Microsoft ASP.NET Coding Strategies with the Microsoft
ASP.NET Team

by Matthew Gibbs and Rob Howard ISBN:073561900x
Microsoft Press © 2003 (319 pages)

This in-depth insider’'s guide shares the hard-won, hard-core
coding experience of the Microsoft ASP.NET development
team, revealing the most productive ways to exploit ASP.NET

features and functionality to build dynamic Web solutions
faster.

. Companion Web Site

Table of Contents
Microsoft ASP.NET Coding Strategies with the Microsoft ASP.NET Team
Introduction

Chapter 1 - ASP.NET Page Framework
Chapter 2 - Server Controls

Chapter 3 - Data Controls

Chapter 4 - Developing for Mobile Browsers
Chapter 5 - Managing Client State

Chapter 6 - Managing Application and Request State
Chapter 7 - Configuration

Chapter 8 - ASP.NET Security

Chapter 9 - Tuning ASP.NET Performance
Chapter 10 - ASP.NET Debug and Trace
Chapter 11 - Moving to ASP.NET

Appendix A - Tips and Tricks

Appendix B - The Cassini Sample Web Server
Index

List of Figures

List of Tables

List of Code Listings

List of Sidebars

Back Cover

Learn the strategies that developers at Microsoft use to build great ASP.NET applications—and get their sample
programs! This in-depth insider’s guide shares the hard-won, hard-core coding experience of the Microsoft ASP.NET
development team, revealing the most productive ways to exploit ASP.NET features and functionality to build
dynamic Web solutions faster. From maximizing application scalability and performance to designing and
implementing security features, you get the best practices, peer-to-peer advice, and reusable, real-world code to
take your own Web development expertise to the next level.

Discover how to:

Reduce coding time with server controls and data controls

Lear best practices for managing client, application, and request state

Use output caching and partial page caching to boost program functionality and scalability

Simplify development for mobile and handheld devices with ASP.NET mobile controls

Implement security features—including authentication, authorization, impersonation, server hardening, and
code access security

Use debug and trace to troubleshoot bottlenecks before your site goes live

e Know the steps for performance tuning—and where to invest your time for the biggest payoffs

e Answer the “rewrite or integrate?” question when planning application migration strategy

About the Authors

Matthew Gibbs is a lead software design engineer on the Microsoft ASP.NET team and was part of the product
teams for Active Server Pages 3.0, Internet Information Services (11S) versions 4.0 and 5.0, Mobile Internet
Toolkit, and Microsoft .Net Framework 1.1.

Rob Howard is a Microsoft program manager responsible for caching, session state, and other ASP.NET
infrastructure features. He also runs the ASP.NET Web site and ASP.NET Forums, as well as speaking at
conferences and writing books and articles.

Microsoft ASP.NET Coding Strategies with the
Microsoft ASP.NET Team

Matthew Gibbs Rob Howard

PUBLISHED BY Microsoft Press A Division of Microsoft Corporation One Microsoft Way Redmond,
Washington 98052-6399

Copyright © 2003 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data Gibbs, Matthew, 197 1-Microsoft ASP.NET Coding
Strategies with the Microsoft ASP.NET Team / Matthew Gibbs. p. cm. Includes index. ISBN 0-7356-1900-X
1. Active server pages. 2. Web sites--Design. 3. Microsoft .NET. I. Howard, Rob, 197 3-II. Title.

TK5105.8885.A26G53 2003 005.2'76--dc21 2003056218

Printed and bound in the United States of America.
123456789QWT876543

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

IntelliSense, Internet Explorer, JScript, Microsoft, Microsoft Press, MSDN, MSN, Visual Basic, Visual C++,
Visual Studio, Windows, Windows NT, and Windows Server are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Anne Hamilton Technical Editors: Mike Fitzgerald, Robert Brunner Project Editor:
Barbara Moreland

Body Part No. X09-45919
About the Authors

Matt Gibbs is a lead Software Design Engineer on the Microsoft ASP.NET team. Previously he was part of
the product teams for Active Server Pages 3.0, Internet Information Services (lIS) versions 4.0 and 5.0,
Mobile Internet Toolkit version 1.0, and Microsoft .NET Framework version 1.1.

Matt has a master's degree in computer science from the University of Washington and a bachelor's
degree in computer science from the University of Utah. He enjoys traveling as well as playing golf and
squash. You can reach Matt at mattgi@microsoft.com.

Rob Howard is a Program Manager on the Microsoft ASP.NET team. He has contributed to ASP.NET
features such as session state, Web services, and caching as well as to many of the new features coming
in ASP.NET 2.0. He also is actively involved in the ASP.NET community, working closely with groups such

as ASPInsiders, Microsoft MVPs, and community user groups. You can contact Rob at
rhoward @microsoft.com.

Acknowledgments

We would like to thank the talented people we have worked with on this book. Anne Hamilton got the book
going and helped keep it moving. Barbara Moreland did a fantastic job as project editor. Technical editors
Mike Fitzgerald and Robert Brunner made sure we didn't let errors get through, and Ina Chang helped us
learn to write better by relentlessly improving on what we did.

I would like to thank my wife, Heather, and my two children, Josh and Kelley, for their extreme patience
and understanding while | worked on this book. | missed a lot of weekend activities with them to make this
book a reality. Thanks also go to Dmitry Robsman, David Ebbo, and Shanku Niyogi, with whom I have
worked for the past few years. | have expanded my abilities by collaborating with them on designs and by
brainstorming about problems.

Matt
Thanks to my family and friends for their patience with yet another book project.

Rob

Introduction

In this book, we'll look at the ASP.NET platform for developing Web applications. We take it for granted
that you have some experience with Microsoft ASP.NET and are looking for more ideas for tackling Web
development tasks and leveraging what ASP.NET has to offer. However, we'll review some of the basics
about how the page framework and server controls work. We'll also examine the features of ASP.NET and
discuss how they are designed. Lots of code examples will illustrate our coding strategies, and along the
way we include Tips that will help you make the most of ASP.NET.

Prerequisites

This book assumes some familiarity with HTML and Web application development. Code samples are
written in C# but do not typically utilize complex language features, so developers familiar with C/C++,
Java, or Microsoft Visual Basic should be able to follow along without difficulty.

Structure of This Book

Most of the chapters in this book, which discuss various ASP.NET features and development topics, are
freestanding-that is, you don't have to read the chapters in order. Throughout we include Tips and Notes to
help you leverage ASP.NET in developing dynamic Web applications. We created these Notes based on
our experiences developing ASP.NET and on our work with customers, in which we explored the
challenges of creating large and small Web sites, as well as sites intended for access by internal
corporate groups and by the general public.

Sample Files

The complete set of sample code can be downloaded from the book’'s Web site
(http:/vww.microsoft.com/mspress/books/6578.asp). Click Companion Content in the More Information
box on the right side of this page to bring up the Companion Content page.Following the structure of the
book, the code samples are organized into a set of chapter subdirectories, making it easy to create a
virtual directory and try out the code on your own machine.

http://www.microsoft.com/mspress/books/6578.asp

Software Needed to Run the Samples

The .NET Framework SDK, which includes ASP.NET, is required to run the sample code. ASP.NET
requires either Microsoft Windows 2000, Microsoft Windows XP Professional, or Microsoft Windows Server
2003. You can use Microsoft Windows XP Home Edition for development, but Microsoft Internet
Information Services (lIS) is not available for that platform. An alternative is to use a development Web
server. The .NET Framework SDK can be downloaded for free from http://go.microsoft.com/fwlink/?
linkid=8862.

http://go.microsoft.com/fwlink/?

Creating an IIS Virtual Directory

ASP.NET handles requests issued to a Web server, which is typically 1IS on the Microsoft Windows
platform. If you are using Visual Studio to create Web pages, Visual Studio will automatically create a
virtual directory for you. When using the .NET Framework without Visual Studio, you will need to create a
virtual directory unless you are using the default Web site physical directory.

To set up an IS virtual directory for ASP.NET, you must first have a directory on disk to be used for the
application. Of course, we assume that you also have IIS and the .NET Framework installed. In this
example, we'll use a sample directory created at C:\SampleApplication. To create the IIS virtual directory,
perform the following steps:

1.

On Windows 2000, select Programs from the Start menu, and then select Administrative Tools and
Internet Services Manager. If you are using Windows XP, select Control Panel from the Start menu.
Choose Performance And Maintenance, Administrative Tools, and then Internet Information
Services. Alternatively, you can type inetmgr at the prompt you see after selecting Run from the
Start menu.

Expand the local computer node followed by the Web Sites node.

Right-click the Default Web Site node. Select New and then Virtual Directory from the expanded
menu.

On the first page of the Virtual Directory Creation Wizard, click Next. Then enter the alias for the
application, which will be part of the URL path used to access the Web pages of the new
application. For example, you would type SampleApplication and the URL to get to the application
from that machine: http://localhost/SampleApplication. Click Next to continue.

Enter the physical location where the Web application will exist. In our example, we would use
C:\SampleApplication. Click Next to get to the Access Permission page.

Many any necessary changes to the security for the application. See Chapter 9 for detailed
information about security considerations. Click Next and then click Finish.

The IIS Virtual Directory now exists, and .ASPX pages that you place in the physical location
(C:\SampleApplication) are accessible from the newly created virtual directory at
http://MachineName/SampleApplication.

http://localhost/SampleApplication
http://MachineName/SampleApplication

Web.config Code Samples

Many of the discussions in this book evolve around configuration settings placed in configuration files. The
configuration data is inherited from application roots that already exist in the Web address. For example,
consider the sample URL http://localhost/SomeApplication/page.aspx. Some configuration data specified
in the machine.config file can be overridden in a web.config file placed in the physical directory of the
Default Web Site. Again, in the SomeApplication directory, settings can be modified in a web.config file.

To avoid a lot of code samples being named web.config, throughout the book we have used more
descriptive names for configuration files. When using the sample .config files, remember to rename them
to web.config, or the sample .ASPX pages will not behave as expected.

http://localhost/SomeApplication/page.aspx

Other Resources

The ASP.NET Web site (http://www.asp.net) provides up-to-date information on ASP.NET and hosts a
variety of discussion forums relating to ASP.NET and development with the .NET Framework. The
developer community works together on this site to ask and answer questions, and they take advantage of
an archive of previous discussion topics. The authors of this book, along with the rest of the ASP.NET
team, work directly with the community and enjoy receiving feedback, working through technical
challenges, and discussing potential features for future versions of ASP.NET. The forums can be
accessed directly at http://www.asp.net/forums.

http://www.asp.net
http://www.asp.net/forums

Support

We have worked diligently to ensure accuracy in this book. Microsoft Press provides corrections through
the World Wide Web at:

http://www.microsoft.com/mspress/support

The address to use to connect to the Microsoft Press Knowledge Base and submit a queryis:

http://www.microsoft.com/mspress/support/search.asp

Submit comments, questions, or ideas regarding this book to Microsoft Press using either of the following:
Postal Mail:

Microsoft Press

Attn: Microsoft ASP.NET Coding Strategies with the Microsoft
ASP.NET Team, Editor

One Microsoft Way

Redmond, WA 98052-6399

E-Mail:

MSINPUT@MICROSOFT.COM

Please note that the preceding addresses do not offer product support for ASP.NET or the .NET
Framework. For product support, please visit the Microsoft Product Standard Support Web site at:

http://support.microsoft.com

http://www.microsoft.com/mspress/support
http://www.microsoft.com/mspress/support/search.asp
http://support.microsoft.com

Chapter 1: ASP.NET Page Framework

Overview

In this chapter, we’ll examine the ASP.NET page framework, but before we get into the details, let's look
briefly at the big picture and history of Web development. When the user types a URL into the address bar
of the browser or clicks on a link, the client Web browser issues a request to the Web server. The Web
server processes the request and sends back a page of markup. The client browser receives the markup
and renders the page. For most activity on the Web, the markup language is still HTML, but in Chapter 4
we look at how ASP.NET supports Compact HTML (cHTML) and XML vocabularies such as WML and
XHT ML.

In the early days of Web development, pages on the server were static HTML. The Common Gateway
Interface (CGI) was created to provide a way to write programs that could handle client requests and be
executed by the Web server. CGI provided great flexibility, enabling developers to create Web applications
that could react dynamically based on user input as well as process business logic. However, it also
required developers to build complicated programs to deal with all aspects of generating the markup.

The next phase of Web development on Microsoft Windows platforms involved the Internet Server
Application Programmer’s Interface (ISAPI), which was introduced to give developers a better means for
interacting with the Web server. ISAPI applications are packaged in a DLL on the Microsoft Windows
operating system and can be used simultaneously by multiple threads. This was an improvement over CGI
on the Windows platform, because the process-per- request overhead was prohibitive. Still, the burden
was on the developer to deal with almost all aspects of the client interaction.

Microsoft then introduced Active Server Pages (ASP), which was an ISAPI but didn’t require the developer
to write C or C++ code to render HTML. Instead, the developer could use Microsoft JScript or Microsoft
Visual Basic Script (VBScript). But it wasn’t just the ability to write pages in an interpreted scripting
language that set Active Server Pages apart. ASP also provided a set of intrinsic objects for managing
cookies, getting server variables from the Web server, and accessing form data submitted by the user.
ASP even managed user sessions automatically. Essentially, it introduced an easy way to manage user
state, even though the underlying HTTP protocol was stateless. This was a great leap forward and quickly
set a standard for dynamic Web development. However, when you compare this model to the rich rapid
application development environment of Visual Basic, ASP seemed lacking.

The Microsoft team tackled the task of taking Web development to the next level by making the
environment richer, the intrinsic features more comprehensive, and the platform faster. What came next
was Microsoft ASP.NET, which is part of the new Microsoft NET Framework. Figure 1-1 shows how the
common language runtime (CLR), the first layer of the .NET Framework, is built on top of the operating
system. The CLR is an execution environment that provides for garbage collection and true language
interoperability. Components written for the .NET Framework in one language can easily be utilized from
another language. Beyond this, components written for the CLR are free from many of the memory
management chores that are the source of various programming problems. The CLR takes intermediate
language binaries, and just-in- time (JIT) compiles them for the platform. You no longer need to compile
code separately for different versions of Windows; the code will undergo the final machine-specific
compilation on demand. Microsoft provides compilers to generate intermediate language files from C#,
Visual Basic .NET, Microsoft JScript .NET and Microsoft J# .NET.

ASE_NET

Systemn.Web System.Data | | System.Mat | | System.Xmil

Bass Class Libraries

Common Languags Runtima

Cparating System

Figure 1-1: ASP.NET and the .NET Framework

InFigure 1-1 we see that on top of the CLR is a set of libraries that provide much of the base functionality
needed to accomplish basic development tasks: threading, input and output, math primitives, and string
manipulation. On top of these base class libraries are other features built into the .NET Framework,
including socket communications, data access, support for XML, and the System.Web namespaces in
which most of the ASP.NET and XML Web Services features exist. The classes of the .NET Framework
leverage each other to provide a sophisticated programming platform for developing both server-based
and client-based applications.

ASP.NET, as part of the .NET Framework, allows us to use the language of our choice in developing
dynamic Web applications and achieve better performance with this compiled code than the equivalent
pages written in interpreted script languages. ASP.NET provides an event-driven programming model on
top of the stateless HTTP protocol, allowing us to write richer applications with less code.

The page framework uses server controls, objects that encapsulate functionality, and user interface
elements. The server controls participate in the life cycle of a Web request and are the building blocks for
creating dynamic ASP.NET applications. Previously it would have been necessary to write lots of code to
restore the user’s view of the page, but ASP.NET can now carry the data between browser requests and
restore it automatically, making the server controls a more powerful primitive for Web development. In
Chapter 2 we look more closely at server controls, and in Chapter 3 we focus on server controls for
working with data. After that, we look at the mobile page and mobile controls that provide adaptive
rendering for targeting browsers in handheld devices and Web-enabled cell phones before looking in
more depth at the infrastructure features of ASP.NET.

In addition to the run time features of the ASP.NET page framework and controls, Microsoft Visual Studio
.NET provides an environment conducive to rapid application development, including support for source-
level debugging of Web applications and IntelliSense statement completion.

Understanding ASP.NET Request Processing

When a request is received by the Web server, Internet Information Services (IIS) must first determine whether
handling the request directly or the file extension is configured to be handled by an ISAPI extension DLL. Sever.
files are configured for the aspnet_isapi.dll including ASP.NET pages (.aspx), XML Web Services (.asmx), and
Handlers (.ashx). Figure 1-2 shows how a request for an .aspx page is processed.

.aspx Page
4@_.
HTTP HTTP Hardlér
Handter Factory
@._.
HTTP Modulas
| ol
HTTPRuntimea]
] E)
IS Web Sarver
| 1o
@

Intérns

Figure 1-2: ASP.NET request processing

Let's examine the process illustrated in Figure 1-2. The request for the .aspx page is made by the client Web br
The Web server parses the request and hands it off to the aspnet_isapi.dll for processing. The ASP.NET run tir
examines the request to determine which modules need to participate in the processing pipeline and which HT"
or HTTP handler factory will be given the request for processing.

The modules configured to participate in this request have an opportunity to modify the headers and output at s
stages during processing, both before and after the handler or handler factory has processed the request.

ASP.NET pages are configured for an HTTP handler factory, which generates and compiles pages to handle tt
The page is executed, including a set of virtual page methods and events for which the developer might have p
custom code. The Web server returns the collected output back to the Web client.

IHttpHandler Interface

In the ASP.NET processing architecture, the request is ultimately handled by an object that implements either t
IHttpHandler interface or the IHttpHandlerFactory interface. ASP.NET pages are handled by an IHttpHandlerF
which in turn instantiates and executes the page. The page itself implements IHttpHandler. To illustrate this, we
implement our own IHttpHandler in Code Listing 1-1, SimpleHandler.cs. The SimpleHandler program impleme
two elements of the IHttpHandler interface: the IsReusable property and the ProcessRequest method. By retur
for the IsReusable property, we indicate to the ASP.NET run time that a single instance of the handler canbe u
repeatedly. If we return false, a new instance must be created for every request.

Code Listing 1-1: SimpleHandler.cs

usi ng System
usi ng System Web;

nanespace Codi ngStrategies {

public class SinpleHandl er : |HtpHandl er {

public bool |sReusable {

get {
return true;
}

}

public void ProcessRequest (Htt pContext context) {
cont ext . Response. Wite("<htnm ><head><titl e>Si npl eHandl er</titl e></head><|
cont ext . Response. Wite("<h2>The tine is ");
cont ext . Response. Wi te(DateTi me. Now. ToString());
cont ext . Response. Wite(". </ h2></body></htm >");

Tip When implementing an IHttpHandler, you can get improved performance if ASP.NET is able to reuse ¢
instance of the handler. The object must be stateless to avoid introducing bugs related to multithreadin

The other interface member implemented in SimpleHandler.cs is the method that does the work. The Processl
method is passed an HttpContext from which it can access the ASP.NET processing intrinsics such as HttpReq
HttpResponse. In the SimpleHandler.cs sample in Code Listing 1-2, we render a simple HTML page that show.
current time on the server.

Code Listing 1-2 is a batch file for compiling the handler code into an assembly contained in a DLL. We specify
type is a library and include a reference to System.Web.dll, where the handler interface and ASP.NET intrinsic
are defined.

Code Listing 1-2: BuildSimpleHandler.bat

csc /target:library /reference: System Wb. dl |
/out: Codi ngStrategies.dl |l SinpleHandl er.cs

We also need to set up ASP.NET to use our handler instead of the regular IHttpHandlerFactory.Code Listing 1-
HandlerWeb.config, is a web.config file that adds our handler to the configuration system. By setting the verb a
an asterisk, we indicate that all HTTP verbs are eligible. The path indicates which type of request should go to t
handler. Here we specify the full page, time.axd. Requests for time.axd in this Web application will be routed to
SimpleHandler class. The path attribute also supports wildcards. We have chosen the .axd extension because i
mapped in IS to the ASP.NET ISAPI. You can create your own file extension for use in a handler, but you must
scriptmaps on the mappings tab of the Application Configuration dialog box in the Internet Information Services
Manager MMC snap-in. You can launch the snap-in from the command line by typing start inetmgr. Right- clic
site or application icon and select Properties to get the Properties dialog box When configuring a Web site, clic
Configuration button on the Home Directory tab of the dialog box to reach the Application Configuration dialog
reach it when working with an application, click the Configuration button on the Virtual Directory tab. The type a
the web.config file specifies the assembly and class that implement the IHttpHandler interface.

Code Listing 1-3: HandlerWeb.config

<configuration>
<system web>
<ht t pHandl er s>
<add verb="*" path="ti ne. axd"

t ype="Codi ngStr at egi es. Si npl eHandl er" />
</ htt pHandl er s>
</ system web>
</ configuration>

IHttpModule Interface

When a request is handled by the ASP.NET run time, in addition to selecting a final IHttpHandler or IHttpHandl¢
a pipeline of IHttpModules is created based on the machine and application configuration files. The IHttpModule
has just two methods, Dispose and Init. In the Init method, the module can add itself as a handler for events ex
the page or by other modules. For example, ASP.NET uses modules for authentication and exposes an event t
used by other modules or in the global.asax application code file. When the event occurs, code that has been r
as a handler for the event will be executed.

Part of the initial ASP.NET request processing is the creation of an HttpContext that is used throughout the rest
pipeline to access information about the request, and to utilize the intrinsic objects like HttpRequest,HttpRespol
HttpCache, and Session, just as we do in the SimpleHandler.

Tip The final implementation HitpHandler or HttpHandlerFactory might never be invoked if one of the Httpl
ends the request. This can minimize the load on the server when requests are serviced from the cache
request fails authentication or authorization checks, there is also no need to execute the handler.

The architecture of the ASP.NET request processing pipeline allows us to achieve the same type of functionalit
HttpModules as is available with more complex ISAPI filters, and we can do it with managed code, leveraging t
common language runtime. Code Listing 1-4, SimpleModule.cs, shows that an HttpModule can participate in ar
take over a request.

Code Listing 1-4: SimpleModule.cs

usi ng System
usi ng System Web;

nanespace Codi ngStrategies {
class SinpleMdule : |HtpMdule {

public void Init(HtpApplication application) {
appl i cation. Begi nRequest += new
Event Handl er (t hi s. Appl i cati on_Begi nRequest);
}

public void Dispose() {
}

public void Application_Begi nRequest (obj ect source, EventArgs e) {
Ht t pApplication application = (HttpApplication)source;
application. Cont ext. Response. Wite("a nodule can end the request");
appl i cati on. Cont ext. Response. End() ;

TheHttpModule must be registered with the ASP.NET configuration, much like the IHttpHandler.Code Listing 1-
ModuleWeb.config, is a web.config file with a single entry in the HttpModules section. This file does not replace
HttpModules configured in the machine.config but adds to that set.

Code Listing 1-5: ModuleWeb.config

<confi guration>
<system web>
<ht t pModul es>
<add nane="Si npl eModul e"
t ype="Codi ngStr at egi es. Si npl eMbdul e,
Codi ngSt r at egi es" />
</ ht t pModul es>
</ syst em web>
</ configuration>

In the Init method, which is called on application startup by ASP.NET, we register our EventHandler for the Beg
event. That EventHandler is then called for each request. For more details about the events that occur during e
request, see the section 'Understanding the ASP.NET Page Life Cycle' later in this chapter.

Tip The order in which HttpModules registered for an event are called is not guaranteed. Do not count on ¢
HttpModule being called before another.

The object passed to the BeginRequest event is an HitpApplication object. From this object, we access the
HttpResponse intrinsic, which we use to write output and then end the request.

Understanding the ASP.NET Page Life Cycle

We've seen that ultimately a Web request for an .aspx page handled by ASP.NET goesto an object that
implements the IHttpHandlerFactory interface. The pipeline created by ASP.NET to process the request
includes a set of IHttpModule objects that can participate in certain events. The ASP.NET
IHttpHandlerFactory object ultimately delegates execution to a Page class. The Page classes created by
ASP.NET are the result of generating IHttpHandler objects from the .aspx page itself, which can be a mix
of declarative server controls aswell as user code.

The page execution has a set of events that can be leveraged by user code in the page itself or from within
code in user controls (which will be discussed in more detail in Chapter 2). Much of the page developer’'s
code utilizes the set of page life-cycle events. We'll be using them in examples throughout the book,
beginning here. There are additional virtual page methods for which the developer can provide overrides.
What is different about these events is that by providing user code with the well-known name, the event
binding is performed automatically by ASP.NET, which further simplifies the mainstream scenario of
developers utilizing these events.

Page_Init

ThePage_Init method corresponds to the Init event and occurs very early in the life cycle. ASP.NET
utilizes this event for, among other things, processing posted form data to restore controls to the state they
were in on the previous request. In Code Listing 1-6, PageEvents.aspx demonstrates using this well-
known method to write directly to the output.

This event occurs early enough in the page life cycle that it is too early for much of the Web application
code you will be writing. Application functional code is better placed in the Page_Load method, after state
has been restored.

Page Load

Much of the Web application developer's code is placed in the Page_Load method. At this point, the
control tree is created and the properties have been restored to any values previously stored in viewstate.
Again, in Code Listing 1-6 is code for this method, which simply writes to the output stream, allowing us to
see when the events occur.

Code Listing 1-6: PageEvents.aspx

<script |anguage="C#" runat="server">
protected void Page Init(object o, EventArgs e) {
Response. Wite("Page Init nethod called
");

}

protected void Page Load(object o, EventArgs e) {
Response. Wite("Page_Load nethod called
");

}

protected void Page Unl oad(obj ect o, EventArgs e) {
[/ cannot use the Response object here, the page is unloading
/| Response. Wite("Page_Unl oad nmethod called
");
}
</script>
<form runat ="server">
<asp: |l abel runat="server" Text="output fromlabel server control"/>

</ forme

Page_Unload

After the page has executed and all other page and control events have been raised, the Unload event is
called. The Page_Unload method is ideal for closing any temporary connections or calling Dispose on
objects that would otherwise keep valuable operating system resources held until garbage collection.

When you view the output from the PageEvents.aspx in Figure 1-3, notice that the order of events is as you
would probably expect: first is the output from the Page_Init method, followed by that of the Page_Load
method. Next comes the output from the controls on the page. Although we have a call to Response Write
in the Page_Unload method, it is commented out. At the point that the Unload event occurs, the
HttpContxt no longer provides us with the ability to write to the output stream.

ﬂ- it Aecal el Hagabwerie mpe - Siciome'E infsiesl Eepleesr

et Tier e (Tar s s w [

I?ql_i.llr'-h-!-.:-"-
Fuge_Laad rerthet culnd

s Jumm bl serve oo

& e T

Figure 1-3: Page events output

Controlling Page Execution

The page makes a natural boundary for grouping pieces of the user interface (Ul) and application
functionality, but often we want to move between pages without user interaction. For example, it is
common to have situations in which you want to stop execution of the current page and move the user to
another page. This might be the result of a user choice that is detected in code, or it might be a way to
retire an application and get users automatically moved to the improved Web site. ASP.NET has several
ways of controlling page execution, each appropriate for different circumstances.

UsingResponse.Redirect

TheResponse.Redirect method is useful for getting the user to a different page. The HTTP status code
returned to the browser changes from the typical 200 to 302. The 302 status code is a signal to the
browser that it will receive a new location and should follow it to get to the content. Most browsers follow
the redirect directive immediately, and users will hardly notice that an extra request is taking place,
although there is a slight delay as the browser issues the second request. In Code Listing 1-7,
RedirectToMSN.aspx demonstrates how to use one of the two method sighatures of Response.Redirect.
The URL passed as a parameter is the MSN home page.

Code Listing 1-7: RedirectToMSN.aspx

<script | anguage="C#" runat="server">

protected void Page_Load(object o, EventArgs e) {
Response. Redirect ("http://ww. nmsn. con') ;

}

</script>

<form runat ="server">

You are being redirected to MSN. Cick this link to continue:
www. nsn. conx/ a>

</fornp

Although we have included content with a link to the new destination, most browsers follow the 302
redirect immediately, so the content is never actually seen by the user. The other version of
Response.Redirect takes a second Boolean parameter to indicate whether the remainder of the page
should be executed. When this second parameter is not given, the result is the same as though false were
specified. No matter which override is chosen, the page will end with a ThreadAbortException, which is
part of the normal ASP.NET processing for Response.Redirect. The exception occurs as the result of a
call to Response.End, which terminates the rest of the page execution. Allowing the rest of the page to
execute can be useful when you can detect the need to move the user to another page early but still want
code that will execute in a later part of the page life cycle to complete.

Tip Thereis a certain amount of overhead related to throwing exceptions in the .NET Framework.
Avoid throwing an excessive number of exceptions as part of the regular course of an application.

When using Response .Redirect, the browser must make two requests in order to display the final page to
the user. Although the delay might be marginal, the server and the user both pay a price for the round trip.

When a browser receives a 302 Redirect as the result of a GET request, and no form variables are being
posted, the browser can simply issue another GET request to the new location. However, when the
redirect response comes from a POST request, the browser must decide whether to submit the form
variables again to the new location. The HTTP specification states that the browser must first ask the user
for permission before posting form data again. Presumably to avoid this potentially confusing question,
most browsers follow the redirect without prompting the user and avoid the specification noncompliance by
making a GET request and not submitting any form data.

UsingServer.Transfer

Response.Redirect sends the user to a new page in the same application or to a different Web site
altogether. If you want to send the user to a Web page within the same application, Server.Transfer might
be a better choice. It functions in essentially the same way as Response.Redirect in that the current page
is aborted, a call to Response.End is made along with the corresponding ThreadAbortException being
thrown, and the new page is then executed. However, the extra round trip between client and server is
eliminated. With Response.Redirect, you can include a query string in the new location parameter, but the
form variables will not be available in the new page. Server.Transfer allows us to preserve the query string
and data submitted by the user. The page is executed without the user having any idea that anything other
than the original page completed.

Code Listing 1-8 demonstrates transferring page control to another page. In this case, we just give the
user a text box and perform the transfer in the OnClick handler for the form's button.

Code Listing 1-8: TransferSource.aspx

<script runat="server" | anguage="C#">
protected void DoTransfer(object o, EventArgs e) {
Server. Transfer (" Transf er Dest. aspx", true);
}
</script>
<form runat ="server">
I nput Somet hi ng: <asp:textbox id="theForm nput” runat="server" />
<asp: button type="submt" runat="server" Text="(Go"
Ond i ck="DoTransfer"/>
</fornp

The second parameter to the Transfer method indicates whether the form and query string should be
available in the destination page. If not specified, the default is to preserve the data. The destination page
is shown in Code Listing 1-9. TransferDest.aspx sets the value of a label to the value the user submitted to
the source page. Notice that we do this when IsPostBack is false. Although the source page was
processing a postback, the destination page is not treated as a postback. The value is carried in view state
for subsequent postbacks in which the Transfer handling logic is not involved.

Code Listing 1-9: TransferDest.aspx

<script |anguage="C#" runat="server">
protected void Page_Load(object o, EventArgs e) {
handl er Label . Text = HttpContext. Current. Handl er. ToString();
executionPat h. Text = Request. Current Executi onFil ePat h;
i f(!IsPostBack) {
t heLabel . Text =Ser ver . Ht m Encode(Request["t heForm nput”]);
}
}
</script>
<form runat ="server">
Handl er: <asp:|abel runat="server" id="handl erLabel™ />

Executi onPat h: <asp:|abel runat="server" id="executionPath"/>

<asp: | abel runat="server" id="thelLabel" Text="default text" />
<asp: button type="submit" runat="server" Text="PostBack" />
</fornp

We also display the name of the handler from the current HttpContext as well as the
CurrentExecutionFilePath from the Request intrinsic. When first transferred to the page, the handler name
andCurrentExecutionFilePath do not match. This is because the handler listed is still the compiled type of
the original request page, ASP.TransferSource_aspx, whereas CurrentExecutionFilePath represents the
source page being executed, TransferDest.aspx. When the button on the destination page is clicked, the
handler and the file path are again in sync.

UsingServer.Execute

ASP.NET provides another option for controlling page execution. The Server.Execute API transfers control
to another page, but only temporarily. When the page execution completes, control is returned to the
calling page. There is no call to Response.End and no associated ThreadAbortException. Although we've
pointed out the side effect of the exception, this side effect should not be your primary motivation in
choosing a particular API. Rather, you should be aware of what is causing exceptions so that real
problems do not go unnoticed.

Code Listing 1-10, Execute Page.aspx, uses Server.Execute to gather and display the output of another
executed page. The page being called, ExecutionFilePath.aspx, is shown in Code Listing 1-11. The first of
the two method signatures takes just the path to the target page; the second takes a TextWriter that
receives the output from the target page. In ExecutePage.aspx, we create a StringWriter to collect the
output and display it after we write the result of our own call to retrieve ExecutionFilePath.

Code Listing 1-10: ExecutePage.aspx

<% nport nanespace="System | O %

<script runat="server" |anguage="C#">

protected void Page Load(object o, EventArgs e) {
Response. Wite("the current execution file path is:");
Response. Wit e(Request. Current ExecutionFil ePath + "
");

Response. Wite("the Server. Execute file path is:");
StringWiter sw = new StringWiter();

Server. Execut e(" Executi onFi | ePat h. aspx", sw);
Response. Wite(sw. ToString() + "
");

}

</script>

The page output demonstrates that control returns to the calling page after the call to Server.Execute and
the original page continues its execution.

Code Listing 1-11: ExecutionFilePath.aspx

<script runat="server" | anguage="C#">
protected void Page_Load(object o, EventArgs e) {
Response. Wit e(Request. Current Executi onFi |l ePat h) ;

}

</script>

Tip Server.Transfer is essentially the equivalent of Response.End followed by a call to
Server.Execute.

Implementing a Wizard

In a Web application, you often need to walk the user through a series of steps—for example, to set up a
new account—to gather information for the application. This type of user interface is typical in Windows
applications. The user is presented with a set of pages that break down the bigger task into a series of
steps; these steps collect smaller sets of input. When the user finishes the final step in the set, all the
information has been gathered, and the task is completed.

In this section, we'll walk through two approaches for implementing the wizard functionality easily in
ASP.NET. There are pros and cons to both, so you might need only one or a combination of approaches
to accommodate your needs.

The first approach is to use a single page that leverages view state. The data being gathered is sent along
in the response for each request and returned on each postback. Code Listing 1-12,
SinglePageWizard.aspx, is an example of a single-page wizard. The page is constructed of several
panels; each panel represents a single step in the wizard. In this example, we gather only the user's name
in Step 1 and his favorite hobby in Step 2. The final panel displays the results gathered. On each request,
we explicitly set the panel’s visibility so that the user is viewing only a single wizard step.

Code Listing 1-12: SinglePageWizard.aspx

<%@Page | anguage="c#" runat="server" %
<script runat="server">
protected voi d Page_Load(object o, EventArgs e) {
stepl. Visible fal se;
step2.Visible = fal se;
step3. Visible = fal se;
i f(!lsPostBack) {
stepl.Visible = true;
return;

}

protected void CickStepl(object o, EventArgs e) {
step2.Visible = true;
}

protected void CickStep2(object o, EventArgs e) {
t heFi nal Narme. Text = theName. Text;
t heFi nal Hobby. Text = t heHobby. Text;
step3.Visible = true;

}

</script>
<form runat ="server">

<asp: panel id="stepl" runat="server">
Nane: <asp:textbox id="theNane" runat="server" />
<asp: button type="submit" id="submitStepl" runat="server" Text="Go"
onClick="dickStepl"/>
</ asp: panel >

<asp: panel id="step2" runat="server">
Hobby: <asp:textbox id="theHobby" runat="server"/>
<asp: button type="submit" id="submitStep2" runat="server" Text="Go"
onclick="dickStep2" />

</ asp: panel >

<asp: panel id="step3" runat="server">
Done!

Name: <asp:|abel id="theFinal Nanme" runat="server" />

Hobby: <asp: | abel id="theFi nal Hobby" runat="server" />

</ asp: panel >

</fornp

Because the wizard is a single page, the approach in Code Listing 1-12 has both advantages and
disadvantages. One advantage is simplicity. A small wizard can easily be implemented on a single page; it
doesn’t have to take explicit action along the way to store the accumulated input in session state or a back-
end database. Be aware that the data is carried in a hidden field of the HTML form managed by the
ASP.NET run time called view state. For every variable accumulated in the wizard, the size of the view
state will grow. This isn’t really a concern for user input of reasonable size, but as the amount of data
being gathered grows, an increasing view state might become a concern. The size of data being carried
along with each request can be problematic because it has an impact on performance and download time,
particularly when the user has a slower connection.

In addition to the potentially large view state size, all the control values must be carried between client and
server on postbacks, meaning that the control must be present in the control tree. This can be a limiting
factor. Controls created dynamically that are part of the wizard will need to be created on each
request—even when the controls are in an invisible panel, they need to be part of the control tree. There is
a certain performance hit both in terms of memory usage and execution overhead for the controls to be
instantiated and participate in the page processing. As the complexity of the wizard grows, so does the size
of the page, so we’'ll explore another option for gathering user input.

The second approach to writing a wizard moves us beyond the single page scenario. Just as in Active
Server Pages, ASP.NET provides intrinsic support for session-oriented storage. In Chapter 5, we will look
more closely at the different options for configuring session state support, ranging from the fastest in-
process option to back-end database storage that supports a Web farm. We'll also look at how it can be
configured to scale from the fastest in-process support to Web farm configurations with persistent storage
and even higher reliability. For this example, we aren’t concerned about how session state is configured;
we just need it to allow us to accumulate data for a single user as he progresses through the wizard,
without restricting him to a single page. For simplicity, we will duplicate the single-page wizard in multiple
pages. In Code Listing 1-13, MultiPageWizard_PageOne.aspx, the first page of the wizard gathers only the
user name. Notice that we aren’'t using a panel server control as we did in SinglePageWizard.aspx to
control visibility of the various steps. Instead, when the page is posted back, we store the data in session
and use Server.Transfer to get to the next step.

Code Listing 1-13: MultiPageWizard_PageOne.aspx

<%@age | anguage="c#" runat="server" Debug="true" %
<script runat="server">
protected void Page_Load(object o, EventArgs e) {
i f(IsPostBack) ({
Session["theNane"] = (string)theNane. Text;
Server. Transfer ("Ml ti PageW zard_PageTwo. aspx”, false);
}
}

</script>

<form runat="server">

Name: <asp:textbox id="theNane" runat="server" />
<asp: button type="submit" id="submtStepl” runat="server" Text="Go"/>
</fornp

After the user enters his name and clicks the button to submit the form, the IsPostBack property is true.
The value of the text box is stored in session, and the user is transferred to
MultiPageWizard PageTwo.aspx, as shown in Code Listing 1-14.

Code Listing 1-14: MultiPageWizard_PageTwo.aspx

<%@Page | anguage="c#" runat="server" %
<script runat="server">
protected void Page_Load(object o, EventArgs e) {
i f(IsPostBack) ({
Sessi on["t heHobby"] = theHobby. Text;
Server. Transfer ("Ml ti PageW zar d_PageFi nal . aspx");
}
}

</script>

<form runat ="server">

Hobby: <asp:textbox id="theHobby" runat="server"/>

<asp: button type="submit" id="subm tStep2" runat="server" Text="Co"/>
</ fornmp

MultiPageWizard _PageTwo.aspx is essentially the same as MultiPageWizard_PageOne.aspx. Again, we
take the hobby information submitted by the user and add it to the values being accumulated in the
HttpSession object.

Tip Add validators to the wizard pages that verify the set of expected values is in session. If all the
required values aren’t present, redirect the user to the step where the first missing piece is to be
submitted.

InCode Listing 1-15, MultiPageWizard_PageFinal.aspx, we pull the accumulated values out of session
and, for the sake of the example, display them. In areal-world wizard, you would no doubt have more
values to collect and would be performing some action with a back-end database.

Code Listing 1-15: MultiPageWizard PageFinal.aspx

<%@Page | anguage="c#" runat="server" %
<script runat="server">
protected voi d Page_Load(object o, EventArgs e) {
t heFi nal Nane. Text = (string) Session["theNanme"];
t heFi nal Hobby. Text = (string) Session["theHobby"];

}
</script>

<form runat ="server">
Done!

Nane: <asp:|label id="theFinal Nane" runat="server" [/>

Hobby: <asp: | abel id="theFi nal Hobby" runat="server" [/>

</ fornmp

Of course, as with the single-page wizard, there are pros and cons to the multi-page version. The data
submitted by the wizard is stored in session state, which utilizes more server resources, but it avoids the
need to send potentially significant quantities of data back and forth between the browser and the server.
The default time-out for individual sessions is 20 minutes, so a user who gets distracted in the middle of
his session can find that the data he already submitted is no longer available.

Tip Add validators at each step of the wizard to enforce the entering of correct input by the user. For
more information on validators, see “Controls for Validating User Input” in Chapter 2. Let the user
proceed only after the values accumulated to that point are satisfactory and errors are corrected,
because gathering missing information becomes more complicated after the user reaches the end
of the wizard.

Working With Dynamic Controls

One big advantage of ASP.NET pages is the ability to get powerful application functionality without writing
a lot of code. By simply including the tag for the server control on the page, the control is automatically
instantiated by the ASP.NET run time, the view state is managed, and the control’s events are fired. Of
course, sometimes you won'’t know that a control or set of controls will be needed until the page is running.
We can declare the controls and set the Visible property to false when the controls aren’t needed, but
there is performance overhead associated with a control as long as it exists. Alternatively, a control can be
created dynamically and added to the control tree.

When working with dynamically created controls, you must add them back to the control tree early enough
in the page life cycle to effectively participate in postback. Use the Init method on the page to create these
controls. The controls will then be able to manage events just as though they were placed on the page
declaratively.

Another challenge when working with controls dynamically is remembering information about the dynamic
controls. Of course, the view state of the controls themselves will function in the same way as static
controls, but you might need information about which controls need to be created during postback. The
dynamic controls must be created for the postback processing to handle the view state information they
stored in the previous request. Code Listing 1-16, DynamicT extbox.aspx, demonstrates creating a Textbox
control during the initial request. We record the fact that the control was created in the page view state.
During the postback, we examine that stored information, which lets us know that we need to recreate that
type of control so that it is part of the control tree and can handle the view state information that it saved
previously.

Code Listing 1-16: Dynamic Textbox.aspx

<%@Page | anguage="C#" debug="true" %
<script runat="server" | anguage="C#">
protected void Page_Init(object o, EventArgs e) {
i f(!lsPostBack) {
Cr eat eText Box() ;

}
el se {
i f (shoul dCreat eText Box == true) {
Cr eat eText Box() ;
}
}

}

protected override void LoadVi ewSt at e(obj ect savedState) {
i f(savedState !'= null) {
object[] state = (object[])savedState;
base. LoadVi ewSt at e(state[0]);
shoul dCr eat eText Box = (bool)state[1];

}

protected override object SaveViewState() {
object[] state = new object[2];
state[0] = base. SaveVi ewState();
state[1] = shoul dCr eat eText Box;
return state;

}

private void CreateTextBox() {

Text Box t = new Text Box();
t heForm Control s. Add(t);
shoul dCr eat eText Box = true;

}

private static bool shoul dCreat eText Box = fal se;
</script>
<form runat="server" id="theForm >

<asp: button runat="server" type="Submit" Text="Go" />
</ forne

The page view state is automatically sent to the client for us and posted back to the server on the
subsequent request. (We'll look at this in more detail in Chapter 2 when we discuss how server controls
work.) In this example, we are overriding the methods to add and retrieve our own piece of state
information and then delegating to the base class implementations to take care of the rest of the state.
There is no <asp:textbox> in the page itself, yet the textbox is present in the rendered output; if you enter
data in it and perform a postback, it tracks the posted data between requests. The textbox works normally
because the code in the page creates it and adds it to the Controls collection of the form, based on the
value stored in the page view state.

Summary

In this chapter, we looked at the ASP.NET Web development platform. We saw how to leverage the
infrastructure provided by the ASP.NET page framework to help us write sophisticated and dynamic Web
applications. We examined how the request pipeline is constructed and how we can create our own
IHttpHandlers to process requests and IHttpModules to participate in the request pipeline. You also
learned how to use events that are exposed on the page so that you can easily add your application logic
directly to the page, where we also are using the power of the ASP.NET declarative syntax to build pages
with server controls.

You saw how easy it is to leverage the built-in controls of ASP.NET to provide wizard-type functionality that
can gather data from the user, control page execution in code, and add controls to pages dynamically.
The page framework is the foundation on which we can rapidly develop rich Web applications that take
advantage of the powerful libraries of the .NET Framework.

Chapter 2: Server Controls

Overview

InChapter 1, we talked about the ASP.NET page framework and briefly discussed ASP.NET server
controls. In this chapter, we’ll look more closely at the server controls. Although we assume you have
some familiarity with ASP.NET, we will begin this chapter by introducing a few server control basics and
then look at some ways you can leverage that knowledge to accomplish the tasks associated with
developing dynamic Web applications.

The server control object encapsulates a discrete piece of application functionality and is also typically
responsible for producing the associated markup. The support for specifying a server control on a page is
a blending of the familiar declarative tag structure of HTML markup and the ability to manipulate the object
behavior at runtime in code.

Like the HTML page, an ASPX page is composed of a tree structure of elements. With a static HTML
page, the markup is read by the browser and rendered to the user. The content of an ASPX page is first
parsed into a tree of server controls that participate in the life cycle of the page, providing the opportunity to
dynamically produce the markup sent to the browser. In fact, an HT ML page can be turned into a server
page by simply changing the file extension to .ASPX. A page like this would consist entirely of literal
controls that render exactly as they appear in the source file, but this example illustrates why the server
control architecture should feel natural to a Web developer.

Code Listing 2-1, HtmIHelloWorld.htm, is a simple HTML file that demonstrates the simplicity of the server
controls concept.

Code Listing 2-1: HtmIHelloWorld.htm

<htm >
<forne
<i nput type="text" value="Hello" />
<i nput type="submt" val ue="Go"/>
</ forme
</htm >

If we rename the code in Code Listing 2-1 to HtmIHelloWorld.aspx, the markup sent to the client would be
exactly the same, but the page would be parsed and compiled into a page class on the server. When
requested, atree of controls is built. In this case, the control tree consists of just the page object and a
single literal control child that is the HT ML content specified in the page. However, the control tree opens
the door to manipulating the output dynamically. Later in this chapter, we’ll explore the life cycle of the
server-side events for the controls.

There are two major types of server controls: HTML controls and Web controls. HT ML controls provide a
quick way to leverage existing knowledge of HTML while allowing you to easily add and manipulate
dynamic features. Web controls typically have a bigger set of properties and methods that provide a higher
degree of functionality encapsulation and expose richer programming features.

HTML Controls

The HTML controls are a set of HTML elements that expose server events and can participate directly in
the control’s life cycle. The HT ML server controls are primarily designed for moving existing HTML content
to ASP.NET and for leveraging existing knowledge of HTML markup. These controls enable you to take
advantage of the rapid application development features of ASP.NET without rewriting applications and
losing the Web development efforts.

InCode Listing 2-2, HtmIControlsHelloWorld.aspx, we converted the code from HtmIHelloWworld.htm into
HTML server controls.

Code Listing 2-2: HtmIControlsHelloWorld.as px

<ht m >
<form runat ="server">
<i nput type="text" runat="server" value="Hello" />
<i nput type="submit" runat="server" val ue="Co" />
</ fornmp
</htm >

At first glance, the markup looks almost identical to the markup in Code Listing 2-1, except that we added
the ‘runat="server” attribute assignment to the form and input elements. The control tree has been
changed more significantly. Figure 2-1 shows the control tree built from this page. The literal controls
between HtmIForm, HtmlinputText, and HtmlIinputSubmit are the carriage returns from the source file.
Generally speaking, ASP.NET turns all elements that are not marked with ‘runat="server” into literal
controls and renders them to the client directly.

Page

— LiteralContraol

~| HtmiForm

— LiteralControl

— HtmllnputText

=~ LiteralControl

— HtmllinputSubmit

— LiteralControl

= LiteralControl

Figure 2-1: Control tree for HtmlControlsHelloWorld.aspx

You can see that the HTML server controls look like their familiar HT ML counterparts, which facilitates the

development of dynamic applications. The server controls expose events for which we can provide code.
This event- driven programming model has been key to meeting the demands of rapid application
development.Code Listing 2-3 adds to our previous example an event handler that is invoked when the
user clicks the Submit button. In this example, we simply change the value of the text box from Hello to
GoodBye when the form is submitted.

Tip A certain amount of overhead is associated with all server controls. To preserve application
performance when leveraging existing HTML content, do not turn HT ML elements into HTML
server controls unless you are taking advantage of server events.

Code Listing 2-3: HelloGoodbye.aspx

<script runat="server" | anguage="C#" >
protected void MySubm t Handl er (obj ect o, EventArgs e) {
i nput Text . Val ue = " GoodBye";

}
</script>
<htm >
<form runat ="server">
<i nput id="inputText" type="text" runat="server"
val ue="Hel | 0" />
<i nput type="submt" runat="server" val ue="Go"
onServer d i ck="M/Subm t Handl er"/ >
</fornpr
</htm >

ASP.NET does not include HT ML server control equivalents for all HTML elements. The purpose of the
provided set of server controls is to enable the server-side code interactions you would benefit most from.
The following are HTML elements for which there are corresponding HT ML server controls:

‘ <a> ‘ <input type=button>

‘ <button> ‘ <input type=submit>

‘ <form> ‘ <input type=reset>

‘ ‘ <input type=checkbox>
‘ <select> ‘ <input type=file>

‘ <table> ‘ <input type=hidden>

‘ <td> ‘ <input type=image>

‘ <th> ‘ <input type=radio>

‘ <tr> ‘ <input type=text>

‘ <textarea> ‘ <input type=password>

It is no coincidence that half of the HTML elements with HTML server control equivalents correspond to
theinput element. The input element expects data from the user, and the application typically must act on
the user-supplied data.

Web Controls

All server control classes inherit either directly or indirectly from the System.Web.Ul.Control base class.
The HTML controls inherit indirectly through the System.Web.ULHtmIControls.HtmIControl class. The
other type of ASP.NET server controls, the Web controls, inherit from the Control base class through a
different common base class: System.Web.Ul.WebControls.WebControl. The Web controls are a richer
set of controls than the HTML server controls. Because both types of controls are server controls, they
have the same fundamental capabilities:

m They expose events unique to the control, for which the developer can provide handlers.
m They automatically manage ViewState so that user input is maintained between requests.

m They participate in the page and control life cycle, allowing them to be manipulated dynamically in
code.

Web controls offer even more than their familiar HT ML element counterparts. For example, validation
controls simplify the process of checking user input. Other Web controls display lists of data as well as
bind to record sets from a database. In addition to user interaction controls such as the Button and Textbox
controls are more sophisticated controls such as Calendar and AdRotator.

Code Listing 2-4 demonstrates how a Web control can produce advanced rendering and provide events
for interacting with the user. In this example, the Label and Calendar Web controls are placed inside an
HTML form server control. You’'ll also notice an event handler for the calendar’'s SelectionChanged event.
In the event handler, we simply change the text of the label to display the newly selected date.

Code Listing 2-4: Calendar.aspx

<%@Page | anguage="C#" %
<script runat="server">
protected void Cal endar _Changed(obj ect o, EventArgs e) {
t heLabel . Text = "You selected " +
t heCal endar . Sel ect edDat e. ToShort Dat eStri ng();
}
</script>
<form runat ="server">
<asp: | abel id="theLabel" runat="server"
text="sel ect a date" />
<asp: cal endar id="theCal endar" runat="server"
OnSel ecti onChanged="Cal endar _Changed" />
</fornp

Figure 2-2 shows the page before and after a date has been selected. The calendar user interface (Ul) as
well as the logic for navigating between months is produced by the Web control. These updates are
accomplished transparently during automatic postbacks to the server that occur when the user makes a
selection. Notice that we didn't include a button in the form for submitting the calendar. The calendar days
and month navigation Ul render as links that submit the form.

Q- © 8B O Ot fremin Foete @ 30 5 [F

]t s e s = =

szhest o dat -
- ity 2003 E

2m Mem Tt Wed The Fa Em

& 84 i . d !

£E 7 & % 11 12

D 4 13 1 10 KB 13

4 0 8 2 ¥ -

a3 a8 x 1u 1 2

£ 14 ¢ £ 1 8§ 1 “

o [T Tr—

Tom pekvied WELOCET
= ey 2000 3
Wed Tl T Fa

-
o

% B R =
[g
=

v P B
W =

™
i
i

Figure 2-2: A page before and after selecting a date

ASP.NET Web Control Hierarchy

We've mentioned the different types of ASP.NET Web controls and pointed out that they inherit from a
common base class. Figure 2-3 shows the inheritance hierarchy. Notice again that the Web controls are
more focused on functional elements for Web development than the HTML server controls and familiar
client-side elements.

ES-.-E:EM.WE&'-.LII.CMH DII
Button

TextBox HEHSED&HLM I

I |
= 1
| L. | { ListControi |

LinkButt
=

Imags

ImageBuiton

—I DropDownlest

|
|
H ChechBostist |
|

-| RadicButtanList

-Ii.',u:-nupare'-'ahdatf.r

—ICu:.-I.uru'n."ail:htu-l

TableCell
TableHaagarCel

-I RegularEspeessionyalidator

|
|
H Rangevatidator |
|
|

—I ReguivedFigldvalidatos

Figure 2-3: ASP.NET Web control hierarchy

Three controls in Figure 2-3—BaseValidator,BaseDatalList, and the ListControl—are abstract classes
used to encapsulate functionality for the derived types. As such, they can't be instantiated directly. The
functionality for each of these controls is apparent from their names, so we won't go into details in this
chapter. We do, however, discuss the list controls and validator controls in more detail, and Chapter 3 is
devoted to the data controls.

Leveraging User Controls

As you can see, the ASP.NET Web controls provide a set of fundamental building blocks for building
dynamic Web applications. You can also use them to build more complex functionality for the entire site.
ASP.NET provides a simple means for encapsulating groups of controls in the user control model. User
controls are constructed just like ASPX pages, with event handlers and a control tree, but they utilize the
.ASCX file extension and aren’t requested directly by the user. Instead, they are included in the ASPX
page like a server control and are used as larger building blocks comprised of server controls for
application development. They provide a simple way to encapsulate a piece of functionality created with
other controls such that they can be re-used. User controls can expose properties, methods, and events
just like a server control but can be created declaratively instead of requiring you to compile a separate
control inheriting from Control or WebControl.

Code Listing 2-5 is a user control that we can use in other pages as a footer to display the time. Although
the code is simple, including the code and set of controls on many pages without encapsulating it all as a
user control might be tedious—particularly if you had to change the footer—because you'd have to edit
each page, cutting and pasting changes in numerous files. It would be an error-prone and unpleasant task
at best. The user control allows you to centralize code and control declarations for re-use.

Code Listing 2-5: CurrentTime.ascx

<script runat="server" |anguage="c#">
protected void Page_Load(object o, EventArgs e) {
ti meLabel . Text = DateTi me. Now. ToString();
}
</script>
<center>

<asp: | abel runat="server" id="tineLabel" style="color:red" />
</ b><br/ >
<i >Ti me brought to you by ASP. NET Codi ng Strategies</i>
</ center>

By encapsulating the functionality in an ASCX file, we can utilize it in multiple ASPX pages. Changes to the
user control are reflected in all pages that contain it. Code Listing 2-6 shows how to incorporate this user
control in a page.

Code Listing 2-6: IncludeCurrentTime.aspx

<%@Regi st er TagPrefi x="Codi ngStrategi es" TagName="Ti nme"
Src="CurrentTi me. ascx" %
<form runat ="server">
page content goes here

foll owed by the user control

<Codi ngStrat egi es: Ti ne runat="server" />
</fornp

Tip Remember that updating a user control will cause the compiled pages that reference the user
control to become invalidated. When the pages are next requested, they will have to be
recompiled.

Not only does the ASCX file offer us the advantage of encapsulating pieces of the application into
reusable pieces—it also allows us to cache user controls separately. Chapter 6 has more details about
utilizing the cache, but it’'s important to note here that user controls support the OutputCache directive. In
particular, read-only views of data in multiple pages of an application can benefit from being placed in a
user control that is temporarily cached independently from the containing page because doing so reduces
trips to the database.

The encapsulation in user controls goes beyond just including content from somewhere else in the page.
We can provide public properties, fields, and methods on the user control that can be used from the page
that utilizes the user control. In addition, we can hide members of the user control from the containing
page by setting the member-access modifiers. However, remember that the controls themselves are in the
control tree, and the page code is free to manipulate them at will. The user control in Code Listing 2-7
provides a public property setter that updates the color it is displaying.

Code Listing 2-7: FavoriteColor.ascx

<% nport nanespace="System Draw ng" %

<script runat="server" | anguage="C#">

protected Col or favoriteCol or = Col or. Bl ack;

protected void Page_Load(bject o, EventArgs e) {
t heLabel . Text = favoriteCol or. Nane;

}
public Color Color {
set {
favoriteCol or = val ue;
t heLabel . Text = favoriteCol or. Naneg;
t heLabel . ForeCol or = favoriteCol or;
}
}
</script>

<h2><asp: | abel id="thelLabel" runat="server"/></h2>

Code Listing 2-8 shows the page that uses the user control. In it, the user is given a text boxto enter a
favorite color. The name provided by the user is then turned into a color structure and set on the
FavoriteColor user control.

Code Listing 2-8: SetFavoriteColor.aspx

<% nport Nanespace="System Draw ng" %

<%@Regi st er TagPrefi x="Codi ngStrat egi es" TagNanme="Col or"
Src="FavoriteCol or.ascx" %

<script |anguage="C#" runat="server">

protected void Set Col or (object o, EventArgs e) {
Col or col or = Col or. FromNane(t heText box. Text);
col orControl . Col or = col or;

}

</script>

<form runat ="server">

Narme your favorite col or
<asp: textbox runat="server" id="theTextbox"
OnText Changed="Set Col or" Val ue="Bl ack"/>

Your favorite color is:
<Codi ngStr at egi es: Col or runat ="server"
i d="col orControl"™ />

<asp: button type="submit" runat="server" Text="Go" />
</ forne

Note The members of a user control in the output cache can't be accessed from pages that contain
the control. The output of the cached control will be included in the page, but the user control
object itself will not be available. Attempting to access it will result in an error message.

Extending Web Controls

In addition to using the HT ML server controls and the Web controls, you can create your own controls.
You can also choose from among an impressive market of third-party controls that provide features
not included in ASP.NET.

You can choose to inherit directly from Control or indirectly via the WebControl class. We won't begin
to cover the topic of writing your own controls in this book, but we can recommend another title,
Developing Microsoft ASP.NET Server Controls and Components by Nikhil Kothari and Vandana
Datye (Microsoft Press, 2002) to help you. The book covers in great detail the control architecture and
how to take advantage of it, and it includes information on providing design-time behavior to enhance
the developer’s work when using the control from Microsoft Visual Studio or another developer tool.

Debugging ASP.NET applications is covered in Chapter 10, but we’ll examine one related topic here.
Developers frequently look for quick ways to simply output a message. A typical way of doing this in Web
development is to use the browser to display a message box, which the user dismisses to continue
interacting with the page. Developers often get accustomed to the ease provided by the user controls, and
find in the documentation a MessageBox object. However, when you create one of these controls in code
(as you would on the client) and try to display it, nothing shows up. The .NET Framework has a
MessageBox object, but when you call its Show method in an ASPX page, the system tries to show the
object on the server, not on the client.

Code Listing 2-9 demonstrates including a client-side message box We have a server-side method
namedCreateClientSideMessageBox that takes a single string parameter. It writes out the JavaScript
code in the output to invoke the browser's alert method by using the string message passed in to the
server- side method. This alert method causes a client-side message box to be displayed, instead of
showing a message box on the server. Notice that we separate the last line of the script block. The /s is an
escape sequence that can cause a compilation failure, so we concatenate the strings to avoid the issue.

Code Listing 2-9: Alert.aspx

<scri pt | anguage="C#" runat="server">
protected voi d Page_Load(object o, EventArgs e) {
i f(1sPostBack) {
Creat eClient Si deMessageBox("I sPostBack is true");

}
el se {

Creat eClient Si deMessageBox("I sPostBack is false");
}

protected void CreateClientSi deMessageBox(string nessage) {
Response. Wite("<script |anguage=\"javascript\">");
Response. Wite("alert(\"" + nessage + "\");");
Response. Wite("</" + "script>");

}

</script>

<form runat ="server">
this page displays a client side nessage box

<asp: button runat="server" Text="go" />

</ fornme

Note If you have to import the System.Windows.Forms namespace into your page or Microsoft Visual
Studio .NET Web application project, chances are your code is using server-side resources that
have no visible desktop on which to be displayed. Thus, they must be disposed of to avoid
introducing resource issues under heavy load. Verify that you are not mistakenly trying to display
Ul elements on the server.

In Web applications, users commonly interact with a list of tems. Four ASP.NET list controls inherit from
the abstract ListControl base class. They differ in the user interface presented to the user and in the
constraints that they offer. The list controls contain a collection of Listitem objects that can be data-bound
(discussed in more detail in Chapter 3) or set directly as the inner text of the list controls. You can also
create the list items dynamically and add them to the control’s ltems collection. When the value property of
an item is not set explicitly, that control’s value will default to the Text property of the control. Let’s
compare the different types of list controls and the way the data is presented to the user.

The listitems in a CheckBoxList are presented as check boxes. Multiple items from the list can be selected
at the same time. In Code Listing 2-10, the CheckBoxList is populated declaratively. The control tracks
which items are selected, allowing us to provide an event handler that is fired when the selected items are
changed and posted back to the server; that is, the code reacts only when the user takes action that
changesthe selected items in the list. In the handler for the SelectedindexChanged event, we iterate over
all items in the list and output all that are selected. The code does not clear previous collections, leaving it
to the user to add and remove items at will. The ViewState management keeps track of the selected items
between requests and automatically restores them to their selected state during the next rendering.

Code Listing 2-10: CheckBoxList.aspx

<script | anguage="C#" runat="server">
protected voi d CheckBoxLi st Sel ecti onChanged(
object o, EventArgs e) {
bool val ueSet = fal se;
foreach(Listltemitemin | anguageCheckBoxList.Itens) {
if (item Selected) {
i f(valueSet) ({

favoritelLanguage. Text += ", " + item Text;
}
el se {

favoritelLanguage. Text = item Text;

val ueSet = true;
}

}
}

</script>

<form runat ="server">
<asp: CheckBoxLi st id="|anguageCheckBoxLi st" runat="server"
OnSel ect edl ndexChanged="CheckBoxLi st Sel ecti onChanged" >
<asp: Listltemrunat="server">C#</asp: Listltenr
<asp: Listltemrunat="server">VB. NET</asp: Listltenp
<asp:Listltemrunat="server">JScript.NET</asp: Listltenr
</ asp: CheckBoxLi st ><br/ >
Favorite Language:
<asp: | abel runat="server" id="favoritelLanguage"
styl e="col or: bl ue" Text="Not Set" />

<asp: button runat="server" Text="Submt"/>
</fornp

Notice in Code Listing 2-10 that we iterate over the collection of items in the OnSelectedindexChanged
event handler to ascertain the complete set of selected values.

Tip If the user interface supports mulle simultaneous selections, accessing Selectedltem,
Selectedindex, and SelectedValue will return the first item the control finds when it iterates over
the items. To get the complete set of selected items, loop through all tems from the list.

ListBox

The ListBox control, like CheckBoxList, also supports multiple simultaneous selections on the part of the
user, but these can be restricted to a single selection by setting the SelectionMode property to the Single
value of the ListSelectionMode enumeration. In Code Listing 2-11, the set of languages in Code Listing 2-
10 is in our list again, but this time we add the list items to the ListBox dynamically in the Page_Load event.
Notice that we need to add the items only in the initial request. The set of items is restored automatically
from ViewState during postbacks.

Code Listing 2-11: ListBox.aspx

<script | anguage="C#" runat="server">
protected void Page_Load(object o, EventArgs e) {
i f(!IsPostBack) {
Listltemitem
item= new Listltenm("CH");
| anguagelLi st Box. I tens. Add(item;
item = new Listltenm("VB. NET");
| anguagelLi st Box. I tens. Add(item;
item= new Listltem("JScript.NET");
| anguagelLi st Box. I tens. Add(item;
| anguageli st Box. Rows = 3;

}

protected void ListBoxSel ecti onChanged(obj ect o, EventArgs e) {
bool val ueSet = fal se;
foreach(Listltemitemin | anguagelLi stBox.Itenms) {
if (item Selected) {
i f(valueSet) {
favoritelLanguage. Text += ", " + item Text;
}
el se {
favoritelLanguage. Text = item Text;

val ueSet = true;

}
}

</script>
<form runat ="server">
<asp: Li st Box id="| anguagelLi st Box" runat="server"
Sel ecti onMode="rmnul ti pl e"
OnSel ect edl ndexChanged="Li st BoxSel ecti onChanged" />

Favorite Language:
<asp: | abel runat="server" id="favoritelLanguage"
styl e="col or: bl ue" Text="Not Set" />

<asp: button runat="server" Text="Submt"/>
</fornp

We set the Rows property to the number of items from the list. Of course, this wouldn't be a suitable
approach when the list contains a lot of items because the Rows property corresponds to the number of
items from the list that are displayed without scrolling. Vertical scroll bars are provided automatically when
the number of items in the list exceeds the row count.

Tip ltems added to a list control are carried between client and server in ViewState. If the set of items
is a significant size, consider disabling ViewState. That way the control will not bloat the payload by
unnecessarily carrying the ViewState in a round trip between client and server. In this case, be
aware that the selected items are no longer available, so you must provide code to ascertain when
the selected itemswere changed.

DropDownList

The DropDownlList provides a compact approach for selecting a single item from a list. In the other lists,
you start with a default of no selection, but the DropDownList differs in that an item from the list is always
selected. In Code Listing 2-12, we use the previous example of selecting a favorite language but instead
use the DropDownlList, explicitly initializing the label of the selected language with the selected item. Even
though we didn’t set the Selected property of any item in the list, the first tem added takes on this value.

Also important to note in Code Listing 2-12 is that the text of a Listltem is set to the content of the Value
attribute only when a value is not specified in the body of the Listitem. In DropDownList.aspx, we set unique
values and display those instead. Doing this is particularly useful when working with database back ends in
which the friendly text displayed to the user might be only a convenience and the important field is
available as the Listitem value.

Tip To create a drop-down list that does not appear to have an initially selected value, add an item to
the top of the list that is selected by default and corresponds to no user selection.

Code Listing 2-12: DropDownList.aspx

<script |anguage="C#" runat="server">
protected void Page_Load(object o, EventArgs e) {
i f(!IsPostBack) {
Listltemitem
item= new Listltem("C#", "1");
| anguageDr opDownLi st . I tens. Add(iten);
item = new Listltem("VB. NET", "2");
| anguageDr opDownLi st . I tens. Add(iten);

item= new Listltem("JScript.NET", "3");
| anguageDr opDownLi st. Itens. Add(iten);

favoritelLanguage. Text
= | anguageDr opDownlLi st . Sel ect edl t em Val ue;

}

protected voi d DropDownLi st Sel ecti onChanged(obj ect o, EventArgs e) {
favoritelLanguage. Text
= | anguageDr opDownLi st . Sel ect edl t em Val ue;
}
</script>
<form runat ="server">
<asp: DropDownlLi st i d="I|anguageDr opDownLi st" runat="server"
OnSel ect edl ndexChanged="Dr opDownLi st Sel ecti onChanged" >
</ asp: Dr opDownLi st ><br/ >
Favorite Language:
<asp: | abel runat="server" id="favoritelLanguage"
styl e="col or: bl ue" />

<asp: button runat="server" Text="Submt"/>
</fornp

RadioButtonList

The RadioButtonList control, like the DropDownList control, provides an interface for the user to select a
single item from a list. With this rendering, the user is presented with a set of radio buttons from which to
make a single selection. When an item is selected, the previously selected item is cleared. The
SelectedindexChanged event is not fired until the form is posted back to the server. The user is thus free
to change the value on the page without invoking the server- side handler until some other action on the
page causes a postback.

Code Listing 2-13 is another example of selecting a favorite language. Notice that we do not try to access
theSelecteditem property of the RadioButtonList control until the SelectedindexChanged event handler.
Until the user makes a selection, or Selectedindex is set explicitly in code, the Selecteditem property is
null.

Code Listing 2-13: RadioButtonList.aspx

<script |anguage="C#" runat="server">
protected voi d Page_Load(object o, EventArgs e) {
i f(!lsPostBack) {
Listltemitem
item= new Listltem("C#", "1");
| anguageRadi oButtonList.|Itens. Add(item;
item= new Listlten("VB. NET", "2");
| anguageRadi oButtonList.|Itens. Add(item;
item= new Listltenm("JScript.NET", "3");
| anguageRadi oButtonList.|Itens. Add(item;

}

protected voi d DropDownLi st Sel ecti onChanged(obj ect o,
Event Args e) {

favoritelLanguage. Text
= | anguageRadi oBut t onLi st . Sel ect edl t em Val ue;
}
</script>
<form runat ="server">
<asp: Radi oButt onLi st i d="I| anguageRadi oButtonLi st"
runat ="server"
OnSel ect edl ndexChanged="Dr opDownLi st Sel ecti onChanged" >
</ asp: Radi oBut t onLi st >

Favorite Language:
<asp: | abel runat="server" id="favoritelLanguage"
styl e="col or: bl ue" />

<asp: button runat="server" Text="Submt"/>
</fornp

Figure 2-4 shows the default appearance of the four ASP.NET list controls. Each is filled with the sample
set of NET Framework languages used in the previous examples in this chapter.

3 it Aecalbeni AL inie sps . iicrma bmeresl Lxpierer

P Ta———— « Eon

Ul Bosllbot LinBex

e} (]
o WHRET
VEHET Bt NST

Droplhevml i Hedis Busreulin
L] - o

O Mg FET

Figure 2-4: Rendering of the ASP.NET list controls

Controls for Validating User Input

A large percentage of the code in a typical application is devoted to validating the input received from the
user. ASP.NET dedicates five server controls to making this step more manageable:
RequiredFieldValidator, CompareValidator, RangeValidator, RegularExpressionValidator, and
CustomValidator. These validation controls all inherit from the abstract BaseValidator class, whichis
derived from the Label class. An additional control can be used in conjunction with the validators,
ValidationSummary, to present the set of errors in a cohesive and consistent manner.

Each of these validation controls has a ControlToValidate property used to set the ID of the target control.
When the form is posted, the Validate method is called automatically; when validation fails, the
ErrorMessage text is displayed. For some browsers, the validation controls are able to take advantage of
client- side script to perform the validation check and display an error message without completing the
postback.

Tip If necessary, you can disable client-side validation by using the Page directive’s ClientTarget
attribute. Setting this directive to downlevel causes ASP.NET to treat the browser as though it does
not support JScript.

TheDisplay property is used to indicate whether space should be reserved in the rendering for the error
message. It can be set to one of the two ValidatorDisplay enumeration values: Static or Dynamic. The
Static setting, where space is allocated but not immediately filled, works only when the client supports
client-side scripting and the Page directive’s ClientTarget attribute has not been set to downlevel.

RequiredFieldValidator

The RequiredFieldValidator control enforces data entry on the part of the user. No constraints are placed
on the value of the data provided, but some type of data must be entered. Code Listing 2-14 demonstrates
using the RequiredFieldValidator control to ensure that data has been entered for an e-mail address.

Code Listing 2-14: EmailRequired.aspx

<form runat ="server">
Pl ease enter your enmil address
<asp: Requi redFi el dval i dat or runat ="server" id="requiredl"
Cont r ol ToVal i dat e="enai | Text box"
Error Message="emai | required" Display="Static" />
<asp: Text box runat="server" id="enmnil Text box"/>
<asp: button type="submit" runat="server" Text="Submt" />
</ fornme

Note When used with sophisticated clients, client-side validation can reduce server load and improve
the customer experience by providing immediate feedback about a problem without issuing a
request to the server.

CompareValidator

The CompareValidator control can check against static or dynamic values. In addition, it can compare the
value with the value of another control. To compare with a value, use the ValueToCompare property.
Switch to the ControlToCompare property to use the value of another control from the page. The use of
these properties is mutually exclusive. Code Listing 2-15 demonstrates using the CompareValidator
control to check that the provided string, when converted to an integer, is greater than or equal to 18.

Code Listing 2-15: CompareValidator.aspx

<form runat ="server">
Enter your age:
<asp: ConpareVal i dator runat="server" Type="integer"
Val ueToConpar e="18" Control ToVal i dat e="ageText Box"
Error Message="Must be 18 to vote."
Oper at or =" Gr eat er ThanEqual "/ >
<asp: Text Box runat = "server" id="ageTextBox" />
<asp: Button type="submit" runat="server" Text="Submt" />
</fornp

Theoperator property can be set to any of the values from the ValidationCompareOperator enumeration:
Equal,NotEqual,GreaterThan,GreaterThanEqual,LessThan,LessThanEqual, and DataTypeCheck. The
DataTypeCheck operator is an interesting operator that can be applied in unique ways. Normally, the
value of the control being validated is converted to the type specified by the Type property, and an
exception is thrown if the conversion fails. The DataTypeCheck operator provides a means of explicitly
checking that the type entered can be converted, but it does not cause an exception to be thrown for illegal
conversions. The ValueToCompare and ControlToCompare properties are not used, even when specified,
when the validator’s operator property is set to DataTypeCheck. (Note that if the operator property is not
specified, the default is to check for value equality.)

RangeValidator

The RangeValidator control has properties for specifying minimum and maximum values. The value being
confirmed must fall between those values inclusive of the range limits. In Code Listing 2-16 we add a
programmatic check against the validator. Once the data is found to be valid against the coded
constraints, the instructions are changed to provide more appropriate information.

Code Listing 2-16: RangeValidator.aspx

<script runat="server" |anguage="C#" >
protected void Page_Load(object o, EventArgs e) {
i f(lsPostBack && rangeValidator.lsValid){

message. Text = "Thanks, see you in Septenber.";
}
el se {
message. Text = "Please start vacations on 2003/08/01";
}
}
</script>

<form runat ="server">
Enter your desired vacation start date:
<asp: Text box runat="server" id="theDate" />
<asp: RangeVal i dat or runat="server" id="rangeValidator"
Cont rol ToVal i dat e="t heDat e"
Error Message="vacati ons nust start on August 1st"
Type="Dat e" M ni nmunVal ue="2003/08/01"
Maxi munval ue="2003/ 08/ 01"/ >

<asp: | abel runat="server" id="nessage" />

<asp: button type="submit" runat="server" Text="Submt" />
</forne

RegularExpressionValidator

The ability to use regular expressions in validators opens up great possibilities for powerful input checking
without writing lots of code. The RegularExpressionValidator control accepts a string in the
ValidationExpression property that is applied to the input contained in the control specified by the
ControlToValidate property. A new regular expression is created using ValidationExpression, and the
value is tested for conformity. If you've written code to verify that an e- mail address does indeed appear to
be an e-mail address without using regular expressions, you'll appreciate the sample address validation in
Code Listing 2- 17. Notice that an empty string will pass the regular expression in the sample. Use a
RegularExpressionValidator in conjunction with a RequiredFieldValidator to ensure input. In many
circumstances, the combination of several validators is simpler than producing a single regular expression
that accounts for all the desired validity checks.

Code Listing 2-17: RegularExpressionValidator.aspx

<form runat ="server">

Enter your emmil address, which will be sold to third parties:
<asp:textbox id="emnil Address" runat="server" />

<asp: Regul ar Expr essi onVal i dat or runat ="server"”

Val i dat i onExpressi on

S\NwH([-+]V w) *@w([- T\ w) SN N ([-]V we)

Cont rol ToVal i dat e="enuai | Addr ess™

Error Message="At |east nake it look like a real address."/>

<asp: button type="submt" runat="server" Text="Submt" />
</fornp

CustomValidator

The CustomValidator control differs from the other validators in that it lets you provide custom client-side
and server-side validation code. The ClientValidationFunction property can be set to a script block string
that will be passed through to the browser for execution when the form is being submitted. If the custom

code sets the argument object’s IsValid property to false, the form will not be submitted.

The value of the control specified in the ControlToValidate property is passed to the custom validation
code as the Value property of the ServerValidateEventArgs parameter. In Code Listing 2-18, we provide
an event handler for the OnServerValidate event that demonstrates accessing the value and setting the
IsValid property of the same object to indicate whether the user's input has passed scrutiny. In this
example, the user can't succeed because we always set IsValid to false and customize the ErrorMessage
to encourage the user to modify her input no matter what she enters.

Code Listing 2-18: CustomValidator.aspx

<script runat="server" |anguage="C#">
protected void Server AddMVbr eVal i dati on(obj ect o,
Server Val i dat eEvent Args e) {
try {
/I whatever they enter, it is insufficient by one
int thelnput = Int32. Parse(e. Val ue);
if (thelnput < 0) {
t heVval i dat or. Err or Message
= "pl ease enter a positive val ue";

}

el se {
t heval i dator. Error Message = "pl ease enter at |east "
+ (thelnput + 1).ToString();
}
}
catch {
}
e.lsvalid = fal se;
}
</script>

<form runat ="server">
Enter the quantity:
<asp:textbox runat="server" id="quantity" />
<asp: Custonwal i dator runat="server" id="theValidator"”
Control ToVval i dat e="quantity"
OnServer Val i dat e=" Ser ver AddMor eVal i dati on"
Error Message="Try Agai n"/>

<asp: | abel runat="server" id="theFeedback"/>

<asp: button type="submt" runat="server" Text="Submt" />
</ forne

Be aware that the client script provided for the CustomValidator control should act only as the first line of
defense in the validation work. A malicious user can get around the script code and post bogus data
directly to the server.

Tip Always verify the data received by the server, even when client- side validation code has been
provided. You can't safely assume anything—the client might not have run the code, and the user
might have constructed a malicious request by hand with values that would not pass the
examination of the client-side code.

ValidationSummary

As you've learned, when verifying user input, the validation controls can save you lines and lines of custom
code. In many cases, you will add several validators to the page for a field requiring a single input: a
RequiredField validator control to enforce the submission of data as well as a RangeValidator or
CustomValidator control to more closely scrutinize the data. The proliferation of error messages on a
page can be somewhat daunting for the user, particularly if the Display property is dynamic, which causes
the HT ML elements to potentially shift slightly based on the presence of error messages. The
ValidationSummary control coalesces the page’s error messages into a central location. The control's
HeaderText is displayed at the top of the error message list, which is generated from the controls failing
validation.

Uploading a File

A less common but important functionality to offer is a way for the user to upload a file to the server. Often,
this task is the foundation upon which Web applications are built. If the user is not acting on server data
from a back-end database, he might be working on having the server act on files uploaded by the server.
The ASP.NET control for enabling this functionality is from the set of HTML controls. The HtmlInputFile
control requires that we modify the form element so that the browser will be able to submit the file.

The first step is to consider the impact on the server of allowing usersto upload files. This is the kind of
functionality that is quickly discovered by inquisitive anonymous users and can sometimes lead to a
barrage of large files or file upload requests that don’'t seem to make progress. Consider restricting access
to the Web root in which file upload occurs only for authenticated users. Chapter 8 discusses in detail the
various types of authentication supported by ASP.NET. By denying anonymous users access to the site,
you can eliminate big problems. Users seem to behave better when their actions can be traced back to
them, and with the logging capabilities of IIS, you can easily ascertain the source of inappropriate uploads.

The second step is to configure the application for the maximum supported file size for upload. Consider
the amount of storage that is allocated for housing the uploaded files. The httpRuntime element contains a
maxRequestLength attribute that corresponds to the number of kilobytes a user can upload or post before
receiving an error. The default is 4096 KB. Code Listing 2-19 is a web.config file that limits the request
length to 2 MB. If the size of the uploaded files is assured to be significantly smaller, consider reducing this
from the default 4 MB. If the limit will increase, seriously consider the impact on performance if you were to
buffer the upload files and write them to disk.

Code Listing 2-19: RequestLengthWeb.config

<confi guration>
<system web>
<htt pRunti ne naxRequest Lengt h="2048" />
</ syst em web>
</ configuration>

Tip Use the SaveAs method of the PostedFile member of the HtmI- InputFile control to specify where
the file should be placed on disk. Target a directory that exists on a separate partition, where filling
the partition will have minimum impact on the operations of the server.

The third and final step in preparing to handle the uploading of files is to configure a location with
permissions in which the ASP.NET worker process can write files. (In Chapter 8, you’ll look at security
mechanisms and user impersonation and also examine directory write privieges and identity.) Isolate the
save location from other applications and operating system files to guard against overwriting an existing
file.

Code Listing 2-20 demonstrates setting the form element's enctype attribute to the correct type and
includes adding the HTML server control to enable file uploads, via the runat attribute. The code that saves
the file from memory to disk simply gets the current time in milliseconds, but note that this doesn't scale.
As unlikely as it might seem, you can'’t safely assume that two users couldn’t cause this code to execute
simultaneously.

Code Listing 2-20: UploadFile.aspx

<script |anguage="C#" runat="server">
protected void PhotoSubm t(object o, EventArgs e) {
i f(thePhoto.PostedFile !'= null) {

try {

/1 does NOT handle nmultiple users upl oading at
/1l exactly the sanme tinme
string filepath
= "C\\tenmp\\" + DateTi nme. Now. Ti cks. ToString();
t hePhot o. Post edFi | e. SaveAs(fi |l epat h);

status. Text = "File saved as " + filepath;
}
catch {
status. Text = "An Error occurred processing the file.";
status. Text += " Please try again.";
}
}
}
</script>

<form runat="server" enctype="nultipart/formdata">
Pl ease select an inmage to submt:
<i nput id="thePhoto" type="file" runat="server">

<i nput type="button" runat="server" val ue="Proceed"
OnServer d i ck="Phot oSubmit" />
<asp: | abel runat="server" id="status" />
</fornp

Tip If you need to generate random numbers in your application, create a Random object and store it
in application scope. The object is seeded when it is created and can then be used throughout the
application to get differing values easily.

Using ViewState with Sensitive Data

By now, you're aware that ASP.NET maintains state between requests in the stateless HTTP protocol.
How does this work? The process is actually straightforward once you get a feel for what is happening
behind the scenes. Torecall the previous state, each control can contribute some ViewState that it needs
to have access to when the postback occurs. This ViewState from the page controls is put together into a
hidden form field and sent to the client. When the page is posted back to the server, the ViewState is
broken up and given back to the controls that asked for it to be saved. When you look at the source of a
page in the browser, you'll see that the ViewState data is contained in a hidden form field that is not as
easily readable as you might have expected. This is for two reasons. First, the data is base64-encoded for
transmission to and from the client. By simply base64-decoding it, you can easily see the real values.
Second, the ViewState data is hashed with a server key in what is referred to as the ViewState MAC. This
guards against users modifying the ViewState and posting data back to the servers that differs from what
was sent.

Encoding and hashing the ViewState is not equivalent to encrypting the data. Data encryption is
computationally expensive and is therefore not the default for ViewState. ASP.NET does provide support
for automatically encrypting and decrypting the ViewState. Always make sure that the ViewState MAC is
enabled when you are using ViewState. When working with confidential data, be sure that the ViewState
MAC is enabled, and set the machineKey validation attribute to 3DES. ASP.NET then automatically
encrypts and decrypts the page ViewState, protecting it from prying eyes and from client-side tampering.
Of course, using Secure Sockets Layer (SSL) on the page gives an even greater degree of protection
against any information being discovered by someone watching data go by.

Code Listing 2-21 is a sample web.config file that sets the enableViewStateMAC key to true, which is the
default despite the comment in machine.config that says otherwise. It also sets the option to enable
encryption by setting the validation algorithm to Triple DES. Note that setting the validation attribute to
3DES causes encryption. The validation against ViewState tampering is actually controlled by the
enableViewStateMac attribute.

Code Listing 2-21: EncryptionWeb.config

<configuration>
<system web>
<pages enabl eVi ewSt at eMac="true" />
<nmachi neKey val i dati on="3DES" />
</ syst em web>
</ configuration>

Tip When deploying in a Web farm without server affinity (meaning that for each request, a client
session can be handled by a different server), the validation key must be set explicitly and
synchronized between the machines. If the default AutoGenerate setting is used, postbacks
handled by a machine other than the one in which the ViewState was generated will not be
processed correctly, and the user will get an error.

Summary

In this chapter, we examined the ASP.NET server controls—the two main types of controls included as
part of ASP.NET, the HTML server controls, and the Web controls. The HTML server controls let you
rapidly move to server-side development because you can take advantage of your knowledge of HTML
elements. The Web controls provide a richer abstraction but also allow event- driven programming.

We looked at the User control model for encapsulating pieces of a Web application and discussed the
opportunities for third parties to create and sell additional Web application programming elements that
plug directly into Visual Studio .NET.

We examined the ASP.NET Web controls associated with lists and user selection as well as the validation
controls, which greatly reduce the amount of code necessary to ensure that user input conforms to the
required level of quality.

We finished this chapter by demonstrating how to use ASP.NET to manage file uploads and how to enable
validation and encryption to include sensitive data in our controls, protect it from prying eyes, and guard
against tampering. In the next chapter, we will look at the data-binding mechanism of ASP.NET and how
to work with back-end databases to provide users with sophisticated data access.

Chapter 3: Data Controls

Overview

Data is at the heart of all applications. Granted, there are exceptions to this statement, but more often than
not, Web applications are used for viewing, searching, and updating data. In this chapter, we'll look at the
features of ASP.NET that focus on binding user interface elements to data. Because binding to records
from a sample database would unnecessarily complicate our sample code and detract from the focus on
data controls, we create small datasets where appropriate directly in the page and bind to them. In
practice, of course, your data would be retrieved from calls to middle-tier business objects or by accessing
a back-end database directly.

Connecting data to server controls is referred to as data-binding. In Code Listing 3-1, we data-bind to a
field declared on the page. In the Page_Load method, we set the theTime variable to the current time and
then call the DataBind method on the page. Note the <%# syntax (it is not censored text) prior to the
variable name. This code sequence is an indicator to ASP.NET that what follows is code that the ASP.NET
page parser will inject into the page. That code-called a data-binding expression-is then called when the
DataBind operation is performed on the page.

Code Listing 3-1: DataBindField.aspx

<script |anguage="C#" runat="server">

Dat eTi me t heTi ne;

protected void Page Load(object o, EventArgs e) {
theTi me = Dat eTi ne. Now,
Page. Dat aBi nd() ;

}

</script>

The tine is: <% theTinme %

Figure 3-1 shows part of the code that ASP.NET generates for Code Listing 3-1. (Remember that this
code is automatically generated and is not guaranteed to be consistent between versions of ASP.NET.)
When DataBindField.aspx is executed, the BuildControlTree method is called. This method calls another
automatically generated method (which has a mangled name) to build the data- bound string, which is
accomplished using an instance of the DataBoundLiteralControl class. This method attaches an event
handler to the newly created DataBoundLiteralControl for the DataBinding event. The Page_Load method
calls the DataBind method, which then invokes this event handler code. The event handler calls the
SetDataBoundString method on the original DataBoundLiteralControl to get the value of the field being
used. The Text property of DataBoundLiteralControl is finally set to the field's value, which is displayed
when the control is rendered.

3 Lerpilaion Lirae - Mizrrsolf irgsiesl Laplsrar

b wnnd e LaCrver e Tvss fy wtas. ik 8T Crartenl

Fide 1“1l metpn st a AT 0 | s
$1k 8. B 1 dGcadrn]_corkrel 20

&
1

#lian fefu
'l (1. TR

line
Sy vt], PR Ao cRae e Rer - (S, Wk L TP ks e J e 13|

#Mise 1 “e pai ptadarrm® | M ol -

L
L
L
L
L
i
L
L
i
|
|
L
L
L
i
i
i
L
L
L . i
L Sarpero k3 & erteds ahlit joct (i,
L
L
L

L] wline GeradlT
1 o e £
LA LaO:

-I_:igure 3-1: Code generated for data-binding a page field i
To display a simple value, the automatically generated code for the simple ASPX page shown in Code

Listing 3-1 must seem like overkill. After all, we're already writing code to set the value for the field, and it's
trivial to add another line to set the Text property of a control directly.

We can begin to see more power in the databinding construct in Code Listing 3-2. In this example, the
expression is expanded to include values from two server controls on the page. Because we are assuming
that the controls are integers, we really should validate the datatype, as discussed in Chapter 2.

Code Listing 3-2: DataBindControlValue.aspx

<script runat="server" | anguage="C#">
protected void Page_Load(object o, EventArgs e) {
i f(IsPostBack) {
Page. Dat aBi nd() ;
}
}

</script>
<form runat ="server">
Add two nunbers:
<asp: Text Box runat="server" id="operandl" /> +
<asp: Text Box runat="server" id="operand2" />

<asp: Button type="submit" runat="server" Text="Subnmit" />

The Dat aBound result =
<%t | nt32. Parse(operandl. Text) + |Int32.Parse(operand2. Text) %
</ fornmp

Code Listing 3-2 shows that data-binding offers a shortcut for simple coding expressions or method
invocations. You don't have to declare a server control explicitly, provide code elsewhere to collect the
values from the sources, and then assign the result. Instead, the data-binding support allows us to easily
declare the expression inline. Notice that the Page_Load method in the example performsthe DataBind
operation only when the page is a postback. Because we provide no default values for the textbox
controls, we wait until the user has had a chance to post their inputs. Often, the scenario is reversed and
the data-bind operation is performed only when the request is not a postback. When a control can carry
the data it is bound to between requests in ViewState, you can avoid performing expensive calculations or
database operations again.

Tip Use data-binding to declaratively control the display of values combined from the value of other
controls.

Code Listing 3-3 demonstrates how data-binding also supports invoking methods automatically. In this
example, input is gathered from the user. The use of validators assures us that some value has been
provided and that it is a positive number and sufficiently small to calculate its factorial quickly. The data-
binding expression is code to invoke the CalculateFactorial method. The CalculateFactorial method
expects an integer type and returns a double, so the data-binding expression takes care of the type
conversions to and from the string.

Code Listing 3-3: DataBindMethod.aspx

<script runat="server" |anguage="C#">
protected void Page_Load(object o, EventArgs e) {
i f(IsPostBack) {
Page. Dat aBi nd() ;
}
}

prot ected doubl e Cal cul ateFactorial (int input) {
double result = 1;
for(;input > 0; input--) {
result *= input;

}

return result;
}
</script>

<form runat ="server">
Dat abi nd the result of a method call
<asp: Text box runat="server" id="thelnput" />

<asp: Requi redFi el dval i dat or runat ="server"
Control Toval i dat e="t hel nput "
Error Message="i nput is required" />
<asp: RangeVal i dat or runat ="server"
Control ToVval i dat e="t hel nput "
Error Message="i nput nmust be >= 0 and < 20"
Type="i nteger" M ni nmunmval ue="0" Maxi nunval ue="20" />

<asp: Button runat="server" type="submit"
Text="Cal cul ate Factorial" />

The result is:
<%t Cal cul at eFactori al (1 nt32. Parse(thelnput.Text)). ToString() %
</ b>
</ fornmp

InChapter 2, we said that the items of the list controls could be set declaratively, dynamically, or by using
data-binding. When you data-bind the list controls, the data source you specify must support at least one
of a set of interfaces. If the data source does not implement IEnumerable or llistSource, an exception will
be thrown. In Code Listing 3-4, we convert the DropDownList sample from Chapter 2 to bind to an
ArrayList.

Code Listing 3-4: DataBindDropDownList.aspx

<script |anguage="C#" runat="server">
protected void Page_Load(object o, EventArgs e) {

i f(!lsPostBack) {
ArraylLi st arrayList = new ArraylList();
arraylLi st. Add(" C#") ;
arraylLi st. Add("VB. NET") ;
arraylLi st. Add("JScript.Net");

| anguageDr opDownLi st . Dat aSource = arrayli st;
| anguageDr opDownLi st. Dat aBi nd() ;

favoritelLanguage. Text
= | anguageDr opDownlLi st . Sel ect edl t em Val ue;

}
}
protected voi d DropDownLi st Sel ecti onChanged(obj ect o, EventArgs e) {
favoritelLanguage. Text = | anguageDr opDownlLi st . Sel ect edl tem Text ;
}
</script>

<form runat ="server">
<asp: DropDownlLi st id="I|anguageDr opDownLi st" runat="server"
OnSel ect edl ndexChanged="Dr opDownLi st Sel ecti onChanged" >
</ asp: Dr opDownLi st ><br/ >
Favorite Language:
<asp: Label runat="server" id="favoritelLanguage"
styl e="col or: bl ue" />

<asp: Button runat="server" Text="Submt"/>
</fornp

Note Avoid unnecessary data-binding. If the control has ViewState enabled, it needs to be data-bound
only for initialization and then again when the underlying data source changes. However, if you
disable ViewState for the control or for the page, you must call DataBind on every page load to
re-populate the items.

Tip Add dynamic items after data-binding. When adding items to a DropDownList control from both a
data source and code in the page, be aware of the order in which they are added. The data-
binding operation clears all the items that exist in the control and replaces them with the set from
the data source. After DataBind is called, you can safely add items to the data-bound list. A good
example of where this can prove valuable is when you want to add a default value of 'Make a
Selection' at the top of a drop-down list.

The Repeater, DataList, and DataGrid Controls

ASP.NET has three primary controls for easily displaying sets of data: Repeater, DataList, and DataGrid.
In this section, we’'ll explain the major differences in their feature sets, examine how to use them, and
discuss their limitations so that you pick the correct control for your development task.

Repeater

The Repeater control has no implicit markup to render. Instead, you are required to specify templates that
indicate to the containing control which markup—typically HTML—to render for each item in the data
source. Markup is specified declaratively; you don’t need to know how many items will exist when the data-
binding occurs. Because the Repeater control does not offer a default rendering, it is probably the most
flexible of the three controls. However, selecting, editing, and deleting items is more difficult with Repeater.
Repeater does not offer a rich set of style properties to set because the appearance is controlled entirely
by what is in the templates. Code Listing 3-5 shows a Repeater control in action, including using the full set
of templates: HeaderTemplate, FooterTemplate, ltemTemplate, Alternatingltem Template, and
SeparatorTemplate.

Code Listing 3-5: Repeater.aspx

<script |anguage="C#" runat="server">
public class State {
string _nane;
string _tinmezone;
public State(string name, string timezone) {
_name = nane;
_timezone = timezone;
}
public string Name {
get { return _nane; }
}
public string TinmeZone {
get { return _tinezone; }
}
}
protected void Page_Load(object o, EventArgs e) {
i f(!IsPostBack) {
ArraylList states = new ArraylList();
st at es. Add(new St at e("Washi ngton", "Pacific"));
stat es. Add(new State("Utah", "Muntain"));
states. Add(new State("W sconsin", "Central"));
states. Add(new St ate("New York", "Eastern"));

repeat erVertical . Dat aSour ce = states;
repeat er Hori zont al . Dat aSour ce = st ates;

repeat er Verti cal . Dat aBi nd() ;
repeat er Hori zont al . Dat aBi nd() ;
}
}
</script>
<form runat ="server">
<asp: Repeater runat="server" id="repeaterVertical">
<Header Tenpl at e>
<t abl e><tr ><t h>St at e</ t h><t h>Ti mneZone</th></tr>

</ Header Tenpl at e>
<l tenlenpl at e>
<tr bgcol or="Dbl ue">
<td><%f((State)(Container.Dataltem). Nanme) %</td>
<t d><%tDat aBi nder . Eval (Cont ai ner,
"Dataltem Ti mneZone") %</td>
</[tr>
</ltenTenpl at e>
<Separ at or Tenpl at e>
<tr bgcol or="whi te"><td><hr></td></tr>
</ Separ at or Tenpl at e>
<Al ternati ngl t enifenpl at e>
<tr bgcol or="red">
<td><%f((State) (Container.Dataltem). Nanme %</td>
<t d><%tDat aBi nder . Eval (Cont ai ner,
"Dataltem Ti neZone") %</td>
</[tr>
</ Al ternatingltenrlenpl at e>
<Foot er Tenmpl at e></t abl e></ Foot er Tenpl at e>
</ asp: Repeat er >

<hr/ >

<asp:. Repeater runat="server" id="repeaterHorizontal ">
<Header Tenpl at e>
<t abl e><t r ><t h>St at e<br/ >Ti meZone</t h>
</ Header Tenpl at e>
<l tenlenpl at e>
<td bgcol or="Dbl ue" >
<%tDat aBi nder . Eval (Cont ai ner. Dat al t em
"Nanme") %

<%tDat aBi nder . Eval (Cont ai ner . Dat al t em
"Ti meZone") %
</td>
</IltenTenpl at e>
<Al ternati ngl t enfenpl at e>
<td bgcol or="red">
<%tDat aBi nder . Eval (Cont ai ner. Dat al t em
"Nanme") %

<%tDat aBi nder . Eval (Cont ai ner. Dat al t em
"Ti meZone") %
</td>
</ Al ternati ngltenrlenpl at e>
<Foot er Tenpl at e></tr></t abl e></ Foot er Tenpl at e>
</ asp: Repeat er >
</fornp

The output from Code Listing 3-5 is shown in Figure 3-2. The script block in Repeater.aspx first contains a
simple class that holds a state name and its time zone. In the Page_Load method, a small set of these
objectsis created and added to an ArrayList, which is then set as the data source property of the two
Repeater controls on the page. The first Repeater control displays the items from the list horizontally in a
table, whereas the second Repeater control displays them vertically. Notice that the header and footer
templates are used to render the beginning and ending tags of the table. The ltemTemplate and
AlternatingltemTemplate are then used in turn for the items from the data source.

Kiwls THmsLans

Grste Watkingn| W am
| Moo Lome it erarad

& e B st

Figure 3-2: The Repeater control allows for flow and column layout

Another aspect to note about Code Listing 3-5 is the different syntax used in the data-binding expressions.
In the first data-binding instance, the Repeaterltem object returned from Container.Dataltem is explicitly
cast to the State object type stored in the data source. The Name property accessor of the State object is
then accessed directly. In the second data-binding instance, the DataBinder.Eval method is used to
automatically perform reflection on the Container to retrieve the TimeZone property of the State object,
which is stored in the Dataltem property. In the second Repeater control, an alternate form of the
DataBinder.Eval method is used in which the first parameter is resolved directly to the item, and the
property is then resolved through reflection. These two syntax statements can be used interchangeably.

DataL st

The DatalList control provides rendering behavior in addition to supporting a set of templates for controlling
the control’'s appearance. Unlike the Repeater control, which supports only flow layout rendering, the
DataList control supports both table and flow layout. In table layout, the templates are rendered as part of
aTable element. In flow layout, the templates are rendered inside span tags. With either type of layout, the
DatalList allows you to control whether the items are repeated in a horizontal or vertical orientation as well
as how many columns of items appear across the page. Code Listing 3-6 has an example of the DataList
control. In addition to the templates supported by the Repeater control, DataList supports
EdititemTemplate and Selecteditem Template for editing and selection, respectively.

Code Listing 3-6: Datalist.aspx

<script |anguage="C#" runat="server">
public class State {
string _nane;
string _tinezone;
public State(string nane, string tinmezone) {
_name = nane;
_timezone = tinezone;
}
public string Name {
get { return _nanme; }
}
public string TimeZone {
get { return _timezone; }

}

}
protected void Page_Load(object o, EventArgs e) {

i f(!lsPostBack) {
Arrayli st states = new ArrayList();
st ates. Add(new St ate("Washi ngton", "Pacific"));
states. Add(new State(" U ah", "Muntain"));
states. Add(new State("W sconsin", "Central"));
states. Add(new St ate("New York", "Eastern"));

dat al i st. Dat aSource = states;
dat al i st. Dat aBi nd() ;
dat al i st. Sel ect edl ndex = 0;
}
}

</script>
<form runat ="server">
<asp: Dat aLi st runat="server"” id="datalist" BackCol or="tan"
RepeatDirection="Vertical" BorderWdth="1"
Bor der Col or =" Bl ack"™ Repeat col unmms="2"
Cel | Spaci ng="3" Cel | Paddi ng="4" >
<Sel ectedl tentstyl e BackCol or ="bei ge" >
</ Sel ectedl tentt yl e>
<l tenlenpl at e>
<%t Dat aBi nder. Eval (Cont ai ner. Dataltem "Nane") % is in
<%t Dat aBi nder. Eval (Cont ai ner, "Dataltem Ti nezone") %
</IltenTenpl at e>
</ asp: Dat aLi st >
</fornp

DataGrid

The DataGrid control is the most commonly used of the three controls. It renders the items as a table with
each item contained inside a single row, so it does not support a choice of column or flow layout. Unlike
the Repeater and DataList controls, the DataGrid control supports paging of content as well as sorting.
Although the DataGrid control is generally easier to use, it doesn’t offer you a high degree of templating
control with the exception of offering support for templating entire columns. Code Listing 3-7 shows a basic
DataGrid control bound to data created directly on the page. Additional code samples follow that
demonstrate how to accomplish specific tasks with the DataGrid control.

Code Listing 3-7: DataGrid.aspx

<% nport nanespace="System Data" %

<script | anguage="C#" runat="server">

protected void Page_Load(object o, EventArgs e) {
dat agri d. Dat aSource = GetData();
Dat aBi nd() ;

}

Dat aTabl e GetData() {
Dat aTabl e data = new Dat aTabl e();
dat a. Col ums. Add(new Dat aCol um(" Thel D', typeof (I1nt32)));
dat a. Col ums. Add(new Dat aCol uim(" Nane", typeof(string)));
dat a. Col ums. Add(new Dat aCol uim(" Ti meZone", typeof(string)));

Dat aRow dr ;

dr = dat a. NewRow() ;

dr[0] =1; dr[1] = "Washington"; dr[2] = "Pacific";
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 2; dr[1] = "Uah"; dr[2] = "Mountain";
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 3; dr[1] = "Wsconsin"; dr[2] = "Central ";
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 4; dr[1] = "New York"; dr[2] = "Eastern”;
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] =5; dr[1] = "Florida"; dr[2] = "Eastern";
dat a. Rows. Add(dr);

return data;
}
</script>
<form runat ="server">
<asp: DataGid runat="server" id="datagrid" />
</ fornp

Figure 3-3 shows the basic rendering that this approach produces. In the “Adding Styles To the DataGrid”
section later in this chapter, Code Listing 3-9 adds styles and templated header text to demonstrate the
flexibility and sophisticated user interface available in the DataGrid control.

I il Aecalbea Ualala . mpr - s oeeo®] ereed Raghane

§] toren L e p—

Figure 3-3: Basic DataGrid rendering

In DataGrid.aspx, the data source is a DataTable object created directly on the page; however, this data-
binding approach is not the most common. When a Web application needs to provide support for
manipulating and modifying data, a DataSet object is populated from a back-end database. The local view
of the data can thus be manipulated over time through a series of requests and committed back to the
database later. On the other hand, when a Web application needs only to display and not update data,
usingSqglDataReader is a better choice, since SglDataReader provides a read-only view of the data and
has less overhead than the DataSet. However, be aware that when using SqlDataReader, the DataGrid

will not perform sorting and paging directly. If sorting and pagination are required, use a DataSet or a
DataView.

Tip For frequently accessed but rarely changed data, use the application cache or partial page
caching (discussed in Chapter 6) to cut down on trips to the database.

Managing ViewState Size

When ViewState is enabled, as it is by default, the data from the data source makes a round trip
between the client and server on each request. When the data is significantly large, this round trip can
have a negative impact on the user experience. Look at the size of the ViewState for the DataGrid
control by using tracing (discussed in Chapter 10) to understand exactly what kind of impact the
ViewState is having on page size.

If ViewState size is problematic for an application, a couple of solutions are available. First, you can
completely disable ViewState in configuration or on the page or for an individual control. Without
ViewState, the DataGrid control can no longer automatically store information about the paging state,
the item being edited, or the current sort expression. You would need to maintain this data separately.
Second, you can simply reduce ViewState by following these steps:

1. SetAutoGenerateColumns to false and explicitly declare only those columns that are

necessary.
2. Setthe styles in the code explicitly instead of establishing them declaratively.

3. Donotuse the DataKeyField member.

Specifying Columns Explicitly

In DataGrid.aspx, we take advantage of the DataGrid control’s ability to automatically render the structure
of the data source in the user interface. The column headers are the names of the columns, and the
column order replicates that of the DataColumn objects in the DataTable. There is a performance cost
associated with the reflection required to produce this automatic rendering.

Another drawback with the auto-generated columns is that in production databases, column names are
rarely names that would mean much to the user, and the query might include columns that are intended
for use by the application but should not be used by or shown to the user. The DataGrid control allows us
to override this behavior by setting the AutoGenerateColumns property to false and providing a collection
ofBoundColumn definitions within a Columns element declaratively in the page. Only the specified fields
from the bound data are displayed instead. Code Listing 3-8 is a modified version of the previous DataGrid
example in which AutoGenerateColumns is set to false and we provide explicit header names for the
columns. In the coming examples, we will continue to modify this listing of states and their time zonesto
illustrate ways of using and controlling the DataGrid.

Code Listing 3-8: DataGridColumns.aspx

<% nport nanespace="System Data" %

<script |anguage="C#" runat="server">

protected void Page_Load(object o, EventArgs e) {
dat agri d. Dat aSource = GetData();
Dat aBi nd() ;

}

Dat aTabl e GetData() {
Dat aTabl e data = new Dat aTabl e();
dat a. Col ums. Add(new Dat aCol um(" Thel D', typeof (I1nt32)));
dat a. Col ums. Add(new Dat aCol uim(" Nane", typeof(string)));
dat a. Col ums. Add(new Dat aCol uim(" Ti meZone", typeof(string)));

Dat aRow dr ;
dr = dat a. NewRow() ;
dr[0] = 1; dr[1] = "Washington"; dr[2] = "Pacific";

dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 2; dr[1] = "Uah"; dr[2] = "Mountain";
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 3; dr[1] = "Wsconsin"; dr[2] = "Central ";
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 4; dr[1] = "New York"; dr[2] = "Eastern”;
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] =5; dr[1] = "Florida"; dr[2] = "Eastern";
dat a. Rows. Add(dr);

return data;
}
</script>
<form runat ="server">
<asp: DataGid runat="server" id="datagrid"
Aut oGener at eCol utms="f al se" >
<Col umms>

<asp: BoundCol um Header Text ="1 D" Dat aFi el d="Thel D" />
<asp: BoundCol um Header Text =" Nane" Dat aFi el d="Nanme" />
<asp: BoundCol um Header Text ="Ti ne Zone"
Dat aFi el d="Ti neZone" />
</ Col utMms>
</ asp: DataGri d>
</fornp

Combining Data-Bound and Static Items

When a control is data-bound, the items collection is cleared. Any statically declared items, items from
an earlier data-binding, or items restored from ViewState are lost—not always an ideal situation.
Sometimes the goal is to combine items from a back-end database with statically known data or with
user-provided data. The DataGridIltemCollection does not permit inserts or additions, so you combine
sets of data before the data is bound to the control. Select the data from the database and then add
the user- defined data. The DataBind operation will bind the augmented set of data to the control,
reflecting the changes appropriately.

DataBinder.Eval

We discussed earlier that the DataBinder.Eval method is used to declare which members of the Dataltem
to use inthe output. The Eval method uses reflection to get the second parameter from the first. This
approach typically has Container.Dataltem as the first parameter, which yields a DataRowView. The
second parameter is the name of the data field within the DataRowView. There is a performance cost
associated with reflection, so you might want to think twice about the volume of required operations. The
DataSet is a primary data source for the DataGrid control, however, and its performance in rendering is
remarkable given the sheer volume of operations required to produce the output.

Adding Styles to the DataGrid

The DataGrid control supports a sophisticated set of styles just as the other Web controls do. Font, color,
and border styles can be set directly on a control. In addition, the DataGrid provides support for a set of
template styles. These template styles are applied to pieces of the output, not to the whole control.

InCode Listing 3-9, we add styles to the short list of states in the DataGrid. We also set the ShowFooter
property to true to render both header and footer rows for the data. We can modify the appearance of the
DataGrid's table layout by specifying ltemStyle and AlternatingltemStyle.

Code Listing 3-9: DataGridStyles.aspx

<% nport nanespace="System Data" %
<script |anguage="C#" runat="server">
protected void Page_Load(object o, EventArgs e) {
datagri d. Col ums[0].Itenttyl e. For eCol or
= System Dr awi ng. Col or . Red;
dat agri d. Dat aSource = GetData();
Dat aBi nd() ;

}

Dat aTabl e GetData() {
Dat aTabl e data = new Dat aTabl e();
dat a. Col ums. Add(new Dat aCol um(" Thel D', typeof (I1nt32)));
dat a. Col ums. Add(new Dat aCol uim(" Nane", typeof(string)));
dat a. Col ums. Add(new Dat aCol uim(" Ti meZone", typeof(string)));

Dat aRow dr ;
dr = dat a. NewRow() ;
dr[0] = 1; dr[1] = "Washington"; dr[2] = "Pacific";

dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 2; dr[1] = "Uah"; dr[2] = "Mountain";
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 3; dr[1] = "Wsconsin"; dr[2] = "Central ";
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 4; dr[1] = "New York"; dr[2] = "Eastern”;
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] =5; dr[1] = "Florida"; dr[2] = "Eastern";
dat a. Rows. Add(dr);

return data,;
}
</script>
<form runat ="server">
<asp: DataGid runat="server" id="datagrid"
Aut oGener at eCol ums="f al se"
font - name="t ahoma" font-size="12 pt" font-bold="true"
Showroot er ="t rue"” BackCol or ="#667788" For eCol or =" #FFFFFF" >
<Header St yl e BackCol or ="t an" Bor der Col or ="#000000"
For eCol or =" #334455" Hori zontal Ali gn="center"
font-size="14 pt" />
<Footer Styl e BackCol or="tan" Bor der Col or ="#000000"

For eCol or ="#334455" Hori zontal Ali gn="center"
font-size="14 pt" />
<ltenttyl e BackCol or ="#667788" ForeCol or="#ffffff" />
<AlternatingltentStyl e BackCol or="#ffffff"
For eCol or =" #334455" />
<Col umms>
<asp: BoundCol um Header Text ="1 D" Foot er Text="1D"
Dat aFi el d="Thel D' />
<asp: BoundCol um Header Text =" Nane" Foot er Text =" Nane"
Dat aFi el d=" Nane" />
<asp: BoundCol um Header Text ="Ti ne Zone"
Foot er Text ="Ti me Zone" Dat aFi el d="Ti neZone" />
</ Col utMms>

</ asp: DataGri d>

</ fornp

Sorting the DataGrid

One of the primary features of the DataGrid is the ability to automatically sort its contents. When the
AllowSorting property is set to true, the DataGrid generates LinkButton controls in the column headers of
the columns that have a value for the SortExpression property. Auto-generated columns will automatically
set the SortExpression property to the name of the field to which the column is bound. The
OnSortCommand event is fired when the user clicks one of these LinkButton controls. This functionality
can be used when customizing the user interface, such as using a Button control or ImageButton
consistently throughout the site to create a standard appearance. The sorting functionality can be invoked
when the user selects an element that has been created in place of the LinkButton controls.

Code Listing 3-10 has two DataGrid controls, both using the same set of data. The first DataGrid control
leverages the built-in support for paging. The AllowSorting property is set to true, and the SortDataGrid
event handler is invoked when a column is selected. We are using a DataView to take advantage of the
ability to set the column name as the sort expression. This event handler creates the data with the new sort
expression and rebinds the DataGrid. The second DataGrid on the page does more work to customize the
output. In addition to its own data-sorting event handler, a new event handler is provided that is called
whenever a new item is created. In the ItemCreated event handler, we only act if the item being createdis
the header. When the header is being created, we retrieve the individual cells from the DataGrid and add
a new Button to the Controls collection. The second DataGrid still has the sorting functionality, but we
created Button controls instead of the default LinkButton controls.

Code Listing 3-10: DataGridSorting.aspx

<% nport nanespace="System Data" %
<script | anguage="C#" runat="server">
protected void Page_Load(object o, EventArgs e) {
i f(!IsPostBack) {
dat agri d. Dat aSource = GetData("");
dat agri d2. Dat aSource = CGetData("");
Dat aBi nd() ;

}

protected void SortDataGid(object o,
Dat aG i dSort CommandEvent Args e) {
dat agri d. Dat aSour ce = Cet Dat a(e. Sort Expr essi on);
dat agri d. Dat aBi nd() ;

}

protected void SortDataG i d2(object o,
Dat aG i dSort CommandEvent Args e) {
dat agri d2. Dat aSource = Get Dat a(e. Sort Expression);
dat agri d2. Dat aBi nd() ;

}

Dat aVi ew Get Data(string sortString) {
Dat aTabl e data = new Dat aTabl e();
dat a. Col ums. Add(new Dat aCol um(" Thel D', typeof (I1nt32)));
dat a. Col ums. Add(new Dat aCol utm(" Nane", typeof(string)));
dat a. Col ums. Add(new Dat aCol uim(" Ti meZone", typeof(string)));

Dat aRow dr ;
dr = dat a. NewRow() ;
dr[0] = 1; dr[1] = "Washington"; dr[2] = "Pacific";

dat a. Rows. Add(dr);

dr =

dat a. NewRow() ;

dr[0] = 2; dr[1] = "Uah"; dr[2] = "Muntain";

dat a
dr =

. Rows. Add(dr);
dat a. NewRow() ;

dr[0] = 3; dr[1] = "Wsconsin"; dr[2] = "Central";

dat a
dr =

. Rows. Add(dr);
dat a. NewRow() ;

dr[0] = 4; dr[1] = "New York"; dr[2] = "Eastern";

dat a
dr =

. Rows. Add(dr);
dat a. NewRow() ;

dr[0] =5; dr[1] = "Florida"; dr[2] = "Eastern";

dat a

. Rows. Add(dr);

Dat aVi ew vi ew = new Dat aVi ew dat a) ;
view. Sort = sortString;

retu

}

voi d Dat
if(e

}
}

</ scri pt

rn view,

aGrid_ItenCreated(object o, DataGidltenmEvent Args e)
.ItemlItenilype == Listltenmlype. Header) {

Button b = new Button();

b. Text = "ID";

b. CommandNanme = "Sort";

b. ConmandAr gunent =" Thel D*;

Tabl eCell tc = e.ltemCel I s[0];

tc. Control s. Add(b);

b = new Button();

b. Text = "Nanme";

b. CommandNanme = "Sort";

b. ConmandAr gunent = "Nanme";
tc = e.ltemCell s[1];

tc. Control s. Add(b);

b = new Button();

b. Text = "Time Zone";

b. ConmandNane = "Sort";

b. ConmandAr gunent = "Ti meZone";

tc = e.ltem Cel |l s[2];
tc. Control s. Add(b);

>

<form runat ="server">
<asp: DataGid runat="server" id="datagrid" AllowSorting="true"

OnSort Command="Sort Dat aGri d" ShowHeader="true" />

<asp: DataGid runat="server" id="datagrid2"
Aut oGener at eCol umms="f al se” OnSort Command="Sor t Dat aGri d2"
Al l owSorting="true" OnltenCreated="DataGid_ItenCreated">

<Col umms>
<asp: BoundCol unmm Dat aFi el d="Thel D" />

{

<asp: BoundCol um Header Text =" Nane" Dat aFi el d="Nanme" />

<asp: BoundCol um Header Text ="Ti ne Zone"
Dat aFi el d="Ti neZone" />
</ Col utMms>

</ asp: DataGri d>
</ forne

When Does the DataGrid Control Need to Be Data-Bound?

The answer to this question is a common source of confusion. If the DataBind method is not called,
stale data might be rendered, or perhaps no data at all is rendered. Calling DataBind too often will
decrease performance and might cause updates to fail because the modified inputs are lost. DataBind
needs to be called when the page first loads and the IsPostBack property is false. If ViewState is
disabled,DataBind must be called on every page load, even when IsPostBack is true. When a
property is changed that will cause the output to change, such as when the user starts editing or
cancels editing, or when a sort operation is taking place, the DataBind method must be called.
Normally, you call this method in the event handler after the updated DataGrid properties are set. A
Select command is an exception to this rule. When the user selects a row, Selectedltemindex changes
and, if appropriate, the SelectedltemindexChanged event is called, but a repeated data-binding
operation is not necessary because the data is not changing.

Paging the DataGrid

The DataGrid control provides for automatic as well as custom pagination of contents, which gives users

many options for viewing data. Users commonly want to page through smaller pieces of a larger data set.
Sometimes the desired piece of information is only a subset of the total data, or maybe the data must be

viewed with a collection to allow for comparison with the neighboring data.

Automatic pagination is simple. You set the AllowPaging property to true and provide a
PagelndexChanged EventHandler that sets the CurrentPagelndex to the NewPageindex and calls
DataBind on the DataGrid.

Custom pagination requires that both the AllowPaging property and the AllowCustomPaging property be
set to true. The PagelndexChanged EventHandler can then bind the control to a subset of the total data
the user is perusing. The code must then set the VirtualltemCount property of the DataGrid to indicate
what the total count is. When allowing custom pagination, the DataGrid can no longer derive the total item
count from the bound items, so you must explicitly provide this information.

Code Listing 3-11 demonstrates both automatic and custom paging of the DataGrid. The calls to the
GetData method for the automatically paginated control always calculate the full set of squares, although
only 10 of them are being displayed at once, whereas the custom-paginated DataGrid requires that only
10 samples be calculated for any given page view.

Code Listing 3-11: DataGridPaging.aspx

<% nport nanespace="System Data" %

<script |anguage="C#" runat="server">

protected void Page_Load(object o, EventArgs e) {

i f(!IsPostBack) {

dat agri d. Dat aSource = GetData(0, 100);
dat agri d2. Dat aSource = CetData(0, 10);
dat agri d2. Virtual I tenCount = 100;
Dat aBi nd() ;

}

Dat aTabl e GetData(int startlndex, int count) ({
Dat aTabl e data = new Dat aTabl e();
dat a. Col ums. Add(new Dat aCol uim(" TheNunber ", typeof(Int32)));
dat a. Col ums. Add(new Dat aCol uim(" Squar ed", typeof(Int32)));

Dat aRow dr ;

for(int i = 0; i < count;i++) {
dr = dat a. NewRow() ;
int theNunmber = i +startlndex;

dr[0] = theNumnber;
dr[1] = theNumber * theNunber;
dat a. Rows. Add(dr);

}

return data;

}

voi d ChangePage(obj ect o, DataG i dPageChangedEvent Args e) {
dat agri d. Current Pagel ndex = e. NewPagel ndex;
dat agri d. Dat aSource = GetData(0, 100);
dat agri d. Dat aBi nd() ;

voi d Cust omChangePage(obj ect o, DataG i dPageChangedEvent Args e) {
dat agri d2. Current Pagel ndex = e. NewPagel ndex;
dat agri d2. Dat aSour ce = Get Dat a(e. NewPagel ndex* 10, 10);
dat agri d2. Dat aBi nd() ;
dat agrid2. Virtual I tenCount = 100;

}

</script>
<form runat ="server">
<asp: DataGid runat="server" id="datagrid"
Al | owPagi ng="true" OnPagel ndexChanged="ChangePage"/ >
<asp: DataGid runat="server" id="datagrid2"
Al | owPagi ng="true" All owCustonPagi ng="true"
OnPagel ndexChanged=" Cust onChangePage"/ >
</fornp

Note Custom paging of the DataGrid can be particularly beneficial when the entire set of data being
used is quite large or when retrieving it is expensive. Custom paging can also be used when the
data source is a DataReader but you still require paging support on the DataGrid. In this
scenario, you are responsible for managing the paging in the code, but you might achieve a
better result with custom controls than you would by using a DataSet with automatic paging.

Now that you can bind data and understand how to page and sort data in the DataGrid, let's look at how to
enable the user to select individual items from within the DataGrid.

The DataGrid automatically recognizes when the user clicks an item by using a command name that is
part of a known set. When the Select command is invoked, the DataGrid automatically updates the
appearance of the individual item by using SelectedltemStyle. In Code Listing 3-12,SelectedltemStyle

uses several of the styles available. The full set of available styles belongs to the TableltemStyle class and
includesBackColor,ForeColor,BorderColor, and CssClass.

When the selected index is changed, not only does the appearance of the selected item within the
DataGrid changed automatically, but an event is also fired. This allows a developer to provide an
appropriate event handler that can be used to update a separate user interface element on the page
based on the item selected in the DataGrid.

Code Listing 3-12: DataGridSelect.aspx

<% nport nanespace="System Data" %
<script |anguage="C#" runat="server">
Dat aTabl e dat a;
protected voi d Page_Load(object o, EventArgs e) {
Cet Dat a() ;
dat agri dl. Dat aSour ce = dat a;
i f(!lsPostBack) {
dat agri dil. Dat aBi nd() ;
}
}

Dat aTabl e GetData() {
data = Session["data"] as DataTabl e;
if(data !'= null) {
return data;

}

data = new Dat aTabl e();
Dat aCol um pri mar yCol um

= new Dat aCol unm("carid", typeof(Int32));
dat a. Col utms. Add(pri mar yCol um) ;
dat a. Col ums. Add(new Dat aCol um("year", typeof(Int32)));
dat a. Col ums. Add(new Dat aCol um(" make", typeof(string)));
dat a. Col ums. Add(new Dat aCol um(" nodel ", typeof(string)));
Dat aRow dr ;
dr = dat a. NewRow() ;
dr[0] = 1; dr[1] = 1998; dr[2]
dat a. Rows. Add(dr);
dr = dat a. NewRow() ;
dr[0] = 2; dr[1] = 2000; dr[2] = "Honda"; dr[3] = "Civic";
dat a. Rows. Add(dr);
Dat aCol uim[] pri maryCol unms = new Dat aCol um[1] ;

"lsuzu"; dr[3]

"Trooper";

primaryCol ums[0] = pri maryCol unm;
dat a. Pri maryKey = pri maryCol unms;
Session["data"] = data;
return data;

}

</script>

<form runat ="server">
<asp: DataGid runat="server" Dat aKeyFi el d="carid" id="datagridl"
Aut oGener at eCol ums="f al se" >
<sel ectedltentStyl e BackCol or="tan" Font-Bold="true" />
<Col ums>
<asp: But t onCol utm CommandNane="Sel ect" Text="Sel ect" />
<asp: BoundCol um Dat aFi el d="cari d" ReadOnl y="true"
Header Text="id" />
<asp: BoundCol um Dat aFi el d="year" Header Text ="year" />
<asp: BoundCol um Dat aFi el d="nake" Header Text =" nake" />
<asp: BoundCol um Dat aFi el d="npdel " Header Text =" nodel " />
</ Col utMms>
</ asp: Dat aGi d><br/ >
</ forne

Tip Use two DataGrid controls on a page to allow for a master view and a details view. Synchronize
theSelecteditemindexChanged event in the master DataGrid to update the contents of the details
view DataGrid.

Editing Datain the DataGrid

We looked at how to use the DataGrid to display data. The next step is to allow the user to update the
data. The DataGrid has built-in events that make the updating task relatively simple. The DataGrid has a
property named EdititemIndex that is usually set to -1, indicating that no row is currently being edited. We
use this property to control the appearance of the DataGrid and work with the three events related to
editing data: EditCommand,CancelCommand, and UpdateCommand.

Typically, you enable editing by setting the EditltemIndex in the EditCommand event handler, and abandon
the changes by setting the Editltemindex back to -1 in the CancelCommand event handler. The update is
performed when the user submits changes within the Update Command event handler.

The first step is to provide an EditCommandColumn and provide text for the LinkButtons control that will be
automatically rendered. When Editltemindex is -1, the value of the EditText attribute is displayed in the
EditCommandColumn; otherwise, the values of the Update Text and CancelText attributes are displayed
for the selected row. When the user clicks a LinkButton, the EditCommand event handler for the control is
invoked. In Code Listing 3-13, notice that the DataGrid is bound at the end of the event handlers so that
the updated view is rendered for the user.

Code Listing 3-13: DataGridEdit.aspx

<% nport nanespace="System Data" %
<script | anguage="C#" runat="server">
Dat aTabl e dat a;
protected voi d Page_Load(object o, EventArgs e) {
Cet Dat a() ;
dat agri dl1. Dat aSour ce = dat a;
i f(!lsPostBack) {
dat agri dil. Dat aBi nd() ;
}
}

Dat aTabl e GetData() {
data = Session["data"] as DataTabl e;
if(data !'= null) {
return data;

}
data = new Dat aTabl e();

Dat aCol umm pri mar yCol umm

= new Dat aCol um("carid", typeof(Int32));
dat a. Col ums. Add(pri mar yCol unm);
dat a. Col umms. Add(new Dat aCol utm("year", typeof(Int32)));
dat a. Col umms. Add(new Dat aCol uim(" make", typeof(string)));
dat a. Col umms. Add(new Dat aCol uim(" nodel ", typeof(string)));

Dat aRow dr ;
dr = dat a. NewRow() ;
dr[0] = 1; dr[1] = 1998; dr[2] = "lsuzu"; dr[3] = "Trooper";

dat a. Rows. Add(dr);
dr = dat a. NewRow) ;
dr[0] = 2; dr[1] = 2000; dr[2] = "Honda"; dr[3] = "Civic";
dat a. Rows. Add(dr);

Dat aCol um[] primaryCol untmms = new Dat aCol um|[1] ;
pri maryCol unms[0] = prinmaryCol um;
data. Pri maryKey = pri maryCol ums;

Session["data"] = data;
return data,;

}

protected void OnEdit(object o, DataG i dConmandEvent Args e) {
datagridl. Editltem ndex = e.ltem |temn ndex;
dat agri dl. Dat aBi nd() ;

}

protected void OnCancel (object o, DataG i dConmandEvent Args e) {
datagridl. Editltem ndex = -1,
dat agri dl. Dat aBi nd() ;

}
protected void OnUpdat e(obj ect o, DataG i dConmandEvent Args e) {

int year;
try {
year = | nt32. Parse((
(TextBox)e.ltem Cells[2].Control s[0]). Text);
}
catch(System For nat Exception fe) {
Response. Wit g(
"Invalid year specified. Update not conpleted");
return;
}
string make = ((TextBox)e.ltem Cells[3].Controls[0]). Text;
string nodel = ((TextBox)e.ltem Cells[4].Control s[0]). Text;
Dat aRow row = data. Rows. Find(e.ltem Cel I s[1]. Text);

if(row!= null) {
row "year"] = year.ToString();
r OM n nake"] = rrake,
rovw: n I'TDde| "] = I’TDde|)

}

dat a. Accept Changes() ;
datagridl. Editltem ndex = -1,
dat agri dl. Dat aBi nd() ;
Session["data"] = data;

}

</script>

<form runat ="server">

<asp: DataGri d runat="server" DataKeyFi el d="carid" id="datagridl"

Aut oGener at eCol utms="f al se" OnEdi t Command="OnEdi t "
OnCancel Command="OnCancel " OnUpdat eCommand="OnUpdat e" >
<Col utms>
<asp: Edi t CommandCol um Edi t Text ="Edi t"
Cancel Text =" Cancel " Updat eText =" Update" />
<asp: boundcol um Dat aFi el d="cari d" ReadOnl y="true"
Header Text ="id" />
<asp: BoundCol utm Dat aFi el d="year" Header Text="year" />
<asp: BoundCol utm Dat aFi el d="nake" Header Text =" nmake" />
<asp: BoundCol utm Dat aFi el d="npdel " Header Text =" nodel "
</ Col ums>

</ asp: Dat aGi d><br/ >
</ forne

TheCancelCommand event handler simply sets the EdititemIndex back to -1, implicitly abandoning any
modified data, and calls DataBind.

The majority of the work is usually done in the UpdateCommand event handler. In Code Listing 3-13, in
which we bind to data in the page and temporarily store the data in Session state, we find the row in the
DataTable and update it with the text from the updated DataGridIltem. Notice that we index into the
TableRow contained by the DataGridltem to retrieve the TextBox that was used to allow the user to update
the item. Don't forget to update the data source—in this example, that means updating the Session data.
In many situations, the DataGrid is bound against data that is disconnected from the back- end database
and manipulated locally, as shown in this example. Although the data might continue to look correct to the
user, the developer must explicity commit any local changes back to the real data source.

Deleting Data in the DataGrid

Deleting data from the DataGrid is not as complex as updating it. Because no item is being edited directly
and there is only an indication that the row should be deleted, entering and exting an editing mode is
unnecessary.Code Listing 3-14 is a modified version of Code Listing 3-13 that allows only the deletion of
items. Notice that the way a LinkButton is displayed for deleting is the inclusion of a ButtonColumn with the
CommandName attribute for the buttons set to Delete. This indicates to the DataGrid to fire the event
handler specified in its OnDeleteCommand attribute.

Code Listing 3-14: DataGridDelete.aspx

<% nport nanespace="System Data" %
<script | anguage="C#" runat="server">
Dat aTabl e dat a;
protected voi d Page_Load(object o, EventArgs e) {
Cet Dat a() ;
dat agri dl1. Dat aSour ce = dat a;
i f(!lsPostBack) {
dat agri dil. Dat aBi nd() ;
}
}

voi d Del et eRow obj ect o, DataG i dConmmandEvent Args e) {
Dat aRow row = data. Rows. Find(e.ltem Cel I s[1]. Text);
if(row!= null) {
dat a. Rows. Renove(row) ;
}
dat a. Accept Changes();
dat agri dl. Dat aBi nd() ;
Session["data"] = data;

}

Dat aTabl e GetData() {
data = Session["data"] as DataTabl e;
if(data !'= null) {
return data;
}
data = new Dat aTabl e();
Dat aCol umm pri mar yCol umm
= new Dat aCol um("carid", typeof(Int32));
dat a. Col ums. Add(pri mar yCol unm);
dat a. Col umms. Add(new Dat aCol utm("year", typeof(Int32)));
dat a. Col umms. Add(new Dat aCol uim(" make", typeof(string)));
dat a. Col umms. Add(new Dat aCol uim(" nodel ", typeof(string)));
Dat aRow dr ;
dr = dat a. NewRow() ;

dr[0] = 1; dr[1] = 1998; dr[2] = "lsuzu"; dr[3] = "Trooper";
dat a. Rows. Add(dr);

dr = dat a. NewRow) ;

dr[0] = 2; dr[1] = 2000; dr[2] = "Honda"; dr[3] = "Civic";

dat a. Rows. Add(dr);

Dat aCol um[] primaryCol untmms = new Dat aCol um|[1] ;
pri maryCol unms[0] = prinmaryCol um;

data. Pri maryKey = pri maryCol ums;

Sessi on["dat a"] dat a;

return data;

}

</script>

<form runat ="server">
<asp: DataGid runat="server" Dat aKeyFi el d="carid" id="datagridl"
Aut oGener at eCol ums="f al se” OnDel et eCommand="Del et eRow' >
<Col umms>
<asp: Butt onCol utm CommandNane="Del et e" Text="Del ete" />
<asp: BoundCol um Dat aFi el d="cari d" ReadOnl y="true"
Header Text="id" />
<asp: BoundCol um Dat aFi el d="year" Header Text ="year" />
<asp: BoundCol um Dat aFi el d="nake" Header Text ="nake" />
<asp: BoundCol um Dat aFi el d="npdel " Header Text =" nodel " />
</ Col utms>
</ asp: Dat aGi d><br/ >
</ forne

Filtering Data with the DataGrid

As we mentioned earlier, when users view data in a DataGrid, they often want to filter the data to look at
only a subset of the entire selection. You can allow them to view only a portion of the data without
returning to the database with a revised query. The DataView object supports a RowFilter property for
limiting the data, which is employed when the view is used for data-binding or enumeration.

Note Consider providing for data filtering and sorting without return trips to the database for
throughput. Be aware, however, that storing data in Session has an impact on the amount of
memory used on the server. Also, using ViewState to enable the data to make a round trip has
an impact on the size of the page and the post data that will be submitted in subsequent
requests.

InCode Listing 3-15, we return to the data example of displaying states and their time zones. A
DropDownList has been added with a corresponding handler that updates the RowFilter of the DataView.
Notice that when the RowFilter is set to the empty string, no filtering is performed.

Code Listing 3-15: DataGridFilter.aspx

<% nport nanespace="System Data" %
<script | anguage="C#" runat="server">
Dat aTabl e dat a;
Dat aVi ew vi ew;
protected voi d Page_Load(object o, EventArgs e) {
Cet Dat a() ;
dat agri dl. Dat aSource = vi ew,
i f(!lsPostBack) {
dat agri dil. Dat aBi nd() ;

}
}

void GetData() {
view = Session["view'] as DataVi ew,
if(view!= null) {
return;
}
data = new Dat aTabl e();
dat a. Col umms. Add(new Dat aCol uim(" Thel D', typeof (1 nt32)));
dat a. Col umms. Add(new Dat aCol utm(" Narme", typeof(string)));
dat a. Col unmms. Add(new Dat aCol utm(" Ti meZone", typeof (string)));

Dat aRow dr ;
dr = dat a. NewRow() ;
dr[0] = 1; dr[1] = "Washington"; dr[2] = "Pacific";

dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 2; dr[1] = "Uah"; dr[2] = "Mowuntain";
dat a. Rows. Add(dr);

dr = dat a. NewRow) ;

dr[0] = 3; dr[1] = "Wsconsin"; dr[2] = "Central";
dat a. Rows. Add(dr);

dr = dat a. NewRow) ;

dr[0] = 4; dr[1] = "New York"; dr[2] = "Eastern";
dat a. Rows. Add(dr);

dr = dat a. NewRow) ;

dr[0] =5; dr[1] = "Florida"; dr[2] = "Eastern";

}

dat a. Rows. Add(dr);

Session["data"] = data;
vi ew = new Dat aVi ew(dat a) ;
return;

void FilterData(object o, EventArgs e) {

string sel ectedZone = Ti meZoneFilter. Sel ect edl tem Val ue;

i f(selectedZone == "Pacific") {
view. RowFilter = "Ti neZone = 'Pacific'";
}
el se if(sel ectedZone == "Muuntain") {
view. RowFilter = "Ti meZone = 'Mountain'";
}
else if (selectedZone == "Central") {
view. RowFilter = "Ti neZone = "Central'";
}
else if (selectedZone == "Eastern") {
view. RowFilter = "Ti nezone = 'Eastern’'";
}
dat agri dl. Dat aBi nd() ;
}
</script>

<form runat="server">

<asp: DataGid runat="server" id="datagridl"
Aut oCGener at eCol utms="f al se" >
<Col umms>

<asp: But t onCol utm CommandName="Sel ect"” Text="Sel ect"

<asp: BoundCol um Dat aFi el d="Thel D' ReadOnl y="true"
Header Text="id" />

/>

<asp: BoundCol um Dat aFi el d="Nane" Header Text ="year" />

<asp: BoundCol unm Dat aFi el d="Ti neZone"
Header Text =" make" />

</ Col utMms>

</ asp: Dat aGi d><br/ >

Filter by time zone:

<asp: DropDownlLi st runat ="server"
OnSel ect edl ndexChanged="Fi | t er Dat a"
Aut oPost Back="true" id="Ti neZoneFilter">
<asp: Li st1tenmrNone</ asp: Listltenp
<asp: ListltenrPacific</asp: Listltenr
<asp: Li stltenmrMunt ai n</ asp: Listltenr
<asp: ListltenmrCentral </ asp: Listlten
<asp: Li stltenrEast ern</asp: Listltenr

</ asp: Dr opDownLi st >

</ fornp

Advanced DataGrid

In the previous sections, we examined how to accomplish some common tasks using the DataGrid’s built-
in support. In this section, we’ll look at some tasks that are a little more esoteric and require a bit more
code, taking advantage of the DataGrid control’s flexibility.

Adding Data

As you've seen, the DataGrid has built-in support for updating data, offers a simple way to work with
selected data, and makes deleting data easy. But when you deal with dynamic Web applications, you
need to allow the user to add new data. To accomplish this, you add a Button control outside of the
DataGrid, and in the associated Click event handler you add a new row to the data source of the DataGrid.
At the same time, you set the EditltemIndex to the new item and call DataBind. The user is presented with
the familiar DataGrid editing interface to add values for the new row. Notice in Code Listing 3-16 that we
modifiedCode Listing 3-13 to include the ability to add a new row. The CancelCommand event handler
has been modified to remove a row from the DataSet that has not been updated. When the user clicks the
Add button, the CancelCommand event handler is invoked explicitly. This prevents you from adding a new
empty row when the previous row is not completed. Actually, the incomplete row is removed and then a
new row with the same defaults is added again, but to the user the result is the same—the incomplete
data is not persisted.

Code Listing 3-16: DataGridAdd.aspx

<% nport nanespace="System Data" %
<script | anguage="C#" runat="server">
Dat aTabl e dat a;
protected void Page_Load(object o, EventArgs e) {
Cet Dat a() ;
dat agri d1. Dat aSour ce = dat a;
i f(!IsPostBack) {
dat agri d1. Dat aBi nd() ;
}
}

Dat aTabl e GetData() {
data = Session["data"] as DataTabl e;
if(data !'= null) {
return data,;

}
data = new Dat aTabl e();

Dat aCol umm pri mar yCol um

= new Dat aCol um("carid", typeof(Int32));
dat a. Col ums. Add(pri mar yCol umm) ;
dat a. Col ums. Add(new Dat aCol um("year", typeof(Int32)));
dat a. Col ums. Add(new Dat aCol um(" nmake", typeof(string)));
dat a. Col ums. Add(new Dat aCol um(" nodel ", typeof(string)));
Dat aRow dr ;
dr = dat a. NewRow() ;

dr[0] =1; dr[1] = 1998; dr[2] = "lsuzu"; dr[3] = "Trooper";
dat a. Rows. Add(dr);

dr = dat a. NewRow() ;

dr[0] = 2; dr[1] = 2000; dr[2] = "Honda"; dr[3] = "Civic";

dat a. Rows. Add(dr);

Dat aCol um[] pri maryCol unms = new Dat aCol um[1] ;
primaryCol ums[0] = pri maryCol umm;
dat a. Pri maryKey = pri maryCol unms;

Session["data"] = data;
return data;

}

protected void StartAdd(object o, EventArgs e) {
OnCancel (null, null);
Dat aRow dr = dat a. NewRow() ;
dr["carid"] = data.Rows.Count + 1;
dr["year"] = 2000;
dr["make"] = "";
dr["nodel "] ="";
dat a. Rows. I nsert At (dr, 0);
datagridl. Editltenl ndex = data. Rows. Count - 1;
dat agri dl. Dat aBi nd() ;

}

protected void OnEdit(object o, DataG idCommandEvent Args e) {
datagridl. Editltenl ndex = e.ltemItem ndex;
dat agri dl. Dat aBi nd() ;

}

protected void OnCancel (object o, DataG i dCommandEvent Args e) {
Dat aRow dr = dat a. Rows. Fi nd(dat a. Rows. Count) ;
if((int)dr["year"] < 1930 || (int)dr["year"] > 2004
[] dr["make"] == "" || dr["model"] == "") {
Response. Wite("renoving row');
dat a. Rows. Renmove(dr);
}
datagridl. Editltenl ndex = -1,
dat agri dl. Dat aBi nd() ;

}
protected void OnUpdat e(object o, DataG i dCommandEvent Args e) {
int year;
try {
year = I nt32. Parse((

(TextBox)e.ltem Cel | s[2]. Control s[0]). Text);
}
cat ch(System For mat Exception fe) {
Response. Wit e(
"lnval id year specified. Update not conpl eted");
return;
}
string make = ((TextBox)e.ltem Cel |l s[3].Control s[0]). Text;
string nmodel = ((TextBox)e.ltem Cells[4].Controls[0]). Text;
Dat aRow row = data. Rows. Find(e.ltem Cel | s[1] . Text);

if(row!= null) {
row "year"] = year.ToString();
row "make"] = make;
row "nmodel "] = nodel;

dat a. Accept Changes() ;
datagridl. Editltenl ndex = -1,
dat agri dl. Dat aBi nd() ;
Session["data"] = data;
}
</script>
<form runat ="server">
<asp: DataGid runat="server" Dat aKeyFi el d="carid" id="datagridl"
Aut oGener at eCol ums="f al se” OnEdi t Command="0OnEdi t"
OnCancel Command="OnCancel * OnUpdat eConmand=" OnUpdat e" >
<Col ums>
<asp: Edi t CommandCol um Edit Text="Edit"
Cancel Text =" Cancel " Updat eText =" Update" />
<asp: boundcol um Dat aFi el d="cari d" ReadOnl y="true"
Header Text="id" />
<asp: BoundCol um Dat aFi el d="year" Header Text ="year" />
<asp: BoundCol um Dat aFi el d="nake" Header Text ="nake" />
<asp: BoundCol um Dat aFi el d="npdel " Header Text =" nodel " />
</ Col utms>
</ asp: Dat aGi d><br/ >
<asp: button runat="server" type="submt"
OnCl i ck="Start Add" Text="Add"/>
</ forne

Summarizing Data

In the previous code examples, we included header text for the columns in the column declarations. The
DataGrid also supports the inclusion of a footer row, and this is enabled by setting the ShowFooter
property to true. The DataGrid creates the space for the footer information automatically, but it does not fill
the data in. The summary information can be calculated on the fly as each item is added and then set
explicitly when the footer item is added. The footer item is added after all the items and alternating items.
Code Listing 3-17 illustrates how to summarize data by adding an ltemCreated event handler and then
accumulate the value from the items as they are added. Notice that when the Footerltem is added, the
contents of the TableCell are set explicitly with the markup and the total.

Code Listing 3-17: DataGridSummary.aspx

<% nport nanespace="System Data" %
<script |anguage="C#" runat="server">
protected void Page_Load(object o, EventArgs e) {
i f(!IsPostBack) {
dat agri d. Dat aSource = GetData();
Dat aBi nd() ;

}

Dat aVi ew Cet Data() {
Dat aTabl e data = new Dat aTabl e();
dat a. Col ums. Add(new Dat aCol uim(" aNunber ", typeof (I1nt32)));
Dat aRow dr ;

dr = data. NewRow(); dr[0] = "70"; data.Rows.Add(dr);
dr = data. NewRow(); dr[0] = "58"; data.Rows.Add(dr);
dr = data. NewRow(); dr[0] = "62"; data.Rows.Add(dr);

dr = dat a. NewRow() ;
dr = dat a. NewRow() ;
dr = dat a. NewRow() ;
dr = dat a. NewRow() ;
dr = dat a. NewRow() ;
dr = dat a. NewRow() ;
Dat aVi ew vi ew = new Da
return view,

dr[0] = "54"; data.Rows. Add(dr);
dr[0] = "57"; data.Rows.Add(dr);
dr[0] = "50"; data.Rows.Add(dr);
dr[0] = "52"; data.Rows.Add(dr);
dr[0] = "49"; data.Rows. Add(dr);
dr[0] = "46"; data.Rows. Add(dr);
taVi ew(dat a) ;

}

int total;
void DataGrid_ItenCreated(object o, DataGidltenEvent Args e) {
if((e.ltemltemlype == ListltenType.ltem ||
(e.ltemltemlype == Listltenlype. Alternatingltem) {
total += (int)(DataBinder.Eval (e.ltem Dataltem "aNunber"));

return;
}
if(e.ltemlItenilType == Listltenmlype. Footer) {
e.ltemCells[0].Text = "<i>" + total + "</i>";
}
}
</script>

<form runat ="server">
<asp: DataGid runat="server" id="datagrid"
Aut oGener at eCol utms="f al se"
OnltenCreated="DataGrid_ItenCreated"” ShowFooter="true">
<Col umms>
<asp: BoundCol unm Dat aFi el d="aNunber"
Header Text =" Nunber "/ >
</ Col utms>
</ asp: Dat aGri d>
</ forne

Note Reflecting on the individual items has an impact on performance. For large sets of data with
numerous columns to summarize, leveraging the database directly for calculated values might
be more efficient.

Summary

In this chapter, we examined some ways to work with data in ASP.NET. We compared the Repeater,
Datalist, and DataGrid controls, and because the DataGrid in particular offers powerful support for
templating, controlling styles, and editing, we walked through some of the more useful ways to take
advantage of it. We also examined what is necessary for adding and deleting rows from the underlying
data and how to filter and sort data. Finally, we looked at summarizing data dynamically.

Many Web sites are primarily driven by the need to access and modify back-end data. It paysto become
proficient at enabling the user to manipulate data effectively, but be sure you understand the performance
implications associated with working with large sets of data.

Chapter 4: Developing for Mobile Browsers

A growing number of handheld and mobile devices come with built-in browsers. The disparity between the
features of these browsers is far greater than it is among more full-featured desktop PC browsers. The
most fundamental difference is that the various mobile browsers demand different kinds of markup. An
HTML page that renders fine on a desktop browser won't work at all on many mobile browsers, and the
markup language used by one mobile browser might not work on another. In this chapter, we'll look at
writing Web applications for mobile browsers using Microsoft ASP.NET Mobile Controls and the
MobilePage class. You'll also examine how to leverage ASP.NET so that you can minimize what you need
to learn about mobile browsers and deploy a mobile-enabled application successfully.

Tip You might encounter references to the Microsoft Mobile Internet Toolkit on the Web, in magazine
articles, and in newsgroups. When version 1.0 of ASP.NET was released, mobile support was not
included. Instead, support was available as part of a separate download called the Microsoft
Mobile Internet Toolkit. This mobile support is now included as part of ASP.NET.

Introducing Mobile Pages and Mobile Controls

Traditional Web development has us thinking in terms of the HTML tags we need to use. You probably
have ideas about how your desired user interface (Ul) can be realized using specific HT ML markup, but in
the world of mobile devices, this mindset won't get you very far. Some browsers support the Wireless
Markup Language (WML), which is part of the Wireless Application Protocol, also referred to as WAP.
Other browsers support a subset of HTML specifically designed for mobile devices, called Compact HTML
(cHTML). Compact HTML is particularly popular where wireless bandwidth infrastructure supports faster
accessto more data, such as in Japan. Some more sophisticated handheld devices have browsers that
support HTML 3.2 but do not include client-side script support, whereas others have script support as well
as some features of HTML 4.

The server controls architecture in ASP.NET moves us away from thinking directly in terms of HTML. It lets
us more easily focus on the application logic and high-level user interface (Ul) design because the
controls render the HTML we need. ASP.NET mobile controls move the emphasis even further from being
markup-specific, and guide the developer to think in terms of application functionality. The controls in the
System.Web.Ul.MobileControls namespace extend the system. Web.Ul.Moblie Controls.MobileControl
class and add a new construct for rendering the different markup required by handheld devices and
embedded browsers. Figure 4-1 shows how MobileControls and Mobile Page extend the base Page and
Control classes.

System Web. LI System. Web. Ul MobileControls
Namespace Namespace

Contn Mobide Cortiod

System.Web.Ul.Control Systam.Web.Ul.MobileControls.MobileCantral

HTML Centrols
k.

k.

Page Mobile Page
Systerm.Web, Ul.Page System.Web. Ul.MobileControls MobtlePage

Figure 4-1: The extended Page and Control classes

The mobile controls do not actually handle the rendering of markup. Each Mobile Control class has an
associated set of adapters that renders the different kinds of markup. (The section titled 'Selecting Page
and Control Adapters,' later in this chapter, gives more detail about how an adapter is associated with a

control during the page life cycle.) The control is responsible for the primary functionality, whereas the
adapters manage the markup. The mobile control delegates the rendering as well as other page
framework events to the adapter so that the adapter can effectively manage any unique requirements of
the requesting device. This adaptive quality of MobilePage means that you can support a variety of
browsers without necessarily learning the associated markup language. For example, to get calendar
functionality in your application, you can place a CalendarMobileControl on a MobilePage. The mobile
page gets the correct adapter for the requesting device. WML, cHTML, and HTML calendar adapters
perform the rendering when the page is executed. Each calendar adapter produces markup targeting a
specific language. Figure 4-2 shows how the adapters fit into the page life cycle.

MobileControl WML Adapter

Oninit

OnLoad
el
OnPreRender 1 HTML Adapter

Render

OnUnload —
3 cHtml Adapter

Figure 4-2: The role of the adapter in the life of a mobile page

Other approaches to the problem of multiple markup languages have had limited success, in part
because applications are still written with HTML. One such approach is to simply translate the HTML into
the markup supported by the requesting device, but this presents the problem of what to do when the
translation isn't straightforward. A way to deal with this complication is to discard pieces of the original
content-a solution that's far from ideal.

ASP.NET mobile controls don't attempt to translate one type of markup into another. Instead, the controls
are themselves an abstraction for the functionality. You program against those controls and their object
model, and the adapters emit the markup necessary for the requesting device.

Selecting Page and Control Adapters

We said earlier that each control has an associated set of adapters responsible for rendering different
kinds of markup. Let's look a little more closely at what this means.

When a MobilePage executes, it examines the headers in the HTTP request to determine the capabilities
of the requesting browser. In the browserCaps section of the configuration file, a set of regular expressions
is applied to headers, starting with the User-Agent string. When a matching expression is found, the
default browser capabilities are overridden by the values specified by that match. Often a matching regular
expression will cause a set of nested regular expressions to execute to further define specific browser
capabilities, which allows you to detect and handle variations between device models and browser
versions. When the regular expression does not match, the associated capability settings and nested
matches will not be applied for that browser type.

After this preliminary information about the browser is gathered, the page can select an adapter to handle
page framework behavior specific to the page being executed. Perhaps it's more accurate to express this
in reverse by saying that a page adapter selects itself. The page adapters expose a method configured as
theDeviceQualifies predicate in machine.config or web.config files. The DeviceQualifies code is tasked
with ascertaining whether it can render for the capabilities of the requesting device. The DeviceQualifies
methods are executed in the order they appear in the configuration until one returns true, essentially
selecting itself to manage the current request. The page adapter is responsible for managing view state,
postback data, and postback handlers; for providing the appropriate TextWriter for handling page output;
and for selecting adapters for the controls contained in the page. The page adapter participates in the
page life cycle events and delegates to the adapters as well.

In the machine.config file, you'll notice that adapters are grouped into adapter families, with a page
adapter as the parent that contains a set of compatible control adapters. These control adapters are used
to render the output and process events for the associated control.

The concept of the control tree is essentially duplicated in the adapter hierarchy. The page control
contains a set of child controls, and each mobile control has an associated adapter. The adapters can
create child controls to produce the user interface appropriate for the functionality of the associated server
control on a specific device. Page events such as Onlnit,OnLoad,OnPreRender, and OnUnload can be
handled by the adapter or left for the control to manage.

Designing for Mobile Browsers

At first, developers are inclined to create a single site for both desktop and mobile browsers. And by a
'single site,’ we don't just mean that the pages are all deployed in a single Web application root of
Microsoft Internet Information Services (lIS). Developers want to have their site functionality simply ported
to mobile browsers. However, many pieces of functionality don't translate well to the mobile Web
environment. For example, data entry can be tedious for the user, especially for longer forms. The first
step in developing your site for mobile devices is to determine what subset of the application functionality
should be exposed to the user. The most successful mobile pages are those that provide information with
minimum user input.

Tip Mobile pages should limit the amount of input required by the user. Strive for maximum relevant
information with the fewest key clicks. Entering data can be tedious on a small form factor, and
networks for mobile devices are still relatively slow compared to wired devices, so performing
postbacks and following links can be somewhat time consuming.

On their desktop browsers, users are accustomed to accessing rich cascading menus and having dynamic
interactions with a large quantity of available selections. Mobile device users, however, are often
connected to the Internet through relatively slow wireless connections on machines without powerful
processors. Every postback and action requiring a round trip to the server can be painfully slow, so
navigation should be simple and allow the user to get to the end page easily-not more than three clicks
from the home page is a good rule of thumb. This mobile Ul strategy is likely to be a significant shift from
the desktop Ul you currently present in your applications.

Many developers neglect the problems posed by slower connections when designing their pages. You
should create pages that reduce the number of round trips to the server, but you don't have to limit page
content to the size of the screen. Most devices provide vertical scrolling keys to make page reading easier
for the user.

Also be aware that many mobile browsers have strict limits on the amount of content that can be returned
in a page, so you need to be reasonable when addressing a single page request and judicious about the
amount of content to be displayed. If you exceed that content limit, the user will get an error message. Too
little content frustrates the user with too many waiting periods, and too much content turns the page into a
browser error.

Taking Advantage of Emulators

When developing an application, you need to act like the user so that you can see what he sees. That
means you must test the application for errors and verify functionality on the devices the user is likely to
employ. In the past, you might have had to test a couple of types of desktop browsers, and possibly even
several versions of those browsers. When you develop an application that targets mobile browsers,
however, this testing becomes a significantly bigger challenge. There are numerous form factors to
consider, with various methods of connectivity, and browsers are often ‘burned' into the firmware of the
devices. An additional complication is the considerable cost of buying so many devices and the associated
connectivity service plans. Fortunately, many browser producers and device manufacturers provide
softwareemulators that make the process of testing a Web application more manageable.

Before scouring the Web for every emulator you can find, you should first narrow the scope of your search
by defining your target devices, if you can. In many scenarios you can eliminate classes of devices and
thus avoid customizing your application and testing for those devices. For example, consider a mobile
application that is built to enable a group of employees better remote access to corporate information. A
company might have employees use the PocketPC running Pocket IE, or it might have everyone use a
specific type of Personal Digital Assistant (PDA). In a case like this, you wouldn't need to be concerned
about tailoring your application for the cell-phone user. Alternatively, a company might standardize on SIM
cards for authentication and predominantly use cell-phone-based browsers. Of course, if your application
is targeting the general public, you miss out on the opportunity to focus your efforts so narrowly.

Tip Use a desktop browser as a debugging aid when developing applications for mobile browsers
because debug and tracing information is not included in the output from the MobilePage.

Start with a Browser

Before you focus your efforts on testing with mobile device emulators, use a desktop browser. The
desktop browsers are generally more stable than some of the new emulators. They also will be
recognized and the HTML adapters will render appropriate markup. You can then move on to testing and
refining the application using emulators with the assurance that the core functionality is in place and
behaving as expected.

Using a desktop browser also provides for easy application debugging. Tracing functionality is not
available for mobile pages when rendered to small form factors. Although debug information from error
messages will be displayed in the output adapted for mobile devices, it will be truncated based on the
characteristics of the device. There is no reason to forego the more feature-rich desktop browsers when
developing a mobile-enabled application. However, user interface decisions that seem fine when viewed
on the relatively large desktop monitor might seem less appropriate when scaling to the smaller real
estate of the mobile device.

When using emulators to develop a mobile application, you'll want to get broad coverage for the adapters
that you have available. If you've installed adapters customized for a particular browser, consider how your
development can exercise those adapters as well. Generally, with the adapters that shipped with the
Microsoft .NET Framework and the device updates that have beenreleased as of the writing of this book,
you'll want to be concerned with HTML, cHTML, XHTML, and WML. The cHTML family of adapters
inherits from the HT ML device group, so it might be sufficient to work with the Pocket PC emulator
included as part of the PocketPC 2002 Software Development Kit. You can download the Pocket PC
emulator from Microsoft at http://msdn.microsoft.com/downloads. The cHTML renderings do not take
advantage of client-side script support, so you might want to turn off script support in the settings for the
browser. Another way to achieve scriptless renderings during development is to override the capability by
including a global match in the web.config file for the application. The web.config file in Code Listing 4-1
will cause your desktop browser to be treated as a scriptless device and receive cHTML from a mobile

page.

Code Listing 4-1: Scriptless Browser Configuration Web.config

http://msdn.microsoft.com/downloads

<configuration>
<system web>
<br owser Caps>
javascript="fal se"
<br owser Caps/ >
</ system web>
</ configuration>

The most recent emulators from Openwave, Ericsson, and Nokia all include support for WML and XHT ML
renderings. You might find that the messages from the different emulators reporting page errors are
somewhat cryptic. In fact, the error reporting abilities vary significantly among the emulators. You might
find it faster to start working directly with the XHTML or WML that is causing the problem. A quick search
of the Web turns up a number of XHTML and WML validators in which you can paste the page output and
get relatively detailed error reporting. Often, the source of the problem is the markup you've included
directly. Since XHTML and WML both require strict XML compliance, you can easily overlook something
that renders fine in the HTML browsers, which are traditionally more forgiving when you deviate from the
standard. In addition to requiring well-formed markup, WML and XHTML browsers enforce schema
validation. The tags used, and even their order or placement and nesting, must comply with the schema
supported by the browser. Another approach that can help is to save to a file the page output from the
emulator in which you are seeing an error. Then you can load the markup directly from the file into the
different emulators and frequently isolate a problem more easily.

Using Cookieless Sessions

When you create a mobile Web project in Microsoft Visual Studio .NET, a web.config file is created as part
of the project. In this configuration file, several default settings are established for the application. One of
these enables cookieless sessions. (Another configuration setting defines a set of device filters, which we'll
talk about more in the 'Using Device Specific Filters' section later in this chapter.)

Cookies are passed between client and server as part of the request headers. Some mobile devices don't
have the logic for managing cookies, and others allow the user to turn cookie use off. Normally, server
sessions will not work correctly without cookies and desktop developers can treat session support as
optional. In fact, to reduce use of server resources, some applications will explicitly disable server session
state. Server sessions are particularly important in mobile pages because mobile pages use session state
to assist in managing the view state. On regular desktop pages, the view state is passed between the client
and server on each request, allowing for state to be simulated in an otherwise stateless protocol. Mobile
pages minimize the amount of data that must be passed on each request and use up part of the limited
browser memory by storing some view state in session. Without cookies, a new session is created on each
request because the session identifier is not sent, and view state will not work correctly. In cookieless
sessions, the session identifier is carried as part of the URL so that a server session exists for the user
without the use of client-side cookies. When a request is first received without a session identifier as part of
the request path /samplePath/somePage.aspx, the browser is redirected to the same page with a modified
URL carrying a session identifier. /(sessionldentifier)/samplePath/somePage.aspx. For the duration of the
session, the session identifier is implied by relative requests, or added to fully qualified paths to keep the
user connected to the current session.

To turn on cookieless sessions, include a cookieless="true'direction in the sessionState section of your
web.config file. The web.config file in Listing 4-2 is simplified to include that direction.

Code Listing 4-2: Cookieless Web.config

<configuration>
<system web>
<sessi onState cooki el ess="true" />
</ syst em web>
</ configuration>

Tip Use cookieless sessions to ensure that your application works correctly on devices that do not
support cookies.

Some browsers without built-in support for cookies still appear to work correctly when receiving and
returning cookies. Prior to WAP 2, WAP browsers could not initiate HTTP requests directly to the Web
server. Instead, they connected to a WAP Gateway, which acted as a proxy for them. The gateway
translates the WAP request from the browser into an HTTP request. Figure 4-3 shows this process.

/ | *— WAPR Reguest
1 e .
1 |
b
J WAP Gatewary]

HITF Reguast

Pl sl

Cookies miny be Stored
ot the gateway for
thiz mobibe Browser '
: g
Mol Briowsaad Wby Seéver

Figure 4-3: The gateway translating a WAP request from the browser

Some gateways offer additional functionality by tracking the cookies on behalf of the device. The browser
never actually sees the cookie, but to the server, the browser appears to support cookies. Because this is
a function of the gateway and not the browser, don't be surprised when you examine the browser
capabilities and find that support for cookies is set to false, even though the tracking appears to work some
of the time. Don't assume you know the capabilities of the general device and ignore the possible impact
of the gateway.

Directing Users to Mobile Content

One issue that comes up often is how to get users to the mobile pages once they exist. A couple of
“gotchas” can complicate this apparently simple task: users having to choose between the mobile and
desktop versions of content, and users being shown the wrong content for their browser type.

Theoretically, we should just be able to look at the type of browser issuing the request and redirect the
user to the correct page. However, this immediately causes a problem for many users if the page they are
directed to has a redirect as well. Many mobile browsers view several back-to-back redirect status codes
as an error condition. Presumably they do this to avoid infinite loops, but the error also occurs in valid
scenarios. If you're using cookieless sessions, a redirect will get the session identifier in the URL. If you're
using forms authentication, the user will encounter a redirect to the login page when first accessing a
protected page. If you put a couple of these scenarios together, the user will get an error message from
her mobile browser when trying to access the site.

Fortunately, one approach handles this redirect problem with relatively little effort on your part: designate a
mobile page as the default page. You can then use Response.Redirect to get desktop browsers to a non-
mobile page. Alternatively, you can use Server.Transfer to get the appropriate page for the non-mobile
device. The MobileCapabilities object has a property with the intuitive name IsMobileDevice that makes it
easy to tell when a request is coming from a browser recognized as suitable for adapted content. The
Page_Load method shown in the following code snippet demonstrates how a user of a non-mobile device
is directed to the content designed for her particular device.

<script runat="server" | anguage="C#">
protected void Page_Load(object o, EventArgs e) {
Mobi | eCapabilities capabilities =
(Mbbi | eCapabi lities)Request. Browser;
if(capabilities.|shMbileDevice == true) {
Server. Transfer (" nobi |l eDef aul t. aspx");
}
}

</script>

Using the MobileCapabilities Object

In the preceding code, notice that the HitpBrowserCapabilities object returned by the Browser property of
theRequest object is cast as a Mobile Capabilities object. In version 1.1 of the NET Framework, the object
type associated with browser capabilities returned by the Request.Browser property is actually a

Mobile Capabilities object. The Mobile Capabilities object inherits from the HitpBrowserCapabilities class
and extends the class with support for properties that apply primarily to mobile browsers. You can see this
in the browserCaps section of the machine.config file (shown in the following code), in which the result
type specified is of type System.Web.Mobile.MobileCapabilities.

<br owser Caps>
<result type="System Web. Mobi |l e. Mbbi | eCapabilities,
System Web. Mobi |l e, Version=1.0.5000.0, Culture=neutral,
Publ i cKeyToken=b03f 5f 7f 11d50a3a" />
</ br owser Caps>

Working with Device Updates

ASP.NET device updates provide support for additional browsers. The new support can come as new
configuration data or in the form of new mobile control adapters. New configuration data consists of
browser capabilities that accurately describe the browser features and map the browser to the correct
adapters. The browser capabilities are also utilized by the adapters to accommodate any idiosyncrasies
and to produce the best markup possible for the device. New adapters also rely on configuration data, and
when the existing adapters can’t render markup for the new browser, a new adapter that renders the
required markup must be developed.

ThebrowserCaps configuration section is often customized when adding support for a new browser, as
we’ll discuss in the next section. Device updates add new browserCaps information by adding a new file
containing additional browser data. Any modifications you make directly to machine.config are left intact.
The new file is referenced in the browserCaps section with a file element.

<br owser Caps>
<result type="System Web. Mbbi |l e. Mobil eCapabilities" />
<file src="devi ceUpdatel.config" />

</ br owser Caps>

The machine.config browserCaps section is matched first, followed in turn by each file referenced with a
file element. So, an expression match in a browserCapsfile reference can override the capability setting of
a match for one of the regular expressions found in machine.config. For example, support for XHTML was
added in ASP.NET Device Update 2. A browser that supports both WML and XHTML might be configured
in the machine.config file to use WML, but the deviceUpdatel.config file can override the preferred
rendering type to XHTML-MP (a mobile profile version of XTHML) so that it can use the XHTML rendering.

Tip Device updatesinstalled on ASP.NET 1 using the Mobile Internet Toolkit replace the browserCaps
section in machine.config with new content. Customizations for the browserCaps section will be
lost when installing Device Updates 1.

Adding Support for a New Browser

You can add support for a new browser in two primary ways. The first approach is to modify the
configuration so that the browser is recognized with the correct capabilities and the adapters can render
the proper markup, and it is successful when the markup produced by the existing adapters works with the
new browser. If the browser requires markup changes that can’t be configured, you need to write custom
adapters and then modify the configuration so that it can utilize them. In the section “Writing a Custom
Adapter,” which appears later in this chapter, we'll go through the steps for writing and configuring new
adapters.

ThebrowserCaps section is made up of sets of use and filter elements. The use element indicates which
request header to use in the filter elements that follow it. The filter element contains one or more case
elements that match elements from the header being used and set the browser capabilities. For example,
in the browserCaps section in the following code, the first use element specifies that we are using the
User-Agent header. It is followed by a long list of defaults. These defaults are then overridden to more
specialized values by the various matching case elements.

<br owser Caps>
<result type="System Web. Mbbi |l e. Mobil eCapabilities" />
<use var="HTTP_USER AGENT" />
activexcontrol s=fal se

pl at f or n¥" Unknown"
preferredRenderi ngType="htm 32"

i sMobi | eDevi ce="f al se"
<filter>
<case match="W ndows 95| W n95">
pl at f or nFW n95
</ case>
<case match="W ndows 98| W n98">
pl at f or nFW n98
</ case>
<case match="Wndows NT 5. 1| Wndows XP">
pl at f or nFW nXP
</ case>
<case mat ch="W ndows NT 5. 0] W ndows 2000">
pl at f or W n2000
</ case>
</filter>
</ br owser Caps>

Notice in this snippet from machine.config that after the use element indicates that the User-Agent is being
examined, the default capabilities invoked are for a fairly generic HT ML device that specifies the most
common set of capabilities. This configuration should achieve the broadest coverage for browsers that
aren’t recognized specifically in the code.

Tip When a browser isn’t recognized in the browserCaps configuration section, the default behavior is
totreat it as an HTML 3.2 device without support for client-side scripting.

Thecase elements within a filter element act like a switch-case construct. Once a match is found,
evaluating the rest of the case elements within that filter is unnecessary. For example, if the platform is
found to be Microsoft Windows 95, the default unknown platform is overridden, and the remaining platform
checks are skipped.

Let's walk through what it takes to add device information by creating configuration for an imaginary
sample device. We'll do it the same way we would to add support for a real browser. This device is from a

company just entering the mobile browser market. We'll call the company NewPlayer. Their new browser
is the WmIColor2000. First we need to create afilter entry to match the User-Agent string of the device. If
the device were a new model from a manufacturer recognized by the configuration, we would nest the
specialization within an existing match. In our example, we create a new top-level filter element to match
theUser-Agent string: “NewPlayer Color 2000.” We then specify the preferred rendering type and set the
MIME type to be WML. These two capabilities are used in selecting the adapter and in returning the correct
header values in the HTTP response.

<filter>
<case mat ch="NewPl ayer Col or 2000.*">
br owser =" NewPl ayer Wt Col or 2000"
pr ef erredRenderi ngType="wn 11"
pr ef erredRenderi ngM me="t ext/vnd. wap. wni "
</ case>
</filter>

Ascertaining which properties will be set for a particular browser by the other filter elements can be
difficult. Two simple pages can help to illustrate. The first (shown in Listing 4-3) displays just the HTTP
headers sent by the device. This page gives you an idea of which headers you have available to identify
the device and to set the characteristics correctly in the configuration.

Code Listing 4-3: DisplayingHeaders.aspx

<%@ Page | nherits="System Web. Ul . Mbbi | eControl s. Mobi | ePage" %
<script runat="server" |anguage="c#">
protected void Page Load(Obj ect sender, EventArgs e) {
NaneVal ueCol | ecti on nvc = Request. Headers;
string[] keys = nvc. All Keys;
for(int i = 0; i < keys.Length; i++) {
string[] values = nvc. Get Val ues(keys[i]);
System Web. Ul . Mbbi | eControl s. Label bl = new
Syst em Web. Ul . Mbbi | eControl s. Label ();
I bl . Text = keys[i] + ":" ;

for(int j = 0; j < values.Length; j++) {
I bl.Text += " " + values[j];
}
forml. Control s. Add(I bl);
}
}
</script>

<nobil e: Formid="fornml" runat="server" Pagi nate="true" >
</ mobi | e: For np

Now that you have the headers available for the device, you can iterate through the capabilities being set
for the browser. When you first configure a device, some of these settings will be incorrect, but by having
the capability list, you can more easily identify the properties that will need to be set explicitly. This list also
comes in handy when you need to find the filters that are incorrectly matching headers and setting
properties for the browser. In the case of incorrect matching, you can add a specialization to the existing
filter to correct the setting. Listing 4-4 writes out all the configured capabilities of the Mobile Capabilities
object for the requesting device.

Code Listing 4-4: ShowCapabilities.aspx

<%@ Page | nherits="System Web. Ul . Mobbi | eControl s. Mobi | ePage"
Language="cs" %

<% | nport Nanespace="System Refl ecti on" %
<% | nport Nanespace="Syst em Wb. Mobi | e" %
<script runat="server" | anguage="c#">
protected void Page_Load(Object sender, EventArgs e) {
Mobi | eCapabilities capabilities =
(Mobi | eCapabi |l i ti es) Request . Browser;
Type t = typeof (Mobil eCapabilities);
Propertylnfo[] propertylnfos = t.GetProperties();
foreach(Propertylnfo pi in propertylnfos) {
System Web. Ul . Mobi | eControl s. Label | bl = new
System Web. Ul . Mobi | eControl s. Label ();
I bl . Text = pi.Name + " + capabilities[pi.Nane];
forml. Control s. Add(I bl) ;

}
}

</script>
<mobi |l e: Form i d="forml" runat="server" Paginate="true" >
</ mobi | e: For m»

Understanding the large quantity of filter and case elements within the browserCaps section is a
somewhat daunting task at first, but as you configure more and more devices, you quickly become
acquainted with the browserCaps section’s capabilities. The various groups of filter elements isolate
particular settings such as those for the platform, or handle multiple device models from a single
manufacturer. You will become proficient at manipulating browser configurations as you become more
familiar with individual browser capabilities.

Writing a Custom Adapter

One significant difference in behavior between the mobile controls and the Web controls is their treatment
of custom attributes. By default, custom attributes are not allowed on mobile controls. In this section, we’'ll
talk about the reasons behind this limitation and its impact on your work. We’'ll also walk through the
writing and configuration of your own custom adapter.

If you specify an attribute on the server control that isn’'t recognized by the control, a System.Exception is
thrown during the Load event, stating “Cannot set custom attributes on mobile controls in this page.” Web
controls, however, do allow custom attributes, and do not throw an exception when loaded. Custom
attributes are simply passed through to the browser as an attribute of the primary HTML tag rendered for a
control. It is important to recognize the difference when using custom attributes with Web controls because
you're probably used to setting extra style attributes, or you might be using the FOR attribute to leverage
client-side script. With the mobile controls, this will not work without extra effort on your part because
unrecognized attributes are prohibited by default.

Because the validated WML and XHTML markup used by mobile browsers mandates strict compliance to
their schemas, simply passing through unknown attributes is not safe. And given the differences between
client-side scripting and supported attributes, there isn’t a reasonable way to translate many tags. The
primary HTML tag rendered for a particular Web control typically doesn’t vary based on the browser
issuing the request; HTML processors in browsers simply ignore the attributes they do not know. However,
with adapted output, the tag used to represent a server element can vary from markup language to
markup language.

For example, consider accessKey attributes, which are customized shortcut keys for selecting links. Users
can find them particularly useful for making selections because they don’'t need a mouse. Listing 4-5
shows how to use the accessKey in your code. It is a simple page with links to http://www.microsoft.com
Imspressandhttp://www.asp.net. The accessKey attribute is specified so that when the user selects the
specified shortcut key, the link is accessed. However, notice that when you try requesting the page, the
accessKey attribute causes a run-time error.

Code Listing 4-5: accessKey.aspx

<%@ Page I nherits="System Web. U . Mbbi | eControl s. Mobil ePage"” %
<nobi | e: form runat ="server" >
<nobil e:link runat="server"
Navi gat eUr| ="http://ww. m crosoft.com mspress”
AccessKey="nt
Text="(m MSpress" />
<nobil e:link runat="server"
Navi gat eUr| ="http://ww. asp. net
AccessKey="p"
Text ="(p) ASP. NET" />
</ nmobi | e: forne

Using Custom Attributes

To take advantage of custom attributes, you must modify the configuration so that errors aren’t thrown
when you use the attributes with mobile Controls. In addition, you must make use of the new server control
attributes in custom adapter code, because without them, the default adapters will simply ignore the
unknown attribute.

Listing 4-6 is a web.config file that overrides the machine.config default and prevents the run-time errors
that usually occur when unrecognized attributes are encountered. When you set allowCustomAttributes to

http://www.microsoft.com
http://www.asp.net

true on the mobileControls element, you no longer encounter the errors.

Code Listing 4-6: Allowing Custom Attributes Web.config

<configuration>
<system web>
<nobi | eControl s
al | owCustomAt tri butes="true" />
</ syst em web>
</ configuration>

Tip TheAllowCustomAttributes configuration setting does not cause custom attributes to be passed
through to the client. It only allows them to be specified in the server page without causing an error
on the server. This setting applies only to the mobile controls where unrecognized attributes on the
server controls are treated as an error by default.

RequestAccessKey.aspx (shown in Listing 4-5) again and notice that including custom attributes no
longer creates an error condition. However, pressing ALT+M or ALT+P doesn’t move the focus as
expected. To get the desired effect, you can create an adapter that will use the accessKey setting. In this
example, we'll provide a new adapter for generating HTML. We create a new class that inherits from the
HtmliLinkAdapter and overrides the AddAttributes method. The AddAttributes method is called during the
Render method to handle any supported attributes. We will simply write the accessKey attribute if it is
present. In Listing 4-7, we create a new link adapter that inherits from the HtmlLinkAdapter. It overrides the
AddAttributes method to include support for the access key.

Code Listing 4-7: MyHtmILinkAdapter.cs

usi ng System
usi ng System Web. Ul ;
usi ng System Web. Ul . Mbbi | eControl s. Adapt ers;

public class MyHt nl Li nkAdapter : Htnl Li nkAdapter {
protected override void
AddAttributes(H m Mobil eTextWiter witer) {
string attributeVval ue =
((1AttributeAccessor)Control). GetAttribute("accessKey");
if(attributeValue !'= null && attributeValue !'= String. Enpty){
writer. WiteAttribute("accessKey", attributeVal ue);

}

There is no built-in project type for Adapters in Visual Studio .NET, so you can create an empty workspace
and compile the file after adding references to System.Web.Mobile.dll and System.Web.dll. From the
command prompt, compile with this:

csc /r:systemdl |, system web. mobil e. dl |
/[t:library MyHt m Li nkAdapter.cs

The resulting dynamic-link library (DLL) will be called MyHtmILinkAdapter.dll and should be placed in the
bin directory of your test virtual root. Now request AccessKey.aspx and notice that there are no errors, the
ALT+P key combination moves the focus to the ASP.NET link, and ALT+M shifts focus back to the
MSPress link. Granted, this example doesn’t get us anything spectacular—it just restores the use of one

custom attribute that would have been passed through in a non-adapted page anyway. But it does
illustrate how we can enable and use custom attributes in our own adapters while preserving the relative
safety of not passing any arbitrary attributes through to a variety of browsers.

Working with Pagination

The idea behind server-based pagination is to automatically break up a block of content from a control or
group of controls in a page into smaller pieces of rendering accessed with multiple page requests.
Breaking up blocks of content can be important to enabling your application for mobile browsers because
wireless connections typically have less bandwidth than bandwidth available in a wired connection and
limits in client memory can be difficult to manage. It can be important in creating a user interface that is
consistent and easy to navigate in a variety of devices. Without pagination, some mobile browsers tasked
with rendering a large amount of content will display an error message to the user that simply states “Deck
Overflow.” This explanation doesn’'t present the user with options or even a potential workaround for the
problem. (We should emphasize that pagination itself does not fix the problem of deck overflow—it simply
circumvents it.)

The pagination algorithm targets page boundaries by limiting the number of lines of content that are
included in the rendered output for display on the device. The memory limits of the device are, of course,
not aware of any user- interface elements. The byte count can be exceeded by a single image that is too
large, or the content can be within the memory limits even though the user must scroll through many
pages of output.

You can enable pagination on a form element by setting the Pagination attribute to true, or you can specify
that a control in the form be considered for pagination by setting the form’s ControlToPaginate property
equal to the ID of the control. Allowing pagination does not force the content to be split up across pages; it
simply signals to the MobilePage class that the form should perform the pagination calculations and break
up the output of the control, if warranted.

Using Device-Specific Filters

The mobile controls simplify the process of developing applications for disparate devices. They also eliminate t
several different kinds of markup to support the mobile user. However, often we do have the luxury of knowing
users has standardized on a single device or a class of similar devices. When trying to get the most out of adar.
nice to be able to exercise more fine-grained control over the output. The mobile controls support several differ
customize based on the capabilities of a device by leveraging filters based on the capabilities of the requesting
named test used to modify control properties and affect rendering. Code Listing 4-8 is a sample web.config file
filters for testing what type of markup is being used.

Code Listing 4-8: FiltersWeb.config

<confi guration>
<system web>
<devi ceFilters>
<filter
nanme="pr ef er sXHTM."
conpar e="Pr ef err edRenderi ngType"
argunment =" xhtm - np" />
<filter
nanme="pref er sWWML11"
conpar e=" Pr ef err edRenderi ngType"
argurent ="wni 11" />
</ devi ceFilters>
</ syst em web>
</ configuration>

When these filters are used, the PreferredRenderingMime property of the Browser object is compared against
filter is true when there is a match. The filters provide a declarative way to reuse these capability tests in the mc
include a deviceSpecific element inside a control and can override the control values based on the filters. The f
applied and the remaining ones are not tested. Code Listing 4-9 demonstrates using these device filters to chat

Code Listing 4-9: LabelFilter.aspx

<%@ Page | nherits="System Web. Ul . Mbbi | eControl s. Mobi |l ePage" Language="C#" %

<script runat="server" |anguage="C#">

publ i c bool prefersHTM.(System Web. Mobi |l e. Mobi | eCapabilities
capabilities,string argunent) {

i f(capabilities["preferredRenderingType"] == "htm 32") {
return true;
}
return false;
}
</script>

<nobi |l e: form runat ="server" >
<nobil e: |l abel runat="server" Text="The Default Text">
<devi ceSpeci fic>
<choice filter="prefersXHTM." Text="XHTM. Text" />
<choice filter="prefersHTM." Text="Text for HTM. browser" />
<choice filter="prefersWL11" Text="WWL" />
</ devi ceSpeci fic>
</ mobi | e: | abel >

</ nobil e: fornp

Notice that we use a filter not included in Code Listing 4-8. If afilter is not found in the configuration, the mobile
method on the page to be used as a delegate in performing the filter check. When the page is requested, the
preferredRenderingType is checked. If a filter is evaluated to true, the value of Text for the label is set to the ne
evaluation ends. If no match is found, the current value is kept.

Tip Be careful when defining and using filters. There is a tendency to want to believe that one capability im|
though the capabilities of new devices continue to advance rapidly, it is best to explicitly check for suppt

In addition to being able to modify the properties and styles of controls using device filters, you can exert contro
itself. By using filters along with templates, you can easily customize the look of the page. The Panel control su
namedcontentTemplate that can be controlled with filters. The Form control supports several templates for cus
rendering, including a scriptTemplate for passing through arbitrary script content to the browser as well as heac
templates.Code Listing 4-10 demonstrates using a filter to use tables when they are supported.

Code Listing 4-10: HeaderFilter.aspx

<%@ Page | nherits="System Web. Ul . Mobi | eControl s. Mobi | ePage" Language="C#" %
<script runat="server" |anguage="C#">
publ i ¢ bool supportsTabl es(System Web. Mobi | e. Mobi | eCapabilities capabilities, st

i f(Convert. ToBool ean(capabilities["tables"])) {
return true;

}

return false;
}
</script>

<mobi |l e: form runat ="server">
<devi ceSpeci fic>

<choice filter="supportsTabl es">

<header Tenpl at e>

<t abl e><tr ><t d>ASP. NET Codi ng Strategi es</td></tr>
<tr><td>

</ header Tenpl at e>

<f oot er Tenpl at e>
</td></tr></tabl e>
</ f oot er Tenpl at e>
</ choi ce>

<choi ce>

<header Tenpl at e>

<nobi | e: | abel runat="server" Text="ASP. NET" />
</ header Tenpl at e>

</ choi ce>

</ devi ceSpeci fic>

</ mobil e: fornme

Notice in Code Listing 4-10 that we have included a choice element without a filter. When no filter is specified a
previouschoice elements have been selected, that element automatically will be used.

Summary

In this chapter, we looked closely at how to use the mobile features of ASP.NET to target the rapidly
growing segment of mobile users. For many applications, mobile-enabled content is quickly becoming of
primary importance to getting key information to employees, business partners, and customers. The
mobile controls rely on identifying the capabilities of the requesting device and browser. This information
about capabilities is then leveraged by control adapters that produce the appropriate markup for a device.
Device updates keep the supported browsers current with the marketplace, and the extensibility of the
adaptive rendering architecture allows us to extend mobile applications even further.

Chapter 5: Managing Client State

Overview

One of the unique opportunities for members of the ASP.NET team is reviewing the architecture design for
customers, which is beneficial not only for the customer but also for us. The customer gets validation and
critical feedback about their design, and we get first-hand knowledge of usage scenarios that influence
decisions for the technologies we build.

A common best practice that we advocate is to factor application and client state management into the
solution early in the design. State management requires developers to plan for a Web server farm and to
understand and adhere to specific design patterns. For example, out-of-process session state requires
that the data stored be serializable by the binary serializer. In total, there are seven different techniques for
managing state in ASP.NET, which are described in Table 5-1. In this chapter, we're going to examine
managing state that is stored for clients. In Chapter 6, we'll examine application and request state.

Table 5-1: Techniques for Managing State in ASP.NET

Type of State Applies to Description

Session Client State stored within the application’s memory or
outside of the application’s memory (out of
process) and available only to the user who
created the data.

ViewState Client State stored within embedded <input
type="hidden”> HTML elements for pages that
post back to themselves.

Cookie Client State stored in an HT TP cookie on the client's
machine. Accessible until the cookie is expired
or removed.

static variables Application Static member variables are declared in

global.asax or from an HttpModule and are
available anywhere within the application.

Application Application State stored within application’s memory and
available anywhere within the application.

Cache Application State stored within application’s memory and
available anywhere within the application.
Cache additionally supports dependencies and
other features to expire items from memory.

HttpContext Request State stored within HttpContext is accessible
only for the duration of the request.

In this chapter, we're going to examine managing state that is stored for clients. In Chapter 6, we’ll
examine application and request state.

Working with and understanding how client state is used in the application is critical to putting a good
design into practice. The most common type of client state is session state. Before we look at how session
state is used in ASP.NET, let’s step back and review the history of session state, which will provide some
context for understanding how it is used.

History of Session State

Microsoft Active Server Pages (ASP) first introduced the server-side programming model of session state.
TheSession object model has properties that are accessible within ASP and are used to store and
manage user state data that needs to be persisted between browser requests. The programming model is
a simple dictionary-style API in which all access is controlled through a known key. State data, such as the
URL of the last page visited or the last 10 search requests, can be persisted using a key and retrieved
using a key. For example, the following Visual Basic code works in both ASP and ASP.NET:

‘ Set a session value for |ast page visited
Session("Last PageVisited") = "http://ww. asp. net/default.aspx"

‘ Get a session value for |ast page visited
| ast PageVi sited = Sessi on("Last PageVi sited")

Limitations with ASP Session State

Despite the advantages of ASP, ASP session state has three significant limitations: server affinity in Web
farms, apartment model threading, and the HTTP cookie requirement. It was primarily for these three
reasons that many developers avoided ASP session state.

Server Affinity in Web Farms

Prior to ASP.NET, server farms that supported session state required smart network hardware to ensure
that a client was always redirected to the Web server initiating the first request. In ASP, the session data is
stored within the Microsoft Internet Information Services (lIS) process that created it.

ASP runs as an ISAPI extension in the memory space of the IIS Web server. Data stored in memory by
ASP is bound to that Web server process and can’t be shared between servers. This limitation requires the
client always to use the same Web server to guarantee consistency of its session state data. For example,
if a user set data in session on server A and used server B on the next request, the session created on A
would not be available data.

This connection of the client to a particular server is known as IP affinity, and it is a requirement for using
session state. (There are other internal redirection solutions, but IP affinity is the most prevalent.) This
solution usually requires complex networking hardware to load-balance the traffic. It relies on the client
reusing the same IP address on multiple requests and the router maintaining a table of client IPs to server
IPs. Routers then intelligently reroute requests based on the mapping of client IPs to server IPs,
guaranteeing that the client goes back to the server it started with.

However, even with this IP affinity solution in place, many applications still failed to properly account for
large Internet Service Providers (ISPs) such as AOL, MSN, and EarthLink. These three ISPs were the
most well known for using reverse proxies for their clients, which meant that on each request the client
could come from a different IP address.

Apartment Model Threading

Another limitation of ASP session state is that apartment model-threaded components are the de facto
COM threading model. COM servers stored in session state cause multiple simultaneous requests to the
same session value to be serialized. This problem is also common with ASP application state.

HTTP Cookies Requirement

ASP session state is also bound to an HTTP cookie. (You'll learn more about cookies later in this chapter.)
When a new session starts, ASP assigns an HTTP cookie to the client; the cookie contains a unique key
that the client and server share. This key, known as SessionID, is a unique value that the server generates

and uses to associate session data with the client that posts the key. The IP address can’t be used for this
since the IP address can potentially change on each request.

Using an HTTP cookie works very well until a client decides not to accept cookies. In many cases this
restriction breaks application functionality; since the client can't maintain a SessionID, the application can't
rely on session state.

ASP.NET Session State

Session state still exists in ASP.NET, partly for backward compatibility, but also as a viable implementation
that developers should no longer shy away from. ASP.NET session is free-threaded, but in some cases it
can be accessed serially. Session state in ASP.NET still utilizes an HTTP cookie for managing the
SessionID, however, ASP.NET also supports storing the SessionID in the URL if using cookies is not
desirable. ASP.NET session state also supports two out-of- process modes to simplify deployment in Web
server farms: out-of-process state server (StateServer), and out-of-process SQL Server (SQLServer).

In-Process Session State

ASP.NET defaults to what is known as in-process (InProc) session state. When in this mode, values stored
within session state do not require serialization support and are stored within the memory space of the
ASP.NET worker process. This behavior is identical to the way ASP stores its session data and has all the
same shortcomings and limitations in a Web farm scenario. However, instead of the data being stored in
the IIS process, the data is stored in managed memory within the ASP.NET worker process. (When
ASP.NET is running on Microsoft Windows 2000, it defaults to the ASP.NET worker process
aspnet_wp.exe. However, when ASP.NET is running on Microsoft Windows Server 2003, it will use the
new IIS process model w3wp.exe.)

When stored in-process, session state data is lost whenever the process is recycled. In Microsoft Windows
Server 2003 running IS 6, the worker process automatically recycles every 29 hours, which is the default
setting and is configurable. However, this does mean that every 29 hours the session data will be lost,
whether itis 2:00 AM or 3:00 PM.

InProc is by far the fastest way to use session state. It doesn’t support Web farm scenarios (unless you
enforce client affinity). However, it also doesn’t have the serialization and deserialization overhead
associated with out-of-process modes. It's safe to assume that out-of-process session state is 15-30
percent slower (depending upon variables such as network speed and the size of the object or objects
being serialized).

Important Use in-process session state (the default) if you have only a single server. In lIS 6, either
use out-of-process or disable process recycling behavior to avoid data loss.

Code Listing 5-1 shows the configuration settings from machine.config that specify the default settings for
session state. Values that apply to InProc appear in bold.

Code Listing 5-1: In-Process Session State Configuration

<confi guration>
<system web>
<sessi onSt at e node="1nProc"

stat eConnectionString="tcpi p=127. 0. 0. 1: 42424"
st at eNet wor kTi neout =" 10"
sql ConnectionString=". ..
cooki el ess="f al se"

ti meout ="20" />

</ syst em web>
</ configuration>

The timeout value specifies the time, in minutes, after which a session is considered timed out and its
values can be removed. Session state uses a sliding expiration: the timeout is reset each time the item is
requested. A session could theoretically be kept alive indefinitely if a request was made just once before
the value in the timeout is reached. We'll discuss the cookieless option later in the chapter.

The name of the HTTP cookie used to store the SessionID in ASP.NET is different from the cookie used
to store the SessionID in ASP. There is no sharing of session data between ASP and ASP.NET. (See
Chapter 11 for more details about migrating session state between ASP and ASP.NET.)

InProc session state allows any data type to be stored, and it participates in the global session events
Session_OnStart, which is raised when a new session is created; and Session_OnEnd, which is raised
when a session is abandoned. These events can be programmed in either global.asax or within an HTTP
module.

Important Don't use the Session_End event; it can be called only for sessions created in the InProc
mode. The event is not raised for sessions created in one of the out-of-process modes
when sessions are abandoned.

Although the InProc session is the fastest, in some cases, you might want to trade performance for
reliability or ease of management. For example, the out-of-process option is a good choice when you want
to support multiple Web servers, or when you want to guarantee that session data can survive the Web
server process.

Out-of-Process Session State

ASP.NET session state supports two out-of-process options, state server (StateServer) and SQL Server
(SQLServer). Each has its own configuration settings and idiosyncrasies to contend with, such as
managing stored types. The ASP.NET State Service is recommended for medium-size Web applications.
For enterprise-size or highly-transactional Web applications, SQL Server is recommended.

Important It's important that the programming model is transparent. For example, we don’t have to
change how we access or use session state when we change the storage mode.

We recommend SQLServer for out-of-process session state because it is just as fast as StateServer and
SQL Server is excellent at managing data. Furthermore, ASP.NET can communicate with SQL Server
natively (meaning internally, using the System.Data.SqlClientlibraries), and SQL Server can be configured
to support data failover scenarios. In cases in which SQLServer is not available, StateServer works well,
but it unfortunately does not support data replication or failover scenarios.

Managing Types for Out-of-Process Modes

If you're using an out-of-process mode, one of your major costs is the serialization and deserialization of
items stored. Using an optimized internal method, ASP.NET performs the serialization and deserialization
of certain “basic” types, including numeric types of all sizes, such as Int,Byte, and Decimal, as well as
several non-numeric types, such as String,Date Time, TimeSpan,Guid,IntPtr, and UintPtr.

If you have a session variable that is not one of the basic types, ASP.NET will serialize and deserialize it
using the BinaryFormatter, which is relatively slower than the internal method. If you've created a custom
class, and you want to store it in session state, you must mark it with the [Serializable]meta-data attribute
or implement the ISerializable interface. ([Serializable] is the C# metadata attribute. <Serializable()>is the
Microsoft Visual Basic .NET metadata attribute.) The SerializableAttribute class is defined in the
mscorlib.dIl assembly within the System namespace. The ISerializable interface is defined in the assembly
mscorlib.dIl and within the System.Runtime.Serializationnamespace. When a class is marked with the
SerializableAttribute, all public members will attempt to be serialized. If the class contains references to
other objects, those objects must also be marked with the SerializableAttribute or implement ISerializable.
ImplementinglSerializable gives you more control over how the serialization and deserialization of your
class takes place. For more details on the serialization of objects in Visual Basic .NET, visit
http://www.fawcette .com/reports/vsliveor/2002/09 18 02/hollis/.

For the sake of performance, you're better off storing all session state data using only one of the basic
data types (numeric and non-numeric types) listed earlier. For example, if you want to store a name and
address in session state, you can store them using two String session variables, which is the most efficient
method; or you can create a class with two String members and store that class object in a session

http://www.fawcette.com/reports/vsliveor/2002/09_18_02/hollis/.

variable, which is more costly.

Important Store only basic datatypes in session state; avoid storing complex types or custom
classes. Storing basic data types will decrease the serialization and deserialization costs
associated with out-of-process session as well as reduce the complexity of the system.

Now that you've had an overview of out-of-process session, let's discuss the two out-of-process modes,
StateServer and SQLServer.

StateServer Mode

TheStateServer out-of-process mode relies on a running Microsoft Windows NT Service as well as
changesto the default configuration settings. Code Listing 5-2 shows machine.config with the necessary
configuration settings (which appear in boldface) for StateServer. Note that the mode attribute is set to
StateServer. The stateConnectionString and stateNetworkTimeout settings are required values for
StateServer mode.

Code Listing 5-2: StateServer Session State Configuration

<configuration>
<system web>
<sessi onSt at e node="St at eServer"
st at eConnectionString="tcpi p=127.0. 0. 1: 42424"
st at eNet wor kTi neout =" 10"
cooki el ess="fal se"
ti meout ="20"/ >
</ system web>
</ configuration>

When ASP.NET is configured to use state server for out-of-process session, it uses a TCP/IP address and
port number to send HT TP requests to the state server (which is in fact a lightweight Web server running
as a Microsoft Windows Service).

The IP address (in stateConnectionString) must be changed to the IP address of the machine running the
ASP.NET State Service. The port (the default is 42424), should also be changed unless the state service
isrunning behind a firewall (which it should be). The port number can be configured on the machine

running the service by editing the registry and changing the value of the port setting found in the following:

HKLM SYSTEM Cur r ent Cont r ol Set\ Servi ces\ aspnet _st at e\ Par anet er s\

As seen in Figure 5-1, the default setting for the port is 0x0000A5B8 in hexadecimal, or 42424 in base 10.

& Ry Editen
O X Tew lpote e

S &1 P Toe (2]
. _’":.. o "G [
e R “ B8] vt o orraa, FEG DWORD OO0, {1
+ j e e e BEG_[MACED hiDOGak [42439)
w i) RSP
& I ASFRET
&) AEPAET 1 LAY
& 1N S
o e tiais

-
—J] =tunt

& Awpritac

& I s

ol Rk

& _J Abmape

&) Serioire

I ma

- B

&

% Cpmm -
i L] i

My Cnpe i BT LOAL MACHIMEL TR et e S S i S kel _H il P sl g

Figure 5-1: Changing the default port in the registry

Tip If the server running the state service is accessible outside the firewall, the port address of the
state service should be changed to a value other than the default. In version 1.1 of ASP.NET, due
to security reasons, only local machines can connect to the state server. To allow only non—local
host requests in ASP.NET 1.1, open the same registry entry listed earlier for the port setting:
HKLM\SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters\. Change
AllowRemoteConnection to 1.

The value of stateNetworkTimeout represents the number of seconds that may elapse between the time
ASP.NET tries to connect to the state service and the time the request times out. Although the default
value for stateNetworkTimeout does not need to be changed, you have the option to make the value
higher or lower depending upon your requirements.

Once the server designated to run the state server has been properly configured, it is simply a matter of
starting the Windows service. The service can be started from either the command line or the Microsoft
Management Console (MMC) for Services.

Starting the state service from the command line is simple. Navigate to the .NET Framework installation
directory. For version 1, this is [system drive\WINDOW S\Microsoft NET\Framework\v1.0.3705\.Start the
server by executing a net start command:

net start aspnet_state

After starting the service, you should see the following text: “The ASP.NET State Service service is starting.
The ASP.NET State Service service was started successfully.”

The second option for starting the state service is through the Services MMC shap-in, which you open by
navigating to Start\Administrative Tools\Services. Right-click on the ASP.NET State Service option in the
list and select Start to start the service. Once the Services MMC is started, you should see a screen similar

toFigure 5-2.

- Aerjviren

D e e ooy
BEFAR &

il e st

| At St i vkd e Pmgcrpiie: | Mo

L i { Shwebid [

Figure 5-2: Services MMC with ASP.NET state service started

SQL Server Mode

SQL Server is an enterprise-class database solution optimized for managing, storing, and retrieving data
quickly and efficiently. It is also capable of replication and clustering. In a clustered environment, SQL
Server can be configured to failover. For example, when the clustered production SQL server fails, a
backup can take over.

Note that clustered SQL Server scenarios are not supported out of the box for ASP.NET session state. To
enable the clustering or replication features of SQL Server, session data must be stored in a non-tempDB
table.

Again, you do not need to make any special changes to the code to use SQL Server as the session state

store.Code Listing 5-3 shows the necessary configuration file machine.config for SQL Server.
(Configuration changes are in boldface code.)

Code Listing 5-3: SQL Server Session State Configuration

<configuration>
<system web>
<sessi onSt at e node="SQ.Ser ver"
sql ConnectionStri ng="dat abase=[Server Nane] ;
Trust ed_Connecti on=true"
cooki el ess="f al se"
ti meout =" 20"/ >
</ syst em web>
</ configuration>

Themode attribute needsto be SQLServer, and the sglConnectionString attribute must point to a server
running SQL Server that has already been configured for ASP.NET SQL session state.

Tip For ASP.NET 1, configure SQL Server for mixed-mode authentication by adding the ASPNET
account enabled for the necessary SQL Server permissions (EXECUTE) for ASP.NET session
state. (The ASPNET account is the user that the ASP.NET worker process runs as.) For ASP.NET
1.1 running on 1IS 6, configure SQL Server for mixed-mode authentication by adding the NT
AUTHORITY\WETWORK SERVICE account.

If the account has the necessary permissions, integrated authentication should be used. This prevents the
need to store a username and password in clear text within the configuration. When integrated
authentication is used, ASP.NET accesses SQL Server using the credentials of the Windows user that the
worker process runs as. By default, these credentials are ASPNET and NT AUTHORITYINETWORK
SERVICE on Windows Server 2003 running IIS 6.

Important Use integrated authentication rather than store SQL Server credentials within your
configuration file. If you decide to use SQL Server user names and passwords, do not use
the system administrator (sa) account. Instead use an account that has only the necessary
accessto the database object required for the operations (for session state, this account is
EXECUTE only). If you must use SQL Server credentials, ASP.NET 1.1 supports storing
credentials securely.

To configure SQL Server to support ASP.NET session state, either open the InstallSglState.sql file in
isglw.exe (Microsoft SQL Server Query Analyzer), or use the command-line tool osgl.exe. To use SQL
Server Query Analyzer, from the Start menu, navigate to \All Programs\Microsoft SQL Server\Query
Analyzer. The SQL Query Analyzer application appears in Figure 5-3.

Blpk Gt Gy fh fnds o #

2-FEB BEA = U suasien | AWE FE

BOF TATEELIE AXFIzace

BOF TARLE Cempel . - ANPIL o Tenp e d 10l

i ¥

P B lES-CAR TORE 0 FIDAOM ioasra (1] mmie 40030 Owmt Lnd, Cofd

Coaraitd | b

Figure 5-3: SQL Query Analyzer

Important Ensure SQL Server Agentis running before running the SQL Scripts. The agent runs a
periodic job to purge expired sessions from the database.

If you're running ASP.NET 1, from the toolbar select File | Open [system
drive\WINDOW S\WMicrosoft. NET\Framework\v1.0.3705\ InstallSqgl State.sql. If you're running ASP.NET 1.1,
navigate to [system drive]\WINDOWS\Microsoft. NET\Framework\v1.0.4322\ directory and open the same
file. Execute the script, either by clicking the Play button or by pressing F5. Using the command-line tool
(osql.exe), open a command window and then navigate to \[system
drive\WINDOW S\WMicrosoft. NET\Framework\[ASP.NET version]\.

If integrated authentication is enabled for SQL Server and the current Windows logged-on user has
permissions to SQL Server, type the following: osql -E < InstallSqlState.sql.

If SQL Server mixed-mode authentication is enabled and the current logged- on user does not have
permissions within SQL Server, specify a user name and password using osql - U [sql user] - P
[password]< InstallSqglState.sql.

After running the SQL Script, SQL Server is configured to support ASP.NET session state. Two tables are
created within the tempdb database: ASPStateTempApplications and ASPStateTempSessions.

Note Why do we use tempdb? We often get asked why we store session data using tempdb vs. a
table. The original design goal was to ensure that SQL Server state was fast, and because
tempdb is memory-based, SQL Server state would be very fast. However, since SQL Server is
so optimized, storing the data in non-temporary tables proved to be nearly as efficient. (SQL
Server is super aggressive about keeping frequently accessed data in memory.) In retrospect,
using tempdb probably wasn’'t necessary.

Session Data in aWeb Farm

The major benefit of out-of-process session is that it no longer requires client/ server affinity. Servers in an
ASP.NET Web server farm can be configured to share session data. (However, individual applications
cannot share session data because a session is tied to a single application.)

To configure session support in a Web farm, you must take one additional step regardless of whether a
session is even used: you must configure the machineKey settings. Machine-wide settings are configured
in the machine.config file (\\Windows Directory]\Microsoft. NET\Framework\[Versions|\Config\). The
machineKey settings store the validationKey and the decryptionKey attribute values, which are usedin
many scenarios—for example, ViewState, Forms authentication, and session—to provide encryption and

validation of values sent back and forth from client to server.

By default, the values for the validationKey and decryptionKey attributes are set to AutoGenerate, which
enables the server to randomly create the values. Randomly selected values work well in a single server
environment; however, in a Web server farm in which there is no guarantee which server will satisfy the
client’s request, the values for validationKey and decryptionKey must be precise and predictable.

Optimizing Out-of-Process Session Use

When using out-of-process session, ASP.NET makes two requests to the out-of- process session store for
every one page requested (if the request comes in with a session ID). When the request first starts, the
session state module connects to the state store, reads the session state data, and marks the session as
locked. At this point the page is executed, and the Session object is accessible. When the page completes
execution, the session state module connects to the state store, writes the session state data if it changed,
and unlocks the session data.

The locking mechanism implemented is a reader-writer lock using the ReaderWriterLock class. Multiple
requests can read data simultaneously when the sessionisn’t locked. If the session is locked, read
requests are blocked until the write lock is released. This locking strategy guarantees that the Session
object with which the user is interacting is always an accurate reflection of the data. If you attempt to build
a site that uses frames, and each page within a frame requires session state, the pages will execute
serially. You can configure session state to be read-only on a page-by-page or even application basis.
Configuring a page to use session data in a read-only manner allows the page to be requested without
locking the session data and prevents serialized access.

If session is configured as read-only, in out-of-process mode, the session module does not need to go
back to the session store to release the lock. Multiple requests can read session data simultaneously
without serialized access, which yields better throughput. To configure the read-only option on a page- by-
page basis, simply set the page-level directive EnableSessionState:

<%@ Page Enabl eSessi onSt at e="ReadOnl y” %

Another option is to configure session to enable SessionState="false”as the default setting (you can
change this in web.config or machine.config) and use EnableSessionState="ReadOnly”or
EnableSessionState="true”at the page level. Code Listing 5-4 shows the code for disabling session state.

Code Listing 5-4: Disabling Session State

<configuration>
<system web>
<pages enabl eSessi onSt ate="fal se" />
</ syst em web>
</ configuration>

Important For out-of-process session, set session state to enable Session State="false”within the
configuration file and set the EnableSessionState page directives to either true or
ReadOnly based on what behavior is needed. Note that the length of the session will still
be reset (even when set to false).

When you apply this strategy for optimizing out-of-process session, you get fewer requests to the out-of-
process session store, which increases the scalability and throughput of the site.

Cookieless Session

Session state, to HTTP purists, is a frowned upon but necessary feature for building real-world Web
applications. Session state was designed to work around the limitations of the stateless nature of HTTP.

To do so, the browser and the server must share a common piece of data: the SessionID.This shared
value must be stored somewhere—we’re certainly not going to ask the user to re-enter an ID value upon
each request to the server! To solve this problem, we take advantage of another HTTP feature known as
a cookie, which you learned about briefly earlier in the chapter.

A cookie is a highly contentious, much debated feature supported by all browsers that allows the server to
store a small amount of data, private to the server, on the client. Upon each client request to the server,
the browser sends along any cookie data belonging to that server.

For both ASP and ASP.NET, the SessionID is stored within a cookie. When the client makes requests to
the server, the client presents the cookie, giving ASP.NET the opportunity to fetch any associated session
data belonging to the presented SessioniD.

Important Using the SessionID as a key for user data is not recommended. The SessionlID is
randomly generated, and session data—as well as session IDs—do expire. Additionally,
although a SessionID might be generated on each request, a SessionID is set only when a
Session value is set server side. This means that if no session values are set server side,
newSessionIDs are issued on each request.

Storing the SessionID in a cookie works very well except when the client chooses not to accept cookies.
(By default, cookies are accepted, and the user has to explicitly disable cookie support to avoid using
them.) When cookies are not supported, ASP.NET provides a cookieless option in which the SessionlID is
stored within the URL instead of an HTTP cookie.

An ASP.NET Web application cannot be configured to support both cookie and cookieless SessionID
storage; that is, the application cannot dynamically choose whether to use cookies. This can be seen as
advantageous because designing an application to accommodate various cookie scenarios can be very
difficult.

When building applications to take advantage of a cookieless session, you must carefully design
navigation in the user interface. Any links within the site that are not relative (those starting with http://) will
cause the user to lose her session when clicked. For relative URLs (for example, /My Store/default.aspx),
the embedded SessionID is automatically added by ASP.NET when generating the page output.

Tip If you have to develop an application that supports both cookie and cookieless sessions, your best
strategy is to write an HTTP module to redirect the browser to the appropriate application or server
for the supported browser feature, for example, configure a dedicated application that is used for
cookieless sessions.

http://

UsingView Stateto Store State in the Page Output

As stated earlier in the section on session state, Web application communication takes place over HTTP, a stat
ASP.NET session state feature circumvents the stateless nature of HTTP by storing its SessionID in an HTTP ¢
within the URL of the page. This shared session key is then used to associate data stored on the server with the
request.

In some cases, itisn't necessary or desirable to require session state, and a common technique that many deve
past is to store data in hidden form fields like this: <input type="hidden" value="some value here"/>. When the «
causes either an HTTP POST or GET request to the server, this data, along with other input form data, is sent t
POST body or the query string.

ASP.NET has taken this concept of hidden input form fields and utilized them for maintaining state for pages th
(All ASP.NET pages that use <form runat="server"/> send the contents of the form back to the same page. Adt
attribute of form is ignored when the form is marked with runat="server".) This feature is known as view state; d.
hidden <input type="hidden" name="__VIEWSTATE"/> form element. The data stored in the value attribute of
element consists of a base-64 encoded string that contains all the serialized ViewState data for the current pag
Authentication Code). When the page is posted back to the server, the ASP.NET page framework deserializes
and automatically repopulates the ViewState state bag. Thus data added to the view state is available when the
again. View state is very useful for building complex server controls since data not usually sent as a form eleme
view state and retrieved when the page is posted back. (For more details on the inner workings of view state, | f
a look at Chapter 7 of Developing Microsoft ASP.NET Server Controls and Components, written by Nikhil Kothe
published by Microsoft Press.)

Note A MAC is a key-dependent, one-way hash. A MAC is used to verify ViewState data by recomputing th
comparing it to the MAC stored in __ VIEWSTATE. If the MACs maitch, the datain _ VIEWSTATE is v
theViewState data is invalid and an exception is thrown.

ProgrammingView State

ViewState data is accessible in much the same way that Session data is; both use a key to set or retrieve data.
ViewState data is available only in pages that utilize <form runat="server"/>, which causes the page to perform
that can be stored in ViewState are limited to Int32,Boolean,String,Unit, and Color. Data types other than these
overhead and must first either be converted to a string or be serialized using the same binary serializer used by

The view state can be extremely useful in cases in which there is a costly piece of data to fetch that is necessar
page (where duration of the page is equal to the first request and all postbacks). A great example of thisis in th
ASP.NET Forums (www.asp.net/forums). One of the controls used frequently within the Forums is a server cor
This server control (Paging.cs) allows the user to page through multiple records of data in SQL Server (as opp¢
data in ASP.NET). One of the paging control’'s tasks is to keep track of the total number of available records. U
requested page size, the control can calculate the total number of pages available. The total records available
request—instead, this data is fetched once and stored in view state, alleviating the stress on the server from me
the database for the same information.

Below is a code snippet from the Paging.cs file that demonstrates this technique—the full source is available as
Forums downloadable from www.asp.net.

/1l <summary>

/1] Total Records avail abl e

[l <l summary>

public int Total Records {

get {
/1 The total records available is stuffed into
/'l ViewState so that we don’t pay the | ookup cost
/'l across post backs.
if (ViewState["total Records”] == null)
return default Total Records; // O

return Convert. Tol nt 32(Vi ewSt ate["total Records"]. ToString());
}

set {
/'l Recal culate the total nunber of pages in case page size changed
Tot al Pages = Cal cul at eTot al Pages(val ue, PageSi ze);

/]l set the ViewState
Vi ewSt at e["t ot al Records”] = val ue;

View State’s Liability

UsingViewState does have a liability: it increases the total size of the page that must be created. Although it doe
generated by the page, the HTML payload can dramatically increase depending upon how much view state is L
recommend that you disable ViewState for page or controls that don't require it.

Tip The view state can be disabled in a page by using <% @ Page EnableViewState="false" %>, or in a cor
Page.EnableViewState="false"on the server control.

Without disabling view state, the following code sample demonstrates using the DataGrid server control bound
the XML document BookData.xml to base64 in an XML attribute value:

Code Listing 5-5: Serializetobase64.aspx

<%@ Page Language="C#" %
<%@ | nport Nanmespace="System Data" %

<script runat="server">
public void Page_Load (Object sender, EventArgs e) {

/! Load sone data
Dat aSet ds = new Dat aSet ();
ds. ReadXnml (Server. MapPat h(" BookDat a. xm ")) ;

/'l Now databind to the datagrid
Dat aGri d1. Dat aSource = ds;
Dat aGri d1. Dat aBi nd() ;

}

</script>

<form runat ="server">

<asp: Button runat ="server" Text="Post Back" />
</ forne

<asp: DataGid id="DataGi dl" runat="server" />

When this page is requested and the HT ML source is viewed, the value for _ VIEWSTATE contains this:

<i nput type="hi dden” nane="__VI EWSTATE"

val ue="dDwxMzg3Mz Yy Mz g7dDw7bDxpPDI +0Oz 47bDx 0PEAWPHA8c Dxs PERhAGFLZXI zO18hSXRI bUN
vdWs[..30 |ines renoved..] z47dDxwWPHA8bDxUZXh0Oz47bDxQYXJIpczs+Pj s+0zs+03Q8cDxwPGa8'
GV4dDs+Q2w 8Jnbi c3BcOzs+Pj s+0zs+03QBc DxwPGA8VGVAdDs +O2w8RnIhbmNl Oz4+0z470z47Pj 47|
Pj 47Pj 47PhdOPzY b9Lz7N2ZqMRei GAMVhwyz" [>

In this case, we're not using a view state, so we should disable it by adding an EnableViewState attribute to Dat
<asp: DataGrid id="DataGi dl" runat="server" Enabl eVi ewSt ate="fal se"/>

Now when this page is requested, the value for _ VIEWSTATE is more reasonable:
<i nput type="hidden” nanme="__VI EWSTATE" val ue="dDwxMzg3MzYyMzg70z6TQR1xg8KTWsel Q

View state is a powerful technigue for managing state for pages that participate in post back. However, you nee
state has an associated cost that can easily increase the size of your page output, as demonstrated in this code

Using Cookies for Client State Management

The last technique that we’ll examine for managing client state is the cookie, which you learned about
briefly earlier in the chapter. Unbeknownst to many Web developers, cookies are not an approved
standard, although all major browsers support them and all Web application development technologies
use them. To review, cookies are small state bags that belong to a particular domain and are stored on
the client's machine rather than on the server. ASP.NET utilizes cookies for two tasks:

m Session state The associated cookie is .ASPXSession. The cookie stores the SessionID used to
associate the request with its session data.

m Forms authentication The associated cookie is . ASPXAUTH. The cookie stores encrypted
credentials. Credentials can be decrypted and the user re-authenticated.

You can view all the cookies on your system by opening Microsoft Internet Explorer and selecting
Tools\Internet Options to open the Internet Options dialog box. Click the Settings button to open the
Settings dialog box. Click the View Files button to open Explorer and access your temporary Internet files
directory. You can then sort by type Text Document or by items named Cookie. As you can see, you've got
lots of cookies!

Cookies are actually a great way to manage state if you can guarantee that your clients use them. They
can store multiple name/value combinations aslong as the value is of type string (or can be converted to
string). The only limitation with cookies is the amount of data that can be stored; most browsers support a
maximum cookie size of 4 KB (4096 bytes, to be more precise).

Working with cookies in ASP.NET is simple. We use them in many of our sample applications, including
thewww.asp.net Web site, in which we store the roles that a user belongs to. Rather than fetching the
user roles on each request from the database, we fetch the user roles only if a specific UserRoles cookie
doesn’t exist. We then create the UserRoles cookie and add the roles the user belongs to. On subsequent
requests, we can simply open the UserRoles cookie, extract the roles, and add them to the roles the
current user belongs to. The following code fragment illustrates this.

//***

/1

/1 Application_AuthenticateRequest Event

/1

/1 1f the client is authenticated with the application, then determ ne

/1 which security roles he/she belongs to and replace the "User" intrinsic

/1 with a custom | Principal security object that permts "User.|slnRole"

/1 role checks within the application

/1

/'l Roles are cached in the browser in an in-menory encrypted cookie.

/1 1f the cookie doesn’'t exist yet for this session, create it.

/1

//***

voi d Application_AuthenticateRequest (Object sender, EventArgs e) {
String[] roles = null;

i f (Request.|sAuthenticated == true) {
/'l Create roles cookie if it doesn’'t exist yet for this session.
if ((Request. Cookies["userroles"] == null) ||
(Request . Cooki es["userrol es"].Value == "")) {

/'l Get roles from UserRoles table, and add to cookie
roles = UserRol es. Get User Rol es(User. I dentity. Nane);

Cr eat eRol esCooki e(rol es);

} else {

/'l Get roles fromroles cookie
FornsAut henti cati onTi cket ticket =
For ms Aut hent i cati on. Decr ypt (
Cont ext . Request . Cooki es["userrol es"]. Val ue);

/'l Ensure the user logged in and the user
/1l the cookie was issued to are the same
if (ticket.Nane != Context.User.ldentity.Name) {

/] Get roles from UserRoles table, and add to cookie
roles = UserRol es. Get User Rol es(User. | dentity. Nane);

Cr eat eRol esCooki e(rol es);
} else {
/'l convert the string representation of the role
// data into a string array
ArraylLi st userRoles = new ArrayList();

foreach (String role in
ticket.UserData.Split(new char[] {*;'})) {
user Rol es. Add(rol e);

}

roles = (String[]) userRoles. ToOArray(typeof (String));

}

/1 Add our own custom principal to the request

/1 containing the roles in the auth ticket

Cont ext . User = new GenericPrincipal (Context.User.ldentity, roles);
}

//***

/1

/| Creat eRol esCooki e

/1

/] Used to create the cookie that store the roles for the current
/'l user.

/1

//***

private void CreateRol esCookie(string[] roles) {

/]l Create a string to persist the roles

String roleStr = "";

foreach (String role in roles) {
roleStr += role;

roleStr += ";";

}

/'l Create a cookie authentication ticket.
For msAut henti cati onTi cket ticket = new FornsAut henticationTi cket (
1, /'l version

Cont ext. User. |l dentity. Nane, /'l user name

Dat eTi me. Now, /1 issue tinme

Dat eTi me. Now. AddHour s(1), /'l expires every hour
fal se, /1l don’t persist cookie
roleStr /'l roles

)

/1 Encrypt the ticket
String cookieStr = FornsAut hentication. Encrypt(ticket);

/1 Send the cookie to the client

Response. Cooki es["userrol es"]. Val ue = cooki eStr;

Response. Cooki es["userrol es"].Path = "/";

Response. Cooki es["userrol es"] . Expi res = Dat eTi me. Now. AddM nut es(5) ;

The first method, Application_AuthenticateRequest, is an event delegate that gets called when ASP.NET
is ready to authenticate the request. Within this method, we check to see whether we have a cookie
namedUserRoles and whether it has a value.

If the cookie isn’t found, we load the roles for the user and then call the CreateRolesCookie method,
passing in a string[] of role names. Within CreateRolesCookie, we simply format the string[] into a
semicolon-delimited string, encrypt it using APIs from Forms Authentication, and then store the encrypted
data in the UserRoles cookie.

If the UserRoles cookie is found, we first decrypt the value of the cookie, ensure that the user the cookie
belongs to is the same user that is currently logged in, split the roles using a semicolon as the delimiter,
and finally create a new GenericPrinicpal (authenticated identity), passing in the roles as one of the
arguments.

Obviously this code works on each request, but it doesn’t go to the database on each request to refetch
the roles. The www.asp.net site averages about 85,000 unique users per day. If each user made an
average of 30 requests, by using cookies for storing the user roles, we would eliminate at least 2,465,000
requests to the database!

Summary

In this chapter, we examined three techniques for managing client state: session state, view state, and
cookies. Session state is a powerful tool that you can use to store data associated with individual users.
Session state requires a storage location for this user data. By default, user data is stored in the current
process’s memory space, as was the case with ASP. However, ASP.NET introduces a powerful new
concept known as out-of-process session state that allows for all servers in a farm to use a common store
such as SQL Server. Additionally, session state requires the use of a session ID. The session ID is a token
shared between the client and the server that is used to identify the client’s session to the server on
subsequent requests.

View state solves a problem that many developers have solved in the past through custom code. Unlike
session state, view state never times out, but it is limited to the postback life cycle of a page—once you
navigate away from the page, you lose your view state. View state allows for simple types to be stored in
the hidden input in the HTML of the page, but caution should be used when using view state because the
size of ViewState affects the size of the page the client must download.

Cookies can be used to store client state independent of the server. However, cookies are not an
approved standard and have data storage limitations.

Choosing the appropriate client state management technique depends on what you need to accomplish
within your application. ASP.NET provides you with easy-to-use APIs for working with the three client state
management techniques covered in this chapter. In Chapter 6, we’'ll examine another type of state:
application state.

Chapter 6: Managing Application and Request State

Overview

In the previous chapter, we discussed three techniques for managing client state: session, view state, and
HTTP cookies. In this chapter, we’ll examine four techniques for managing application state and request
state: cache, static variables, application, and request. These are described in Table 6-1.

Table 6-1: Techniques for Managing Application and Request State

Type of State Applies To Description

Cache Application State stored within the application’s memory and
available anywhere within the application. Cache
additionally supports dependencies and other features
to expire items from memory.

Static variable Application Declared in global.asax or from an HttpModule and
available anywhere within the application.

Application Application State stored within the application’s memory and
available anywhere within the application.

HttpContext Request State stored within HttpContext is accessible only for
the duration of the request.

Application state describes any data or state that is shared throughout the application using the Application
API, the Cache API, or static application variables. Request state describes any data or state that is shared
throughout the duration of the request, that is, created once and then used multiple times throughout the
lifetime of the request.

Some developers follow the line of thinking that all Web applications should be stateless. Although
statelessness is a noble concept, it is unrealistic. In fact, HttpRuntime—the underlying plumbing that runs
ASP.NET—is not even stateless. When the first request comes into an ASP.NET application, the
HttpRuntime performs multiple tasks, one of which is parsing and storing the configuration for the
application from the web.config/machine.config configuration files. The resulting configuration data
gleaned from these files is then stored in the ASP.NET cache (the cache is specialized in-process
memory) to alleviate the need to perform multiple requests to the file system. In this chapter, we’ll discuss
how to use these techniques to improve the scalability and performance of your application.

Caching Overview

One presentation | give frequently at user groups, internal Microsoft presentations, and conferences is
“ASP.NET Performance Best Practices.” | always make the same statement when starting the talk:“We’re
going to discuss several areas you should understand to get optimal performance from ASP.NET. The last
topic, caching, is the most important.”

Caching is the technique of storing frequently accessed data as close as possible to the resource needing
the data. In my opinion, aggressively using the caching features of ASP.NET is the most important design
decision you can make when building an ASP.NET Web application that must easily scale and perform
well under load. Caching is not unique to ASP.NET. Many other technologies, such as the processor for
your computer, use caching to increase performance and scalability. However, the implementation of
caching within ASP.NET is unique and was developed specifically for Web applications.

Understanding the caching features of ASP.NET and implementing them correctly allows your
applications to perform and scale incredibly well—if you can correctly implement a caching scenario, you
can potentially increase performance 3-5 times!

Unfortunately, retrofitting an existing application to support caching is difficult. Caching does have some
limitations that affect how the program is architected, and you must understand and account for these
nuances early in the architecting phase of your application.

Common Questions about Caching
We'll begin by answering some common, frequently asked questions about caching in ASP.NET.
When Should | Use Page Output Caching?

Any content created with ASP.NET that does not need to have its code executed upon each request is a
candidate for page output caching. For example, pages that display product details, in which the data
comes from the database and changes infrequently, are great candidates for output caching. For pages
that require further data transformations or that rely heavily on user personalization, partial page caching
or the Cache API should be used.

Where Is Cached Data Stored?
Cached data is stored in the memory of the process running the application. It is not stored on disk.
Is Cached Data Shared in a Web Farm?

Unlike session state, data stored within the cache is stored only in the memory of the application in which
the data was created. Also, multiple applications on the same server do not share memory and thus
cannot share cached data. An application’s cache is private to the application that created it.

Because cached data between applications is never shared, there cannot be cache coherency across the
server farm. For example, a page or DataSet cached on server A might be different from a page or
DataSet cached on server B. This difference is not a problem, however. Implicitly, you assume that data
that can be cached must have some acceptable age limit and that coherency between two or more
servers can be loosely controlled through cache dependencies. Additionally, the cache is a feature
designed to increase performance, and we know that using an out-of-process session decreases
performance by 30-40 percent (mainly due to serialization costs). In version 2 of ASP.NET, you have
more control over these dependencies, for example, you can make cache entries dependent upon
database tables.

How Long Is an Output Cached Page Stored in Memory?

The duration for which a page can be stored in memaory is controlled by several dependencies: time, file,
and other cache entries. These dependencies are an inherent feature of the Cache API, which is

discussed later in the chapter. As they apply to page output caching, these dependencies are controlled by
the developer authoring the page.

What Arethe Rules for How a Page Can Be Cached?

Two types of rules can be applied to determine how the page output cache behaves: VaryBy style caching
and HT TP cache policy. The first allows output cached pages to vary by data related to the page, for
example, query string parameters or HTTP headers. The second, HT TP cache policy, controls how the
output cache follows HTTP rules for document caching.

What Happens When the Cache or ASP.NET Needs More Memory?

The page output cache utilizes the ASP.NET Cache API, which implements a least recently used (LRU)
algorithm. When ASP.NET has need for more memory, the cache can be asked to evict items to reclaim
or free up memory. This eviction process walks through the items stored in the cache and removes items
based on two conditions:

m When was the item last used (LRU)
= Which priority was assigned to the item

Internally, the cache sorts the items to be removed first by the least recently used and then by priority. The
cache then removes items, removing the lowest priority and least recently used first, and working up based
on priority— for example, an item not accessed in along time but assigned a high priority might never be
evicted from the cache. Since the cache manages itself proactively for us, we don't have to worry about
managing it.

Note When using Microsoft Windows Server 2003 and Microsoft Internet Information Services (lIS) 6,
it is recommended to configure the IIS 6 worker process to use 60 percent of the physical
memory or to limit the total to 800 MB of physical memory.

How Do | Clear or Flush the Cache?

People frequently ask us how to clear the cache. Unfortunately, there is no Clear method to simply
remove everything from the cache. One reason such a method does not exist is because internally
ASP.NET is also using the cache to store all sorts of other data, such as configuration. However, it is
possible to both individually remove output cached pages (using the output cache API) and items stored in
the cache. To remove pages, you must know the name of the page, and to remove items using the Cache
API, you must know the name of the key used to retrieve the item.

Now that we’ve gotten the most common questions out of the way, let's dig into the details of how some of
these features work, starting with page output caching.

Page Caching Using the OutputCache Directive

The most familiar programming target in ASP.NET is the page, such as default.aspx The page is the
usual target of a request, such asan HTTP GET for http://www.asp.net/default.aspx, and is responsible
for generating the response. Internally, the page executes logic and writes output, such as HTML, WML
markup, or XML to a series of memory buffers. It is configurable, but these memory buffers, also called
response buffers, are flushed when the page completes execution. Output buffering can be controlled at
the page level using <% @ Page Buffer="[true/false]” %> or at the application level by setting <pages
buffer="[true/false]” /> in a configuration file. By default, this is set to true.

The page output caching feature of ASP.NET allows for the contents of the response buffers to be written
to memory before being sent to the client. When output caching is enabled, the contents are written to
memory and the page has been output cached. On subsequent requests, rather than executing the page
to fulfill the request, the memory from cache can be written directly to the output stream; page buffering
settings do not affect the output cache. This process is illustrated in Figure 6-1.

GET Jdsfault aspx HTTP/1.1 HTTR/ 1.1 200 08

Gt

Htpldosdule

ASENET HTTPRuniime

Pags

Hetp mnd ler

Iristartiaie
_ | page class
i call

Hrl.'j"ll

Add coanlents
o catput

e

Figure 6-1: HttpRuntime request and response

Let's review in detail what is happening in Figure 6-1. An HTTP request is made for an ASP.NET page (1),
for example, default.aspx. The request is handled by the ASP.NET HttpRuntime. ASP.NET determines
whether the request can be satisfied from the output cache: (2a) either the request cannot be satisfied
from the output cache; or (2b) the request can be satisfied from the output cache, and the contents from
the output cache are written directly back to the response stream. ASP.NET also determines whether the
page being requested is already parsed and compiled (3a and 3b).

An instance of the requested page is created, and the Render method is called (4) for the page to render
its contents. ASP.NET determines whether the contents of the rendered page can be served from the
output cache: if it cannot, the response is written back to the response stream (5a); if it can, the response
is stored in the output cache and written back to the response stream (5b).

The ability for ASP.NET to write directly to the response stream from memory means that responses
served from the cache are incredibly fast—in some ways, this is equivalent to sending static HTML.

To put this scenario in perspective, consider that a common but costly stored procedure used in the
ASP.NET forums (http://www.asp.net/Forums/) generates about 60 page requests per second (with results
simply bound to a DataGrid). With page output caching enabled, the number of requests jumps to
approximately 480 per second—about 8 times faster!

http://www.asp.net/default.aspx
http://www.asp.net/Forums/

TheOutputCache Directive

Page output caching follows a common pattern found in the .NET Framework: programming model
factoring. A page can be instructed to output cache itself using either the OutputCache page directive or
the APIs found on Response.Cache. The Response.Cache APIs are used to programmatically manage
page output caching. For example, the page OutputCache directives:

<%@ CQut put Cache Durati on="60" VaryByParan"none" %

is equivalent to the page output Cache API:

public void Page_Load(Object sender, EventArgs e) {
Response. Cache. Set Expi r es(Dat eTi me. Now. AddSeconds(60)) ;
Response. Cache. Set Cacheabi l i ty(Htt pCacheability. Public);
Response. Cache. Set Val i dunt i | Expi res(true);

}

Following are HTTP exchanges for a page that do not use page output caching (the examples include
HTTP headers only). These are the HTTP request headers:

GET /test.aspx HITP/ 1.1

Host: rhoward-| aptop

Accept: */*

HTTP Response

HTTP/ 1.1 200 OK

Server: Mcrosoft-11S/5.1

Date: Thu, 17 Apr 2003 15:49:38 GVI
Cache-Control: private

Content-Type: text/htm; charset=utf-8
Cont ent - Lengt h: 865

The same request with page output caching enabled yields much different results. These are the HTTP
response headers:

HTTP/ 1.1 200 K

Server: Mcrosoft-11S/5.1

Date: Thu, 17 Apr 2003 15:53:06 GVI
Cache-Control: public

Expires: Thu, 17 Apr 2003 15:55:05 GMI
Last-Modified: Thu, 17 Apr 2003 15:53:05 GVl
Content-Type: text/htm; charset=utf-8

Cont ent - Lengt h: 865

Note that the Cache-Control header changed from private to public, an Expires header was added, and a
Last-Modified header was added. So, as you can see, in addition to caching the page in memory on the
server, when ASP.NET output caches a page, it sends the appropriate HTTP cache headers. Table 6-2
describes these headers in more detail. You can read more about HT TP in Hypertext Transfer
Protocol-HTTP/1.1 (RFC 2616), available at http://www.ietf.org/rfc/rfc26 16 .txt.

Table 6-2: HTTP Cache Headers

http://www.ietf.org/rfc/rfc2616.txt

HTTP Header Description

Cache-Control Specifies how servers connected to the network that participate in the
process of returning the requested document to the browser participate in
caching. The Location attribute in the OutputCache directive of ASP.NET is
used to control this header. (This attribute is discussed later in the chapter.)

Here are several of the most commonly used values returned by this
header:

publicAny server/browser can cache the response.privateCacheable only
by the browser/client that made the request.no-cacheWhenever the
document is requested, the request must go directly to the server that
originated the response.

Other values returned by this header can be found in RFC 2616, available
athttp:/www.ietf.org/rfc/rfc26 16 .txt.

Expires If the response can be cached, the Expires header specifies a point in time
at which the response can no longer be cached. When the Duration
attribute is set in the OutputCache directive of ASP.NET, the setting affects
theExpires HTTP header.

Last-Modified This is the point in time at which the document was last modified, for
example, when the document was last saved.

Note For more details on the Cache-Control header, see Chapter 8 of Web Proxy Servers by Ari
Luotonen (published by Prentice Hall).

Important Use the page directives when possible. There is less risk of introducing bugs in your
application because the OutputCache directive is declarative.

The two samples we looked at earlier—the OutputCache page directive compared to the Cache
APIs—accomplish the same page output caching behavior: Both cache the page for 60 seconds and do
not use any VaryBy parameters. (We'll discuss the VaryBy options in a moment.) However, two methods
used by the page output Cache API achieve parity behavior with the directive:

m SetCacheability
m SetValidUntilExpires

We'll talk about these methods, as well as several others supported by the page output Cache APIs, after
our discussion of the page OutputCache directive.

Using the Page OutputCache Directive

The page OutputCache directive is designed to be a simple technique for enabling page output caching. It
successfully addresses 95 percent of page output caching scenarios. For special cases, such as an ETag
HTTP header generated by pages, the page output cache APIs should be utilized.

Note AnETag, or entity tag, specifies an HTTP header sent with the served document to uniquely
identify a specific version of the page. Cache servers can query the originating cache server to
determine whether a cached document is still valid by comparing the cached documents entity
tag to the entity tag returned from the origin server.

The following code shows the syntax for the OutputCache directives:
<% Qut put Cache Duration="[seconds]"
Var yByPar am="[hone or paraneter list]"
[Optional attributes] %

http://www.ietf.org/rfc/rfc2616.txt

TheDuration and VaryByParam attributes are required when using the OutputCache directive. If these
attributes are not specified, a detailed exception is thrown when the page is compiled that indicates the
VaryByParam attribute is missing, as shown in Figure 6-2.

D Parier bt Bicroes® Pelernst bxabne

Oyt - MRER - sawy Uy et W ta -l R 243

[tow e i b e i e gl e o]

server Brror in 'fCode’ Application.

Pargar Error

Dherscrpblonn A ertor ecoureed daveg B parzeg of bresoace mgeecd [oseraze bl roguest Plaxoe redew
F fnlcsur cpecis parte smor cetails and modkyyeir soorte fls anproonats),
Parsar Crror Massage: The drecre i3 misting & YDy acem’ adnbude, which thookd be st 15 *noce®

e o et ol samssalie g

Source Brron

Lira 1

Sncirce Fler U mmbnetrrrr el e gl o Fed hEnE achngSmpeSmple_réasps Linei J

Werginn Infarmaisnm lemoar KET Framesark verion 11 $970 575 ASF R T Weener 1 1 4500 &7

£ trrer Bl e

Figure 6-2: Parser error from missing VaryByParam attribute

The most common use of the OutputCache directive is to output cache a page for a duration of time, for
example, output caching a page used to display sales reports for a duration of 12 hours. The following
OutputCache directive would accomplish this:

<%@ CQut put Cache Durati on="43200" VaryByParanm="none" %

As stated earlier, the VaryByParam attribute is a required attribute that must be set when using the
directive. When not used, its value must be set to none.

Although we specified Duration with 43200 (12 hours), there is no guarantee that the output cached page
would remain in the cache for this entire period of time. Earlier we discussed how a cached item could be
evicted from the cache when memory needs to be reclaimed. In the case of an output cached page, the
page would simply be evicted, and on the next request, the page would fully re-execute and be re-inserted
into the cache. No exception occurs when this happens; it's a normal and expected occurrence. Auto-
eviction allows the server to optimize itself depending upon the current load. An ASP.NET application
performance object is available in the Windows Performance monitor. A Cache API misses counter
increments when a page marked as cacheable, or other items requested from the cache, cannot be
served from the cache.

Storing an output cached page for a period of time is straightforward unless the cache is dealing with more
complex requests. For example, a simple HTTP GET request (with no querystring parameters) is
assumed with the directive here:

<%@ CQut put Cache Durati on="43200" VaryByParanr"none" %

What happens for HTTP POST requests, in which parameters are sent via the POST body, or for HTTP
GET requests, in which parameters are sent via that querystring?

When building dynamic Web applications, the parameters passed viathe POST body or the querystring
represent significant data that might affect how the page is displayed. For example, when looking at the
www.asp.net site, you'll notice that we pass querystring parameters tabindex and tabid. The statement
/default.aspx?tablindex=0&tabid=1 tells the server to load the controls to display the home page as shown

inEigure 6-3.

- e ' r = i
G- O o] B Dben e i B3-S HALIH 3%
Il [< @=

3 ; [Ty -
Pt 0000 EEE
e

o ek e Ml ASEL Mt M e el S T i -

G Linireailabde Fred ASPHET Web Developmeal Tosl Gell Snarsed|

g b
Figure 6-3: Thewww.asp.net site

Simultaneously, the statement /default.aspx?tabindex=2&tabid=31 tells the server to load the Control

Gallery (Figure 6-4):

W e r
Q=0 4 R s e wim JE 33
AT v e e = D=

F ot Cpmibind Compid Chasery

.
Fa tu = rowriery .
5 | [N T
w2 msaa S i TECE IR Sena S LTI B
F o e - akax
- e Ls b
=
s e S e by
= -
— LT} Fairimma
- [™ b e PR
=
- e e
s § s © g s it ey
: .I = T b o . s
y = Faromr el Cropperm-s Fore
T e el s s i)
ol
T e e e o e 1 e - T ==
Top 10 Cosrmmin -
x T b i - = e
£ ——

] TS A R S AT (Y KA 7

Figure 6-4: Thewww.asp.net site Control Gallery

Your assumption might be that this page could not be output cached because default.aspx can have
different output that is determined by the parameters sent to it. However, this assumption is totally
incorrectand the ability to vary the cache by request parameters is one of the unique advantages of the
ASP.NET output cache. In fact, the ASP.NET page output cache supports several vary by options to
support the scenario in which parameters or other data might affect how the page is to be cached.

Varying Cached Pages by Parameters

An output cached page can be varied by a number of different conditions. Internally, when the page output
cache is varied, the cache stores different versions of the page in memory, for example, the ASP.NET
output cache is capable of storing different contents for a single page by varying parameters:

http://ww. asp. net/ Def aul t. aspx?t abi ndex=0&t abi d=1

http://www.asp.net/Default.aspx?tabindex=0&tabid=1

http://ww. asp. net/ Def aul t. aspx?tabi ndex=5&t abi d=42
http://ww. asp. net/ Def aul t. aspx?tabi ndex=2&t abi d=31

To support this scenario, we need to use the VaryByParam attribute, which we had previously set to none.

Important IfVaryByParam is not used, why is it required and why is its value set to none? The
decision was made to force the developer to add VaryByParam with a value of none to
clearly indicate that the page was not varying by any parameters. Requests with
parameters sent to an output cached page using VaryByParam with none will not be
resolved by the output cache and are treated as misses.

<%@ Qut put Cache Durati on="43200"
Var yByPar am="t abi ndex; t abi d" %

When you set the VaryByParam values to tabindex and tabid, the output cache will store and retrieve
different versions of the requested page from cache, or execute the page if it is not found in the cache.
This behavior is shown in Figure 6-5.

Response

Request

GET /default. aspc HTTR/ 1.1 HTTR/1.4 200 0K
Wiile contenls Cache
Frosm o4 @ ——
I :'I'IT' e | defauly, aspe Fabindews D tatads 1 I
| dediiilt. sipaTiabinde v 1 E1abide '_'-:-I
™
£ in
K ot put Yes | defanilt, o po Pabinds e=2 Blabid=31 I
IE ache?
; | e i It aripa LAl nde oe I A d= 25 I
o
] Ha Cachs - -
& HigMosute | ||/ detouttasprrsbings s=satabia=12 |
L
Execuits Faquedt

Figure 6-5: Cache in HttpModule

Note A single parameter can be specified, for example, VaryByParam="tabindex". Multiple
parameters to be varied by must be semicolon-separated, for example,
VaryByParam="tabindex;tabld".

Multiple versions of the page reside in the cache, and if the requested version is found in the cache, the
contents from the cache are sent back as the response. Otherwise, the request is executed normally as if
it were not cached.

TheVaryByParam attribute is powerful because it allows the developer to author a single page to be
output cached, which can further be constrained by the parameters that affect how the page is to be
displayed. Using VaryByParam, we can build highly specialized pages and still guarantee that we can take
advantage of the output caching feature for increased performance.

Tip Varying the output cache by various parameters is very useful. However, here is a good rule of
thumb to keep in mind: the more specific the request, the less likely it is that the request can be
satisfied from the cache. For example, if the page’s output is highly user-specific, for example, an
e-commerce check-out page, the output cached page could only be utilized again by that same
user in the same condition (in contrast to output caching the page used to display product
information). When items are stored in the cache and cannot be utilized again, the cache is a
wasted resource.

http://www.asp.net/Default.aspx?tabindex=5&tabid=42
http://www.asp.net/Default.aspx?tabindex=2&tabid=31

TheVaryByParam attribute supports three settings:

m NoneVary by no parameters. Requests with either a query string or POST parameters cannot be
satisfied from the cache.

m [Paraml] or [Paraml;Param2]Parameter names are sent in either the query string or the POST
body of the request. Multiple values are semicolon-separated.

m *This is a special option to vary by all parameters (vs. naming each parameter individually).

Tip Do not use VaryByParamwith* unless absolutely necessary. Any arbitrary data passed in the
query string or POST body will affect how many versions of the output cached page are
created, potentially filling memory with many pages that can’'t be used again.

In addition to varying the cache by the query string or POST parameters, the output cache allows for two
other vary by conditions:

m VaryByHeaderVaries cache entries by HTTP headers

m VaryByCustomVaries cache entries by the browser type or by user code
Varying by HTTP headers

Varying the output cached result of a page based on parameters sent to the page is very powerful, but the
page can also be varied by the HTTP headers that are available when the request is made.

When a desktop browser such as Microsoft Internet Explorer 6 makes an HTTP request for a resource
stored on a Web server, the client sends several HTTP headers along with the request. Following are the
applicable headers Internet Explorer 6 sends for a standard HTTP GET request:

m Accept-Language
m User-Agent
m Cookies

TheAccept-Language header is used by the client to set the language that the client is using. In the case
of my browser, the language set is EN-US, which means United States English. A request from the United
Kingdom might be EN- GB, from France FR-FR, from Japan JP-JP, and so on.

Applications are often developed to support globalization and localization, that is, changing content or
display based onthe locale or language native to the user. Users can specify their language interactively
through the application, such as selecting an option from a drop-down list, or the application can
intelligently choose which language to use based on the Accept-Language client header.

Thewww.asp.net site does not support various languages, but if it did have its content stored in both
French and Japanese, the site could still output cache its pages varying by the tabindex and tabid
parameters and also varying by the Accept-Language header:

<%@ Qut put Cache Durati on="43200"

Var yByPar ane" t abi ndex; t abi d"
Var yByHeader =" Accept - Language” %

The total number of pages that can be stored in the output cache based on the current settings follows this
formula:

[occurrences of tabindex] * [occurrences of tabid] * [Supported Languages]

As you can clearly see, the output cached version of the page is becoming more and more specific; also

more and more entries must be kept in the cache. Keep in mind that an entry is created only after it is first
requested, so if no requests are made for FR-FR, for example, no entry would appear in the cache.

The second HTTP header of interest, User-Agent, is used to identify the type of browser to the server, for
example, the user agent string for Internet Explorer 6:

Mozillal/ 4.0 (conpatible; MSIE 6.0; Wndows NT 5.1; .NET CLR 1.0.3705)

Note If you have the .NET Framework installed and are using Internet Explorer, a .NET CLR [version
#] string will be added as part of the User-Agent header. This can be useful for users who are
downloading .NET applications because you can determine whether they also need to download
the .NET Framework.

Earlier we said that the more specific the request, the less likely it is that the request will be satisfied from
the cache. Constraints such as Accept-Language are common. We can expect multiple requests to
specify EN-EN. However, many different browsers types (versioned by both major and minor version
numbers), and in some cases the User-Agent, can contain even more data, such as which version of NET
Framework the client has installed. The cache varies by the entire contents of the header, so using User-
Agent as a VaryByHeader option is a poor choice for varying by header since the value is unique.

However, just because using VaryByHeader with User-Agent is a bad choice for varying the output cached
by browser type does not mean we can't vary by browser type! To vary by browser type, we use a special
vary by option: VaryByCustom.

Varying by Browser Type

ASP.NET supports a rich server control model that allows developers to declaratively add programmable
elements to their page using special XML tags. These server controls go through a life cycle, shown in

Figure 6-6.

Contml renders itssl based on mformation about
the cument browsser type making the request; fod
example, it decides to render HTML or Whil

Figure 6-6: Server control rendering events

Server controls have an event life cycle and eventually render contents into the response stream to be
sent back to the client. Part of this life cycle involves ASP.NET providing the server controls with
information about the request, such as the type of browser, for example, Internet Explorer 6; or type of
device, for example, a phone supporting WML. The server control then uses this information to determine
what markup should be rendered.

For example, a server control might posses the ability to render standard HTML, DHTML, or WML based
on the browser or device requesting the page that the control is used within. To successfully cache this
page, we need to vary the output based on the type of device requesting the page. We already have this
information in the User-Agent header, but we concluded that the User-Agent header is not a good vary-by
candidate. Knowing this, and still wanting to vary by the browser type, a special VaryByCustom attribute
was created.

TheVaryByCustom attribute can be used to either vary the output cache entries by browser type and
major version or allow the user to specify a custom vary by option. To vary by the browser type and major
version, we simply specify the following:

<%@ Qut put Cache Durati on="43200"

Var yByPar am="t abi ndex; t abi d"
Var yByHeader =" Accept - Language"
Var yByCust one" br owser" 9%

Tip Page output cache directives are additive, and you should plan to use more than just the required
VaryByParam for pages containing server controls that behave differently for different browser
types. Otherwise, inconsistencies will occur, as Internet Explorer DHTML could potentially be sent
to a Netscape 4 browser (if the output cache is not being varied by browser type).

Varying By User-Defined Conditions

So far we've examined three distinct vary by options supported by the OutputCache directive. It was our
team’s belief when designing this feature that the OutputCache directive would address the majority of
output caching scenarios developers would face. However, one last piece of vary-by extensibility was
added just in case we didn’t cover all the scenarios: the ability to override the behavior of VaryByCustom.

VaryByCustom accepts a string, just as the other vary by conditions do. However, with VaryByCustom, we
stated that if the string was browser, ASP.NET would vary the cache by browser type and major version.
Under the covers, however, ASP.NET is calling a method in the output cache API:

virtual HttpCachePolicy. GetVaryByCustonString(HttpContext, string)

It is the responsibility of this method to perform the appropriate actions when browser is specified.
However, this APl is marked as virtual and thus can be overridden, allowing the developer to customize
the output cache VaryByCustom behavior.

Overriding the default behavior of VaryByCustom means that we can vary by any custom condition. For
example, we could vary our cache by browser minor version as well.

The following syntax is used when overriding GetVaryByCustomString in C#. This code could be within an
HttpModule or within global.asax

override public string GetVaryByCustonttring(HttpContext context,
String arg) {
/1 1nplenentation

}

The following syntax is used when overriding GetVaryByCustomString in Microsoft Visual Basic .NET:

Overrides Public Function CGetVaryByCustonftring

(context As HttpContext, arg As String) As String
| mpl enent ati on
End Function

WhenGetVaryByCustomString is overridden, ASP.NET uses the overridden method instead of the default
implementation. The method accepts two parameters. The first is an instance of HitpContext, which
contains all the details about the current request. The second parameter is the string value set in the
VaryByCustomOutputCache directive.

To vary by a custom scenario, such as caching the page based only on the minor version of the requesting
browser, you would use this code:
<%@ Qut put Cache Durati on="60"
Var yByPar am=" none"
Var yByCust on=" M nor Ver si on" %
--- Page Content Here (not shown) ---

To vary by a custom scenario in global.asax, you would use this code:
<script runat="server" >
override public string GetVaryByCustonttring(
Ht t pCont ext context, String arg) {

string[] varyByArgs;
string customVaryByString = null;

/1l Assunme the string follows a sinmlar pattern
/1l using a sem -colon as a separator.

/1

varyByArgs = arg. Split(';");

/'l Now process each string
/1
foreach(string varyByArg in varyByArgs) {
/'l Case each string separately
/1
switch (varyByArg) {
case "M nor Version":
return "mnorVersion=" +
cont ext . Request . Browser. M nor Ver si on. ToStri ng()
br eak;

}
}

</script>

This code must reside either within global.asax or within an ASP.NET HttpModule, and
GetVaryByCustomString must return a unique string value. The returned string value is used to create the
key to the output cached page.

Controlling Where the Page Is Cached

The final OutputCache attribute, Location, is used to control who can cache a copy of the response
generated by ASP.NET. It is shown in the next code snippet. Note that you are unlikely to use this attribute
unless you are using other caching hardware within your network.

<%@ Qut put Cache Duration="43200"
Var yByPar anm=" none"
Location="Cient" %

Valid values for Location are as follows:

m Anylndicates that any downstream caching application is allowed to cache the generated response
from ASP.NET. Any is the default value for Location.

m Clien t Indicates that the browser can store the page inits local browser cache. When the user
navigates using the Back and Forward buttons, the browser can satisfy these requests without a
request to the server.

m Downstreamindicates that downstream clients, such as browsers or proxy caches, can cache the
document, however, the document is not cached by the server. This setting is useful when you want to
guarantee that any requests to the origin server are generated dynamically. However, if the request
was made through a proxy server, the proxy server has the first chance to satisfy the request.

m Serverindicates that the response is cached only by the server and no downstream caching clients or
proxies can cache the response. This setting is useful when you want to ensure cache consistency
throughout the network by not allowing any proxy servers to cache the contents of the request.

m Nonelndicates that only the page cannot be stored in any caches.

Tip Don't use the Location attribute unless you completely understand how it works. In the
majority of cases, it is unnecessary.

Now that we’ve covered how to use page output caching through the OutputCache directive, let's examine
how to use page output caching using the page output Cache APIs surfaced from Response.Cache.

Output Cache APIs

The page OutputCache directive, as stated earlier, should address 95 percent of your page caching needs. Fol
the other 5 percent, the page output Cache API is used. The page output Cache APl is incredibly powerful,
albeit a bit more complex, and is surfaced through the HttpCachePolicy class in the System .Web.dll assembly
in the System.Web namespace. An instance of this class is exposed as the Cache property on the Response
class within the Page, that is, as Response.Cache.

Obviously the page output Cache API supports all the same capabilities offered by the page OutputCache
directive. However, how these features are used is distinctly different. As demonstrated earlier, the
OutputCache page directive code is equivalent to the output Cache API code. The output Cache API still
requires you set an expiration (Duration in the OutputCache directive) for the time when the page is to be
removed from the cache.

Tip Do not use the page OutputCache directive on a page that also uses the output Cache APIs. If used
together, the more restrictive setting is applied. Thus, if the page OutputCache directive has a duration
of 60 seconds but the output Cache API sets a duration of 30 seconds, the page will be cached for only
30 seconds. (The same is true of the other settings as well.)

Setting the Expiration

The page OutputCache directive allows us to set a Duration attribute to control how long the page’s response
can be stored in the cache before being expired. However, in the page OutputCache directive, this is always a
sliding expiration—that is, the response expires from the time the page was requested plus the time in seconds
specified in the Duration attribute. For example, if the Duration is 120 and the request for the page occurs at
11:29:03 PM, the page would expire at 11:31:03.

Our customers often request to have the output cached page expire at a fixed point in time. Although this is not
possible using the page OutputCache directive, you can create a fixed expiration using the output Cache API.

SetExpires Method

The output Cache API exposes a single method for controlling how long a document is to be cached:
SetExpires. (Note that the value set in the SetExpires method directly affects the value of the Expires HTTP
header generated with the page.) The SetExpires method accepts a single parameter of type DateTime and
returnsvoid. To mirror a behavior similar to the Duration attribute in the OutputCache directive, we simply need
to set this value using the Date Time class:

Response. Cache. Set Expi r es(Dat eTi ne. Now. AddSeconds(120));

This follows the same sliding expiration programming model that is the default for the page OutputCache
Duration attribute. The document will expire at the current time plus 120 seconds.

We can additionally specify a fixed point in time, for example, invalidating the cached response at midnight:
Response. Cache. Set Expi res(Dat eTi ne. Parse("12: 00: 00AM")) ;

This will instruct the cache to purge the response from the cache at exactly midnight. It doesn’t matter whether
the document is first requested at 8:00 AM or 11:59:59 PM, the cached page is guaranteed to be evicted at
precisely the time specified.

Tip Sliding expiration is usually the recommended approach simply because setting all the pages to expire
simultaneously, such as at midnight, would cause the server to re-execute all those pages at midnight,
potentially putting an unnecessary load on the server.

Setting the Cacheability

The output Cache API also supports a way to configure how the output cached page behaves for downstream

proxies or browsers that desire to cache the output. The SetCacheability method accepts a single parameter of
typeHttpCacheability.HttpCacheability is an enumeration that supports the valuesin Table 6-3.

Table 6-3: HttpCacheability Values

Member Name Description

NoCache Setsthe HTTP Cache-Control header to no-cache header and
indicates that only the server is allowed to cache a copy of the page.
This is equivalent to Location="none" using the OutputCache
directive.

Private Setsthe HTTP Cache-Control header to Private. Indicates that only
the client is allowed to cache the page in its browser cache. This is
equivalent to Location="Client" using the OutputCache directive.

Public Setsthe HTTP Cache-Control header to Public. Indicates that
downstream clients, such as browsers or proxy caches, can cache
the document, but the document is not cached by the server. This is
equivalent to Location="Downstream" using the OutputCache
directive. If not set, Public is the default.

Server Setsthe HTTP Cache-Control header to Server. Indicates that the
response is cached only by the server and no downstream caching
clients or proxies can cache the response. This is equivalent to
Location="Server" using the OutputCache directive.

ServerAndNoCache Sets the Cache-Control header to no-cache but allows the document
to be cached on the server. The goal of this is to still allow
programmatic output caching while sending the HTTP header
Expires: -1 to force the client to always pull a new copy from the
server. This value is new in ASP.NET 1.1.

ServerAndPrivate Setsthe HTTP Cache-Control header to Private but still allows the
response to be cached on the server. This value is new in ASP.NET.

Unfortunately, the page output Cache API gets more complicated when we want to accomplish vary by
behavior. First we'll examine how the page output Cache API allows us to use vary by syntax, and then we'll
examine some of the other unique capabilities of the page output Cache API.

Vary By Options with the Output Cache APIs

The behavior of varying by parameters is the same for both the OutputCache directive and the output Cache
APIs; however, the syntax is different.

VaryByParams is a property of HttpCachePolicy. Programmatically this is accessed as follows:
Response. Cache. VaryByParans["[string]"] = [true/false];

Using the example we examined earlier of the http:/Awww.asp.net site with the tabindex and tabid query string o
POST parameters, the page output Cache APIs would look as follows:

Response. Cache. VaryByPar ans ["tabi ndex"] = true;

Response. Cache. VaryByPar ans["t abi d"] = true;

To vary by headers, we use the VaryByHeaders property, which has a similar syntax to VaryByParams:
Response. Cache. VaryByHeader s[" Accept - Language"] = true;

This syntax is very unlike the OutputCache directive that allows us to specify these items in a semicolon-
separated list. However, the end result is the same.

http://www.asp.net

Tip Setting the Boolean value to true for VaryByParams or VaryByHeaders indicates that the output cache
isto be varied by the parameter or header. Programmatically, you can decide not to vary by that
particular parameter or header later in the processing of the page execution, and false could be set to
indicate this behavior.

Varying by Browser

Varying the output cached page by browser type by passing in the browser string can still be accomplished
using the output Cache APIs. However, unlike the other vary by options, this method is virtual:

Response. Cache. Set Var yByCust on(" br owser") ;

This method can be overridden, as you learned earlier in this chapter.

Honoring or Ignoring Cache Invalidation Headers

One last method shown in all the code samples that deserves some attention is the SetValidUntilExpires
method. The default behavior of the page OutputCache directive and the output Cache APIs is not identical due
solely to the existence of the SetValidUntilExpires method. The SetValidUntilExpires method controls a nuance
of how the ASP.NET page output cache honors the HTTP cache invalidation headers.

Cache invalidation headers are sent by browsers, such as Internet Explorer, Netscape, and Opera. Browsers
send HTTP headers for certain browser actions such as when the Refresh button is clicked. When the Refresh
button is clicked, the browser sends instructions with its HTTP request, effectively stating that any cached
versions of the document being requested are not to be served from any cache.

Sample Browser/Web Server Session

Let's take alook at a sample browser/Web server HTTP session with http://www.asp.net (only the client
headers are shown). Here is the inttial request:

GET http://ww. asp. net/ HITP/ 1.0

Accept - Language: en-us

User- Agent: Mozillal/4.0 (conpatible; MSIE 6.0; Wndows NT 5.1; .NET CLR 1.0. 3705
Host: www. asp. net

Proxy- Connecti on: Keep-Alive

This is the code generated when the Refresh button is clicked in the browser:

GET http://ww. asp.net/ HITP/ 1.0

Accept - Language: en-us

Pragma: no-cache

User- Agent: Mozillal/4.0 (conpatible; MSIE 6.0; Wndows NT 5.1; .NET CLR 1.0. 3705
Host: www. asp. net

Pr oxy- Connecti on: Keep-Alive

The important HTTP header relevant for caching sent by the client is Pragma: no-cache. This HTTP header
indicates that the origin server is to be contacted and the page requested anew. The goal of this HTTP header
isto ensure that in complex caching scenarios, where caching hardware potentially has invalid copies of the
requested page, the client can override any cached versions of the page and re-request the document from the
server that originally created the page.

Note ThePragma: no-cache HTTP header is not officiallyan HTTP version 1 behavior and is replaced in
HTTP 1.1 with the Cache-Control header. However, like many characteristics of HTTP, the standard
isonly loosely followed. Nearly all browsers still use Pragma: no- cache and thus ASP.NET must
know how to process it.

WhenSetValidUntilExpires is false, the Pragma: no-cache browser headers invalidate the output cached page
from ASP.NET’s cache because ASP.NET honors HTTP cache invalidation headers. When

http://www.asp.net

SetValidUntilExpires is true, ASP.NET ignores the request to invalidate the page output cache, keeping the
output cached page in memory.

Tip When using the page output Cache APIs, always set SetValidUntilExpires to true unless you want
clients to be able to remove your output cached pages from memory. The output cacheis a
performance enhancement, and if clients can arbitrarily remove pages from the cache, performance
suffers.

When you use the page output Cache APIs and SetValidUntilExpires is not specified, the method defaults to
false. Conversely, when using the page OutputCache directive, SetValidUntilExpires defaults to true! (In fact,
you cannot control the behavior of SetValidUntilExpires using the page OutputCache directive.)

Although the default between the two is inconsistent, the belief is that it is more common to want the page to
remain in cache when using the page OutputCache directive. However, when using the page output Cache
APIs, more consistency with HT TP cache semantics is the default.

Note Why have differing default behaviors for the page OutputCache directive and the page output Cache
API? The HTTP specification mandates that documents with HTTP GET (querystring) or POST
parameters not be cached. However, we felt that the developers writing the application were more
qualified to decide whether the page should be cached. Most developers desire the document to
remain in the cache when that behavior is specified, rather than allow a client browser to evict the
page from the output cache by simply refreshing the page in the browser.

Thus, to mirror the behavior of the OutputCache directive that caches a document for 60 seconds, we need
to—at a minimum—specify the following:

Response. Cache. Set Expi r es(Dat eTi me. Now. AddM nut es(60)) ;
Response. Cache. Set Val i dUnti | Expi res(true);

Note Several additional methods are supported by the page output Cache API but are not covered in this
book. Many of these have more to do with the nuances of HT TP cache behaviors than caching
content, and thus are rarely used by most developers. For more information about these APIs, the
product documentation provides excellent coverage.

Deterministically Serving Pages from the Cache

Now that we’ve discussed achieving parity behavior with the OutputCache directive, let’s look at some of the
APIs offered only by Response.Cache:

= Validation callback

m Dependencies

m Programmatically removing output cached pages
m SetAllowResponselnBrowserHistory method

We can deterministically serve pages from the cache by utilizing a less- known feature of the page output
cache API: validation callbacks. A validation callback allows us to wire in some code that is called before an
output cached page can be served from the output cache. This wire-up is done using the
Response.Cache.AddValidationCallback method and allows us to specify a delegate method that will be callec
through.

The delegate method must follow the method prototype defined by the HttpCacheValidateHandler constructor:

public void Validate(HtpContext context,
Cbj ect dat a,
out HttpValidationStatus status) {

We can then wire up the delegate by specifying the Validate method as the parameter of the
Response.Cache.AddValidationCallback method:

public void Page_Load(Object sender, EventArgs e) {
Response. Cache. Set Expi r es(Dat eTi ne. Now. AddSeconds(60));
Response. Cache. Set Cacheabi l ity(Htt pCacheability. Public);
Response. Cache. Set Val i dUnt i | Expi res(true);
Response. Cache. AddVal i dati onCal | back(Val i dat e) ;

Now whenever the page is served from cache, the Validate method is called through. Within the method, we
can perform the necessary logic to determine whether the requested page is still valid. We simply need to set
thestatus out parameter to one of three possible values of the HttpValidationStatus enumeration:

m IgnoreThisRequestLeave the output cached page in the cache and execute the page.
m InvalidRemove the output cached page from the cache and execute the page.
m ValidServe the request from the output cache.

For example, if we were running a reporting service that provided time- critical information, we might decide tha
we never serve cached content to paying customers, but to anonymous customers, we always serve from the
cache when it's available. Here's the validation callback method:

public void Validate(HtpContext context,
Cbj ect dat a,
out HttpValidationStatus status) {

/1 1s the request from an anonynobus user?

I

if (!context.Request.|sAuthenticated) {
status = H tpValidationStatus. Valid;
return;

}

/'l Request nust be from a payi ng custoner
I
status = HttpValidationStatus.|gnoreThi sRequest;

}

This code checks the Request.IsAuthenticated property to determine whether an authenticated user is making
request. (An authenticated user is one who is signed in; we would likely want to base this authenticated user
status on a user role in your actual program.) If the request is not authenticated, the request can be served fron
the cache. If the request is authenticated, we guarantee that the page requested is executed while leaving the
output cached version in memory.

Removing Pages with Dependencies from the Cache

As it applies to page output caching, dependencies allow us to remove output cached pages when external but
related dependent items change. For example, the output cached page is automatically made dependent upon
the file or files used to create it, including the page (.aspxfile) as well as any associated user controls or include
files. If any of these files change, the output cached page is automatically removed from the cache. (We'll look
more at dependencies later in this chapter when we examine the Cache API.)

In many cases, it is desirable to make pages dependent upon other files or other types of resources. You can
do this by using APIs found on the Response object:

AddFi | eDependenci es(ArrayLi st fil enanes)

AddFi | eDependency(string fil ename)
AddCachel t enDependenci es(ArrayLi st cacheKeys)
AddCachel t emDependency(stri ng cacheKey)

Note In version 2 of ASP.NET, we’ll add a AddCacheDependency method to allow you to add an instance
ofCacheDependency directly.

The first set of APIs allow the output cached page to be made dependent upon any file. For example, if the
page relies on several XML files used as persistent data stores, the output cached page could be made
dependent upon these files:

public void Page_Load(Object sender, EventArgs e) {

/1 Make dependent upon files

ArraylList files = new ArrayList();

files. Add(Htt pServer. MapPat h(" Products. xm ")) ;
files. Add(Htt pServer. MapPat h(" Custoners. xm "));
files. Add(Htt pServer. MapPat h(" Sal es. xm ")) ;

/1l Setup to output cache this page

Response. AddFi | eDependenci es(fil es);

Response. Cache. Set Expi r es(Dat eTi ne. Now. AddSeconds(60));
Response. Cache. Set Cacheabi lity(Htt pCacheability. Public);
Response. Cache. Set Val i dUnt i | Expi res(true);

}
If any of these files change, the page is evicted from the output cache.

Note Norace condition exists when creating a dependency. If the dependent item changes before the item
isinserted into the cache, the insert fails and the item is not added to the cache.

Tip If the page you are output caching relies upon file resources other than those used to execute the page
use the output Cache APIs and make the page dependent upon those files. If the files change, the
output cached page will be evicted from the output cache.

Another, more powerful, technique is to make the output cached page dependent upon other cache entries. If
these other cache entries change, the output cached page is evicted from the output cache. This approachis
more powerful because a relationship can be made between multiple cached items. For example, an item can
be added programmatically to the cache and a page can then be made dependent upon it. This code snippet
stores some product details:

public void Page_Load(Object sender, EventArgs e) {
if (Cache["ProductDetails"] == null) {

/1 Store product details in the Cache API
Dat aSet ds = Get ProductDetail s();

Cache[" Product Detail s"] = ds;

}

The second bit of code depends on the first:
public void Page_Load(Object sender, EventArgs e) {

/1l Setup to output cache this page

Response. Cache. Set Expi r es(Dat eTi me. Now. AddSeconds(60)) ;
Response. Cache. VaryByPar an{ " Product 1 d"] = true;

Response. Cache. Set Cacheabi l i ty(Htt pCacheability. Public);

Response. Cache. Set Val i dunti | Expi res(true);

/'l Make dependent upon ProductDetails cache entry
[l if it exists
/1
if (Cache["ProductDetails"] !'= null)
Response. AddCachel t emDependency (" Product Det ai | s") ;

The first snippet stores a DataSet in the Cache using the key ProductDetails. The second snippet is then made
dependent upon the "ProductDetails" cache entry if it exists.

Cache key dependencies allow you to build cascading removal of entries in the cache, as shown in Figure 6-7.
In the figure, there are three cached DataSets and three cached pages. If the SalesReport cache entry were
changed or removed, all dependent entries would be removed. However, if the Products cache entry were
changed or removed, only the cache entries dependent upon Products would also be removed.

Cacha Kay Dependency Chaining

SalasRepon Customans
—
Preducts SPreductDetals. aspx

[5

/ProductSales.aspx

Page

f

SPreduct aspx

f

Fage

Figure 6-7: A cache key dependency relationship

Tip Use cache key dependencies where caching is used to enforce behaviors throughout your application.
Dependencies do have additional overhead, but for scenarios such as those described thus far,
dependencies allow for some powerful behaviors. For example, every page could theoretically be
dependent upon a common cache key. When an administrator wanted to flush the cache, she would
simply need to invalidate the common key. This would then evict all output cached pages from memon

Programmatically Removing Output Cached Pages

It is possible to force the eviction of any output cached page using the static

HttpResponse.RemoveO utputCacheltem method. This little-known method allows for easy removal of any
output cached page. For example, if we wanted to evict the output cached page /Products/ProductDetail.aspx,
we could simply call the following:

Ht t pResponse. RenobveCQut put Cachel t en("/ Product s/ Product Detai | . aspx");
This would evict the named page (and all of its associated pages) from the ASP.NET output cache.

Tip The technique we just described works well in a single server environment. In a Web farm environmen
however, the static method HttpResponse.RemoveOutputCacheltem would need to be called on each
server since the cache is not shared.

Controlling Whether the Page Can Live in the Browser’s History

Here is a new method added in ASP.NET 1.1:
Response. Cache. Set Al | owResponsel nBrowser Hi story

This API allows the page developer to control whether the output cached page can be stored in the browser’'s
history, for example, when you navigate using the browser’s Back and Forward buttons.

The default value is true, meaning that the browser can store the output cached page in browser history,
honoring the value set in the HTTP Expires header. However, if the value is set to false, ASP.NET will set the
HTTPEXxpires header to -1. The Expires:-1 setting simply tells the browser that any request for the page must
be directed back to the server because the page does not have a future expiration value.

SetAllowResponselnBrowserHistory is a method that allows you to ensure that the browser can never cache a
version of the page in the browser’s history. This is useful for scenarios in which data, such as stock quote
information, can change significantly.

Caching Parts of the Page

Output caching the contents of a page is very powerful but not always possible. For example, in many cases, ¢«
ASP.NET supports partial page caching technology, which allows only part of the page output to be cached.

Partial page caching allows for regions of a page to be cached while other regions are executed dynamically. T
represent content that is output cached; areas that are not grayed-out represent areas that are not output cach

ey e Py ey Wy —

Llnartomg Camlris PR e | L

Cemezragdly "% InrrSere Suehirs
Sl el Hliay et panie e lag meclaas Sebd

Larpm—y (T i Camirain
Larazd | SERT S P I

o P aragE T i SR
B o B, <2 [Eogy P
ach Hinlm-inta S hET Mlaee Sl DaEd

e e 1 wiy Lo)
AL Nt | TS

Dadvi b LArwidae Pt e Caml ity U
ot . & yaslonssy . Lama

[

Figure 6-8: The ASP.NET control gallery, with only some content output cached

As you can clearly see, a lot of content is cached, but a large percentage of the content is also not cached. Cor
However, content that is personalized, such as the displayed tabs or the discussion forum, are rendered dynam

This ability to partially cache content on the page is incredibly useful because we can still derive the benefits of
page is divided into several user controls, each identified within a black-bordered rectangle.

User controls, which are server controls, are best thought of as pages that can be reused in other pages. For e
with other pages to present a single unified view. User controls use the special extension .ascx and nearly all u
in a way that is similar to programming pages, but they can be reused as server controls by other pages. Code

Code Listing 6-1: MostPopularControls.ascx

<%@ Control | anguage="C#" Enabl eVi ewSt at e="f al se" %
<%@ Qut put Cache Durati on="60" VaryByParan="none" %
<%@ | nport Nanespace="System Data" %
<% | nport Nanespace="System Data. Sql dient" %
<script runat="server">
public void Page_Load(Object sender, EventArgs e) {
Sql Connecti on connecti on;
Sql Command conmand;

/1 Initialize connection and comand

connecti on = new Sql Connection([connection string]);
comand = new Sgl Command(" CG Topl0Control s", connection);
comand. CommandType = ConmmandType. St or edPr ocedur e;

connecti on. Open();

Control Li st. Dat aSour ce = conmand. Execut eReader () ;
Control Li st. Dat aBi nd() ;

connection. d ose();

http://www.asp.net
http://www.asp.net

}

</script>

Bel ow are the top 10 nobst popul ar control s today.
</ span>
<p>
<asp:datalist id="Control List" runat="server" class="Normal" >

<item enpl at e>

<a href="/Control Gall ery/ Control Detail.aspx?control =<%t Dat aBi nder . |

</itentenpl ate>

</ asp: datalist>

Code Listing 6-2: Page Using a User Control

<% Regi ster TagPrefix="Control Gal | ery”
TagNanme=" Most Popul ar "
Src="Most Popul ar Control s. ascx" %
Top 10 Control s</ Font >
<Control Gal | ery: Most Popul ar i d="Most Popul ar1" runat =server />

To enable the partial page output caching feature, we simply add output cache directives to the user control ins
MostPopularControls.ascx user control:

<%@ Qut put Cache Durati on="60" VaryByParan="none" %

When the page is requested, ASP.NET builds what is known as a control tree. The page is the top node, and c
size=3>Top 10 Controls is stored in a literal control, and the user control is stored as a UserControl.

Page

Literal UserCantrol

Figure 6-9: Control tree

When a user control is found that supports caching, ASP.NET does a bit of trickery whereby it inserts a special
System Web. Ul . Parti al Cachi ngContr ol

Page

I
l |

Literal FartiglCachingContgl

Harmder])
Cache

In Yas
Cache?,

Mo

UsarControd.Rendan)

Figure 6-10: Control tree with PartialCachingControl

InFigure 6-10, the UserControl that is marked as output cached is replaced with a PartialCachingControl. Whe!
control is rendered and the contents are added to the cache.

This control is inserted into the control tree where the output cached control should be. The PartialCachingCon
its output; otherwise, it calls Render on the user control, stores its contents in the cache for subsequent use, an

Although this scenario sounds complex, the good news is that programming partial page output caching feels v
no programmatic API.

Partial page output caching does support two concepts not found in the output cache directives for pages:
m Varying by control state
m Shared user control cache entries

Varying By Control State

Partial page caching supports the concept of varying by parameters using the standard vary-by syntax, which al
<%@ CQut put Cache Duration="60" VaryByParam="t abi ndex" %

However, user controls can also participate within a <form runat="server" />, whereby the user control might co
http:/www.asp.net, you can view multiple control summaries simultaneously, such as Form Controls, as showr

[e ."-.In'nllr}ﬂ! .
e ne

e P e e D
[—-

€ [e

Figure 6-11: Viewing multiple control summaries simultaneously

http://www.asp.net

The displayin Figure 6-11 is an output-cached user control and by default is shown filtered by Date Last Updat
newly filtered output is also served from the cache.

However, no VaryByParam option is used, because the name of the parameter that issent via HTTP POST cal
container and prepends information to contained control IDs so that it can uniquely identity controls within that r
control with an ID of FilterControls:

<% Qut put Cache Durati on="600"
Var yByPar an¥" none"
VaryByControl ="FilterControl s" %

<asp: DropDownLi st ID="FilterControl s" runat="server" >
</ asp: Dr opDownLi st >

When the control is rendered in the browser, its name value is as follows:
<sel ect name="_ctl2:Control List: _ctlO:FilterControls" >

When the control is posted back to the server, it won’t be named FilterControls. If we attempt to specify VaryBy

Rather, the VaryByControl is simply aware of how the name of the contained controls is changed to guarantee
behavior.

Tip Don’t use VaryByParam="*", which would also resolve to an unknown HTTP POST parameter name. I
Shared User Control Cache Entries

In ASP.NET 1.0, the user control caching model created a separate entry in the cache for each use of a user ¢
the cache for this user control.

In ASP.NET 1.1, we added a new Shared attribute that can be specified in the directive. This attribute instructs ,
could specify the following:

<%@ CQut put Cache Durati on="60" VaryByParam="none" Shared="true" %

This directive instructs ASP.NET to share the cached version of the control across all pages.

Cache and the Application API

The output cache and partial page output cache both rely upon common infrastructure for their storage of
output cached data. This common infrastructure is the Cache API, which is responsible for managing
dependencies and the memory used by all caching features.

TheCache APl is a dictionary-based API, which means we can use string keys to set and retrieve items
similar to Session or Application. If you are familiar with programming Session or Application, you will
understand the Cache API. For example, to store a DataSet in Session,Application, and Cache, you would
use the code in Code Listing 6-3.

Code Listing 6-3: Session, Application, and Cache

/1 Name a common key
string key = "Product sKey";

/1 Use some custom business logic class to create the DataSet
I
Dat aSet products = Product sDB. Get Product sDat aSet () ;

// Store in the user's Session - available on for this user
/1
Sessi on[key] = products;

/1 Store in Application and Cache - available to entire application
11

Application[key] = products;

Cache[key] = products;

Storing the productsDataSet in Session stores a copy of the DataSet for each user for which that
Session[key] is called. Additionally, as we discussed in Chapter 5, you can configure Session such that all
servers in the Web farm have access to a common session store.

Note We're using a DataSet for consistency in the sample code. If you are using out-of-process
Session, store only as little information as is required. Storing an entire DataSet for each user
can get expensive quickly, especially if you have a very active site.

Storing the productsDataSet in Application or Cache stores a copy of the DataSet for all users in the
memory space of the current application (this data is isolated from any other running applications)-if the
user browses to another server in the server farm, that server has the responsibility to either execute code
or fetch the item from its Cache or Application. An item stored in Cache or Application is not replicated
between servers in the server farm, and neither of these features supports an out-of-process mode similar
toSession.

Note Why doesn't ASP.NET provide a common Application or Cache out-of-process option similar to
Session? Unlike Session, which is tied to a specific user, Application and Cache contain
application-wide settings that apply, or are available to, all users. Thus, changes to Application or
Cache must be propagated immediately. However, there are several problems with this:
managing contentions when two applications simultaneously modify the same data; and
decreased efficiency with replication-as the number of servers grows, the data gets exponentially
more difficult to replicate between servers.

Deciding to Use Cache or Application

Application and Cache both store data locally in the memory of the running application. Both, in effect,
provide identical functionality. So the question is which to use. It is recommended that any time you need
to store application- wide data, use Cache instead of Application.

Note Cache supersedes all the functionality provided by Application and both simplifies it (because it
requires no locking to modify) and provides more advanced functionality (such as expiration,
dependencies, and purging of data when necessary). This chapter does not contain any direct
discussion of Application.Application exists primarily for backward compatibility with Microsoft
Active Server Pages, or ASP.

Here is a summary of Cache functionality:
m Automatic eviction of infrequently used items
= Pinning items in the cache to prevent automatic eviction
m Method callback when an item is removed from the cache

m Cache dependencies to control evictions

What to Storein the Cache

We commonly are asked, 'what should be stored in the cache?' The answer really depends on what the
application is doing. Common objects such as DataSets are excellent objects to store in the cache
because they can be used as is for data binding and other scenarios. Any custom class that represents
data is also a good candidate. Take alook at the source code for the ASP.NET Forums
(http:/wvww.asp.net/Forums/). We have business classes that represent forums, forum groups, threads,
posts, and so on, many of which are stored and retrieved from the cache for anonymous user requests-for
known users we don't cache, but for anonymous users we do cache.

We should also address what should not be stored in the cache. An item such as a DataReader is an
excellent example of what should notbe stored in the cache. A DataSet and a DataReader are both
classes provided by ADO.NET and used for working with data. A DataSet is a disconnected snapshot of
the data, whereas a DataReader holds a cursor in the database. A DataReader shouldn't be stored in the
cache since the DataReader has an open connection to the database. Storing a reference to a
DataReader instance would keep that connection open, and keeping the connection open prevents it from
being sent back to the connection pool. Eventually, all available connections would be used and you would
start to get exceptions.

Setting and Retrieving Values from the Cache

Adding and retrieving items from the cache is easy. You can accomplish both in several ways, the most
common of which is using the dictionary-style API, shown in Code Listing 6-4.

Code Listing 6-4: Cache Dictionary API

/1 Name a common key
string key = "Product sKey";

/1l Use some custom business logic class to create the DataSet
Dat aSet products = Product sDB. Get Product sDat aSet () ;

/1 Add the DataSet to the Cache
Cache[key] = products;

[/l Get a DataSet ‘products' fromthe Cache
Dat aSet ds = (DataSet) Cache[key];

http://www.asp.net/Forums/

In addition to using the dictionary-style API, which is easy to work with but doesn't present the full
capabilities of the cache, you can store items in the cache using two methods: Insert and Add.

You use these methods slightly differently. The Insert method stores an item in the cache and replaces an
existing named item if it already exists. The Add method stores an item in the cache but doesn't replace an
existing item.

Inserting an Object into the Cache
Thelnsert method is overloaded and has four signatures.
m Insert(string key, object val ue)
m Insert(string key, object value, CacheDependency dependency)

m Insert(string key, object val ue,
CacheDependency dependency,
Dat eTi me absol ut eExpirati on,
Ti meSpan sl i di ngExpiration)

m I nsert(string key, object val ue,
CacheDependency dependency,
Dat eTi me absol ut eExpirati on,
Ti meSpan sl i di ngExpiration,
CacheltenPriority priority,
Cachel t enRenpvedCal | back cal | back)

Thelnsert(string key, object value) overload is identical in behavior to the dictionary-style API. It accepts a
key or a name of the cache item to add as well as an object type for the item to store.

Inserting an item with a dependency into the cache

The second Insert method implementation also accepts a CacheDependency parameter This parameter
indicates that the item added to the cache will be dependent upon external conditions. When these
external conditions change, the item is automatically removed from the cache. These external conditions
are configured through the CacheDependency class.

TheCacheDependency class is used to make Cache entries dependent upon either files or other cache
entries. An instance of this class is created using one of the eight constructors it supports:

m CacheDependency(string fil enane)

m CacheDependency(string[] fil enanes)

m CacheDependency(string filenanme, DateTine start)

m CacheDependency(string[] filenanes, DateTine start)

m CacheDependency(string[] filenames, string[] cachekeys)

m CacheDependency(string[] filenanes,
string[] cachekeys, DateTine start)

m CacheDependency(string[] filenanes,
string[] cachekeys,
CacheDependency dependency)

m CacheDependency(string[] filenanes,

string[] cachekeys,
CacheDependency dependency, DateTinme start)

Using the constructors in the preceding list, we can create CacheDependency objects for a file or files.
Here is the code for file dependency with a single file:

/'l Create the dependency
CacheDependency ¢ = new CacheDependency(Server. MapPat h(" products. xm "));

/1l Insert into the Cache
Cache. Il nsert (" products", productsDataSet, c);

Here is the code for multiple file dependency:

/]l Create the files we are dependent upon
String[] files = new String[2];

files[0] = Server.MapPat h("products.xm");
files[1] = Server.MpPath("sales.xm");

/'l Create the dependency
CacheDependency ¢ = new CacheDependency(fil es);

/1 Insert into the Cache
Cache. I nsert (" products", productsDataSet, c);

In addition to monitoring files, we can create CacheDependency objects for existing Cache keys.
Dependencies that reply upon existing Cache entries are very powerful because we can essentially extend
the cache to support a dependency of our choice. For example, when a manager updates the sales
history, we can remove the Sales cache item, which can remove related and dependent items through
cascading. Following is an example single key dependency:

/'l Keys we are dependent upon
String[] keys = new String[1];
keys[0] = "Sal es";

/'l Create the dependency
CacheDependency ¢ = new CacheDependency(null, keys);

/1l Insert into the Cache
Cache. I nsert (" products", productsDataSet, c);

Here is an example of code for multiple key dependency:

/1 Keys we are dependent upon
String[] keys = new String[2];
keys[0] = "Sal es";

keys[1] = "Products";

/1l Create the dependency

CacheDependency ¢ = new CacheDependency(null, keys);

/1 Insert into the Cache
Cache. I nsert (" products", productsDataSet, c);

We can also specify when we want monitoring of the files to start by using the Date Time start parameter:

/'l Create the dependency
CacheDependency ¢ = new CacheDependency(Server. MapPat h("products. xm "),
Dat eTi ne. Now. AddSeconds(15));

/1 Insert into the Cache
Cache. I nsert (" products”, productsDataSet, c);

Delayed monitoring of the file for changes is a nice feature-since we know that operations on the file will
occur within a certain period of time, we can delay any removal from cache until past the time specified.

Lastly,CacheDependency also provides a way to aggregate a new dependency with an existing
dependency. Aggregate dependency basically means this: 'The following dependency is dependent upon
these conditions plus the included existing dependency.' Aggregate dependency is shown here:

/1 ... early in the code execution

/1l Create the dependency

CacheDependency d = new CacheDependency(Server. MapPat h("products. xm "),
Dat eTi ne. Now. AddSeconds(15));

/1 ... later in the code execution
/'l Keys we are dependent upon
String[] keys = new String[1];
keys[0] = "Sal es";

/1l Create the key dependency
CacheDependency ¢ = new CacheDependency(null, keys, d);

/1 Insert into the Cache
Cache. I nsert (" products", productsDataSet, c);

Removing items from the Cache at a pointin time

The fourth overloaded Insert method allows us to control time-based eviction of items from the cache
using a DateTime parameter and a TimeSpan parameter:

Insert(string key, object val ue,
CacheDependency dependency,
Dat eTi me absol ut eExpirati on,
Ti meSpan sl i di ngExpiration)

Scavenger hints and the removal callback

The final overloaded method for Insert lets us set a CacheltemPriority parameter and a
CacheltemRemovedCallback parameter:

Insert(string key, object val ue,
CacheDependency dependency,
Dat eTi me absol ut eExpirati on,
Ti meSpan sl i di ngExpiration,
CacheltenPriority priority,
Cachel t enRenpvedCal | back cal | back)

TheCacheltemPriority parameter allows us to instruct the cache as to which priority the inserted item
should receive. For example, underused items within the Cache with a low priority are the first to be evicted
when ASP.NET is under memory pressure. CacheltemPriority is an enumeration. Its values are shown in
Table 6-4, in order of precedence:

Table 6-4: CacheltemPriority Values, in Priority Order

‘ Member Name ‘ Description

‘ Low ‘ First items to be removed.

‘ BelowNormal ‘ Items that are removed after low priority items.
Normal Default priority when the priority is not specified. This is the default used by

output caching.

‘ AboveNormal ‘ More important than regular items.

‘ High ‘ Last items to be removed.
NotRemovable Items that cannot be removed. Don't use this option unless you are fully

confident that the item has to remain in memory no matter what load the
server is under. Configuration data is a good example for this value.

How should these priorities be used? If you have multiple, large, but easily created items stored in the
cache, assigning them a Low priority would ensure that the items would be the first evicted. Conversely, if
you had an item that was small but very expensive to create, you would want to assign it a High priority so
that it would be evicted only under extreme circumstances.

The last parameter of Insert is an instance of CacheltemRemovedcallback. It allows us to pass in a
delegate method that is called when an item is removed from the cache.

Finally, for items that should never be removed from the cache-and to mirror the behavior of Application-
use the NotRemovable value. Items added to the cache with NotRemovable will not be removed from the
cache unless code is used to remove them, or they have a dependency that is enforced.

Add Method

TheAdd method accepts the same parameters as the last overloaded Insert method. The only difference
isthat Insert always replaces an existing Cache item and has no return value, and Add will not only insert
an item into the cache if it doesn't already exist but also return the item from the cache.

Removing Items from the Cache

Entries within the cache can be removed by using the Remove method:

/'l Renove a key nanmed ‘ products'
Cache. Renmove(" products");

Static Application Variables

TheCache is the recommended location to store frequently used application data. However, using static
application variables is another technique for efficiently storing frequently used data. An ASP.NET
application consists of files and resources authored by you, and files and resources provided by ASP.NET.
One of the characteristics of ASP.NET is that it truly is an application in the sense that there are
application-level events and methods such as those defined in global.asax or in instances of HttpModule,
and that we can also define application-level static variables.

A static variable, as related to object-oriented programming, is a variable shared by all instances of a
class. For example, suppose you authored an ASP.NET page that defined a static variable:

static string backgroundCol or = "bl ue";

All instances of that page would share the same string vs. creating their own copies of the string. The
same concept can be applied to the entire application. For example, if we populate a DataSet to store all
the URLs used in our site, we could perform this work within global.asax when the application starts:

<script runat="server">
public void Application_OnStart (Object sender, EventArgs e) {

/'l Get the dataset from our custom busi ness object
Dat aSet siteUrls = SiteUrls. GetSiteURLs();

/1l Store the dataset in the cache to never expire

/1
Cache.lnsert("SiteURLs",
siteUrls,
Dat eTi nme. MaxVal ue,
Ti meSpan. Zer o,
Cachel tenPriority. Not Removabl e,
nul 1);
}
</script>

We could then request this DataSet from anywhere within our application:
Dat aSet sitelUrls = (DataSet) Cache["SiteURLs"];

Easy enough, right? Yes, and no. Every time we fetch the item, we're incurring a hashtable lookup and
casting to the correct data type.

An alternative approach to handling this problem would be to define a static application variable, as shown
in the following code. (This is only one alternative. You will get no noticeable performance gains or other
improvements from using this technique instead of using the cache.)

<%@ Appl i cati on C assnane="M/Application" %

<script runat="server">

static DataSet siteUrls;

public void Application_OnStart (Object sender, EventArgs e) {
/1 Cet the dataset from our custom business object

/1 and assign to the static application variable
siteUrls = SiteUls. GetSiteURLs();

}

</script>

Notice that we made a few changes to the global.asax file. We added a static variable siteUrls of type
DataSet, set the Classname attribute of the Application directive, and removed all the code to insert into
the cache.

To access the value of the siteUrls static variable defined in global.asax from anywhere within the
application, we simply need to remember the name of our application, in this case MyApplication:

Dat aSet siteUrls = MyApplication.siteUrls;

Using static application variables allows us to skip the hashtable lookup and also does not require us to
cast to the type. It's definitely a handy technique!

Per-Request Caching

It is sometimes desirable to cache data or information only while the request is being processed
independent of the component, server control, or page.

The ASP.NET Forums makes heavy use of personalization. In fact, each server control is responsible for
checking the identity of the user and personalizing its display based on data relevant to the user. For
example, users can define their own date and time display formats.

All user data is stored in a database. To guarantee consistency, user data is fetched on each request. All
personalization data is accessible through a User class, which is retrieved from Users.GetLoggedOnUser.
Any functionality within the application needing personalization can call this API. Internally, it will either
return a per-request cached instance of the User class or connect through the data provider and populate
aUser instance.

The beauty is that all calls to GetLoggedOnUser are guaranteed to work, but the caller is completely
unaware of whether it is receiving the User from the per-request cache or the data provider is creating a
newUser. Not creating a new User for each call saves on round trips to the database. For example, a
page might have eight controls that need to access the User. Seven of those calls will be satisfied from the
per-request cache; only the first will connect to the data store directly.

Implementing Per-Request Caching

Per-request caching is very easy to implement. Code Listing 6-5, from the ASP.NET Forums, shows how it
isdone.

Code Listing 6-5: Per-Request Caching

public static User GetLoggedOnUser () {
if (!'HttpContext. Current. Request.|sAuthenticated)
return null;

return Users. Get Userl nfo(Ht tpContext.Current. User.ldentity. Nanme, true);

public static User GetUserlnfo(String usernane, bool updatelsOnline) {
string userKey = "Userlnfo-" + usernane;

/1l Attenpt to return the user from Cache for users not online to save
/1 us atrip to the database.
if (updatelsOnline == fal se) {
if (HttpContext.Current. Cache[userKey] != null)
return (User) HttpContext. Current. Cache[userKey];

/1l Let's not go to the database each tine we need the user's info
if (HtpContext.Current.ltens[userKey] == null) {
/1 Hang on to the data for this request only
Htt pContext. Current. | tens[userKey] =
Dat aProvi der. I nstance(). Get User | nf o(user nane,
updat el sOnl i ne) ;

/1 Do we need to add the user into the Cache
if (updatelsOnline == fal se) {
if (HtpContext.Current. Cache[userKey] == null)

Ht t pCont ext. Current. Cache. | nsert (user Key,
Ht t pCont ext. Current.|ltens[userKey],
nul |,
Dat eTi ne. Now. AddM nutes(1),
Ti meSpan. Zer o) ;

}

return (User) HttpContext.Current.|tens[userKey];

Per-request caching simply makes use of HttpContext.ltems for data storage. HttpContext is a class that
ASP.NET uses for the life cycle of a request/ response, and internally it is the class that many APIs
forward to. For example, when you call Response.Write, you're actually calling
HttpContext.Response.Write.

Theltems property is simply a name/value collection within which we can store arbitrary data. The data is
available only for the life type of the HitpContext instance. The instance of HttpContext is created at the
beginning of the request and destroyed at the end of the request. Once HttpContext goes out of scope
(thatis, it's no longer needed because ASP.NET sent the response), all associated memory is released-
including data stored in Items. Thus, HttpContext.ltems is a perfect data store for per-request caching.

Summary

ASP.NET provides some powerful APIs for managing state within your application. Features such as page
output caching and partial page caching take advantage of the ASP.NET Cache to store frequently
requested pages, or parts of a page, rather than execute them on each request. Output caching not only
yields better performance, 2-3 times in most cases, but also makes your application more scalable since it
can take the load off of other areas, such as the database. To take advantage of output caching and
partial page caching, you need to consider both before you build your application; bolting them on later
can be problematic.

Programmatically, ASP.NET provides three options for managing application state: Cache,Application,
and static application variables. The Application API is redundant and replaced by the more feature-rich
Cache API. Cache has many features that give you more control over how application state is managed.
Cache API features such as dependencies and callback allow you to control how your state is being
managed.

Chapter 7: Configuration

Overview

Configuration refers to any settings or data required by an application to run. This information can be as
simple as the connection string used to connect to a database, or as complex as the number of threads
the running process requires. Techniques for configuring applications come in many forms, from using the
original system.ini of Microsoft Windows to using the Windows registry. Each approach has advantages
and disadvantages.

ASP.NET's configuration system is XML file-based. Many first-time ASP.NET developers expect to
configure ASP.NET using the Microsoft Internet Information Services (lIS) Manager, just as they would with
ASP. ASP.NET does not, however, rely on the IS metabase at all, even though the IIS metabase is also
now XML file-based. The ASP.NET configuration system does not require any proprietary tools to update
or manage it since an XML-based configuration system easily lends itself to manual editing and updating.
You simply open the XML file, make changes, and save the file, and the changes are applied immediately.
Again, this is unlike ASP, which required you to stop and start the Web server for the changes to affect the
running application.

The ASP.NET configuration was designed to be simple. Following is a sample ASP.NET configuration file
used to change the timeout of ASP.NET Session state from 20 minutes to 30 minutes:

<confi guration>
<system web>
<sessionState tinmeout="30" />
</ syst em web>
</ configuration>

Saving this file as web.config in the root of your application will immediately cause ASP.NET to change the
default Session state timeout value from 20 minutes to 30 minutes-without requiring you to restart your
application.

If your site runs across multiple servers, changing configuration is equally as easy. Simply copy the
web.config configuration file to each of the application directories requiring the modification, and the
application will apply the changes as soon as the file update is complete.

Unlike other books that cover all the various configuration settings, this book does not examine the
individual configuration settings in detail. Plenty of books address that topic. (Our favorite reference is the
machine.config file, which is extensively documented.) Instead we will focus on how the ASP.NET
configuration works and how to use the ASP.NET configuration system to store custom settings.

How Configuration Works

The ASP.NET configuration system is simple to work with but offers complex functionality. Two types of
configuration files are used in ASP.NET:

m machine.configUsed to configure settings that are global to all .NET applications across the
computer. This file can be found in C:\Windows\Microsoft. NET\Framework\[version\CONFIG\, where
[version] is replaced by the exact version number of the NET Framework. Settings made in this file set
the default behavior for all ASP.NET applications.

m web.configUsed to override defaults, change inherited configuration settings, or add new
configuration settings. Whereas only one copy of the machine.config file exists for each installed
version of the NET Framework, many different web.config files can exist for the Web applications you
run. Each Web application can have its own web.config file, and each subdirectory within the Web
application can also have its own web.config. The next section explains how all this works.

Important You might find that you have more than one machine.config on your computer. The
.NET Framework is designed to allow multiple versions to run side by side. Each
version has its own separate machine.config file. The version of the .NET Framework
your Web application is using is determined by the extension mappings, for example,
ASPX, in Internet Information Services. Be sure you edit the correct machine.config
file if you want to change global settings.

.NET Framework Versions

Figure 7-1 demonstrates a system that has two installations of the .NET Framework, version 1.0 and 1.1.
Each separate version has its own subdirectory within the C:\Windows\Microsoft. NET\Framework directory.

Figure 7-1: A server with multiple installed .NET Framework installations

Two subdirectories are of interest in the C:\Windows\Microsoft. NET \Framework directory: v1.0.3705,
which contains all the files for the 1.0 version of the .NET Framework; and v1.1.4322, which contains all
the files for the 1.1 version of the .NET Framework.

To view the version of ASP.NET your application is running, open Microsoft Internet Information Services
(11IS) Manager, right-click the Default Web Site option, and select Properties. Next, click on the Home
Directory tab, and click the Configuration button. A listing of the extension mappings used by ASP.NET
appears.Figure 7-2 shows the extension mapping for .ASPX, which maps to aspnet_isapi.dll inthe .NET
Framework version 1.1 directory. Changes made to the machine.config file in the v1.1.4322\CONFIG\
subdirectory are applied to this application.

1wt s e T
(B EF R e em—"
-i'"'_""f"'"'""' [= F

Bl PP [l i HTTF i

el Thw 1ZAFY T e

s p— | Borcompbecverrg
S e L

Sl e e
s grheg g

T T

a.!_!_!_LLL'
eassat

gl i Py | & v = = »

i | kT Corual Ny B

Figure 7-2: The ASP.NET application mapping for IS

Tip You can change mappings to allow your application to use a different version of the .NET
Framework by using the aspnet_regiis.exe tool. This tool is found in the version-specific .NET
Framework directory.

It's uncommon to need to change machine.config settings. In fact, the only setting for ASP.NET that must
be configured in machine.config is the <processModel /> section. Settings in <processModel /> are used
to control the behavior of the ASP.NET worker process.

The ASP.NET worker process is relevant only to Microsoft Windows 2000 Server and Microsoft Windows
XP Professional. Microsoft Windows Server 2003 uses the new Microsoft Internet Information Services 6
worker process model.

Important Don't modify the machine.config file unless you absolutely have to, such as changing
settings to purposely affect all applications. Changes to machine.config affect the entire
server. Instead, use web.config in your application to specify desired behavior and
configuration options. The web.config file is the recommended location for specifying all
your configuration settings.

Using web.config

The web.config file is used to override configurations inherited from machine.config or other parent
web.config files. The web.config file is also used to add new settings not already defined, such as custom
configuration settings. This file can reside in one of two locations:

m Web application or Web site root directory The web.config file can be placed at the root of your
Web site or Web application. A Web application is determined through IIS. By default, all virtual
directories are Web applications. Further, any directory in your Web site can be made into a Web
application by right-clicking on the directory within the IS MMC, selecting Properties, and clicking the
Create button on the Directory tab.

m Subdirectory within your Web site or Web applicationAny directory or folder within your Web site
or Web application might contain a web.config file. However, some settings are allowed only ina
web.config file that resides in the Web application or Web site root directory.

Note An easy way to tell whether you are working with the root directory for either a Web site or
Web application is to look for a bin subdirectory. The bin subdirectory is allowed only in the
root directory of a Web site or Web application.

Knowing the location of your web.config file is important. Some configuration settings, such as

<authentication />, are allowed only at the root directory level, whereas other settings, such as
<authorization />, are allowed within any directory.

Figure 7-3 shows the IIS MMC shap-in browsing a default Web site. A web.config file could be placed
within any of the folders shown in the figure. However, only Default Web Site and ForumsV2 would be
considered applications.

*I Intrm ot fsluermatie Senwdors

N

-~ BEFHE & (]

Rl oo frbomckior Soioe = | awes Fab S
M PG [l oot A ireen 1] Y A el

] ot Ss il wh Er iy s il P o i
- — BERED 1T R Y AT AL
- g arcoarracer IO

Tk D R L T L T

& o Frrie
R i [P L B]
s B Tk ull i

s [—
5 = g e
. § i i | =] prisal
o) g =
. .
% 21 el = i gt

s

a " i ¥

Figure 7-3: Internet Information Services MMC snap-in browsing a default Web site

The actual configuration applied to your application is a merged view of all inherited configuration settings.
In the default Web site shown in Figure 7-3, settings made in machine.config are inherited by the Default
Web Site and merged with its web.config. Further, those configuration settings are merged with the
web.config settings in the ForumsV2 directory. Later in the chapter we'll discuss how to control which
settings can be overridden.

Table 7-1 lists the various ASP.NET configuration sections that are allowed in a Web site and Web
application or subdirectory. Note that all these settings are allowed in the machine.config file.

Table 7-1: ASP.NET Configuration Sections

Section Web Site Subdirectory Purpose
or
Application
<authentication /> Yes No Determines how HTTP

requests are authenticated

<authorization /> Yes Yes Allows or denies access
based on user identity or
role membership

<browserCaps /> Yes Yes Enumerates browser
capabilities
<clientTarget /> Yes Yes Defines alias for a

rendering agent

<compilation /> Yes Yes Controls how pages and
other related ASP.NET
resources are dynamically
compiled

<customErrors /> Yes Yes Overrides default
ASP.NET error pages

<deviceFilters />

Yes

Yes

Filter used for specific
devices to control
rendering of mobile
content

<globalization />

Yes

Yes

Controls encoding and
related globalization
settings

<httpHandlers />

Yes

Yes

Maps HTTP requests to
the appropriate classes

<httpModules />

Yes

Yes

Configures modules that
participate in an HTTP
request/ response

<httpRuntime />

Yes

Yes

Controls max request
length, number of threads,
and other settings related
tothe ASP.NET HTTP
Runtime

<identity />

Yes

Yes

Windows identity to use
when processing HTTP
requests

<machineKey />

Yes

No

Keys used for encryption
and hashing

<mobileControls />

Yes

Yes

Lists settings specific to
mobile controls

<pages />

Yes

Yes

Configure page-specific
settings for the application

<processModel />

No

No

Configures the ASP.NET
worker process, present
only in machine.config

<securityPolicy />

Yes

No

Defines security policy for
the application

<sessionState />

Yes

No

Session state options such
as in-process and out-of-
process

<trace />

Yes

Yes

Enables tracing at the
application or page level

<trust />

Yes

No

Defines trust levels
regarding what the
application can or can not
do

<webControls />

Yes

Yes

Identifies the location of
the client script JavaScript
files

<webServices />

Yes

Yes

Controls behavior of
ASP.NET XML Web
services

Changing Configuration

Whenever an application-level configuration file or machine.config is modified and saved, several
important things happen:

1. Settings are applied immediately.

2. All existing requests are completed against the old configuration settings. A new instance of the
application is started, and new requests are directed to the new application.

When running a live application, you will notice a 2 to 10 second delay between the time you save or
update your CONFIG file and the time the settings are actually applied to your application. When the
application is restarted, all pages are recompiled and the application reinitializes itself, which takes a few
seconds.

Tip When updating a live site, perform all web.config changes locally and upload the new
configuration file to the running site. This approach is much more efficient than changing and
saving multiple times on the live web.config file.

This update process is slightly different when changes are made to the <processModel /> section when
running Windows 2000 Server and Windows XP Professional-you will need to stop the Web server and
restart it for the changes to take effect.

Anatomy of the .CONFIG File

The machine.config and web.config files are identical in structure, which is shown in the following code:
<configuration>

<l-- XML conments are allowed -->
<confi gSecti ons>
<section nane="[nane]" type="[type]"
al l onLocation="[true/fal se]"
<secti onG oup nane="[nane]" />
</ confi gSecti ons>

<[Section G oup Nane]>
<[Section Nanme] [Settings] />
</[Section G oup Nane]>

</ configuration>

All .CONFIG files require the root XML element <configuration />. Following <configuration /> is the
<configSections /> element. Configuration sections, such as <sessionState />, as shown in the following
code, are used to process configuration data (which is found in machine.config).

<section nane="sessi onSt at e”
type="Syst em Web. Sessi onSt at e. Sessi onSt at eSect i onHandl er,
System Web, Version=1.0.5000.0, Culture=neutral,
Publ i cKeyToken=b03f 5f 7f 11d50a3a"
al | owDefi ni ti on="Machi neToAppl i cation” />

Additionally, within <configSections />, <sectionGroup name="[name]' /> is defined. The <sectionGroup
name='[name]' /> section allows for groups of common settings so that you can better organize the
configuration file. For example, ASP.NET settings such as sessionState are grouped in the system.web
group. Unless you are creating custom configuration sections, you will not use the <sectionGroup />

element or any of its child elements.

The next configuration section contains the actual settings. The opening element is the section group that
the settings belong to, for example, <system.web>. Within this element are the actual settings, such as
<sessionState />.Figure 7-4 illustrates the configuration mappings when using section groups and
system.web settings.

system.web

sessionState

system.web
sessionState

system.web

Figure 7-4: Mapping of sections and groups

Centralized Configuration Settings

Although the generally recommended approach is to place all configuration settings in a web.config file for
each individual Web application, you can also define configuration settings in a parent web.config file that
will be applied to resources in subdirectories or subapplications.

You specify settings in parent web.config files-or only in machine.config-through the <location /> element:

<l ocation path="[web path]">
<[sectionG oup] >
<[section] />
</[sectionG oup>
</l ocati on>

The <location /> element is most commonly used for security purposes in Web sites with complex
directory structures. Rather than creating a web.config file for each directory and specifying the
authorization requirements, you can use the <location /> element to store authorization requirements
centrally in the application's root web.config file, as shown in the following code example. This is perhaps
the best use of the <location /> element.

<configuration>
<l-- Other application configuration settings not shown -->
<l ocati on pat h="Foruns/ Edi t Post . aspx" >
<system web>
<aut hori zati on>
<deny users="?" [>
</ aut hori zati on>
</ system web>
</l ocati on>
</ configuration>

In this sample web.config file, a single comment line reflects that more configuration settings have likely
been specified but are not shown in the sample. We also find the <location /> element used to deny
access to anonymous users. This is accomplished through <deny users="?" /> applied to
path="Forums/EditPost.aspx’. This is the setting we use on the www.asp.net site to prevent unauthorized
users from accessing the edit post functionality of the ASP.NET Forums (www.asp.net/Forums).

Locking Down Configuration

Earlier in this chapter, we discussed how the configuration for the application is computed by merging the
machine.config and web.config settings for the application. Sometimes it is not desirable to allow the
settings to be overridden by the application, as in hosted environments. The ASP.NET configuration
system accounts for this through a special allowOverride attribute that is optionally defined with the
<location /> element:
<configuration>
<l ocation path="MyApplication" allowOverride="fal se">
<system web>
<sessionState tinmeout="30" />
</ system web>
</l ocation>
</ configuration>

If not specified, the default value for the attribute is allowOverride="true'. You can use the allowOverride
attribute to lock down ASP.NET settings in parent applications and prevent child applications from
changing the values. The following example demonstrates how this can be accomplished in
machine.config:
<configuration>
<l-- Additional machine.config settings not shown -->
<l-- Override Session defaults for Application 1 -->
<l ocation path="Applicationl" allowOverride="fal se">
<system web>
<sessionState tineout="30" />
</ syst em web>
</l ocation>

<l-- Override Session defaults for Application 2 -->
<l ocation path="Application2" allowOverride="fal se">
<system web>
<sessi onSt at e node="St at eServer" />
</ syst em web>
</l ocati on>
</ configuration>

Any attempts to change <sessionState /> settings via a web.config in Applicationl or Application2 would
result in an exception.

Storing Custom Configuration Data

One design philosophy of ASP.NET was to create an architecture that allowed a problem to be solved in
two ways. This design philosophy is evident in the configuration system in that you have two options for
storing configuration data for your own applications: <appSettings />, which is a special configuration
section that allows you to store string name/value pairs for easy access in your application; and the custom
configuration section handler, which allows you to author a custom configuration section handler capable
of reading and processing your own custom configuration sections.

Using Application Settings

Application settings allow you to store commonly used data such as connection strings within the
configuration and to access that data through a simple, easy- to-use API.

Tip Customers often ask us whether they should store data in web.config or global.asax We
recommend you store the data within the configuration file. Storing settings in files such as
global.asax implies code. The configuration file allows you to make simple changes without having
to recompile your application. Simply add the settings and update the web.config file on your
running server.

The following code demonstrates storing data in the <appSettings /> section of configuration:

<confi guration>
<appSettings>
<add key="DSN"
val ue="server =. ; dat abase=pubs; ui d=sa; pwd=00password" />
</ appSettings>
</ configuration>

The next code example shows accessing the data from within an ASP.NET page:

<%@ | nports Nanmespace="System Data" %
<%@ | nports Nanmespace="System Data. Sql Cient" %
<%@ | nports Nanmespace="System Confi guration" %

<script runat="server">
Public Sub Page_Load (sender As Object, e As Event Args)
Di m connectionString As String

" Fetch the connection string from appSettings
connectionString = ConfigurationSettings. AppSettings("DSN")

Di m connection As New Sql Connecti on(connectionStri ng)

' Additional data access code...
End Sub
</script>

In the preceding sample, we use the ConfigurationSettings.AppSettings property to request the value of
the key DSN and use value this for our constructor of a new SglConnection class instance. We also had to
include this:

<%@ | nports Nanespace="System Confi guration' %
Without it, we would have received compile errors when attempting to use the ConfigurationSettings class.

As you can see, application settings are very powerful, and you can use them to store just about any
configuration data you can think of. However, you might want something a little more customized, possibly

to support nesting or some other structural organization not supported by the flat <appSettings />. In that
case, you'll want to write a custom configuration section handler.

Custom Configuration Section Handler

The role of the custom configuration section handler is to parse configuration data and populate a class
instance in which configuration settings can be accessed programmatically in a type-safe manner. The
class instance can be retrieved using the ConfigurationSettings.GetConfig method. For example, if we had
a custom configuration section handler named ForumsConfiguration, we could access it through a custom
handler. Here is the web.config containing our configuration details:

<confi guration>
<configSecti ons>
<secti onG oup nane="foruns">
<section name="foruns"
t ype="ForunsConfi gurati onHandl er,
AspNet For uns. Conponent s />
</ sectionG oup>
</ confi gSecti ons>

<f orums>
<foruns defaul t Provi der =" Sql For unsPr ovi der "
def aul t Language="en-en" >
<provi ders>
<add name="Sql For unsPr ovi der ™"
t ype="AspNet For uns. Dat a. Sgl Dat aPr ovi der
AspNet For uns. Sql Dat aPr ovi der ™
connectionString="[your connection string]"
dat abaseOwner =" dbo" />
</ provi der s>
</ foruns>
</foruns>

</ configuration>

This configuration file contains a <sectionGroup> for forums as well as defines a new section named
forums. We then see the configuration data for the forums. This is the exact configuration system used by
the ASP.NET forums.

Here is sample code (written in Visual Basic .NET) showing how we can use the custom configuration
section handler to read the configuration data and then use it in a type-safe manner:

Di m configSettings As (Object

Dim forunsConfi g As ForunsConfiguration
Di m | anguage As string

‘* Get configuration settings as an object

configSettings = ConfigurationSettings. GetConfig("foruns/foruns")
‘ Cast to the ForunsConfiguration data type

forunsConfig = CType(configSettings, ForunsConfiguration)

‘ Get the default |anguage
| anguage = forunsConfi g. Def aul t Language

The magic happens through a special mapping in web.config:
<section name="foruns"

t ype="AspNet For uns. Confi gurati on. For unmsConfi gur ati onHandl er,
AspNet For unms. Conponent s" />

This entry in the <configSections> of the configuration file instructs ASP.NET to load a configuration
section handler in the namespace AspNetForums.Configuration with a class name of
ForumsConfigurationHandler. The class is found in the AspNetForums.Components assembly.

Here is the source for the ForumsConfigurationHandler class, which is provided in C# because it is the
same source used in the ASP.NET Forums. (You can download it from www.asp.net.)

nanespace AspNet Foruns. Confi guration {

// EE R S Sk S S I R R I I R I R R S I

/1l <summary>Cl ass used to represent the configuration data for
/1l the ASP. NET Foruns</sunmary>
// ***/
public class ForunConfiguration {

Hasht abl e provi ders = new Hasht abl e();

string defaul t Provider;

string defaul t Language;

public static ForumConfiguration GetConfig() {
return (ForunmConfiguration)
ConfigurationSettings. Get Config("foruns/foruns");

}

// R I I I I I R I R R R I I kR I R

/1l <summary>Loads the foruns configuration
/1l val ues. </sunmary>
// ***/
i nternal void LoadVal uesFrontConfi gurati onXm (Xnl Node node) {
Xm AttributeCollection attributeCollection
= node. Attri butes;

/1 Get the default provider
def aul t Provi der
= attributeCollection["defaultProvider"]. Val ue;

/1 Get the default | anguage
def aul t Language
= attributeCollection["defaultLanguage"]. Val ue;

/'l Read child nodes
foreach (Xm Node child in node. Chil dNodes) {
if (child.Name == "providers")
Cet Provi ders(chil d);

}

// R I I I I I R I R R R I kR I R

/1l <summary>Internal class used to populate the
/1] avail abl e providers. </summary>
// ***/
internal void GetProviders(Xm Node node) {
foreach (Xm Node provider in node.Chil dNodes) {
switch (provider. Nanme) {
case "add"

provi ders. Add(
provider. Attri butes["nane"]. Val ue,
new Provider(provider.Attributes));
br eak;

case "renove"
provi ders. Renmove(
provi der. Attri butes["nane"]. Val ue);
br eak;

case "clear"
providers. Cear();
br eak;

}

/'l Properties
public string Defaul t Language {

get { return defaultlLanguage; } }
public string Defaul tProvider {

get { return defaultProvider; } }
publ i c Hashtabl e Providers {

get { return providers; } }

}

public class Provider {
string name;
string providerType;
NarmeVal ueCol | ecti on providerAttributes
= new NaneVal ueCol | ecti on();

public Provider (Xm AttributeCollection attributes) {

/'l Set the nane of the provider
name = attributes["nane"]. Val ue;

/'l Set the type of the provider
provi der Type = attributes["type"]. Val ue;

/!l Store all the attributes in the attributes bucket
foreach (Xm Attribute attribute in attributes) {

if((attribute.Nane!="nane")
&&(attribute. Name! ="type"))
provi derAttri butes. Add(attri bute. Nane,
attribute. Val ue);

}

public string Nane {
get { return nane; }

}

public string Type {
get { return providerType; }

}

publ i ¢ NanmeVal ueCol | ection Attributes {
get { return providerAttributes; }
}
}

// EE R R R R R R R R I R R R R R R R R

/1l <summary>Cl ass used by ASP. NET Configuration to | oad ASP. NET
/1l Forums configuration. </sunmary>
// ***/
internal class ForunsConfi gurati onHandl er
| ConfigurationSectionHandl er {
public virtual object Create(Object parent,
(bj ect context, Xm Node node) {
ForumConfi gurati on config = new ForunConfiguration();
confi g. LoadVal uesFrontConfi gurati onXm (node);
return config;

}

When a request is made for ConfigurationSettings.GetConfig(‘forums/ forums'), either the results are read
from cache-if they've been requested before-or a request is made to the appropriate configuration section
handler. In the previous code example, an instance of the ForumsConfigurationHandler was created and a
populated instance of ForumConfiguration returned.

As you can see, the code for ForumConfiguration is simply reading and processing the raw XML from the
configuration file and returning a strongly typed class.

Securing Configuration Data

Storing commonly used data within configuration is exactly what configuration is designed for. For
example, the settings necessary to support out-of-process Session state, such as the connection string,
are stored within configuration. Your own application resources, such as connection strings, are also
recommended for .config storage. As you know, configuration provides a central, easy- to-manage
repository for this type of information. However, this data storage is not secured by default. If the system
were compromised, system information could be taken from the configuration file. Fortunately, by default,
the .CONFIG extension is blocked, so you can't simply download someone's web.config!

Version 1.1 of ASP.NET introduced a new capability that allows for the encryption of some part of
configuration, such as <processModel /> and <sessionState />, that can potentially contain data to be
secured. (Knowledge base article 329290 has more extensive and recent details.) Support for secure
storage of connection strings and other configuration data is a planned addition for ASP.NET 2.0.

Encrypting Data

Information stored in the following configuration sections can be encrypted and stored securely in the
registry:

m <identity/>Windows identity (username and password) to impersonate
m <processModel />Windows identity to use when running the process
m <sessionState />Connection string used to connect to out-of-process state server

To enable this encryption capability, you first need to download a special tool, aspnet_setreg.exe, from
http//download.microsoft.com/download/2/9/8/29829651-e0f0-412e-92d0-

e79da46fd7ab/Aspnet setreg.exe. After you download this file, extract it, and store it in the following
version-specific directory, which also contains other ASP.NET-related command-line utilities, for example,
C:\Windows\Microsoft. NET\Framework\v1.1.4322\. Visit the following site for instructions about how to use
this tool: http://support.microsoft.com/default.aspx?scid=kb%3ben-us%3b329290.

http://download.microsoft.com/download/2/9/8/29829651-e0f0-412e-92d0-
http://support.microsoft.com/default.aspx?scid=kb%3ben-us%3b329290

Summary

ASP.NET's configuration system provides a simple configuration that does not require special tools to edit
or manage the file. Instead, XML is used to store the various configuration options required by ASP.NET.
The configuration system is very flexible in that it allows for fine-grained control at various application
levels as well as provides switches that allow or deny the overriding of sections.

Storing custom configuration data can be accomplished either by using the <appSettings /> section or by
authoring a custom configuration section handler. Although <appSettings /> is the easiest approach to
use, authoring a custom configuration section handler provides the highest degree of flexibility. Note that in
the next version of ASP.NET, we will provide graphical tools as well as more APIs for programming and
managing the ASP.NET configuration system.

Chapter 8: ASP.NET Security

We've all seen the aftermath of various worms and viruses. Given the huge number of systems affected
and their global reach, you've probably already dealt with this sort of disruption firsthand. Fortunately,
keeping a server updated with the latest fix might be all that's necessary to prevent a problem, and
recovering from an infected system has been relatively straightforward so far. But these high-profile
episodes are just part of the overall security story. The more insidious attacks are less publicized: the
system compromises that result in corrupted or stolen data. In these cases, keeping a server updated with
the latest security fixwon't help. You have to be prepared before the damage is done. You must design,
write, and deploy the applications with security always in mind.

In this chapter, we'll cover the features of version 1.1 of the .NET Framework that make writing secure
applications easier. We will look at the mechanisms available for limiting access to parts of a Web
application and consider what you can and should do to limit the risk when dealing with sensitive data. We
will also cover the basic steps to hardening a Web server.

Introducing ASP.NET Application Security

First, let's establish what we mean by authentication, authorization, and impersonation. (We'll introduce
them here but talk about each in more detail later in this chapter.) These terms can be confusing, so let's
define them in a more concrete way by using the metaphor of securing an office building.

Authentication is simply establishing the identity of the user. In the secure office building, every person
must have an ID badge. Each person who works in the building might be issued a cardkey or badge to
display, and a visitor might be asked to wear atemporary ID.

Authorization is a set of rights granted to particular users. Once the ID is established through
authentication, security isn't improved beyond the ability to log an individual's actions unless we enforce
that only certain users can access certain resources. In the secure office building, we might limit specified
groups to accessing only certain parts of the building. For example, only those individuals working on a
top-secret project would be authorized to enter the project lab.

Impersonation is assuming the identity of someone else. In our example, impersonation would be using
the cardkey issued for someone else's authentication. When impersonating, all actions appear to be
carried out by the assumed identity.

Figure 8-1 shows how Microsoft Internet Information Services (IIS) acts as the front line in establishing user
permissions, and how ASP.NET builds on top of it later in the request.

intermat or
Lotal Arad Me b k—

s
Authentization

3

ASPENET

+ Authantication
+ Autharization
« Imparsonation

Web Browser
Figure 8-1: IIS and ASP.NET authentication and authorization

These key security concepts are the basis for creating a secure Web site. IIS and Microsoft ASP.NET work
together closely to authenticate and impersonate users, authorize requests, and delegate credentials to
gain access to the required resources. ASP.NET goes beyond these security primitives to validate input
and perform dynamic role checking.

The security role 1IS performs is driven primarily by configuration data, using Microsoft Windows accounts
and certificates for authentication, and NTFS (file permissions) for authorization.

Authenticating Users

IIS offers several approaches for authenticating users, and ASP.NET works with all of them. The choices
that we will discuss are anonymous, certificate, and Windows Authentication. These comprise the top-level
choices in 1IS for securing resources. First we'll discuss what these options are and examine how they are
configured, and then we'll look at how ASP.NET fits in.

IS Authentication

ASP.NET requests are first handled by the Web server, which usually means IIS. The dialog box in which
IIS security settings can be set and viewed is accessed from the Computer Management application for
managing local and remote computers by following these steps:

1. Expand the Services And Applications area of the Computer Management, part of the Microsoft
Management Console.

2. Click on Internet Information Services.

3. Right-click the Web site (such as Web Sites or Default Web Site) or application root, and select the
Properties option.

4. Click the Directory Security tab.

5. Click the Edit button for Anonymous Access And Authentication Control. Figure 8-2 shows the
Authentication Methods dialog box.

Authantical fon et

[+] frorymeous acoea

Ho veer namadnsssond raqured to sccess Bt 1emce
Acoount uped for anongeoun Bo0EN

Ulses namver | IUSA _WEESEFVER | Hrowis

Pasymond
[] Edlerps 115 ey ctwabsed puniivmisd

Acthertcaind aoei
Foor e holowng suthrsle st madod, i1 fame & Dadseond
e e whar
- noryrmonn scoeps ik dablad, o
= potwit o sethrdsd wing N TFS accai corbal ket
[T B authentecstion |nasavend s serd in clear led]
Dl ot horrann
Hasim

[I expp e "o sk el s

L oe | | Ceem || Hee |

Figure 8-2: Authentication Methods dialog box

Tip To launch the Computer Management application from the command prompt, enter start
compmgmt.msc. You can also launch the Internet Information Services Management
snap-in directly by entering start inetmgr.

Anonymous Access

The default mode in lIS is anonymous access, meaning that all users are allowed access to the site and
are assighedthe IUSR_WebServer identity, where WebServer is the machine name of the Web server.
ThelUSER_WebServer identity is a real user account on the Web server machine, but it has very limited
permissions; although we've assigned the user's identity, we haven't authenticated who he is.

Client Certificates

Another option for authentication is the use of client certificates, in which the Windows accounts are
mapped to certificates as part of user management and application configuration. Then, during
authentication, the certificate is presented by the browser and validated by the Web server. The client does
not need to present user credentials (the user name and password) because the certificate exchange
happens automatically. (You can find more information on mapping certificates at
http://www.microsoft.com/technet. Search for the topic ‘Mapping Certificates.")

Windows Authentication

The other main option for authentication in IIS is referred to as Integrated Windows Authentication.
Windows Authentication also has several other suboptions: basic and digest. Both authenticate credentials
presented by the user or the user's browser are verified against a Windows account on the server. Basic
Authentication allows the user name and password to be sent without encryption and must be used on a
user account that is defined explicitly on the Web server machine. Someone capturing network traffic
would be able to see the user name and password.

Important Never use Basic Authentication without requiring Secure Sockets Layer (SSL) so that user
credentials are sent in an encrypted form. Using basic authentication without encrypting
communications is referred to as sending credentials 'in the clear' and is a very bad
practice.

Digest Authentication looks like Basic Authentication to the user but requires that the user account be a
domain account. The user is presented with a dialog box that enables her to enter her user name and
password. Digest Authentication encrypts the credentials before transmitting them to the Web server so
that they are not sent in the clear, that is, their transmission requires an SSL connection.

Integrated Authentication utilizes the credentials the user obtained when she logged on to the machine.
The user is not presented with another dialog box, and the password is not sent to the Web server.
Depending on the environment, integrated authentication will use either Kerberos or NTLM to establish the
domain identity of the user.

Before arequest is handed over to ASP.NET, it is authenticated using one of these Windows
authentication options by IIS. When ASP.NET receives the request, IIS always passes the identity of the
Windows user along with it. This identity might be the anonymous user account (lUSER_WebServer), a
local machine account, or a domain account.

Tip A Windows user account is always associated with an executing request. A good way to review the
security of a Web application is to walk through what identity is being used by Windows when
executing any part of the request.

ASP.NET Authentication

Once the request is handed over to ASP.NET along with the user credentials provided by IIS, the
additional authentication options of ASP.NET come into play. These options are driven primarily by
scenarios in which having a Windows account for each user of the Web application is not feasible. The
ASP.NET authentication options are set in the authentication element of the web.config file. Settings in the
web.config file will override the default settings in the machine.config file. An example of using the
authentication elementis seen in Code Listing 8-2. There are four possible values for the mode attribute of
the configuration element: Windows, Forms, Passport, and None.

The default ASP.NET authentication mode is Windows, meaning that File Authorization and URL
Authorization are carried out using the Windows user account provided by IIS. (See the section in this
chapter titted 'Authorizing Users' for more information). Access to backend resources, such as databases
and registry entries, is performed using the identity of the worker process. (See the section titled 'Using
Impersonation’ later in this chapter.)

When the authentication mode is Passport, the user is denied access to the directory until he has been

http://www.microsoft.com/technet

authenticated by the Microsoft Passport Authentication service. This service essentially wraps the calls with
the Passport SDK for you, automating the process of logging the user into Passport. (For more details on
the .NET Passport authentication service, go to http://www.microsoft.com/net/services/.)

The Forms Authentication mode of ASP.NET is the most popular for enabling authentication that doesn't
require a Passport login or a separate Windows account to be maintained on the server. We'll discuss it in
more detail in the 'Using Forms Authentication' section later in this chapter.

http://www.microsoft.com/net/services/

Using Impersonation

The choice you make for authentication in 1IS is closely related to your choices about authorization and
impersonation. As mentioned earlier in this chapter, no matter what authentication option you choose, a
Windows user account will be associated with the request by IIS. Exactly how ASP.NET utilizes the
associated account depends on whether impersonation is enabled. Without impersonation, the page is
executed with the identity of the worker process handling the request.

In IS 5, ASP.NET applications run in a worker process called aspnet_wp.exe with a default identity of
ASPNET, aspecial account created for ASP.NET. The processModel element of the web.config file
allows us to control the identity that is used for the aspnet_wp worker process. When the userName
attribute is set to Machine by default, the worker process runs as ASPNET; when it is setto SYSTEM, the
worker process runs as the more trusted LocalSystem account. You can also specify a different account
altogether, but you must specify the password in the processModel element of machine.config file as well.

Tip Do not run the worker process as an account other than ASPNET unless absolutely necessary.
Compromising the worker process that is running as SYSTEM would give an attacker much higher
level permissions than the ASPNET account. Any page will execute as this user unless
impersonation is enabled.

IIS 6 uses a set of worker processes called w3wp.exe that allow pooling and isolation of the application
processing. By default, these processes run as the Local Network account, but they too can be configured
to use a different identity in the Internet Services Manager. If you changed the identity for the worker
process in lIS 5, your application might not run as the expected identity in [IS 6 because the processModel
settings are not applied when using w3wp.exe worker processes.

Tip You can force IIS 6 on Windows Server 2003 to use the version 5.0 behavior in the Internet
Services Manager by right-clicking the Web Sites folder, selecting Properties, and selecting Run
WWW Service In IS 5.1 Isolation Mode on the Services tab.

Enabling ASP.NET Impersonation

To enable impersonation, set the impersonate attribute of the identity element to true.Code Listing 8-1
causes the pages of a Web application to run as the identity of the user provided by IIS. When anonymous
accessis allowed for the Web application and impersonation is enabled, pages execute as the
IUSER_WebServer account.

Code Listing 8-1: Impersonate Web.config

<confi guration>
<system web>
<identity inpersonate="true" />
</ syst em web>
</ configuration>

There are two other options for impersonating in ASP.NET. You can set up impersonation to use either a
specific user from the configuration or the Web service Logon identity. In some scenarios, they might be
useful, but be aware that page code will execute as the impersonated user. If you impersonate a more
powerful user, you might be granting more access than you intend. By setting the value of the username
andpassword attributes to an empty string, ASP.NET impersonates the Logon user of the Web service.
By default, this is the LocalSystem account, which has a powerful set of permissions. You can also specify
a specific user by including his credentials, but note that the user's name and password are being placed
directly in the web.config file. Code Listing 8-2 shows the identity configuration that would cause all pages
of the application to run as joeuser, as long as joesPassword is correct.

Code Listing 8-2: Impersonate User Web.config

<confi guration>
<system web>
<aut henticati on node="W ndows" />
<identity inpersonate="true"
user name="j oeuser"
passwor d="j oesPassword" />
</ syst em web>
</ configuration>

Impersonation can be particularly useful when used in conjunction with 1S non-anonymous authentication.
To work correctly, however, ASP.NET must be configured for Windows Authentication as well. The page
executes as the authenticated user. Access to resources is checked against the permissions of the user.
For example, when you apply this scenario, a database query runs as the authenticated user, and log files
accurately reflect user activities. This can be ideal in scenarios in which managing user accounts and
permissions is feasible and Windows Authentication can be used. For large-scale Internet scenarios, it
might be more feasible to use anonymous authentication in IIS without impersonation so that you can take
advantage of ASP.NET Forms Authentication.

Using Forms Authentication

Forms Authentication allows you to authenticate the user against synthetic accounts. In other words, it liberates
authentication from the Windows user accounts and lets the user information be centralized in a backend datal
even placed directly in config files in the application. You can still take advantage of the kind of role manageme
with Windows accounts. (See the section “Working with Roles” later in this chapter).

Configuring Forms Authentication

To enable Forms Authentication with the defaults, simply set the value of the mode attribute of authentication tc
Code Listing 8-3 demonstrates enabling Forms Authentication and setting a custom cookie name.

Code Listing 8-3: Forms Auth Web.config

<confi guration>
<system web>
<aut henti cati on node="Forns" >
<f orns nane="Cooki eName" | ogi nUrl ="1o0gin.aspx" />
</ syst em web>
</ configuration>

When using ASP.NET Forms Authentication, each request is checked against authentication tickets from a
FormsAuthenticationTicket object. In mobile pages, the ticket might be carried in the query string (the string at t
the URL preceded by a ?); otherwise, it is carried in the cookies. If it is not found or has expired, the user is redit
loginUrl specified in the forms element. The default value of loginUrl in machine.config is login.aspx. The purpc
loginUrl page is to ask the user for the user name and password, and if satisfied, issue a ticket. Just like Basic \
Authentication, ASP.NET doesn’t provide any means for automatically encrypting the credentials supplied by th
isup to you to implement SSL in conjunction with Forms Authentication to secure passwords against being cap
network traffic.

Tip Always use SSL in conjunction with ASP.NET Forms Authentication to secure the transmission of user
passwords, and during transmission between the browser and string.

Authenticating the User

Although a default path is provided for the loginUrl, the page itself is not created by ASP.NET. Code Listing 8-4
page that takes a user name and password from the user and authenticates them. In this example, we hardcoc
acceptable user name (TheUsername) and password (ThePassword) into our AuthenticateUser method. Once
credentials are received, we issue the ticket and get the user back to where she started by calling the static
RedirectFromLoginPage method of the FormsAuthentication class.

Code Listing 8-4: Login.aspx

<%@Page | anguage="C#" %
<script runat="server">
protected void Page_Load(object o, EventArgs e) {
i f(IsPostBack) ({
i f (Aut henti cat eUser (usernane. Text, password. Text)) {
For msAut henti cati on. Redi r ect FronlLogi nPage(
"TheUser nane", false);
}
el se {
instructions. Text = "Please try again!";

i nstructions. ForeCol or = System Draw ng. Col or. Red;

}
}
}
bool AuthenticateUser(string usernanme, string password) {
i f((usernanme == "TheUsernane") && (password == "ThePassword")) {
return true;
}
return fal se;
}
</script>

<form runat ="server">
<asp: Label runat="server" id="instructions" Text="Please input your credentials:'
User nane: <asp: Textbox runat="server" id="usernane" />

Password: <asp: Text box runat="server" id="password"
Text Mode="Passwor d" />

<asp: button runat="server" Text="LOG N' />
</ forne

The login page can be seen in Figure 8-3. With just a few lines of code, we are authenticating users. The identi
worker process hasn't been affected, and we didn’t have to coordinate the creation of a new Windows user acc
that the call to the RedirectFromLoginPage method passes false as the second parameter (the Boolean
createPersistentCookie), which indicates that the authentication ticket should be a session cookie only and not
cookie, that is, one that persists past the time the user closes the browser.

A hi pidtlecalhtiopin.asps - Wicrosafl Intermet Exploser r.._EIE|
fle it Vew Fpewites [ock [eb P
O Bk = sl = 3 B 4

8] hitg o syl e -

P eername | M
Farrased

LOGN

P e S Lol s

Figure 8-3: A simple login form

Note RedirectFromLoginPage relies on the user having been redirected to the login page with a query strin
where to redirect them back to. For example, in the URL http://www.contoso.com/login.aspx?
ReturnUrl=mypage.aspx, mypage.aspx is the return URL that the user is redirected to. If the user req
login page directly, he will be sent to the page configured as the default for the Web application in the
Services Manager, usually default.aspx.

Storing Passwords

ASP.NET supports storing user names and passwords directly in the credentials element of either the web.con
machine.config file. Because storing the passwords in clear text is not a good idea, the FormsAuthentication cle
theHashPasswordForStoringInConfigFile method using a hash algorithm. There is still a downside to storing tht
versions of passwords in the web.config file. Updating the web.config file causes the application to restart. This
bothersome if the application is forced to restart every time a new user is created or updates his password. So
probably use a back-end data store for managing Forms Authentication credentials.

http://www.contoso.com/login.aspx?

You can still take advantage of the HashPasswordForStoringInConfigFile method. When adding a user, hash tl
password but store only the hash, not the password. To authenticate the user, hash the password again and cc
hash to what is stored. If they match, the user supplied the correct password. The odds of having two separate
hash to the same value is mathematically infeasible. This approach prevents anyone who has or gets access tc
database from getting access to the user passwords. The hash process, for all intents and purposes, is a one-v
meaning that you can’t get the password from the hash. You have to guess the password and hash it for confirr
which is infeasible.

Important Never store user passwords in clear text.

Forms Authentication scales easily to thousands of users when working against a database backend. You can
preferences and personal information for the user as well as additional security for use in role management, wl
discussed in the next section.

Working with Roles

Most security decisions do not focus on the rights of the individual user. Instead, a user belongs to a group, and
security focuses on authorizing these group roles for access to information and functionality. The application ce
customize the data displayed based on the groups to which the authenticated user belongs. Role management
examination of the object stored by ASP.NET in the HitpContext.User property. This object implements the IPri
interface, which has just two members: the Identity of the user; and the IsinRole method, which checks for grot
membership.

Using Roles with Windows Authentication

When the authentication mode is Windows Authentication, ASP.NET creates a WindowsPrincipal object that is
theHttpContext.User property. The WindowsPrincipal object is used to access the identity of the authenticated 1
identity can get you more information about the user, including access to the Windows account token, which ca
to access resources on behalf of the user. This IsinRole method takes the name of a role and returns a Boolez
indicating whether the user is a member of the role.

Group membership can be used to customize an application as well as restrict access. Code Listing 8-5 demor
programmatically retrieving the IPrincipal object and using it to customize the output when the user is in the Wir
Administrators group. For the customization to work, both IIS and ASP.NET must be configured correctly. If [I1S
configured to allow anonymous access, the IPrincipal object will correspond to the IUSER_WebServer account
should not be a member of the Administrators group. If the authentication mode in the ASP.NET configuration i
Windows Authentication, the cast from HttpContext.User to WindowsPrincipal will fail. Notice that the code san
not guard against the WindowsPrincipal object being null. A null value indicates that the configuration is incorre

Code Listing 8-5: CheckWindowsPrincipal.aspx

<%@Page | anguage="C#" %
<%@ nport Nanmespace="System Security.Principal" %
<script runat="server">
protected void Page_Load(object o, EventArgs e) {
W ndowsPri nci pal principal =
(W ndowsPri nci pal) Ht t pCont ext. Current. User;
i f(principal.lslnRole(WndowsBuiltlnRole.Adm nistrator)) {
message. Text = "Secret nessage for administrators only!";
}
}
</script>
<form runat ="server">
<asp: Label runat="server" id="nessage"
Text ="Text that everyone can see!" />

</ fornmp

Using Roles with Forms Authentication

ASP.NET Forms Authentication and Windows Authentication both make the IPrincipal object available from the
HttpContext.User property; however, this object is just a GenericPrincipal object, and it doesn’t use the Window
system as a back end for validating roles. Instead, role management is implemented as part of the application.
example that follows, we modify the way that the FormsAuthenticationTicket object is constructed in the login p
it includes a role for the user. Then we add code to the global.asax file so that when subsequent requests come
authenticated user, the code creates GenericPrincipal with the role that we get back from the ticket. The Gener
object is then made available through the rest of the request processing.

Code Listing 8-6 is like Code Listing 8-4 except that the call to RedirectFromLoginPage is replaced with our ow
differences are highlighted in the code listing). First, we create the ticket. Notice that the last argument to the
FormsAuthenticationTicket constructor is user-defined data, our superusers role for this user. Then we encrypt
and place it in the Response cookie collection and perform the redirect.

Code Listing 8-6: PrincipalLogin.aspx

<%@Page | anguage="C#" %
<script runat="server">
protected void Page_Load(object o, EventArgs e) {
i f(IsPostBack) {
i f (Aut henti cateUser (usernane. Text, password. Text)) {
For msAut henti cati onTi cket ticket =
new For nsAut henti cati onTi cket (
1,
user nane. Text,
Dat eTi me. Now,
Dat eTi me. Now. AddM nut es(30),
fal se,
"superusers”
)
string encryptedTi cket =
For msAut henti cati on. Encrypt (ti cket);
Response. Cooki es. Add(new
Ht t pCooki e(For nsAut henti cati on. For msCooki eNane,
encrypt edTi cket));
Response. Redi rect (For nsAut henti cati on. Get Redi rect Url (
user name. Text, false));

} else {
i nstructions. Text = "Please try again!";
i nstructions. ForeCol or = System Draw ng. Col or. Red;
}
}
}
bool AuthenticateUser(string usernanme, string password) {
i f((usernanme == "TheUsernane") &&
(password == "ThePassword")) {
return true;
}
return false;
}
</script>

<form runat ="server">
<asp: Label runat="server" id="instructions" Text="Pl ease input your credentials:'
User nane: <asp: Textbox runat="server" id="usernane" />

Password: <asp: Textbox runat="server" id="password"
Text Mode="Password" />

<asp: button runat="server" Text="LOd N' />
</ fornmp

Unless we also take over creating the GenericPrincipal class (which implements IPrincipal) on subsequent req:
role will not be populated. Code Listing 8-7 provides an EventHandler for the AuthenticateRequest event. Beca

global.asax, when installed at the application root, responds to application-level events, ASP.NET raises this ev
beginning of every page request. This example neglects error handling completely while extracting the ticket frc
Forms Authentication cookie. It constructs the GenericPrincipal used throughout the request by using a Formsl
object created with the ticket and the role that was stored in the ticket's user data.

Code Listing 8-7: Global.asax

<%@ nport nanmespace="System Security.Principal" %
<script runat="server" |anguage="C#">

protected void Application_AuthenticateRequest(object o, EventArgs e) {
Ht t pCooki e cooki e = Request. Cooki es[For nsAut henti cati on. For nsCooki eNane] ;
if(cookie !'= null) {
For msAut henti cati onTi cket ticket =
For msAut henti cati on. Decrypt (cooki e. Val ue) ;
string[] role = new string[]{ticket. UserData};
Cont ext . User = new GenericPrincipal (new Fornmsldentity(ticket), role);
}
}

</script>

For completeness, Code Listing 8-8 is included. Its use of the WindowsPrincipal is nearly identical to the use of
object in Code Listing 8-5, except that Code Listing 8-8 no longer relies on built-in Windows groups for role mar
Rather, it uses an arbitrary role that we created when the user was logging on and persisted during the authent
phase of each request. For the cast to this GenericPrincipal object to work, you must have the global.asax file i
application’s root directory and change the authenticationmode attribute in web.config to Forms as it was in Coc
3. Also, the PrincipalLogin.aspx page must be used for authentication, which can be configured by renaming it t
default login.aspx value or by setting loginUrl attribute of the forms element to the page name in the web.config

Code Listing 8-8: FormsAuthRoles.aspx

<%@Page | anguage="C#" %
<%@ nport Namespace="System Security.Principal" %
<script runat="server">
protected void Page_Load(object o, EventArgs e) {
GenericPrincipal principal =
(GenericPrincipal)HtpContext. Current. User;
i f(principal.lslnRole("superusers")) {
message. Text = "Message for forns auth superusers."”;
}
}

</script>

<form runat ="server">
<asp: Label runat="server" id="nessage" Text="Text the everyone can see!" />

</ fornmp

Authorizing Users

Windows Authentication provides a familiar model for working with user accounts that extends to
authorization as well. Windows Authentication works both with and without impersonation enabled, but in
slightly different ways.

As mentioned earlier, requiring that a user be authenticated is only part of the story in securing a Web
application. Once the identity is established, this identity can be used to determine whether the user is
authorized to visit parts of the application or carry out certain functions. The application can be customized
easily so that sensitive data is not shown to users without clearance. The choices available for
authorization follow along the same lines as those available for authentication. In fact, some authorization
features work only when used in conjunction with the appropriate authentication mechanism.

File Authorization

In the “Windows Authentication” section earlier in this chapter, you learned that a request is handled by a
worker process. It follows, then, that access to the .aspx files is controlled by setting access control lists
(ACLs) for the identity of the worker process. ASP.NET can take this one step further by enforcing the
NTFS file permissions for the authenticated user. This enforcement requires Windows Authentication but
not impersonation. Recall that when using impersonation, the page code will execute as it would with the
authenticated user; however, this authentication is independent of access to the file. One of the modules
installed by default in the processing pipeline is the System.Web.Security.FileAuthorizationModule . It takes
the credentials for the request that are passed from IS and validates that the user has authorization to
load the .aspx file before executing that request. If access has not been granted for that user account,
ASP.NET returns an access denied message.

Tip File Authorization works only against file types that are mapped in the Internet Services Manager
to ASP.NET. File types that are not handled by ASP.NET will be subject to the IIS authorization
checks.

URL Authorization

A different module in the pipeline is responsible for authorizing users for the requested URL based on
configuration data. In many scenarios, this authorization can free us from adding explicit role membership
checks in code. The System.Web.Security.UrlAuthorizationModule does not require that you specify any
type of authentication. It examines the user and makes a decision based on the rulesin the authorization
element of machine.config and web.config. Code Listing 8-9 is a web.config file that overrides the
machine.config default of allowing all users access. It uses the special wildcard ? to represent non-
authenticated identities. If you haven't enabled Windows Authentication in both 11IS and ASP.NET, the user
will simply get an access denied message. If you are using Forms Authentication, the user will be
redirected to the loginUrl.

Code Listing 8-9: DenyAnonymous_Web.config

<configuration>
<system web>
<aut hori zati on>
<deny users="?" />
</ aut hori zati on>
</ syst em web>
</ configuration>

Of course, denying the anonymous user access just enforces the rule that the user must be authenticated.

The configuration system will provide the authorization settings from individual directories to the
UrlAuthorizationModule object. Whole directories of content can easily be restricted to individual groups in
this way.

In addition to ?, the * is used as a wildcard to represent all users. The format for the users and role strings
depends on the type of authentication being used. For Windows Authentication, you specify users as a
comma-separated, domain-qualified list, such as “Domain\Userl, Domain\User2.” Roles are specified the
same way: “Windows\Administrators.” When using Forms Authentication, the user names and role nhames
should match the identities stored in the HttpContext.User class.

Caution Allow and deny tags are processed sequentially by ASP.NET. The first match found is used,
so if you allow a user with one statement and deny them with another, the order of elements
will determine whether the user gains access.

Code Listing 8-10 is a web.config file that demonstrates denying access to all users except users
belonging to the superusers group and a person named Bob. The anonymous user or all users must be
denied access in order to take advantage of authentication.

Code Listing 8-10: Authorization Web.config

<configuration>
<system web>
<aut henti cati on node="Forns" />
<aut hori zati on>
<al | ow r ol es="superusers" />
<al | ow users="Bob" />
<deny users="*" [>
</ aut hori zati on>
</ system web>
</ configuration>

Validating Input

Before we start talking more about identity primitives and role checking, let's look at a new feature of
ASP.NET version 1.1 that makes it easier to avoid an entire category of security problems. The problem is
generally called cross-site scripting and refers to inadvertently presenting client-side script to the user.
Cross-site scripting occurs when invalidated user input is returned in the page. One example of this would
be an attacker presenting the user with a link to a trusted Web site that has script embedded in the query
string of the URL. If the site uses the QueryString variable in the response, the browser will try to execute
the script, and the user will think the script is being sent by the trusted Web site. The attacker gets the user
to execute her code by making it appear as though the script comes from somewhere else.

By default, ASP.NET parses the data submitted by the browser, looking for potentially dangerous strings.
This helps guard against the user forgetting that it's not a good idea to simply return user input directly in
the response. Many books about Web programming include a Hello World example that is vulnerable to
exactly this sort of threat. The user is asked to enter her name and when the form is submitted, the name
is returned to her. Figure 8-4 shows the error that happens when submitting potentially dangerous form
data. It is relatively straightforward for a hacker to construct a link to a page that has script included as part
of the input. When the script comes back as part of the response, the user thinks the page is coming from
the target site. Figure 8-5 illustrates the interactions that occur in a cross-site scripting attack. The user
follows a link from the malicious site to the trusted site and gets a page with script provided by the
malicious site.

G - CRER AP sCT Tl . e - I o %

G ot ol gt Kot g v B
| A
| Server Errorin /' Application.

| & patentialiy dangerous Request Form value was detected from the chent
| (userfnput= " <scriph=alert “runmi...).

T T Ty —p— [V ————
| rescrie ar mEmreiis covrons e sy o s eocwEn, e s coEs

| vmaatale gt s Wk Py i 5 B W) By (W

e proamg e ar pepasd by b v T by
TG RN U S R s sy i
0y o | D]y gl &bl ol

Corlalis. 5ok e HL Pt £ s b ey o o By P cmtar wvns et b P [i
T T]

| vawne Ervo
| &n mbasdies sxteption m meieted GIing e exscution of e ooTEn: WD regummt,

| irtcrmmiicn ceoasding the origin end iocmtion of the sxSeprion can be ideriified wming the
| ssmaprion evech syese balow

| teeck Trare

an (BeHOEBENIL) 1 A ponsatially dirgieses Paquart Fors wulue man detecred feoms th
T ¥ 1y w1 et whaem) =130

wrang me Firing en pohiaes, TLring : 3
smren | T b rom [Bopmwidn pmem] lesdirm ey, GEeimg enl | ard workies | 90
3
E Ef oralwiramt
Figure 8-4: Validation failure
User browses untrested PAg:
b 11 |
;'GF.IZ' ncludes link to trustied sila Mﬂg‘i:\.ﬁ-
wilh ambadded malicious 52 nat d
Wab
Browser Usar follows lnk 10 trusted site
Trusted site doss not validate 1";5"’“
Imput and wnknow "n.g,lg' retums script ita

Usar executes script Datieving it to
have originated with the trusted site

Figure 8-5: Cross-site scripting

Input validation is controlled in several ways. The pages element of machine.config includes a
validateRequest attribute that is set to true by default. It can also be controlled in a page directive with the
same name or in a web.config file at the application level. It is also possible to cause input validation on

demand by calling the new Validatelnput method of the System.Web.Ul.Page class. In most scenarios,
leaving the default input validation configuration intact should suffice.

Tip Do not set validateRequest="false” in the page’s configuration element unless absolutely
necessary. The better option is to set validateRequest= “false” in the page directive for those
pages where validation will be handled in your custom code. Such a page directive is shown on
the first line of Code Listing 8-11.

If you need to allow the user to submit markup, be sure to encode it with HTML before displaying it in a
page. In Code Listing 8-11, we turned off validation in a simple Hello Scripted World.aspx page. The user
is allowed to submit anything, but the content is encoded before being displayed.

Code Listing 8-11: Hello Scripted World.aspx

<%¢@Page | anguage="C#" vali dat eRequest ="fal se" %

<script runat="server">
voi d Page_Load(object o, EventArgs e) {
i f(IsPostBack) {
message. Text = "Hello! Your input was: " +
Server. Ht nl Encode(user | nput. Text);
}
}

</script>

<form runat ="server">
<asp: | abel runat ="server"
i d="nessage"
text="Pl ease i nput your nanme, or sone nmlicious script." />

<asp:textbox runat="server"
i d="userl nput" />

<asp: button runat="server"
text="subnmit" />

</ fornmp

Most applications will not need to disable the automatic validation for pages and will benefit from the
added protection provided by ASP.NET. If any pages require input that is blocked, be sure to encode all
that input before displaying it to the user.

Tip Call the Server.HTMLEncode method on all user input before displaying it.

Hardening the Server

I recall adescription of a machine that adhered to a strict security policy as having no network connection,
no floppy disk drive, and no keyboard or mouse. Obviously, a server like this wouldn't be worth much, but
this image does help to illustrate a point about security: reduce the avenues for possible compromise. The
last time | heard about a worm compromising systems worldwide, my first question asked which service it
was using to get to the machine. Sure enough, it was a service that is enabled by default, but | breathed a
sigh of relief knowing that | had long since disabled that service on my machine. It takes some time and
some effort to identify and disable the services not required in a particular environment, but it's worth it in
the long run.

Tip Disable services onthe Web server that aren’t being used. For example, if you type net start at
the command prompt, you will probably be surprised at the number of services running on the
server. You might not need Simple Mail Transfer Protocol (SMTP), Infrared Monitor, or a DHCP
client running on the server. Look at the demands of the Web application, and be sure that the
running services are needed to make the server and the application run correctly.

My next advice might seem obvious, but it gets ignored all the time: when operating system, Web server,
and database security patches are released, install them! Malicious users and security professionals are
constantly looking for new ways to compromise systems. When a hole is found, patch it. Often when
system compromises occur, they exploit a vulnerability that was found and fixed in a release long before
the attack on your system occurred.

Summary

Designing and implementing Web application security is much easier and more robust with ASP.NET than
in the past. In this chapter, we looked at the available options in ASP.NET and how they work hand-in-
hand with IIS to authenticate users and authorize their actions.

Think of security first when designhing a Web application instead of trying to inject it into the written
application. Microsoft has more information online than is provided in this chapter, including a description
of several scenarios and the associated step-by-step instructions for implementing your chosen security
model. See http:/mwww.msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetsec/html/secnetipMSDN.asp for more information.

http://www.msdn.microsoft.com/library/default.asp?url=/library/en-

Chapter 9: Tuning ASP.NET Performance

Let's be honest: performance tuning doesn’t sound like fun. It's probably the last thing on your list of things
to do when developing an application—if it's even on the list at all. Many developers ignore performance
work until they are faced with a critical problem. Maybe this is because so many things contribute to the
overall performance of an application that it’s difficult to know where to begin. Or maybe developers have
difficulty knowing when they have reached the end of the performance work.

In this chapter, we explore how to analyze the performance of an ASP.NET application, discuss what
steps can be taken to identify and solve performance issues, and walk through some development best
practices that can help you avoid bottlenecks. Performance tuning, in which you analyze and measure the
behavior of the application as it is being developed, can be interesting, challenging, and very rewarding
because it allows you to fully see the results of your work, as long as you don't get caught up in minor
details. Look first for the biggest performance issues where your work will pay off the most. This chapter
will help you sort out where you can get those payoffs.

Analyzing ASP.NET Applications

Performance tuning is an iterative process. The first step is to analyze the performance of the application.
You can’'t know where to focus your efforts until the behavior of the application is understood. Also, you
can't accurately gauge the impact of your changes without being able to reproduce the measurements
again and again.

Once you gather performance data about an application, you might be tempted to implement multiple
changes simultaneously. However, you might find that when you implement a large set of changes and
then repeat the performance analysis, you actually see less improvement than you originally expected.
Even if you do get significant improvements, you won't know which changes contributed to them. The
iterative process is important because it enables you to understand the impact of each change and
validate each change separately. A bad change made at the same time as a good one won't be
recognized if both changes are measured together.

You can measure the performance of an ASP.NET application using three primary means: performance
counters, profiling, and throughput measurements. These approaches generate solid and reproducible
data, so we can measure the behavior of an application through multiple iterations. For all of them, the
basic requirements are the same: you must load the application with requests and measure the results.

Controlling the Test Environment

You must have a controlled test environment so that changes in performance measurements reflect the
changes you made to the application, not other demands being placed on the server during your testing.
You don’t want to spend hours chasing down a dip in performance, only to find that the test machine is
getting abnormally high file-sharing traffic from peers on the network.

First, establish a set of hardware dedicated to the task. Of course, the ideal is to work on hardware that is
exactly the same as the production systems, but you don’t have to as long as the architecture is the same.
For example, if the production environment consists of front-end Web servers that utilize a back-end
database, your test environment should, too. When the hardware is not the same, there is room for error
when you extrapolate the capabilities of the deployment environment using numbers gathered in the test
environment. Do not use a lack of duplicate hardware as an excuse for not testing, but understand that the
results will not be exact when using different processor speeds and quantities of memory.

The hardware dedicated to performance testing should include enough machines acting as clientsto
generate a significant amount of load. For Web applications that face the Internet instead of internal
corporate traffic, make sure you include a variety of user agents and include some random requests. The
amount of garbage requests that bombard a publicly accessible server can be staggering. All popular
load-generation tools include options for specifying various user-agent strings.

Tip When simulating real-world load, use various pseudo-random user-agent strings and completely
random requests with large query strings and quantities of posted data. Live servers must endure
this type of load, so accurate analysis should include malformed requests along with the valid
ones.

Measuring Throughput

The raw throughput number is the key metric used to gauge Web application performance. This metric is
the average number of requests per second that the Web server can manage effectively. The other
number that is central when discussing throughput is the response time. How long does it take for the
request issued by the browser to return results? To really understand response time, you typically divide
the measurement into two separate measurements: time-to- first-byte, and time-to-last-byte. Time-to-first-
byte is calculated as the number of milliseconds that elapse from the moment the client browser makes a
request to the moment the first byte of the response is received. Add to that number the time that passes
between the first byte and last of byte of the received response and you have time-to-last-byte.Figure 9-1
shows the round trip between client and server.

Client issues reguest

Sarver processes request
and sands responsa

Firsi byte Last byte

Figure 9-1: Round trip between client and server

You might assume that the time between the first byte and the last byte is very short. Normally it will be, so
having large time-to-first-byte or time-to-last- byte times should be investigated. When output is buffered,
the time between the first byte and last byte is a rough measure of output size. This timing can also be
affected by network bottlenecks. Some performance measuring tools allow you to specify that a selection
of clients behave as though they are on slow links to better simulate the real-world mix of connection
speeds. A long time-to-first-byte measurement can indicate that the page is performing extensive
processing, is blocking on back-end resources, or that the server is in an overloaded state and is
undergoing excessive context switching.

Note The time-to-first-byte throughput metric translates directly into how the user perceives the
performance of the Web application. Even when throughput numbers look adequate, the user
might feel that the response time is inadequate. The user is not concerned with how many
requests the server can manage; she just notices how fast her request is handled.

Using Load Generating Tools

To measure the way an application performs under load, you obviously must subject it to real-world
activity. We can't very well enlist hundreds of friends and co-workers to help out, so we use load
generating tools. The cost for these software packages varies significantly. The free tools lack some of the
features available in the more expensive retail performance analysis software, but we won't take the time
here to dissect the various features of each tool. For many applications, using free tools, like Microsoft
Web Application Stress Tool, will suffice. This tool is available at
http://www.microsoft.com/technet/treeview/default.asp?
url=/technet/itsolutions/intranet/downloads/webstres.asp. The Web Application Stress Tool is particularly
suited for static and relatively static sites where client-side manipulation of variables for subsequent pages
is not central to the application. After the Web Application Stress Tool was released, Microsoft went on to
incorporate load generation directly into the Application Center Test program, which better handles
recording of user actions and managing ViewState round trips between client and server.

http://www.microsoft.com/technet/treeview/default.asp?

Tip Become proficient at using the load generating tool you choose. This might seem like obvious
advice, but we can’'t emphasize it enough. Almost all test packages include various parameters
that can be customized to vary the mix of client connection speeds, SSL connections, user-agents,
and security credentials. To effectively utilize the tool and thus measure Web application
performance accurately, you must understand how to vary the settings in accordance with your
application requirements.

The better load generation tools can gather performance counters and log data to give an accurate
reporting of how the server and application behaved for a given set of requests. The scripts used to
generate the load can be replayed. This is very useful in achieving a controlled test environment after you
make adjustments to the application.

When you are finished with a session of throughput measurements, you should have a set of numbers
with average time-to-first-byte and time-to-last- byte measurements for all pages of your application. Does
that include those rarely used error pages or privacy policy description pages? Yes. After all, the impact of
a single poorly behaving page, however infrequently it is requested, can be serious on overall application
performance. A user won't care that filling the shopping basket is easy if performance issues during
checkout prevent him from completing the transaction. Obviously, the focus of your performance tuning
will be on the mainstream process and the most frequently requested pages, but the data for the other
pages should be collected so that you don’t have any surprises later on.

Using Performance Counters

For the most part, Microsoft Windows performance counters operate in one of two ways: they report a total
count of a particular piece of data over time, or they keep running averages of samples provided by the
application or service. If an accumulated counter returns to zero and starts climbing again, it’s potentially
indicating that the associated service failed and re-started. If an averaging counter deviates significantly
from the other values for a brief period, even if that variance is short-lived, some resource might have
become constrained. These types of anomalies must be investigated because they can be evidence of a
stress in the application and can translate into poor user experiences.

The Microsoft common language runtime (CLR) includes a feature referred to as side-by-side support,
which allows multiple versions of an application to run on the same machine using different versions of the
same library. This feature is surfaced in the performance counters. Performance counter objects are
supplied by the operating system and by individual processes as well as by the common language
runtime. Each performance object provides a set of counters that can include a list of object instances as
well as a total counter that provides an aggregated number of all such instances. Both ASP.NET and CLR
performance counters include object names that correspond to the last version installed and do not
provide the explicitly stated versions. Also present are the full names that include the specific version
numbers. In most scenarios, you will be focusing on the latest version, but you might find that you need to
work in a side-by-side environment, so you'll need to be aware of this distinction in the names. In the
following sections, we describe some of the key counters to collect when examining the performance of an
ASP.NET application.

Processor CPU Utilization

In the Performance console, the Performance Processor object provides the % CPU Utilization metric that
indicates what percentage of CPU time is spent actively processing data. (For information on using the
Performance console, search for Performance in Help and Support.) In the normal operations of a
desktop PC, the CPU is used a relatively small percentage of the time. When you use tools to put stress
load on a Web server, the utilization of the CPU can easily be driven to 100 percent. If requests are
becoming queued with low CPU utilization, there might be contention for a back-end or operating system
resource.

Requests/Sec

TheRequests/Sec counter, available under the ASP.NET Applications performance object in the
Performance console, indicates how many ASP.NET requests per second are handled by the Web server.
You can generate enough load to get the requests-per-second counter to a fairly steady state. Then you
can gradually add more load to gain an understanding of where the CPU or other resource will become a
bottleneck when the number of requests that can be serviced per second is increased.

Errors Total

TheErrors Total counter, also available under the ASP.NET Applications performance object in the
Performance console, tracks the total error count. Check it to ensure that the application is behaving as
expected and that stress scripts are generating load correctly. It's amazing how fast some error paths
execute when compared with fully functioning pages. A change to configuration or stress scripts can leave
you inadvertently measuring how fast the Web server can return a cached error message, which is
probably not what you set out to count.

Exceptions Thrown

The# Of Exceps Thrown counter keeps a running total of the exceptions. This counter is available under
the .NET CLR Exceptions performance object in the Performance console. Some code within ASP.NET
includes exception handling logic; the application logic might include some exceptional, but not unheard
of, conditions as well. However, if the number is growing rapidly, you should understand why. Perhaps
exceptions are being used too heavily within the code, or redirections and transfers (which are handled by
the runtime with exceptions) are being used excessively.

Application Restarts

In the ideal world, the Application Restarts counter, under ASP.NET in the Performance console, remains
at zero, but remember that modification to config files, compilations exceeding the limit set by the
numRecompilesBefore AppRestart attribute of compile in configuration data, and modifications to the bin
directory will cause restarts. An application restart can have a short-term effect on performance that is
easily visible to the user.

Page Tracing

Page tracing is a feature of ASP.NET that makes it easy to get some in-depth information about the
structure and execution of application pages. In this section, we’ll talk briefly about how to turn on tracing
and gather information useful for analyzing performance. (See Chapter 10 for more information about
using the tracing feature.) When you enable tracing for a page, you can track and view execution time for
its various stages. Tracing tracks creation of the server controls along with how they are nested in the
control tree, as well as the bytes used to render a particular control and the amount of view state
information that control is providing so that it can be round-tripped to the client.

You can enable and view tracing information in two ways: first, via the web.config and machine.config files
(which allow you control at the application and machine level); and second, via the Page directive. In the
former approach, the trace element of the system.web configuration section controls the behavior of page
tracing. By setting the enabled attribute to true, the information is gathered for all application requests.
Code Listing 9-1 is a sample web.config file for enabling page tracing for an application.

Code Listing 9-1: Tracing Web.config

<confi guration>
<system web>
<trace enabl ed="true"
| ocal Onl y="true"
pageCQut put ="f al se"
requestLimt="10"
traceMode="Sort ByTi me"/ >
</ syst em web>
</ configuration>

The enabled setting turns tracing off and on. The localOnly attribute controls whether the trace information
is displayed in response to requests not made directly from the local machine. The pageOutput attribute
controls whether the trace information should be shown at the end of each page requested, or retrieved
via a separate request to the trace handler. The trace handler is accessed by making a request to the
trace.axd handler for the application root being traced. For example, if page a.aspx is accessed with
http//localhost/someApplicationRoot/a.aspx, the trace handler is accessed at
http:/Nlocalhost/someApplicationRoot/trace.axd. The requestLimit specifies how many page requests’
worth of information should be stored. Because a significant amount of data is accumulated in the trace
information, consuming valuable server resources, we need to limit the amount of information stored. And
finally, we can specify the default traceMode of SortByTime to retrieve the output in the sequence that the
events occurred, or we can switch to SortByCategory to have the data grouped. Grouping is particularly
useful when adding custom categories of tracing information.

You don’t have to enable tracing for an entire application to gather trace information for a page or set of
pages. The Page directive also allows usto turn on tracing for a single page and is our second approach
for viewing and enabling tracing information. By using this setting on a set of pages, we have a great
approach for comparing the behavior of our pages on a fixed set of hardware.

Code Listing 9-2, TracingOutput.aspx, demonstrates adding custom information to the trace output by
calling the Trace.Write method. The first parameter is the category name, and the second parameter is
the message. Trace.Warn has the same effect, except that the output is red to draw attention to it.

Code Listing 9-2: TracingOutput.aspx

<%@age trace="true" %
<% nport nanmespace="System Thr eadi ng" %

http://localhost/someApplicationRoot/a.aspx
http://localhost/someApplicationRoot/trace.axd

<scri pt | anguage="C#" runat="server">
protected void Page_Load(object o, EventArgs e) {
Trace. Wite("MyInfo", "started Page_Load");
for(int i =0; i < 20; i++) {
Thr ead. Sl eep(100);
Response. Wite(i + "
");
Trace. Wite("MylInfo", "loop iteration nunber " + i);
}
Trace. Wite("MlInfo", "endi ng Page Load");
}

</script>

The output from a page being traced gives us a better understanding of where the page spends its time
while executing and how it is composed of server elements. Figure 9-2 is an example of the page output
fromCode Listing 9-2. In the figure, you can quickly see by looking at the FromLast column that the
Render phase took the most time for this request. We can also see that although the page shown in the
figure has only a label, text box, and button (this is the Hello Scripted World.aspx code from Chapter 8), it

does have several other literal server control elements present in the tree, resulting in several hundred
bytes of view state.

N b b B VBl i s P L mgs, - Wi o Wbeieed Depire
Pl D ew Pearls Tude bl

dlrn'] 2] : ! Tamty [[+ ol %

T T e ——p—"r - o

Bires b 2
Tirme ol Risijuinl
Riijiind Do

18V Zir R Tyge! ET
&H Salar. Conu s 13
Earkpurris Encsling OO0 (UTF-8

Froem L)

C. 20000
0.030aTg
0. D045
C.030812
O.000LEL

0. Do
L0011 44

Winrt] aln rm HyTes
trxramting chisdmn)

o

cily Lyl i ol
wserigil Svy b wWelrCon o, Tew b

o
]
b
L

&lioe

Figure 9-2: Traced output

e e L

Once a page is identified as needing performance work, look closely at the data in the trace output. Are
controls being created that aren’t used? Perhaps a panel contains controls that are used only in certain
circumstances. These could be moved to a separate page so that they aren’t created until needed.
Perhaps output could be cached for portions of the page (see the “Using the Cache” section later in this
chapter). Determine what stage of the page processing is taking the most time. Could some repeated
work be done less frequently? Identify what about the page is contributing most to the slowdown and focus
your efforts there. Take note of the view state size. When databinding controls, you can easily end up with
a much larger view state than expected being passed between client and server. It might be more efficient

to retrieve the data from the database and store it in Session or in the cache and redo the databinding than
to round-trip all the data.

Throwing Exceptions

Application error handling can take significant amounts of code. Common practice in many programming
languages is to train developers to centralize the error-handling code in one location and automatically go
to that code to handle any error conditions. The error-handling code then determines what has gone
wrong and deals with it so that the application can resume. At the broadest level, the large amounts of
code required to account for many different error conditions when little contextual information is available
can be cumbersome and verbose. Beyond that, the error constructs that move execution to the central
error-processing code is not as efficient as the try-catch construct. A try- catch can be a more efficient
means for dealing locally with exceptional conditions in cases where some context to the possible
problems is more readily available.

Throwing and catching exceptions still adds a cost to error management. | recently saw an example
illustrating the advantages of try-catch in which the problem was a divide-by-zero error. Even though
catching a divide-by-zero error might be simpler than deferring to global error-handling code, checking for
problems in code without a try-catch block is actually far more efficient. Remember, however, that an
exception is generally used for exceptional conditions. Why pay the performance price of throwing
exceptions when simple parameter validation will suffice?

Code Listing 9-3 shows the use of the try-catch construct to handle the case in which the divisor is not
valid. In this code, suppose the invalid value comes from user input, not because it is hardcoded. In such a
case, it is an error and not really an exceptional condition, so we are using exceptions for error detection.
Code Listing 9-4 replaces the try-catch with a simple if-statement to check for the condition and handles
the problem in the same way, that is, with a Response .Write. Although the try-catch is better than the
alternatives such as using a simple throw, specific error checks are a better programming practice and
can lead to improved performance in many circumstances.

Code Listing 9-3: DivideByZeroWithException.aspx

<script | anguage="C#" runat="server">
protected void Page_Load(object o, EventArgs e) {
try {
int x;
int y;
X = 5;
y =0;
int result = x [/ v;
string nessage = "result is:
Response. Wit e(nessage);

+ result;

}
catch(Di vi deByZer oException) {

Response. Wite("divisor can't be zero");
}
}

</script>

Code Listing 9-4: DivideByZeroWithChecking.aspx

<script |anguage="C#" runat="server">

protected void Page_Load(object o, EventArgs e) {
int Xx;
int y;
x = 5;

y = 0;

if(y 1= 0) {
int result = x [/ vy;
string nmessage = "result is: " + result;
Response. Wit e(nessage);
}
el se {
Response. Wite("divisor can't be zero");
}
}
</script>

The overhead of throwing exceptions will probably not be a major factor in most cases, but the
accumulated effects of throwing many exceptions can add up. Also, using exceptions instead of handling
normal conditions in code, such as with simple statements, might be unnecessary and can lead to overall
difficulties in maintaining code. Avoiding unnecessary exceptions is a coding practice that is better for
performance and readability.

Compiling ASP.NET Applications

When an .aspx page is first requested, code is generated for a class that derives from the
System.Web.Ul.Page object. That derived page class is then compiled into an assembly and preserved for
future requests for the same page. The code doesn't need to be generated and compiled again, but the
assembly that holds the class has a certain amount of overhead associated with it. For a single assembly,
the amount of overhead is certainly not overwhelming, but an assembly for each page multiplied by
hundreds or thousands of pages can lead to unnecessary drag on resources and strained performance.
The cumulative effect of all that overhead can take a toll.

When the first request for a Web application is received, ASP.NET can batch compile all the pages in that
directory into a single assembly, eliminating the need for multiple assemblies. The compilation element in
the config files controls how the batch compilation is performed. By default, batch compilation is enabled
and limits the number of pages to compile into a single assembly to 1000. These settings are fine for most
Web applications as well as the batchTimeout setting that limits the batch compilation effort to 15 seconds.
If the batch compilation exceeds the timeout, the attempt will be aborted to service the page request that
triggered the compilation. You want to avoid losing out on batch compilation, but you also don’t want the
first request to the Web application to suffer a long delay while the batch compilation occurs. The
approach many sites undertake is to trigger the compilation explicitly when bringing a server or updated
content online initially. This can be automated by putting together a small application that makes this initial
long-running batching request automatically.

Tip Keep batch compilation enabled, but make requests to each Web application while bringing a site
online so that the first user to issue a request to the site does not see the delay of batch
compilation and the whole directory can be batch compiled.

Code Listing 9-5 takes a static list of URLs, and a single page from each Web application on the local
server, and requests them each in turn. This allows us to avoid showing the first user the delay of batch
compilation while still enjoying the run time performance benefits.

Code Listing 9-5: TriggerBatchCompile.cs

usi ng System

usi ng System Net;
usi ng System 1 Q
usi ng System Text;

class TriggerBatchConpile {

private static string[] urls = {

"http://1ocal host/ page. aspx",

"http://1ocal host/anot her Appl i cati on/ page. aspx”,
"http://1ocal host/yet Anot her Appl i cati on/ page. aspx”

b

public static void Main(string[] args) {
WebResponse result = null;
for(int i = 0; i <wurls.Length; i++) {
try {
Consol e. WiteLine(urls[i]);
WebRequest request = WebRequest.Create(urls[i]);
result = request. Get Response();
Stream recei veStream = resul t. Get ResponseStream() ;
St reanReader streanReader =
new StreanReader (receiveStrean;

char[] read = new Char[256];

int count = streanReader.Read(read, 0, 256);
while (count > 0) {

count = streanReader. Read(read, 0, 256);
}

}
catch(Exception e) {

Consol e. WiteLine(e);

}
finally {
if (result '=null) {
result. C ose();
}
}

The batch compilation has directory granularity, so pages that are updated can cause an assembly to be
invalidated and cause additional compilations. But once an assembly is loaded, it can’t be unloaded until
the application is unloaded. Instead, new assemblies are created for the updated content. Plan
accordingly on sites with a high rate of churn. Pages that are updated frequently should be separated from
relatively stable pages so that the number of recompilations is limited.

Using the Cache

The ASP.NET cache offers a means for achieving great improvements in performance. The ability to
cache output and data for use in subsequent requests that would otherwise have to be created again can
result in those later requests running much faster. Caching is covered in detail in Chapter 6, so we’'ll just
review here which cache options can be leveraged to improve performance.

Caching Page Output

When a page is executed, the entire output can be stored in the cache. Subsequent requests for the same
page can be handled by the ASP.NET run time by retrieving the output from the cache and returning it.
The page itself is not executed again if a match is found in the cache. To get the output from a page to be
cached, use the OutputCache directive at the top of the page. You can also utilize the cache by writing
code directly as detailed in Chapter 6.

TheOutputCache directive requires a duration attribute. An item is removed from the cache when the
number of seconds specified in the duration attribute passes. Use the OutputCache aggressively to
increase performance by eliminating page executions. Even caching page output for just a few minutes
can have a dramatic impact on performance.

Another attribute required by the OutputCache directive is VaryByParam. This attribute gives us more
control over how ASP.NET looks for items in the cache. If VaryByParam is set to none, requests with post
data or query string data will not be retrieved from the cache. More often, the output is a function of some
specific variable in the post data or query string. The VaryByParam attribute should then be setto a
semicolon-separated list of the variables to use in storing and retrieving the page output.

In some situations, parts of a particular page should be executed on each request but other parts of that
page should be cached. The cacheable part of the page can be placed in a separate user control with the
OutputCache directive specified. This part of the page is then cached even though the rest of the page
must be executed for each request. Thisis called fragment caching and can also be a significant factor in
improving page execution time.

Caching Objects

The ASP.NET cache provides arich set of functionality for storing data and objects. It supports setting
dependencies for purging an item from the cache as well as for setting priorities to free memory and
setting the time when cached output expires. Objects that retain handles and resources, like an open
connection to a database, should not be stored in the cache to avoid having other requests deprived of the
resources necessary to complete.

Tip Store application-wide data in the cache object instead of the application object. The cacheobject
does not have the same locking semantics and provides more flexibility.

Consider the cacheability of pages, user controls, objects, and data as the application is designed and
developed. Using the cache effectively can have more benefit to application performance than many other
performance-coding techniques. After all, code that doesn’'t have to execute again is much faster than the
most optimized running code.

Using COM Objects

The world of Web development has embraced COM as a means for packaging pieces of functionality.
Companies have been built on selling COM objects for use in Web applications. ASP.NET and the CLR
allow us to continue using COM objects. However, there is a cost associated with using COM objects from
an ASP.NET Web application. When you have control of the functionality, make it a priority to rewrite COM
objects in managed code to avoid the overhead of COM Interop.

Many COM objects have multiple APIs for accomplishing the same tasks. Perhaps one method call with
an extra parameter accomplishes the same thing as several separate calls to different methods.
Parameters and return results must be marshaled between the native code world of the COM object and
the managed code environment of ASP.NET. Opt for making the single larger call to minimize the number
of Interop calls and separate instances of parameter marshalling.

ASP.NET has to take special action in order to run single-threaded apartment (STA) COM objects from
within a page. To enable this functionality, you must set ASPCompat="true” in the Page directive. The
page will run from a specially created STA thread pool in which the context and page intrinsics are made
available in a fashion compatible with legacy COM objects. When running in ASPCompat mode, be sure
to create all COM objects and operating system resources as late as possible and release them as soon
as they are no longer needed. This will reduce contention for the resources. If the page constructor
creates an STA COM object, this object will be created on a separate thread from the thread that will run
the page, automatically requiring all calls to the object to be marshaled across threads, which has an
unnecessary and significant performance cost.

Tip Do not create COM objects in a page constructor, either explicitly or by declaring the object as a
page-scoped variable. If you must use legacy COM objects, create them when they are needed
and release them as soon as you are finished with them.

Buffering Content

At the lowest level, Web applications are receiving data from the client browser, and formatting and
sending data back. In several places during the page execution while the content is being put together,
buffering pieces of the output into large pieces can be advantageous. In this section, we'll talk about how
buffering works and how to optimize for it. Some developers attempt to accomplish their own
optimizations, which can ultimately work against performance, so we'll look at when to leave well enough
alone.

Use Response Buffering

ASP.NET is configured to buffer content by default. Data written back to the output is coalesced into larger
chunks to avoid the performance penalties associated with sending many small pieces of content through
the Web server to the client. You can send fewer TCP packets containing more data, thus reducing the
overall percentage of communication overhead. Unless you have specific reasons to turn off buffering,
leave it on. One of the few reasons you might consider changing the buffer attribute of the pages config
setting to false is for an extremely long running request. In this case, you would need to be sure that you
had a complete piece of content that could be rendered by the browser so that the user could see a visual
response. It would be better to break this sort of page, which has intense processing, into multiple requests
that conduct smaller pieces of work and provide status updates to the client. Consider queuing work for
offline processing or pre-processing where possible.

Avoid String Concatenation

As content is built up for the client, in some cases, you'll need to append strings to an already existing
string. You probably have the inclination to write methods that build up a final self-contained piece of
content and call Response .Write with the complete string. However, this tendency can actually work
against performance. In addition to the small substrings, separate larger strings are also created to hold
the concatenated string. The substrings in this case are really just temporary memory consumers that
must be allocated, copied into the larger string, tracked, and ultimately garbage-collected. If you don’t
have a compelling reason to concatenate the strings before passing them to Response.Write, don't.
Remember that ASP.NET will buffer the output, so it's better to create the string once and pass it on to
avoid the overhead of concatenation.

Loops of string concatenation are particularly destructive to performance. A single part of a stringusedin a
loop of concatenation can end up in multiple strings that are never actually rendered. Where possible,
replace the loop with iterative code or replace the concatenation with separate Response .Write calls and
let ASP.NET do the buffering.

UseStringBuilder

By definition, string instances in the common language runtime are immutable. They can’t be changed.
When you call an API that results in a modified string, you are really getting a new copy of the string with
the change. When strings are concatenated, the original strings still exist, along with a new string that
contains copies of the original strings. When code needs to concatenate strings repeatedly, use a
StringBuilder object to enhance performance. Here's a good rule of thumb: when you have six or more
modifications or concatenations to a single string instance, change the code to use StringBuilder. The
StringBuilder object acts more like an array of characters. Long chains of concatenation are still
associated with performance costs, but the StringBuilder class is better equipped to deal with this
concatenation.

Minimizing Session State

In this section, we'll highlight the performance tradeoffs inherent in your three choices for using session
state services. (We covered session state in detail in Chapter 6.) We’ll also talk about a couple of ways to
maximize performance. The three options for session state are inproc, out-of-process, and SQL Server.
Inproc refers to session data being stored directly in the same address space as the worker process. This
is the fastest option of the three for utilizing session state services. No process hop is required, and object
references can be held directly. To use session state effectively in a Web farm scenario requires session-
to-machine affinity. The load-balancing technology must be able to recognize the session cookie or
browser source address on subsequent requests and have it handled by the same server, which can have
performance implications. Fundamentally, it complicates effective load-balancing because the option to
utilize the least busy machine is compromised.

Out-of-process state management can be used in a Web farm scenario but the ASP.NET run time must
serialize all session data between process and even machine boundaries to communicate with the
separate session state process. This option scales well but is still limited by the memory constraints of the
state service process.

UsingSQL server scales beyond the process limits of the out-of-process state service, but it has the
biggest cost to performance of the three options. ASP.NET must serialize the session data to store it out-
of-process or in SQL server. For the simple types, like strings and numbers, the serialization is relatively
fast, but extra overhead is associated with serializing arbitrary user objects.

Generally, even when using in-proc session state, storing data in session has a cost. Still, it can make a
world of difference when writing rich Web applications, so use it but be aware that everything stored in
session takes up memory and won't be released until the session expires. When storing large amounts of
data in session, consider reducing the SessionState timeout attribute from its default of 20 minutes to a
smaller number.

When the ASP.NET run time manages the Session object, the processing of each page has associated
overhead. If session is not being used in your application, turn it off. Code Listing 9-6 disables session state
functionality at the application level. If any page tries to use the Session object, an exception will be
thrown.

Code Listing 9-6: No Session State Web.config

<configuration>
<system web>
<sessi onState mode="Of" />
</ syst em web>
</ configuration>

If asubset of pagesin the application utilizes session state, session state can be turned off globally and
then enabled only in the pages whereiit is needed. The Page directive includes the EnableSessionState
attribute, which can override the global application setting. Code Listing 9-7 turns on session state and
simply stores the time of the request for later use.

Code Listing 9-7: EnableSessionState.aspx

<%@Page Enabl eSessi onState="true" %

<script runat="server" |anguage="C#">

protected void Page Load(object o, EventArgs e) {
Sessi on["enabl eSessi onStateTi ne"] = DateTi me. Now. ToString();
t heLabel . Text = (string) Sessi on["enabl eSessi onSt at eTi ne"];

}

</script>
<asp: Label runat="server" id="thelLabel" />

Finally, there is a potential for race conditions when accessing session data simultaneously from multiple
browser instances or when using client-side frames. To manage this, ASP.NET imposes some reader and
writer locking semantics around access to session variables. If a page is accessing session state but not
storing any new or updated values in session, use the EnableSessionState Page directive to enable
session state for read-only access. This causes ASP.NET to use a reader lock for session access on the
page, which can provide a performance boost. Code Listing 9-8 retrieves the time stored by the
EnableSessionState.aspx page and displays it but has read-only access to the Session object. Any
attempt to write results in an exception being thrown.

Code Listing 9-8: ReadOnlySessionAccess.aspx

<%@age Enabl eSessi onSt at e="ReadOnly" %
<script runat="server" |anguage="C#">
protected void Page_Load(object o, EventArgs e) {
string theTime = (string)Session["enabl eSessi onSt ateTi me"];
if (theTime !'= null) {
t heLabel . Text = theTi ne;
}
}

</script>
<asp: Label runat="server" id="theLabel" />

Judicious use of session state avoids the need to put everything in hidden fields and have it carried back
and forth between client and server, but once again there is a cost. Examine your application and
deployment architecture and pick the session state mode that will satisfy your application needs without
sacrificing performance.

Using View State

The use of view state by ASP.NET allows us to easily build sophisticated Web applications that have state
information carried between requests while using the stateless HTTP protocol. As with the session state
feature, using view state has a price. The state information is stored in a hidden field of the form and
posted back to the server with the form. The view state information is then parsed and the data restored to
the controls. The trace information, discussed earlier in this chapter, allows us to see the size of the view
state for individual controls. Databound controls in particular can have very large quantities of view state
information.

As the size of the view state grows, so does the time it takes to send the data to the client, receive the data
back from the browser, and parse the data. Examine the view state requirements for the pages on your
site. Consider server caching of datasets and perform the databinding again when view state size
becomes large.

For pages that do not rely on view state information, disable the view state altogether by setting the
EnableViewState Page directive attribute to false. For pages that take advantage of view state, you can
disable it for user controls separately by setting the @Control EnableViewState property or by setting the
EnableViewState attribute on individual controls.

Summary

Performance tuning should not be postponed until you're faced with a serious problem on a live site.
Instead, you should consider the issues throughout site development, starting with application design.
Performance tuning is an iterative process. The first iteration should be to ascertain the exact behavior of
the application. You do this using load-generation tools in a controlled environment while monitoring
performance counters and examining page-tracing information. Time-to-first-byte and time-to-last-byte
measurements are indicators of application responsiveness and the duration of page execution.

After you assess the problems and make changes to the application, gather performance data again to
accurately ascertain the effects of your modifications. Employ caching where possible to eliminate
unnecessary code execution and database work. You can make additional gains by improving your coding
techniques and eliminating unnecessary view state and session data.

Chapter 10: ASP.NET Debug and Trace

Trace is a great aid in debugging unexpected application behavior. In Chapter 9, we talked briefly about
using the trace feature of ASP.NET to better understand the performance of an application. In this
chapter, we'll look at debugging and trace options in more detail. For example, you'll learn how to send
your own debug information directly to the trace output or even to an external debugger or monitoring tool.
We'll also look at how the compilation system works with trace and debugging-when you know some
details about how the ASP.NET compilation system works, you can isolate problems more readily and be
better able to leverage the ASP.NET platform.

Before we jump into enabling trace, let's talk a littte more about what we mean by debug and trace. As you
know, ASP.NET generates code from .aspx pages and .ascx files. These objects derive from the Page
andUserControl base classes and are compiled automatically by ASP.NET. When the page and user
control code executes, the output is sent back to the browser. Information about the page and its contents,
along with trace and debug information, can be gathered while the page executes. Data about the control
tree that makes up the page as well aswhere the CPU cycles are spent during page execution is
important to troubleshooting problems. We said that the debug information could be gathered, but it's
important to note that compilation of the generated code actually avoids the performance cost associated
with debugging and tracing unless each is explicitly enabled. The trace information can be displayed at the
bottom of the page, or an aggregated view can be made available by making requests to a separate trace
handler.

Enabling Trace

Trace information can be gathered for an entire application or enabled on a per-page basis. When
included on the page, the trace output is appended at the bottom of the regular page output, as a set of
tables. To enable trace for a single page, add Trace="true'to the Page directive. Code Listing 10-1
enables tracing.

Code Listing 10-1: Trace Hello.aspx

<% Page Trace="true" |anguage="c#" %
<form runat =" Server">

<asp: | abel runat="Server" Text="Hello" />
</fornp

After our simple Hello text is written out, a series of tables with detailed trace information is displayed.
Figure 10-1 shows what this output looks like. We'll look at the trace information included in this page
output in the section 'Reading Trace Output' later in this chapter.

N Bt Hiarathmi i Troce Helin s - Microeall bier s Fuprirees E_IE
i

Bl [e Pgewte [eol b
GiEsd = W] 2 L
B P MO0 R IR, -
B
e aion Ik Ao 4 3w K S b L L Hagsest 1o ok |
Tini of Roaeesst DAYL2000 12161 B P B atis Coda Ha
MRt EnCoda: Lncsde (UTE-E] S [R Dl s Ol (UL
Calgary Pl i Frosm Fiest[s) Firam L)
aap. page Baogin Irit
3504 D3R End Int 0 RS Qo0mes
e ol Besgpr Prafipnde- i 3 a e
W (i) Fovdl Byl anviie n (i}
a3 pasge Bags SaveasSlate 0 i
1o g End SavrvinwSlaks N OErEey
i i) i Ralrfale AT
A5 [End Birss 0o 1se
A Blre By Wimrst ate Bire Ryles
flrchaien cidbinmn) {oxckeieg childoe
o) =1
oo
B
-] a -
3
W e

Figure 10-1: Trace output

As you learned in Chapter 9, in addition to turning trace output on and off for a single page, you can turn it
on and off for an entire application or even globally for the machine using configuration settings. Code
Listing 10-2 demonstrates enabling tracing for an application. We set pageOutput="true' to have the trace
information for each page execution included after the page output.

Code Listing 10-2: Trace Enabled Web.config

<configuration>
<system web>
<trace enabl ed="true" pageQutput="true" />
</ syst em web>
</ configuration>

SettingpageOutput="true'is equivalent to setting trace="true'in the Page directive for each page in the
application, a convenient option when troubleshooting an application or looking at performance issues for
a site.

Setting Trace Options

Five attributes can be set on the trace element to configure tracing. These settings work together to
determine how tracing behaves in your application. You can include trace data directly in the page for all to
see, or you can limit its visibility so that the data can be viewed only from a separate handler. You can even
limit viewing to only when browsing from the server directly.

enabled Attribute

The Boolean true and false values are the values for the enabled attribute. The default value is false,
meaning that trace information is not available. The trace statements included in the page are short-
circuited to minimize the performance impact.

pageOutput Attribute
This Boolean attribute controls whether the output will be included in each page. If pageOutput is set to

false but trace has been turned on explicitly in the Page directive, the output will still be included. The
default value is false.

traceMode Attribute

The default setting for traceMode is SortByTime. This means that output is arranged chronologically based
on when the trace statement occurred. For example, if you include tracing statements in the Load event,
the output would appear after the Init event tracing but before the PreRender trace statements.

The other option for the traceMode attribute is SortByCategory. In this mode, the output is sorted
according to category strings passed as part of the Write or Warn methods.

requestLimit Attribute

When tracing is enabled, data from the most recent requests is cached on the server. You can access this
data by requesting the trace.axd handler for the Web application. For example, http://localhost/trace.axd
would display the list of most recent requests to the default application on the local machine. Figure 10-2,
which displays data for three requests, shows how the most recent requests are listed. Because the
defaultrequestLimit of 10 is in effect, the page also shows that there is room to hold details for seven

more requests. When the eleventh request is received, information about the first request is lost. The
information retained is for the most recent requests up to the number specified in requestLimit. General
information about the requests, including the time, the file name, the resulting status code, and the HTTP
verb used to retrieve the page, are listed. Clicking the View Details link will display the trace output as
though it were included in the page, but without the actual page output.

B iyt e s b1 e ol - My e vt Exglmes

B B s Bpete [uk e

e | rorm Urisls
1304 kel ST mted Wt s o0 GHT v Urimly
g lrdmls

B S I-J_.g.:.-..,-u

Figure 10-2: Trace.axd listing

localOnly Attribute

Because you might include potentially sensitive debugging information in your trace output, the default
behavior for trace is to honor requests to trace.axd only when those requests are made from a browser
launched from the server. Requests that are not made to localhost will not have access to the data. You
can enable remote viewing of trace.axd by setting localOnly to false.

http://localhost/trace.axd

Reading Trace Output

Now that we've talked about how to configure tracing, let's walk through the information that is
automatically gathered during page execution and displayed in the trace output.

Request Details

The request details constitute the top-level information about the request and include which encoding is
used for the request and response, what time the request was made, the session ID, as well as which
HTTP verb was used and the response status code.

Trace Information

The trace information section has granular information about what is happening during the page life cycle.
TheFrom First and FromLast columns reveal how much time has elapsed from the time the request first
started and how much time has elapsed from the last trace event.

Tip Use the trace FromLast column data to quickly narrow down long-running pieces of code. Thisis
particularly useful in isolating performance issues.

Control Tree

The page itself is the top-level control in the control tree. All other server controls fall somewhere under
the page. For example, in Figure 10-1, we see that the page analyzing Trace Hello.aspx contains an
HtmIForm control and a LiteralControl. In this case, the LiteralControl has a render size of just 2 bytes, so
it's probably just carriage-return/newline white space. The Label and more literal elements are contained
in the HtmIForm.

In addition to tracking the actual size rendered for each control in the tree, the size of the view state data

being round-tripped between client and server is also reported. Having an idea of how much view state is
being used can help you tailor your application to be more efficient. Databound controls, in particular, can
contribute significantly to the size of the view state.

Cookies Collection

TheCookies collection shows both the cookies received from the browser for a particular request and any
new cookies or updated cookie values returned. Unfortunately, Cookies doesn't distinguish between the
two types. Code Listing 10-3 simply increments the value of a cookie called MyCookie on each request. In
the trace information from Code Listing 10-3, shown in the trace.axd output in Figure 10-3, we see two
entries for MyCookie with values of 10 and 11.

Code Listing 10-3: Cookie.aspx

<script |anguage="C#" runat="server" trace="true">
protected void Page_Load(object o, EventArgs e) {
Ht t pCooki e out bound = new Htt pCooki e(" MyCooki e") ;

Ht t pCooki e i nbound = Request . Cooki es[" MyCooki e"];
i f(inbound != null) {
out bound. Val ue = (Int32. Parse(i nbound. Value) + 1).ToString();

t heLabel . Text = i nbound. Val ue;
}
el se {

out bound. vVal ue = "1";

}

Response. Cooki es. Add(out bound) ;

}

</script>

<asp: | abel runat="server" id="thelLabel"
Text ="no cooki e val ue received" />

B Bt M larathn ack e gy - M ewas® Lelrened Frplerer =1l 3]
.

B [e Ppate ool o
Gk = & 2 I

TP e e B =

B 0 rhaR WAl fe dived

T
T of Ragrsl:
Mt Fnonding:

Banie Typs GE
Mok Cosbe: e
Bosprnus Erending: Ueicods (UTE-A]

Calegnry Fraam Laeh{x)
A5fE B

aEp pEE Qo0

ahp page =R

arpe page 00024

dhfe Dasje [L]

FEp DR QOOMEE
PRI abasani

IEpE page 5= e
Ennieed Id Teps Raodier Blaa Bytos \'i-mllﬂﬂ!ﬂﬂ"tll.

[mchuding chldran) [#wgluding chiliben g
[AEP ok dripe E1]
haatel SYSHET WD UL Weblonrels.Lahe 51

& e L [y r—

Figure 10-3: Cookie.aspx page output

Headers Collection

TheHeaders collection is an enumeration of all of the HTTP headers sent by the browser. Note that the
ASP.NET_Sessionld cookie is explicitly removed from the Headers and ServerVariables information
because it is managed entirely by ASP.NET.

Note You can distinguish between inbound and outbound cookie values by looking at the Cookie row
in the Headers collection. The value from the Cookie header is the value sent by the client.

Server Variables

The server variables are the data that can be retrieved from the Web server about the request and the
server environment. This can include information such as the physical path to the application directory
unless the application is running at lower trust levels, which would prevent the display of some server
variables.

Form Collection

Whenthe HTTP verb used in the requestis a POST instead of a GET, which is the case for postbacks, an
additional category of trace information is collected and displayed. The Form collection lists the variable
names and values for each piece of data posted to the server. This information is particularly useful in
tracking exactly what values are coming from the client.

Writing Trace Output

The information provided by ASP.NET when trace is enabled can go a long way toward increasing your
understanding of both the page makeup and where the execution and view state costs are. Beyond that,
for debugging code, trace provides a replacement for sprinkling Response .Write methods throughout your
code. Using trace eliminates the need to scour your code to eliminate any lingering debug statements
before your code goes into production.

TheTrace object is actually of type TraceContext and is available by accessing the Trace property of

page. It has two methods for writing trace information: Warn and Write. Both of these methods have three
overrides. The first just takes a string that is the debug data you are recording. The second override adds a
category string as the first parameter. When using the SortByCategorytraceMode, the custom category
can be very helpful in grouping similar types of output. The third override adds an exception parameter at
the end. The exception datais then recorded as part of the trace information.

Tip Implement an Application_OnError handler that traces error information so that if you encounter
unusual behavior in an application, you are prepared to gather more information by simply
enabling trace.

The difference between messages logged using Write and those recorded with Warn is the formatting of
the output. Warn messages are highlighted as providing higher priority information. In Code Listing 10-4,
we write messages using both Warn and Write, including an exception.

Code Listing 10-4: TraceWriteAndWarn.aspx

<%@ Page Trace="true" |anguage="c#" %

<script runat="server">

protected void Page_Load(object o, EventArgs e) {
Trace. Wite("info", "sone data goes here");

try {
t hrow new Exception("sonet hi ng excepti onal has occurred");
}

catch (Exception exception) {
Trace. VWarn("probl enf, "warn message", exception);
}
}

</script>
<asp: | abel runat="Server" Text="Hello" />

When the page represented by Code Listing 10-4 executes, information about the exception, including
where it was thrown, is included in the trace output. The text in the center of Figure 10-4 (‘'warn message')
is the result of calling the Warn method.

B Bt MsrathimE T s Wriled ndWain mps - Mieromf® befpensd [oghbarar

CiEsd = L - L
AL | e BERTAT T =
Held
Raeg b o s e Wit Wyl ET
Thum of Fmperl: 23.4F AM Mol un Codw. 200

Mt Fnonckng: Eeupnre Fnesding: Ureereds [UTF-A)

Froam F! From Last

calepory MessagE

EH LE]
aspe pas Bage [an
dhge pagE Erod Dl 5.0000as 0 ooaces
ric cone dits gost here 2031472 oooLEd
0 LT
T i i
e page begn Freencer i oo TET
appe Dl B Prelaeoer DDA
aspe Pl B3 Sl VW ST TS o uoIzsy
asp page brd SaveveEwGista o.0oa0cs
1504 pagE Begn e O ODEL
atpe paje R Mo 0003200
Contred Typn Fga-dor Bl20 Bytos Wiawvstato B Byles
1 P fEeciuding cheldron) { e Hrig chudidnmn) -
i T e L e iyt

Figure 10-4: TraceWarn output

TheTrace facilities offer an easy way to quickly get good information about the control structure, view
state usage, and execution properties of a page. As mentioned earlier, when you need help isolating a

problem in your program, Trace is the perfect replacement for inserting simple debug info directly into the
page code.

How ASP.NET Compilation Works

When ASP.NET receives a request for a page, it first looks to see whether it has a current compiled
version of the page. When the sources for a page are modified and saved, ASP.NET invalidates the
previous version of the page and creates a new one when it is needed. When the first request for a page in
an application is received, ASP.NET will try to generate code for all pages in the directory and compile
them into a single assembly for greater efficiency.

Knowing how ASP.NET compilation works is helpful, particularly when troubleshooting a problem with an
application. ASP.NET creates a directory under the root Microsoft .NET Framework directory for
generating and compiling code. The resulting assemblies (and code, when debugging is enabled) can be
found here. The directory used by ASP.NET is called Temporary ASP.NET Files. In a default .NET
Framework version 1.1 installation, these assemblies can be found in the

\Microsoft. NET\Framework\v1.1.4322 directory under \Windows or \WINNT. Navigate to this directory on
your machine, and you'll find a subdirectory corresponding to each application root of your Web server
where ASP.NET pages have been requested. For example, root corresponds to the default root Web
application defined in the Internet Services Manager. Inside that subdirectory is another directory that
contains yet another whose name appears to be randomly generated. In that inner subdirectory is a set of
files generated by ASP.NET. These files are used to track when pages are updated, when pages need to
be recompiled, and dependencies between pages. Figure 10-5 is a view in Microsoft Internet Explorer of
the types of files you will find in the temporary directory.

L

¥ D RrDa

L e
EnguraiEn

Figure 10-5: Temporary'ASP.N ET files

The .web files are used by ASP.NET to manage when files are updated. The .xml files correspond to a
page in the application directory that has been compiled. In this directory listing, only one .dll is present,
although a collection of xml files exists. If we run ILDASM on that .dll, we can see that the assembly
contains page classes for each page in which an .xml dependency file has been created. When a page
from the root directory was first requested, a single assembly was generated by creating and compiling
code for all the pages present. Figure 10-6 shows the listing as seen in ILDASM.

£l - DA

B MAM

W _ar

: ke G g ke 7 _ e
[Er e -
Tracrainisdy s _ g
Tradnpiia, s

. T Ml g
Trasrglsbed_sss
il
re -
gty imdn

armriiy 10

Figure 10-6: Batch compilation

The .xml file contains information about the dependencies used by ASP.NET to track which source files
were used in compiling the page class and the name of the resulting .dll. For a simple page, like

Cookie.aspx from Code Listing 10-3, the dependencies are simple. Figure 10-7 shows that we've opened
the .xml file in Microsoft Notepad and only the .aspx file was used.

B combie pape MB3Ea. sl - Fofogad

e B Fe
pracarye asgem-"Lidaiiig® t

7T Bl MdnBa®E 1, AT puil e DT A0k 8- AS A
o LT

Fi gure 10-7: Dependency listing

pe-"_ALF, cackfa_arpx® hath-"{FFffecddel 1okl batch-"trus®

Theassem attribute indicates the name of the assembly into which the page source was compiled; the
filedep element lists the files that contributed to the final code. If we modify the source file, ASP.NET sees
the change and the .xml file is updated when the page is next requested. The assem attribute will point to
a new DLL that appears in the temporary directory. That assembly will contain just the updated cookie
page class, whereas the rest of the page objects will still be executed from the previously created

assembly.

Enabling Debug

Now that you've learned more about how the compilation system works, let's examine the debug options
that affect compilation. The Page directive supports a debug attribute, which is false by default. When this
attribute is set to true, ASP.NET changes the way the file is compiled to provide us with a better debugging
experience. The config files also provide a setting that causes all pages in the application to be compiled
as though the debug directive were set to true.Code Listing 10-5 is an example of enabling debugging for
all pages in an application.

Code Listing 10-5: Debug Web.config

<confi guration>
<system web>
<conpi l ati on debug="true" />
</ syst em web>
</ configuration>

When debug is enabled for an application, ASP.NET will compile each page separately and generate
extra files in the Temporary ASP.NET files directory for the application. A .pdb file is created with symbol
information as well as an .err file containing any compilation error output. The flags passed to the compiler
are saved in the .cmdline file, and the output from the compiler interactions are saved in the .out file.
Interestingly, the source file generated by ASP.NET from the .aspx file is preserved.

Tip To quickly get to the source code for a page, you do not need to access the Temporary ASP.NET
Files directories. Instead, introduce a deliberate syntax error. ASP.NET will flag the error and
provide the Show Complete Compilation Source option as well as the compiler output.

Several of the options passed to the compiler are affected by enabling debugging. Usually, the command-
line options include /debug- to disable debug information and /optimize+ to turn on compiler optimizations.
When ASP.NET debug is enabled, these settings are reversed to /debug+ and /optimize- to emit debug
information and disable potentially confusing optimizations. Also, /D:DEBUG is added so that conditionally
included debug code will be incorporated.

Sending Data to the Debugger

We've already discussed using the Trace object to send Write and Warn messages to the Trace collection
facility. You might also want to gather data independently from the page. Much of the debugging that goes on
isnot directed at the page code but rather at the business objects being used by the page. For example, if
you're trying to gather information about code execution in the Session_OnEnd event, the .NET Framework
provides the objects in the System.Diagnostics namespace that allow us to get even deeper into the code and
gather more detailed debug information. We can then output debug information without relying on the
presence of an executing page to receive the output.

Code Listing 10-6 shows how to use the WriteLine method of both the Trace and Debug objects, which are in
theSystem.Diagnostics namespace. (This Trace object is not the same as the Trace property of page.) Even
with the trace and debug Page directives set to true, we still won't see evidence of the error messages. To
view the error data, we must use a process that will listen for the issued debug and trace information.
Attaching to the process with Microsoft Visual Studio .NET 2003 and viewing information in the debug pane
works. Another option is to use a system-level debug listener, such as DebugView, available for download at
http:/www.sysinternals.com/ntw2k/freeware/debugview.shtml.

Code Listing 10-6: DiagnosticsDebug.aspx

<%@Page debug="true" conpil eroptions="/d: TRACE" %

<script | anguage="C#" runat="server">

protected void Page_Load(object o, EventArgs e) {
Syst em Di agnosti cs. Debug. Wi teLine("i nportant debug informati on goes here");
System Di agnostics. Trace. WiteLine("trace information goes here");

}

</script>

<asp: | abel runat="server" id="thelLabel" Text="Debugging info is helpful" />

Note that the Debug and Trace class functionality from the System.Diagnostics namespace is available only
when the corresponding constants are defined. We get DEBUG defined when the debug Page directive is
true, but the trace Page directive is unrelated. To define TRACE, we must do so explicitly using the
compileroptionsPage directive by setting the exact argument to be passed to the compiler. In this case, the
argument is '/d:-TRACE'. The compileroptions directive can be used to pass any arbitrary argument to the
compilation of the page.

Note Do not use ASP.NET debug functionality on a production server. The performance implications are
severe. Instead, to gather run time information programmatically, use trace functionality or classes in
theSystem.Diagnostics.Trace namespace.

Using Compiler Options

In addition to being able to pass compiler options directly using the compileroptionsPage directive, we can
control another behavior of ASP.NET code generation and compilation that can make investigations easier. By
default, ASP.NET generates line-number pragma statements throughout the code. These references indicate
the source point of the generated code in the original .aspx page. These pragma statements are not
necessary, and can even be distracting, when you look extensively at the generated code. To disable these
statements, add the linepragmas attribute to the Page directive with a value of false.Code Listing 10-7 is an
example of disabling the source-point line pragmas.

Code Listing 10-7: NoLinePragmas.aspx

<%@Page |i nepragmas="fal se" %

http://www.sysinternals.com/ntw2k/freeware/debugview.shtml

<asp: | abel
runat ="server"
i d="t heLabel "
Text="Di sable |ine pragnas for nore readabl e generated code" />

There's really no point in disabling line pragmas generally, but when you find yourself needing to trace through
the page class code to pursue some elusive problem, you'll appreciate being able to remove them from view.

Summary

In this chapter, we've looked at the debug and trace functionality of ASP.NET. The trace feature allows us
to quickly get some insight into the characteristics of the page. We can see the structure of the control tree
and the corresponding view state size, and we can get information about where server resources are
spent when executing the page. By using the TraceContext object of the Page class, we can write output
to investigate problems without worrying about removing them for production environments.

We also looked at how ASP.NET code generation and file compilation works and how this behavior can
be controlled and leveraged to isolate issues in your code. We also examined how to use objects in the
System.Diagnostics namespace to trace information that might otherwise be difficult to access in
production environments.

Chapter 11: Moving to ASP.NET

This chapter is not meant to convince you to move to ASP.NET-you should already be convinced! Instead
you can think of this chapter as a playbook for how you can move your current application to Microsoft
.NET. You'll note that we didn't just say ‘'move to ASP.NET.' When you decide to commit to ASP.NET,
you're really committing yourself to .NET. To get the most benefit from your investment, you need to think
about how all the parts of your system will interact. For example, should you move your existing business
logic layer (BLL) or data access layer (DAL) from COM server, written with Microsoft Visual Basic 6 or
Enterprise Java Beans, to similar components written in .NET? Or should you use Web services or interop
layers?

| firmly believe that before you decide to move to ASP.NET, you should first perform a full review of the
technology, including writing up a plan of action for the change. You should fully understand the common
language runtime (CLR) as well as the architecture of ASP.NET. Entire books are written about the CLR
alone; similarly, we could dedicate an entire book to the architecture of ASP.NET -the point being that, in
one chapter, we can't possibly cover every detail you need to know to make the move to ASP.NET.
However, we'll provide a basic overview of how ASP.NET works, which will help you get started.

Web Application Architecture

Before Microsoft Active Server Pages (ASP), most dynamic Web applications were hacks; for example,
my first Web applications were written on an AIX with Perl scripts. Active Server Pages 1, however, was a
complete revolutionary shift in they way dynamic HTML was generated. It was one of the first technologies
specifically targeted at simplifying the development of Web applications.

ASP was also one of the first technologies to successfully take advantage of the application programming
interfaces, known as ISAPI, of Internet Information Services (lIS). ASP provided a high-level programming
paradigm for creating Web applications. So what is ASP exactly?

Active Server Pages is a programming abstraction layer that allows developers to write interactive Web
applications without requiring knowledge of low-level IIS programming interfaces such as ISAPI. ASP itself
isan ISAPI extension. ASP is automatically registered with IIS.

Within 1IS are two main application programming interface entry points known as ISAPI: filters and
extensions.ISAPI filters participate in each request that comesinto and goes out of IIS. Filters are able to
filter incoming and outgoing information, adding or removing content when necessary. For example, an
ISAPI filter could map incoming URLSs to different paths or perform custom authentication routines, such
as allowing or denying the request based on an HT TP cookie. (The best resource on ISAPI is the Microsoft
Internet Information Services [lIS] 6 Resource Kit, published in 2003.)

ISAPI extensions, on the other hand, are the final target of a given request. Whereas information passes
through an ISAPIfilter, information is mapped to a destination by an ISAPI extension, such as a requested
URL into a specific DLL (dynamic link library). For example, ASP is an ISAPI extension. Requests to IIS
that end with .ASP are mapped to the asp.dll ISAPI extension.

Applications written directly in ISAPI will outperform any other type of rapid application development
abstraction layer. Similarly, hand-coded x86 assembly code can outperform code written in Visual Basic 6.
For example, ISAPI code that specifically loops 1000 times and writes 'Hello World' would likely
outperform an ASP statement that loops 1000 times and writes 'Hello World.' This performance difference
is due to two reasons. First, an ISAPI is composed of C++-compiled x86 instructions that are targeted
directly at the processor architecture run by the platform. The ISAPI code is highly task-specific and is
responsible only for the single operation of outputting HTML.

Second, an ASP consists of script code, usually Microsoft Visual Basic Script (VBScript), that must be
parsed, turned into bytecode, and then executed. The script code is not compiled.

You can get the best possible performance with ISAPI, but the trade-off is the cost of development. Writing

ISAPI code is not for the faint of heart. An operation that can be performed in 2-3 lines of ASP or ASP.NET
code might take 20-40 lines as an ISAPI extension-and for a task as simple as writing 'Hello World.'
Additionally, since ISAPIis multithreaded, it requires a development language such as C++ and expertise
in writing multithreaded code; Visual Basic 6 can produce only code that is apartment-model threaded or
single- threaded code.

Active Server Pages Extension Mappings

The mapping of file extensions to the appropriate ISAPI extension is done within 1IS. To view the extension
mappings on your lIS server, open Internet Information Services. Right-click on a Web site such as Default
Web Site and select Properties, which will open the Properties dialog box for your Web site. Select the
Home Directory tab, shown in Figure 11-1.

Defaull Wb Site Froperties

Descion 5 acusly HT TP Hoade Cisstors Esais S orvid Exdiafriions
‘wish Sée 154F1 Fllers Homves Dipectony Diocirments
‘Wi corneoling |0 et resouine, W conbent should comes bom

(4, depclony locaded on Bt Compubel
(T34, shia ke absd on anothér éamuler
(o imdimction hy s LIRL

Loz Prahy & unaipubueevanol Brovara
[Gl soded seeett 1] Lo wiaite

] Feead 1] Insers then sesosce

:-'w'r“

) Deacton brosseng
Appishon Sattrg

Appbcaton name: [iefsult Appbcation
Shartrg oot Dot 'wek St
Configaahion
Emevade Pemmdnn Senpls oy
Applcation Prolecton Meder Poalsd] e
(k[Cunce] [B

Figure 11-1: Home Directory tab

Next, on the Home Directory tab, click the Configuration button. This will open the Application
Configuration dialog box, which displays a table that lists the mappings of file extensions to the
corresponding ISAPI .dll. This table is shown in Figure 11-2. The .ASP extension is highlighted.

Applicatban Configuration

Hapengt | Qplers | Deboggeg
[#] Cache 1S4 apphc shons

Espphr o M appengn
Esten Esecutshis Psthi Vadhy A
P E kN TS e el srviasp o GET HEA
B CAWIRK TWciopai HE TF rasssswork. GET HEA
Hicw CAWINK ThHicosoh NETWramewords . GET HEA
iths CWIRN ThMazinsell HE TWF ramsisord. GET HE&

mira CAWINHTWMicineol HE TWramewod. (GET HEA
1 C Vw1 TS pateen 5 arest arvunan of 5E | HEA

m [= '-'MNHT'.Hm:cIIHE'I'.ﬁ GET HEA

o CAWINK ThHicmeolt HETWFramewodk . GET HE&

2] CVWIRH TS el 30 afv'asp ol GET HEA

o CAWINN TS petemn 30t srv'iasp GET HEA

confiy CVWINNT\Miciosoll NETWFrameswok. . GET HEA o
L »

add | [Em [Remow |
[Concel] [k)

Figure 11-2: File extension mappings

The two extensions, .ASA and .ASP, are mapped to the ASP.dll ISAPI extension, which are handled by
ASP. The .ASA extension is a global application file in which global events are defined, such as
Session_OnStart. Direct access through the browser to this file is not allowed, and this extension is
mapped only to prevent unauthorized access. The .ASP extension is the main ASP extension. Files with
this extension can be parsed and executed as ASP executables. Figure 11-3 diagrams what happens
when IIS receives a request for the .ASP extension.

Internat Infermation Sarver

Ruequast Response

GET /default.aspx HTTR/ 1.1 HTTR/ 1.1 200 0K

I1SAPY Filter

3o cript
Exesution

Script 5

Engine

3 ASP ISAFI Extension

ISAP| Extension

Defauit.asp

Figure 11-3: How IIS processes a request for a file with the .ASP extension

Here is a description of what Figure 11-3 illustrates:
1.

A request is made to an IIS server for default.asp. IIS accepts the request and the request flows
through the ISAPI filter layer first and then to the ISAPI extension layer, where it is mapped to the
asp.dll extension.

Within the asp.dll extension, ASP first determines whether the script responsible for generating the
response resides in the script engine cache. The script engine cache is a performance technique
used by ASP to cache frequently accessed scripts in raw form without reparsing the ASP file. If the
script code is found within a script engine cache (2b), the script code is executed (3b), and the
response is generated.

If a script engine cache is not found for the incoming request, ASP will create a new script parser
and parse the .ASP file from disk and generate the script code necessary to create the output.

If the requested file is being requested frequently, as we would expect with the home page, the
decision to cache the generated script is made (5b).

The generated script is handed off to the script execution engine.

The generated response page, such as one in HTML, is sent back through IIS to the application
that generated the request.

The ASP.NET Difference

Applications built with ASP.NET are still routed through IS and thus must somehow interact with IS
through ISAPI. Unlike ASP, ASP.NET is written in managed code-nearly 100 percent of the ASP.NET

code base is managed code written in C#. However, the interaction point between IIS and ASP.NET s still
an ISAPI extension: aspnet_isapi.dll. Table 11-1 shows the extensions that are mapped within IIS to the
aspnet_isapi.dll.

Table 11-1: Extensions Mapped within IIS to aspnet_asapi.dll

Entry Point Description

ASAX Global application file for ASP.NET. This type of file serves a similar purpose
as ASP .asa files. Global events, such as Session_OnStart, and static
application variables, are declared within it. As with .ASA, direct requests for
.ASAX are not allowed.

ASCX Extension used by ASP.NET for user controls. User controls can simply be
thought of as ASP.NET pages that can be used within other ASP.NET pages
as user interface-generating components.

ASHX Specialized extension for creating on-demand compiled ASP.NET handlers.
(SeeCode Listing 11-1.)

ASMX Extension used by ASP.NET Web services to allow for SOAP-based
interactions.

ASPX Extension used for ASP.NET pages, similar to .ASP used by ASP. It is within

the .ASPX file that all user code resides.

.CONFIG Extension used by the ASP.NET configuration system, written in XML. Rather
than using the IIS metabase ASP.NET application, settings are managed
within an XML configuration file.

.CS ‘ Mapping to prevent access to C# source files.

‘ .CSPROJ ‘ Mapping to prevent access to Microsoft Visual Studio .NET C# projects.
‘ .REM ‘ Mapping used by .NET remoting.
.RESX Mapping to prevent access to .NET resource files. Resource files contain
localized strings and other resource information used by projects.
‘ .SOAP ‘ Mapping for .NET remoting use of SOAP.
‘ .VB ‘ Mapping to prevent access to Visual Basic .NET source files.
.VBPROJ Mapping to prevent access to Visual Studio .NET and Visual Basic .NET
projects.
.VSDISCO Web service discover file. Applications can learn what Web services the
server supports by querying the disco file.

Note that extensions related to ASP are not mapped to ASP.NET. This allows ASP and ASP.NET
applications to run side by side without conflicting with one another. We'll discuss this in more detail
shortly.

Figure 11-4 illustrates what happens when lIS 5 receives and processes a request for the . ASPX
extension. After the request is made, IIS routes the request to the ASP.NET ISAPI extension,
aspnet_isapi.dll.

Raquest Response

GET fdafaul. aspx HTTP/1.1 HTTR 1.1 200 0K

1 EE
o
3 :
= ASRMET [SAP Extension
5
E
E ASEMET IS4 Extension
2 2 o
= ISAP Extension

Process Boundary
HipModuls

a
u
&
t is Page 9
2 Compiled Instantiate Renden]
[=8
E §
= A
i 4
o
i
o B

4

F ']EE Compilatian

Passer Page Handler

8 Ly HitpHandar

3
Default.aspx CGompiled 38dgaSdi.cs

Figure 11-4: How IIS processes a request for a file with the .ASPX extension

Then aspnet_isapi.dll makes anamed pipe call from IIS to the ASP.NET worker process: aspnet_wp.exe.
This worker process hosts the common language runtime, the executing environment for NET
applications, and additionally hosts the ASP.NET HttpRuntime execution environment. The HttpRuntime is
the request/response processing framework provided by ASP.NET and determines whether the requested
page is already compiled. If it is, an instance of the compiled page is created, and the instance is asked to
render its contents. If the page is not already compiled, the page parser attempts to load the page.

The page is located on disk and handed back to the page parser. The page parser creates a hierarchy of
server control elements found within the page and emits a class file that represents the page.

The class file is given to the appropriate compiler. By default the page is compiled using the Visual Basic
.NET compiler, however, you can explicitly select a compiler by specifying the language the page uses
within a page directive.

The compiled class (.DLL) emitted by the page parser is stored on the disk again in a special temporary
file location dedicated to ASP.NET applications (such as the location

C:\WINNT\Microsoft. NET\Framework\v1.1.4322\Temporary ASP.NET Files\MyApp). At this point, an
instance of the compiled page is created.

The page is asked to render its contents. Render is a special method supported by the page classes and
can be thought of as the main method used by a page class. The rendered contents are then sent back
through ISAPI. The generated response, such as an HTML page, is sent through IIS again and back to the
application that generated the request.

In lIS 6, a dedicated IIS worker process hosts ASP.NET. No named pipe calls are made from the ISAPI
extension, and the aspnet_wp.exe is not used. Rather, the common language runtime is hosted within the

dedicated IIS worker process: w3wp.exe. This process is further divided into subvirtual processes known
asapplication domains. An application domain has a 1:1 mapping to either a Web application virtual
directory or a Web application root. In the application domain, an instance of the ASP.NET HttpRuntime is
hosted.

HttpRuntime

TheHttpRuntime models itself after the IS ISAPI filter/extension programming model. The ASP.NET
HttpRuntime is similar to the IIS ISAPI model in that it exposes two main entry points, that is, classes that
implement the IHttpModule and IHttpHandler interfaces. An entry point that implements IHttpModule is
similar to an ISAPI filter in that it can screen incoming and outgoing requests. A class that implements
IHttpHandler is similar to an ISAPI extension. It is the target of a given extension of a request, for example,
ASPX.

The major difference between ISAPI and the ASP.NET HttpRuntime is that ISAPI filters and extensions
can be written only in C++, whereas implementations of HitpRuntime'sIHttpModule and IHttpHandler can
be written in any managed language, such as Visual Basic .NET. Code Listing 11-1 is a simple
implementation of IHttpHandler written in Visual Basic .NET. Note that this code was written within an
ASHX file.

Code Listing 11-1: HelloWorldHttpHandler.ashx

<%@ WebHandl er Language="VB" Cl ass="Hel | oWorl| dHandl er" %

i nports System
i nports System Web

public Cass Hell oWwrl dHandl er
| mpl enents | Ht t pHandl er

Sub ProcessRequest (context As Htt pContext)
| rpl ements | Ht t pHandl er. ProcessRequest
Di m Request As HttpRequest = context.Request
Di m Response As Htt pResponse = context. Response

Response. Wite("<htnl >")
Response. Wit e("<body>")
Response. Wite(" <hl> Hello " +
Request . QueryStri ng("Nane") + "</ h1l>")
Response. Wite("</body>")
Response. Wite("</htm >")
End Sub

Public ReadOnly Property |sReusabl e As bool ean
I mpl ements | H t pHandl er. | sReusabl e
Get
return true
End Get
End Property
End C ass

Requests made to this page as HelloWorldHttpHandler.ashx?name=Rob:
Hell o Rob

If you're more intimately familiar with ISAPI, you'll be glad to know that ASP.NET replaces the extension
control block (ECB) with a much easier and friendlier managed class: HttpContext. An instance of
HttpContext is created whenever a request is made to the HttpRuntime and contains all necessary
information about the request and response.

Now that you've had an overview of how IIS, ASP, and ASP.NET work, let's discuss some specific issues
related to moving from ASP to ASP.NET.

Migrating to ASP.NET

ASP.NET has its roots in ASP; however, the technologies are completely separate and do not share a
single line of code. In all possible ways, we designed ASP.NET to be backward-compatible with ASP.
However, some key areas just aren't, and some language nuances will affect your application.

If you're looking to move an existing project to ASP.NET, you have two options-you can rewrite your
existing application, or you can integrate ASP and ASP.NET. If you rewrite your existing application to take
full advantage of ASP.NET, you benefit from many of its new capabilities and features, which simplify
common tasks such as table rendering and authentication. In ASP, these tasks required lots of custom
code. Alternately, if you choose to integrate ASP and ASP.NET-or for that matter, any other application
model such as Java Server Pages (JSP) or Hypertext Preprocessor (PHP)-you won't have to worry about
ASP.NET colliding with other application extensions. However, in an integration model, you have to define
your own methodologies for sharing information between the various application models. ASP.NET does
not provide any facilities for sharing any information with ASP.

The good news is that no matter which option you choose, ASP and ASP.NET can coexist within the same
directories and IIS applications. Unfortunately, ASP and ASP.NET cannot share any information such as
Session state data, but you can design around these limitations.

Rewriting for ASP.NET

Rewriting is the recommended option for moving your ASP application to ASP.NET. ASP.NET is a
completely different programming model, so even if you do have existing ASP code, for a complexreal-
world application, you can't simply rename the .ASP file extension to .ASPX.

Why should you rewrite your application? There are many reasons, but five top my list. First, the tool
support for ASP.NET through Visual Studio .NET or other tool vendors such as Macromedia is
phenomenal. You get features such as statement completion for your source code as well as design-time
support for the layout and presentation of your Ul.

Second, unlike other Web application programming models that use parsed bytecode or script code (such
as ASP), ASP.NET code is compiled when the application is first started.

Third, since ASP.NET code is compiled, you can expect an immediate performance benefit when you
rewrite your application. In many cases, you can boost performance by 200 percent simply by typing the
variables within your application, that is, specifying that a variable used as an integer is created as an
integer type:

Dimi As Integer

Fourth, ASP.NET introduces a new Ul component model called server controls that allows for many Ul
tasks to be encapsulated in reusable components. For example, any table rendering code can be
replaced with the ASP.NET DataGrid server control. Additionally, many specialized server controls are
available, such as menuing or charting controls.

Finally, the caching features are my fifth top reason for rewriting your application to take advantage of
ASP.NET. These caching features are designed to help you get more performance out of your application
by reusing work you've already performed. For example, a dynamic page whose content changes
infrequently can be output cached, giving you an additional performance gain of 2-3 times.

You can take advantage of many other great benefits when you rewrite your application for ASP.NET.
Let's look at some of the differences between ASP and ASP.NET.

Request Name and Value Pairs

TheRequest APl is familiar to all ASP developers-it interacts with request information that is sent to the
server. Commonly, we ask this API for any query string or form name value pairs sent along with the

request.

For example, if the ProductlD value is passed in the query string, we would expect to see the following
URL:default.asp?ProductlD=10. In ASP Visual Basic code, we would ask for the value of the ProductID,
as shown here:

‘ Value on the query string
Di m product| D = Request. QueryString("ProductlD")
‘ Val ue passed as a form nane/val ue pair
Di m product| D = Request. Form(" Product|D")

In ASP, these values were stored in memory as an array. When accessed, the array would be walked to
find the corresponding name/value match. The preceding code wouldn't be different in ASP.NET,
however, the values would be stored as a NameValueCollection rather than as an array. When multiple
items such as alist of products are passed in using the same name, the items are programmatically
accessed differently. For example, assume that a list of ProductID values can be passed in as query string
values:

Def aul t . asp?Pr oduct | D=10&Pr oduct | D=5&Pr oduct | D=15

In ASP, the following code could be used to retrieve and list those values:

‘ Display posted itens
For i = 1 to Request. QueryString("ProductlD"). Count
Response. Wite(Request.QueryString("ProductlD")(i) & "
")
Next

However, in ASP.NET, the NameValueCollection value is 0-based, not 1-based. The preceding code
would need to be rewritten as follows:

Di splay posted itens

Dimi As I|Integer

For i = 0 to (Request. QueryString. GetVal ues("ProductlD").Length - 1)
Response. Wite(Request.QeryString. GetVal ues("ProductID")(i) & "
")

Next

Another option is to use the String.Split method if you still desire to work with the items as an array.
Request.QueryString('ProductID") still returns 10,5,15 in ASP.NET, just as it does in ASP.

‘ Display posted itens
Dim arraySi ze As |nteger
arraySi ze = (Request. QueryString. GetVal ues("Productl D").Length - 1)

Di m products As String[arraySi ze]
products = Request. QueryString("ProductID').Split(‘,")

In-Line Methods

Probably one of the most painful changes for ASP developers is the need to move method declarations
from <% %> code blocks to <script runat="server"> code blocks. Functionsin ASP could be written as
follows:
<%
Publi ¢ Sub Di spl ayUser name
Response. Wit e("Sone usernanme")
End Sub
%

When migrating to ASP.NET, the method shown in the next code snippet must be defined in a <script
runat="server"> block.

Note If you've been working with ASP since version 1, you know that the original version of ASP
recommended that methods be defined in <script runat="server"> blocks. However, most
developers-myself included-rarely followed this guideline. Had we followed it, our code would
migrate much more easily! If you're still authoring ASP files but anticipate moving them to
ASP.NET in the future, define all methods and functions in <script runat="server"> blocks.

<script runat="server" >
Public Sub Di spl ayUser name
Response. Wit e("Sone usernane")
End Sub
</script>

Render Functions

A popular ASP trick that many developers took advantage of was partially defining a function in <% %>
blocks and containing raw HTML output. Such a function was known as a render function, which you can
see in the following snippet:

<%
Publ i ¢ Sub MyRender Functi on
%
Render functions are great!
<%
End Sub
%

Q What do you think about Render functions?
A: <% MyRender Functi on() %

This code would render the following:

Q What do you think about Render functions?
A: Render functions are great!

Render functions were handy because functions that rendered HTML could leave the HTML in normal
form and avoid performing Response.Write for each HTML element added to the output.

You can't use render functions in ASP.NET. Render functions aren't legal in ASP.NET and need to be
rewritten using normal Response .Write statements. Also, as stated earlier, methods would have to be
declared in <script runat="server"> blocks. The following code still renders the same output as the
preceding render function in ASP, and though it is called within <% and %>, the method is defined within a
<script runat="server"> block and no raw, inline HTML is allowed.

<script runat="server">
Public Sub MyRender Functi on
Response. Wite(""
Response. Wit e("Render functions are great!")
Response. Wite("")
End Sub
</script>
Q What do you think about Render functions?
A. <% MyRender Function() %

If you desire the benefit of encapsulated rendering, another option is to employ a user control to capture
all the HTML output and then use the declarative XML syntax to control where the user control output is
rendered on your page.

Parentheses Requirement for Functions and Methods

As you can already see, many of the migration headaches are related to nuances of ASP that developers
took advantage of. Another such nuance was that there was no requirement for parentheses when calling
functions for ASP code written with VBScript. The most egregious-and unfortunately common- situation in
which parentheses were not used was when using the Response.Write functionality of ASP to output
content.

<%

Response. Wite "Hello World!"

%

The preceding code is actually more of a VBScript language nuance than an ASP nuance, but we're
covering it here rather than in the VBScript section of this chapter. It wouldn't work in ASP.NET . Instead,
we would have to rewrite this code to use parentheses:

<%

Response. Wite("Hello World!")

%

If you're still authoring ASP files and plan to eventually convert them to ASP.NET, ensure that you use
parentheses for all functions and methods.

Common Tasks Simplified

One of the great benefits of moving to ASP.NET is that many common tasks are simplified. We can't cover
all the simplifications offered by ASP.NET, but we can show you one of the most common. The following
is standard ASP code for connecting to a database and rendering the contents in an HT ML table:
<%
‘ Dat abase connection and table creation
Set obj Conn = Server. CreateObject (" ADODB. Connecti on")
Set obj RS = Server. Creat ebj ect (" ADODB. Recor dSet ")
obj Conn. ConnectionString = "DRI VER={SQL Server};server =l ocal host;
dat abase=pubs; ui d=sa; pwd=00password"
obj Conn. Open()
obj RS. Open "SELECT * FROM Aut hors", obj Conn

Response. Wite "<Table wi dth=""100%" cell paddi ng=""3"" border=""1""
cel | spaci ng=""1"">"
Response. Wite "<tr><td>Aut hor Nane</td><t d>Address</td></tr>"
Do Wil e Not objRS. EOF
Response. Wite "<tr>"

Response. Wite " <td>"

Response. Wite obj RS("au_fnanme") + ", " + obj RS("au_l nanme")

Response. Wite " </td>"

Response. Wite " <td>"

Response. Wite obj RS("city") + ", " + objRS("state") + " " + objRS("zip")

Response. Wite " </td>"
Response. Wite "</tr>"
obj RS. MbveNext

Loop

Response. Wite "</ Tabl e>"

obj Conn. Cl ose()
%

This is common code that any experienced ASP developer could author. This type of dynamic table
rendering code can be simplified within ASP.NET:

<script runat="server">
Private Sub Page_Load(sender As Object, e As EventArgs)
Dimsqgl String As String
sqgl String = "server=.; database=pubs; uid=sa; pwd=00password"
Di m sgl Conn As New Sqgl Connection(sqgl String)
Di m sgl Command As New Sgl Conmand(" SELECT * FROM Aut hors", sqgl Conn)

sgl Conn. Open()
Dat aGri d1. Dat aSour ce = sql Command. Execut eReader ()
Dat aGri d1. Dat aBi nd()
sgl Conn. Cl ose()
End Sub
</script>
<asp: DataGid id="DataGidl" runat="server" />

The code uses the ASP.NET DataGrid server control and simply binds the results from the executed SQL
statement to the data grid. The datagrid then renders its contents as HTML.

Note An additional benefit of server controls is that they can intelligently render the appropriate
markup based on the device or browser making the request. For example, DataGrid's rendering
will be slightly different for Microsoft Internet Explorer than for Netscape. The display is identical,
butDataGrid can make choices about which display is better for each browser to guarantee
correct rendering.

Error Handling

One of the frustrating issues with ASP was the manner in which errors were managed. ASP had no
concept of try/catch blocks, unlike ASP.NET. Rather, developers had to aggressively check for errors in
ASP pages. The following code demonstrates this:
<%
‘ Dat abase connection and table creation
Set obj Conn = Server. Creat eObj ect (" ADODB. Connecti on")
Set obj RS = Server. Creat ebj ect (" ADODB. Recor dSet ")
obj Conn. ConnectionString = "DRI VER=(SQL Server);server =l ocal host;
dat abase=pubs; ui d=sa; pwd=00password"”
On Error Resume Next
obj Conn. Open()
obj RS. Open "SELECT * FROM Aut hors", obj Conn

Response. Wite "<Table w dth=""100%" cell paddi ng=""3"" border=""1""
cel I spaci ng=""1"">"
Response. Wite "<tr><td>Aut hor Nane</td><t d>Address</td></tr>"
Do Wil e Not objRS. EOF
Response. Wite "<tr>"

Response. Wite " <td>"

Response. Wite obj RS("au_fnanme") + ", " + obj RS("au_l nanme")

Response. Wite " </td>"

Response. Wite " <td>"

Response. Wite objRS("city") + ", " + objRS("state") + " " +
obj RS("zi p")

Response. Wite " </td>"

Response. Wite "</tr>"
obj RS. MbveNext

Loop

Response. Wite "</ Tabl e>"

obj Conn. Cl ose()

%

The preceding code is identical to the ASP dynamic table-generation code shown earlier, with the
exception of the addition of On Error Resume Next, which instructs the code to continue executing when
an error occurs. This instruction assumes that code exists for checking for and handling the error. The
result of this code is that when the connection fails, an error will occur, but the code will continue to
execute and the end result will be an error message.

Note Error pages in ASP.NET are much more detailed than they were in ASP-another great benefit!
Rather than simply stating ASP Error: 0x8005xxxXx, the system provides a detailed exception
message with line number information and other useful details about the error.

The preceding code can be more gracefully rewritten in ASP.NET using the try/catch syntax to catch
exceptions, such as the failure to connect to the database server, as shown here:

<script runat="server">
Private Sub Page_Load(sender As Object, e As Event Args)
Dimsql String As String
sql String = "server=.; database=pubs; uid=sa; pwd=00password"”
Di m sql Conn As New Sqgl Connecti on(sql Stri ng)
Di m sql Command As New Sqgl Conmand(" SELECT * FROM Aut hors", sqgl Conn)

Try
sql Conn. Open()
Dat aGri d1. Dat aSour ce = sql Conmand. Execut eReader ()
Dat aG i d1. Dat aBi nd()
sql Conn. Cl ose()
Catch exp As Sql Exception
‘* Clean up
sql Conn. Cl ose()

Response. Wite("Unable to open connection.™)
End Try
End Sub
</script>
<asp: DataGid id="DataGidl" runat="server" />

Note that all . NET languages support try/catch, which greatly simplifies managing errors within the
application.

Visual Basic Language Nuances

You should be aware of some specific Visual Basic language nuances. For example, by default, ASP.NET
is configured to require Option Explicit for Visual Basic .NET. This simply means that variables must be
declared before being used. Whereas with VBScript you could simply declare a variable with first use, in
ASP.NET you must explicitly dimension the variable. For example, to dimension a variable iLoop, you
would simply write Dim iLoop.

In VBScript, parameters to methods and functions were passed as by reference (ByRef). This essentially
meant that a pointer to the memory location of the data was passed to the method. Thus, if a method
changed, the value of the parameter was affected. However, with Visual Basic .NET, all values are passed
by value (ByValue), meaning that a copy of the data is passed as the parameter and changes to the value
of the parameter do not affect the memory copied.

ThelLet and Set operators are no longer supported in ASP.NET and objects can be assigned directly
without needing to explicitly set the value.

Objects in Visual Basic 6 and VBScript supported the concept of default properties. The most common
use in ASP is on the ADO RecordSet to access a contained item, for example, adoRS('Title"). Default
properties are no longer supported in Visual Basic .NET, and this code would need to be rewritten as
adoRS('Title').Value. Do not use default properties if you are still authoring ASP or Visual Basic 6 code that
you intend to eventually migrate.

Tip In addition to dimensioning all your variables, it is also recommended that you type all your
variablesDim iLoop As Integer. By simply typing your variables, you can increase the performance
of your application. You can enforce this by requiring the Option Strict Visual Basic .NET compiler
option rather than the Option Explicit option.

Compiled Code vs. Include Files

One of the tricks that many ASP developers use is to store frequently accessed code libraries in include
files that are then included in all the ASP pages that need to use those libraries. Although they appear
useful, include files, if misused, adversely affect ASP.

In design reviews and conferences that I've attended, many developers would show ASP pages with very
little code but with several includes at the top of the page. These seemingly lightweight ASPs were
definitely simplified from an administrative point of view, that is, common code was stored in a single file
that was shared. However, these ASPs were anything but lightweight-in fact, they tended to be memory
hogs!

When the ASP ISAPI extension loads an .ASP file, it also loads and expands all the include files into one
large virtual file in memory. So although developers thought they were getting benefits by moving common
logic into include files, they were in fact hurting their programs since many include files would contain
routines that were never used by more than 2 percent of the pages. A better strategy would have been to
move this common logic into Visual Basic 6 COM servers.

It is recommended that you move code from include files to compiled code in ASP.NET. Take the code
from the include file or files and create a single Visual Basic .NET or C# class. Because ASP.NET is
compiled, rather than each page having its own copy of all the routines, each compiled ASP.NET page
can link to the Visual Basic .NET or C# class instance where this business/rendering logic resides. In
addition to compiled classes, you could also use server controls or user controls rather than include files.

Integrating ASP and ASP.NET

In all likelihood, when you begin the move to ASP.NET, you will not be rewriting your existing application
but rather slowly migrating it from ASP to ASP.NET. This section focuses on is how to run ASP and
ASP.NET together and how to interact with existing investments in COM servers from ASP.NET. |
recommend that you also read the 'Migrating to ASP.NET" section of this chapter, however, because the
points are still applicable for integration.

Configuring Options

The configuration systems used by ASP and ASP.NET are completely separate. Whereas ASP relies on
settings found in Internet Information Service's metabase, ASP.NET uses an XML-based configuration
architecture. The majority of ASP-related settings can be easily configured by opening up Internet
Information Services, right-clicking on a Web site, and selecting Properties. With the Properties dialog box
open, select the Home Directory tab and click the Configuration button. This opens the Application
Configuration dialog box, which is shown in Figure 11-2, earlier in the chapter.

You can find ASP settings on the Options tab or the Debugging tab of the Application Configuration dialog
box These configuration options include:

m Enable/Disable Session State Indicates whether or not ASP sessions are enabled.

m Session State Timeout Timeout value for Session. If the session is not refreshed or used before the
timeout expires, the session data is removed from memory.

m Request Buffering By default, request buffering, the ability to buffer the entire request before writing
the response back to the calling browser, is enabled.

m Default Language The default script language is VBScript.

m Script Execution Timeout The amount of time a script is allowed to execute before being
automatically shut down due to timing out.

m Client/Server Debugging Options Controls debugging ASP applications.
m Script Error Messages Error message displayed when an error occurs within an ASP.

These settings affect only ASP. If ASP.NET was also installed, and ASP.NET pages were present in this
Web site or application, these settings would not affect the ASP.NET application whatsoever. ASP.NET
uses its own XML-based configuration files.

ASP.NET's XML configuration file is both easier to use and simpler to manage than the one used by ASP.
For example, when running in a server farm, rather than having to individually manage each machine by
manually configuring IIS through the IIS GUI, the ASP.NET administrator can simply manage the
ASP.NET application by making changes to the XML configuration file and copying that file to the server.

ASP.NET supports two types of configuration files, machine.config and web.config. The machine.config
fileis the root, or parent, configuration file found in a version-specific directory for the version of ASP.NET
you have installed. There can only be one machine.config for each version of ASP.NET you have installed.
(ASP.NET is designed to allow different versions to run side by side. ASP.NET 1 and ASP.NET 1.1 can
run on the same server without affecting each other another, and in the future ASP.NET 2 will be able to
as well.)

Each application can have its own copy of web.config. The web.config file overrides or adds new
configuration information to the configuration information originally defined by machine.config.

At the time of writing, two versions of ASP.NET are available: 1.0 and 1.1. These versions correspond to
the following directories under either the Windows or WINNT directories:
Microsoft. NET\Framework\1.0.3705\ and Microsoft. NET\Framework\v1.1.4322\. Within each of these

directories, you will find a config subdirectory, and within the config subdirectory, you will find the
machine.config file.

One of the great benefits of ASP.NET's XML-based configuration files is simplicity. For example, the
following markup is the web.config file used to configure settings within ASP.NET that are comparable to
the settings we discussed for ASP:

<confi guration>
<system web>
<ht t pRunti me executionTi meout ="90" />
<conpi l ati on debug="fal se"
explicit="true"
def aul t Language="vb" />
<pages buffer="true" />
<custonkrrors node="RenoteOnly"/>
<sessi onState node="I|nProc"
cooki el ess="f al se"
ti meout =" 20"/ >
</ syst em web>
</ confi guration>

The preceding web.config file shows a much abbreviated version of what we can expect to find in
machine.config. However, it does show how to configure common settings such as session, default
language, and page buffering- settings that are similar to those we set for ASP. Another great benefit of
the ASP.NET configuration system is that you can write your own configuration section handlers; that is,
you can embed your own XML syntax for configuring your application within ASP.NET configuration
system. This is done by implementing the IConfigurationSectionHandler class. (Chapter 7 reveals more
about how the ASP.NET configuration system works and offers a thorough discussion of how to write a
configuration section handler.)

Interoperating with COM and ASPCompat Mode

In most cases, integration between your existing ASP application and ASP.NET takes place with existing
ASP investments with COM. COM is still fully supported within .NET, however, we recommend that if you
own the code for the COM objects, you consider rewriting them for .NET. Calling COM from .NET has a
performance penalty, namely a marshalling cost incurred where data types must be coerced and
converted.

Code written for the common language runtime is commonly referred to as managed code; that is, the
running code is managed by the CLR. The term unmanaged code refers to any code written to run outside
of the CLR, such as Visual Basic 6 or C++. (See Figure 11-5.) The CLR has a common type system, and
all managed compilers can generate type equivalent code. So you can expect that Visual Basic .NET and
C# code are type and functionally equivalent if similar code is written in each language. Unmanaged code
relies upon the COM binary standard to dictate a common interface so that objects can interact with one
another. For managed and unmanaged code to work together, there must be a coercion of types.

Managed Code Unmanaged Code

|Gl::jec1.|
[} Imlmnnm?
—
MSIL MyOBject
0
CLR 2 COM Binary
. - = |
s
]
k1
o
:
Compiler E Compilar
r 8 :
Code Code
Sounce Code Source Code

Figure 11-5: Separation between managed and unmanaged code

Some data types can be automatically converted, such as a Visual Basic 6 Integer data type, and some
types cannot be automatically converted, such as the C++ BSTR.Tables 11-2 and 11-3 list the
conversions. For types that can't be automatically coerced to a corresponding type on the unmanaged

side, you can coerce the type yourself.

Table 11-2: Automatic Conversions

‘ Visual Basic Type ‘ C++ Type ‘ .NET Type
‘ Integer ‘ Short ‘ Short

‘ n/a ‘ unsignedint ‘ Uint32

‘ n/a ‘ __int64 ‘ Long

‘ n/a ‘ unsigned __int64 ‘ Uint64
‘ Long ‘ Int ‘ Integer
‘ n/a ‘ unsignedshort ‘ Uint1l6
‘ n/a ‘ signed char ‘ SByte

‘ Byte ‘ unsigned char ‘ Byte

‘ Single ‘ Float ‘ Single

‘ Double ‘ Double ‘ Double
‘ Char ‘ __wechar_t ‘ Char

‘ n/a ‘ Void ‘ Void

Table 11-3: Non-Automatic Conversions

‘ Visual Basic Type ‘ C++ Type ‘ .NET Type

‘ Variant ‘ VARIANT ‘ Object

‘ Object ‘ IUnknown ‘ UnmanagedType.lUnknown
‘ Date ‘ DATE ‘ Date

‘ Currency ‘ CURRENCY ‘ Decimal

‘ String ‘ BSTR ‘ String

‘ Boolean ‘ BOOL ‘ Boolean

In the COM world, a type library is used to describe the types used by that COM object. In .NET, all this
type information is stored in the manifest of the assembly-simply put, this same type information is stored
in the .dll that is generated by a .NET compiler. There is no separate type library. When working with COM
objects, you can import a type library. By importing a type library, .NET can create a run-time callable
wrapper class for the COM object.

Arun-time callable wrapper simply provides a wrapper class around the existing COM server and hides the
unknown COM types from the .NET developer. A run-time callable wrapper can be generated
automatically when using a COM server in a Visual Studio .NET project or by using the command-line tool
tlbimp.exe. (Another tool, tlbexp.exe, allows you to create a type library for a .NET class. This then allows
the .NET class to be callable and used by COM.)

All code complied for .NET, such as Visual Basic .NET, creates free- threaded objects. One of the major
changesfor ASP.NET is that it executes in a multithreaded apartment vs. the single-threaded apartment
(STA) model used in ASP. Essentially, this means that in ASP.NET, multiple threads can be working
together and operating on the same data within the process. Without going into too much detail, from a
performance perspective, this is a good thing. ASP.NET uses a different thread for each request and
additionally creates new instances of all required pages and classes on each request, so we still get the
benefits of a multithreaded environment without having to worry about multithreading issues. The only
problem is the interoperation of COM with Visual Basic 6 components or other COM objects that run in a
single-threaded apartment.

Visual Basic 6 is capable only of creating code that must be run in an STA. What this means for the
ASP.NET developer isthat ASP.NET applications that interoperate with a single-threaded apartment COM
server, such as Visual Basic 6 components, can behave unpredictably. (The main issue has to do with
reference counting of the object and the ability of .NET to properly clean up and dispose of an STA
component.) To address this problem, ASP.NET provides an ASPCompat page directive that forces the
page to run on a special STA thread:

<%@ Page ASPConpat="true' %

If you attempt to use a Visual Basic 6 component without marking the page as ASPCompat="true’,you
might or might not get an exception. You will likely see inconsistent or odd behaviors once you put your
application into production.

Another side effect of marking a page as ASPCompat is that the ASP intrinsic ObjectContext will be
available.ObjectContext in ASP was used to flow context information about the request from ASP to
business objects running within ASP. If your COM code depends on ObjectContext, you'll need to use
ASPCompat="true'. Note that using ASPCompat will degrade the performance of the ASP.NET page.

Working Around Session and Application State

Many developers rely upon the Session and Application objects within ASP to share and store information
about users or the application. Although these objects do still exist in ASP.NET, there is no integration
point when running ASP and ASP.NET together in the same application. Data stored in Session within
ASP is not available in the ASP.NET application.

For the Application intrinsic object, this lack of integration is usually not too much of a problem. However, if
the application relies on Session, getting ASP and ASP.NET to work together is more difficult. The usual
recommendation is that you replace all ASP and ASP.NET Session usage with a common object that is
shared by both and stores its data in a database. You'll be writing your own session manager, but you can
then take control over where the data is stored and provide a common interop layer for ASP and

ASP.NET.

Summary

Migrating to ASP.NET requires thoughtful planning and a good understanding of how ASP.NET works. In
this chapter, we discussed in detail the differences between ASP and ASP.NET, including how each of
these application models interacts with Internet Information Services. We then discussed the two
approaches for migrating an application to ASP.NET: rewriting and integration. You gain the most benefit
when you rewrite your application for .NET because you can take advantage of all the great features, such
as server controls and caching. However, a more realistic approach is to slowly migrate to ASP.NET,
starting with application integration. .NET facilitates integration with existing COM servers through its COM
interoperation layer, and ASP.NET provides integration through the ASPCompat mode. These
compatibility modes have performance costs, but overall performance will still be better with .NET.

Appendix A: Tips and Tricks

In this book, we discussed the concepts underlying ASP.NET and shared the reasons behind some of the
design decisions. In each chapter, we offered tips that can help make your development experience more
productive, improve the performance of your application, and help you to better understand ASP.NET.
This appendix is a compilation of the tips in the book. They are grouped by chapter and appear in the
order in which they appear in each chapter.

ASP.NET Page Framework

InChapter 1, we focused on how ASP.NET interacts with the Web server to receive and handle requests.
We examined the application-processing pipeline and looked at how HttpHandlers and HttpModules are
key to the ASP.NET architecture.

When implementing an IHttpHandler, you can get improved performance if ASP.NET is able to reuse
a single instance of the handler. The object must be stateless to avoid introducing bugs related to
multithreading.

The final HttpHandler or HitpHandlerFactory might never be invoked if one of the HttpModules ends
the request. This can minimize the load on the server when requests are serviced from the cache.
When a request fails authentication or authorization checks, there is also no need to execute the
handler.

The order in which HttpModules registered for an event is called is not guaranteed. Do not count on
oneHttpModule being called before another.

Thereis a certain amount of overhead related to throwing exceptions in the .NET Framework. Avoid
throwing an excessive number of exceptions as part of the regular course of an application.

Server.Transfer is essentially the equivalent of Response.End followed by a call to Server.Execute.

Add validators to the wizard pages that verify that the set of expected values is in session. If all the
required values aren't present, redirect the user to the step where the first missing piece is to be
submitted.

Add validators at each step of the wizard to enforce the entering of correct input by the user. Let the
user proceed only after the values accumulated to that point are satisfactory and errors are corrected,
because gathering missing information becomes more complicated after the user reaches the end of
the wizard.

Server Controls

The ASP.NET page revolves around server controls that encapsulate user interactions, data, and even
business logic. The event-driven architecture of the server controls presents a familiar environment for
developers. The automatic management of state allows you to focus on the application instead of
overcoming the stateless nature of the HTTP protocol.

m A certain amount of overhead is associated with all server controls. To preserve application
performance when leveraging existing HTML content, do not turn HTML elements into HTML server
controls unless you are taking advantage of server events.

m Remember that updating a user control will cause the compiled pages that reference the user control
to become invalidated. When the pages are next requested, they will have to be recompiled.

m The members of a user control in the output cache can't be accessed from pages that contain the
control. The output of the cached control will be included in the page, but the user control object itself
will not available. Attempting to access it will result in an error message.

m If you have to import the System.Windows.Forms namespace into your page or Microsoft Visual
Studio .NET Web application project, chances are your code is using server-side resources that have
no visible desktop on which to be displayed. Thus, they must be disposed of to avoid introducing
resource issues under heavy load.

m When the user interface supports multiple simultaneous selections while iterating the list of items,
accessingSelectedltem,SelectedIindex, and SelectedValue will return the first item found. To get the
complete set of selected items, loop through all items from the list.

m |tems added to a list control are carried between client and server in ViewState. If the set of itemsis a
significant size, consider disabling ViewState. That way the control will not bloat the payload by
unnecessarily carrying the ViewState in a round trip between client and server. In this case, be aware
that the selected items are no longer available, so you must provide code to ascertain when the
selected items were changed.

m To create adrop-down list that does not have an initially selected value, add an item to the top of the
list that is selected by default and corresponds to no selection.

m Disable client-side validation by using the Page directive's ClientTarget attribute. Setting this directive
todownlevel causes ASP.NET to treat the browser as though it does not support JScript.

m When used with sophisticated clients, client-side validation can reduce server load and improve the
customer experience by providing immediate feedback about a problem without issuing a request to
the server.

m Always verify the data received by the server, even when client-side validation code has been
provided. You can't safely assume anything-the client might not have run the code, and the user might
have constructed a malicious request with values that would not pass the examination of the client-
side code.

m Use the SaveAs method of the PostedFile member of the HtmlIinputFile to specify where the file
should be placed on disk. Target a directory that exists on a separate partition, where filling the
partition will have minimum impact on the operations of the server.

m If you need to generate random numbers in your application, create a Random object and store it in
application scope. The object is seeded when it is created and can then be used throughout the
application to get differing values easily.

m When deploying in a Web farm without server affinity (meaning that for each request, a client session
can be handled by a different server), the validation key must be set explicitly and synchronized
between the machines. If the default AutoGenerate setting is used, postbacks handled by a machine

other than the one in which the ViewState was generated will not be processed correctly, and the user
will get an error.

Data Controls

Applications are fundamentally about gathering, displaying, and manipulating data. The ASP.NET data
controls provide the means for easily binding to a data source to create data-driven applications. Data-
binding is used to populate lists for user selections as well as for displaying tabular sets of data.

Use data-binding to declaratively control the display of values combined from the value of other
controls.

Avoid unnecessary data-binding. If the control has ViewState enabled, it needs to be data-bound only
for initialization and then again when the underlying data source changes. However, if you disable
ViewState for the control or for the page, you must call DataBind on every page load to repopulate the
items.

Add dynamic items after data-binding. When adding items to a DropDownList control from both a data
source and code in the page, be aware of the order in which they are added. The data-binding
operation clears all the items that exist in the control and replaces them with the set from the data
source. After DataBind is called, you can safely add items to the list. A good example of where this tip
can prove valuable is when you want to add a default value of 'Select One' at the top of a list.

When ViewState is enabled, as it is by default, the data from the data source makes a round trip
between the client and server on each request. When the data is significantly large, this round trip can
have a negative impact on the user experience. Look at the size of the ViewState for the DataGrid
control by using tracing (discussed in Chapter 10) to understand exactly what kind of impact the
ViewState is having on page size.

If ViewState size is problematic for an application, a couple of solutions are available. First, you can
completely disable ViewState in configuration for a page or for an individual control. Without
ViewsState, the DataGrid control can no longer automatically store information about the paging state,
the item being edited, or the current sort expression. You would need to maintain this data separately.
Second, you can simply reduce ViewState by following these steps:

1. SetAutoGenerateColumns to false and explicitly declare only those columns that are
necessary.

2. Setthe styles in the code explicitly instead of establishing them declaratively.
3. Donotuse the DataKeyField member.

For frequently accessed but rarely changed data, use the application cache or partial page caching
(discussed in Chapter 6) to cut down on trips to the database.

Custom paging of the DataGrid can be particularly beneficial when the entire set of data being used is
quite large or when retrieving it is expensive. Custom paging can also be used when the data source is
aDataReader but you still require paging support on the DataGrid. In this scenario, you are
responsible for managing the paging in the code, but you might achieve a better result with custom
control than by using a DataSet with automatic paging.

Use two DataGrid controls on a page to allow for a master view and a details view. Synchronize the
SelectedlitemindexChanged event in the master DataGrid to update the contents of the details view
DataGrid.

Consider providing for data filtering and sorting without return trips to the database for throughput. Be
aware, however, that storing data in Session has an impact on the amount of memory used on the
server. Also, using ViewState to enable the data to make a round trip has an impact on the size of the
page and the post data that will be submitted in subsequent requests.

Reflecting on the individual items has an impact on performance. For large sets of data with
numerous columns to summarize, leveraging the database directly for calculated values might be

more efficient.

Developing for Mobile Browsers

More access to the Web is available with browsers in portable devices than ever before. Cell phones and
personal digital assistants continue to offer improved screens and compelling features. However, many of
these devices do not accept the markup that is usually rendered from Web pages. ASP.NET provides
adaptive rendering so that a single Web page can produce WML, cHtml, HTML, and xHtml. In Chapter 4,
we looked at how to use the mobile rendering features of ASP.NET to produce a site targeting the mobile
user.

= You might encounter references to the Microsoft Mobile Internet Toolkit on the Web, in magazine
articles, and in newsgroups. When version 1 of ASP.NET was released, mobile support was not
included. Instead, support was available as part of a separate download called the Microsoft Mobile
Internet Toolkit. This mobile support is now included as part of ASP.NET.

m Mobile pages should limit the amount of input required by the user. Strive for maximum relevant
information with the fewest key clicks. Entering data can be tedious on a small form factor, and
networks for mobile devices are still relatively slow compared to wired devices, so performing
postbacks and following links can be somewhat time consuming.

m Use a desktop browser as a debugging aid when developing applications for mobile browsers
because debug and tracing information is not included in the output from the MobilePage.

m Use cookieless sessions to ensure that your application works correctly on devices that do not support
cookies.

m Device updatesinstalled on ASP.NET 1 using the Mobile Internet Toolkit replace the browserCaps
section in machine.config with new content. Customizations for the browserCaps section will be lost
when installing Device Updates 1.

m When a browser isn't recognized in the browserCaps configuration section, the default behavior is to
treat it as an HTML 3.2 device without support for client-side scripting.

m TheAllowCustomAttributes configuration setting does not cause custom attributes to be passed
through to the client. It allows them only to be specified in the server page without causing an error on
the server. This setting applies only to the mobile controls where unrecognized attributes on the server
controls are treated as an error by default.

m Be careful when defining and using filters. There is a tendency to want to believe that one capability
implies another. Although the capabilities of new devices continue to advance rapidly, it is best to
explicitly check for support when customizing.

Managing Client State

Applications need to maintain state for either user- or application-specific data. There are three techniques
for managing client state in ASP.NET: Session, ViewState, and Cookies. Session state stores user data on
the ASP.NET server and relies upon a session ID assigned to the user. The user presents the session ID
on subsequent requests, and the user's data is available within Session for the duration of that request.
ViewState stores user or application data in the response of the HTML that is sent back to the user in
hidden <form> variables. Cookies are small chunks of data that can be stored on the user's computer and
are sent with each request to the application.

m Use in-process session state (the default) if you have only a single server. In IIS 6, either use out-of-
process session state or disable process recycling behavior to avoid data loss.

m Don't use the Session_End event; it can be called only for sessions created in the InProc mode. The
event is not raised for sessions created in one of the out-of-process modes when sessions are
abandoned.

m It's important to note that the programming model is transparent. For example, we don't have to
change how we access or use session state when we change the storage mode.

m We recommend SQL Server for out-of-process session state because it is just as fast as StateServer,
and SQL Server is excellent at managing data.

m Store only basic data types when using out-of-process session state; avoid storing complex types or
custom classes. Storing basic data types will decrease the serialization and deserialization costs
associated with out-of-process session as well as reduce the complexity of the system.

m [f the server running the state service is accessible outside the firewall, the port address of the state
service should be changed to a value other than the default. In version 1.1 of ASP.NET, due to
security reasons, only local machines can connect to the state server. To allow only non-local host
requests in ASP.NET 1.1, open the same registry entry listed earlier for the port setting:
HKLM\SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters\. Change
AllowRemoteConnection to 1.

m For ASP.NET 1.0, configure SQL Server for mixed-mode authentication by adding the ASPNET
account enabled for the necessary SQL Server permissions (EXECUTE) for ASP.NET session state.
(The ASPNET account isthe user that the ASP.NET worker process runs as.) For ASP.NET 1.1
running on IIS 6, configure SQL Server for mixed- mode authentication by adding the NT
AUTHORITY\WETWORK SERVICE account.

m Use integrated authentication rather than store SQL Server credentials within your configuration file. If
you decide to use SQL Server user names and passwords, do not use the system administrator (sa)
account. Instead use an account that has only the necessary access to the database object required
for the operations (for session state, this account is EXECUTE only). If you must use SQL Server
credentials, ASP.NET 1.1 supports storing credentials securely.

m Ensure SQL Server Agent is running before running the Session state installation SQL Scripts. The
agent runs a periodic job to purge expired sessions from the database.

m For out-of-process session, set session state to enable Session State='false'within the configuration
file, and set the EnableSessionState page directives to either true or ReadOnly based on what
behavior is needed. Note that the length of the session will still be reset (even when set to false). This
will prevent unnecessary round trips when Session state is not needed.

m Using the SessionID as a key for user data is not recommended. The SessionID is randomly
generated, and session data-as well as session IDs-do expire. Additionally, although a SessionID
might be generated on each request, a SessionID is set only when a Session value is set server-side.
This means that if no session values are set server side, new SessionIDs are issued on each request.

= [f you have to develop an application that supports both cookie and cookieless sessions, your best
strategy is to write an HTTP module to redirect the browser to the appropriate application or server for
the supported browser feature; for example, configure a dedicated application that is used for
cookieless sessions.

m A Message Authentication Code (MAC) is a key-dependent, one-way hash. A MAC is used to verify
ViewState data by recomputing the MAC on postback and comparing it to the MAC stored in
__VIEWSTATE. If the MACs maitch, the datain __ VIEWSTATE is valid. If they do not match, the
ViewState data is invalid and an exception is thrown.

m The view state can be disabled in a page by using <% @ Page EnableViewState="false' %>, or in a
control by specifying Page.EnableView State="false'on the server control.

Managing Application and Request State

Application and request state refer to any data that is accessible for the lifetime of either the application or
the request. Static variables, the Cache, and Application can all be used to store application state. Per-
request state can be stored using HttpContext.ltems.

Unlike session state, data stored within the cache is stored only in the memory of the application in
which the data was created. Also, multiple applications on the same server do not share memory and
thus cannot share cached data. An application's cache is private to the application that created it.

The duration for which a page can be stored in memaory is controlled by several dependencies: time,
file, and other cache entries. These dependencies are an inherent feature of the Cache API. As they
apply to page output caching, these dependencies are controlled by the developer authoring the

page.

The ASP.NET Cache implements a least recently used (LRU) algorithm. When ASP.NET has need
for more memory, the cache can be asked to evict items to reclaim or free memory.

When using Microsoft Windows Server 2003 and Microsoft Internet Information Services (IIS) 6, it is
recommended to configure the 1IS 6 worker process to use 60 percent of the physical memory or to
limit the total to 800 MB of physical memory.

Use the page directives when possible. There is less risk of introducing bugs in your application
because the OutputCache directive is declarative.

AnEtag, or entity tag, specifies an HTTP header sent with the served document to uniquely identify a
specific version of the page. Cache servers can query the originating cache server to determine
whether a cached document is still valid by comparing the cached documents entity tag to the entity
tag returned from the origin server.

IfVaryByParam is not used, why is it required and why is its value set to none? The decision was
made to force the developer to add VaryByParam with a value of none to clearly indicate that the
page was not varying by any parameters. Requests with parameters sent to an output cached page
usingVaryByParam with none will not be resolved by the output cache and are treated as misses.

A single parameter can be specified, for example, VaryByParam="tabindex'. Multiple parameters to be
varied by must be semicolon-separated, for example, VaryByParam="tabindex;tabld".

Varying the output cache by various parameters is very useful. However, here is a good rule of thumb

to keep in mind: the more specific the request, the less likely it is that the request can be satisfied from
the cache. For example, if the page's output is highly user-specific, such as an e-commerce check-out
page, the output cached page could be utilized again only by that same user in the same condition (in

contrast to output caching the page used to display product information). When items are stored in the
cache and cannot be utilized again, the cache is a wasted resource.

Do not use VaryByParam with * unless absolutely necessary. Any arbitrary data passed in the query
string or POST body will affect how many versions of the output cached page are created, thus
potentially filling memory with many pages that can't be used again.

If you have the .NET Framework installed and are using Internet Explorer, a .NET CLR [version #]
string will be added as part of the User-Agent header. This can be useful for users who are
downloading .NET applications because you can determine whether they also need to download the
.NET Framework.

Page output cache directives are additive, and you should plan to use more than just the required
VaryByParam for pages containing server controls that behave differently for different browser types.
Otherwise inconsistencies will occur, as Internet Explorer DHTML could potentially be sent to a
Netscape 4 browser (if the output cache is not being varied by browser type).

Don't use the Location attribute unless you completely understand how it works. In the majority of
cases, its use is unnecessary.

Do not use the page OutputCache directive on a page that also uses the output Cache APIs. If used
together, the more restrictive setting is applied. Thus, if the page OutputCache directive has a duration
of 60 seconds but the output Cache API sets a duration of 30 seconds, the page will be cached for
only 30 seconds. (The same istrue of the other settings as well.)

Sliding expiration is usually the recommended approach simply because setting all the pages to expire
simultaneously, such as at midnight, would cause the server to re-execute all those pages at midnight,
potentially putting an unnecessary load on the server.

Setting the Boolean value to true for VaryByParams or VaryByHeaders indicates that the output
cache is to be varied by the parameter or header. Programmatically, you can decide not to vary by
that particular parameter or header later in the processing of the page execution, and false could be
set to indicate this behavior.

ThePragma: no-cache HTTP header is not officially an HTTP version 1 behavior and is replaced in
HTTP 1.1 with the Cache-Control header. However, like many characteristics of HTTP, the standard is
only loosely followed. Nearly all browsers still use Pragma: no- cache and thus ASP.NET must know
how to process it.

When using the page output Cache APIs, always set SetValidUntilExpires to true unless you want
clients to be able to remove your output cached pages from memory. The output cacheis a
performance enhancement, and if clients can arbitrarily remove pages from the cache, performance
suffers.

In the 2.0 version of ASP.NET, we'll add a AddCacheDependency method to allow you to add an
instance of CacheDependency directly.

No race condition exists when creating a dependency. If the dependent item changes before the item
isinserted into the cache, the insert fails and the item is not added to the cache.

If the page you are output caching relies upon file resources other than those used to execute the
page, use the output Cache APIs and make the page dependent upon those files. If the files change,
the output cached page will be evicted from the output cache.

Use cache key dependencies where caching is used to enforce behaviors throughout your application.
Dependencies do have additional overhead, but for scenarios such as those described thus far,
dependencies allow for some powerful behaviors. For example, every page could theoretically be
dependent upon a common cache key. When an administrator wanted to flush the cache, she would
simply need to invalidate the common key. This would then evict all output cached pages from
memory.

Don't use VaryByParam="', which would also resolve to an unknown HTTP POST parameter name.
Instead, use the VaryByControl option.

Why doesn't ASP.NET provide a common Application or Cache out- of-process option similar to
Session? Unlike Session, which is tied to a specific user, Application and Cache contain application-
wide settings that apply, or are available to, all users. Thus, changes to Application or Cache must be
propagated immediately. However, there are two problems with this: managing contentions when two
applications simultaneously modify the same data; and decreased efficiency with replication-as the
number of servers grows, the data gets exponentially more difficult to replicate between servers.

Cache supersedes all the functionality provided by Application and both simplifies it (because it
requires no locking to modify) and provides more advanced functionality (such as expiration,
dependencies, and purging of data when necessary).

Configuration

Configuration refers to any settings or data required by an application to run. This data can be as simple
as the connection string used to connect to a database, or as complex as the number of threads the
running process might require. ASP.NET’s configuration system is XML file—based. Many first-time
ASP.NET developers expect to configure ASP.NET using the Internet Information Services Manager,
much as they would with classic ASP. ASP.NET does not, however, rely upon the IIS metabase. The
ASP.NET configuration system requires no proprietary tools to update or manage its configuration system
since an XML-based configuration system easily lends itself to manual editing and updating.

You will find that you might have more than one machine.config on your computer. The .NET
Framework is designed to allow multiple versions to run side by side. Each version has its own
separate machine.config file. The version of the .NET Framework your Web application is using is
determined by the extension mappings, for example, .ASPX, in Internet Information Server. Be sure
you edit the correct machine.config if you want to change global settings.

You can change mappings to allow your application to use a different version of the .NET Framework
with the aspnet_regiis.exe tool. This tool is found in the version-specific directory
Windows\Microsoft. NET \Framework\[Version]\.

Don’'t modify the machine.config file unless you absolutely have to. Changes to machine.config affect
the entire server. Instead use web.config in your application to specify desired behavior and
configuration options.

An easy way to tell whether you are working with a root directory for either a Web site or Web
application is to look for a \bin subdirectory. The \bin subdirectory is allowed only in the root directory
of a Web site or Web application.

When updating a live site, perform all web.config changes locally and upload the running site with the
new copy. This is much more efficient than changing and saving multiple times on the live web.config
file.

Customers often ask us whether they should store data in web.config or global.asax. We recommend
you store data within configuration. Storing settings in files such as global.asax implies code. The
configuration file allows you to make simple changes without having to recompile your application.
Simply add the settings and update the web.config file on your running server.

ASP.NET Security

Application and server security are paramount considerations for the Web developer. Unfortunately,
security considerations are often given a low priority in the design process. Application architecture
decisions about authentication, authorization, and user impersonation should be considered carefully and
reviewed thoroughly as the application is implemented.

To launch the Computer Management application from the command prompt, enter start
compmgmt.msc. You can also launch the Internet Information Services Management snap-in directly
by entering start inetmgr.

Never use Basic Authentication without requiring Secure Sockets Layer (SSL) so that user credentials
are sentin an encrypted form. Using Basic Authentication without encrypting communications is
referred to as sending credentials “in the clear’ and is a very bad practice.

A Windows user account is always associated with an executing request. A good way to review the
security of a Web application is to walk through what identity is being used by Windows when
executing any part of the request.

Do not run the worker process as an account other than ASPNET unless absolutely necessary.
Compromising the worker process that is running as SYSTEM would give an attacker much higher-
level permissions than the ASPNET account. Any page will execute as this user unless impersonation
is enabled.

You can force IIS 6 on Windows Server 2003 to use the version 5.0 behavior in the Internet Services
Manager by right-clicking the Web Sites folder, selecting Properties, and selecting Run WWW Service
In IIS 5.0 Isolation Mode on the Services tab.

Always use SSL in conjunction with ASP.NET Forms Authentication to secure the transmission of user
names, passwords, and authentication tickets from the FormsAuthenticationTickets object.

RedirectFromLoginPage relies on the user having been redirected to the login page with a query
string to know where to redirect them back to. For example, in the URL

http ://Awww.contoso.com/login.aspx?ReturnUrl=mypage.aspx, mypage.aspx is the return URL that the
user is redirected to. If the user requests the login page directly, he will be sent to the page configured
as the default for the Web application in the Internet Services Manager, usually default.aspx.

Never store user passwords in clear text.

File Authorization works only against file types that are mapped in the Internet Services Manager to
ASP.NET. File types that are not handled by ASP.NET will be subject to the IIS authorization checks.

Allowand deny tags are processed sequentially by ASP.NET. The first match found is used, so if you
allow a user with one statement and deny them with another, the order of elements will determine
whether the user gains access.

Do not set validateRequest="false”in the page’s configuration element unless absolutely necessary.
The better option is to set validate_Request= “false” in the page directive for those pages where
validation will be handled in your custom code. Such a page directive is shown on the first line of Code

Listing 8-11.
Call the Server.HTMLEncode method on all user input before displaying it.

Disable services on the Web server that aren’t being used. For example, if you type net start at the
command prompt, you will probably be surprised at the number of services running on the server. You
might not need Simple Mail Transfer Protocol (SMTP), Infrared Monitor, or DHCP client running on
the server. Look at the demands of the Web application, and be sure that the running services are
needed to make the server and the application run correctly.

http://www.contoso.com/login.aspx?ReturnUrl=mypage.aspx

Tuning ASP.NET Performance

Performance work is often neglected until it dramatically surfaces as a major blocking issue. Do not wait
until deployment to discover the performance characteristics of an application. Performance tuning is best
handled as an iterative process where the biggest gains can often be had easily at first. You should
understand the reasons behind the time-to-first-byte and time-to-last-byte numbers for the most frequently
accessed pages of an application. Output caching and data caching can enhance the speed and efficiency
of your application more than code changes alone.

m When simulating real-world load, use various pseudo-random user- agent strings and completely
random requests with large query strings and quantities of posted data. Live servers must endure this
type of load, so accurate analysis should include malformed requests along with the valid ones.

m The time-to-first-byte throughput metric translates directly into how the user perceives the
performance of the Web application. Even when throughput numbers look adequate, the user might
feel that the response time is inadequate. The user is not concerned with how many requests the
server can manage; she just notices how fast her request is handled.

m Become proficient at using the load generating tool you choose. This might seem like obvious advice,
but we can't emphasize it enough. Almost all test packages include various parameters that can be
customized to vary the mix of client connection speeds, SSL connections, user-agents, and security
credentials. To effectively utilize the tool and thus measure Web application performance accurately,
you must understand how to vary the settings in accordance with your application requirements.

m Keep batch compilation enabled, but make requests to each Web application while bringing a site
online so that the first user to issue a request to the site does not see the delay of batch compilation,
and the whole directory can be batch compiled.

m Store application-wide data in the cache object instead of the application object. The cache object
does not have the same locking semantics and provides more flexibility.

m Do not create COM objects in a page constructor, either explicitly or by declaring the object as a page-
scoped variable. If you must use legacy COM objects, create them when they are needed and release
them as soon as you are done with them.

ASP.NET Debug and Trace

ASP.NET tracing facilities provide a simple method for seeing the structure and performance
characteristics of a page. Additionally, it can be leveraged easily to output custom debug information.
Understanding the generated code for a page can be key to tracking down unexpected behavior in custom
code.

m Use the trace FromLast column data to quickly narrow down long- running pieces of code. This is
particularly useful in isolating performance issues.

m You can distinguish between inbound and outbound cookie values by looking at the Cookie row in the
Headers collection. The value from the Cookie header is the value sent by the client.

m Implement an Application_OnError handler that traces error information so that if you encounter
unusual behavior in an application, you are prepared to gather more information by simply enabling
trace.

m To quickly get to the source code for a page, you do not need to access the Temporary ASP.NET
Files directories. Instead, introduce a deliberate syntax error. ASP.NET will flag the error and provide
the Show Complete Compilation Source option as well as the compiler output.

m Donotuse ASP.NET debug functionality on a production server. The performance implications are
severe. Instead, to gather run time information programmatically, use trace functionality or classes in
theSystem.Diagnostics.Trace namespace.

Moving to ASP.NET

Moving to ASP.NET from ASP or another Web application technology not only requires changes to code
but also might require some changes to the way your applications are designed. You need to be aware of
some nuances so that you can plan ahead for them.

If you've been working with ASP since version 1, you know that the original version of ASP
recommended that methods be defined in <script runat="server”> blocks. However, most
developers—myself included—rarely followed this guideline. Had we followed it, our code would
migrate much more easily! If you're still authoring ASP files but anticipate moving them to ASP.NET in
the future, define all methods and functions in <script runat="server”> blocks.

If you're still authoring ASP files, don’t use render functions.

If you're still authoring ASP files and plan to eventually convert them to ASP.NET, use parentheses for
all functions and methods.

An additional benefit of server controls is that they can intelligently render the appropriate markup
based on the device or browser making the request. For example, the DataGrid’s rendering will be
slightly different for Internet Explorer than for NetScape. The display is identical, but the DataGrid can
intelligently make choices about which display is better for each browser to guarantee correct
rendering.

In addition to dimensioning all your variables, it is also recommended that you type all of your
variables:Dim iLoop As Integer. By simply typing your variables you can increase the performance of
your application. You can enforce this by requiring the Option Strict Microsoft Visual Basic .NET
compiler option rather than the Option Explicit option.

Do not use default properties if you are still authoring ASP or Visual Basic 6 code that you intend to
migrate. Default properties are no longer supported in Visual Basic .NET.

You shouldn’t have any reason to use include files in ASP.NET. Instead use server controls or user
controls, or move your code into compiled classes.

ASP.NET is designed to allow different versions to run side by side. That is, ASP.NET 1.0 and
ASP.NET 1.1 (and in the future ASP.NET 2.0) can all run on the same server without affecting one
another.

ASP.NET uses adifferent thread for each request and additionally creates new instances of all
required pages and classes on each request. This prevents you from having to worry about
multithreading issues, but you still gain the benefits of a multithreaded environment.

UsingASPCompat will degrade the performance of the ASP.NET page.

Appendix B: The Cassini Sample Web Server

Cassini is a sample Web server, written entirely in managed code. The source code is freely available,
which allows us to see exactly how it hosts ASP.NET in conjunction with its own HT TP listener. You can
modify the sources and recompile the code to create your own enhanced version of a Web server. Note
that because Cassini is a sample, it lacks many of the features you are accustomed to seeing in Microsoft
Internet Information Services (lIS). It does not support Secure Socket Layers (SSL) or perform user
authentication. It supports only one ASP.NET application per port, and it will process only those requests
issued from the local machine.

With all these limitations, why would you be interested in using Cassini? As we mentioned, Cassiniis a
great example of how the hosting APIs are used to run ASP.NET pages. Cassini will run side by side with
IIS or another Web server, so ASP.NET support can be easily added to an existing Web server. The
functionality can be embedded into another application, allowing you to run ASP.NET pages without an
Internet connection. And of course, you could modify the sources to make a more robust server, using
Cassini as the starting point.

System Requirements

Cassini requires one of the following operating systems: Microsoft Windows 2000 Professional or Microsoft
Windows 2000 Server, Microsoft Windows XP Professional or Windows XP Home, or Microsoft Windows
Server 2003. Because Cassini is written entirely in managed code, it requires the .NET Framework version
1.0 or version 1.1.

Downloading the Cassini Web Server

You can download the Cassini Web Server and its sources from the ASP.NET Web site’s project
download page (http://www.asp.net/Projects/Cassini/download).When you click the download link, you will
be prompted to save or run the installation program, Cassini.exe, which at the time of this writing is just 211
KB. When the installation program is launched, you will be prompted to accept the License Agreement.
After you read and agree to the terms, the source files are installed to the location of your choice. The
default installation location is C:\Cassini. Notice that no .DLL or .EXE is installed—only the sources and

some support files.

http://www.asp.net/Projects/Cassini/download

Files Installed with Cassini

Just nine .CS files make up the Cassini source code. The first eight files compile into the Cassini .DLL
library that constitutes the Web server functionality. The final .CS source file compiles into a Windows
executable, named CassiniWebServer, that is used for controlling the sample Web server. An .SNK file is
used for strong name signing of the assembly so that the assembly can be placed into the Global
Assembly Cache (GAC); the .CS file also provides an icon for the CassiniWebServer executable. There is,
of course, a README file and a batch file for compiling the library and executable.

Building Cassini

The Cassini download is all source files. You must compile these files on your own machine to use the
code. Run the build.bat file from the installation location to build both the Cassini .DLL and the
CassiniWebServer executable. Figure B-1 shows the command prompt output after you build Cassini.

18, 352 .4

11 rights reserved.

rlihte rFedervad.

sicall path, Far sxsnpls:

-

iflgure B-1: Command prompt output from building Cassini

Notice that after the library is built, it is installed into the GAC as part of the build process. Because the
hosting requires the ability to perform cross- application domain remoting, the library is placed into the
GAC. After the Cassini .DLL is built and installed, the CassiniWebServer executable is compiled.

Running Cassini

Launch the CassiniWebServer controller executable from the command prompt by typing
CassiniWebServer .exe or by double-clicking on the file in Windows Explorer. Next you see the dialog box
shown in Figure B-2, which you use to configure and start the Web server.

& Cassini Personal Web Server

Cassini Personal Web Server

Appheston [esciony.
Server Pt i';]

Vit ook [7

S Siop

Figure B-2: Cassini controller program

In the first text box, enter the physical directory in which the .ASPX pages exist. The directory must exist
before you click the Start button. In the second text box, enter the port that should be used to listen for
requests. By default, this is port 80, as it is for IS, so if you are running side by side with another Web
server, you will need to pick a different unused port. Note that the port number, when not the default of
port 80, must be specified after the machine name in the address bar of your browser. For example, if you
chose port 8080, the address for a request to SomePage.aspx on the local machine would be
http://localhost:8080/SomePage.aspx.

The third text box accepts a virtual path for the application. The default is a single slash, corresponding to
the top level. You can add nesting levels that mimic the structure of nested virtual directories, but be aware
that Cassini supports just a single application, and no configuration data from root paths is applied.
Remember that only a single directory was given, and Cassini does not know about any other virtual
directories.

When you click the Start button, the Web server begins listening on the specified port. Also, in the
CassiniWebServer dialog box, a link appears for browsing the application. When you click the link, your
browser will launch and take you to the application root. When no page is specified, as in this case, the
sample Web server generates a listing of links corresponding to the pages contained in the application
directory.Figure B-3 is an example of the directory listing produced by Cassini.

http://localhost:8080/SomePage.aspx

3 DieactaryLittiag . I

Mizpoalt irfarmnl [aphreer

B i fes fperim [ww e
Q- O €3

fi) amh]] E‘I :.3:- - B
deti] et e xS

Durectory Lishag -- /

ey, Teptmhar O, 1408 LL:a8 L8
Spndey, Septorber OF, 10 3608 i8S
Bk, PEOLOFRET OF. JTRF ULIEE L7
mondiy, TaFCesmar CF, 1858 35033

FIE ERoars gl nbURE B

Fargins bafarmainoe Cmor Wes farver LOS T

o ol s

Figure B-3: Directory Listing produced by Cassini

Getting Help With Cassini

Peer support and community discussions are available on the ASP.NET Web site (http://www.asp.net) ina
forum dedicated to the Cassini Sample Web Server. The forum can be accessed directly at
http:/www.asp.net/Forums/ShowForum.aspx?tabindex=1&ForumiD=67 .

http://www.asp.net
http://www.asp.net/Forums/ShowForum.aspx?tabindex=1&ForumID=67

Index

Symbols

Of Exceps Thrown counter, 228

Index

A

Accept-Language headers, 146-147

accessKey with mobile browsers, 102-103

Active Server Pages. SeeASP

adapters for mobile browsers, 89-90,102-104
advantages of ASP.NET, 2,268

Alert.aspx,33-34

allow tags, 297

analyzing performance, 223-224.See also performance

anonymous access
denying,217
file upload problems from, 46
purpose of, 204

apartment model-threaded components, 111,237
Application API, 133,171.See also application state
Application Center Test program, 226

Application Restarts counter, 229

application settings, 194-195

application state
API preferred for. SeeCache API
Application API, 133,171
Application vs. Cache API, 171
ASP vs. ASP.NET, 282
browser history method, 163
cache key dependencies, 162,293
cache privacy, 291
cascading removal of entries, 162
controls, partial page caching of, 164-169
defined,110,133
dependencies, inserting, 173-176
dependencies, removing, 160-162
deterministic page serving, 158-163
HTTP cache headers, 138-140
invalidation headers, 155-157
location of cache, selecting, 151-152
nonremovable cache items, 177
out-of-process option, 294
OutputCache.SeeOQutputCache directives
partial page caching, 163-169
programmatic removal of pages, 163
removing cached items, 163,177
setting cache items, 172-177
shared user control entries, 169
static variables for, 177-179
techniques for, table of, 133
varying by control state, 167-169
what to cache, 172

Application_OnError handlers, 250,298
appSettings section of web.config, 194-195
.asaxfiles, 263

.ascxfiles, 263

.ashxfiles, 263

.aspxfiles, 264-265

.asmxfiles, 263

ASP (Active Server Pages)
advantages over prior technologies, 259-260
ASPCompat directive, 281
backward-com patibility with, 267
error handling, 273-275
include files, 276
integrating with ASP.NET, 276-282
ISAPI, compared to, 260
mapping to ISAPI, 261-263
migrating to .NET. Seemoving to ASP.NET
name value pairs, 269-270
render functions, 270-271
session state for, 110-112
settings for, 277
upgrading to .NET. Seemoving to ASP.NET

ASPCompat,300

ASPNET account, 206,296
ASP.NET Authentication, 205-206
aspnet_setreg.exe,200

assemblies
directory for, 251
performance overhead of, 234

authentication
anonymous access, 46,204,217
ASP.NET options, 205-206
Basic Authentication, 204,296
client certificates, 204
configuration section, 188
cookies for, 210
defined,201
Digest Authentication, 205
Forms Authentication, 206,208-211,213-215,296
IIS authentication, 203-205
impersonation with, 206-208
Integrated Authentication, 119,205,290
loginUrl pages, 209-211
Passport mode, 206
passwords for, 209,211,296
RedirectFromLoginPage,296
SQL Server issues, 290
SQLServer session state, 119-120
SSL with, 209
tickets,209
validation callbacks with, 159
web.config element for, 205

Windows Authentication, 204-205,212-213
Windows mode, 205

authorization
configuration section, 188
defined,202
DenyAnonymous_Web.config,217
file authorization, 216,296
groups with, 217
purpose of, 216
tag processing order, 217,297
URL authorization, 216-218
wildcards for, 217

Index

B
backward-com patibility with ASP, 267

Basic Authentication
purpose of, 204
SSL required with, 296

batch compiling, 6,234-236,298

browsers
browser history method, 163
configuration section, 188,288
mobile.Seemobile browsers
OutputCache directives for specific, 148-149

buffering
advantages of, 238
performance issues, 238-239
string concatenation, avoiding, 239
StringBuilder objects, 239

building.Seecompiling
business objects, debugging, 255

Index

C

Cache API
Add method, 177
AddCacheDependency method, 293
AddValidationCallback method, 158
Application API, compared to, 169-171
browser history method, 163
cache key dependencies, 160-162,174-176,293
cacheability, setting, 153-154
cascading removal of entries, 162
contentions problem, 171
DataSets, storing, 169-170
dependencies, creating, 163,293
dependencies, inserting, 173-176
dependencies, removing, 160-162
deterministic page serving, 158-163
dictionary,172-173
duration, setting, 152-153
eviction, timed, 176
functionality summary, 171
GetVaryByCustomString method, 149-151
HttpCacheability enumeration, 153-154
Insert method, 173-177
invalidation headers, 155-157
key dependencies, 174-176
LRU algorithm, 291
no cache header setting, 154,156
no race condition, 293
nonremovable items, 177
out-of-process option, 294
OutputCache directives with, 293
priority for eviction, 176-177
Private setting, 154
Public setting, 154
purpose of, 152,169
Remove method, 177
resource dependencies, 293
Server setting, 154
ServerAndNoCache setting, 154
ServerAndPrivate setting, 154
Session API, similarity to, 169-171
SetCacheability method, 153-154
SetExpires method, 153
SetValidUntilExpires property, 157,293
validation callbacks, 158-159
VaryByParam attribute, 155,294
varying by browsers, 155
varying by headers, 155
varying by parameters, 155,294

cache key dependencies, 160-162,174-176,293
cache state

application caches, 291.See also application state
Cache-Control headers, 138-140,154
defined,110,133

dependencies, inserting, 173-176
dependencies, removing, 160-162
duration of pages, 135,152-153,291
Expires headers, 140

FAQs,134-136

HTTP cache headers, 138-140
HTTP cache policy, 135

invalidation headers, 155-157
Last-Modified headers, 140

location of cache, selecting, 151-152
memory limitations, 136

overview of, 134

page output caching, 135

partial page caching, 163-169
programmatic removal of pages, 163
shared user control entries, 169
storage of, 135

validation callbacks, 158-159

VaryBy style caching, 135

varying by control state, 167-169
Web farm considerations, 135

Cache-Control headers, 138-140,154

caching
Cache-Control headers, 138-140,154
cascading removal of entries, 162
clearing caches, 136
DataGrids with, 287
defined,134
dependencies,160-162,173-176,293
duration of pages in memory, 135,152-153,291
FAQs,134-136
HTTP cache policy, 135
invalidation headers, 155-157
memory limitations, 136
memory use recommended, 291
nonremovable items, 177
objects,237
page output caching, 135
partial page caching, 163-169
performance tuning, 236-237
per-request caching, 179-181
setting cache items, 172-177
storage for, 135
User controls, 31
VaryBy style caching, 135
Web farm considerations, 135
what to cache, 172

Calendar.aspx code sample, 27-28
CGI (Common Gateway Interface), 1
CheckBoxList control, 35-36
CheckWindowsPrincipal.aspx,212-213

CHTML (Compact HTML), 88,93

classes, caching recommendation for, 172
clearing caches, 136

client certificates, 204

client state. Seestate management

client-side validation, 285

CLR (Common Language Runtime)
defined,2
managed code, 279

columns
AutoGenerateColumns, 287
DataGrid,63-64

COM

interoperability,279-281

performance issues, 237-238,298

run-time callable wrappers, 281
Common Gateway Interface (CGI), 1
Common Language Runtime. SeeCLR
Compact HTML (cHTML), 88,93
CompareValidator control, 42
compiling

batch process, 6,234-236,298

command line options, 255

configuration section, 188

debugging, enabling, 254-255

directory creation, 251

file types created, 252

overview of, 251-253

performance issues, 234-236

source files, 255

Computer Management application, 204,296

concatenation, string, 239

config files. See also configuration
application specific. Seeweb.config files
ISAPI mapping of, 264
system wide. Seemachine.config

configuration
accessing application settings, 194
allowOverride attribute, 192-193
application settings, 194-195
ASP vs. ASP.NET, 277-279
ASP.NET sections, table of, 188-189
centralized settings, 191-192
changing,189-190
custom configuration section handler, 195-199
defined,183
directories for web.config, 187
encrypting config files, 200
file structure, 190-191
global.asax vs. web.config, 194
groups within sections, 191

how it works, 184

inherited settings, 188

locking down, 192-193
machine.config.Seemachine.config
multiple servers, 184

.NET Framework versions, 185-186,295
parent files, 191-192

root directories, 295

security for config files, 199-200
storing custom, 193-199
System.Configuration namespace, 195
timeout, setting, 183

updating live sites, 190
web.config.Seeweb.config files

XML basis of, 183

XML files for, 277-279

control trees
place in page creation, 23
server control example, 25
simplest,24
tracing of, 247

controls.See also server controls
binding data to. Seedata-binding
CheckBoxList,35-36
CompareValidator,42
custom,33
CustomValidator,44-45
DataGrid objects. SeeDataGrids
Datalist control, 59-60
disabling client-side validation, 285
DropDownList,37-38,285,286
dynamic,20-22
DynamicT extbox.aspx,20
HtmlInputFile control, 46-47
list.Seelist controls
ListBox,36-37
MessageBox object, 33
partial page caching, 164-169
PartialCachingControls,166
RadioButtonList,39-40
RangeValidator,42-43
RegularExpressionValidator,43-44
Repeater control, 56-59
RequiredFieldValidator,41
server.Seeserver controls
unused, effects on performance, 231
User.SeeUser controls
validation with. Seevalidation controls
ValidationSummary,45

cookies
advantages of, 128
ASP.NET session state, for, 113
.ASPXAUTH,128
.ASPXSession,128
authentication with, 210

Cookie.aspx,247-248
defined,128
direction determination, 298
HTTP cookies in ASP, 111
maximum size of, 128
redirecting browsers for, 290
SessionIDs,123
state, defined for, 109
tasks for, ASP.NET, 128
tracing collections, 247-248
user roles, maintaining with, 128-131
viewing from client browser, 128
counters, performance, 227-229
CPU utilization metric, 228
cross-site scripting, 218-219
.cs files, ISAPI mapping of, 264
CurrentTime.ascx,30
custom configuration section handler, 195-199
custom controls, 33

CustomValidator control, 44-45

Index

D

data controls
binding data to. Seedata-binding
DataGrid objects. SeeDataGrids
Datalist control, 59-60
DataReaders for, 172,287
DataSets with. SeeDataSets
Repeater control, 56-59

databases
ASP vs. ASP.NET, 272-273
binding data to Web pages. Seedata-binding
showing tables from. SeeDataGrids
data-binding
DataBind method, 51
DataBindControl Value .aspx,52
DataBindDropDownList.aspx,54-55
DataBinder.Eval method, 65
DataBindField.aspx,51
DataBindMethod.aspx,53-54
DataBoundLiteralControl class, 52
DataGrid controls. SeeDataGrids
DatalList control, 59-60
defined,51
DropDownList control with, 54-55,286
dynamic elements with, 286
expressions using, 53
field example, 51-52
list controls, setting items, 54-55
method invocation with, 53-54
performance issues, 54
postbacks,53
Repeater control, 56-59
view state with, 54,286-287

DataGrid sample pages
DataGrid.aspx,60-62
DataGridAdd.aspx,81-83
DataGridColumns.aspx,63-64
DataGridDelete.aspx,77-78
DataGridEdit.aspx,74-76
DataGridFilter.aspx,78-80
DataGridPaging.aspx,70-72
DataGridSelect.aspx,72-74
DataGridSorting.aspx,67-70
DataGridStyles.aspx,65-67
DataGridSummary.aspx,84-85

DataGrids
adding data by users, 81-83
advantages of, 60
caching data, 62,287
calling DataBind method, 68-70
column generation, 287

column specification, explicit, 63-64
DataBinder.Eval method, 65
DataSets with. SeeDataSets
DataViews,67

deleting data in, 77-78

editing data in, 74-76
EdititemIndex property, 74
eventsin, 72,74

filtering data in, 78-80

footer row creation, 84-85

inserting data, 81-83

master and detail views on single page, 72,287
migrating from ASP, 273
paging,70-72,287

performance issues, 287

reflection performance impacts, 85
rendering,61

row selection, 72-74

RowFilter property, 78

select events, 72

sorting,67-70

sources of data, 62
SglDataReader with, 62

static items, combining with, 65
styles, adding to, 65-67
summarizing data, 84-85
templates with, 60,65

view state with, 63,286-287

DatalList control, 59-60

DataReaders
caching not recommended, 172
paging with, 287

DataSets
Cache API, storing with, 169-170
caching recommended for, 172
purpose of, 62
static variables for, 178-179
view state for, 126-127

debugging
business objects, 255
command line options, 255
compiling, overview of, 251-253
context of, 243
debug attribute of Page, 254
Diagnostics namespace, 255
DiagnosticsDebug.aspx,256
enabling,254-255
mobile browsers, 93
NoLinePragma.aspx,256
options, selecting, 256-257
pdb files, 254
performance impact, 299
pragma statements, 256
sending datato debugger, 255-257
Trace object, 255

tracing.Seetracing pages
web.config for enabling, 254

WriteLine method, 255-256
declarations, Option Explicit as default, 275
deleting data in DataGrids, 77-78
deny tags, 297
DenyAnonymous_Web.config,217

dependencies
AddCacheDependency method, 293
CacheDependency parameter, 173-176
creating,160,293
inserting in cache, 173-176
removing from cache, 160-162

device updates for mobile browsers, 97-98
Diagnostics namespace, 255

Digest Authentication, 205

directories,251

disabling client-side validation, 285

DLL files, 264

DropDownList control
adding items, 286
creating,37-38
data-binding to, 54-55
initially selecting no item, 285

dynamic controls, 20-22
DynamicT extbox.aspx,20

Index

E

ECB (extension control block), 267
editing data, 74-76
emulators for mobile browsers, 92-94

encryption
config file sections, 200
configuration section, 189
SSL,209,296
ViewState data, enabling, 48-49

error handling. Seeexceptions
error pages configuration section, 188
Errors Total counter, 228

ETag HTTP headers, 141,291

events
DataGrid, 72,74
global session events, 113
handlers for. Seehandlers
PageEvents.aspx,10-11
server control, 25
SessionEnd,289

exceptions
Of Exceps Thrown counter, 228
Application_OnError handlers, 250
ASP vs. ASP.NET, 273-275
overhead from, 284
performance effects of, 232-233
try/catch syntax, 274

ExecutePage.aspx,15

execution, page. Seepage execution
Expires headers, 140

extension control block (ECB), 267

Index

F

FavoriteColor.ascx,31

fields, binding to databases, 51-52

file authorization, 216,296

file dependencies
AddCacheDependency method, 293
CacheDependency parameter, 173-176
creating,160,293
inserting in cache, 173-176
removing from cache, 160-162

files
saving by users, method for, 285
uploading,46-47

filtering data in DataGrids, 78-80

filters, mobile browser issues, 288

firewalls,289

flushing caches, 136

Forms Authentication
configuring,208-211
FormsAuthRoles.aspx,215
passwords with, 209,211
popularity of, 206
roles with, 213-215
SSL required with, 209,296

forms collection, tracing, 249
functions, parentheses requirement, 271-272

Index

G

GenericPrincipal objects, 213-215
GET method, caching with, 157

global.asax
application settings in, 194
web.config preferred, 295

globalization configuration section, 188

groups
authorization for, 217
customizing based on, 212-213
Forms Authentication with, 213-215
purpose of, 212
Windows Authentication with, 212-213

Index

H

handlers
adding with web.config files, 6
Application_OnError handlers, 250,298
custom configuration section handler, 195-199
event handlers for server controls, 25
HTTP handler factories, 4

hardening servers, 221

hashing passwords, 211

headers, HTTP. SeeHTTP headers
headers collection, tracing, 249
HelloWorldHttpHandler.ashx,26 6-267
histories, browser, 163

history of Web development, 1-2

HTML controls
defined,24
event handlers, adding, 25
event-driven model, 25
HelloGoodbye.aspx,25
HTML elements with equivalent controls, 26
HtmIControlsHelloWorld.aspx,24
HtmlInputFile control, 46-47
performance issues, 25
purpose of, 24
runat="server" attribute, 25,270,299

HtmIHelloWorld.htm sample page, 23
HtmlinputFile control, 46-47

HTTP cache headers, 138-140,154
HTTP cache policy, 135

HTTP cookies. Seecookies

HTTP handler factories, 4

HTTP headers
Accept-Language headers, 146-147
Cache-Control headers, 138-140,154
DisplayingHeaders.aspx,100-101
ETag,141,291
Expires headers, 140
HeaderFilter.aspx,107-108
invalidation headers, 155-157
Last-Modified headers, 140
mobile browser detection, 90
no cache header setting, 154,156
Pragma:no-cache, 156,293
tracing collection of, 249
User-Agent header, 147-148
varying by for cache state, 146-148
varying by headers, 155

HttpContext
creation of, 7
ECB, compared to, 267

HttpContext state
defined,110,133
per-request caching, 179-181

HttpHandlers
configuration section, 188
IHttpHandler interface, 4-6,283

HttpModules
configuration section, 188
ending requests, benefits of, 283
IHttpModule interface, 7-9
order of registration, 283

HttpResponse, RemoveOutputCacheltem method, 163

HttpRuntime
configuration section, 188
HelloWorldHttpHandler.ashx,26 6-267
moving to ASP.NET, 266-267
place in request processing, 264
request/response model with caching, 137
state in, 134

Index

identity configuration section, 189

IHttpHandler interface
IsReusable property, 5
operation of, 4-6
reusing,283
SimpleHandler.cs sample, 5-6

IHttpHandlerFactory interface, 4-6,9
IHttpModule interface, 7-9

IIS (Internet Information Services)
anonymous access, 204
ASP to ISAPI mapping, 261-263
authentication,203-205
Basic Authentication, 204
client certificates, 204
Digest Authentication, 205
impersonation under, 206-208
Integrated Authentication, 119,205,290
interfaces for applications, 260
Management snap-in, 296
request processing by file type, 3
security overview, 202
security settings, accessing, 203
version 5 behavior, forcing, 296
version 6 host process, 266
version of ASP.NET, determining, 185

Windows Authentication, 204-205

impersonation
defined,202
enabling,207
IIS with, 206
options for, 206-207
specific user impersonation, 207-208
Windows Authentication with, 208
include files, 276,300
IncludeCurrentTime.aspx,30
in-line methods, 270
in-process session state, 112-114,240,289
input
controls for validation. Seevalidation controls
elements,26
Server.HTMLEncode method for, 297
validating,218-220

Insert method of Cache, 173-177
Integrated Authentication, 119,205,290
Integrated Windows Authentication, 204-205

integrating ASP with ASP.NET
COM interoperability, 279-281

configuring options, 277-279
state maintenance, 282
Internet Information Services. SeellS
Internet Server Application Programmer's Interface. SeelSAPI
invalidation headers, 155-157
IP affinity, 111
IPrincipal objects, 212-215
ISAPI (Internet Server Application Programmer's Interface)
advantages of, 260
ASP.NET extension mapping, 263-266
defined,1
extensions,260

filters,260
mapping from ASP, 261-263

Index

J-K
JavaScript configuration section, 189
key dependencies, 160-162,174-176,293

Index

L

Last-Modified headers, 140
least recently used (LRU) algorithm, 136,291

Let operator, 275

life cycle, page. Seepage life cycle

list controls
CheckBoxList,35-36
data-binding to, 54-55
DatalList control, 59-60
DropDownlList,37-38,54-55,285-286
iterating items, 285
ListBox,36-37
overview of, 34
RadioButtonList,39-40
ViewState with, 37,285

ListBox control, 36-37
load-generating tools, 226-227

Local Network account, 207

logins
authentication with. Seeauthentication
Login.aspx example, 209-211
loginUrl pages, 209-211
RedirectFromLoginPage,296

LRU (least recently used) algorithm, 136,291

Index

M
MAC (Message Authentication Code), 125,290

machine.config
ASP.NET sections, table of, 188-189
browser configuration section, 288
centralized settings, 191-192
compilation element, 234
encrypting,200
file structure, 190-191
groups within sections, 191
locking down, 192-193
multiple versions side by side, 184,295
parent files, 191-192
processModel section, 186
purpose of, 184
recommendation against modifying, 186
security for, 199-200
session state settings, 113
SQLServer session state configuration, 118
StateServer configuration, 116

machineKey settings, 121
managed code, 279

memory
buffers,137
cache limit recommended, 291
caching, out of memory from, 136

Message Authentication Code (MAC), 125,290
message box, client-side, 33—-34

MessageBox object, 33

methods, data-binding to, 53-54

Microsoft Internet Information Services. SeellS
Microsoft Mobile Internet Toolkit, 87,288
Microsoft Web Application Stress Tool, 226-227
migrating to ASP.NET. Seemoving to ASP.NET

mixed-mode authentication, 119,290

mobile browsers
accessKey attributes, 102-103
adapters,89-90,102-104
AllowCustomAttributes configuration, 288
attributes, custom, 102-104
browser section of config files, 288
browserCaps configuration, 98—102
case elements, 99-102
cHTML,88,93
compiling adapters, 104
configuration section, 188,189
control architecture for, 88
control trees for, 90

cookie support, 94

cookieless sessions, 94-96,288
custom adapters, writing, 102-104
custom attributes, 102-104
debugging,93,288

default pages for, 97

designing for, 91-92

detecting,90

device updates, 97-98
DeviceQualifies predicates, 90
device-specific filters, 105-108
directing to mobile content, 96—-97
DisplayingHeaders.aspx,100-101
emulators,92-94

filter elements, 99-102

filter performance, 288

filters, device-specific, 105-108
HeaderFilter.aspx,107-108

input design, 91,288
IsMobileDevice property, 97
LabelFilter.aspx,106-107
machine.config files for, 90
markup protocols for, 88

Microsoft Mobile Internet Toolkit, 87
MobileCapabilities object, 97,100-101
MobileControls namespace, 88
MobilePage, adapters with, 90
MyHtmILinkAdapter.cs,104
navigation design, 91

new browser support creation, 98—102
pagination,105

PDAs with, 92

Pocket PC emulator, 93

purpose of, 87

redirects,96

rendering,89

scriptless renderings, 93-94
server control architecture for, 88
Server.Transfer method, 97
session state, 94-96
ShowCapabilities.aspx,100-101
testing applications, 92-94

Ul strategy, 91

use elements, 99-102
User-Agent headers, 99-102
validators,94

WAP,88,95

web.config for custom attributes, 103
web.config for scriptless rendering, 93
WML,88,94

XHTML,94

Mobile Internet Toolkit, 288

modules
HttpModules,188,283
IHttpModule interface, 7-9

order of registration, 283
SimpleModule.cs sample, 7—8
web.config files for registration, 8

moving to ASP.NET
advantages of rewriting, 268
advantages of server controls, 299
Application state, 282
ASPCompat directive, 281,300
COM interoperability, 279-281
compiled code vs. include files, 276
configuring integration, 277-279
default property support, 275,300
desirability of, 259
error handling, 273-275
HttpRuntime issues, 266267
include files, 300
in-line methods, 270
integrating ASP, 276282
ISAPI| extension mapping, 263-266
Let operator, 275
managed code for, 279
name value pairs, 269-270
parentheses requirement, 271-272,299
passing parameters, 275
render functions, 270-271,299
rewritihg recommendation, 268
runat="server",25,270,299
Session state, 282
Set operator, 275
side-by-side running of versions, 300
simplification of common tasks, 272273
threading issues, 281,300
type conversions, 280—281
typing variables, 299
Visual Basic nuances, 275-276

MultiPageWizard _PageOne.aspx,18

Index

N

name value pairs, 269-270

.NET Framework
ASP.NET relationship to, 2—3
base class libraries of, 2
CLR,2,279
determining presence on clients, 292
managed code, 279
versions, configuring for, 185-186

no cache header setting, 154,156

Index

O

Option Explicit as default, 275

out-of-process session state
authentication for SQLServer, 119-120
disabling,122,290
firewalls with, 117
IP addresses for, 116
locking mechanism, 122
machine.config for, 116,118
machineKey settings, 121
managing types for, 114-115
optimizing,121-122,240
overview,114
performance issues, 121-122,240
port configuration, 116
read-only sessions, 122
serialization,114-115
SQLServer with, 114,118-121
StateServer,114,116-118
timeout values, 117
types to use with, 289
Web farm considerations, 121-122

output cache
API for. SeeCache API
directive.SeeOutputCache directives
programmatic removal of pages, 163

OutputCache directives
* (asterisk), 292
Accept-Language headers, 146-147
additive nature of, 149,292
API alternative to. SeeCache API
auto-evictions,142
browsers, varying by, 148-149
Cache APIs on same page, 293
Cache-Control headers, 138-140
control caching with, 166-169
Duration attribute, 141-142,236
Expires headers, 140
GetVaryByCustomString method, 149-151
HTTP cache headers, 138-140
Last-Modified headers, 140
Location attribute, 151-152,292
.NET Framework, determining presence of, 292
page model for, 137-138
parameter specification, 292
partial page caching with, 166-169
performance tuning with, 236
POST requests, 142
request/response model for, 137
shared user control entries, 169
sliding expiration, 293

specificity of requests, 292

syntax, 141

time for caching, setting, 142,293

User-Agent headers, 147-148

user-defined conditions with, 149-151

VaryByCustom attribute, 148-151

VaryByParam attribute, 141,142,144-146,236,292-293
varying by control state, 167-169

varying by HTTP headers, 146-148

varying by user-defined conditions, 149-151

Index

P

page configuration section, 189

page execution
ExecutePage.aspx,15
importance of controlling, 11
Response.Redirect method, 11-13
Server.Execute method, 14-15
Server.Transfer method, 13-14
TransferDest.aspx,13
TransferSource.aspx,13

page framework, architecture of, 3

page life cycle, 9-11

page output caching
API for. SeeCache API
OutputCache.SeeOutputCache directive

partial,163-169
purpose of, 135

PageEvents.aspx,10—-11
Page_Init method, 9
Page_Load method, 9
Page_Unload method, 10

pagination
DataGrids,70-72,287
mobile browser algorithms for, 105

parentheses requirement, 271-272
partial page caching, 163-169
passing parameters, 275

Passport authentication, 206

passwords
security of, 296
SSL with, 209
storing,211

patches, security, 221
PDAs, browser emulators for, 92
pdb files, 254

performance
Of Exceps Thrown counter, 228
analyzing,223-224
Application Center Test program, 226
Application Restarts counter, 229
assembly overhead, 234
batch compilation, 234-236,298
buffering for, 238-239
cache tuning, 134,236—237
COM object effects on, 237-238,298
compiler issues, 234236

controls, unused, 231

counters for measuring, 227-229

CPU utilization metric, 228
data-binding, effects of, 54

DataGrid reflection effects, 85,287
dynamic controls for, 20—22

Errors Total counter, 228

exception handling effects, 232-233
hardware for testing, 224

importance of tuning, 223

iterative process, importance of, 224
load simulation, 225-227,297-298
objects, caching, 237

page tracing, 229-232

processor utilization, 228

race conditions, 241

requests per second, 225,228
response time, 225

session state, minimizing, 239-241
simulating loads, 225-227,297-298
SQLServer mode of session state, 240
string concatenation effects, 239

test environments, controlling, 224-225
throughput measurement, 225-226,297
tim e-to-first-byte,225-226,297
time-to-last-byte,225-226

typing variables for, 276

validation compared to exceptions, 232-233
view state issues, 231,242

Web Application Stress Tool, 226-227

performance counters
Of Exceps Thrown, 228

Application Restarts, 229

CPU utilization metric, 228

Errors Total counter, 228
names of objects, 227
operation of, 227
processor utilization, 228
Requests/Sec counter, 228

side-by-side support with, 227

per-request caching, 179-181
personalization,179-181
Pocket PC emulator, 93

POST requests

caching, 142,157

redirection with, 13
pragma statements, 256
Pragma:no-cache header, 156,293
PrincipalLogin.aspx,213
processor utilization metric, 228

properties, setting with User controls, 31-32

Index

R

RadioButtonList control, 39-40
random number generation, 285
RangeValidator control, 42-43

redirection
mobile browser, 96
POST requests with, 13
guery strings, preserving, 13
RedirectToMSN.aspx,12
Response.Redirect method, 11-13
security issues, 296
Server.Execute method, 14-15
Server.Transfer method, 13-14
TransferDest.aspx,13
TransferSource.aspx,13

RegularExpressionValidator control, 43—44
.rem files, ISAPI mapping of, 264

rendering
configuration section, 188
mobile browser, 89,93-94
render functions, 270-271,299
Render method, 265
scriptless,93-94

Repeater control, 56-59

request state
defined,133
HttpContext.ltems,291

requests
.aspxfiles, processing for, 264—265
counter for, 228
ending, benefits of, 283
HttpContext creation, 7
IHttpHandler interface, operation of, 4—6
IHttpHandlerFactory interface, operation of, 4—6
IHttpModule interface, 7-9
measuring,225,228
name value pairs, 269-270
processing overview, 3—9
requests per second metric, 225,228
SimpleHandler.cs sample, 5-6
SimpleModule.cs sample, 7—8
web.config files for adding handlers, 6

RequiredFieldValidator control, 41
response buffers, 137

response time, 225
Response.Redirect method, 11-13
restarts, counter for, 229

.resxfiles, ISAPI mapping of, 264
reverse proxies, 111
rewriting ASP for .NET. Seemoving to ASP.NET

roles
checking, avoiding, 216
Forms Authentication with, 213-215
Global.asax for, 214-215
IsinRole method, 212
purpose of, 212
URL authorization with, 216
Windows Authentication with, 212-213

rows
filtering, 78
selection in DataGrids, 72-74

run time, ASP.NET, 4
runat="server" blocks, 25,270,29

run-time callable wrappers, 281

Index

S

security
anonymous access, 46,204,217
ASP.NET Authentication, 205-206
ASPNET account, 296
authentication for. Seeauthentication
authorization for. Seeauthorization
client certificates, 204
config file security, 199-200
configuration section, 189
cross-site scripting, 218-219
detecting running services, 221
Digest Authentication, 205
Forms authentication, 206,208-211,213-215,296
hardening servers, 221
hashing passwords, 211
IIS for, 202
impersonation,202,206-208
importance of, 201
Integrated Authentication, 205
loginUrl pages, 209-211
Passport authentication, 206
passwords, 209,211,296
patches,221
role-based,212-215
tickets, Forms authentication, 209
user accounts, 296
user names, 211
validating input, 218-220
Windows Authentication, 204-205,212-213
Windows mode authentication, 205
Windows user accounts, 296
worker process, 296

server controls
base class for, 26
binding data to. Seedata-binding
Calendar.aspx,27-28
capabilities of, 27
CheckBoxList,35-36
CompareValidator,42
CustomValidator,44-45
defined,23
disabling client-side validation, 285
DropDownList,37-38,54-55,285,286
event handlers, adding, 25
event-driven model, 25
HTML element equivalents, 26
HTML type. SeeHTML controls
HtmIHelloWorld.htm,23
iterating items, 285
list controls. Seelist controls
ListBox,36-37

message box, client-side, 33-34
MessageBox object, 33

mobile controls. Seemobile browsers
overhead from, 284

partial page caching of, 164-167
performance issues, 25

place in page structure, 23
RadioButtonList,39-40
RangeValidator,42-43
RegularExpressionValidator,43-44
RequiredFieldValidator,41
runat="server" blocks, 25,270,299
server-side invisibility, 34

types of, 24

uploading files, 46-47

User controls, 30-32

validation with. Seevalidation controls
ValidationSummary,45

values, combined, 286

varying caching by browsers, 148-149
view state with, 48-49

Web farm issues, 285
Windows.Forms namespace, 284

server variables, 249

servers
detecting running services, 221
hardening security of, 221
Server.Execute method, 14-15
Server.Transfer method, 13-14,284
services, disabling for security, 297

session state
apartment model-threaded components, 111
ASP and ASP.NET, sharing, 268
ASP version of, 110-112,282
ASP.NET overview, 112
authentication for SQLServer, 119-120
cookieless,123-124
cookies with, 113
configuration section, 189
defined,109
disabling,122,240
disadvantages of ASP version, 111-112
enabling,241
global session events, 113
history of, 110-112
HTTP cookies in ASP, 111
IDs for keys to user data, 290
in-process,112-114,240,289
IP affinity, 111
machine.config for, 113
machineKey settings, 121
mobile browsers with, 94-96
out-of-process.Seeout-of-process session state
performance issues, 239-241
race conditions, 241

read-only access to, 241

reverse proxies, 111

serialization overhead, 112,114-115
Session-End event, 289
SessionIDs,123-124,290

sharing between ASP and ASP.NET, 268
speed considerations, 112
SQLServer,114,118-121
StateServer,114,116-118

timeout values, 113,183

Web farm considerations, 111,112,121-122
wizards with, 17-19

Session-End event, 289
SessionlIDs,123-124,290

Set operator, 275

side-by-side support, 227
SimpleHandler.cs sample, 5-6
SimpleModule.cs sample, 7-8
SinglePageWizard.aspx,16-17
.soap files, ISAPI mapping of, 264
sorting data in DataGrids, 67-70
source code, viewing, 299

SQL Server
Agent,290
authentication,290
configuring for ASP.NET versions, 290
Query Analyzer session state, 119
session state, 114,118-121,240,289
SQL Scripts installation, 290

SqlDataReader,62
SQLServer mode of session state, 114,118-121,240,289

SSL (Secure Socket Layer)
authentication with, 209
Basic Authentication requirement, 296

Forms Authentication requirement, 296
STA COM objects, 111,237

state management
application state for. Seeapplication state
ASP session state, 110-112
cache API. SeeCache API
cache state for. Seecache state
controls, partial page caching of, 164-169
cookies for. Seecookies
disadvantages of ASP version, 111-112
firewalls with, 289
hidden form fields for, 124
IDs for keys to user data, 290
in-process session state, 112-114,240,289
IP affinity, 111
out-of-process session state. Seeout-of-process session state
OutputCache.SeeOutputCache directives

per-request caching, 179-181
programmatic removal of pages, 163
request state for, 133,291

reverse proxies, 111

session technigue. Seesession state
Session-End event, 289
SQLServer,114,118-121,289
stateless applications, 134
StateServer,114,116-118

static variables for, 177-179
techniques, table of, 109-110
transparency of model, 289
validation callbacks, 158-159

view state for. Seeview state

Web farm considerations, 111,112,121-122
what to cache, 172

stateless applications, 134

StateServer mode, 114,116-118

static variable state, 133,177-179

static variables, 110

strings,239

styles, adding to DataGrids, 65-67
System.Configuration namespace, 195
System .Diagnostics namespace, 255
System.Windows.Forms nhamespace, 284

Index

T

tables.See also DataGrids
ASP vs. ASP.NET, 272-273
columns, DataGrid, 63—64
deleting data, 7778
editing data, 74-76
filtering data, 78—80
inserting data, 81-83
row selection in DataGrids, 72—74

templates
DataGrid controls, for, 60,65
Datalist controls, for, 59
Repeater controls, for, 56,58

Temporary ASP.NET Files directory, 251
testing for performance, 224-225
TextBox controls, 20

threading
apartment model-threading, 111,237
ASP vs. ASP.NET, 281

throughput,225-226

tickets, Forms authentication, 209
timeout, Session state, 183
time-to-first-byte,225-226,297
time-to-last-byte,225-226

tracing pages
Application_OnError handler, 250,298
configuration files, 189,244-245
context of, 243
control tree information, 247
cookies, direction determination, 298
Cookies collection, 247—248
enabling,229,244-245
Forms collection, 249
From columns, 247
From Last column data, 298
grouping, traceMode for, 230
handlers,230
Headers collection, 249
localOnly attribute, 229
object structure, 250
options, setting, 245-246
output, interpreting, 246-249
output sample, 244
Page directive, 230-232
pageOutput attribute, 230,245
performance monitoring with, 229-232
request details information, 247
requestLimit attribute, 230,245-246
server variables, 249

sorting schemes, 245

source code, 299

Trace Hello.aspx, 244

trace information section, 247
Trace object of Diagnostics, 250,255
Trace property, setting to true, 244
trace.axd handlers, 245-246
traceMode attribute, 230,245
TraceWriteAndWarn.aspx,250
view state size, 247

Warn method, 249-251
web.config for enabling, 244
WriteLine method, 255-256
writing output, 249-251

TransferDest.aspx,13
TransferSource.aspx,13

trust configuration section, 189
try/catch syntax, 274

tuning.Seeperformance

types
conversions, ASP to .NET, 280281
typing variables recommended, 299

Index

U

unmanaged code, 279

upgrading to ASP.NET. Seemoving to ASP.NET
uploading files, 4647

URL authorization, 216218

User controls
caching,31,164-167,284
CurrentTime.ascx,30
FavoriteColor.ascx,31
IncludeCurrentTime.aspx,30
partial page caching of, 164-167
property setters in, 31-32
purpose of, 30
updating performance hit, 284

user interfaces, mobile, 91
user names, storing, 211

User-Agent headers
caching,147-148
mobile browser configuration with, 99-102

Index

\Y

validate Request attribute, 219,297

validation
callbacks,158-159
client-side,285
cross-site scripting attacks, 218-219
markup from users, 220
mobile browser, 94
requests,219,297
server-side,285
wizards with, 284

validation controls
advantages of, 41
CompareValidator,42
CustomValidator,44-45
overview of, 40-41
RangeValidator,42-43
RegularExpressionValidator,43-44
RequiredFieldValidator,41
server-side validation, 45
ValidationSummary,45

ValidationSummary control, 45

vary by methods
GetVaryByCustomString method, 149-151
VaryBy style caching, 135
VaryByCustom attribute, 148-151
VaryByParam attribute, 141,142,144-146,155,236,292-294
varying by browsers, 155
varying by control state, 167-169
varying by headers, 146-148,155
varying by parameters, 155,294
varying by user-defined conditions, 149-151

.vbfiles, 264
versions, .NET Framework, configuring, 185-186
versions of ASP.NET, 278

view state
advantages of, 125
controls with, 48-49
data-binding with, 286-287
data types for, 125
DataGrids with, 63,286-287
DataSets with, 126-127
defined,109,124
disabling,126,291
encrypting data, 48-49
form elements for, 124
hashing of data, 48
liability of, 126
list controls with, 37,285
MACs for, 124,125,290

overview,124-125

paging example, 125-126
performance issues, 242
programming,125-126
size, determining, 247
summary of, 131

Web farm issues, 285
wizards with, 17

Visual Basic
ASP vs. ASP.NET, 275-276
default property support, 275
ISAPI mappings for .vb files, 264
Let operator, 275
Option Explicit as default, 275
passing parameters, 275
Set operator, 275

.vsdisco files, 264

Index

w

WAP (Wireless Application Protocol), 88,95
Web Application Stress Tool, 226-227

Web controls
base class for, 26
Base controls, 29
Calendar.aspx,27-28
capabilities of, basic, 27
custom, creating, 33
hierarchy, inheritance, 28-29
ListControl,29
User controls, 30-32

Web farms
cached data with, 135
validation keys, 285
ViewState validation keys with, 49

Web services configuration section, 189

web.config files
application settings, 194-195
ASP setting equivalents, 278
ASP.NET sections, table of, 188-189
authentication element, 205
centralized settings, 191-192
compilation element, 234
cookieless sessions for mobile browsers, 95
custom configuration section handler, 195-199
debugging, enabling, 254
directories for, 187
encrypting,200
file structure, 190-191
file upload size, limiting, 46
groups within sections, 191
handlers, adding with, 6
impersonation with, 206-208
inherited settings, 188
locking down, 192-193
mobile custom attributes, enabling, 103
module registration, 8
parent files, 191-192
purpose of, 184,186
scriptiess mobile rendering, 93
security for, 199-200
storing custom data, 193-199
tracing, enabling, 229
updating live sites, 295

Windows Authentication, 204-205,212-213
Windows mode authentication, 205

Windows.Forms namespace, 284
WindowsPrincipal objects, 212-215

Wireless Application Protocol (WAP), 88,95
Wireless Markup Language (WML), 88,94

wizards
controls in, handling, 17
MultiPageWizard_PageOne.aspx,18
multiple page with session state, 17-19
purpose of, 15
single page approach, 16-17
SinglePageWizard.aspx,16-17
validators for, 284
view state with, 17

WML (Wireless Markup Language), 88,94

worker process
configuration section, 189
purpose of, 186
security,296

WriteLine method of Debug, 255-256

List of Figures

Chapter 1: ASP.NET Page Framework

Figure 1-1: ASP.NET and the .NET Framework
Figure 1-2: ASP.NET request processing

Figure 1-3: Page events output

Chapter 2: Server Controls

Figure 2-1: Control tree for HtmIControlsHelloWorld.aspx
Figure 2-2: A page before and after selecting a date
Figure 2-3: ASP.NET Web control hierarchy

Figure 2-4: Rendering of the ASP.NET list controls

Chapter 3: Data Controls

Figure 3-1: Code generated for data-binding a page field
Figure 3-2: The Repeater control allows for flow and column layout

Figure 3-3: Basic DataGrid rendering

Chapter 4: Developing for Mobile Browsers

Figure 4-1: The extended Page and Control classes
Figure 4-2: The role of the adapter in the life of a mobile page

Figure 4-3: The gateway translating a WAP request from the browser

Chapter 5: Managing Client State

Figure 5-1: Changing the default port in the registry

Figure 5-2: Services MMC with ASP.NET state service started

Figure 5-3: SQL Query Analyzer
Chapter 6: Managing Application and Request State

Figure 6-1:HttpRuntime request and response

Figure 6-2: Parser error from missing VaryByParam attribute
Figure 6-3: The www.asp.net site

Figure 6-4: The www.asp.net site Control Gallery

Figure 6-5: Cache in HitpModule

Figure 6-6: Server control rendering events

Figure 6-7: A cache key dependency relationship

Figure 6-8: The ASP.NET control gallery, with only some content output cached
Figure 6-9: Control tree

Figure 6-10: Control tree with PartialCachingControl

Figure 6-11: Viewing multiple control summaries simultaneously

Chapter 7: Configuration

Figure 7-1: A server with multiple installed .NET Framework installations
Figure 7-2: The ASP.NET application mapping for IIS
Figure 7-3: Internet Information Services MMC snap-in browsing a default Web site

Figure 7-4: Mapping of sections and groups

Chapter 8: ASP.NET Security

Figure 8-1: IS and ASP.NET authentication and authorization
Figure 8-2: Authentication Methods dialog box

Figure 8-3: A simple login form

Figure 8-4: Validation failure

Figure 8-5: Cross-site scripting
Chapter 9: Tuning ASP.NET Performance

Figure 9-1: Round trip between client and server

Figure 9-2: Traced output

Chapter 10: ASP.NET Debug and Trace

Figure 10-1: Trace output

Figure 10-2: Trace.axd listing

Figure 10-3: Cookie.aspx page output
Figure 10-4: Trace Warn output
Figure 10-5: Temporary ASP.NET files
Figure 10-6: Batch compilation

Figure 10-7: Dependency listing

Chapter 11: Moving to ASP.NET

Figure 11-1: Home Directory tab

Figure 11-2: File extension mappings

Figure 11-3: How IIS processes a request for a file with the .ASP extension
Figure 11-4: How IIS processes a request for a file with the .ASPX extension

Figure 11-5: Separation between managed and unmanaged code

Appendix B: The Cassini Sample Web Server

Figure B-1: Command prompt output from building Cassini
Figure B-2: Cassini controller program

Figure B-3: Directory Listing produced by Cassini

List of Tables

Chapter 5: Managing Client State
Table 5-1: Techniques for Managing State in ASP.NET

Chapter 6: Managing Application and Request State

Table 6-1: Technigues for Managing Application and Request State
Table 6-2: HTTP Cache Headers

Table 6-3:HttpCacheability Values

Table 6-4: CacheltemPriority Values, in Priority Order

Chapter 7: Configuration

Table 7-1: ASP.NET Configuration Sections

Chapter 11: Moving to ASP.NET

Table 11-1: Extensions Mapped within IIS to aspnet_asapi.dll
Table 11-2: Automatic Conversions

Table 11-3: Non-Automatic Conversions

List of Code Listings

Chapter 1: ASP.NET Page Framework

Code Listing 1-1: SimpleHandler.cs

Code Listing 1-2: BuildSimpleHandler.bat

Code Listing 1-3: HandlerWeb.config

Code Listing 1-4: SimpleModule.cs

Code Listing 1-5: ModuleWeb.config

Code Listing 1-6: Page Events.aspx

Code Listing 1-7: RedirectToMSN.aspx

Code Listing 1-8: TransferSource.aspx

Code Listing 1-9: TransferDest.aspx

Code Listing 1-10: ExecutePage.aspx

Code Listing 1-11: ExecutionFilePath.aspx

Code Listing 1-12: SinglePageWizard.aspx

Code Listing 1-13: MultiPageWizard PageOne.aspx

Code Listing 1-14: MultiPageWizard PageTwo.aspx

Code Listing 1-15: MultiPageWizard PageFinal.aspx

Code Listing 1-16: DynamicTextbox.aspx

Chapter 2: Server Controls

Code Listing 2-1: HimIHelloWorld.htm

Code Listing 2-2: HtmIControlsHelloWorld.aspx

Code Listing 2-3: HelloGoodbye.aspx

Code Listing 2-4: Calendar.aspx

Code Listing 2-5: CurrentTime.ascx

Code Listing 2-6: Include CurrentTime.aspx

Code Listing 2-7: FavoriteColor.ascx

Code Listing 2-8: SetFavoriteColor.aspx

Code Listing 2-9: Alert.aspx

Code Listing 2-10: CheckBoxList.aspx

Code Listing 2-11: ListBox.aspx

Code Listing 2-12: DropDownList.aspx

Code Listing 2-13: RadioButtonList.aspx

Code Listing 2-14: EmailRequired.aspx

Code Listing 2-15: CompareValidator.aspx

Code Listing 2-16: RangeValidator.aspx

Code Listing 2-17: ReqularExpressionValidator.aspx

Code Listing 2-18: CustomValidator.aspx

Code Listing 2-19: RequestlLengthWeb.config

Code Listing 2-20: UploadFile.aspx

Code Listing 2-21: EncryptionWeb.config

Chapter 3: Data Controls

Code Listing 3-1: DataBindField.aspx

Code Listing 3-2: DataBindControlValue.aspx

Code Listing 3-3: DataBindMethod.aspx

Code Listing 3-4: DataBind DropDownL ist.aspx

Code Listing 3-5: Repeater.aspx

Code Listing 3-6: DatalList.aspx

Code Listing 3-7: DataGrid.aspx

Code Listing 3-8: DataGridColumns.aspx

Code Listing 3-9: DataGrid Styles.aspx

Code Listing 3-10: DataGridSorting.aspx

Code Listing 3-11: DataGridPaging.aspx

Code Listing 3-12: DataGridSelect.aspx

Code Listing 3-13: DataGridEdit.aspx

Code Listing 3-14: DataGridDelete.aspx

Code Listing 3-15: DataGridFilter.aspx

Code Listing 3-16: DataGridAdd.aspx

Code Listing 3-17: DataGridSummary.aspx

Chapter 4: Developing for Mobile Browsers

Code Listing 4-1: Scriptless Browser Configuration Web.config

Code Listing 4-2: Cookieless Web.config

Code Listing 4-3: DisplayingHeaders.aspx

Code Listing 4-4: ShowCapabilities.aspx

Code Listing 4-5: accessKey.aspx

Code Listing 4-6: Allowing Custom Attributes Web.config

Code Listing 4-7: MyHtmILinkAdapter.cs

Code Listing 4-8: FiltersWeb.config

Code Listing 4-9: LabelFilter.aspx

Code Listing 4-10: HeaderFilter.aspx

Chapter 5: Managing Client State

Code Listing 5-1: In-Process Session State Configuration

Code Listing 5-2: StateServer Session State Configuration

Code Listing 5-3: SOL Server Session State Configuration

Code Listing 5-4: Disabling Session State

Code Listing 5-5: Serializetobase 64.aspx

Chapter 6: Managing Application and Request State

Code Listing 6-1: MostPopularControls.ascx

Code Listing 6-2: Page Using a User Control

Code Listing 6-3: Session, Application, and Cache

Code Listing 6-4: Cache Dictionary API

Code Listing 6-5: Per-Request Caching

Chapter 8: ASP.NET Security

Code Listing 8-1: Impersonate Web.config

Code Listing 8-2: Impersonate User Web.config

Code Listing 8-3:Forms Auth Web.config

Code Listing 8-4: Login.aspx

Code Listing 8-5: CheckWindowsPrincipal.aspx

Code Listing 8-6: PrincipalLogin.aspx

Code Listing 8-7: Global.asax

Code Listing 8-8: FormsAuthRoles.aspx

Code Listing 8-9: DenyAnonymous_Web.config

Code Listing 8-10: Authorization Web.config

Code Listing 8-11: Hello Scripted World.aspx

Chapter 9: Tuning ASP.NET Performance

Code Listing 9-1: Tracing Web.config

Code Listing 9-2: TracingOutput.aspx

Code Listing 9-3: Divide ByZeroWith Exception.aspx

Code Listing 9-4: Divide ByZeroWithChecking.aspx

Code Listing 9-5: TriggerBatchCompile.cs

Code Listing 9-6: No Session State Web.config

Code Listing 9-7: EnableSessionState.aspx

Code Listing 9-8: ReadOnlySessionAccess.aspx

Chapter 10: ASP.NET Debug and Trace

Code Listing 10-1: Trace Hello.aspx

Code Listing 10-2: Trace Enabled Web.config

Code Listing 10-3: Cookie.aspx

Code Listing 10-4: TraceWriteAndWarn.aspx

Code Listing 10-5: Debug Web.config

Code Listing 10-6: DiagnosticsDebug.aspx

Code Listing 10-7: NoLinePragmas.aspx

Chapter 11: Moving to ASP.NET

Code Listing 11-1: HelloWorldHttpHandler.ashx

List of Sidebars

Chapter 2: Server Controls

Extending Web Controls

Chapter 3: Data Controls

Managing ViewState Size

Combining Data-Bound and Static ltems

When Does the DataGrid Control Need to Be Data-Bound?

	Microsoft ASP.NET Coding Strategies with the Microsoft ASP.NET Team
	Table of Contents
	BackCover
	Microsoft ASP.NET Coding Strategies with the Microsoft ASP.NET Team
	Introduction
	Structure of This Book
	Sample Files
	Software Needed to Run the Samples
	Creating an IIS Virtual Directory
	Web.config Code Samples
	Other Resources
	Support

	Chapter 1: ASP.NET Page Framework
	Understanding ASP.NET Request Processing
	Understanding the ASP.NET Page Life Cycle
	Controlling Page Execution
	Implementing a Wizard
	Working With Dynamic Controls
	Summary

	Chapter 2: Server Controls
	HTML Controls
	Web Controls
	Controls for Validating User Input
	Uploading a File
	Using ViewState with Sensitive Data
	Summary

	Chapter 3: Data Controls
	The Repeater, DataList, and DataGrid Controls
	Specifying Columns Explicitly
	DataBinder.Eval
	Adding Styles to the DataGrid
	Sorting the DataGrid
	Paging the DataGrid
	Editing Data in the DataGrid
	Deleting Data in the DataGrid
	Filtering Data with the DataGrid
	Advanced DataGrid
	Summary

	Chapter 4: Developing for Mobile Browsers
	Selecting Page and Control Adapters
	Designing for Mobile Browsers
	Taking Advantage of Emulators
	Using Cookieless Sessions
	Directing Users to Mobile Content
	Working with Device Updates
	Adding Support for a New Browser
	Writing a Custom Adapter
	Working with Pagination
	Using Device-Specific Filters
	Summary

	Chapter 5: Managing Client State
	History of Session State
	ASP.NET Session State
	Using ViewState to Store State in the Page Output
	Using Cookies for Client State Management
	Summary

	Chapter 6: Managing Application and Request State
	Caching Overview
	Page Caching Using the OutputCache Directive
	Output Cache APIs
	Caching Parts of the Page
	Cache and the Application API
	Static Application Variables
	Per-Request Caching
	Summary

	Chapter 7: Configuration
	How Configuration Works
	Centralized Configuration Settings
	Locking Down Configuration
	Storing Custom Configuration Data
	Securing Configuration Data
	Summary

	Chapter 8: ASP.NET Security
	Authenticating Users
	Using Impersonation
	Using Forms Authentication
	Working with Roles
	Authorizing Users
	Validating Input
	Hardening the Server
	Summary

	Chapter 9: Tuning ASP.NET Performance
	Page Tracing
	Throwing Exceptions
	Compiling ASP.NET Applications
	Using the Cache
	Using COM Objects
	Buffering Content
	Minimizing Session State
	Using View State
	Summary

	Chapter 10: ASP.NET Debug and Trace
	Reading Trace Output
	Writing Trace Output
	How ASP.NET Compilation Works
	Enabling Debug
	Sending Data to the Debugger
	Summary

	Chapter 11: Moving to ASP.NET
	Migrating to ASP.NET
	Integrating ASP and ASP.NET
	Summary

	Appendix A: Tips and Tricks
	Server Controls
	Data Controls
	Developing for Mobile Browsers
	Managing Client State
	Managing Application and Request State
	Configuration
	ASP.NET Security
	Tuning ASP.NET Performance
	ASP.NET Debug and Trace
	Moving to ASP.NET

	Appendix B: The Cassini Sample Web Server
	Downloading the Cassini Web Server
	Files Installed with Cassini
	Building Cassini
	Running Cassini
	Getting Help With Cassini

	Index
	Index_A
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J-K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W

	List of Figures
	List of Tables
	List of Code Listings
	List of Sidebars

