage of, 21-22

training, contact information, 16

transactional tables, 48-49

triggers, 51

TRIM function, 157

478 TABLES WITH READ LOCK clause

13 6337 index 6/24/04 12:42 PM Page 478

TEAM LinG

troubleshooting

ALTER TABLE statements, 424

column aliases, 418

columns, table order, 424

DATE columns, 416-417

errors, reporting, 17, 36-41

floating-point number comparisons,
420-422

MySQL 3.23 known errors, 56

MySQL 3.23.2, open errors, 61

MySQL 4.0 known errors, 56

MySQL open errors, 57-61

no matching row scenarios, 420

non-transactional tables, ROLLBACK
statements, 419

NULL values, 417-418

optimizers, 423

related tables, row deletion, 419

ROLLBACK statements, 419

searches, case sensitivity, 415

tables

changes, 424

column order, 424

TEMPORARY TABLE statements,
425

TRUNCATE function, 169

TRUNCATE TABLE statement, syntax
of, 260

TYPE clause, 278

typographical conventions, 2

U
UCASE function. See UPPER function

UCS-2 Unicode character set, 98, 105

unary minus (-) operator, 162

UNCOMPRESS function, 158

UNCOMPRESSED_LENGTH func-
tion, 158

UNHEX function, 158

Unicode character sets

UCS-2, 98, 105

UTF8, 98-100, 105

UNION clause, 280

Union function, 374

UNION statement, syntax of, 247-248

UNIQUE constraint, 54

UNIQUE INDEX clause, 265

UNIQUE_CHECKS variable, 314

UNIX_TIMESTAMP function, 184

UNLOCK TABLES statement, syntax
of, 291-293

unnamed views, 52

UNSIGNED attribute, numeric column
type, 118-120

UNTIL clause, 347

UPDATE statement, syntax of, 260-262

updating records in non-transactional
tables, 50

upgrading from MySQL 4.0 to MySQL
4.1, 101-103

UPPER function, 158

How can we make this index more useful? Email us at indexes@samspublishing.com

479UPPER function

13 6337 index 6/24/04 12:42 PM Page 479

TEAM LinG

USE INDEX clause

JOIN statement, 246-247

SELECT statement, 241

USE KEY clause. See USE INDEX
clause

USE statement, syntax of, 288-289

USER function, 207

user variables, 71-72

USER_RESOURCES clause, 333

UTC_DATE function, 184

UTC_TIME function, 184

UTC_TIMESTAMP function, 185

UTF8 Unicode character set, 98-100,
105

UUID function, 210

V
VARCHAR column, MySQL Server, 47

VARCHAR column type, 116, 128-129,
135

variables

global variables, 72-73

lower_case_table_names, 70-71

session variables, 72-73

structured system variables, 74-75

system variables, 72-73

user variables, 71-72

VARIANCE function, 213

VERSION function, 208

views, 52-53

W
WEEK function, 185-186

WEEKDAY function, 186

WEEKOFYEAR function, 186

West European character sets, 106-107

WHERE clause, SELECT statement,
241

WHILE flow control statement, 395

whitespace, 77, 137

wildcards, GRANT statements, 298

WITH GRANT OPTION clause,
299-300

WITH ROLLUP modifiers (GROUP
BY function), 214

Within function, 377

WKB (Well-Known Binary) spatial data
format, 358

spatial data, fetching, 365

spatial values, creating, 361

WKT (Well-Known Text) spatial data
format, 357-358

spatial data, fetching, 364

spatial values, creating, 359-360

writing subqueries as JOIN statements,
258-259

480 USE INDEX clause

13 6337 index 6/24/04 12:42 PM Page 480

TEAM LinG

How can we make this index more useful? Email us at indexes@samspublishing.com

481

X – Y – Z
X function, 368

XOR operator, 144-145

Y function, 368

Y2K, MySQL Server compliance, 11-12

YEAR function, 187

YEAR column type, 115, 121, 127-128

YEARWEEK function, 186-187

ZEROFILL attribute, numeric column
types, 118

ZEROFILL attribute

13 6337 index 6/24/04 12:42 PM Page 481

TEAM LinG

