

01 559575 FM.qxd 3/2/04 3:53 PM Page i

FOR

DUMmIES
‰

Jakarta Struts

by Mike Robinson and

Ellen Finkelstein

01 559575 FM.qxd 3/2/04 3:53 PM Page iv

01 559575 FM.qxd 3/2/04 3:53 PM Page i

FOR

DUMmIES
‰

Jakarta Struts

by Mike Robinson and

Ellen Finkelstein

01 559575 FM.qxd 3/2/04 3:53 PM Page ii

Jakarta Struts For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
e-mail: permcoordinator@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP­
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE­
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON­
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR­
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004101960

ISBN: 0-7645-5957-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/RZ/QT/QU/IN

01 559575 FM.qxd 3/2/04 3:53 PM Page iii

About the Authors

Mike Robinson has been working in the computing field since, well, when
minicomputers were popular. He has a master’s degree in computer science
and has been an independent Java developer specializing in interactive Web
applications since 1998. Mike is an adjunct faculty member in the Computer
Science Department at Maharishi University of Management in Fairfield, Iowa.
If he had any spare time, he would probably spend it hiking.

Ellen Finkelstein is the author of numerous best-selling computer books on
AutoCAD, PowerPoint, Flash, and most recently OpenOffice.org. She writes
regular articles on AutoCAD and PowerPoint in magazines, e-zines, and for
Web sites. She is an adjunct Instructor of Management, teaching e-business
courses to M.B.A. students. She writes at home so that she can take the bread
out of the oven on time.

01 559575 FM.qxd 3/2/04 3:53 PM Page iv

01 559575 FM.qxd 3/2/04 3:53 PM Page v

Dedication

To MMY, for explaining the organizing power of Natural Law that sustains the
existence and evolution of the entire universe and showing us how to make use
of this power in our daily lives to achieve maximum results through minimum
effort.

Authors’ Acknowledgments

Mike Robinson

First and foremost I have to thank my co-author, Ellen Finkelstein, who initiated
me into the ins and outs of writing a book. Ellen is the epitome of cool under
the pressure of deadlines. She always manages to have a great sense of humor
and shiny outlook regardless of the situation. Thanks for your patience.

Thanks to my wife, Pat, who is always my guiding inspiration.

Ellen Finkelstein

I’d like to start out by thanking Mike Robinson for his extensive knowledge and
experience, clear thinking, integrity, sense of responsibility, and great flexibility.
Mike is the fountain of knowledge for this book. He is always a pleasure to work
with.

Thanks to my husband, Evan, and kids, Yeshayah and Eliyah (who want to
see their names in a book), who support me while I’m writing, writing, and
writing some more.

Collectively

At Wiley, our esteemed publisher, we’d like to thank Terri Varveris, our acqui­
sitions editor, for her ever-lively support. Both Linda Morris and Susan Pink
were our able project editors, keeping track of innumerable details, including
chapters, figures, and by how many pages we were over our quota. They kept
us on track and made it easy.

Thanks to Peter Just, our friend and colleague, who did a thorough and care­
ful job of technical editing, making sure that our terms and code were correct
and that we were consistent and clear. He also contributed the material for
Chapter 5.

01 559575 FM.qxd 3/2/04 3:53 PM Page vi

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editors: Susan Pink and Linda Morris

Acquisitions Editor: Terri Varveris

Technical Editor: Peter Just

Editorial Manager: Carol Sheehan

Permissions Editor: Laura Moss

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Production

Project Coordinator: Nancee Reeves

Layout and Graphics: Andrea Dahl,

Lauren Goddard, Denny Hager,

Lynsey Osborn, Heather Ryan,

Jacque Schneider

Proofreaders: Andy Hollandbeck,

Carl William Pierce,

TECHBOOKS Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01 559575 FM.qxd 3/2/04 3:53 PM Page vii

Contents at a Glance

Introduction ...1

Part I: Getting to Know Jakarta Struts7
Chapter 1: Starting with the Basics ...9
Chapter 2: Laying the Groundwork ...25
Chapter 3: Creating a Simple Web Application with Struts ..47

Part II: Starting from the Core89
Chapter 4: Controlling with the Controller ..91
Chapter 5: Creating the Model ...109
Chapter 6: Designing the View ...137
Chapter 7: Setting the Configuration ..159

Part III: Expanding Your Development Options189
Chapter 8: Exceptions to the Rule ...191
Chapter 9: Getting Friendly with Plug-ins ...209
Chapter 10: Getting a Helping Hand with Tag Libraries ...225
Chapter 11: Working with Page Composition Techniques249
Chapter 12: Securing Your Application ..265

Part IV: Putting It All Together279
Chapter 13: Logging Your Actions ...281
Chapter 14: Creating the MusicCollection.com Application287

Part V: The Part of Tens ...327
Chapter 15: Ten Helpful Extensions to Struts ..329
Chapter 16: Ten Ways to Find More Information ...337

Part VI: Appendixes ...345
Appendix A: Struts-EL and JSTL Tag Library Syntax ...347
Appendix B: Glossary ...375

Index ...379

01 559575 FM.qxd 3/2/04 3:53 PM Page viii

01 559575 FM.qxd 3/2/04 3:53 PM Page ix

Table of Contents

Introduction ..1

About This Book ..1
How to Use This Book ..2
Foolish Assumptions ..2
Conventions Used in This Book ..3
How This Book Is Organized ..3

Part I: Getting to Know Jakarta Struts ...4
Part II: Starting from the Core ..4
Part III: Expanding Your Development Options4
Part IV: Putting It All Together ...4
Part V: The Part of Tens ..4
Part VI: Appendixes ...5

Icons Used in This Book ...5
Where to Go from Here ...5

Part I: Getting to Know Jakarta Struts7

Chapter 1: Starting with the Basics .9
What Is Jakarta Struts? ...9
Structuring a Web Application ..11

Using Java Servlets ..12
Creating JavaServer Pages ...13
Using JavaBeans ..14

Understanding the Model-View-Controller Design Pattern17
What is a design pattern? ...18
The MVC design pattern ...18
How Struts enforces the MVC pattern ..19

Chapter 2: Laying the Groundwork .25
Getting Java ..26

Downloading and installing Java ...26
Setting the Java Home environment variable28

Getting the Web Container ...29
Downloading Tomcat to Windows ..29
Installing Tomcat under Windows ...29
Installing Tomcat under Linux or Mac OS X31
Starting and testing Tomcat ...32

01 559575 FM.qxd 3/2/04 3:53 PM Page x

x Jakarta Struts For Dummies

Choosing Your Development Environment ..33
Downloading and Installing Eclipse ..34
Getting the Tomcat Launcher Plug-in for Eclipse35

Downloading and installing the Tomcat Launcher plug-in35
Configuring the Tomcat Launcher plug-in ..36

Getting Struts ...39
Downloading Struts ...40
Reviewing the components of Struts ..41

Testing Your Web Application Development Environment43

Chapter 3: Creating a Simple Web Application with Struts47
Designing Your First Struts Application ...48

Application requirements ...48
Determining which components to use ..49

Putting Everything in Place ...49
Creating the project in Eclipse ..50
Setting up the application folders ...52
Importing the Struts files ..54

Creating the JavaServer Pages ..59
The login.jsp page ...59
The loggedin.jsp page ...64
Using message resources ...67

Making the Formbean ...69
Adding a JavaBean ..74
Creating an Action ...75
Configuring Struts ...78

Defining web.xml ...78
Configuring Struts with struts-config.xml ..81

Strutting Your Stuff: Running the Application ...85
Deploying the Login application ...85
Testing the application ...85
Debugging with Eclipse ..87

Part II: Starting from the Core89

Chapter 4: Controlling with the Controller .91
Understanding the Struts Controller Classes ..91
Working with the Master Controller — the ActionServlet93

Starting the Servlet ...94
Processing requests ..97
Shutting down the Servlet ..97

Working with the Controller’s Helper — RequestProcessor98
Getting Down to Work: Extending ActionClass100

Using the execute method ..101
Predefined Action classes ..103
Action Forms ..108

01 559575 FM.qxd 3/2/04 3:53 PM Page xi

Table of Contents xi

Chapter 5: Creating the Model .109

Understanding the Model ..109
Working with Business Objects ...110

Meeting requirements for business objects111
Adding helper classes ...112
Using JavaBeans ..112

Implementing the Model ..112
Achieving persistence ...113

Getting MySQL ...113
Downloading and installing MySQL ..114
Downloading MySQL Connector/J ..114

Setting Up Your IDE and Web Container ..115
Importing the class library into Eclipse ...115
Adding the class library to Tomcat ...116

Working with MySQL ..117
Starting and stopping MySQL ..118
Creating a database ...120
Creating a table in MySQL ..121
Inserting data in the users table ..121
Executing queries ..122
Exiting the MySQL command tool ...123

Connecting the Model to the Database ..123
Working with JDBC ..124
Retrieving multiple records ...126

Pooling Connections ...130
Jakarta Commons DBCP ...131
Using connection pooling ...132
Configuring the data source in Struts ...134

Chapter 6: Designing the View .137
Choosing JSP or an Alternative ...137

Template engines ...137
XML tools ...139

Internationalization ...139
Creating multinational applications ..140
Using one source for String type constants148

Mediating between the View and the Controller149
Configuring the formbean ..150
Interactions with the formbean ...151
Preparing the form with the reset method152
Indexing data ..152
Validating data ...152
Declarative form validation ..154

Notifying Users of Problems ..154
Mediating Automatically ..155

Configuring the DynaActionForm class ..156
Differences between ActionForm and DynaActionForm157

01 559575 FM.qxd 3/2/04 3:53 PM Page xii

xii Jakarta Struts For Dummies

Chapter 7: Setting the Configuration .159
Stringing the Parts Together ..159
Editing the Web Container Configuration File ...160

The ServletContext configuration tag ...162
Listener configuration ..163
ActionServlet configuration ...163
ActionServlet mapping ...166
Adding in the tag libraries ..166
A complete example of a web.xml file ..167

Modifying the Struts Configuration File ...169
DataSource configuration ...169
Formbean configuration ...171
Global exceptions ..174
Global forwards ...175
Action mapping ...176
Controller configuration ...179
Message resource configuration ...181
Plug-in configuration ...183
Complete example of a struts-config.xml file184

Part III: Expanding Your Development Options189

Chapter 8: Exceptions to the Rule .191
Java Errors and Exceptions ...192

Try/catch block ...192
Throwing exceptions ..193
Wrapping it up in finally ...194

Exception Strategies ...196
Catching exceptions ..196
Exception information ..196

Writing Your Own Exception Classes ...197
Using Chained Exceptions ...198
Asserting Yourself ...199
Handling Exceptions Yourself ..201

Saving information ..202
Recovering from errors ..202
Inform the user ..202
Fail gracefully ...202

Declarative Exception Handling ..203
Declaring the exception ..204
Global or local exception handling ...204

Extending ExceptionHandler ...205
Handling RuntimeExceptions in Struts ..207

01 559575 FM.qxd 3/2/04 3:53 PM Page xiii

Table of Contents xiii

Chapter 9: Getting Friendly with Plug-ins .209

Using the PlugIn Interface ..209
Implementing and Configuring Your Own Plug-in210
Working with the Validator Plug-in ...212

Configuring the Validator plug-in ..213
Using the Validator plug-in ...213
Extending the ValidatorForm class ...214
Configuring the Validator plug-in in the config file215
Defining the fields to validate ..215
Tweaking other files ..221
Try out the modified Login application ..222
Looking more closely at validation.xml ..222
Using the Validator with DynaActionForms224

Chapter 10: Getting a Helping Hand with Tag Libraries225
Using Tag Libraries ...226
Expressing with the Expression Language ...227

Identifiers ...228
Literals ..228
Operators ...229
Implicit Objects ...229

Using the Struts-EL Tag Library ..230
Getting the Struts-EL tag library ..230
Beans-EL library ..232
HTML-EL library ..232
Logic-EL library ...233

Working with the JSP Standard Tag Library ..234
Core library ..234
Formatting library ...238
SQL library ...241
XML library ..244

Other Struts Tag Libraries ...245
Tiles library ..245
Struts-Layout library ...245
Display library ...246

Looking at Java Server Faces ...246

Chapter 11: Working with Page Composition Techniques249
Making Your Page Layout Life Easier ..249
Simplifying with Includes ...251
Using the Tiles Framework ..256

Configuring Tiles ...259
Tiles definitions ...260
Using XML for Tile definitions ...262

01 559575 FM.qxd 3/2/04 3:53 PM Page xiv

xiv Jakarta Struts For Dummies

Chapter 12: Securing Your Application .265
Making the Application Responsible ..265

Logging in and authenticating a user ..266
Authorizing a user ...266
Authentication and authorization in Struts266
Customizing the RequestProcessor Class267

Declaring Security in Your Web Container ...270
Step 1 — Setting up the roles ...270
Step 2 — Defining the realms ...270
Step 3 — Specifying authorization areas ..273
Step 4 — Defining authentication methods275
Examples of declaring authorization and authentication276

Part IV: Putting It All Together279

Chapter 13: Logging Your Actions .281
Logging for Everyone ..281
Using Commons Logging ..282
Using Java 1.4 Logging ..284
Working with the Log4J Package ...284

Chapter 14: Creating the MusicCollection.com Application287
Description of the Application ..287
Creating the Database Schema ..289
Configuring DataSource ..290
Creating the Pages and Associated Files ..290
Logging On from the Home Page ...292

Home page design ...292
LoginForm ..293
LoginValidation and validation.xml ...293
LoginAction ..294
LoginBean, model layer, and exception handling295
Action mapping configuration ...296
Continued User Authentication ...297

Creating a User Account ...298
Join page ...299
The Join form ...299
Join validation ..300
JoinAction ...301
JoinBean ...302
Configuring the action mapping for JoinAction304
The Welcome page ..304

Displaying the User’s Albums ..305
The MusicList page ...305
The MusicList form ...306

01 559575 FM.qxd 3/2/04 3:53 PM Page xv

Table of Contents xv

MusicListAction ...307
MusicListBean ..308
Configuring action mapping for MusicListAction309

Creating, Editing, or Deleting an Album ...310
The Album page ...310
AlbumForm ...310
StartupManager ...312
AlbumValidation ..312
AlbumAction ..312
AlbumBean ...318

Logging Off ...322
LogoffAction ...322
Configuring action mapping for LogoffAction323

Handling Exceptions ...323
Our own exception ..323
The custom ExceptionHandler ..323
Declarative exception handling ...324
Error pages ...324

Running the Application ...325

Part V: The Part of Tens ..327

Chapter 15: Ten Helpful Extensions to Struts329
ImageButtonBeanManager ...329
Struts Spring Plug-in ...330
Hibernate ..330
Expresso ...331
SSLExt ...332
Struts Action Scripting ...332
StrutsDoc ..333
StrutsTestCase for JUnit ...334
Struts Workflow Extension ...334
Easy Struts Plug-in ..335

Chapter 16: Ten Ways to Find More Information337
Struts Web Site ..337
Struts Mailing Lists ...338
Articles ...339
Tutorials ...339
Consultants ..340
Classes ..341
Struts Resources Web Sites ...341
Sample Applications ...342
Struts Documentation ...343
Friends and Colleagues ..344

01 559575 FM.qxd 3/2/04 3:53 PM Page xvi

xvi Jakarta Struts For Dummies

Part VI: Appendixes ..345

Appendix A: Struts-EL and JSTL Tag Library Syntax 347
Beans-EL Library Syntax ...347
HTML-EL Library Syntax ...348
Logic-EL Library Syntax ..361
JSTL Core Library Syntax ...363
JSTL Formatting Library Syntax ..366
JSTL SQL Library Syntax ..370
JSTL XML Library Syntax ...372

Appendix B: Glossary .375

Index ..379

02 559575 intro.qxd 3/2/04 3:54 PM Page 1

Introduction

Welcome to Jakarta Struts For Dummies, your plain-English guide to the
Java programming framework that everyone is talking about. In this

book, we explain how to use Struts to support your Java-based Web develop­
ment. Jakarta Struts For Dummies gives you all the information you need to
start using Jakarta Struts — so that you can create better code right away.

About This Book

As if you didn’t know, Jakarta Struts For Dummies covers Jakarta Struts, the
popular, open-source framework for creating Web applications in Java.

We comprehensively explain the features in Jakarta Struts, including the
following:

� How Jakarta Struts structures Web application code into three groups —
Model, View, and Controller — and how this helps make your code
easier to write and maintain

� How Struts works with a Web container, JavaServer Pages, and Java
servlets

� Integrating Struts into a Web development environment

� Controlling your application’s business logic

� Representing your data, whether a few items or a huge and complex
database

� Designing the view — the JavaServer Pages that the application presents
to the user

� Internationalizing a Web application and using the internationalization
feature to create easy-to-update text content, even if you care about only
one language

� Validating data

� How the configuration files hold all the parts together

� Using plug-ins to extend Jakarta’s functionality

02 559575 intro.qxd 3/2/04 3:54 PM Page 2

2 Jakarta Struts For Dummies

� Using tag libraries

� Using Java Server faces

� How tiles help you to dynamically create pages

� Securing your application

� Logging for troubleshooting

How to Use This Book
You don’t have to read this book from cover to cover. Jakarta Struts For
Dummies provides just the information you need, when you need it. If you
already have your Web development environment set up, you don’t need to
read all of Chapter 2, for example. However, we do suggest that you skim that
chapter to understand the environment we use in the book, so that you can
adjust your steps accordingly.

For additional information, don’t ignore Part V, where we explain ten helpful
extensions to Jakarta Struts and ten ways to get more information. In Part VI,
we list the syntax of the Struts-EL and JSTL tag libraries and provide a glossary.

So that you don’t have to tire out your fingers, you can find code for this
book at www.dummies.com/go/jakarta.

Keep Jakarta Struts For Dummies handy while you work. You’ll find that it’s a
useful resource.

Foolish Assumptions

We know that you want an easy-to-understand, logical explanation of how
to incorporate Jakarta Struts into your programming environment. Our first
assumption is that because you’re a Web developer, you’re not a dummy! We
also assume that you know Java and understand how to create JavaServer
Pages. You understand also the overall concepts involved in creating a Web
application.

You can use any IDE (Integrated Development Environment) that you want, or
you can write your code in a simple text editor. However, we chose to use an
IDE so that we can give you the specific steps that you need to take to create
a complete Web application. That IDE is Eclipse, an open-source, full-featured
IDE. If you choose a different IDE, we assume that you understand your IDE
well enough to figure out the parallel commands that we provide for Eclipse.
Alternatively, you can use Eclipse while you’re getting up to speed with Struts
and then go back to your previous IDE. Who knows, maybe you’ll find that
you like Eclipse as much as we do!

02 559575 intro.qxd 3/2/04 3:54 PM Page 3

3 Introduction

Finally, we assume that you know your operating system. We use Windows
for this book, but you should be able to use this book with Linux or Mac OS,
for example. After all, cross-platform usability is one of the reasons you use
Java, isn’t it?

Just in case, here a few of the most common PC-to-Mac conversions for key­
board strokes and mouse movements:

PC Mac

Ctrl Command (Ô)

Right-click Ctrl-click

Enter Return

Alt Option

Conventions Used in This Book

A typographical convention is not a convention of typists. Instead, a typo­
graphical convention helps you to know why some text is bold and other is
italic so that you can figure out what we’re talking about. New terms are in
italic. Text that you need to type is bold. (If the text that you need to type is
in an entire sentence that’s bold, the text you type is not bold, to create a con­
trast.) Messages and other text that come from Jakarta Struts are in a special
typeface, like this. Code in a paragraph uses the same special typeface.

When we say something like “Choose File➪Save As,” it means to click the File
menu and then choose Save As from the menu that appears. When we want
you to use a toolbar button, we tell you to click the button.

How This Book Is Organized

We start by introducing you to Jakarta Struts and its concepts. We help you
collect the pieces you need for a complete Web development environment
and then introduce you to a simple Web application. Then we drill deep into
the processes you need to understand to use Struts as you create a Web
application.

More specifically, this book is divided into five parts. Each part contains two
or more chapters, and each part functions as a whole to explain how Jakarta
Struts works.

02 559575 intro.qxd 3/2/04 3:54 PM Page 4

4 Jakarta Struts For Dummies

Part I: Getting to Know Jakarta Struts

Part I contains important introductory information about Jakarta Struts,
including what it is and how to start using it. Chapter 3 takes you through the
steps of creating a simple logon application from beginning to end so that you
can get the big picture and understand the details that follow in the rest of the
book. You can download all the code from www.dummies.com/go/jakarta,
giving you more time to understand, place, and deploy the application.

Part II: Starting from the Core

Part II settles into the three groups that make up the Struts framework: the
Controller (Chapter 4), the Model (Chapter 5), and the View (Chapter 6). In
Chapter 7, we explain how to use the configuration files. This part contains all
the concepts that you need to know to use Struts for creating Web applications.

Part III: Expanding Your Development
Options
Part III offers some additional tools and techniques that any programmer can
use. Chapter 8 covers exception handling. Chapter 9 explains how to use plug-
ins. Chapter 10 reviews the tag libraries as well as how to use Java Server faces
and create custom tabs. Chapter 11 discusses page composition techniques
including server side includes and tiles. Chapter 12 is all about securing
your application.

Part IV: Putting It All Together

Part IV starts with a chapter on using logging to troubleshoot any problems
that might come up. (But that never happens to you, does it?) Then we intro­
duce a music collection application as a thorough example of the process of
developing an application using Struts.

Part V: The Part of Tens

No For Dummies book is complete without its part of tens — it’s a long-
standing tradition. Chapter 15 reviews ten helpful extensions to Struts,
and Chapter 16 offers you ten ways to find more information about Struts.

02 559575 intro.qxd 3/2/04 3:54 PM Page 5

5 Introduction

Part VI: Appendixes

Throughout the book, we use tags from the Struts-EL and JSTL tag libraries.
For your easy reference, Appendix A includes the syntax for all the tags in
these libraries. Appendix B is a glossary of the terms we use in this book, just
to make sure that you understand what we’re saying!

Icons Used in This Book

If you see little pictures in the margins, you’ve found an icon. Icons highlight
special information in the text and let you know if you need to look more
carefully or if you can just skip to more important parts.

This icon alerts you to information that you need to keep in mind to avoid
wasting time or falling on your face.

Jakarta Struts has some advanced features you may want to know about —
or not. This icon lets you know when we get into some heavy details

Tips help you complete a task more easily, quickly, or effectively. Don’t skip
these.

This icon is telling you to play close attention. Otherwise, you never know
what may happen.

Where to Go from Here

Enough of all this talk. Let’s move into the real content of this book and start
using Jakarta Struts.

If you want, review the table of contents to see which parts interest you. Or
just turn the page and start reading. Happy programming. Enjoy!

02 559575 intro.qxd 3/2/04 3:54 PM Page 6

Jakarta Struts For Dummies6

03 559575 PP01.qxd 3/2/04 4:13 PM Page 7

Part I
Getting to Know
Jakarta Struts

03 559575 PP01.qxd 3/2/04 4:13 PM Page 8

In this part . . .

T
and maintenance.

his is where you find out what Jakarta Struts is and
what it can do for your Web applications. We explain

how Jakarta Struts fits into the architecture of a Web
application, including the Web container, Java Server
Pages, and Java Servlets. We show you how Jakarta Struts
organizes and structures your application for easy coding

In case you don’t already have all the pieces necessary to
create Web applications, in Chapter 2 we run through the
process of obtaining and installing an entire Web develop­
ment environment. In Chapter 3 we describe a simple Web
application created using Jakarta Struts.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 9

Chapter 1

Starting with the Basics
In This Chapter
� Getting an overview of Jakarta Struts

� Creating the structure of a Web application

� Understanding the Model-View-Controller paradigm

Suppose that you’re a programmer and your job is creating Web applica­
tions. You know the basics of Web applications. You use the Java pro­

gramming language because of its power and flexibility. To make the Web
pages interactive, you create Java Servlets and JavaServer Pages (JSP).
You’re getting pretty good at what you do, so your Web applications are
becoming more complex.

You’ve heard the buzz about Jakarta Struts and how it can help structure
leaner, tighter Web applications. You want to know how you can make use
of this powerful programming framework to make your application program­
ming more systematic and consistent, while taking less time. In this chapter,
we explain what Jakarta Struts is all about and how it fits into the scheme of
a Web application.

What Is Jakarta Struts?

Jakarta Struts is incredibly useful in helping you create excellent Web appli­
cations. When you use Jakarta Struts, your applications should work more
effectively and have fewer bugs. Just as important (because your time is
important), Struts should save you hours and hours of programming and
debugging.

As we explain more fully later in this chapter, Struts is a framework that struc­
tures all the components of a Java-based Web application into a unified whole.
These components of a Web application are

� Java Servlets: Programs written in Java that reside on a Web server and
respond to user requests

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 10

10 Part I: Getting to Know Jakarta Struts

� JavaServer Pages: A technology for generating Web pages with both
static and dynamic content

� JavaBeans: Components that follow specific rules, such as naming
conventions

� Business logic: The code that implements the functionality or rules of
your specific application

We provide an overview of the first three items in this chapter. (The business
logic varies with each application.)

Jakarta Struts uses a specific paradigm, or design pattern, to structure your
application. You simply fill in the pieces of the structure. The design pattern
is called Model-View-Controller (MVC). The MVC design pattern helps you
organize the various pieces of the application puzzle for maximum efficiency
and flexibility. We explain MVC later in this chapter and expand on the Model,
View, and Controller concepts in Chapters 4, 5, and 6.

Structuring a Web Application

We define a Web application as a program that resides on a Web server and
produces static and dynamically created pages in a markup language (most
commonly HTML) in response to a user’s request. The user makes the request
in a browser, usually by clicking a link on the Web page. Figure 1-1 shows a
high-level view of Web architecture. We explain the components of this figure
subsequently in this chapter.

To build Web applications, you use Java 2 Enterprise Edition (J2EE), which
provides support for Servlets, JSP, and Enterprise JavaBeans (EJB), a distrib­
uted, multi-tier, scalable component technology.

Figure 1-1:
High-level

view of Web
architecture.

Browser

Web Server

Web Container

Java
Servlet

JSP
page

Database

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 11

Chapter 1: Starting with the Basics 11

Where does Jakarta Struts come from?

you need to know something about the open-
source movement that is its heritage. Open-
source generally refers to software that the
distributor provides at no cost to the user and
that includes both the binary (compiled) code
and the source code.

cific license, and the license can vary from one

GNU (www.gnu.org) license provides that you
must always include the source code if you
redistribute the software of the application,
whether or not you have made modifications
to the original source code. The Apache
(www.apache.org) license does not require
you to provide the source code when you redis­
tribute one of their applications. So open-
source software licenses vary — check the
license to be sure. For more information on
open-source software, take a look at www.
opensource.org.

Jakarta is one of many projects under the aus­
pices of the Apache Software Foundation (ASF)
(www.apache.org), formerly known as the
Apache Group. The Apache Group was formed
in 1995 by a number of individuals who worked
together to create one of the most successful
examples of an open-source project, the

1999, the Apache Group became the non-profit
Apache Software Foundation, to better provide

support for its members and a legal presence to
protect its resources.

for other related open-source applications.
Currently 16 software projects are supported by

software projects is a bit of a mis­
nomer because many of these projects have
numerous subprojects that are really indepen­
dent projects in themselves. Creativity is unlim­
ited, so the ideas keep coming!

Jakarta (jakarta.apache.org) is one of the

Software Foundation, charged with the cre­

Platform, based on software licensed to the
Foundation, for distribution at no charge to the
public.” Struts is one of the 22 subprojects cur­

subproject.

Struts was created by Craig R. McClanahan and

employee of Sun Microsystems and is the pri­

can read about Craig and many other Struts
contributors at jakarta.apache.org/
struts/volunteers.html. The Struts 1.0
release had 17 contributors. With release 1.1
that number has jumped to 50. The project was
named Struts as a reference to the architectural
structures in buildings and homes that provide
the internal support. The present version of
Struts is 1.1.

To understand what Jakarta Struts is all about,

You obtain open-source software under a spe­

software provider to another. For example, the

Apache Web Server (used by 64% of the Web
sites on the Internet as of October, 2003). In

As the popularity of Apache grew, so did ideas

ASF. Actually,

principal 16 ASF projects. To quote from their
Web site, “Jakarta is a Project of the Apache

ation and maintenance of commercial-quality,
open-source, server-side solutions for the Java

rently listed. Yes, this entire book is about one

donated to ASF in May, 2000. Craig is an

mary developer of both Struts and Tomcat 4. You

A Web container is a program that manages the components of a Web applica­
tion, in particular JSP pages and Java Servlets. A Web container provides a
number of services, such as

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 12

12 Part I: Getting to Know Jakarta Struts

� Security: Restricted access to components, such as password protection

� Concurrency: The capability to process more than one action at a time

� Life-cycle management: The process of starting up and shutting down a
component

Some people use the term JSP/Servlet container, which means the same thing
as Web container. We favor Web container — it’s shorter and easier to type.

Apache Tomcat is an example of a Web container — an open-source imple­
mentation of the J2EE Java Servlet and JavaServer Pages (JSP) specifications.
A specification is a document that describes all the details of a technology.
The implementation is the actual program that functions according to its
specification. In fact, Apache Tomcat is the official reference implementation
for the J2EE Java Servlet and JSP specifications. As a result, Apache Tomcat
is a popular Web container for Web applications that use JSP and Servlets,
including applications that use Struts. We use Tomcat in all the examples in
this book. However, many other commercial and open-source Web containers
are available.

Typically, a Web container also functions as a Web server, providing basic
HTTP (Hypertext Transfer Protocol) support for users who want to access
information on the site. When requests are for static content, the Web server
handles the request directly, without involving Servlets or JSP pages.

However, you may want your Web pages to adapt in response to a user’s
request, in which the response is dynamic. To generate dynamic responses,
the Servlet and JSP portion of the container gets involved. Tomcat has the
capability to act as both a Web server and a Web container. However, it also
can interact with a standard Web server, such as Apache Web Server, letting
it handle all static requests and getting involved only when requests require
Servlet and JSP service.

Using Java Servlets

Java Servlets extend the functionality of a Web server and handle requests
for something other than a static Web page. They are Java’s answer to CGI
(Common Gateway Interface) scripts of olden times (5 to 6 years ago). As
their name implies, you write Java Servlets in Java and usually extend the
HttpServlet class, which is the base class from which you create all
Servlets. As such, Java Servlets have at their disposal the full functionality
of the Java language, which give them a lot of power.

Servlets need to run in a Web container, an application that adheres to the
Java Servlet Specification. In most cases, the container will support also the
JavaServer Pages Specification. You can find a list of products supporting the

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 13

Chapter 1: Starting with the Basics 13
Java Servlet and JSP specifications at java.sun.com/products/servlet/
industry.html. The latest Java Servlet Specification is 2.3, and the latest
JavaServer Pages Specification is 1.2.

Creating JavaServer Pages

You use JavaServer Pages to present dynamic information to the user in a
Web page. A JSP page has a structure like any static HTML page, but it also
includes various JSP tags, or embedded Java scriptlets (short Java code frag­
ments), or both. These special tags and scriptlets are executed on the server
side to create the dynamic part of the presentation, so that the page can
modify its output to reflect the user’s request.

What really happens behind the scenes is that the JSP container translates
the JSP page into a Java Servlet and then compiles the Servlet source code
into runnable byte code. This translation process happens only the first time
a user accesses the JSP page. The resulting Servlet is then responsible for
generating the Web page to send back to the user.

Each time the JSP page is changed, the Web container translates the JSP page
into a Servlet.

Listing 1-1 shows an example of a JSP page, with the JSP-specific tags in bold.

Listing 1-1 Sample JSP Page

1 <%@ page contentType=”text/html;charset=UTF-
8”language=”java” %>

2 <%-- JSTL tag libs --%>
3 <%@ taglib prefix=”fmt” uri=”/WEB-INF/fmt.tld” %>
4 <%-- Struts provided Taglibs --%>
5 <%@ taglib uri=”/WEB-INF/struts-html-el.tld”

prefix=”html” %>
6 <html:html locale=”true”/>
7 <head>
8 <fmt:setBundle basename=”ApplicationResources” />
9 <title><fmt:message key=”loggedin.title”/></title>
10 </head>
11 <body>
12 <jsp:useBean id=”polBean”

class=”com.othenos.purchasing.struts.POListBean”/>
13 <H2>
14 <fmt:message key=”loggedin.msg”>
15 <fmt:param value=’${polBean.userName}’ />
16 </fmt:message>
17 </H2>
18 </body>
19 </html>

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 14

14 Part I: Getting to Know Jakarta Struts

JSP defines six types of tag elements:

� Action: Follows the XML (eXtended Markup Language) format and always
begins with <jsp:some action/>. It provides a way to add more func­
tionality to JSP, such as finding or instantiating (creating) a JavaBean for
use later. You see one example of an action tag in line 12 of the code in
Listing 1-1.

� Directive: A message to the Web container describing page properties,
specifying tag libraries, or substituting text or code at translation time.
The form is <%@ the directive %>. Listing 1-1 has directives on lines
1, 3, and 5.

� Declaration: Declares one or more Java variables or methods that you
can use later in your page. The tag has this form <%! declaration %>.

� Expression: Defines a Java expression that is evaluated to a String. Its
form is <%= expression %>.

� Scriptlet: Inserts Java code into the page to perform some function not
available with the other tag elements. Its form is <% java code %>.

� Comment: A brief explanation of a line or lines of code by the developer.
Comments have the form <%-- the comment --%>. Lines 2 and 4 in
Listing 1-1 are examples of comments.

Because a JSP file is just a text file, you can create it in just about any kind of
text editor. Note that some editors understand JSP syntax and can provide
nice features such as formatting and color coding. A few of the bigger ones are
Macromedia Dreamweaver (www.macromedia.com/software/dreamweaver/),
NetBeans (www.netbeans.org), and Eclipse (www.eclipse.org); the last two
are complete Java development environments.

Like Java Servlets, JSP pages must be run in a Web container that provides
support for JSP technology, as we explained in the preceding section, “Using
Java Servlets.”

Using JavaBeans

When you program in Java, you define or use classes that function as a tem­
plate for objects that you create. A JavaBean is a special form of Java class
that follows certain rules, including the methods it uses and its naming
conventions.

Beans are so useful because they are portable, reusable, and platform indepen­
dent. Beans are components because they function as small, independent pro­
grams. JavaBeans component architecture defines how Beans are constructed
and how they interact with the program in which they are used.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 15

Chapter 1: Starting with the Basics 15

Scope
Scope refers to an area in which an object
(such as a Bean or any Java class) can be
stored. Scopes differ based on the length of
time stored objects are available for reference,
as well as where the objects can be referenced
from.

In JSP and Struts, scope can be one of four
values:

� Page: Objects in the page scope are avail­
able only while the page is responding to
the current request. After control leaves the
current page, all objects stored in the page
scope are destroyed.

� Request: Objects in the request scope are
available as long as the current request is

being serviced. A request can be serviced
from more than one page.

� Session: The objects in the session scope
last as long as the session exists. This could
be until the user logs out and the session is
destroyed or until the session times out due

application has a unique session.

� Application: The longest lasting scope
is the application scope. As long as the
application is running, the objects exist.
Furthermore, objects in the application
scope are available to all clients using the
application.

to inactivity. Each client using the Web

You can call a JavaBean a Bean and everyone will know what you’re talking
about, as long as you’re not discussing coffee.

The JavaBean documentation refers to the rules as design patterns. However,
this term is more generally used to refer to design patterns such as the
Model-View-Controller design pattern. Naming conventions is a more appro­
priate term.

As an example of the special Bean rules, let’s look at properties. A Bean’s prop­
erties that are exposed (public) are available only through the getter and setter
methods, because the actual property definition is typically private (available
to only the defining class). The properties follow the naming convention that
the first letter of the property must be lowercase and any subsequent word
in the name should start with a capital letter, such as mailingAddress. (We
explain getters and setters after Listing 1-2.) Listing 1-2 is an example of a
simple Bean.

Listing 1-2 Example of a Simple JavaBean

public class SimpleBean implements java.io.Serializable
{

private String name;

// public no-parameter constructor
public SimpleBean()

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 16

16 Part I: Getting to Know Jakarta Struts

{
}
// getter method for name property
public String getName()
{

return name;
}
// setter method for name property
public void setName(String aName)
{

name = aName;
}

}

In this example, String is the type of property and name is the property.

Methods that access or set a property are public (available to anyone using
the Bean) and also use a certain naming convention. You name these meth­
ods as follows:

� To get a property’s value, the method must begin with get followed by
the property name with the first letter capitalized, as in public String
getName();.These methods are called getters.

� To set a property’s value, the method must begin with set followed by
the property name with the first letter capitalized and the value to set the
property to, as in public void setName(String theName);. These
methods are called setters.

You should also be familiar with special naming conventions for Boolean and
indexed properties. Many additional requirements exist, but they are less
important for our situation. See java.sun.com/docs/books/tutorial/
javabeans/index.html for more information on JavaBean requirements.

You should follow the JavaBean conventions when creating Beans to ensure
that the user of the Bean knows how to get information in and out of the com­
ponent. Classes that use the Beans know that if it’s really a Bean, it follows
the proper conventions; therefore, the class can easily discover the proper­
ties, methods, and events that make up the Bean.

In Struts, you commonly use Beans in Web applications and specifically in a
more restricted manner than in the component architecture we just described.
You use Beans more often as temporary holding containers for data. For exam­
ple, suppose that a user requests to see a purchase order. The Web application
then does the following:

1. Retrieves a copy of the requested purchase order information from the
backend database

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 17

Chapter 1: Starting with the Basics 17
2. Builds a PurchaseOrder Bean

3. Populates the Bean with the retrieved data

4. Uses the Bean in the JSP page to display the data.

Because the Web application has transferred the data from the backend data­
base to the Web page or for access by the business logic, the Bean is called a
Data Transfer Object (DTO). A DTO is a design pattern.

Understanding the Model-View-
Controller Design Pattern

Although Struts is not a complete application, it can be customized through
extension to satisfy your programming needs. By using Struts, you can save
hundreds, if not thousands, of hours of programming time and be confident
that the underlying foundation is efficient, robust, and pretty much bug-free.
When implemented properly, Struts is definitely a boon.

An application framework is a skeleton of an application that can be cus­
tomized by the application developer. Struts is an application framework that
unifies the interaction of the various components of a J2EE Web application —
namely Servlets, JSP pages, JavaBeans, and business logic — into one consis­
tent whole. Struts provides this unification by implementing the Model-View-
Controller (MVC) design pattern. Struts provides an implementation of the
MVC design pattern for Web applications. To understand why this is so impor­
tant, you need to see why MVC is such a useful architecture when dealing with
user interactions.

The MVC pattern is the grand-daddy of object-orientated design patterns.
Originally used to build user interfaces (UI) in Smalltalk-80, an early object-
oriented programming system, it has proved useful everywhere UI’s are pre­
sent. The MVC pattern separates responsibilities into three layers of
functionality:

� Model: The data and business logic

� View: The presentation

� Controller: The flow control

Each of these layers is loosely coupled to provide maximum flexibility with
minimum effect on the other layers.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 18

18 Part I: Getting to Know Jakarta Struts

What is a design pattern?

The expression “Don’t reinvent the wheel” means that you shouldn’t try to
solve a common problem that many bright people have already faced and
solved in a clever and elegant way. For many years, other disciplines (for
example, architecture) have recognized that repeating patterns of solutions
exist for common problems. In 1995, an often-quoted book called Design
Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, and Vlissides (published by Addison-Wesley Publishing Co.) used
the same technique to formalize problem-solving patterns in the field of
object-orientated design.

A design pattern is a blueprint for constructing a time-tested solution to a
given problem. It’s not a concrete implementation; rather, it’s a high-level
design of how to solve a problem. Because design patterns are more general
than concrete implementations, they are consequently more useful because
they have broader applications.

The MVC design pattern

In the MVC design pattern, the Model provides access to the necessary busi­
ness data as well as the business logic needed to manipulate that data. The
Model typically has some means to interact with persistent storage — such
as a database — to retrieve, add, and update the data.

The View is responsible for displaying data from the Model to the user. This
layer also sends user data to the Controller. In the case of a Web application,
this means that both the request and the response are in the domain of the
View.

The Controller handles all requests from the user and selects the view to
return. When the Controller receives a request, the Controller forwards the
request to the appropriate handler, which interprets what action to take based
on the request. The Controller calls on the Model to perform the desired func­
tion. After the Model has performed the function, the Controller selects the
View to send back to the user based on the state of the Model’s data.

Figure 1-2 shows the relationships among the three layers.

To get an idea of why the MVC pattern is so useful, imagine a Web application
without it. Our fictional application consists of just JSP pages, with no Servlets.
All the business logic necessary to service a user’s request and present the
user with the desired results is in those JSP pages. Although this scheme is
simpler than an implementation using MVC, it is also difficult to work with for
anything but the most trivial application, due to the intermixing of Model, View,
and Controller elements.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 19

Chapter 1: Starting with the Basics 19
Query Model State

Figure 1-2:
The Model-

View- View selection
Controller

pattern.
 Requests state changeUser request

View

Controller

Model

To illustrate the difference between Web applications that don’t use MVC
and those that do, think about the difference between Rocky Road and
Neapolitan ice cream. Both may be delicious, but if you want to make any
changes to Rocky Road, think about how much trouble it would be to switch
the almonds for walnuts. The almonds are too deeply embedded in the ice
cream to do the switch without affecting everything else. On the other hand,
because Neapolitan is cleanly separated into layers, switching one flavor for
another is an easy task. Think of Neapolitan as MVC compliant, and Rocky
Road as not.

Using the MVC pattern gives you many advantages:

� Greater flexibility: It’s easy to add different View types (HTML, WML,
XML) and interchange varying data stores of the Model because of the
clear separation of layers in the pattern.

� Best use of different skill sets: Designers can work on the View, program­
mers more familiar with data access can work on the Model, and others
skilled in application development can work on the Controller. Differ­
entiation of work is easier to accomplish because the layers are distinct.
Collaboration is through clearly defined interfaces.

� Ease of maintenance: The structure and flow of the application are clearly
defined, making them easier to understand and modify. Parts are loosely
coupled with each other.

How Struts enforces the MVC pattern

The architecture of Struts provides a wonderful mechanism that, when fol­
lowed, ensures that the MVC pattern remains intact. Although Struts provides
a concrete implementation of the Controller part of the pattern, as well as pro­
viding the connections between the Controller and Model layers and between
the Controller and View layers, it doesn’t insist on any particular View para­
digm or require that you construct the Model in a particular way.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 20

20 Part I: Getting to Know Jakarta Struts

The Struts Controller
Although Struts does not provide or require any particular Model or View
components of the MVC pattern, it does implement the Controller as well as
the mechanisms that bind the three layers and allow them to communicate
with each other. The primary controller class is a Java Servlet called the
ActionServlet. This class handles all user requests for Struts-managed
URLs. Using information in the configuration files, the ActionServlet class
then gets the appropriate RequestProcessor class that collects the data
that is part of the request and puts it into an ActionForm, a Bean that con­
tains the data sent from or to the user’s form. The final step of the Controller
is to delegate control to the specific handler of this request type. This han­
dler is always a subclass of the Action class. Figure 1-3 shows how Struts
uses the MVC pattern.

The Action subclass is the workhorse of the Controller. It looks at the data
in the user’s request (now residing in an ActionForm) and determines what
action needs to be taken. It may call on the business logic of the Model to
perform the action, or it may forward the request to some other View. The
business logic may include interacting with a database or objects across the
network or may simply involve extracting some data from an existing
JavaBean.

After the necessary action has been performed, the Action subclass then
chooses the correct View to send back to the user. The View is determined by
the current state of the Model’s data (the model state) and the specifications
you defined in the Struts configuration file. (For an explanation of the configu­
ration file, see the “The Struts configuration file” section later in this chap­
ter). Figure 1-4 shows the principal classes of the Struts Controller.

JSP
page

ActionServlet

Action

Action

Action

Action

JavaBean

JavaBean

JavaBean

JavaBean

JSP
page

ControllerView Model

Figure 1-3:
The Struts
use of the

MVC
pattern.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 21

Chapter 1: Starting with the Basics 21
ActionServlet

ActionMapping

Figure 1-4:
Principal

Struts
classes of
the Struts
Controller.

RequestProcessor

Action

ActionForm

ActionForward

The Struts View
As mentioned, Struts does not provide, nor is it dependent on, a specific pre­
sentation technology. Many Struts applications use JSP (JavaServer Pages)
along with the Struts tag library (Struts and Struts-EL), JSTL (JSP Standard
Tag Library), and JSF (Java Server Faces). Some other possibilities are

� Apache Cocoon (cocoon.apache.org/)

� Jakarta Velocity templates (jakarta.apache.org/velocity/

index.html)

� XSLT (eXtensible Stylesheet Language Transformation) (www.w3.org/
TR/xslt)

The JSP specification provides for the creation of HTML-like tags that extend
the functionality of JSP. These custom tags are bundled by their creators into
custom tag libraries and are accompanied by a descriptor file called a Tag
Library Descriptor (tld). The Struts and Struts-EL tag libraries are examples
of this extended functionality.

Our examples throughout the book use JSP along with Struts-EL, JSTL, and
other tag libraries. (For more on tag libraries, see Chapter 10.)

For new projects, the recommendation from the Struts Web site is to use not
the standard Struts tag libraries, but instead the Struts-EL tag library along
with JSTL. The Struts-EL tags library is really a reimplementation of the stan­
dard Struts tag library to make it compatible with JSTL’s method of evaluat­
ing values. However, when a JSTL tag implemented the same functionality,
the Struts tag was not reimplemented in the Struts-EL library. See jakarta.
apache.org/struts/faqs/struts-el.html for full details on the Struts-EL
tag library.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 22

22 Part I: Getting to Know Jakarta Struts

The Struts Model
Nothing in Struts dictates how to construct the Model. However, the best
practice is to encapsulate the business data and operations on that data into
JavaBeans, as we described previously when discussing Data Transfer Objects
(in the “Using JavaBeans” section). The data and operations may reside in the
same class or in different classes, depending on your application.

The operations represent the business logic that your application is defining.
Operations may be the rules that should operate on a particular business entity.
For example, if you’re writing a purchasing system, part of the business data
might be an entity called a Purchase Order. You may encapsulate this data into a
class called PurchaseOrder as a way of representing the Purchase Order entity.
Furthermore, you may choose to place your business rules directly into this
class, or you may choose to put the rules into a different class.

The connection between the Controller and Model rests in the code that you
write in the Action subclasses. The Action subclasses contain the analysis
of the user’s request that determines the interaction (if any) with the Model.
Some examples of that interaction are

� Creating a JavaBean (like the PurchaseOrder class example above) that
in turn accesses a database to populate itself and then makes it available
to subsequent Views.

� Referencing a business logic object and asking it to perform some opera­
tion based on incoming data from the user.

The Action subclass initiates any action required to handle a user’s request,
thereby creating the connection with the Model.

When formulating a response, the Controller may pass some or all of the
Model data to the View through the use of the ActionForm Bean. Although
this Bean is a data container, it should not be considered part of the Model
but rather just a transport mechanism between the Model and the View. Just
as often, the View may directly reference the Model’s data by referencing one
or more of the Beans that belong to the Model.

The standard MVC pattern describes an interaction between the Model and
the View so that when the Model’s data changes, it can immediately push
those changes out to the View so the user sees them. However, this is more
difficult to achieve in the Web application architecture. Consequently, the
View is commonly updated by the user requesting it.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 23

Chapter 1: Starting with the Basics 23
The Struts configuration file
The Struts configuration file performs an important role in structuring your
Struts application. Although it is not really part of the Model, View, or
Controller, it does affect the functioning of the three layers. The configuration
file allows you to define exactly which of your Action subclasses should be
used under what circumstances and which ActionForm should be given to
that Action subclass. So you specify part of the Controller interaction in the
configuration file.

In addition, when the Controller decides which View to return to the user, it
chooses the particular View according to specifications in the configuration
file. Thus the configuration file actually defines many of the connections
between the MVC components. The beauty of the configuration file is that
you can change the connections without having to modify your code. The
configuration file does much more than defining connections, which is why
we devote all of Chapter 7 to the configuration file.

04 559575 Ch01.qxd 3/2/04 3:54 PM Page 24

24 Part I: Getting to Know Jakarta Struts

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 25

Chapter 2

Laying the Groundwork
In This Chapter
� Installing Java

� Installing the Web container

� Choosing a development environment

� Installing Eclipse

� Getting the Tomcat Launcher

� Installing Jakarta Struts

� Testing your application

In this chapter, we explain all the necessary preparations to actually start
using Struts. We also specify what you need to do to create the sample

Struts application that we introduce in Chapter 3.

To get ready to use Struts, you need to gather several tools, install them, and
make sure they’re in working order.

You must download and install five items to follow the examples in the book.
Each one is free and open source:

� The Java environment: Used for development and running the Web
container.

� The Web container application: We use Jakarta Tomcat because it’s the
reference implementation for the JSP and Servlet specification, as we
explain in Chapter 1.

� A Java integrated development environment (IDE): We chose Eclipse,
the popular open-source IDE. Eclipse is a fine tool with plenty of features
to help the programmer.

� A plug-in for the IDE: We use Sysdeo Eclipse Tomcat Launcher to assist
in running applications in Tomcat.

� The Struts framework: What this entire book is about!

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 26

26 Part I: Getting to Know Jakarta Struts

Getting Java

The first step in preparing to use Struts is to ensure that you have an up-to-
date version of Java. This is a primary consideration: All your work in Struts
depends on having the proper version of Java.

If you already installed a recent version (1.3 or later) of the Java Standard
Edition SDK (Software Development Kit), you can skip this step and jump
ahead to the next section, “Getting the Web Container.” Note that we said
SDK, not JRE (Java Runtime Environment). Tomcat, the Web container,
requires the compiler in the SDK version to compile the JSP pages.

Downloading and installing Java

Before installing a recent version of Java, you need to uninstall any previous
versions. You need at least 120MB of disk space to install the SDK. Windows
2000 or XP users must have administrator privileges to perform the installation.

The exact steps to download and install Java depend on your operating system.
To download and install Java in a Windows environment, follow these steps:

1. Go to java.sun.com/j2se/downloads.html.

2. Click the link for the latest SDK version of J2SE (1.4.2 as of this writing).

The Download page for the version you chose appears, as shown in
Figure 2-1.

You can download many things from this page. The only one you need
for this book is the one labeled Download J2SE v 1.4.2_03. Ignore the
others and choose the SDK for your operating system.

3. Click the Download link for your operating system.

The License Agreement appears.

4. Read the License Agreement. Scroll down to the bottom and click

Accept.

The Java installation file link appears.

5. Click the Java installation file link.

The File Download dialog box appears.

6. Click Save.

The Save As dialog box appears.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 27

Chapter 2: Laying the Groundwork 27

Figure 2-1:
The

Download
page for

J2SE.

7. Choose a location for the installation file and then click Save.

Jot down the location — you’ll need it later.

8. When the download is complete, locate and double-click the installa­
tion file.

The InstallShield Wizard opens.

9. Follow the instructions in the InstallShield Wizard to install Java

Standard Edition SDK.

To test your installation, display a command prompt as follow. In Windows,
choose Start➪(All) Programs➪Accessories➪Command Prompt. Type the fol­
lowing command:

java –version

Java responds with the version information about the SDK you just installed,
as shown in Figure 2-2.

When installing the Java SDK, two JREs are installed by default. One JRE is in
the home directory of the SDK and is considered private. The other JRE is
generally installed in the Program Files directory of the system volume. This
second JRE is considered the public JRE.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 28

28 Part I: Getting to Know Jakarta Struts

Figure 2-2:
Testing your

J2SE
installation.

Setting the Java Home

environment variable

If you want to follow our examples by using Tomcat as the Web container, you
also need to set an environment variable so that Tomcat can find and use the
Java environment. This variable is JAVA_HOME, and you set it to the installed
location of the SDK.

The procedure for setting this variable depends on your operating system.
To set this variable in Windows 2000 and XP, follow these steps:

1. Choose Start➪Control Panel.

If you’re using the Classic theme, choose Start➪Settings➪Control Panel.

2. Double-click the System icon.

3. Click the Advanced tab.

4. Click the Environment Variables button.

5. In the System Variables section, click the New button.

The Edit System Variable dialog box appears.

6. In the Variable Name text box, type JAVA_HOME.

7. In the Variable Value text box, type the full path to the installation
folder, as shown in Figure 2-3.

8. Click OK three times to close all the dialog boxes and the Control
Panel.

Figure 2-3:
Setting the

JAVA_
HOME

environmen­
tal variable.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 29

Chapter 2: Laying the Groundwork 29

Getting the Web Container

For the examples of Web applications in this book, we assume that you’re
using the Tomcat Web container, version 4.1.x. Of course, you can choose
whatever container you please, as long as it supports the Servlet 2.3 and
JSP 1.2 specifications.

Downloading Tomcat to Windows
To download Tomcat to Windows NT, 2000, or XP, follow these steps:

1. Go to jakarta.apache.org/tomcat/index.html.

2. In the Downloads menu on the left, click the Binaries link.

The Binary Downloads page appears.

3. Scroll down (quite a bit) until you see the Tomcat 4.1.29 KEYS link.

Tomcat 4.1.29 is the latest version as of this writing.

Each Tomcat link includes KEYS and PGP links. Each binary version of
Tomcat (in fact, all Jakarta project binaries) is digitally signed by the
developers. To verify that the binary version you download is intact, you
download the public KEY. Then you use the public domain PGP program
to check the key against the PGP signature. To see how to do this, take a
look at www.apacheweek.com/issues/01-06-01. You can verify Tomcat
if you want, or you can simply download Tomcat without verification.

4. Click one of the links below the Tomcat 4.1.29 KEYS link.

We suggest choosing the Tomcat 4.1.29.exe link instead of the 4.1.29.zip
link because the .exe file automatically installs shortcuts for starting
and stopping Tomcat. The File Download dialog box appears.

5. Click the Save button.

The Save As dialog box opens.

6. Choose a location for the file and then click Save.

Remember where you put the downloaded file.

Installing Tomcat under Windows

After you download the Tomcat installation file, you need to install Tomcat.
The instructions vary according to your operating system. Here we provide
instructions for Windows. After these steps, we refer you to online resources
that provide installation instructions for Linux and Mac OS.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 30

30 Part I: Getting to Know Jakarta Struts

To install Tomcat under Windows, follow these steps:

1. Double-click the installation file.

A dialog box appears, explaining that Tomcat has found your Java
installation.

2. Click OK.

The License Agreement opens.

3. Read the License Agreement and then click the I Agree button.

The Installation Options dialog box appears, shown in Figure 2-4.

Figure 2-4:
The

Installation

Options

dialog box.

4. Keep the default installation values and then click Next.

The Installation Directory dialog box appears.

5. Change the path so that Tomcat is in the root of the drive and rename
the folder by replacing the blank space between Tomcat and 4.1 with
a hyphen or an underscore, as shown in Figure 2-5.

Sometimes we experience problems with DOS commands when the path
name contains blank spaces; eliminating blank spaces reduces the
chance for problems later.

Figure 2-5:
Setting the
installation

directory.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 31

Chapter 2: Laying the Groundwork 31
6. Click the Install button.

The Installer puts the files into the location you specified. Then the
Testing Installer Options dialog box appears.

7. If you don’t have a Web server program installed and running, change
the port from 8080 to 80.

If you already have a Web server such as Apache or IIS, just leave the
port number at 8080.

The standard Web server port is 80 and consequently does not need to
be specified in the browser URL. If you leave the port at 8080, remember
that all requests to Tomcat must specify port 8080. For example, you
need to enter http://localhost:8080/index.jsp instead of http://
localhost/index.jsp to display the index.jsp page in your browser.

8. In the Password text box, type a password and then click Next.

The Setup program completes the Tomcat installation.

9. Click Close.

Congratulations! You successfully installed Tomcat.

Installing Tomcat under Linux or Mac OS X

If you need to install Tomcat on Linux, refer to the instructions at the following:

www.cymulacrum.net/tomcat/tomcat_install.html#2

Be sure to download the full Tomcat, not just the LE (Lite) version.

Installing Tomcat on OS X is a snap. Refer to the documentation on the Apple
Developers site at developer.apple.com/internet/java/tomcat1.html.

Port numbers
Ports are numbered network connectors that a

for well-known functions such as ftp or telnet.

communications.

ports. This means those port numbers must be
registered with Internet Corporation for Assigned
Names and Numbers (ICANN), much like
domain names must be registered. Port 8080 is

application.

Port numbers from 49152 through 65535 can be
used by anybody for any reason.

computer uses to communicate using the Inter-
net’s Transmission Control Protocol (TCP). Gen­
erally, port numbers 0 through 1023 are reserved

For Web applications, remember that port 80
is reserved for HTTP protocol (Web server)

Ports from 1024 through 49151 are registered

registered for use for the Tomcat Web server

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 32

32 Part I: Getting to Know Jakarta Struts

Starting and testing Tomcat

After you install Tomcat, you should start it and test it. To start Tomcat,
choose Start➪(All) Programs➪Apache Tomcat 4.1➪Start Tomcat. The Start
Tomcat screen appears, as shown in Figure 2-6.

Figure 2-6:
The Start

Tomcat

screen.

To test that Tomcat is running, open your favorite browser and type the fol­
lowing URL:

http://localhost

If you see the page shown in Figure 2-7, Tomcat is installed and running
properly.

If the Tomcat home page does not appear, you probably didn’t change the
port to 80 in Step 7 in the “Installing Tomcat under Windows” section. To
change the port, follow these steps:

1. Navigate to tomcat-4.1\conf\server.xml.

2. Open the server.xml file with a text editor, such as Notepad.

3. Use the Find function (in Notepad, choose Edit➪Find) to find 8080.

4. Click Find Next to find the next instance of 8080.

You see the statement port=”8080”.

5. Change 8080 to 80.

6. Save and close the server.xml file.

7. Restart the Tomcat server.

8. Try typing http://localhost in your browser again.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 33

Chapter 2: Laying the Groundwork 33

Figure 2-7:
The default

Tomcat

home page.

Choosing Your Development Environment

An integrated development environment (IDE) is a tool for writing and editing
programming code. However, choosing an IDE is up to you. Some people are
minimalists and prefer to simply use a good editor. Others like to have every­
thing built into their development environment. You can find tools out there
for every taste and budget.

We like Eclipse (www.eclipse.org). Although Eclipse is definitely not for the
minimalists, it’s not bloated with tons of features you never use. Eclipse has
all the necessities you might want in a development environment, including
a great editor, compiler, and debugger. Support for building and deploying
applications is built-in with the Ant program.

Ant is a Java-based build tool that makes building and deploying applications
a one-step process. If you’re not familiar with Ant, see ant.apache.org. Like
Struts, Ant is an Apache open-source project.

And if Eclipse doesn’t offer all the functionality you want or need, chances
are someone has written a plug-in that does. (A plug-in is a program that pro­
vides additional functionality and plugs in to the main application.) You can

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 34

34 Part I: Getting to Know Jakarta Struts

find plug-ins that manage a Tomcat environment, interface with your favorite
source-code control program, or offer any of a hundred other actions that
extend Eclipse. Oh, and did we mention that Eclipse is an open-source pro­
ject? There’s no charge for it or most of its plug-ins.

If you already have a favorite tool and it satisfies your requirements, you
shouldn’t change it. If you do want to try something else but Eclipse is not
for you, try one of the dozens of Java IDEs available. Some are free and all
are easy to find on the Internet. Here are a few of the more popular ones:

� Borland JBuilder: Borland offers Enterprise, Professional, and Personal
versions of JBuilder. The Personal version is free. Go to www.borland.
com/jbuilder/index.html.

� IBM WebSphere Studio: Built on Eclipse technology, WebSphere Studio
expands functionality by combining enterprise-level project management,
advanced Java development, visual editors, Web infrastructure manage­
ment, and support for Web services. Visit www-3.ibm.com/software/
info1/websphere/index.jsp.

� IntelliJ IDEA: This IDE, at www.intellij.com/idea, has received a lot
of good reviews from developers around the world, so don’t ignore it
when researching your choices.

� NetBeans: Released into open-source in July of 2000 by Sun Microsystems,
NetBeans at www.netbeans.org, is full-featured and used by many
developers.

Downloading and Installing Eclipse

To download Eclipse, follow these steps:

1. Go to www.eclipse.org/downloads/index.php.

2. To find the proper download server, click the link for your part of the
world.

3. Click the link for the version of Eclipse you want to download.

The current production version as of this writing is 2.1.2. You see the
page for the version you chose.

4. Click the HTTP or FTP link (you can download using either method)
for your operating system and follow the instructions to complete the
download.

If you use plug-ins, be careful about upgrading to the latest and greatest ver­
sion of Eclipse. Developers sometimes don’t update their plug-ins to run with
the latest Eclipse version for weeks or months after the version release date.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 35

Chapter 2: Laying the Groundwork 35
To install Eclipse, use a decompression program such as WinZip to extract
the eclipse-SDK-2.1.2-win32.zip file directly to a root of a drive (for
example, C:\). An Eclipse folder structure is created automatically. (Don’t
worry — all those files don’t go into your root!)

To run Eclipse, double-click the eclipse.exe file, which is in the Eclipse
folder that the extraction creates. For further information, read the eclipse\
readme\readme_eclipse.html file. For easy access, you probably want to
create a shortcut to the eclipse.exe file.

Getting the Tomcat Launcher
Plug-in for Eclipse

If you decide to use Eclipse, you should think about installing at least one
plug-in that can help you work easily with Tomcat. The Sysdeo Eclipse
Tomcat Launcher plug-in at www.sysdeo.com/eclipse/tomcatPlugin.
html is a great addition that has the following features and benefits:

� Lets you start and stop the Tomcat Web container from Eclipse.

� Lets you register the Tomcat process with the Eclipse debugger. This is
invaluable when the time comes to test your code running in Tomcat.

� Is free and open source.

You can read about the other features of the plug-in on the Web site.

Be sure to install Tomcat, as explained in the “Getting the Web Container”
section, before installing this plug-in.

Downloading and installing the
Tomcat Launcher plug-in
To download the Sysdeo Eclipse Tomcat Launcher, follow these steps:

1. Go to www.sysdeo.com/eclipse/tomcatPlugin.html.

2. Scroll to the Download section and click the link for the version that
you want to download.

You can download the latest version, which may be a beta version, or
the latest final release. We use version 2.1.

3. Save the .zip file in any temporary folder or directory.

4. Make sure Eclipse is not running.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 36

36 Part I: Getting to Know Jakarta Struts

5. Use WinZip or a similar decompression utility to decompress the

.zip file.

Decompress the file into the eclipse\plugins folder, assuming that
eclipse is the folder where you installed the Eclipse application.

Placing the extracted files in the plugins folder installs the plug-in.

Configuring the Tomcat Launcher plug-in

When you’ve installed the Tomcat plug-in, you can configure it.

You must install the Tomcat Web container before you can install the Tomcat
plug-in.

Follow these steps to configure the Tomcat plug-in:

1. Start Eclipse, by double-clicking the eclipse.exe file or the Eclipse
shortcut, if you created one.

2. To activate the plug-in, choose Window➪Customize Perspective from
the Eclipse menu.

The Customize Perspective dialog box opens. Before continuing, be sure
the current perspective is Java. If it is, the dialog box will have this sen­
tence across the top — “Select the items to be displayed in the current
perspective (Java).”

3. Click the plus sign (+) next to Other, and then click the Tomcat check
box to select it, as shown in Figure 2-8. Click OK to close the dialog box.

4. To let the plug-in know where Tomcat is installed, choose Window➪
Preferences to open the Preferences dialog box.

Figure 2-8:
Activating

the Tomcat
plug-in in

Eclipse.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 37

Chapter 2: Laying the Groundwork 37
5. In the list on the left side of the dialog box, click the Tomcat item.

6. In the Tomcat Home text box, type the path to the folder where you
installed Tomcat or click the Browse button to navigate to and select
the folder.

7. At the top of the Preferences dialog box, use the Tomcat Version radio
buttons to choose the version of Tomcat that you’re using, as shown in
Figure 2-9.

Figure 2-9:
Specifying

the location
of the

Tomcat
installation.

8. To set the SDK’s JRE for Eclipse, click the plus sign (+) next to the Java
item in the list on the left side of the Preferences dialog box.

9. Click the Installed JREs item and check the panel on the right side of
the dialog box to make sure that the JRE that’s selected is from the SDK.

You can tell whether the JRE is from the SDK because the location points
to the path where the SDK was installed. (See Figure 2-10.) The plug-in
launches Tomcat using the default JRE checked in the Eclipse Preferences
window. Because Tomcat needs the SDK to perform properly, you need to
ensure that the private JRE in the SDK is used as the Eclipse default JRE. If
the JRE is not from the SDK, you need to add the private JRE to the list. To
add another JRE, see the information after these steps.

10. To make sure that the plug-in works, click the Start Tomcat button on
the Eclipse toolbar.

You see startup messages in the Console window, as shown at the bottom
of Figure 2-11.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 38

38 Part I: Getting to Know Jakarta Struts

Figure 2-10:
Checking to

make sure
that Eclipse

lists your
Java SDK

as the
default JRE.

Figure 2-11:
Starting

Tomcat from
Eclipse.

11. To test Tomcat, open your Internet browser and type http://localhost
in your browser’s address window.

You see the Tomcat startup page (refer to Figure 2-6).

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 39

Chapter 2: Laying the Groundwork 39
If the JRE you saw listed in Step 9 was not the SDK you installed, follow these
steps to add another JRE to the list:

1. In the Preferences dialog box, click the Add button.

The Create JRE dialog box appears.

2. In the JRE Name text box, type a name for the new JRE, such as

SDK 1.4.2.

3. In the JRE Home Directory text box, type the path where you installed
the SDK or click the Browse button to navigate to and select the SDK
directory, as shown in Figure 2-12.

4. Click OK to save your addition.

5. In the Installed JREs dialog box, click to select the box next to the JRE
you just created.

Refer to Figure 2-10.

6. Click OK to close the Preferences dialog box.

Figure 2-12:
Adding a

new JRE to

Eclipse.

Getting Struts

When you have a fully functioning development environment as well as a
ready-to-go Web container, you’re ready to get Struts and set it up for use.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 40

40 Part I: Getting to Know Jakarta Struts

Getting the Struts source code
If you want the Struts source code for
some reason, go to jakarta.apache.org/
struts/acquiring.html. First click the
Prerequisites link in the Acquiring Struts section
to make sure that you have all the prerequisite
software. Then return to the Acquiring Struts
section and click the Struts Source Code
Distribution link to get the source code.

No prerequisites are required for the binary ver­
sion if you’re using a Java JRE version 1.4 or

Sun Microsystems provides the JXML (Java
XML) reference (example) implementation at
java.sun.com/xml, or you can get the
Xerces XML parser at xml.apache.org.

Put the parser into the Struts/lib directory after
installing Struts,. The simplest route is to use the
latest version of Java (SDK 1.4.2 as of this writ­
ing), as explained in the “Downloading and

better. If you intend to use a Java JRE version

earlier than 1.4, you need to get an XML parser.

installing Java” section, earlier in this chapter.

As of this writing, Struts is in release version 1.1. Although a later version
might be available by the time you get around to downloading, we suggest
that you use version 1.1 because this book is based on that version. After you
feel comfortable with 1.1, you can easily upgrade to the latest version.

Downloading Struts

The first step in getting started with Struts is to download the code. To down­
load Struts, follow these steps:

1. Go to the Jakarta download area at

jakarta.apache.org/site/binindex.cgi.

2. Scroll down to the Struts item.

3. If you’re a Windows user, click the 1.1 zip link. If you use Unix, click
the 1.1 tar.gz link.

These links are for the binary versions. For the instructions that follow,
we assume that you download the binary version.

For an explanation of the KEYS and PGP links that you find on the site, see
the “Downloading Tomcat to Windows” section earlier in this chapter.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 41

Chapter 2: Laying the Groundwork 41

Reviewing the components of Struts

Struts is not installed like a regular application — by itself, it’s only a frame­
work that forms the basis of an application. So the closest step to installing is
to put the Struts components into their proper positions in the Web applica­
tion directory structure. We will do this in Chapter 3 when we build our first
Struts application.

When you finish downloading the Struts file, decompress it to a temporary
folder. Navigate to that directory. Inside you see three files and three folders:

� INSTALL: This file outlines special installation notes for Web containers
other than Tomcat. You can safely ignore this file if you’re using the
Tomcat Web container.

� LICENSE: This file defines the terms by which you can use this software.

� README: This file explains how to install Struts, step by step. You may
need to refer to the README file if you run into any problems, but the fol­
lowing sections should be sufficient for most of your purposes.

� contrib/: This folder contains the Struts-EL tag library, which we use to
build the applications in this book.

� lib/: This folder contains the Struts framework, all the library files

needed by the framework, and the tag library definitions.

� webapps/: This folder contains documentation and examples of how to
use the various components of Struts. The documentation and examples
are in the form of WAR files — compressed Web applications that auto­
matically expand when you put them into a Web container.

Libraries
The libraries we use in the examples in this book are all in the contrib/
struts-el/lib folder rather than the lib directory because we use the EL
version of the tag library. These are all JAR files (Java ARchive), the common
way to store compressed files in Java. For more information about the EL ver­
sion of the tag library, see Chapter 1.

Following are the libraries we use:

� commons-beanutils.jar: Provides various utilities to make working
with JavaBeans easy.

� commons-collections.jar: Special-purpose implementations of various
collections not implemented in the standard JDK.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 42

42 Part I: Getting to Know Jakarta Struts

� commons-digester.jar: Implements a common mechanism for reading
and parsing XML files and generating Java objects from the XML.

� commons-fileupload.jar: Implements the functionality that allows
users to upload files to Web applications.

� commons-lang.jar: Provides a host of helper utilities for the java.lang
API, most notably String manipulation methods, basic numerical meth­
ods, object reflection, creation and serialization, and System properties.

The acronym API stands for Application Programming Interface. The API
specifies the rules by which a programmer can make requests to another
application.

� commons-logging.jar: Implements the generic logging functionality
to make use of various logging libraries.

� commons-validator.jar: Provides the validation mechanism to vali­
date user input.

� jakarta-oro.jar: Implements regular expressions using the Perl5

syntax.

Perl5 is a widely used scripting language for creating Web applications.
Its implementation of regular expressions is considered the de facto
standard.

� jstl.jar: The first tag library used for the JSP Standard Tag Library
(JSTL) implementation.

� standard.jar: The second tag library used for the JSTL implementation.

� struts-el.jar: Implements the standard Struts tag library using the
Expression Language (EL) defined by JSTL. Only those functions from
the original tag library that do not have a functional equivalent in JSTL
are implemented.

� struts.jar: Contains all the classes that make up the Struts framework.

� struts-legacy.jar: Contains references to classes removed from

Struts 1.1. Used for backward compatibility.

Tag Library Definition
In addition to the libraries in the preceding list, Struts has a set of standard
tag libraries that it uses. These libraries are represented by files with .tld
extensions. (The tld stands for Tag Library Definition.) To find more detail
about tag libraries, see Chapter 10.

Documentation and examples
Struts comes with numerous Web applications that provide examples of how
to use components in the Struts framework as well as documentation on

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 43

Chapter 2: Laying the Groundwork 43
Struts. You can find these examples in the webapps folder. Web applications
are normally packaged as WAR files (Web ARchive). A WAR file is similar to a
JAR file and includes all the files that make up your Web application. The Web
applications that come with a Struts distribution are

� struts-blank.war: A starting point to begin your own application.

� struts-documentation.war: A copy of all the documentation found
on the Struts Web site.

� struts-example.war: An example application that uses most of the
features found in Struts.

� struts-exercise-taglib.war: Test pages for the various tags of the
standard Struts tag library.

� struts-upload.war: An example application that shows how to upload
files with Struts.

� struts-validator.war: An example application that provides exam­
ples of how to use the Validator framework.

� tiles-documentation.war: Documentation on how to use tiles. For
more information on tiles, see Chapter 11.

Testing Your Web Application
Development Environment

Before starting to use Struts, you need to test all your tools to make sure
everything works as expected. Don’t skip this step: Before you create a Web
application using Struts (we show you how to create one in Chapter 3), you
need to be confident that Tomcat runs as you expect it to:

1. Start Eclipse by double-clicking either the eclipse.exe file or a short­
cut (if you made one).

2. If Tomcat is not yet started, start the Tomcat server from Eclipse by
clicking the Start Tomcat button in the Eclipse toolbar.

3. Make sure Tomcat is running properly by using your browser to open
the Tomcat Web page at http://localhost.

You should see the Tomcat startup page (refer to Figure 2-6).

If Tomcat doesn’t open properly, make sure that Tomcat was not running
previously. Click the useful Restart Tomcat button on the Eclipse tool­
bar. Clicking this button stops Tomcat if it’s currently running and then
starts it again. If Tomcat is not running, clicking the button just starts it.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 44

44 Part I: Getting to Know Jakarta Struts

4. To install your first Web application, the Struts documentation, care­
fully copy the struts-documentation.war file from the jakarta-
struts-1.1\webapps folder to the Tomcat-4.1\webapps folder.

Tomcat automatically decompresses and starts the Web application. Is
the Struts documentation really a Web application? Well, yes, it is. It’s
just not a Struts Web application. However, installing this application
both tests that Tomcat is working properly and gives you an opportunity
to look at the Struts documentation.

5. To test that you have successfully installed the Struts documentation,
type http://localhost/struts-documentation in your browser.

You see the page shown in Figure 2-13. From this page, you can find most
of the documentation found at the Struts Web site.

Figure 2-13:
The Struts

documenta­
tion page.

6. Copy the	 struts-example.war file from the jakarta-struts-
1.1\webapps folder to the Tomcat-4.1\webapps folder.

Tomcat automatically decompresses and starts the Web application.
This Web application is a Struts Web application.

7. To test the installation, type http://localhost/struts-example in your
browser.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 45

Chapter 2: Laying the Groundwork 45
This sample (shown in Figure 2-14) is an incomplete Struts application that
allows users to register and maintain a set of mail servers subscriptions so
they can read mail from any subscribed server. Click the A Walking Tour of
the Example Application link to explore the example further.

Figure 2-14:
The Struts

example
application

page.

Now you have all of the tools you need, installed and in working order, as well
as the Struts documentation available as a Web application on Tomcat. You
are finally ready to create your first Web application using Struts — the topic
of Chapter 3.

05 559575 Ch02.qxd 3/2/04 3:56 PM Page 46

46 Part I: Getting to Know Jakarta Struts

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 47

Chapter 3

Creating a Simple Web

Application with Struts

In This Chapter
� Specifying a simple Struts application

� Creating the application structure

� Working with the JavaServer pages

� Adding the formbean

� Creating the JavaBean

� Creating an Action class

� Modifying the configuration files

� Testing the application

In this chapter, you create a simple Struts application from start to finish.
This application may seem fairly trivial, but it exposes you to the major

components involved in a Struts application and gives you an introduction
to the interaction of these components. We assume that you understand the
basics of how Struts can create simpler, more flexible, and easier to maintain
Web applications. If you feel that you need a primer, see Chapter 1. We also
assume that you have available a complete Web development environment
on your computer. If not, see Chapter 2 for instructions.

We start by analyzing the requirements for a Log In application, and then we
create the application. For each piece of the application, we show you the code
and then explain the code. Because you already know Java, we emphasize the
parts of the code that are specific to Struts. Finally, we provide instructions
for putting the code in its proper place, so that by the end of the chapter you
have a complete application.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 48

48 Part I: Getting to Know Jakarta Struts

Designing Your First Struts Application

The Login application is simple but still provides you with experience with
Struts. We set certain minimum design specifications to create a Web applica­
tion based on the Struts framework:

� At least one View component

� In the Controller, a subclass of at least one Action class that provides
specific processing functionality for the application

� In the Controller, a subclass of the ActionForm associated with every
View component that submits data

� For the Model, at least one JavaBean to represent the data presented in
each View

� For the configuration files, the required updating

The Login application serves as the entry point to a more complex Music
Collection application that you build in Chapter 14. By itself, the Login appli­
cation does nothing of value. However, it provides with a good starting point
for understanding the development of Struts applications.

The Login application could be written in a simpler way without using Struts,
but that would defeat the purpose of explaining the essentials of a Struts
application without a lot of complications.

Application requirements

When you design an application, you need to consider what you need to
accomplish and assess the requirements. In this case, the requirements for
a Login application are pretty straightforward, as follows:

� You want a Log In page that accepts a user’s name and password as

input.

� You want to be able to verify that name and password against a reposi­
tory of name and password combinations.

� If the application can verify the user’s input against the repository data,
the application tells the user so by displaying a Success page.

� If the user’s input is rejected, the application tells the user and asks the
user to try logging in again.

Now that you have stated the requirements, you can list the steps that you
need to take to fulfill the requirements of the application. These steps are as
follows:

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 49

Chapter 3: Creating a Simple Web Application with Struts 49
1. The application displays the Log In page with user name and pass­

word fields.

2. The user types a name and password and clicks the Log In button.

3. The application checks the submitted values against a repository of
acceptable values.

4. If the name and password are valid (the combination can be found in
the data repository), the user is forwarded to a Log In Was Successful
page and a welcome message appears containing the user’s name.

5. If the name and password are not valid (the combination can’t be
found in the data repository), the Log In page is redisplayed with an
appropriate error message.

Determining which components to use

In analyzing the requirements, you see that you need not just one View but
two. Each View requires a JSP page. (For more information on JSP pages in a
Struts application, see “Creating JavaServer Pages” in Chapter 1.) One JSP
provides the initial Log In page, and the other JSP is the Successful Log In
page. The first JSP contains a form that has the username and password
fields. The second JSP needs only a message indicating that the user has
logged on successfully.

For the Controller, you need one specialized Action class to handle the
request from the Log In page and one specialized ActionForm class to hold
the request data.

The Model needs a JavaBean that serves as the data repository. The JavaBean
contains a list of username and password combinations for authorized users
and the methods required to operate on that list.

Finally, to make the necessary connections between the components, you
need to configure and set up the struts-config.xml and web.xml files, the
two principal configuration files for each Struts application,

Putting Everything in Place

Now that you know your requirements and the steps to include, you need to
set up your development environment so that you can work on this project.
In this example, we use Eclipse and explain step-by-step how to create the ini­
tial environment for the project. This is not intended to be a tutorial on using
Eclipse; that task would require another book. However, we do point out the
minimum set of Eclipse features that you need to initialize, create, build, and
debug the example applications.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 50

50 Part I: Getting to Know Jakarta Struts

If you’re using a different IDE, you need to take similar steps for your IDE. For
more information on using various IDEs with Struts, see “Choosing Your
Development Environment” in Chapter 2.

Creating the project in Eclipse

When you start to create a program, the first task is to create a project.
Creating a project specifies the folder that contains all the files for your Web
application. To create a project, follow these steps:

1. Start Eclipse.

For information on starting Eclipse, see “Downloading and Installing
Eclipse” in Chapter 2. If you’re using a different development environ­
ment, look at the end of this section for instructions on how the final
application structure should look.

2. To set up the most appropriate display in Eclipse, choose

Window➪Open Perspective➪Java.

Your work area now displays the JAVA perspective and should look like
Figure 3-1. The Perspectives feature of Eclipse helps customize the dis­
play for your current needs. For more information, see the “Perspectives
in Eclipse” sidebar.

Figure 3-1:
The Eclipse

work area
with the

JAVA
perspective.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 51

Chapter 3: Creating a Simple Web Application with Struts 51

Perspectives in Eclipse
Eclipse has a feature called perspectives that
allows you to change the overall arrangement
of the work area to suit your current task. For
example, the Java perspective is suited for edit­
ing and compiling source files. The Java per­
spective displays various panes called views in

in the MVC design pattern. The various views

code of the file being edited, the output console,

and an outline of the source file denoting all
methods and fields of the current source file.
The perspective can be modified to show dif­
ferent views depending on your current needs.
Another perspective is the Debug perspective,
which displays debugging information about the
currently running program. This powerful fea­Eclipse. Do not confuse these views with a View

show you the project file hierarchy, the source
ture of Eclipse helps make the developer’s task
easier.

3. To create a project, choose File➪New➪Project.

The New Project dialog box appears.

4. In the left pane, click Java from the list of Wizards. In the right pane,
choose Java Project from the project list. Click Next.

5. In the Project Name text box, type Login, as shown in Figure 3-2.

Leave the Use Default check box selected so that the contents of the
project go into the default c:\eclipse\workspace folder.

Figure 3-2:
The New

Java Project
dialog box.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 52

52 Part I: Getting to Know Jakarta Struts

6. Click the Finish button.

Now you should have a project named Login displayed in the Package
Explorer view of the Eclipse window.

Setting up the application folders

Now you need to create a folder structure to hold all the files. Part of this
structure is important only while you’re developing your application. The
other part is important when you’re ready to deploy your application to the
Web container.

To create the folder structure, follow these steps:

1. To create a special folder in the project to hold your Java source files,
right-click the Login project folder item in the Package Explorer view
and choose New➪Source Folder.

The New Source Folder dialog box opens.

2. In the Folder Name text box, type source and click the Finish button.

3. To add a regular folder to the project, right-click the Login project
folder item in the Package Explorer view and choose New➪Folder.

The New Folder dialog box opens.

4. In the Folder Name text box, type WEB-INF and then click the Finish
button.

This is the folder where most of your Web application will reside. For
more information about the WEB-INF folder and the folder structure for
Web applications, see the “Web Application Folder Structure” sidebar.

5. In the Package Explorer view, right-click the WEB-INF folder item and
choose New➪Folder.

6. In the Folder Name text box, enter classes and then click the Finish
button.

7. Repeat Steps 5 and 6 to add the lib folder in the WEB-INF folder.

Your folder structure should now look like Figure 3-3. If you’re using
another IDE, create the same folder structure using the tools in your IDE.

Another entry appears in the Login folder: JRE System Library. This
folder is created automatically when you create your project and contains all
the Java JAR files needed for a Java project. If the JRE System Library doesn’t
appear, Eclipse may be filtering it from the display. See the next section on
setting Eclipse filters.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 53

Chapter 3: Creating a Simple Web Application with Struts 53

(for example, the Login folder for the Login
application) and contains at least the WEB-INF

WEB-INF folder is required and

The WEB-INF folder contains at least two other
folders, the classes and lib folders. All Java
class files that make up your application as well
as any property files that the application uses
reside in the classes lib folder
contains all the library files, including tag
libraries, which your application needs. The root
level of the WEB-INF folder contains all the con­
figuration files and tag library descriptor files.

One of the key points about the WEB-INF folder

that as far as the browser is concerned, the
WEB-INF
tant security feature.

Other folders that might be typically found in the
application folder are folders for organizing

images, JavaScript, CSS (cascading style
sheets), and applets. All the files in these folders
are typically meant to be accessible by a

number of pages that make up the application.

Web application folder structure
A J2EE Web application has a particular folder
structure. It starts with the application’s folder

folder. The
must reside in the root of the Web application’s
folder.

folder. The

is that the Web container hides it. That means

folder doesn’t exist. This is an impor­

other files used by the Web pages, such as

browser. HTML and JSP pages may or may not
reside in a separate folder, depending on the

Figure 3-3:
The folder

structure in
the Package

Explorer of
Eclipse.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 54

54 Part I: Getting to Know Jakarta Struts

Importing the Struts files

At this point you need to bring the Struts files into your project structure.
In this phase, you do the following:

� Import all the library files into the WEB-INF/lib folder.

� Import the tag library description files into the WEB-INF folder.

You don’t absolutely have to import these files, because you’re going to inform
Eclipse about the files in a different but related step. However, having the parts
to your Web application in the proper folder structure makes it easier to
deploy the application to Tomcat.

Library files
To import the library files, follow these steps:

1. In the Package Explorer view, right-click the WEB-INF/lib folder and
choose Import.

The Import dialog box opens.

2. In the list of import sources, double-click File System.

3. Click the Browse button next to the From Directory text box and use
the Import from Directory dialog box to navigate to and select the
jakarta-struts-1.1/contrib/struts-el/lib folder. Click OK.

Your folder may be different if you downloaded the Struts files to a dif­
ferent location. All the .jar files appear in the right-hand pane of the
Import dialog box.

4. Select the check boxes of all the .jar files.

Refer to Figure 3-4. Don’t forget to scroll down to display all the .jar
files.

5. Click Finish.

After you’ve imported the library files, you can see that the Package Explorer
view is cluttered with the new additions. To hide these library files from the
view, click the drop-down menu at the top of the Package Explorer view and
choose Filters. In the Java Element Filters dialog box (see Figure 3-5), scroll to
the bottom and select the Referenced Libraries items. Click OK. This hides
from view all libraries referenced by the project. The use of filters is a nice
way to eliminate clutter.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 55

Chapter 3: Creating a Simple Web Application with Struts 55

Figure 3-4:
Importing
the library

files.

Figure 3-5:
The Java
Element

Filters
dialog box.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 56

56 Part I: Getting to Know Jakarta Struts

Tag library description files
To import the tag library description (.tld) files, follow these steps:

1. In the Package Explorer view, right-click the WEB-INF folder and

choose Import.

The Import dialog box opens.

You imported the library files into the WEB-INF/lib folder, but the .tld
files go into the WEB-INF folder.

2. In the list of import sources, double-click File System.

3. Click the Browse button next to the From Directory text box and use
the Import from Directory dialog box to navigate to and select the
jakarta-struts-1.1/contrib/struts-el/lib folder. Click OK.

Your folder may be different if you downloaded the Struts files to a dif­
ferent location. All the .tld files appear in the right pane of the Import
dialog box.

4. Select the check boxes of the following .tld files, ignoring the others
because they’re not needed for your project:

• c.tld

• fmt.tld

• sql.tld

• struts-bean-el.tld

• struts-html-el.tld

• struts-logic-el.tld

• x.tld

5. Click Finish.

Your folder structure should now look like Figure 3-6.

Configuring Eclipse to use the library files
Now that you have the .jar files imported to Eclipse, you need to tell Eclipse
how to find them for compiling. This process is equivalent to putting the files
on the classpath for the application.

Classpath and Build Path refer to the same thing: the path or paths used by
the application to search for certain files (generally Class files).

To tell Eclipse about the .jar files, follow these steps:

1. In the Package Explorer view of Eclipse, right-click the project folder
name (Login in our example) and choose Properties.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 57

Chapter 3: Creating a Simple Web Application with Struts 57

Figure 3-6:
The folder

structure in
the Package

Explorer
view of
Eclipse.

The Properties for Login dialog box appears. (Login is the name of the
project in our example. If you named your project differently, the dialog
box uses the name of your project.)

2. In the list of items in the left pane, choose Java Build Path.

3. On the right side of the dialog box, click the Libraries tab.

The dialog box looks like Figure 3-7.

Figure 3-7:
The

Libraries tab
of the

Properties
for Login

dialog box.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 58

58 Part I: Getting to Know Jakarta Struts

4. Click the Add JARs button.

The JAR Selection dialog box appears.

5. Navigate to Login/WEB-INF/lib folder and select all .jar files dis­
played there. Click the Open button.

All the .jar files are now in the build path of the Login project. You
need to add one more .jar file to be complete.

6. Click the Add External JARs button.

Note that this is the External Jars button.

7. Navigate to the Tomcat-4.1/common/lib folder, and select the
servlet.jar file. Click Open.

The servlet.jar files adds the all the Java Servlet classes to your build
path. The Java Servlet classes are necessary because they’re not
included in the Standard Edition of Java (just the J2EE version). The set
of libraries associated with the project should now look like Figure 3-8.

Figure 3-8:
The

complete
set of

libraries for
the project.

8. To close the Properties of Login dialog box, click OK.

You’re now ready to begin creating your JSP pages.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 59

Chapter 3: Creating a Simple Web Application with Struts 59

Downloading the Login project
Before you move on, you might want to down­
load all the code for the Login project to avoid

www.dummies.com/go/jakarta and click
the Login.zip link. Save Login.zip to a tem­

Login.zip contains the
eight files that we describe in the next sections:

� login.jsp

� loggedin.jsp

� LoginForm.java

� LoginBean.java

� LoginAction.java

� web.xml

� struts-config.xml

� ApplicationResources.properties

having to type it. To get the files, go to

porary folder. After the file is downloaded, unzip
it into a new folder.

Creating the JavaServer Pages

As explained in the “Determining which components to use” section earlier in
this chapter, the Login application requires two JSP pages. The first is for the
user to enter the necessary login information, and the second is to notify the
user that the log-in process was a success.

For each of the two JSP pages, we show you what the final page will look like
when the application is complete. Then we list and explain the code. Finally,
we explain the steps that you need to complete to create the pages.

In the “Downloading the Login project” sidebar in this chapter, we explain
how to download all the project files from the For Dummies Web site. So if
you don’t like to type, follow those instructions to avoid typing the files into
Eclipse manually.

The login.jsp page

The Login application presents the login.jsp page when the system needs
to authenticate the user. The login.jsp page has one field for a username
and one field for a password. The password field displays bullets instead of
the entered text. The page contains one button to submit the entries to the
server. Everything is simple and straightforward!

Figure 3-9 shows what the page will look like. You need to complete several
more steps before you can display your own login.jsp page, as explained in
the next sections of this chapter.

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 60

60 Part I: Getting to Know Jakarta Struts

Setting a default editor for JSP files

opens when you double-click the file) for JSP

Follow these steps to associate JSP files with
the Eclipse text editor:

➪Preferences.

The Preferences dialog box appears.

bench item.

Add button.

*.jsp
and then click OK.

we can add an association for it.

In the File Associations pane of the
Preferences dialog box, be sure that the
new entry is selected, and then click the
lower Add button.

The Editor Selection dialog box appears.

and then click OK.

the JSP file type.

Click the OK button in the Preferences
dialog box.

Now when you double-click a JSP file in the

to edit it.

You can set the default editor (the editor that

pages to be Eclipse’s built-in text editor instead
of the default editor (Wordpad on our system).

1. Choose Window

2. In the left pane, double-click the Work­

3. In the left pane, click File Associations.

4. In the File Associations pane, click the top

5. In the New File Type dialog box, type

This action adds a new file type, JSP, so that

6.

7. Scroll down and select the Text Editor item,

This action associates Eclipse’s editor with

8.

Package Explorer, the Eclipse Text Editor opens

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 61

Chapter 3: Creating a Simple Web Application with Struts 61

Figure 3-9:
The login.jsp

page.

The complete code for the login page is in Listing 3-1. The numbers to the left
of each line are not part of the code. We refer to these numbers when we
explain the code.

Listing 3-1 login.jsp

1 <%@ page contentType=”text/html;charset=UTF-8” language=”java” %>

2 <%-- JSTL tag libs --%>
3 <%@ taglib prefix=”fmt” uri=”/WEB-INF/fmt.tld” %>

4 <%-- Struts provided Taglibs --%>
5 <%@ taglib prefix=”html” uri=”/WEB-INF/struts-html-el.tld” %>

6 <html:html locale=”true”/>
7 <head>
8 <fmt:setBundle basename=”ApplicationResources” />
9 <title><fmt:message key=”login.title”/></title>
10 </head>
11 <body>
12 <html:errors property=”login”/>
13 <html:form action=”login.do” focus=”userName”>
14 <table align=”center”>
15 <tr align=”center”>
16 <td><H1><fmt:message key=”login.message”/></H1></td>
17 </tr>
18 <tr align=”center”>

06 559575 Ch03.qxd 3/2/04 3:56 PM Page 62

62 Part I: Getting to Know Jakarta Struts

19 <td>
20 <table align=”center”>
21 <tr>
22 <td align=”right”>
23 <fmt:message key=”login.username”/>
24 </td>
25 <td align=”left”>
26 <html:text property=”userName”
27 size=”15”
28 maxlength=”15” />
29 <html:errors property=”userName” />
30 </td>
31 </tr>
32 <tr>
33 <td align=”right”>
34 <fmt:message key=”login.password”/>
35 </td>
36 <td align=”left”>
37 <html:password property=”password”
38 size=”15”
39 maxlength=”15”
40 redisplay=”false”/>
41 <html:errors property=”password” />
42 </td>
43 </tr>
44 <tr>
45 <td colspan=”2” align=”center”>
46 <html:submit>
47 <fmt:message key=”login.button.signon”/>
48 </html:submit>
49 </td>
50 </tr>
51 </table>
52 </td>
53 </tr>
54 </table>
55 </html:form>
56 </body>
56 </html>

The first thing to point out is the use of specialized Struts tag libraries. This
page uses two libraries. The first is a JSTL tag library, fmt, which formats
data and provides localized message information. The second is a Struts spe­
cific tag library, struts-html-el, that inserts various HTML elements into
the page. The other Struts-specific items are on the following lines:

� Lines 3 and 5: Standard JSP directives for including tag libraries in the
page. The prefix attribute references the library tags throughout the
code.

� Line 6: Generates the top-level <html> element and specifies that the
HTTP header will determine the locale to be used to set the language
preferences. This tag has implications when you want your Web

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 63

Chapter 3: Creating a Simple Web Application with Struts 63
application to handle more than one language. For more information
about internationalization (I18N), see Chapter 6. Also see the “Using
message resources” section later in this chapter.

� Line 8: Identifies to the JSP page the name of the message resource file.
This tag is from the JSTL fmt tag library. Other ways to identify the mes­
sage resource file exist, but this method is straightforward.

� Line 9: Now that the code has identified the message resource file, you
can reference the key-value pairs in the file. This line is another tag that
will retrieve the value associated with the key named login-title. That
value will be displayed as text in the title bar of the browser window.

� Line 12: If the submitted data contains an error, this tag is used to display
the error. Actually, this tag displays a specific error associated with the
login property. Any such error is detected by the validation process and
an error message is generated. (See Chapter 6 for more information on
validation.)

� Line 13: Generates the html <form> tag. The action attribute sets the
form submission to the URL login.do. Any URL with the .do extension
is automatically routed to the ActionServlet. We specify the extension
when we set up the web.xml configuration file towards the end of this
chapter. The other attribute is focus, which tells the browser in which
field to put the initial focus.

� Lines 26 and 37: Create the two form fields, userName and password. One
thing to point out about the password field is the use of the redisplay
attribute. When this attribute is set to false, the value of the password
field is not redisplayed if the page is redisplayed. This attribute is impor­
tant for security. Although the password value will contain asterisks if
the page is redisplayed, the user could view the source code of the page
to see the full text of password.

� Lines 29 and 41: These error messages are just like the one on line 12,
except these error messages are specific for each of the fields. If one or
both of the errors arise, the messages are displayed next to the field in
which the error occurs.

The login.jsp file illustrates some of the advantages of Struts applications.
Error messages generated in the Controller are displayed in appropriate loca­
tions on the page through the interaction of the struts tag libraries and the
Controller code. In addition, static text (such as titles, labels, and buttons) is
never used directly. Instead, Struts inserts the text from a message resource
file. This eases the job of maintaining JSP pages.

At this point, if you downloaded the Login project files from the For Dummies
Web site (see instructions in the preceding section) you can import the login.
jsp file into Eclipse or you can use the manual method of typing. We have
instructions for both.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 64

64 Part I: Getting to Know Jakarta Struts

Importing login.jsp into Eclipse
Follow these four steps to import login.jsp into Eclipse:

1. In the Package Explorer view, right-click the Login project and choose
Import.

The Import dialog box appears.

2. Choose File System and then click the Next button.

3. Click the Browse button next to the From Directory text box and navi­
gate to and select the folder where you put the Login files that you
downloaded. Click OK.

4. Select the login.jsp check box and then click the Finish button.

That’s all there is to it.

Entering login.jsp by typing it in
If you decide to enter the login.jsp file the labor-intensive way, you can
type login.jsp into the project manually at this point by following these
steps:

1. In the Package Explorer View, right-click the Login project and choose
New➪File.

The New File dialog box appears.

2. In the File Name text box, type login.jsp and then click Finish.

Because login.jsp is a JSP file and not a Java file, the default editor
appears unless you have reset the default editor. (See the “Setting a
default editor for JSP files” sidebar.)

3. Type Listing 3-1, but do not include the line numbers.

4. To save your changes, choose File➪Save.

The loggedin.jsp page
The loggedin.jsp page is just a validation to the user that the system has
accepted the username and password combination. This page is even simpler
that the login.jsp page. The only interesting feature of the page is the inser­
tion of the user’s name in the welcome message. Figure 3-10 shows what the
page looks like when displayed.

The complete listing for loggedin.jsp is shown in Listing 3-2.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 65

Chapter 3: Creating a Simple Web Application with Struts 65

Figure 3-10:
The

loggedin.jsp
page.

Listing 3-2 loggedin.jsp

1 <%@ page contentType=”text/html;charset=UTF-8” language=”java” %>

2 <%-- JSTL tag libs --%>
3 <%@ taglib prefix=”fmt” uri=”/WEB-INF/fmt.tld” %>

4 <%-- Struts provided Taglibs --%>
5 <%@ taglib uri=”/WEB-INF/struts-html-el.tld” prefix=”html” %>

6 <html:html locale=”true”/>
7 <head>
8 <fmt:setBundle basename=”ApplicationResources” />
9 <title><fmt:message key=”loggedin.title”/></title>
10 </head>
11 <body>
12 <H2>
13 <fmt:message key=”loggedin.msg”>
14 <fmt:param value=’${requestScope.userName}’ />
15 </fmt:message>
16 </H2>
17 </body>
18 </html>

This page uses the same two tag libraries as the login.jsp page described
in the preceding section. The two new things used on this page are both on
lines 13–15:

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 66

66 Part I: Getting to Know Jakarta Struts

� The message you want to display has a mechanism to accept one or
more parameters. This is useful when you want to vary the content of a
message. The application does not know the user’s name in advance but
knows it at runtime. You need to provide that name when the page is run
so that you can personalize the message to the user. To do so, we add a
placeholder to the message in the message resource file (see the “Using
message resources” section later in the chapter):

loggedin.msg=Welcome, {0}. You are now logged in.

The value has a placeholder {0} that indicates that the first parameter
that is passed should be substituted for the {0}. Line 14 specifies the
first and only parameter.

� The loggedin.jsp page references values in implicit objects (objects
already defined by the Web container) using JSTL expression language.
(See Chapter 10 for more details on JSTL.) In this case, you are using the
requestScope object, which represents the current request you’re pro­
cessing. In the LoginAction class (we explain the LoginAction class in
the following section, “Creating an Action”), you specifically put the
user’s name into the request when you validate the user. The user’s
name is referenced by the userName key. So on line 14, you’re getting the
user’s name from the request and passing it to loggedin.msg as the
first parameter. This personalizes the logged-in message.

You can enter loggedin.jsp into Eclipse by either importing or typing, as
shown next.

Importing loggedin.jsp into Eclipse
Follow these four steps to import loggedin.jsp into Eclipse:

1. In the Package Explorer view, right-click the Login project and choose
Import.

2. Choose File System and then click the Next button.

3. Click the Browse button next to the From Directory text box and navi­
gate to and select the folder where you put the Login files that you
downloaded. Click OK.

4. Click the loggedin.jsp check box and then click the Finish button.

Entering loggedin.jsp by typing it in
Follow these steps to manually enter loggedin.jsp into the project:

1. In the Package Explorer View, right-click the Login project and choose
New➪File.

The New File dialog box appears.

2. In the File Name text box, type loggedin.jsp and then click Finish.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 67

Chapter 3: Creating a Simple Web Application with Struts 67
3. Type Listing 3-1 but do not include the line numbers.

4. To save your changes, choose File➪Save.

Using message resources
Message resources are a means to separate text from the application’s code.
Keeping the text separate from the code makes it easier to change the text
later, which makes the application easier to maintain.

One of the key mechanisms to handle I18N is to put any text that will be dis­
played for the user into a message resource file. The format for this file is
simply a set of key-value pairs, where the key is used as the reference and the
value is what is displayed. For example:

login.message=Please Log In!

In this example, login.message is the key and Please Log In! is the value.
The Login application has a message resource file that contains all the text that
will be displayed on the two JSP pages. Even if I18N was not a concern (maybe
your application will be used only internally by your company), using message
resources is still a good idea. For maintenance, it is generally better not to
embed static text in your code. By centralizing static text in an external file,
you can easily make changes to text without disturbing the code.

In the Login application, the name of the message resource file is
ApplicationResources.properties. Listing 3-3 shows the key-value pairs
that the Login application requires. Lines that begin with a number sign (#)
are comments.

Listing 3-3 ApplicationResources.properties

Resources for Login Project

Struts Validator Error Messages
These two resources are used by Struts HTML tag library
to format messages. In this case we make sure that errors
are red so that they can be noticed.
errors.header=*
errors.footer=

#errors associated with the Login page
error.username.required=username is required.
error.password.required=password is required.
error.login.invalid=The system could not verify your username

or password. Is your CAPS LOCK on? Please try
again.

#login page text

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 68

68 Part I: Getting to Know Jakarta Struts

login.title=Login Project - Log In, Please
login.message=Please Log In!
login.username=username:
login.password=password:
login.button.signon=Log In

#loggedin page text
loggedin.title=Login Project
loggedin.msg=Welcome, {0}. You are now logged in.

The errors.header and errors.footer are special keys that the html:
errors tag uses if they are defined. When displaying an error message, the
html:errors tag will preface the error messages with whatever value is
associated with the errors.header key. After the error messages are dis­
played, html:errors displays the value found in the errors.footer key.

At this point, enter the file into Eclipse using one of the following two methods.

Importing ApplicationResources.properties into Eclipse
To import the ApplicationResources.properties file into the project,
follow these steps:

1. In the Package Explorer view, right-click the source folder and

choose Import.

The Import dialog box appears.

2. Choose File System and then click the Next button.

3. Click the Browse button next to the From Directory text box and navi­
gate to and select the folder where you put the Login files that you
downloaded. Click OK.

4. Select the ApplicationResources.properties check box and then click
the Finish button.

Entering ApplicationResources.properties manually into Eclipse
To enter the ApplicationResources.properties file into the project man­
ually, follow these steps:

1. In the Package Explorer view, right-click the source folder and

choose New➪File.

2. In the File Name text box, type ApplicationResources.properties and
click Finish.

3. Type Listing 3-3.

Do not include the line numbers.

4. To save your changes, choose File➪Save.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 69

Chapter 3: Creating a Simple Web Application with Struts 69
Any message resource file or other file that you might use needs to be on the
classpath so that the application can find it. Because the message resource
file is located in the source folder, whenever the project gets rebuilt, it will
get moved by the build process to the classes folder. Everything in the
classes folder is considered on the classpath.

Making the Formbean

The ActionForm class is part of the Struts Controller. (For more information
on the ActionForm class, see the “Struts Controller” section in Chapter 1.)
The ActionForm class is associated with a particular View, but could service
multiple Views, if necessary. ActionForm is an abstract class, so you always
use a subclass to create a specific version for your View.

The main purpose of the ActionForm subclass is to hold the properties of
the submitted form. Therefore, it has the properties of a JavaBean and is
called a formbean. You need to reference every form property you need in
the ActionForm subclass, such as text fields, radio buttons, and hidden
properties. In addition, for each property defined, there should be getter and
setter methods appropriate to Beans.

Listing 3-4 shows the formbean, LoginForm.java.

Listing 3-4 LoginForm.java

1 package dummies.struts;

2 import javax.servlet.http.HttpServletRequest;

3 import org.apache.struts.action.ActionError;
4 import org.apache.struts.action.ActionErrors;
5 import org.apache.struts.action.ActionForm;
6 import org.apache.struts.action.ActionMapping;

7 public class LoginForm extends ActionForm
8 {
9 private String userName;
10 private String password;

11 public void reset(ActionMapping mapping, HttpServletRequest request)
12 {
13 password = “”;
14 userName = “”;
15 }

16 public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request)

17 {

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 70

70 Part I: Getting to Know Jakarta Struts

18 ActionErrors errors = new ActionErrors();

19 if((userName == null) || (userName.length() < 1))
20 errors.add(“userName”, new ActionError(“error.username.required”));
21 if((password == null) || (password.length() < 1))
22 errors.add(“password”, new ActionError(“error.password.required”));

23 return errors;
24 }
25 public String getPassword() {
26 return password;
27 }

28 public String getUserName() {
29 return userName;
30 }

31 public void setPassword(String string) {
32 password = string;
33 }

34 public void setUserName(String string) {
35 userName = string;
36 }
37}

In the example application, you create a subclass of ActionForm so you can
create a specific version named LoginForm. The LoginForm is tied to the
login.jsp View through the struts-config.xml file (see the section
“Configuring Struts with struts-config.xml”). The main purpose of LoginForm
is to hold the properties of the submitted form. In the case of the login.jsp
page, you have two fields: the userName and password fields. As a result, the
associated LoginForm needs two properties with the same names as the fields,
as well as the getter and setter methods for those properties. In Listing 3-4, you
can see the properties in lines 9 and 10 and the getter and setter methods for
those two properties below line 24.

Two additional methods can be overridden by the subclass:

� reset method: Can be used to initialize the form’s properties (and any­
thing else you may want) and is called with each new request. In lines 13
and 14 of Listing 3-4, you set the properties back to the empty string.

� validate method: Is called after the ActionServlet populates the
form with the request properties and before the form is passed to a par­
ticular Action class for processing. This method is one way that form
validation can take place to ensure that the user has entered appropri­
ate and acceptable data. Line 18 creates an empty ActionErrors object,
which is the return value for the method. Line 19 and 21 are tests to
ensure that the user enters something for the userName and password
fields. If not, the code creates an ActionError object and adds it to

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 71

Chapter 3: Creating a Simple Web Application with Struts 71
ActionErrors. Note that when adding ActionError, the code specifies
a particular key so that the JSP page will know where to display the
error. Here is an example from the login.jsp file:

<html:text property=”userName” size=”15” maxlength=”15” />
<html:errors property=”userName” />

Note that the html:errors tag has a property attribute with the value
of userName, which matches the key associated with the ActionError
in line 19. The ActionError itself is given a message resource key to
indicate which message should be displayed.

The validate method is a nice feature of the ActionForm because it provides
the developer with a way to immediately validate user input. The Struts
framework will test for errors; if any are detected it redisplays the page with
appropriate error messages to the user.

To enter the LoginForm.java file into the project manually, you must create
the dummies.struts package (packages are a way to organize source code
and the resulting class files into logical units), reset the output folder, and
then type the source code. These procedures are described in the next three
sections.

Creating the packages
The LoginForm.java, LoginAction.java, and LoginBean.java files need
to go into the source folder of the project. However, they must be part of the
dummies.struts package, so first create the packages in the source folder.
To create the dummies and struts packages in the source folder, follow
these steps:

1. Open Eclipse or your IDE.

The instructions that follow are for Eclipse.

2. Right-click the source folder and choose New➪Package.

3. In the Name text box, type dummies.struts.

4. Click Finish.

You should now see the package in the source folder.

5. If you don’t see the package, do the following:

a. Click the Menu down arrow at the upper-right of the Package
Explorer window and choose Filters.

b. In the Java Element Filters dialog box, deselect the Empty
Packages check box.

c. Click OK.

The dummies.struts package should now be visible.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 72

72 Part I: Getting to Know Jakarta Struts

Compiling in Eclipse
Compiling the Java source code into class files
is an automatic process in Eclipse. When you
save a Java source file, it is automatically com­
piled into a class file. Compilation errors are
denoted with a red circle with a white x in the

problematic line of code. The class file is saved

set as a property of the project, as explained in
the “Setting the default output folder” section.
Syntax checking is performed in real time, as
you type. Syntax errors are denoted with a red
line under the code in question.center, located in the left margin next to the

in the default output folder. This location can be

Setting the default output folder
Before entering any Java source files in Eclipse, set the default output folder
for the class files to WEB-INF/classes in the Login project. To set the default
output folder, follow these steps:

1. In the Package Explorer view, right-click the Login project and choose
Properties.

The Properties for Login dialog, box appears. If your project has a differ­
ent name, your project name appears instead of Login in the name of the
dialog box.

2. In the list in the left pane, choose the Java Build Path item.

3. Click the Source tab.

4. In the Default Output Folder text box at the bottom of the dialog box,
type Login/WEB-INF/classes.

You can also click the Browse button, use the Folder Selection dialog
box to navigate to the Login/WEB-INF/classes folder, and click OK.

5. Click the OK button.

You see the message “The output folder has changed. OK to remove all
generated resources from ‘/Login/bin’?”.

6. Go ahead and click the Yes button.

Now whenever a Java file is compiled, the resulting class file goes in the
classes folder. This makes it easier to deploy the application.

Importing the LoginForm.java file
To import the LoginForm.java file, follow these steps.

1. In the Package Explorer view, right-click the dummies.struts package
in the source folder and choose Import.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 73

Chapter 3: Creating a Simple Web Application with Struts 73
2. Choose File System and then click the Next button.

3. Click the Browse button next to the From Directory text box and navi­
gate to and select the folder where you put the Login files that you
downloaded. Click OK.

4. Select the LoginForm.java check box and then click the Finish button.

Manually entering the LoginForm.java source code
To manually enter the LoginForm.java file into Eclipse, follow these steps:

1. In the Package Explorer View, right-click the dummies.struts pack­
age in the source folder and choose New➪Class.

The New Java Class dialog box appears.

2. In the Name text box, type LoginForm.

3. In the Superclass text box, type org.apache.struts.action.ActionForm.

Refer to Figure 3-11.

4. Click Finish.

5. Type Listing 3-4 into the newly created LoginForm.java file.

Don’t include the line numbers.

6. To save your changes, choose File➪Save.

Figure 3-11:
Use the

New Java
Class dialog

box to
create the
LoginForm

class.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 74

74 Part I: Getting to Know Jakarta Struts

Adding a JavaBean

The JavaBean represents the Model group and holds the userName and
password data for all allowable users. One method validates a particular
userName and password combination against the repository of usernames
and passwords. It’s straightforward. In practice, sometimes the Model group
has a combination of JavaBeans and other classes that go to make up the
business logic of the application. The JavaBean is shown in Listing 3-5.

Listing 3-5 LoginBean.java

package dummies.struts;

import java.util.HashMap;

1public class LoginBean
2{
3 private HashMap validUsers = new HashMap();

/**
* Constructor for LoginBean
* Initializes the list of usernames/passwords
*
*/

4 public LoginBean()
5 {
6 validUsers.put(“Twinkle Toes”,”tt”);
7 validUsers.put(“administrator”,”admin”);
8 validUsers.put(“Barbara Smith”,”smitty”);
9 }

/**
* determine if the username/password combination are
* present in the validUsers repository.
* @param userName
* @param password
* @return boolean true if valid, false otherwise
*/

10 public boolean validateUser(String userName, String password)
11 {
12 if(validUsers.containsKey(userName))
13 {
14 String thePassword = (String)validUsers.get(userName);
15 if(thePassword.equals(password))
16 return true;
17 }
18 return false;
19 }
20}

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 75

Chapter 3: Creating a Simple Web Application with Struts 75
The JavaBean has the following noteworthy characteristics:

� Lines 4–9: The LoginBean constructor creates the data repository as a
HashMap with the userName as the key and the password as the value.

� Lines 10–19: The validateUser method takes userName and password
as parameters and then checks to see whether userName is even present
in HashMap. If not, it returns false. If userName is there, it gets the
password from the HashMap associated with userName (line 14) and
compares it with the password entered by the user (line 15). If they
match, the userName and password combination is authenticated and
the method returns true (line 16). Otherwise, it returns false.

Importing the LoginBean.java file
To import the LoginBean.java file, follow these steps.

1. In the Package Explorer view, right-click the dummies.struts package
in the source folder and choose Import.

2. Choose File System and then click the Next button.

3. Click the Browse button next to the From Directory text box and navi­
gate to and select the folder where you put the Login files that you
downloaded. Click OK.

4. Select the LoginBean.java check box and then click the Finish button.

Manually entering the LoginBean source code
1. In the Package Explorer View, right-click the dummies.struts package

in the source folder and choose New➪ Class.

The New Java Class dialog box appears.

2. In the Name text box, type LoginBean.

3. Leave the Superclass field as-is because you’re not creating a subclass.

4. Click Finish.

5. Type Listing 3-5 into the newly created LoginBean.java file.

Do not include the line numbers.

6. To save your changes, choose File➪Save.

Creating an Action
The Action class is called LoginAction. Remember that the purpose of the
Action subclass is to process the user’s request. Listing 3-6 creates the
LoginAction class.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 76

76 Part I: Getting to Know Jakarta Struts

Listing 3-6 LoginAction.java

package dummies.struts;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
1public class LoginAction extends Action
2{
3 public ActionForward execute(ActionMapping mapping,
4 ActionForm form,
5 HttpServletRequest request,
6 HttpServletResponse response)
7 throws Exception
8 {

// create a new LoginBean with valid users in it
9 LoginBean lb = new LoginBean();

// check to see if this user/password combination are valid
10 if(lb.validateUser(((LoginForm)form).getUserName(),

((LoginForm)form).getPassword()))
11 {
12 request.setAttribute(“userName”,((LoginForm)form).getUserName());
13 return (mapping.findForward(“success”));
14 }
15 else // username/password not validated

{
// create ActionError and save in the request

16 ActionErrors errors = new ActionErrors();
17 ActionError error = new ActionError(“error.login.invalid”);
18 errors.add(“login”,error);
19 saveErrors(request,errors);

20 return (mapping.findForward(“failure”));
21 }
22 }
23}

In the LoginAction class, note the following items:

� Line 9: Instantiates a LoginBean. (See the “Adding a JavaBean” section
for the LoginBean description.) The LoginBean represents the Model
and holds the data regarding authorized users.

� Line 10: Passes userName and password from the LoginForm to the
LoginBean’s validateUser method and asks whether the userName
and password combination is valid. If the code on line 10 returns true
(the userName and password combination is valid), the code puts the

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 77

Chapter 3: Creating a Simple Web Application with Struts 77
userName into the Request scope for use by the loggedin.jsp page
on line 12.

� Line 13: Gets an ActionForward object for the name success and
returns control to RequestProcessor. The mapping.findForward
(success) call retrieves the path mapped to the success name. This
mapping is set up in the struts-config.xml file. (See the “Configuring
Struts” section for details.)

� Lines 16 and 17: If the validation fails, the code creates an

ActionErrors object with an error message.

� Line 18: Like the validate method of the LoginForm class, a key for the
error is specified when adding the ActionError so that the JSP page
knows where the error message should be displayed.

� Line 19: Saves the ActionErrors into the request object using the

saveErrors method of the Action superclass.

� Line 20: Returns an ActionForward object with the real path that’s

mapped to failure; control is then returned to RequestProcessor.

Notice the minimum dependency between the Controller (LoginAction) and
the Model (LoginBean) in lines 9 and 10. The code instantiates the LoginBean
and then call its validateUser method. You have no idea what goes on in the
LoginBean and really don’t need to care. The LoginBean could be querying a
remote database and performing many steps of validation when you call the
validateUser method. This is what MVC is trying to achieve: minimum cou­
pling (dependencies) between the Model, View, and Controller. With minimum
dependency, you gain increased flexibility and maintainability in your code.

Importing the LoginAction.java file
To import the LoginAction.java file, follow these steps:

1. In the Package Explorer view, right-click the dummies.struts package
in the source folder and choose Import.

The Import dialog box appears.

2. Choose File System and click the Next button.

3. Click the Browse button next to the From Directory text box and navi­
gate to and select the folder where you put the Login files that you
downloaded. Click OK.

4. Select the LoginAction.java check box and click the Finish button.

Manually entering the LoginAction source code
If you want to manually enter the code, follow these steps:

1. In the Package Explorer View, right-click the dummies.struts package
in the source folder and choose New➪ Class.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 78

78 Part I: Getting to Know Jakarta Struts

The New Java Class dialog box appears.

2. In the Name text box, type LoginAction.

3. In the Superclass text box, type org.apache.struts.action.Action.

4. Click Finish.

5. Type Listing 3-6 into the newly created LoginAction.java file.

Do not include the line numbers.

6. To save your changes, choose File➪Save.

Configuring Struts
To complete the application, you need to configure the Web container and
Struts. It is through the configuration files that we tie all the parts together.
First you configure the Web container so that it knows about the application.

Defining web.xml

Defining the web.xml file makes the Web container aware of your application
and how to run the application. Listing 3-7 shows the web.xml configuration
file.

Listing 3-7 web.xml

1<?xml version=”1.0” encoding=”ISO-8859-1”?>

2<!DOCTYPE web-app
3 PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
4 “http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>

5<web-app>
6
7 <!-- Action Servlet Configuration -->
8 <servlet>
9 <servlet-name>action</servlet-name>
10 <servlet-class>org.apache.struts.action.ActionServlet

</servlet-class>
11 <init-param>
12 <param-name>config</param-name>
13 <param-value>/WEB-INF/struts-config.xml</param-value>
14 </init-param>
15 <load-on-startup>1</load-on-startup>

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 79

Chapter 3: Creating a Simple Web Application with Struts 79

16 </servlet>

17 <!-- Action Servlet Mapping -->
18 <servlet-mapping>
19 <servlet-name>action</servlet-name>
20 <url-pattern>*.do</url-pattern>
21 </servlet-mapping>

22 <!-- The Welcome File List -->
23 <welcome-file-list>
24 <welcome-file>login.jsp</welcome-file>
25 </welcome-file-list>

26 <!-- JSTL Tag Library Descriptor -->
27 <taglib>
28 <taglib-uri>/WEB-INF/c.tld</taglib-uri>
29 <taglib-location>/WEB-INF/c.tld</taglib-location>
30 </taglib>

31 <taglib>
32 <taglib-uri>/WEB-INF/fmt.tld</taglib-uri>
33 <taglib-location>/WEB-INF/fmt.tld</taglib-location>
34 </taglib>

35 <taglib>
36 <taglib-uri>/WEB-INF/sql.tld</taglib-uri>
37 <taglib-location>/WEB-INF/sql.tld</taglib-location>
38 </taglib>

39 <taglib>
40 <taglib-uri>/WEB-INF/x.tld</taglib-uri>
41 <taglib-location>/WEB-INF/x.tld</taglib-location>
42 </taglib>

43 <!-- Struts Tag Library Descriptors -->
44 <taglib>
45 <taglib-uri>/WEB-INF/struts-bean-el.tld</taglib-uri>
46 <taglib-location>/WEB-INF/struts-bean-el.tld</taglib-location>
47 </taglib>

48 <taglib>
49 <taglib-uri>/WEB-INF/struts-html-el.tld</taglib-uri>
50 <taglib-location>/WEB-INF/struts-html-el.tld</taglib-location>
51 </taglib>

52 <taglib>
53 <taglib-uri>/WEB-INF/struts-logic-el.tld</taglib-uri>
54 <taglib-location>/WEB-INF/struts-logic-el.tld</taglib-location>
55 </taglib>
56</web-app>

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 80

80 Part I: Getting to Know Jakarta Struts

Here’s what you should know about this web.xml file:

� Lines 8–16: Define the Struts controller, the ActionServlet.

� Line 9: The ActionServlet is referred to by the name action.

� Line 10: Contains the class name.

� Line 12: Passes one parameter named config to the Servlet.

� Line 13: The value of the parameter is the path to the struts-config.
xml file).

� Line 15: Indicates that this Servlet should be the first one to be started
when the application starts. Right now there’s only one Servlet, so the
order doesn’t make much difference. However, when there are many
Servlets in an application, the starting order is important.

� Lines 18–21: Tell the container that for every URL that the container
encounters for this application context that ends in .do, it should route
the request to the action Servlet.

The application context is simply a name used to refer to a particular
Web application. In our case, the context is Login.

� Lines 23–25: Define the file to display if the user enters the context in
the browser without specifying a particular file, for example, http://
localhost/Login. In this case, the login.jsp page will be displayed
by default.

� Lines 27–42: Define the use of certain JSTL tag libraries and specifies
where to find the library definition files. The URI in the definition is
referred to in the JSP file when specifying the use of a tag library. For
example, the following directive is from a JSP file that specifies the use
of JSTL’s formatting library. Note that the uri in the directive must
match the uri defined for the library in the web.xml file on line 32.

<%@ taglib prefix=”fmt” uri=”/WEB-INF/fmt.tld” %>

� Lines 44–55: Define the use of certain Struts-EL tag libraries and specifies
where to find the library definition files.

Importing web.xml into Eclipse
Follow these four steps to import web.xml into Eclipse:

1. In the Package Explorer view, right-click the WEB-INF folder and

choose Import.

2. Choose File System and click the Next button.

3. Click the Browse button next to the From Directory text box and navi­
gate to and select the folder where you put the Login files that you
downloaded. Click OK.

4. Select the web.xml check box and click the Finish button.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 81

Chapter 3: Creating a Simple Web Application with Struts 81
Entering the web.xml file into Eclipse
To manually enter the web.xml file into Eclipse, follow these steps:

1. In the Package Explorer View, right-click the WEB-INF folder and

choose New➪ File.

The New File dialog box appears.

2. In the File Name text box, type web.xml and then click Finish.

3. Type the text from Listing 3-7.

Do not include the line numbers.

4. To save your changes, choose File➪Save.

Configuring Struts with struts-config.xml

You now need to configure Struts with the struts-config.xml file. At this
point, you’re going to make the connection between the Views, Forms, and
Actions. For the Login application you configure three items: the LoginForm,
the mapping for the /login path, and the message resource file. Listing 3-8
shows the struts-config.xml file.

Listing 3-8 struts-config.xml

1<?xml version=”1.0” encoding=”ISO-8859-1” ?>

2<!DOCTYPE struts-config PUBLIC
3 “-//Apache Software Foundation//DTD Struts Configuration 1.1//EN”
4 “http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd”>

5<!-- This is the Struts configuration file for the Login application -->
6<struts-config>
7 <!-- ========== Form Bean Definitions ================================== -->
8 <form-beans>
9 <form-bean name=”loginForm”
10 type=”dummies.struts.LoginForm”/>
11 </form-beans>

12 <!-- ========== Action Mapping Definitions ============================ -->
13 <action-mappings>
14 <action path=”/login”
15 type=”dummies.struts.LoginAction”
16 name=”loginForm”
17 scope=”request”
18 input=”/login.jsp”
19 validate=”true”>
20 <forward name=”failure” path=”/login.jsp”/>21 <forward

name=”success” path=”/loggedin.jsp”/>

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 82

82 Part I: Getting to Know Jakarta Struts

22 </action>
23 </action-mappings>

24 <!-- ========== Message Resources Definitions ======================== -->
25 <message-resources null=”false”
26 parameter=”ApplicationResources”/>
27</struts-config>

Struts-config.xml has the following notable lines:

� Line 9: Uses the <form-bean> tag to give LoginForm a name you can
refer to later in the struts-config file. You must define every form-
bean that you intend to use in an application, using the <form-beans>
tag. The Login application has only one formbean, LoginForm.

� Line 10: Specifies the full class name of the form and closes the tag.

� Line 13: Starts the section on action mappings. The Action Mapping
Definitions section defines which Action subclass should be called when
a particular path is referenced in a URL. Because you have only one
Action subclass (LoginAction), you have only one mapping to define.

Remember that in the web.xml file we specified, all URLs with a .do
extension should be routed to ActionServlet. Each path defined for an
action in the struts-config file will have the .do extension in the URL.
The Struts Controller will strip the extension to get the path. That path
will be used to determine which action should be called.

� Line 14: Begins the one action definition. The path attribute specifies
which path will result in the LoginAction class being called.

� Line 15: Defines the full class name of the LoginAction.

� Line 16: Specifies which form-bean should be associated with this
action. In this case, the code uses the loginform defined earlier.

� Line 17: Specifies that the scope of the form-bean should be the request
scope. In other words, where should the form-bean exist? The other
option is the session scope. You would use the session scope if you want
the form to persist between requests, such as when you have a multi-
page form.

� Line 18: Specifies that the login.jsp page populates form-bean.

� Line 19: Calls the validate method of form-bean. Specifying false would
mean not to call the validate method, and validation would need to occur
through another means. (For more information about other means of vali­
dation, see Chapter 6).

� Lines 20 and 21: Contain the actual mapping between a logic name and a
path. Line 20 specifies the failure name when forwarding to the login.
jsp page. Line 21 specifies the success name when forwarding to the
loggedin.jsp page. The use of these mappings provides flexibility with­
out having to change code. You may decide to use a different JSP for

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 83

Chapter 3: Creating a Simple Web Application with Struts 83
success at some point. Rather than having to search your code for all
instances of /loggedin.jsp and change it to the new JSP, you could
simply change the path here in the struts-config file. All references to
success in your code would now point to the new JSP rather than the
old page. Here is a line from LoginAction that shows how the mapping
is used:

return (mapping.findForward(“success”));

� Line 25: Defines the message resources. Line 25 specifies that the key be
displayed instead of the value if a key is encountered that can’t be found
in the property file. If you use true instead of false, the behavior will
be to use an empty string. The parameter attribute defines the name of
the property file to use for the message resource. It’s assumed that the
file’s extension is properties.

The struts-config.xml file represents the definition of the parts of the
application to the Struts framework, how the parts are connected with each
other, and the flow of control. It allows Struts to use your code without you
having to modify the Struts code directly. This is a big plus in terms of the
application’s flexibility and ease of maintenance.

Importing struts-config.xml into Eclipse
Follow these four steps to import struts-config.xml into Eclipse:

1. In the Package Explorer view, right-click the WEB-INF folder and

choose Import.

The Import dialog box appears.

2. Choose File System and click the Next button.

3. Click the Browse button next to the From Directory text box and navi­
gate to and select the folder where you put the Login files that you
downloaded. Click OK.

4. Select the struts-config.xml check box and click the Finish button.

Entering the struts-config.xml file into Eclipse
To enter the struts-config.xml file into Eclipse manually, follow these steps:

1. In the Package Explorer view, right-click the WEB-INF folder and

choose New➪ File.

The New File dialog box appears.

2. In the File Name text box, type struts-config.xml and then click Finish.

3. Type Listing 3-8.

Do not include the line numbers.

4. To save your changes, choose File➪Save.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 84

84 Part I: Getting to Know Jakarta Struts

Creating the project in other
development environments

If you’re not using Eclipse as your development
environment, you still need to follow the basic

summarize, you need to

application.

folders.

Set up your classpath to include all the

site.

Copy the various project files into the

Compile the Java source files and put the
class files into the classes

steps as described throughout this chapter. To

1. Create the folder structure used for a Web

2. Put all the JAR and TLD files into the proper

3.
library files described in this chapter.

4. Download the Project files from the Web

5.
proper folders as explained in the “Web
application folder structure” sidebar.

6.
folder.

Now you have the all the files necessary for the project. Your Package
Manager View should look like Figure 3-12.

If you’re using a development environment other than Eclipse, check out the
“Creating the project in other development environments” sidebar.

Figure 3-12:
The

Package
Manager

after
importing

the project
files.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 85

Chapter 3: Creating a Simple Web Application with Struts 85

Strutting Your Stuff: Running
the Application

The time has come to see your Login project in operation. The last step
before proceeding is to compile the Java source files. Before compiling,
be sure you have set the default output folder to point to WEB-INF/classes,
as explained in “Creating the packages” earlier in this chapter.

To compile your source code, choose Project➪Rebuild Project. This command
generates the class files and puts them in the classes folder, preserving the
structure of the dummies/struts package.

At this point, your folder structure should look like Figure 3-13. If your folder
structure is different, review the appropriate part of Chapter 3 to see what
step you missed. Once everything is in place, you can continue here.

Deploying the Login application

The folder structure you created for the development process is also the
structure that the Web container requires for Web applications. Deploying
the application is just a matter of copying a few files and folders to the
webapps folder in the Tomcat application folder. To copy the required files
and folders, follow these steps:

1. In Windows Explorer, go to the webapps subfolder of your Tomcat
folder and create a Login folder to hold your Web application files.

2. In Windows Explorer, go to the workspace folder of the Eclipse

folder and open the Login folder.

3. In the window with the workspace folder, select the two JSP files and
the WEB-INF folder in the Eclipse folder and Ctrl-drag to copy (not
move) them to the Login folder in Tomcat-4.1/webapps.

You have just deployed your application.

Testing the application

The Login application is complete, and you should now test it. To test the
application, follow these steps:

1. Open Eclipse.

2. If you’re not sure that Tomcat is running, click the Tomcat Restart icon.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 86

86 Part I: Getting to Know Jakarta Struts

Figure 3-13:
The final

folder
structure for

the Login
project.

3. In your favorite Web browser, type the application’s URL: http://
localhost/Login.

(Because the application defines a default page, you do not need to
enter login.jsp.) You see the login page, as shown in Figure 3-9.

4. To test the validation process, click the Log In button without entering
any information,.

The application should respond with error messages next to both the
username and password fields, as shown in Figure 3-14.

5. Try the application again, this time supplying either a password or a
username, but not both.

Again, you should see an error message next to the field missing data.

6. Try logging in with a bad username or password, and then click the
Log In button.

This time the error message should appear at the top of the page

because it is a more general error than the previous ones.

7. Type a valid username and password (as defined in LoginBean) and
then click Log In.

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 87

Chapter 3: Creating a Simple Web Application with Struts 87

Figure 3-14:
Login errors
for missing

information.

For example, try Twinkle Toes as the username and tt as the password.
The loggedin.jsp page should appear (see Figure 3-10) and the user’s
name should be embedded in the message.

Congratulations on completing your first Struts Web application.

Debugging with Eclipse
In Chapter 2 we discussed the Tomcat plug-in for Eclipse and mentioned how
it registers the Eclipse debugger with Tomcat, allowing you to debug all your
Web application code from the Eclipse environment.

It is beyond the scope of this book to describe the Eclipse environment in
any depth. But let’s take a few minutes to explore how you can use the debug­
ging feature to troubleshoot your Web applications.

Setting a breakpoint
You can easily set a breakpoint in your Java source code by double-clicking
the gray area to the left of the line where you want to stop. To try this out,
follow these steps:

06 559575 Ch03.qxd 3/2/04 3:57 PM Page 88

88 Part I: Getting to Know Jakarta Struts

1. In the Package Explorer view in Eclipse, double-click the LoginAction.
java file.

The LoginAction.java file opens in the Eclipse editor.

2. To set a breakpoint in the first line of the execute method where you
instantiate a copy of the LoginBean, double-click the margin to the left
of that line of code.

Refer to Figure 3-15.

3. Go back to your browser and reenter the http://localhost/Login
URL to display login.jsp again.

4. Type an invalid username and password, and then click Log In.

This action ensures that the LoginAction code is executed and that
you will therefore come to the breakpoint that you just set.

5. Return to Eclipse.

Notice that Perspective has changed from the Java Perspective to the
Debug Perspective. Eclipse now displays Views that are more appropri­
ate for the task at hand.

6. Use the debugger icons at the top of the Debug View or the equivalent
menu items in the Run menu to step through your code.

For further information about debugging under Eclipse, look at the debugging
topics in Eclipse Help.

Breakpoint

Figure 3-15:
LoginAction.

java in
the Editor

with the
breakpoint

set.

07 559575 PP02.qxd 3/2/04 3:57 PM Page 89

Part II
Starting from

the Core

07 559575 PP02.qxd 3/2/04 3:57 PM Page 90

In this part . . .

T

code stay connected.

his is where you delve into the three parts of Struts:
the Controller, the Model, and the View. Chapter 4

explains the Controller and how you use it to make your
Web application execute the business logic that you
require. Chapter 5 discusses the Model, which represents
your data. Chapter 6 covers the View, so that your viewers
can see the results of all your great work. Finally, Chapter
7 explains the Struts and Web container configuration files
that you need to use to make sure all the sections of your

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 91

Chapter 4

Controlling with the Controller
In This Chapter
� Working with the Struts Controller classes

� Understanding the ActionServlet

� Using the RequestProcessor

� Creating the Action classes

When you created a Web application using Java in the olden days, you
probably started to write Servlets to service your JSP pages, or in

Struts terminology, your views. In these enlightened times, you can use the
Struts Controller classes to help you fly through the development process. In
this chapter, we explain the Struts Controller classes and show you how they
can keep you organized.

Understanding the Struts
Controller Classes

The Struts Controller layer of the MVC design pattern makes up the majority
of the classes in the Struts framework. This is to be expected because Struts
is not tied to any particular View or Model implementation. (We explain this in
more detail in the “How Struts enforces the MVC pattern” section in Chapter 1.)
Regarding the View or Model implementation, the Struts architecture is flexible
and can adapt to many possibilities. Therefore, the emphasis in Struts is in the
area of implementing the set of classes that go to make up the Controller.

The Struts Controller contains 41 classes and an additional 17 utility classes
as of this writing. The principal Controller classes are shown in the UML dia­
gram in Figure 4-1. (UML stands for Unified Modeling Language and is the
most common diagramming methodology for software design.) The following
section provides a brief description of each of the classes. Later in the chap­
ter, we provide more detail.

The principal Controller classes are as follows:

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 92

92 Part II: Starting from the Core

� ActionServlet: A subclass of javax.servlet.http.HttpServlet,
like most Servlets. The ActionServlet handles all requests to the
Struts framework whose URL ends in .do. The use of .do to indicate
that Struts should handle the request was defined in the web.xml file we
create in Chapter 3.

� RequestProcessor: The workhorse of the Controller, whose main func­
tions are to gather all necessary resources for a request by using the
configurations in the struts-config.xml file and pass control to the
proper Action subclass.

� Action: A generic abstract class to handle specific requests from the
client, that is, the user. You always subclass this class (creating new sub­
classes such as MyAction1, MyAction2, . . . MyActionN) for the particu­
lar needs of the request.

HttpServlet

Java Servlet Classes

ActionServlet Struts Classes

1..*

Figure 4-1:
UML

diagram of
major Struts

Controller
classes.

ActionConfig

ActionMapping

RequestProcessor

Action

FormBeanConfig

ModuleConfig PluginConfig

ActionFormBean

ForwardConfig

ActionForward

MessageResourceConfig

1..* 1..* 1..*

DataSourceConfig

0..*

ExceptionConfig

0..*

0..*

1..*

MyAction1 MyAction2 MyActionN

User-defined Classes

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 93

Chapter 4: Controlling with the Controller 93
� ModuleConfig: A class containing all the configuration information for

each module in the application. Much of this configuration information
is represented in the classes that follow.

� ActionConfig and ActionMapping: These classes contain all the map­
ping information needed to map a particular request to a particular
Action class. ActionMapping extends ActionConfig.

� FormBeanConfig and ActionFormBean: These classes represent a
FormBean. ActionFormBean extends FormBeanConfig.

� ForwardConfig and ActionForward: These classes represent destina­
tions to which an Action might direct the RequestProcessor to for­
ward or redirect a request. ActionForward extends ForwardConfig.
Struts will create an ActionForward class for each forward definition
in the struts-config.xml file.

� MessageResourcesConfig: Represents MessageResources associated
with a module of a Struts application. For example, in the Login applica­
tion created in Chapter 3, MessageResourcesConfig would contain the
contents of the ApplicationResources.properties file.

� DataSourceConfig: Represents datasource elements in the struts-
config file. DataSources are implementations of the javax.sql.
DataSource interface that provide database connection management
and pooling. See Chapter 5 for more information.

� ExceptionConfig: Represents exception elements in the struts-config
file. An exception element defines how Struts will react to particular types
of exceptions.

� PluginConfig: Represents plug-in elements in the struts-config file.
See Chapter 9 for more information on plug-ins.

Working with the Master Controller —
the ActionServlet

The ActionServlet class is the front-line soldier in the Struts Controller and
is responsible for handling all requests that come to the Web application.
Frankly, the ActionServlet doesn’t do very much, but it’s still important
because it is the first to act.

In this chapter, we mention the classes of the Struts Controller in some detail
to give you more understanding of their purpose. Because Struts is an open-
source project, the source code is available to you, the developer, to use as
needed for the particulars of your application. Therefore, if you need the
ActionServlet (or any other Struts class) to do something different, you
simply have to implement a subclass and add the new functionality.

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 94

94 Part II: Starting from the Core

Starting the Servlet

When the Web container starts, it looks in the web.xml file of each Web appli­
cation it is serving and starts the described Servlets in the prescribed order
as defined in web.xml. Generally, the ActionServlet is the first Servlet
started in a Struts application.

Because the ActionServlet is just like any other Servlet, it overrides the
init method of its parent class, HttpServlet. The Web container calls the
init method to allow the Servlet to initialize whatever resources the Servlet
needs to run. ActionServlet does the bulk of its work during this initializa­
tion phase. This phase creates all the resources needed by the Servlet and
the modules.

An application can be made of one or more modules. Each module represents
a logical set of functionality that together makes the application a whole.
Smaller applications generally have only one module. (The sample Login
application in Chapter 3 has just the default module.) But if the project is
larger, with numerous developers or teams, dividing the application into
separate modules makes it easier for the different groups to work on the
application without running into each other. Each module has its own
struts-config.xml file. ActionServlet must be made aware of additional
modules. This is accomplished in the ActionServlet configuration found in
the web.xml file. For example, if you want to have a separate module named
purchasing that’s configured in its own struts-config.xml file, you add
that information as follows to the web.xml file:

<servlet ...>
<!--default module -->

<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>
<!--purchasing module -->

<init-param>
<param-name>config/purchasing</param-name>
<param-value>/WEB-INF/struts-config-purch.xml</param-value>

</init-param>
</servlet>

The default module is defined by the struts-config.xml file while the
purchasing module uses the struts-config-purch.xml for configuration.
To switch from one module to another, use the SwitchAction mechanism
(described later in the chapter) or use the module name in the forward defi­
nition, as in this example:

<action ... >
<forward name=”success”

contextRelative=”true”

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 95

Chapter 4: Controlling with the Controller 95
path=”/Purchasing/index.do”
redirect=”true”/>

</action>

Following are the major steps that ActionServlet takes at initialization
time. These initialization steps are also shown in Figure 4-2.

1. Creates the message resources used internally by ActionServlet.

These are different than the message resources used by each module.
We discuss message resources briefly in the “Using message resources”
section of Chapter 3 and discuss them further in Chapter 6.

2. Defines some of the global characteristics of the application, including
the location of the struts-config.xml file.

Normally the struts-config.xml file is in the WEB-INF folder. However,
you can define the struts-config.xml file to be in some other location.
You specify this in the web.xml file, which passes the new location as a
parameter to ActionServlet.

Threads and Servlets
One important aspect of Servlet technology is
that it creates only one instance of the Servlet.
Even so, the Servlet can handle multiple requests
simultaneously because each request is handled
by an individual thread. A thread is an instance

lets (and any Java class) can support multiple

application at the same time. The only catch is
that you have to write your Servlet code to be
thread-safe.

For write thread-safe code, you need to ensure
that no conflict occurs when multiple clients run

could occur? For example, if you define instance
or class variables that could be used by a
method in the class, what happens if two threads
attempt to modify and then read the same vari­

variable x to the value 19 and thread 2 then
changes the value to 44. Then thread 1 reads the

value to perform some additional operation. It

client pays $44 for that $19 tee shirt. The wrong
result occurs because of this conflict.

How do you make sure that each thread finds the
right variable value? In the case of Servlets, you
just make sure you do not use class or instance
variables. (The exception would be if the class or
instance variables were initialized at startup and
then used in a read-only fashion.) Use only local
variables in each method because local vari­

this method to other classes that you want to
make thread-safe. Another technique for thread-
safety is the use of the synchronized key­
word. See

java.sun.com/docs/books/
tutorial/essential/threads/

to find out more about Java threads, including
the synchronized keyword.

of execution of the program’s code. Java Serv­

threads running simultaneously, which is great
when you have many people using your Web

the code simultaneously. What kind of conflict

able? Let’s say that thread 1 modifies instance

should read 19 but instead reads 44. Uh oh! Your

ables are unique for each thread. You can apply

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 96

96 Part II: Starting from the Core

In previous versions of Struts, ActionServlet also set the debug level.
However, it is now recommended that you set the debug level in the under­
lying logging implementation. We talk more about logging in Chapter 13.

3. Sets up the Servlet mapping that determines how this ActionServlet
is accessed.

This retrieves information from the web.xml file about the name used
for this ActionServlet and what URL pattern it handles. These values
are stored in the Application context, or scope.

4. Creates the ModuleConfig instance for the first (and possibly only)
module in the application.

5. Initializes the message resources for each module.

Each module can have one or more message resource files defined in
the Struts configuration file. These files are read into memory during
initialization.

Initialize Internal Message Resources

Initialize Global Characteristics of Action Servlet

Initialize Servlet Mapping

Initialize Module Configuration

Initialize Message Resources

Initialize Data Resources

Initialize Plugins

Freeze Configuration

Location of the config file

Name of Servlet
URL pattern

Do for each module in the application:

Figure 4-2:
The

initialization
process for

Action
Servlet.

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 97

Chapter 4: Controlling with the Controller 97
Because message resource files are read into memory during initializa­
tion, any changes that you make to a message resource file after the
application starts do not take effect until the next startup.

6. Initializes the data resources for this module.

If data resources are defined for your application, they’re initialized at
this step. (See Chapter 5 for more information on data resources.)

7. Initializes the plug-ins for this module.

If plug-ins are defined for your application, they’re initialized at this step.
(See Chapter 9 for more information on plug-ins.)

8. Freezes the configuration for this module.

The ModuleConfig object is marked as initialized and nonchangeable.
Any attempt to change the configuration settings for the ModuleConfig
object will result in an error.

9. Repeats Steps 4 through 8 for any additional modules.

Processing requests
After ActionServlet is initialized, it is ready for its main purpose: handling
user requests. When a request comes in from the client, the Web container
routes the request to ActionServlet. How do you know this? Step 3 in the
ActionServlet initialization process, just listed, states that the web.xml file
defines the URL pattern that this Servlet handles. Any request for the applica­
tion must have the defined pattern in its URL (usually *.do), and therefore
the Web container routes the request to the ActionServlet.

Every request is handled by the process method. The process method first
adds ModuleConfig and MessageResources to the request. If the application
has more than one module, the module’s particular ModuleConfig and
MessageResources are used. Then ActionServlet gets the Request
Processor instance for the module being called and calls the process method
of RequestProcessor, the real workhorse of request processing in Struts.

That’s it. ActionServlet is finished — at least until the next request comes
in or the container shuts down.

Shutting down the Servlet

When it’s time to shut down the application, the Web container calls
the ActionServlet’s destroy method to notify ActionServlet of the
impending shutdown. This is a standard method of the HttpServlet

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 98

98 Part II: Starting from the Core

class that ActionServlet overrides. During the execution of this method,
ActionServlet releases any resources generated during the initialization
phase — module resources, datasource resources, internal message
resources, and the logger resource.

Working with the Controller’s

Helper — RequestProcessor

We’ve all seen work sites where a bunch of people are digging a ditch. One
person is standing around watching and making a few comments, while the
others are down in the hole feverishly digging with their shovels. That’s
the relationship between ActionServlet and RequestProcessor. Action
Servlet tells RequestProcessor, “dig here,” and RequestProcessor does
most of the work.

ActionServlet calls the RequestProcessor’s process method to handle the
incoming request. The process method then performs a series of steps, gath­
ering resources for the request, calling the specific actions that act on the
request, and finally forwarding or redirecting the response to the appropriate
destination. Following are the detailed steps taken by RequestProcessor for
each request it handles:

1. Wraps the request in a special wrapper if the request’s content type is
multipart/form-data.

Struts includes a library to provide file upload services. You put that
library (commons-fileupload.jar) in the WEB-INF/lib folder. When a
user uploads a file, the file has a special content type of multipart/
form-data. When the RequestProcessor finds a request with that
special type, it puts the request in a special wrapper class so that the
request can be processed more easily.

2. Gets the path in order to select the mapping.

RequestProcessor determines from the request URL the path that
caused the request and then uses that path in Step 7 to determine which
ActionMapping to select.

3. Selects the Locale for the request in the session scope, if configured
to do so.

By default, the Locale of the request is set into the session scope. To
change it, you would need to specify a different ControllerConfig class
in the struts-config.xml file and set the locale attribute to false.

A Locale represents a user’s language and geographical region. By
knowing the Locale, the application can customize the language and
regional formatting for values such as dates and money.

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 99

Chapter 4: Controlling with the Controller 99
4. Sets the content type for the response, if configured to do so in the

struts-config file.

Otherwise, the content type is the standard text/html. This can be
changed by specifying a different ControlConfig class and setting the
contentType attribute to another valid value.

5. Sets a no-cache header to disallow caching of the page, if configured
to do so.

By default, caching is allowed. To disallow caching, you must specify a dif­
ferent ControllerConfig class and set the noCache attribute to true.

6. Performs custom preprocessing, if defined in a subclass.

The processPreprocess method is a hook (an empty method designed
to be overridden) to allow developers to add custom preprocessing logic
to each request. To make use of preprocessing, you need to subclass the
RequestProcessor class and override the processPreprocess method.
This is described more fully in Chapter 9.

7. Gets the ActionMapping instance to use.

Based on the path used for the request, RequestProcessor looks up
the ActionMapping instance. ActionMapping determines which of the
Action classes to call to process the request.

8. Checks security roles for this action to make sure that the user can

perform it.

The Web container has a built-in security architecture that each applica­
tion can use. If the application uses the built-in security, the struts-
config file defines how to use it. This step verifies that the current user
can perform any specific action.

9. Gets the ActionForm instance associated with the request.

RequestProcessor gets ActionForm associated with this action based
on ActionMapping. If ActionForm does not yet exist, RequestProcessor
creates it.

10. Populates ActionForm.

Uses the parameters from the request to populate ActionForm.

11. Validates ActionForm.

If you’re using standard form validation, RequestProcessor calls the
ActionForm’s validate method now. If validation has any errors,
RequestProcessor forwards control back to the input form from which
the request came.

12. Processes a forward or include if specified in ActionMapping.

If you have used a forward or include attribute in the action mapping,
RequestProcessor processes them at this point. One of these two
attributes is used if you do not specify an Action method to receive
control. We define these attributes in Chapter 7.

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 100

100 Part II: Starting from the Core

13. Calls the execute method on the specific Action class.

Finally, the Action class gets to do its stuff. At this point, the code we
have written to handle this request gets executed. When it is finished, it
returns an instance of ActionForward.

14. Forwards or redirects to the destination specified by ActionForward.

The last step in the request processing is to forward or redirect the user
to the specified destination, usually a JSP page.

Each module that the application has defined has one RequestProcessor
instance. Each RequestProcessor has a reference to ModuleConfig for that
module. Figure 4-1 shows the relationship between RequestProcessor and
ModuleConfig. The ModuleConfig class has all the necessary information
(mappings, datasources, forwards, exceptions, formbeans, message resources,
plug-ins, and prefix) to fully describe each module

Getting Down to Work:

Extending ActionClass

When you start to work with the Action class you have to extend the Struts
framework to accommodate the particular needs of your application. Action
Servlet and RequestProcessor can be extended, if you want. But you must
extend the Action class for two reasons:

� The Action class is a Struts class that must be subclassed to be used.

� Action subclasses are the only way for you to process a user’s request.
After all, you’re the only one who knows how you want to respond to
your users.

Action subclasses must be thread-safe, as we explain in the “Threads and
Servlets” sidebar in this chapter, because RequestProcessor creates only
one instance of each Action subclass. If more than one user requests at the
same time that the same action be performed, the one instance of the Action
class will be called on to do multiple tasks. Therefore, you must use only local
variables (class or instance variables that are read-only would also be safe).

When a request comes in, RequestProcessor needs to know which Action
subclass should have control. RequestProcessor finds the necessary infor­
mation from the ActionMapping instance that relates the request URL with a
particular Action class. The ActionMapping instance also indicates which
ActionForm should be used with the request. You provide the necessary
information for ActionMapping when you define the action mappings in the
struts-config file. (See Chapter 7 for more on action mappings.)

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 101

Chapter 4: Controlling with the Controller 101

Using the execute method

RequestProcessor calls the execute method when it is ready to pass control
to the Action class. This method is the principal worker method in the class.
In the execute method you define all the operations that are necessary to
handle the request. However, you should not embed all logic in the execute
method. In fact, if you need to apply some business rules or operations, you
should create a separate set of business objects. If you follow the MVC model,
the Model should be responsible for business logic and data manipulation.
The Controller just makes decisions about the flow of control.

The Action class can do anything you want it to do. Well, it can’t tap dance
or wear a top hat. Typically, the Action class performs the following steps:

1. Verifies the user.

If this Action is a protected operation (requiring authorization), the
first thing Action should do is to verify the user’s authorization. (If
you’re using Web-container-based security, you hand over user verifica­
tion to the Web container.) Verification could take many forms depend­
ing on what kind of authorization scheme you use. We talk more about
security issues in Chapter 12.

2. Determines which action needs to be performed and performs the
action.

If the action is simple and straightforward, you need only one action.
Sometimes, you may have two or more choices depending on some form
parameter. For example, you may have a page that displays a list of all
purchase orders for a particular user. Let’s say that the page contains a
button that enables the user to display the purchase orders for a particu­
lar date. You have one Action class that handles both the initial request
and subsequent requests for particular purchase orders. In your execute
method, you need to know whether to display all purchase orders for the
user or perform a search based on a particular date. Therefore, you need
to check a form parameter to determine which operation to perform.

3. Sets or updates the necessary attributes that the destination page

will need.

This may mean putting a JavaBean into one of the scopes, or it may
mean updating a formbean so that when the page is redisplayed it has
the updated values.

4. Returns an appropriate ActionForward object to display the proper
View.

The ActionForward object will have all the information needed for the
RequestProcessor to determine where to forward control.

Listing 4-1 shows some of the highlights of the Action class. Comments
throughout the listing explain the purpose of the code.

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 102

102 Part II: Starting from the Core

Listing 4-1 Example of an Action Class

public class POListAction extends Action
{

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws Exception
{

// Extract attributes we will need from the session
1 HttpSession session = request.getSession();

// If validated, user will be in the session
2 User user = (User) session.getAttribute(Constants.USER_KEY);

// Get the POListBean, if it exists
3 POListBean polBean = (POListBean)

session.getAttribute(Constants.POLIST_KEY);
// ensure user has logged on, otherwise make them

4 if (user == null)
{

5 return (mapping.findForward(“logon”)); // make user logon
}
// ensure we have a POListBean, otherwise create one

6 if (polBean == null)
{

7 polBean = new POListBean();
}
// the action value will determine what we need to do

8 POListForm polForm = (POListForm) form;
9 String action = polForm.getAction();

// if null, first time to the form - just get the user’s POs
10 if ((action == null))

{
11 polBean.findAll(user); // get all the user’s pos

}
// Action == Find - do a search

12 else if(action.equals(“find”))

{
// perform the search for the specified purchase orders

13 polBean.findPurchaseOrders(polForm.getFind(),
polForm.getFilter(),
polForm.getFrom(),
polForm.getTo(),
user);

}
// save the updated bean

14 session.setAttribute(Constants.POLIST_KEY, polBean);
15 return (mapping.findForward(“success”));

}
}

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 103

Chapter 4: Controlling with the Controller 103
The listing performs the four common steps of the Action class, as follows:

� Lines 1, 2, 4, and 5: Validate the user.

� Lines 9, 10, and 12: Determine the action to perform and then perform
that action.

� Line 14: Sets the attribute that the destination page will need.

� Line 15: Returns the proper ActionForward object to call the destina­
tion page.

Predefined Action classes

Struts has five predefined Action classes for developers to use. Why would
you want to use these classes? In the appropriate situation, these classes can
save you a lot of time. These classes are explained in the next few sections.

ForwardAction
The ForwardAction class is useful when you’re trying to integrate Struts into
an existing application that uses Servlets to perform business logic functions.
You can use this class to take advantage of the Struts controller and its func­
tionality, without having to rewrite the existing Servlets. Use ForwardAction
to forward a request to another resource in your application, such as a Servlet
that already does business logic processing or even another JSP page. By using
this predefined action, you don’t have to write your own Action class. You just
have to set up the struts-config file properly to use ForwardAction.

The configuration to use ForwardAction is almost identical to regular Action
class configurations except you use the parameter attribute to specify where
the request should be forwarded to instead of the forward attribute. The fol­
lowing code example is from the Struts API documentation:

<action path=”/saveSubscription”
type=”org.apache.struts.actions.ForwardAction”
name=”subscriptionForm”
scope=”request”
input=”/subscription.jsp”
parameter=”/path/to/processing/servlet”/>

The type attribute is the full class name of the ForwardAction class. The
parameter attribute is pointing to the path of the resource you want to for­
ward control to. The other attributes are like normal action definitions.

IncludeAction
Like ForwardAction, the IncludeAction class is useful when you want to
integrate Struts into an application that uses Servlets. Use the IncludeAction
class to include another resource in the response to the request being

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 104

104 Part II: Starting from the Core

processed. All that you have to do is set up the struts-config file properly
to use IncludeAction, no extension of the class is necessary. The following
code example is from the Struts API documentation:

<action path=”/saveSubscription”
type=”org.apache.struts.actions.IncludeAction”
name=”subscriptionForm”
scope=”request”
input=”/subscription.jsp”
parameter=”/path/to/included/resource” />

The type attribute is the full class name of the IncludeAction class. The
parameter attribute is pointing to the path of the resource you want to
include. The other attributes are like normal action definitions.

SwitchAction
The SwitchAction class provides a means to switch from a resource in one
module to another resource in a different module. SwitchAction is useful only
if you have multiple modules in your Struts application. The SwitchAction
class can be used as is, without extending.

To switch to another resource in a different module, set up an action path
using SwitchAction in the struts-config file, as shown in this code snippet:

<action path=”/toModule”
type=”org.apache.struts.actions.SwitchAction” />

Then whenever you want to accomplish a switch, you use the /toModule
path in your URL along with two parameters:

� The prefix parameter indicates which module you want to switch to.

� The page parameter indicates which URL gets control after switching
modules.

For example, if you want to switch to the purchasing.do URL in module2,
your URL might look like this:

http://localhost/toModule.do?prefix=/module2&page=/
purchasing.do

When you switch back to the default module, use an empty string for the
prefix parameter, as in the following URL:

http://localhost/toModule.do?prefix=&page=/index.do

DispatchAction
The DispatchAction class is for developers who want to have numerous
similar actions in a single Action class. You may have a View that offers the

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 105

Chapter 4: Controlling with the Controller 105
user many possible actions to perform. For example, suppose that you have
a page with a list of purchase orders that the user can sort, void, or print.
These actions all relate to the list of purchase orders, so you might implement
a single Action class to handle the possible actions. Rather than crowd the
execute method with a series of if-then-else statements, you may opt to create
separate methods that each handle one possible action from the user. The
DispatchAction class is abstract and must be extended to be used.

In the purchasing order example, you could create a separate method (sort,
print, and void) for each of the possible actions. These methods would
need the same method signature as the standard execute method found in
the Action class. This shows the execute method signature:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws Exception

Your three method signatures would look just like the execute method signa­
ture, down to the fact that your new methods return an ActionForward
object. Following is an example of how to define the sort method signature:

public ActionForward sort(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws Exception

When you extend the DispatchAction class, do not override the execute

action methods.
method. That method is now responsible for calling one of your defined

The final step is to configure strut-config to make use of DispatchAction.
The configuration is just like configuring any action except for the parameter
attribute. The value of the parameter attribute defines the name of the request
parameter that will pass along the name of the method to be executed. If you
want to call the sort method for the polist action, you use the following URL:

http://localhost/myapp/polist.do?method=sort

Here is an example for configuring DispatchAction:

<action path=”/polist”
type=”org.example.POListAction”
name=”polistForm”
scope=”request”
input=”/polist.jsp”
parameter=”method”/>

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 106

106 Part II: Starting from the Core

The type attribute is the full class name of the extended DispatchAction
class. The parameter attribute names the request parameter method. The
other attributes are like normal action definitions.

LookupDispatchAction
The predefined LookupDispatchAction is similar to DispatchAction, in
that you define in one Action multiple methods that handle similar actions.
The difference between LookupDispatchAction and DispatchAction is that
the actual method that gets called in LookupDispatchAction is based on a
lookup of a key value instead of specifying the method name directly. The
LookupDispatchAction class is abstract and must be extended to be used.

The entry into the configuration file is similar to DispatchAction. The
parameter attribute contains the name of the request parameter. This time,
however, the value in the parameter is not a method name but a key used to
look up the method name:

<action path=”/test”
type=”org.example.MyLookupAction”
name=”MyForm”
scope=”request”
input=”/test.jsp”
parameter=”action”/>

The type attribute is the full class name of the extended LookupDispatch
Action class. The parameter attribute names the request parameter action.
The remaining attributes are defined like any other standard action definition.

Because the method to be looked up is based on a key value, LookupDispatch
Action is more suited to an application that contains multiple submit buttons
with the same name (but different labels and different actions) on a single
page, as in the code segment that follows:

1<html:form action=”/test”>
2 <html:submit property=”action”>
3 <bean:message key=”button.add”/>
4 </html:submit>
5 <html:submit property=”action”>
6 <bean:message key=”button.delete”>
7 </html:submit>
8</html:form>

In this code, all tags are custom tags from the Struts tag libraries. In particular,
notice that lines 2 and 5 are defining a submit button whose name is action.
Lines 3 and 6 define how the buttons are labeled and also what value is submit­
ted when the button is clicked. When the form is submitted, action will be a
request parameter and the button’s label will be the value.

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 107

Chapter 4: Controlling with the Controller 107
Assume that the following keys are part of the ApplicationResources.
properties file:

button.add=Add Record
button.delete=Delete Record

In this example, if the first button is clicked, the action parameter contains
the Add Record string. If the second button is clicked, the action parameter
contains Delete Record.

You extend LookupDispatchAction in a manner similar to how you extend
DispatchAction:

� You do not override the execute method.

� You need to create your specialized methods to handle each of the
actions to be serviced. These methods need to have the same method
signature as the execute method.

� You must create a protected method named getKeyMethodMap that
returns a Map. In the implementation of the method, you need to create a
HashMap and enter key-value pairs. The key corresponds to the keys used
in defining the buttons on your forms. The value is the name of the associ­
ated method to invoke.

The following code shows an example of implementing getKeyMapMethod:

protected Map getKeyMethodMap()
{

Map map = new HashMap();
map.put(“button.add”, “add”); // add is the method to invoke
map.put(“button.delete”, “delete”); // delete is the method to invoke
return map;

}

The following code shows how the add and delete methods would look. Note
that they return an ActionForward object just like the execute method does:

public ActionForward add(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

// do add logic here. . .

return mapping.findForward(“success”);

}

public ActionForward delete(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

08 559575 Ch04.qxd 3/2/04 3:58 PM Page 108

108 Part II: Starting from the Core

throws IOException, ServletException
{

// do delete logic here. . .
return mapping.findForward(“success”);

}

The final step in understanding how the pieces of the LookupDispatchAction
puzzle come together is to know that the execute method gets the value of the
action parameter and then uses that value to find the associated key in the
message resources. After the execute method finds the key, the key is used to
look up the method name in Map, which the getKeyMethodMap method returned.
The execute method goes through the following steps:

1. Gets the name of the parameter that contains the key by looking in
the ActionMapping.

This is defined in the preceding action configuration example to be
action.

2. Gets the value of the action parameter from the request.

In the example, this is either Add Record or Delete Record.

3. Using the message resources associated with this application, looks up
the key for the value retrieved from the action parameter.

In the example, the key could be button.add or button.delete.

4. Using the retrieved key, looks up the method name from the Map built
by getKeyMethodMap.

In the example, the resulting name is add or delete.

5. Calls the method.

Action Forms
While the ActionForm class is part of the Controller, we postpone its discus­
sion until we talk about Views in Chapter 6. It is the function of ActionForm
to move information between the View and the Controller.

Now that you have seen what the Struts Controller does, you can appreciate
the benefit of using this framework instead of trying to write your own. The
Struts Controller is an elegant, simple, and extensible design that provides
maximum flexibility in creating Web applications that cover the gamut of pos­
sibilities from relatively simple to complex, enterprise level, multideveloper
products.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 109

Chapter 5

Creating the Model
In This Chapter
� What is the Model?

� Using business objects

� Working with the Model

� Getting a database server

� Using an IDE and Web container with your database server

� Using MySQL

� Connecting the Model to a database

� Using connection pooling

For those of you who think the Model is related to a fashion show, you’re
in the wrong book. We’re talking about the Model part of the MVC design

pattern. It would be an oversimplification to say that the Model is just about the
business data. Yet the Model represents the business domain more than the
View does, and certainly more than the Controller does and typically you use
the Model in Jakarta Struts to help you connect your Web site with a database.
In this chapter, we explain how to connect your user with your data.

Understanding the Model

The Model holds and manages the business data and all the business func­
tions related to the data. The Model also provides implementations for
accessing and modifying the business data that can be invoked by the View
or the Controller.

To manage all that data, the Model usually includes at least one instance of
some persistent data store, most commonly a relational database server.
However, the Model could interact with many different databases and types of
data sources anywhere in the world. How the Model represents the business
data and logic is transparent to the View and the Controller. They don’t need

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 110

110 Part II: Starting from the Core

to know whether the data resides on the same server as the Web container or
on another server somewhere in Australia. They need to know only the inter­
face of the Model to access the various business functions and data items.

Just imagine a banking application that allows users to access their banking
information and withdraw money from thousands of ATMs anywhere in the
world. Now you have an idea of how complex the Model can become.

By separating the Model from the View and the Controller, you can share the
business data and logic across many different applications and different types
of applications, such as Web applications, client-server applications, and even
Business-to-Business (B2B) applications. For example, in a B2B application,
your Model layer may interact with the business functions of another organi­
zation such as a credit card processing center. This flexibility creates a power­
ful architecture in which systems can grow and expand with a business —
you can easily extend and scale systems to accommodate future demands.

In Chapter 3 we introduce a simple Login application that doesn’t even have a
database, containing just one business object, the LoginBean. In this chap­
ter, we enhance the Login application example by connecting it to a database
as shown in Figure 5-1.

Figure 5-1:
The Login

Model
archi­

Client
(Controller

Actions)

LoginAction

Business
Objects (BO) DB

LoginBean DB

tecture.

Working with Business Objects

A business object represents a real-world entity — it can be a person, a place,
a thing, or a concept. Business objects are taken directly from the business
domain that you’re analyzing. Therefore, not only programmers, but the people
working in the business departments, can relate to these terms and the ideas
they represent. In this manner, business objects provide a common ground in
which developers and domain experts can discuss and define the requirements
for developing a software application and are the starting point for designing
any object-oriented system.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 111

Chapter 5: Creating the Model 111
In object-oriented programming, a developer implements business objects by
creating classes that hold the data related to a particular business object and
also by defining the operations that can be performed on that data, all in one
programming language structure. In Java, you use either regular JavaBeans
for simple implementations of business objects or Enterprise JavaBeans (EJB)
for implementing business objects as distributed components that users can
access over the network.

Some good examples of business objects are Customer, Order, and Product.
Business departments can easily understand these terms, so that these terms
should definitely become objects in a related software application. The
LoginBean from Chapter 3 is not a business object in the sense of represent­
ing an entity, because it defines a business function performed on a User
business object. In this chapter, we refine the Login application a little bit to
better fit the business object definition.

Meeting requirements for business objects

Sun Microsystems has defined a set of guidelines for developing enter­
prise architectures with Java called the J2EE Blueprints (java.sun.com/
blueprints). The Enterprise JavaBeans (EJB) technology, which is an ideal
platform for implementing business objects, addresses all of Sun’s require­
ments. However, not all Web applications are complex enough to justify the
investment in expertise and money to include an EJB application server. EJB
is definitely worth investigating further, however, if you plan on taking your
Struts application to the next level.

For more information on EJB, read Enterprise JavaBeans For Dummies by Mac
Rinehart (published by Wiley). Also refer to java.sun.com/products/ejb.

In this chapter, we focus on only the following requirements for business
objects:

� Maintaining state: Retain the value of data between method invocations
and throughout the process of shutting down and restarting the Web
application.

� Reusability: A business object is general to the entire business, and you
should be able to reuse the object in different components of the same
application or in other applications. For example, an order fulfillment
application, a customer service application, and a billing application
could all use the same Customer business object. After you define the
Customer object, you should not need to reimplement the object in each
application.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 112

112 Part II: Starting from the Core

� Shared data: Most business objects maintain their state in some kind of
database. Many users share the data in the database and the business
object provides the means to access and manipulate the shared data.

Adding helper classes

In addition to defining business objects that represent real-world entities, you
need to create additional classes, called helper classes. These classes perform
the various business functions in the Model layer.

Helper classes are implementations of objects that you add during the design
phase. These classes do not directly represent real-world concepts that busi­
ness people can relate to. Their purpose is to improve the flexibility and struc­
ture of the programming code. Some examples of helper classes follow:

� A special data class that holds a set of related data items for the purpose
of handing it from one subsystem to the next.

� A specialized class or set of classes that implements lower-level functions
for the sake of efficiency. If you tried to implement these functions in the
business objects, you would end up with bloated classes that would be
hard to maintain.

� A list of business objects, for the purpose of providing functionality
related to a set of customers or all customers.

Using JavaBeans

The consensus is that data should be represented as a JavaBean, because
JavaBeans offer many advantages through their well-defined component
architecture. The creators of both JSP and the Struts framework made it
easy to present data that is encapsulated in a JavaBean. Many specialized
tags and classes help you to extract data from a data object that follows a
certain naming convention — and following a certain naming convention is
the hallmark of a JavaBean.

Implementing the Model

Struts itself doesn’t provide much support for implementing the Model por­
tion of a Web application, other than the support for datasource implemen­
tations. In a Struts application, the Action classes use JavaBeans to access
business data or to request the execution of a specific business function.
That, however, is their only interaction with the Model layer. The underlying
mechanics of the Model, such as database interactions, data representation,
and data manipulation, needs to be implemented by you, the developer.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 113

Chapter 5: Creating the Model 113

Achieving persistence

Persistence means that the lifetime of the data outlasts the lifetime of the
application. The data continues to exist after the application or even the
computer has been shut down. Next time the application starts, the same
data is still available. We’re sure that you don’t want your data to disappear
whenever your users close their browsers. By definition, business objects
must be persistent. They represent vital business data, such as bank accounts
and transactions that must be accessible beyond individual invocations of
the software application.

You can achieve persistence in many ways, but all approaches result in a
system that writes the data to some kind of permanent storage device, usu­
ally a hard drive.

More often then not, you gain persistence by connecting the Web application
to a relational database management system (RDBMS). Other alternatives are
object-oriented databases or file-based repositories.

Many vendors provide relational database management systems. Some of the
more popular ones are

� Microsoft SQL Server (www.microsoft.com /sql)

� MySQL (www.mysql.com/products/mysql/index.html)

� Oracle (www.oracle.com/ip/deploy/database/oracle9i)

� Sybase (www.sybase.com/products)

MySQL is an open-source implementation of a relational database that is free
for noncommercial use. We use MySQL in the examples in this chapter. You
can use any other type of database that you’re familiar with, but note that all
the examples show how to perform certain functions using MySQL.

Getting MySQL

To add the capability of persistence to a Struts application, you need the fol­
lowing items:

� A relational database management server: We chose MySQL, which is
open-source and free for noncommercial use.

� A database driver: A driver is necessary for the Java application to con­
nect to the database server. The driver is usually a Java class (it can be
written in another language) that implements the low-level details estab­
lishing and maintaining connections to a particular database implemen­
tation. MySQL provides a Java Database Connectivity (JDBC) driver
called MySQL Connector/J.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 114

114 Part II: Starting from the Core

� A database connection pool: In this chapter, we start by using direct
JDBC calls to access the database, which works fine for a small Web
application. For larger systems, however, this approach could create
resource conflicts and poor performance. A connection pool that man­
ages and reuses a certain number of connections to the database server
is a better solution. At the end of this chapter, we introduce the Jakarta
Commons Database Connection Pooling (DBCP) implementation.

Downloading and installing MySQL

If you want to work through our examples in MySQL, follow these steps to
download and install the program (on Windows NT, 2000, or XP):

1. Go to www.mysql.com.

The various MySQL products are listed on the main page.

2. Under the Database Server heading, select the Production version,
which is 4.0.16 as of this writing.

The MySQL download page appears.

3. Scroll down until you see all versions listed, ordered by operating

system. When you find your operating system, click the Download

link.

• If the File Download dialog box appears, click the Save button,
choose a location for the file, and click Save. Remember where you
put the downloaded file. Then extract the downloaded file to a tem­
porary folder, using WinZip or some other decompression utility.

• If the file immediately starts to download and opens in your decom­
pression application (such as WinZip), extract the files to a tempo­
rary folder.

4. Double-click the Setup.exe file and follow the installation instructions.

By default, MySQL installs in C:\mysql. You can safely accept all the
defaults, including the Typical installation option in the Setup Type
window.

You’ve set up your database server.

Downloading MySQL Connector/J

For your Java application to connect to the MySQL database server, you need a
driver that your program can use. If you’re using a database other than MySQL,
contact your vendor for information on available JDBC drivers. To download
the MySQL Connector/J to Windows NT, 2000, or XP, follow these steps:

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 115

Chapter 5: Creating the Model 115
1. Go to www.mysql.com.

2. Select the Production link for the Connector/J product.

Version 3.0.9 is the latest version as of this writing. The Connector/J
download page appears.

3. Scroll down until you see the Sources and Binaries heading. Click the
Download link for the zip version.

• If the File Download dialog box opens, click the Save button, choose
a location for the file, and then click Save. Remember where you
put the downloaded file. Then extract the downloaded file to a
location of your choosing, using WinZip or some other decompres­
sion utility.

• If the file immediately starts to download and opens in your decom­
pression application (such as WinZip), extract the files to a location
of your choice.

Next we add this driver to the classpath of Eclipse and Tomcat so that our
Web application knows where to find it.

Setting Up Your IDE and Web Container

Before you can connect to the database, you need to add the appropriate
library files to your IDE (if you’re using one) and to your Web container. In
general, you need to take the following steps:

1. Add the mysql-connector-java-3.0.9-stable-bin.jar file to the
classpath of your development environment.

2. Add the mysql-connector-java-3.0.9-stable-bin.jar file to the
Web container you’re using. It should go into the webapps/yourapp/
WEB-INF/lib folder.

If you want to follow along with the example that we presented in Chapter 3,
you can continue to use Eclipse as your IDE and Tomcat as your Web con­
tainer and follow the steps in the next two sections. Or you can apply the
appropriate steps to your own development environment and just read on.

Importing the class library into Eclipse

To use the MySQL Connector/J driver in Eclipse, you need to import the
library file so that you can write and compile code in Eclipse. For more infor­
mation on using Eclipse, see Chapter 3.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 116

116 Part II: Starting from the Core

To import the library file, follow these steps:

1. Start Eclipse.

2. Right-click the WEB-INF/lib folder in the Package Explorer view and
choose Import.

The Import dialog box opens.

3. In the list of import sources, double-click the File System item.

4. Click the Browse button next to the From Directory text box and
use the Import from Directory dialog box to navigate to the mysql-
connector-java-3.0.9-stable folder. Click OK.

All the .jar files appear in the right pane of the Import dialog box.

5. Select the check box for the mysql-connector-java-3.0.9-stable-
bin.jar file.

6. Click Finish.

After you import the .jar file to your IDE, you need to add the file to the
build path so that your IDE knows that you want to use it during compilation.
This process is equivalent to putting the files on the classpath for the appli­
cation. Here we explain how to add the .jar file to the build path in Eclipse:

1. Right-click the Login project in the Package Explorer view and choose
Properties.

2. In the Properties for Login (or your application’s name), choose the
Java Build Path item.

3. Click the Libraries tab.

4. Click the Add External JARs button.

The JAR Selection dialog box appears.

5. Navigate to the eclipse\workspace\Login\WEB-INF\lib folder.

6. Select the .jar file you just imported and then click Open.

7. Click OK.

Adding the class library to Tomcat
The preceding set of steps took care of being able to write and compile code
that accesses the database. To run this code under your Web container, you
need to copy the class library into your Web container application environment.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 117

Chapter 5: Creating the Model 117
To copy the class library into the Tomcat Web application environment,
follow these steps:

1. Open Windows Explorer.

2. In your WEB-INF\lib folder, select the .jar file that you just imported
into your IDE.

To follow along with the example, go to eclipse\workspace\Login\
WEB-INF\lib and select the mysql-connector-java-3.0.9-stable-
bin.jar file. (Whew! That’s a long file name!)

3. Copy the mysql-connector-java-3.0.9-stable-bin.jar file to the
WEB-INF\lib folder of your application in your Web container.

To follow along with the example, copy the mysql-connector-java-
3.0.9-stable-bin.jar file to the Tomcat\webapps\Login\WEB-INF\
lib folder. Make sure to press Ctrl as you drag the file so that you
copy it instead of moving it.

Working with MySQL

So far in this chapter, we’ve explained how to install a database server and
add some class libraries to your project. These steps are necessary but by
themselves don’t change anything. Before your Web application can connect
to your database, you need to do the following:

1. Create a database.

2. Create at least one table.

3. Put some data into the table.

In this section, we use MySQL to explain how to do the following:

� Start the MySQL database server

� Create a database called musiccollection

� Create a table called users

� Insert three records into the users table

MySQL provides an implementation of the Structured Query Language (SQL),
which is an industry standard used by most major RDBMS vendors. (That’s
why the program is called MySQL.) SQL provides commands for creating and
retrieving data from a relational database.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 118

118 Part II: Starting from the Core

All about SQL
SQL, which stands for Structured Query Lan­
guage, defines a set of commands to manip­
ulate a relational database system. SQL
commands can be divided into two main sub-
languages:

� Data Definition Language (DDL): Used to
create and destroy databases and data­
base objects such as tables, fields, and
indexes. Some of the commands are

, , DROP
DATABASE, and DROP TABLE.

� Data Manipulation Language (DML): Used
to create, retrieve, and modify the data in the
database. Some important commands are
INSERT, UPDATE, DELETE, and SELECT.

Institute (ANSI) declared that the correct pro­

base professionals commonly pronounce it

Although meant to be a standard, each data­
base vendor implements their own proprietary

flavors are all based on the industry standard
ANSI SQL but add certain functions that often

not be tempted into using those extensions and
stick to the ANSI compliant SQL in your appli­
cations, because that ensures that your appli­
cations will be portable to other database
implementations.

MySQL also has a number of extensions or

you can run MySQL in ANSI mode by adding the
--ansi argument to the command line when
starting the MySQL server:

C:\>mysqld-max-nt --ansi
--standalone

See the section “Starting and stopping MySQL”
for more information on starting the MySQL

SQL has been around for quite a while, so

www.devshed.com/
Server_Side/MySQL) as well as a number

a good tutorial on using MySQL and SQL. If you
installed MySQL in C:\mysql you can find

C:\mysql\Docs\manual.
html#Tutorial.

CREATEDATABASE CREATETABLE

By the way, the American National Standards

nunciation of SQL is “S-Q-L.” However, data­

“see-kwel.” We don’t care how you say it.

flavor. For example, Oracle uses PL/SQL and
Microsoft SQL Server uses Transact-SQL. These

make some tasks easier. The best practice is to

changes to the ANSI standard SQL. However,

server.

you can find plenty of literature on the Web
(one such Web site is

of good books. The MySQL installation includes

the tutorial at

Starting and stopping MySQL

Assuming that you installed MySQL on your C: drive in a folder called mysql,
open a command prompt window as shown in Figure 5-2 and type the following:

C:\>cd mysql\bin
C:\MYSQL\BIN>mysqld-max-nt –-standalone

The first line changes the current folder to the mysql\bin folder where all
the mysql applications reside. The second line starts the MySQL version for
Windows and specifies that MySQL should not be started as a Windows
service (--standalone).

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 119

Chapter 5: Creating the Model 119

Figure 5-2:
Starting the

MySQL
database

server.

You don’t see another command prompt because MySQL is still running in
that command window. That command cursor just keeps blinking until you
close MySQL. You need to open another command window to give commands
to MySQL.

To stop the MySQL server, open another command prompt window as shown
in Figure 5-3 and type the following:

C:\MYSQL\BIN>mysqladmin shutdown

In case you were wondering, yes, you do need to open another command
prompt window. The window in which you started MySQL is not usable,
because it is waiting for MySQL to quit before it will allow any further com­
mands to be issued.

Figure 5-3:
Shutting

down the
MySQL

database
server.

All the MySQL programs are located in the C:\mysql\bin folder. To avoid
having to change to that folder each time you want to execute one of those
commands, you may find it more convenient to add that folder to the system
path, as follows:

1. Choose Start➪Control Panel.

If you’re using Classic view, choose Start➪Settings➪Control Panel
instead.

2. Double-click the System icon.

3. Click the Advanced tab.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 120

120 Part II: Starting from the Core

4. Click the Environment Variables button.

5. In the System Variables section, select the system variable named Path.

6. Click the Edit button.

The Edit File System Variable dialog box appears.

7. Move the cursor to the end of the Variable Value field and type a semi­
colon (;) and then the path to the MySQL bin folder.

For example, you might type ;c:\mysql\bin.

8. Click the OK button three times to close all the dialog boxes and the
Control Panel.

Creating a database

The next step is to create a database in your RDBMS. In this section, we explain
how to create a database in MySQL. MySQL provides a command-line tool
for manipulating databases, tables, and data. Open a new command prompt
window and type the following boldface text to create a database and a table
as shown in Figure 5-4. (You may need to restart MySQL if you stopped it in the
preceding section.)

C:\>cd mysql\bin
C:\MYSQL\BIN>mysql
mysql> create database musiccollection;
mysql> show databases;

When you enter the mysql command, MySQL responds with its own mysql>
prompt. The next command, create. . . creates an empty database called
musiccollection. We use this name, because in Chapter 14 we describe a
larger application that manages a collection of music CDs.

Figure 5-4:
Running

the MySQL
command-

line
interface.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 121

Chapter 5: Creating the Model 121
Don’t forget the semicolon after each command before pressing the Enter key.
Otherwise, MySQL will not execute your command because it thinks that you
want to continue the command on the next line. This is the default behavior.
You can still type a semicolon on the next line and then press Enter to execute
your command — a useful technique for entering long commands.

After you type the show databases; command, you see displays a list of
all databases that exist in this database server. MySQL usually has two
already called test and mysql. You should also see your newly created music
collection database.

Your database is not too useful yet. To actually store data in your database,
you need to create at least one database table.

Creating a table in MySQL

After you create a database, you need to create a table. If you’re using MySQL
to create a table in the musiccollection database, type the following at the
mysql> prompt:

mysql> use musiccollection;
mysql> create table users (username varchar(20), password

varchar(20));
mysql> show tables;

When you want to execute a command on any of your databases, you always
need to tell MySQL which database you want to work on. You accomplish this
with the use musiccollection command, which switches MySQL to that
database. All commands entered after the use command perform their task
on that database.

The next command creates a simple table called users with two fields, a
username and a password. The varchar(20) that you see after each field
name is the data type and size of each field. varchar is a variable-length
string in MySQL, in this case with a maximum length of 20 characters.

The show tables command lists all tables in the current database.

Inserting data in the users table
The next step is to add data to your table. To add the example data to a table
in MySQL, type the following at the mysql> prompt, after specifying the data­
base to use, as explained in the preceding section:

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 122

122 Part II: Starting from the Core

mysql> insert into users (username, password) values
(“admin”, “secret”);

mysql> insert into users (username, password) values (“john”,
“dummy”);

mysql> insert into users (username, password) values (“barb”,
“struts”);

The insert SQL command allows you to insert data into a table. These
entries insert three records in the users table with different usernames and
passwords.

Note that the commands we explain here are sufficient only for the simplest
of systems. An industrial-strength application would require you to create
indexes for better performance, manage users and permissions, create views,
and so on. In a real-world development team, usually at least one person, des­
ignated as the database administrator, specializes in designing and tuning the
database servers.

Executing queries

To test that you have created the table and data successfully, you can select
all the rows in the users table by typing in the following SQL select state­
ment, after specifying the database to use, as explained in the “Creating a
table in MySQL” section:

mysql> select * from users;

Using SQL scripts

those commands on the mysql command line
is tedious, especially if you make a mistake and

to write all your SQL commands in a text file and
then pass the text file to the mysql program.
MySQL then executes all the commands in that

file at the Jakarta Struts For Dummies
at www.dummies.com/go/jakarta.

musiccollec-
tion.sql, type the following

C:\>cd mysql\bin
C:\MYSQL\BIN>mysql

< musiccollection.sql

The musiccollection.sql file creates
the musiccollection database, which cre­

combinations.

This command assumes that the music
collection.sql file is located in the same
folder as the mysql program. If that is not the
case, you need to type the full pathname loca­
tion of the script file on your hard disk.

You may have noticed by now that typing all

have to retype your entry. Another approach is

file. We provide the SQL for this chapter in a text
Web site

To use an SQL script called

ates the table users, and populates the table
with three records of username and password

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 123

Chapter 5: Creating the Model 123
This command displays all records in the users table. The asterisk (*) indi­
cates that you want to see all fields. You could specify particular field names
if you want to limit the query. For example:

select username from users

shows only the username field but not the passwords field.

Figure 5-5 shows the command prompt window with the SQL commands dis­
cussed in the previous few sections.

Figure 5-5:
Creating a
database

and table in
MySQL.

Exiting the MySQL command tool

To exit the MySQL command line tool, type quit or exit at the mysql>
prompt. MySQL responds, “Bye.” You don’t have to say “Bye” back, although
you can if you want.

Connecting the Model to the Database

In Chapter 3, for simplicity, we used an example of a JavaBean containing
hard-coded data. Hard-coding data is not a useful way to implement a Web
application — or any application for that matter. To make the Login applica­
tion practical, you need to add a persistent data repository — a database —
and make LoginBean work with that database.

To upgrade the Login application, you need to implement a new version of
the LoginBean. The View and Controller components of this application do

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 124

124 Part II: Starting from the Core

not have to change. This gives you a little taste of the power of a layered
architecture: A change to the Model implementation requires no change in
the other layers!

Working with JDBC

JDBC stands for Java Database Connectivity and is Java’s way of connecting
to many types of databases. Using JDBC keeps the application code indepen­
dent of the specific database implementation.

The JDBC class library is included in the J2SE distribution in the java.sql
and javax.sql packages. The only missing piece is the vendor-specific imple­
mentation of the java.sql.Driver interface. These driver classes are avail­
able for most major database products and act as the connector between
your application and the database you’re using.

Listing 5-1 shows a modified implementation of LoginBean using JDBC calls
to connect to the MySQL database and then query the users table.

Listing 5-1 LoginBean.java Using JDBC

1 package dummies.struts;
2
3 import java.sql.Connection;
4 import java.sql.DriverManager;
5 import java.sql.ResultSet;
6 import java.sql.SQLException;
7 import java.sql.Statement;
8
9 public class LoginBean
10 {
11 public boolean validateUser(String username, String password)
12 {
13 boolean valid = false;
14 Connection con = null;
15 Statement stmt = null;
16 ResultSet rs = null;
17 try
18 {
19 Class.forName(“com.mysql.jdbc.Driver”);
20
21 con = DriverManager.getConnection(

“jdbc:mysql://localhost/musiccollection”, “”, “”);
22
23 stmt = con.createStatement();
24
25 rs = stmt.executeQuery(

“SELECT * FROM Users “ +
“WHERE username = ‘“ + username + “‘ “ +
“AND password = ‘“ + password + “‘“);

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 125

Chapter 5: Creating the Model 125
26
27 if (rs.next())
28 valid = true;
29 }
30 catch (ClassNotFoundException e) {
31 e.printStackTrace();
32 }
33 catch (SQLException e) {
34 e.printStackTrace();
35 }
36 finally {
37 try { if (rs != null) rs.close(); } catch (SQLException e) {};
38 try { if (stmt != null) stmt.close(); } catch (SQLException e) {};
39 try { if (con != null) con.close(); } catch (SQLException e) {};
40 }
41 return valid;
42 }
43 }

By comparing this code to Listing 3-5 in Chapter 3, you can see that the
usernames and passwords are no longer hard-coded. Instead, you find JDBC
calls to connect to the database server and to find the requested username
in the database. If the username is found and the password matches, the
validateUser() method returns true. Let’s look at some of these lines in
more detail:

� Line 19: Loads the appropriate JDBC driver class for this particular data­
base type. This is the only database-vendor-specific reference. For com­
plete portability, you would usually store this string in a configuration
file that you read at startup.

� Line 21: Establishes a connection to the database. This line is equivalent
to logging into the MySQL database. The first parameter is the connection
string to the database. The jdbc:mysql: prefix specifies the protocol to
use (which is JDBC in this case) and the type of data source to access
(which is MySQL in this example). The rest is the path to the database
server and the database name. If your database server were on a differ­
ent machine than your Web application, you would use the IP address
for the server followed by the database name.

Note that the last two parameters of Line 21 are empty strings. This is
where you put the database username and password, respectively, that
you want to use for the query. You haven’t defined any database users
for your database yet, so at this point anyone can connect. Not very
secure and not to be imitated in a real application!

� Line 23: After you acquire a connection, you need to create an SQL state­
ment, which is an instance of the java.sql.Statement class. You use
the statement object to execute an SQL command on the database server.

� Line 25: After the statement has been created, you can execute it by
invoking the executeQuery() method and passing it the desired SQL

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 126

126 Part II: Starting from the Core

query string. The executeQuery() method returns an object of type
java.sql.ResultSet, which can hold zero or more rows of data from
the database table that you’re querying.

� Lines 27 and 28: Because the username should be unique in this data­
base, you can expect at most one row to be returned. If you got one row
back, the username and password are valid and the validateUser()
method returns true.

� Lines 37–39: You should always clean up when you’re finished. Because
you created the database connection in this method, you should close
the connection here as well.

It is important to close the statement before closing the connection
because some JDBC drivers will throw an exception if the connection is
closed and the statement is still open.

This version of the LoginBean is a great improvement to the one we used in
Chapter 3, but it’s a bit inefficient. Because the entire code to connect to the
database is in the validateUser() method, a new connection is created
every time this method is invoked. This is expensive in terms of computer
time and resources and can affect server performance when too many users
are executing queries.

It would be better to open and the close the database connection outside the
invalidateUser() method and even outside the LoginBean class. One or
more connections could be opened when the application starts and then
reused while the application is running. You could write your own connection-
pooling mechanism or use one that has already been proven. We look at this
technique later in this chapter, in the “Pooling Connections” section.

You can now run the Login application. When you enter the username and
password, LoginBean verifies that the entry is valid.

Retrieving multiple records

LoginBean, in line 27 of Listing 5-1, accesses ResultSet but does not
retrieve any data. In that case it was not necessary because the users table
doesn’t provide any other fields than the ones we’re using in the query. In
Listing 5-2, we add another method called getAllUsers() to the LoginBean
class to demonstrate how you can retrieve data from ResultSet and pass it
back to the View. We also wanted two more fields — age and status to add
more personal information about the user. If you want to follow along with
the example, type the following MySQL commands to add these two fields to
the database table:

mysql>
mysql> alter table users add column status varchar(10)

default ‘active’;

alter table users add column age int default 0;

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 127

Chapter 5: Creating the Model 127
The getAllUsers() method is shown in Listing 5-2.

Listing 5-2 LoginBean.getAllUsers()

//...package declaration and other import statements...

1 import java.util.ArrayList;
2
3 public class LoginBean
4 {
5 //... validateUser() method ...
6
7 /**
8 * Retrieve a list of all users.
9 * @return ArrayList containing a list of Transfer Objects (TO) of type
10 * UserTO. Returns an empty ArrayList if none where found.
11 */
12 public ArrayList getAllUsers()
13 {
14 ArrayList users = new ArrayList();
15
16 Connection con = null;
17 Statement stmt = null;
18 ResultSet rs = null;
19 try
20 {

// ... database connection code ...

21 rs = stmt.executeQuery(
22 “SELECT username, password, age, status “ +

“FROM Users “);
23
24 while (rs.next())
25 {
26 // Retrieve one user record at a time
27 String username = rs.getString(1);
28 String password = rs.getString(2);
29 int age = rs.getInt(3);
30 String status = rs.getString(4);
31
32 // Create new user transfer object
33 UserDTO user = new UserDTO(username, password, age, status);
34
35 // Add user to list of users
36 users.add(user);
37 }
38 }
39

// ... catch and finally blocks ...

40 return users;
41 }
42 }

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 128

128 Part II: Starting from the Core

Object-to-relational mapping frameworks
The problem of storing objects in a relational
database is similar to putting a square peg in a

ing to an object is determined in part by the rela­
tionships the object has with other objects in
the hierarchy of objects. On the other hand, in a
relational database, you relate data by provid­
ing a common field among tables of data.

When making an object persistent by storing its
data in a relational database, the common tech­
nique is to combine the hierarchy into one table.
Therefore, the superclass may be duplicated in
many tables. Another approach is to break the
data out of each class of objects and insert the
data into a separate table.

Likewise, when reconstituting the objects from
table data, the programmer must know how the
relationships are defined in the database table
and reconstruct the objects based on a series
of queries.

oriented database instead? Then you would not
have these problems because both the applica­
tion code and the database would support the

sent time, relational databases are still more
widely used and accepted. It may be a few

Database Management System) will rival
RDBMS.

In the LoginBean example, we had to do the
mapping between the users table and
UserDTO
what if you have many database tables and
more complex objects that have many relation­
ships to other objects. Implementing the map­
ping logic would become quite a task.

Object-to-relational
mapping (ORM) frameworks strive to solve this
mismatch issue. ORMs are tools that do the
mapping for you. Some create Java classes that
you can use to access the database. Others use
XML definitions of your business objects to map
them to the database structure.

database tables using several expensive ORM

investigate the following free ones:

� Object Relational Bridge (OJB) at db.
apache.org/ojb

� Castor at castor.exolab.org

� Expresso at www.jcorporate.com

round hole. They just don’t match. Data belong­

Don’t you wish you could just use an object-

object-oriented paradigm. However, at the pre­

more years before OODBMS (Object Orientated

ourselves. That wasn’t too bad, but

Well, there’s good news:

You can map your Java objects to relational

as well as a few free ones. You might want to

The following lines are of interest:

� Line 1: Because you’re retrieving not just one record but potentially
many, you need to use a collection class from the Java class library
called ArrayList to hold the row data.

� Line 12: The getAllUsers() method returns an object of type ArrayList
containing all the user records.

� Line 22: The select statement now lists the names of the fields that you
want to retrieve instead of just using an asterisk to get all fields. In this
way, you can match each field in ResultSet to a particular field in the
database.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 129

Chapter 5: Creating the Model 129
� Line 24: Uses a for loop to cycle through the result set. With each itera­

tion, you retrieve one row from the users table.

� Lines 27–30: For each row, the code first assigns the value of each field
to a separate variable. The ResultSet class provides getter methods
to retrieve values of various data types. Most of the fields are of type
String, so the code uses the getString() method. However, the age
field is an integer, so it uses the getInt() method.

These getter methods take care of the type casting for you, but if you
use the wrong method, you’ll get a runtime exception. Notice that each
method takes a number as an argument. The number signifies the order
of the fields as shown in the select statement. Another version of each
getter method allows you to pass the field name, for example, getString
(“username”). However, using numbers to specify fields is generally
recommended. If the field name changes in the database, you would
have one less place where you have to modify your code to accommo­
date that change.

� Line 33: Creates a user Data Transfer Object (DTO), as shown in Listing 5-3.
A DTO is a design pattern that helps improve performance and keep the
data structures used in the persistence layer hidden from the business
logic and presentation layers. The object-oriented paradigm encourages
many calls to get various data items from an object. However, that is
inefficient when accessing a relational database because each method
call translates to a network transaction. Hence, the code uses transfer
objects to retrieve all the data for an object at once and then package it
into a DTO before passing it back to the other layers.

� Line 36: Each user DTO that you create must be added to ArrayList.

� Line 40: Finally, you return the list of user objects. You could write
another Controller action to use the getAllUsers() method and then
display the results in another JSP page.

Listing 5-3 UserDTO.java

1 package dummies.struts;
2
3 import java.io.Serializable;
4

/**
* User Transfer Object (TO). Previously called Value Object (VO)
* or sometimes Data Transfer Object (DTO).
*/

5 public class UserDTO implements Serializable
6 {
7 private String username = null;
8 private String password = null;
9 private int age = 0;
10 private String status = null;

(continued)

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 130

130 Part II: Starting from the Core

Listing 5-3 (continued)

11
12 public UserDTO(String username, String password, int age, String status)
13 {
14 this.username = username;
15 this.password = password;
16 this.age = age;
17 this.status = status;
18 }
19
20 public String getUsername() {
21 return username;
22 }
23
24 public String getPassword() {
25 return password;
26 }
27
28 public int getAge() {
29 return age;
30 }
31
32 public String getStatus() {
33 return status;
34 }
35 }

For more information on JDBC, see Sun’s JDBC home page at java.sun.com/
products/jdbc and Sun’s Java Tutorial Trail on JDBC Database Access at
java.sun.com/docs/books/tutorial/jdbc/index.html.

Pooling Connections

Creating and removing a connection to a data source is an expensive proposi­
tion in terms of time and computer resources. Therefore, you should try to
minimize these operations to keep data-access processing efficient. So some­
one cleverly asked, “Why not keep a collection of live connections hanging
around, and when a request for a database access comes up, just give the
requester one of the live connections from the pool? When the requester has
completed the database request, the connection goes back into the pool for
someone else to use.”

In JDBC 2.0, a definition for a connection pooling interface was added, but an
implementation was not included. Instead of writing your own implementa­
tion, you can use one provided by a vendor. We use the implementation of
the Jakarta Commons DBCP project.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 131

Chapter 5: Creating the Model 131

Jakarta Commons DBCP

The Jakarta Commons DBCP (database connection pooling) project provides
an implementation of the JDBC 2.0 connection pool specification.

Jakarta Commons DBCP is built on another project, the Jakarta Commons
Pool. The Jakarta Commons Pool implements a general object pooling mecha­
nism that can pool any kind of object. Commons DBCP reuses this generalized
object pooling implementation to provide a data source connection pooling
mechanism.

Each project has its respective home page, where you can find more informa­
tion on what the project is and how to use it. Those home pages are jakarta.
apache.org/commons/dbcp/ and jakarta.apache.org/commons/pool/.
However, you can also go directly to the Jakarta Binary Downloads Page to
download these — and all other Jakarta projects.

To download Jakarta Commons DBCP and Pool for Windows NT, 2000, or XP,
follow these steps:

1. Go to jakarta.apache.org/site/binindex.cgi.

2. Scroll down to the Commons DBCP entry, and click its 1.1.zip link.

• If the File Download dialog box appears, click the Save button,
choose a location for the file, and click Save. Remember where you
put the downloaded file. Then use WinZip or some other decom­
pression program to unzip the file to a location of your choosing.

• If the file immediately begins to download and WinZip or another
decompression program opens with the files, extract the files to a
location of your choosing.

3. Go to jakarta.apache.org/site/binindex.cgi.

4. Scroll down to the Commons Pool entry and click its 1.1.zip link.

• If the File Download dialog box appears, click the Save button,
choose a location for the file, and click Save. Remember where you
put the downloaded file. Then use WinZip or some other decom­
pression program to unzip the file to the root of a drive.

• If the file immediately begins to download and WinZip or another
decompression program opens with the files, extract the files to a
location of your choosing.

5. Add the DBCP class library, commons-dbcp-1.1.jar, and the Pool
class library, commons-pool-1.1.jar, to both Eclipse and Tomcat.

See the “Setting Up Your IDE and Web Container” section, earlier in this
chapter, for instructions.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 132

132 Part II: Starting from the Core

The implementation class for the connection pool we use is called Basic
DataSource. An older implementation called GenericDataSource, is now
deprecated (outdated) and will be removed from Struts 1.2. However, Struts
1.1 still references the GenericDataSource class, even when you use
BasicDataSource.

When running your Web application, the first time you make a reference to
the datasource you’ll get a runtime error message. The message will say that
Struts can’t find the GenericDataSource class. To remedy this, make sure
you’re including the struts-legacy.jar class library file to your Eclipse
and Tomcat setup. You can find this library file in the jakarta-struts-1.1/
lib folder.

Using connection pooling

Listing 5-4 shows the example LoginBean rewritten to make use of the con­
nection pooling capability.

Listing 5-4 LoginBean.java

1 package dummies.struts;
2
3 import java.sql.Connection;
4 import java.sql.ResultSet;
5 import java.sql.SQLException;
6 import java.sql.Statement;
7
8 import javax.sql.DataSource;
9
10 public class LoginBean
11 {
12 private DataSource dataSource = null;
13
14 public LoginBean(DataSource dataSource)
15 {
16 this.dataSource = dataSource;
}
18
19 public boolean validateUser(String username, String password)
20 {
21 boolean valid = false;
22
23 Connection con = null;
24 Statement stmt = null;
25 ResultSet rs = null;
26 try
27 {
28 con = dataSource.getConnection();

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 133

Chapter 5: Creating the Model 133
29
30 stmt = con.createStatement();
31
32 rs = stmt.executeQuery(
33 “SELECT * FROM Users “ +
34 “WHERE username = ‘“ + username + “‘ “ +
35 “AND password = ‘“ + password + “‘“);
36
37 if (rs.next())
38 valid = true;
39 }
40 catch(SQLException e) {
41 e.printStackTrace();
42 }
43 finally {
44 try { if (rs != null) rs.close(); } catch (SQLException e) {};
45 try { if (stmt != null) stmt.close(); } catch (SQLException e) {};
46 try { if (con != null) con.close(); } catch (SQLException e) {};
47 }
48 return valid;
49 }
50 }

The only new lines in this code are the ones in bold. They replace the more
tedious way of connecting using a driver manager. Also, this class no longer
contains any data-source-specific code, making it more general and reusable.
Also note the following:

� Line 8: Note that import java.sql.DriverManager is no longer there.
Instead, we now import the javax.sql.DataSource class.

� Lines 14–17: The LoginBean class no longer creates the connection
itself. Instead, at construction time, a reference to a DataSource object
is passed to the LoginBean class, which stores it in an instance vari­
able on line 12.

� Line 28: The only thing to do to acquire a database connection is to call
getConnection() on the DataSource object.

For the connection pooling to work, you have to make a change to the
LoginAction class. In Eclipse, locate the LoginAction.java file. Look for
the line:

LoginBean lb = new LoginBean();

Change this line to look like the following:

LoginBean lb = new LoginBean(getDataSource(request,
“musiccollection”));

This change takes care of passing a DataSource object reference to
LoginBean.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 134

134 Part II: Starting from the Core

Configuring the data source in Struts

You have to make one more change and that is to register the data source in
the struts configuration file, struts-config.xml, which is located in the
WEB-INF folder.

Add the data source definition as shown in lines 2 through 15 of Listing 5-5 to
the beginning of the struts-config.xml file, just after the first element in
the file, <struts-config>.

Listing 5-5 struts-config.xml Data Source Definition

1 <struts-config>
2 <!-- ========== Data Source Definitions ================================ --

>
3 <data-sources>
4 <data-source key=”musiccollection”
5 type=”org.apache.commons.dbcp.BasicDataSource”>

6 <set-property property=”description” value=”Music Collection
Database”/>

<set-property property=”driverClassName” value=”com.mysql.jdbc.Driver”/>
8 <set-property property=”username”

value=”theDatabaseUserName”/>
9 <set-property property=”password”

value=”theDatabaseUserPassword”/>
10 <set-property property=”url”
11 value=”jdbc:mysql://localhost/musiccollection”/>
12 <set-property property=”maxCount” value=”8”/>
13 <set-property property=”minCount” value=”2”/>
14 </data-source>
15 </data-sources>

...
</struts-config>

Within the <data-sources> element, you can define as many data sources as
you want. To access them, you use the key parameter for the <data-source>
element. Notice in lines 8 and 9 that you need to replace theDatabaseUserName
and theDatabaseUserPassword with the appropriate values for connecting to
your own database.

When requesting a data source in your web application’s Action classes, you
can use the provided getDataSource() method. The method takes two argu­
ments, the request object and a key string:

getDataSource(request, “musiccollection”);

This method call returns a reference to the data source we defined in Listing
5-5. You could now add additional data-source declarations with different
keys and then access each as you need it. This procedure makes managing
multiple data sources and connection pools easy.

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 135

Chapter 5: Creating the Model 135
After you update the struts-config.xml file in your workspace, make sure
you copy this file to the Tomcat webapps\Login\WEB-INF folder.

Whenever you change an application configuration file (web.xml, struts-
config.xml, or any of the property files), you need to restart Tomcat before
the changes can take place.

That’s all you have to do. You can run your application again. However, as a
user, you won’t notice any difference. As a developer, you can rest assured
that your Struts application will be able to handle a much greater load while
still performing well.

For more information on configuring a data source in Struts, look at the
Struts online documentation at the following address:

jakarta.apache.org/struts/userGuide/configuration.
html#data-source_config

09 559575 Ch05.qxd 3/2/04 3:58 PM Page 136

136 Part II: Starting from the Core

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 137

Chapter 6

Designing the View
In This Chapter
� Choosing a View technology

� Creating applications for an international audience

� Connecting the View and the Controller

� Using the DynaActionForm class for automation

If you want your application’s users to see your beautiful work, you need to
create a visual component for your application. In the Struts implementa­

tion of the MVC pattern, you have complete flexibility to choose the View tech­
nology of your choice. After you choose a technology, you need to implement
it. In this chapter, we discuss some View options, how to create applications
for an international clientele, and how to connect the View to the Controller.

Choosing JSP or an Alternative

Struts doesn’t care what View architecture you choose to use. Most develop­
ers use the JSP architecture, but this is not a requirement. However, Struts
does distribute a comprehensive tag library that you can use with JSP pages
to make writing the JSP pages easier.

Other view creation possibilities may better fit your needs. The following sec­
tions explain a sampling of your options.

Template engines

Template engines are characterized by a separation of the page design from
page data. This methodology offers several advantages over plain vanilla JSP,
such as

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 138

138 Part II: Starting from the Core

� More flexibility in site design

� Easier design development for graphics people

� Greater control of the consistency of the site appearance

In the following sections, we discuss three template engines.

Apache Cocoon and the Cocoon plug-in
The Apache Cocoon project is a Web application framework built on the
premise of separating concerns, that is, separating presentation from logic
from data. Apache Cocoon contains pipelines (a particular path for the flow
of transformations) that create XML data from various sources and then trans­
form that data into various presentation technologies through the use of XSL
(eXtensible Stylesheet Language) stylesheets. Cocoon offers a wide range of
possible transformations, including JSP, Velocity, FreeMarker, PHP, and XSP.
For more information see cocoon.apache.org.

The Cocoon plug-in allows Struts to pass forwards to Cocoon for transforma­
tion in one of Cocoon’s pipelines. (A forward, more exactly known as an
ActionForward, is a mechanism that defines the passing of control to another
resource, usually a JSP page or a servlet.) See struts.sourceforge.net/
struts-cocoon/index.html for more information.

Jakarta Velocity and VelocityStruts
Velocity is a Jakarta project — a Java-based template engine that provides a
simple scripting language to create pages. No Java code is allowed in the pages.
For further information on Jakarta Velocity, see jakarta.apache.org/
velocity.html.

VelocityStruts is an extension to Struts that seamlessly marries the Struts
Framework to Velocity. With the VelocityStruts extension, developers can for­
ward a request to a Velocity template instead of to a JSP page. The nice thing
about this method is that you are not forced to choose between one technol­
ogy or the other. You can mix and match as you see fit. To find out more about
VelocityStruts, see jakarta.apache.org/velocity/tools/struts/.

FreeMarker
FreeMarker generates text output (anything from HTML to PDF files) based
on templates. The FreeMarker templates are essentially page designs that
contain no application logic, only page design information. This provides a
clean separation of concerns between page designers and application pro­
grammers. The framework works with Struts out-of-the-box and replaces the
use of JSP and JSP tag libraries as presentation technologies.

FreeMarker is an open source project. Further information on FreeMarker can
be found at freemarker.sourceforge.net.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 139

Chapter 6: Designing the View 139

XML tools

The advantage of an XML document is that you can use XSL stylesheets to
transform the document into virtually any other type of document for presen­
tation. This transformation process is advantageous for sites that need to
offer many forms of display to the user. For example, you may want to let the
user view a purchase order in HTML, PDF, or plain text. This section describes
two tools that integrate with Struts to provide XML and XSL services.

StrutsCX
The StrutsCX framework replaces JSP with XSLT (eXtensible Stylesheet
Language Transformations). StrutsCX outputs well-formed XML that can then
be transformed into any number of presentation markup languages (HTML,
CSV, PDF, WML, and so on) using XSL stylesheets. See it.cappuccinonet.
com/strutscx/index.php for more information on StrutsCX.

stxx
The four letters stxx are an acronym for Struts for Transforming XML with XSL.
The stxx technology bills itself as an extension to the Struts framework that
allows an action to return an XML document that will be transformed into the
final presentation form by XSL or Velocity. The purpose of this system is to
provide an alternative presentation technology to JSP. However, you can
still use JSP alongside stxx. Take a look at stxx.sourceforge.net to find
out more.

Internationalization

The world of today is much closer than the world of a decade ago, and the
world of tomorrow will be even closer. This shrinking of boundaries is due in
part to the instant communication now available to most citizens and organi­
zations. Communication is further enhanced by the creation of virtual repre­
sentations of people and organizations through the use of the World Wide Web.

When you plan an application for the Web, you need to keep in mind the audi­
ence for the application. If there is any chance that the application might be
used by people from different locales, you should plan to design for that pos­
sibility right from the start.

I18N is a lazy (or smart) person’s way of saying Internationalization: I, plus 18
characters in between, plus N. Some clever person, whose typing was probably
challenged like ours, decided to make a challenging word more acceptable.
As they say, necessity is the mother of invention.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 140

140 Part II: Starting from the Core

Creating multinational applications

When creating a Web application that supports multiple locales, you need to
consider how to present information in the preferred language and custom­
ary formatting style of your audience. Customary formatting style refers to
locale-sensitive information such as dates, times, numbers, and currency.

Struts displays I18N text and images through the use of message resources and
specialized tag libraries. We touch briefly on these capabilities in Chapter 3 in
the “The login.jsp page” section, where we describe the creation of JSP pages
for our sample Login Web application. The JSTL tag libraries provide the means
to format dates, times, and numbers in the locale-specific style. (We address
formatting for locales separately in Chapter 10.)

To create applications with multilanguage capabilities, you work with two
aspects of Jakarta Struts: the resource bundle properties file and the tag
libraries to reference the resource bundles.

Creating the resource bundle properties file
The resource bundle contains all the text that the application will display to
the user. The file can have any name that you choose but should have an
extension of .properties. The file may also contain image locations if you
want to display different images for different locales. The text and images
might be one or more of the following:

� Labels on fields and buttons

� Titles of pages or sections and page content

� Messages to tell the user something

� Icons that indicate an action to be performed

Any content that you need to localize must be in the resource bundle.

Each entry of text or image location requires a key that identifies that text or
image location. For example, the following illustrates a key and the key’s
associated value.

defaultdisk=My Disk

The defaultdisk key is used to look up the text value of My Disk.

Sometimes it may be convenient to divide the key-value pairs into different
files, especially if you have multiple developers or modules in your application.
The only requirement is that you set them up properly in the struts-config
file, as we explain in the next section.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 141

Chapter 6: Designing the View 141
Configuring the message resources
To tell Struts about your message resources (or resource bundles), you need
to create a <message-resources> tag in the struts-config file and specify
the context in the web.xml file. In the struts-config file, the <message-
resources> tag has five possible attributes:

� className: Optional. The fully qualified name of the configuration

class. This value defaults to org.apache.struts.config.Message

ResourcesConfig. Use this attribute only if you subclass Message

ResourcesConfig.

� factory: Optional. The fully qualified name of MessageResources
Factory. This value defaults to org.apache.struts.util.Property
MessageResourcesFactory. Use this attribute only if you subclass
PropertyMessageResourcesFactory.

� key: Optional. The attribute key to store this bundle in the Servlet con­
text. The key defaults to org.apache.struts.action.MESSAGE. If you
use multiple resource bundles in your application, you should set a dif­
ferent key for each one. In the application, you would use the key to indi­
cate which bundle to select.

� null: Optional. Determines how to display missing resources. The
default value is true and displays missing resources as null. If you set
the value to false, the missing resource is displayed as ???key???.
This option is useful during development because it helps you to spot
missing resources.

� parameter: Required. The name of the resource bundle. This is the
name of the message resource file, minus the .properties extension.

Here is an example of a message-resources tag in the struts-config file:

<!-- ========== Message Resources Definition ================== -->
<message-resources null=”false” parameter=”ApplicationResources”/>

This tag specifies the name of the resource bundle as ApplicationResources.
Because the null parameter is set to false, if the referenced resource is
missing, you see a display like this: ???key???.

If you have two resource bundles, you need to also define a key for each to
reference them properly in your application. Here is an example of configur­
ing the message resources for two resource bundles:

<!-- ========== Message Resources Definitions ================== -->
<message-resources key=”purchasing” parameter=”PurchasingResources”/>
<message-resources key=”vendors” parameter=”VendorResources”/>

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 142

142 Part II: Starting from the Core

In this example, a key is associated with each resource bundle. When you
need to reference one of the bundles, you must specify the bundle’s key as
well, for example, using the JSTL tag <fmt:message>. We show examples of
the <fmt:message> tag in the next section.

The web.xml file also needs to be set up to know about the resource bundles.
Otherwise you’re required to specify the resource bundles in the JSP page
using special JSTL tags. To set up the web.xml file, add the following snippet
to the beginning of the file:

<web-app>
...

1 <context-param>
2 <param-name>
3 javax.servlet.jsp.jstl.fmt.localizationContext

</param-name>

4 <param-value>
5 ApplicationResources

</param-value>
</context-param>
...

</web-app>

web.xml file. If you

name in the JSTL tags.

You can specify only the default resource bundle in the
use more than one resource bundle, you must specify the nondefault bundle

In the preceding code, note the following:

� Line 1: Adds a context parameter tag. The context represents the scope
called application. All key-value pairs stored in the context are avail­
able everywhere in the application.

� Line 2: Adds the parameter name tag for the context.

� Line 3: Specifies the complete class name of the context parameter. In
this case, we’re defining the context parameter to be the class that rep­
resents FMT_LOCALIZATION_CONTEXT used by the JSTL tag library.

JSTL has numerous configuration items that contain the default values
for such settings as locale, resource bundle, time zone, and SQL data-
source. The FMT_LOCALIZATION_CONTEXT contains the default resource
bundle and its associated locale. This resource bundle will be used for
all message lookups unless an alternate is specified in the JSP page. See
Chapter 10 for more information on JSTL.

� Line 4: Adds the parameter value tag for the context.

� Line 5: Specifies the name of the resource bundle to be included in
FMT_LOCALIZATION_CONTEXT. In this case, the name is Application
Resources.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 143

Chapter 6: Designing the View 143
The position of tags in the web.xml file is important. For example, the
<context-param> tag must come before the <servlet> tag.

Using the tag library to display messages
When you’ve defined and configured your message resources, the next step is
to integrate them into your JSP pages. Both the Struts-EL and JSTL tag libraries
provide such functionality. The Struts-EL library has a tag designed for I18N
called the <bean:message> tag. However, because the JSTL tag library also has
tags to use for I18N — <fmt:message> and <fmt:parameter> — we’ll use
them. The creators of Struts have recommended using JSTL whenever possible.

Whenever you want to display text in your JSP page, rather than putting the
text statically in an HTML tag such as <Title>This is the Title Page
</Title>, you can instead use the <fmt:message> tag and retrieve the text
from the resource bundle. For example, suppose that you have defined the
title of the page in a resource bundle by using a key of homepage.title:

homepage.title=This is the Title Page

The <fmt:message> tag would look like this:

<fmt:message key=”homepage.title” />

And your HTML would now look like this:

<title><fmt:message key=”homepage.title” /></title>

If you have more than one resource bundle defined in struts-config, you
need to specify another tag when you want to reference the non-default
resource bundle. The <fmt:setBundle> or <fmt:bundle> tag needs to spec­
ify the name of the resource bundle subsequent <fmt:message> tags will ref­
erence. See Chapter 10 for more information on these tags.

Creating parameterized messages
Besides defining plain text messages in the message resource file, you can
also create parameterized messages. This is a great feature if you need to
insert specific information into a message at runtime. Struts supports mes­
sages with up to four parameters ({0} through {3}). In Chapter 3, we
develop a message resource file containing an example of a parameterized
message. Here is the parameterized message from that example:

loggedin.msg=Welcome, {0}. You are now logged in.

This message’s placeholder, {0}, indicates that the first parameter that gets
passed should replace the {0}. When you specify the use of the message in
the JSP page, the tag looks like this:

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 144

144 Part II: Starting from the Core

<fmt:message key=”loggedin.msg”>
<fmt:param value=’${requestScope.userName}’ />

</fmt:message>

The parameter that is being passed is the user’s name, which will replace the
{0} when the message is output to the page.

Setting up message resource files for different locales
The final step when preparing your application for I18N is to create additional
resource bundles for each locale that you intend to support. Each locale needs
a two-character language specifier. In addition, you may choose to further
refine the locale with a two-character country code. For example, fr refers
to the French language in general and fr_CA references French as used in
Canada and fr_FR is French as used in France.

You don’t need to add additional files to any configuration. Assuming that
you have defined the default resource bundle name in the struts-config
file, you append the locale specifier to the default resource name to find any
locale-specific bundle. For example, if ApplicationResources is the default
resource bundle name, ApplicationResources_fr is the name used for the
French language version of the resource bundle.

Here are the full definitions of the two bundles. Lines starting with a number
sign (#) are comments.

The following is from the ApplicationResources.properties file:

default locale messages
greetings=Hello.
farewell=Goodbye.
inquiry=How are you?

The following is from the ApplicationResources_fr.properties file:

French locale messages
greetings=Bonjour.
farewell=Au revoir.
inquiry=Comment allez-vous?

For a list of all language codes, see

ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt

For a list of all two-digit country codes, see

userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

You can also reference resource bundles in your server-side Java code. We
show section examples in the “Mediating between the View and the Controller”
section, later in this chapter.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 145

Chapter 6: Designing the View 145
An I18n example
The Login application you create in Chapter 3 is an ideal candidate for inter­
nationalization. Everything is set up to take advantage of I18N; all that you
need to do is to create a new message resource file. To see I18N in action,
simply make a copy of the ApplicationResources.properties file and
name it ApplicationResources_de.properties to create a message
resource file for German. Then edit the ApplicationResources _de.
properties file to look like Listing 6-1.

Listing 6-1 The German Version of the ApplicationResources File

Resources for Login Project

Struts Validator Error Messages
These are special resources that the Struts tag library
uses to format messages. In this case we make sure that
errors are red so that they can be noticed.
errors.header=*
errors.footer=

#errors
error.username.required=Benutzername notwendig.
error.password.required=Passwort notwendig.
error.login.invalid=Das System konnte Ihren Benutzernamen und

Passwort nicht bestätigen. Haben Sie die Feststell-
Taste an? Bitte versuchen Sie es nochmal.

#login page
login.title=Anmeldungsprojekt - Bitte, anmelden
login.message=Bitte anmelden
login.username=Benutzername:
login.password=Passwort:
login.button.signon=Anmeldung

#loggedin page
loggedin.title=Anmeldungsprojekt
loggedin.msg=Willkommen, {0}. Sie sind jetzt angemeldet.

Copy the ApplicationResources _de.properties file into the WEB-INF/
classes folder of the Login application in the Tomcat webapps folder. Then
restart Tomcat.

In your Web browser, you must set the default language to German. When you
do so, the browser tells the Web server the user’s preferred language.

Setting the language preference in Internet Explorer
To set the default language in Internet Explorer 6.0, follow these steps:

1. Choose Tools➪Internet Options.

The Internet Options dialog box appears.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 146

146 Part II: Starting from the Core

2. Click the General tab.

3. At the bottom of the General tab, click the Languages button.

The Language Preference dialog box appears.

4. Click the Add button.

The Add Language dialog box appears, as shown in Figure 6-1.

Figure 6-1:
Internet

Explorer’s
Add

Language
dialog box.

5. Scroll down to find the language you want to set as a default.

To follow along with the example, look for an entry for German. There
should be several, one for each country that speaks German. Because
the resource bundle in this example is for German in general and not for
a particular country, you can choose any German option.

6. Select the language option you want, and then click OK.

You are returned to the Language Preference dialog box, as shown in
Figure 6-2.

7. Select the new German entry and click the Move Up button until the
German entry is at the top.

Figure 6-2:
Internet

Explorer’s
Language

Preference
dialog box.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 147

Chapter 6: Designing the View 147
When this test is over, be sure to delete the German entry unless you want
to see your Web sites in German from now on. Re-open the Language
Preference dialog box, choose the German entry, and click the Remove
button. Click OK to close the dialog box.

8. Click OK twice to close both open dialog boxes.

Internet Explorer is ready to go. Other versions of Internet Explorer use a
similar mechanism to set the language preference.

Setting the language preference in Netscape Navigator
To set the language default in Netscape 7.0, follow these steps:

1. Choose Edit➪Preferences.

The Preferences dialog box appears.

2. In the Category pane, click the arrow next to Navigator.

3. Click the Languages option.

The Languages Panel appears on the right, as shown in Figure 6-3.

Figure 6-3:
Netscape

Navigator’s
Preferences

dialog box
with the

Languages
option

selected.

4. Click the Add button.

The Add Language dialog box appears.

5. Scroll down to find and select the language that you want.

To follow along with the example, choose any German item.

6. Click OK to close the dialog box.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 148

148 Part II: Starting from the Core

7. In the Languages pane of the Preferences dialog box, select the
German entry and then click the Move Up button until the German
entry is at the top.

8. Click OK to close the Preferences dialog box.

Netscape is ready to go. Other versions of Netscape Navigator set the lan­
guage preference in a similar fashion.

Testing the internationalized application
In your browser, type the URL for the Login page (http://localhost/
Login). The initial page should now be displayed in German, as shown in
Figure 6-4.

Figure 6-4:
The Login

page
displayed in

German.

Enter a valid user name and password, and then log in. The normal logged-in
message should now be displayed in German. Neat!

Using one source for String type constants

You may not think your application really needs I18N if only people in your
company will see it. Nevertheless, you should consider using the I18N mecha­
nism described in the previous sections for another reason — consolidating
textual content for ease of maintenance. Often, especially for larger applica­
tions, the same textual content is displayed in many places throughout the

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 149

Chapter 6: Designing the View 149
application. During the lifetime of the application, you may need to change
the text to meet some unforeseen need or demand of the marketplace.

For example, each page may have a button with the label OK. After the appli­
cation has been in production for a while, usability experts may conclude
that OK is confusing for some people and a better button label would be
Save. To make that change, you would have to search all pages for instances
of OK buttons and change the labels to Save. You might easily miss one or
more instances.

If all the displayed text comes from message resources, however, you can
easily find the reference to the OK button in the message resources and make
one change there. This change will propagate throughout the application
automatically when you restart the application. The maintenance is easy and
there’s no chance of missing an occurrence. Do less and accomplish more!

Mediating between the View and
the Controller

When users fill out a form on a Web page, you need to collect that data for
processing in the Action subclass that will handle the request. You create
the movement of form data from the View to the Controller by using a form-
bean. Here we discuss the role of formbeans in detail.

A formbean is an extension of the ActionForm abstract class. The purpose of
the formbean is to provide a consistent container to store the View’s form
data for presentation to the Controller. That being the case, the formbean
requires little content — just the View’s properties and their associated
getter and setter methods. And that’s the way it should be. The formbean
shouldn’t contain business logic or any other specific methods. The form-
bean is a data transfer mechanism — that’s all.

When defining the properties of the formbean, you need to take into account
that the form properties in the View are always String types. Even if the con­
tent displayed is a numerical value, such as 129.09, the content is always a
string. The data may not be stored as a string in the backend database, but
it’s always displayed using strings in an HTML form. As a result, you may
need to perform the following:

� When a form is submitted, convert the string into its numeric format
after it’s taken out of the formbean.

� Before a View is presented, convert the data from a numeric value to a
string before populating the formbean.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 150

150 Part II: Starting from the Core

We’ve found one exception when using the Struts tag library. The Struts tag
for displaying an HTML check box assumes that the underlying value in the
formbean is a boolean primitive type. However, when the HTML form is sub­
mitted or displayed, the check box uses a string value to determine whether
the check box was or should be checked. The bottom line is that when using
ungrouped check boxes on a form, the formbean property type should be
boolean, not String.

Configuring the formbean

Listing 6-2 contains the configuration file for the example Login application.
For more information on this application, see Chapter 3, where we discuss
how to configure formbeans in the struts-config file. In this section, we
explain the file from the angle of how it mediates between the View and the
Controller.

Listing 6-2 struts-config.xml

1<?xml version=”1.0” encoding=”ISO-8859-1” ?>

2<!DOCTYPE struts-config PUBLIC
3 “-//Apache Software Foundation//DTD Struts Configuration 1.1//EN”
4 “http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd”>

5<!-- This is the Struts configuration file for Login example application -->
6<struts-config>
7 <!-- ========== FormBean Definitions ================================= -->
8 <form-beans>
9 <form-bean name=”loginForm”
10 type=”dummies.struts.LoginForm”/>
11 </form-beans>

12 <!-- ========== Action Mapping Definitions ========================== -->
13 <action-mappings>
14 <action path=”/login”
15 type=”dummies.struts.LoginAction”
16 name=”loginForm”
17 scope=”request”
18 input=”/login.jsp”
19 validate=”true”>
20 <forward name=”failure” path=”/login.jsp”/>
21 <forward name=”success” path=”/loggedin.jsp”/>
22 </action>
23 </action-mappings>

24 <!-- ========== Message Resources Definitions ====================== -->
25 <message-resources null=”false”
26 parameter=”ApplicationResources”/>
27</struts-config>

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 151

Chapter 6: Designing the View 151
Note the following items in Listing 6-2:

� Line 9: Uses the <form-bean> tag to give LoginForm a name that you can
refer to later in the struts-config file. You must define every FormBean
that you intend to use in an application, using the <form-bean> tag. The
Login application has only one FormBean, LoginForm.

� Line 10: Specifies the full class name of the form and closes the tag. Lines
9 and 10 tell the Controller how to create the formbean at runtime.

� Line 16: Specifies which formbean should be associated with this action.
In this case, the code uses the loginform defined in line 9.

� Line 17: Specifies that the scope of the formbean should be the request
scope. In other words, where should the formbean exist? The default
scope is request, so this line is not really required. The other possibil­
ity is the session scope.

� Line 18: Specifies that the login.jsp page populates the formbean.

� Line 19: Specifies that the validate method of the formbean should be
called. False would mean not to call the validate method, and valida­
tion would need to occur through some another means. (For more infor­
mation about other means of validation, see the “Validating the Data”
section later in this chapter).

Interactions with the formbean

The steps of the Controller’s interaction with the formbean are presented in
Chapter 4 in the “Working with the Controller’s Helper-RequestProcessor”
section. Here is a summary of the pertinent steps RequestProcessor takes
when handling ActionForm:

1. Gets the ActionForm associated with the request.

RequestProcessor gets the ActionForm associated with this
action based on ActionMapping. If ActionForm doesn’t exist,
RequestProcessor creates it. RequestProcessor then calls the
reset method of ActionForm.

2. Populates ActionForm.

The ActionForm is populated with the parameters received from the
request.

3. Validates ActionForm.

If you’re using standard form validation (validate=”true”),
RequestProcessor calls the ActionForm’s validate method now.
If the validation has any errors, RequestProcessor forwards control
back to the page from which the request came.

4. Calls the execute method on the specific Action class.

Finally, the Action class gets to do its stuff.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 152

152 Part II: Starting from the Core

Preparing the form with the reset method

The standard reset method does nothing by default. This is appropriate
because the reset method would know nothing about the properties of your
formbean. You have the responsibility to write the appropriate code to set all
your form properties back to their default state.

Why is resetting property values necessary? Actually, you don’t need to reset
values if your formbean is stored in the request scope because the formbean
gets reinstantiated for each new request anyway. However, if you elect to
store the formbean in the session scope, you need to make sure that the
values from the previous use are cleared before using the formbean again
because each new request uses the same copy of the formbean.

Resetting property values generally consists of setting the values back to
null, or the empty string. Here is an example from our Login application:

public void reset(ActionMapping mapping,
HttpServletRequest request)

{
password = “”;
userName = “”;

}

Indexing data

If you need to display multiple rows of the same type of data, you may also
need to define indexed properties in your formbean. An example would be the
display of rows of purchase-order line-item information. You can define indexed
properties by using standard Java arrays, Collections, or Maps. You use the
various tag libraries to reference this data, which we discuss in Chapter 10.

A Collection is an interface and the root definition of a set of classes that hold
groups of data objects. A Map is also an interface and root definition of a
group of classes that hold data as keys mapped to values. The implementa­
tions of Collection and Map vary depending on how the objects or key values
are stored. Developers choose a particular implementation of a Collection or
Map based on the needs of the application. For example, you need to con­
sider whether the data needs to be sorted or unsorted, whether or not the
access needs to be thread safe, and whether or not duplicate values are
allowed. See the Java SDK API documentation for details.

Validating data

Frequently, JSP pages have forms for the user to complete. The required
information could be as simple as a user name and password, or you could

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 153

Chapter 6: Designing the View 153
have a complex order-entry form. You often want to make sure that the data
the user entered is valid before trying to process the data. For example, if the
user enters a date, you should verify that the date meets all the criteria of a
valid date before passing the value to a database. The data may not be in the
proper format for a date. Or the date might be in the proper format but too
far in the future or past to be acceptable.

The standard mechanism for validating form data is to override the validate
method in the ActionForm class and to enter there all the logic necessary to
determine whether or not the form data is acceptable. RequestProcessor
calls this method immediately before calling the execute method in the
Action instance.

Listing 6-3 shows an example of overriding the validate method.

Listing 6-3 Overridden Validate Method from a Login formbean

1 public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request)

2 {
// create an empty ActionErrors instance

3 ActionErrors errors = new ActionErrors();

// test for presence of user name
4 if((userName == null) || (userName.length() < 1))
5 errors.add(“userName”, new ActionError(“error.username.required”));

// test for presence of password
6 if((password == null) || (password.length() < 1))
7 errors.add(“password”, new ActionError(“error.password.required”));

// test for proper password length
8 else if ((password.length < 5) || (password.length > 8))
9 errors.add(“password”, new ActionError(“error.password.length”));

// return the ActionErrors object
10 return errors;
11 }

In Listing 6-3, note the following:

� Line 3: Creates an empty ActionErrors object, which is the return

value for the method.

� Lines 4 and 6: Test to ensure that the user actually enters something for
the userName and password fields.

� Line 8: Tests to make sure that the password is a proper length (5 to 8
characters).

If any test fails, the code creates an ActionError object and adds it to the
ActionErrors instance. When creating the ActionError instance, a mes­
sage resource key is passed to indicate which message should be displayed.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 154

154 Part II: Starting from the Core

Note that when adding ActionError to ActionErrors, the code specifies a
particular key (either username or password) so that the JSP page will know
where to display the error.

Declarative form validation

Another way to perform validation is to use the declarative mechanism found
in the Validator plug-in. The Validator plug-in is discussed in Chapter 9.

Notifying Users of Problems

Whether validating a form or testing logical operations, you need a common
way to notify the user of the problem when an error arises. ActionError and
ActionErrors are Struts classes created for that purpose.

ActionError is a subclass of ActionMessage that holds an error message
that will be returned to the user. You specify the message by using a key of a
message resource. If the message is parameterized, you can add the values for
the parameters to ActionError. A message can have up to four parameters.

Here are examples of ActionError constructors using the message resource
file in Listing 6-2:

// constructor with just the message’s key
ActionError ae = ActionError(“error.username.required”);
// constructor with key and one parameter
ActionError ae =

ActionError(“error.username.required”,”Mike”);

ActionErrors is a subclass of ActionMessages and is a wrapper class
used to hold one or more instances of ActionError. Two constructors are
possible — one creating an empty ActionErrors and the other creating an
ActionErrors with the same messages as those in another instance of
ActionErrors. Here are examples of the two constructors:

// empty constructor
ActionErrors aes = new ActionErrors();
// constructor taking an ActionErrors instance
ActionErrors aes2 = new ActionErrors(aes);

When you need to add an ActionError to the ActionErrors instance, use
the add method. Its signature is

public void add(String property, ActionError error)

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 155

Chapter 6: Designing the View 155
where property refers to the form entry that the error is indicating. For gen­
eral errors that apply to the entire form, use ActionErrors.GLOBAL_ERROR.
For an error specific to a particular field, use the property value of the field.

In our example application, Login, we tied specific errors to the userName
and password properties in the validate method of the LoginForm class.

// create ActionErrors instance
ActionErrors errors = new ActionErrors();
if((userName == null) || (userName.length() < 1))

// if a username error, create ActionError
// and tie it to UserName
errors.add(“userName”, new

ActionError(“error.username.required”));
if((password == null) || (password.length() < 1))

// if a password error, create ActionError
// and tie it to password
errors.add(“password”, new

ActionError(“error.password.required”));
return errors;

In the login.jsp page of the Login application, we took advantage of the
error property value to display the particular error next to the appropriate
field. Here are two segments from that page. Notice the correspondence
between the property of the html:text tag, the property of the html:errors
tag, and the property used in the preceding errors.add methods.

<html:text property=”userName”
size=”15”
maxlength=”15” />

<html:errors property=”userName” />
<html:password property=”password”

size=”15”
maxlength=”15”
redisplay=”false”/>

<html:errors property=”password” />

ActionMessages and ActionMessage can be used just like ActionErrors and
ActionError. However, in the JSP file, the <html:messages> tag should be
used instead of <html:errors>. In general, ActionMessages are informative
messages to the user and ActionError is an error message. For example, you
may want to inform the user when a requested operation gets performed suc­
cessfully, such as when a record gets inserted into the database without error.

Mediating Automatically

Although ActionForms are useful for conveying request information to the
Controller from the presentation page, they’re sometimes a hassle if the form

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 156

156 Part II: Starting from the Core

contains only simple data that you want to gather. Struts has a slick mechanism
to dynamically create the necessary formbean without the developer having
to extend the ActionForm class. This mechanism can be used by creating
definitions in the struts-config file. The principal Struts class that you use
is called the DynaActionForm.

Configuring the DynaActionForm class

Configuring a DynaActionForm is not much different from configuring a regular
ActionForm. The definition still goes in a <form-bean> tag in the struts-
config file. However, rather than specifying your extended ActionForm class
for the type attribute, you use the full class name of the DynaActionForm
class. In addition, you specify the form properties that will be implemented by
the formbean. Listing 6-4 is an example of how to implement LoginForm (from
the Login example application in Chapter 3) as a DynaActionForm instead of
an Action form.

Listing 6-4 Configuring DynaActionForm

1 <form-bean name=”loginForm”
2 type=”org.apache.struts.action.DynaActionForm”>
3 <form-property name=”userName”
4 type=”java.lang.String”
5 initial=””/>
6 <form-property name=”password”
7 type=”java.lang.String”
8 initial=””/>
9 </form-bean>

Listing 6-4 has the following noteworthy items:

� Line 2: Declares the class to instantiate to be the DynaActionForm class.

� Lines 3–5: Define one property named userName of type String whose
initial value is the empty string.

� Lines 6–8: Define another property, password, also of type String and
with an initial value of the empty string.

As you can see, the configuration of a DynaActionForm and an ActionForm
are similar. Note that when you are using DynaActionForm, you must make
some changes to the Action class when referencing DynaActionForm values.
These changes are described in the next section.

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 157

Chapter 6: Designing the View 157

Differences between ActionForm
and DynaActionForm
Although ActionForm and DynaActionForm are similar, you do need to take
into account a few differences. The following differences stand out:

� The DynaActionForm doesn’t have reset or validate methods avail­
able. (They exist but they’re both empty methods.) Intuitively, it makes
sense that reset is not present; DynaActionForms are generated with
each request, so there’s no need to reset values.

� If you want a DynaActionForm and you also need to call a reset or
validate method, you must subclass DynaActionForm and override
the reset or validate method. But if you go to that much trouble, you
might as well stick with the ActionForm class.

The alternative to subclassing the DynaActionForm to perform valida­
tion is to use the Validator plug-in. We discuss this mechanism in
Chapter 9.

� The formbean properties are referenced differently in the Action class.
DynaActionForm properties are no longer simple scalar values that can
be referenced with getter and setter methods. Using these methods
will not work because the formbean is created dynamically by reading
the formbean configuration properties. Consequently, the form’s proper­
ties are put into a Map structure and referenced by the property name.
This means that in the Action class, rather than referencing the user-
name value like this:

String user = ((LoginForm)form).getUserName();

You must now use the Map syntax of providing a key to do the lookup:

String user =
(String)((DynaActionForm)form).get(“userName”);

� You reference a form property in a JSP page differently. Assuming that
you’re using the Struts-EL or JSTL tag library, you reference a property
of a standard formbean using the expression language (EL) syntax, like
this:

${formbean.property}

But because a DynaAction formbean has all the properties stored in a
Map structure, you must reference them by using a slightly different
syntax, such as

${dynabean.map.property}

10 559575 Ch06.qxd 3/2/04 3:59 PM Page 158

158 Part II: Starting from the Core

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 159

Chapter 7

Setting the Configuration
In This Chapter
� Using configuration files

� Developing the Web container configuration

� Showing an example of Web container configuration

� Developing the Struts framework configuration

� Showing an example of a Struts configuration

When you’ve finished creating the Model, View, and Controller sections
of your Web application, you need to tie all the parts together. Like a

kid who puts on his shoes without taking the time to tie his shoelaces — he
quickly falls on his face — your Web application won’t go anywhere without
the configuration files. We describe many configuration examples throughout
the previous six chapters. In this chapter, we bring it all together and cover
all aspects of configuring Struts.

Stringing the Parts Together

The Struts framework offers a lot of flexibility for developers putting together
Web applications. The configuration files are instrumental in implementing
much of that flexibility by enabling you to

� Fine-tune the functioning of the various components of the framework

� Specify the developer components that you’re adding

� Define how to treat the added components

� Specify what happens in case of errors

� Include I18N information

� Extend the framework

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 160

160 Part II: Starting from the Core

When you set up your Struts application, you need to consider two configura­
tion files: web.xml and struts-config.xml. The web.xml file defines the
pieces of your Struts application that the Web container needs to know about.
The struts-config.xml informs the Struts framework about the pieces of the
Struts application that you’ve added to the framework.

Editing the Web Container
Configuration File

The Web container reads the web.xml file to discover specific information
about the application, in particular what kind of resources it contains. You
can find the definition of the specification we’re using for web.xml in the Java
Servlet Specification version 2.3. You can download this specification from
Sun’s Web site at

java.sun.com/products/servlet/download.html

This section is not a complete description of the web.xml specification. Instead,
we cover only the parts of the specification that directly relate to Struts.

A Document Type Definition (DTD) file defines the XML grammar used in an
XML document. The web.xml file has a particular DTD associated with it.
That DTD is too long to be included in this book. To see the entire DTD, look
at the Java Servlet Specification version 2.3 mentioned previously or go to
java.sun.com/dtd/web-app_2_3.dtd. However, we describe some of the
DTD to help explain the basic structure of a web.xml file.

Reading a DTD: An overview
The DTD provides a concise definition of the
rules for specifying a particular type of XML
document. The rules are extensive. Here we
define the minimal set of rules that you need to
know to make sense of the DTD grammar dis­

referred to as tags in an XML document are
known as elements
define elements through the following syntax:

<!ELEMENT element-name ...>

where . . . could be a text value or other
elements.

The simplest form for an element definition is an

value, as shown here:

<!ELEMENT element-name #PCDATA>

The #PCDATA marker refers to parsed charac­
ter data, but essentially means plain text. If an
element contains one other element, describe it
in parentheses, like this:

<!ELEMENT element-name (other-
element-name)>

cussed in this chapter. What are commonly

in the XML grammar. You

element that’s defined to have only a textual

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 161

Chapter 7: Setting the Configuration 161

It may be that the defined element can contain
several other elements. For example, following
is the syntax for containing three other elements:

<!ELEMENT element-name (other-
element-name1, other-
element-name2, other-
element-name3)>

The elements contained in the element you’re

these rules:

� If an element is optional but can occur only
once, follow it with a ?

� If an element is mandatory and can occur
one or more times, follow it with a +

� If an element is optional but can occur mul­
tiple times, follow it with a *

� If an element appears without any of the
previous markers, it is considered manda­
tory but can appear only once

When an element is defined to contain other
elements, the sequence of the appearance of
each element in the DTD must be the same as
in the definition.

Elements can have attributes that are a further

attribute with the following syntax:

<!ATTLIST element-name
attribute-name attribute-
type default-declaration>

The element-name is the element name that
you defined in the <!ELEMENT definition. The
attribute-name is the name that refers to the
attribute. The attribute-type refers to
what type of value that you can present for the

default-declaration
determines whether or not the attribute is
required.

The attribute-type can be one of several
values. For example, if the attribute-type
is CDATA, the attribute can take any text value.
Another possibility is an entity (a shortcut to a
commonly used value) that you define else­

following syntax:

<!ENTITY % ent-name “value-
string”>

An example of an entity definition is

<!ENTITY % ClassName “CDATA”>

The entity is referenced as %ClassName;. An
example of an attribute definition that uses an
entity is the following:

<!ATTLIST form-bean name
%BeanName; #REQUIRED>

of an optional default-declaration value. For
example, you can place #REQUIRED or
#IMPLIED at the end of the definition.
#REQUIRED means that the attribute must be
defined for the element; #IMPLIED means the
attribute is optional.

defining can be optional, mandatory, or appear
multiple times. To specify those qualities, follow

qualification of the element. You define an

attribute. Finally,

where in the DTD. To define the entity, use the

You can enforce attributes also through the use

All valid web.xml files must contain the following DOCTYPE declaration, indi­
cating the version of the DTD to use:

<!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN” “http://java.sun.com/dtd/

web-app_2_3.dtd”>

The root tag of the web.xml file is <web-app>. This tag is always the first tag
that you place in the web.xml file. The following DTD segment defines how
you use the tag and lists all the possible other tags in it:

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 162

162 Part II: Starting from the Core

<!ELEMENT web-app (icon?, display-name?, description?,
distributable?, context-param*, filter*, filter-mapping*,
listener*, servlet*, servlet-mapping*, session-config?,
mimemapping*,welcome-file-list?, error-page*, taglib*,
resource-env-ref*, resource-ref*, security-constraint*,
login-config?,security-role*, env-entry*, ejb-ref*,
ejb-local-ref*)>

For more information about the syntax of a DTD, see the sidebar, “Reading a
DTD: An overview.” We show a complete example of a web.xml file at the end
of this section.

The ServletContext configuration tag

Each Web container provides an implementation of the ServletContext inter­
face for each Web application running in the Web container. Any servlet can ref­
erence the ServletContext object, which can store and reference objects by
any servlet in the application. The ServletContext has a lifetime as long as
the application is running. Store in the ServletContext any data elements
that need to be available on a global basis for the life of the application.

The tag for inserting values into the ServletContext is <context-param>.
The DTD syntax for the tag is

<!ELEMENT context-param (param-name, param-value,
description?)>

<!ELEMENT param-name (#PCDATA)>
<!ELEMENT param-value (#PCDATA)>
<!ELEMENT description (#PCDATA)>

In the DTD syntax, you include the following items:

� <param-name> defines the name that references the param-value

� <param-value> is the value of the attribute

� <description> is an optional tag that provides descriptive text about
the parent element

The following shows an example of the tag’s use:

<context-param>
<param-name>

javax.servlet.jsp.jstl.fmt.localizationContext
</param-name>
<param-value>

ApplicationResources
</param-value>

</context-param>

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 163

Chapter 7: Setting the Configuration 163
In the example, we place into the ServletContext one parameter named
javax.servlet.jsp.jstl.fmt.localizationContext with a value of
ApplicationResources. When you use the JSTL tag library, you can define
the default resource bundle in the web.xml file with this technique. In this
way, you do not have to reference the resource bundle in the JSP when you
need to retrieve messages from the resource bundle. (For more information
about this technique, see “Configuring the message resources” in Chapter 6.)

Listener configuration

Application listeners are a new feature in the Servlet 2.3 specification. Their
inclusion allows application developers to be aware of various servlet events
regarding the ServletContext and HttpSession objects. In particular, devel­
opers can receive notification of lifecycle events for either object or changes
to attributes stored in either object.

The tag for defining a listener is <listener>. The syntax for the tag is

<!ELEMENT listener (listener-class)>
<!ELEMENT listener-class (#PCDATA)>

In this syntax, <listener-class> is the fully qualified name of the Java class
that implements one of the Listener interfaces.

Following is an example of the tag’s use:

<listener>
<listener-class>

com.othenos.purchasing.common.SessionManager
</listener-class>

</listener>

In the example we define one listener class named com.othenos.purchasing.
common.SessionManager. The creation of an application listener class is
more fully described in Chapter 9.

ActionServlet configuration

In a Struts application, you always have at least one servlet to declare and
possibly others. The servlet definition section of web.xml allows you to
define many of the key features of the servlet, in particular the fully qualified
class name and how the servlet will be referenced.

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 164

164 Part II: Starting from the Core

The tag that defines a servlet is <servlet>. The syntax for the tag is

<!ELEMENT servlet (icon?, servlet-name, display-name?,
description?,(servlet-class|jsp-file), init-param*,
load-on-startup?, run-as?, security-role-ref*)>

<!ELEMENT icon (small-icon?, large-icon?)>
<!ELEMENT servlet-name (#PCDATA)>
<!ELEMENT display-name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT servlet-class (#PCDATA)>
<!ELEMENT jsp-file (#PCDATA)>
<!ELEMENT init-param (param-name, param-value, description?)>
<!ELEMENT load-on-startup (#PCDATA)>
<!ELEMENT run-as (description?, role-name)>
<!ELEMENT security-role-ref (description?, role-name, role-

link?)>

In this syntax, you use the following tags:

� <icon>: An optional tag that provides small and large icons to represent
the Web application in a GUI tool.

� <servlet-name>: Sets the name that refers to the servlet instead of the
more verbose class name.

� <display-name>: An optional tag that defines a short name intended to
be displayed in GUI tools.

� <description>: An optional tag that provides descriptive text about
the parent element.

� <servlet-class>: Must define the fully qualified name of the servlet
class. You must specify either this tag or the following jsp-file tag.

� <jsp-file>: Must contain the full path to the JSP file beginning with /.

� <init-param>: An optional tag that contains one name-value pair that is
passed to the servlet at initialization. The tag can be repeated multiple
times. The requirements of the specified servlet determine the possible
parameters.

� <load-on-startup>: An optional tag that specifies to the Web container
the order of loading and initializing the servlets. Use a value of 0 or any
positive integer to load the servlets in order from smallest integer to
largest. Otherwise, the Web container can load the servlets in whatever
order it wants.

� <run-as>: An optional tag that overrides the security identity that this
servlet used to call an Enterprise JavaBean (EJB).

� <security-role-ref>: An optional tag that defines a mapping between
the name of a role called from a servlet and the name of a security role
defined for the Web application.

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 165

Chapter 7: Setting the Configuration 165
An example of servlet configuration follows:

<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet
</servlet-class>
<init-param>

<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

You can supply numerous initialization parameters to ActionServlet using
the <init-param> tag.

When you specify the value of a parameter, you need to enclose it in quotation
marks.

Here is the current list of parameters:

� config: Context-relative path to the XML resource containing the config­
uration information for the default module. This may also be a comma-
delimited list of configuration files. ActionServlet loads each file in
turn, and its objects are appended to the internal data structure. The
default is /WEB-INF/struts-config.xml.

If you define an object of the same name in more than one configuration
file, the last one loaded wins.

� config/${module}: Context-relative path to the XML resource containing
the configuration information for the application module that will use the
specified prefix (/${module}). You can repeat this as many times as you
need for multiple application modules.

� convertNull: Forces simulation of the Struts 1.0 behavior when popu­
lating forms. If set to true, the numeric Java wrapper class types (such
as java.lang.Integer) default to null (rather than 0). The default is
false.

� rulesets: Comma-delimited list of fully qualified class names of addi­
tional org.apache.commons.digester.RuleSet instances that should
be added to the Digester that will be processing struts-config.xml
files. By default, only the RuleSet for the standard configuration elements
is loaded.

� validating: Uses a validating XML parser to process the configuration
file (strongly recommended). The default is true.

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 166

166 Part II: Starting from the Core

ActionServlet mapping

The servlet mapping tag defines the mapping between a URL pattern and a
servlet. With it, the Web container will recognize that the servlet is responsi­
ble for handling all requests that follow the specified URL pattern.

The tag that defines the servlet mapping is <servlet-mapping>. The syntax
for the tag is

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>
<!ELEMENT servlet-name (#PCDATA)>
<!ELEMENT url-pattern (#PCDATA)>

In the syntax for the servlet mapping tag, you use the following items:

� <servlet-name>: Refers to the name that you gave the servlet when
you defined it using the <servlet> tag. (For more information, see the
“ActionServlet Configuration” section.)

� <url-pattern>: Specifies the URL pattern to associate with the servlet
name used in <servlet-name>.

An example of servlet mapping follows:

<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

This servlet mapping informs the Web container that any URL that ends in
.do should pass to the servlet whose name is action. You can use any pat­
tern, but *.do is common in Struts applications. The servlet associated with
the name action was defined by the <servlet> tag in the preceding section
of this chapter.

Adding in the tag libraries

You need to define tag libraries, like the ones that are part of the Struts-EL
package, in the web.xml file so that the application can use them.

To define tag libraries, use the <taglib> tag. The syntax for the tag is

<!ELEMENT taglib (taglib-uri, taglib-location)>
<!ELEMENT taglib-uri (#PCDATA)>
<!ELEMENT taglib-location (#PCDATA)>

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 167

Chapter 7: Setting the Configuration 167
In this tag, you use the following items:

� <taglib-uri>: Describes a URI, relative to the location of the web.xml
document, identifying a tag library used in the application. This URI will
be used in the JSP page to reference the tag library.

� <taglib-location>: Contains the location (as a resource relative to the
root of the Web application) of the Tag Library Description file for the tag
library.

An example of the use of the <taglib> follows:

<taglib>
<taglib-uri>jstl-c</taglib-uri>
<taglib-location>/WEB-INF/c.tld</taglib-location>

</taglib>

This example defines the location of the Tag Library Descriptor as /WEB-INF/
c.tld and defines /jstl-c as the URI to use to reference the taglib in a JSP
page.

Then in the JSP page, you reference the taglib as follows:

<%@ taglib prefix=”c” uri=”jstl-c” %>

The sequence of tags in an XML document is important and must be followed.
For example, in the web.xml file, you can’t define the <servlet-mapping> tag
before you define the <servlet> tag. If you have configuration errors at startup
time, be sure to check the sequence of your tag definitions. Make sure they
follow the sequence that you defined in the DTD for the XML file in question.

A complete example of a web.xml file

Listing 7-1 is a complete example of a web.xml file taken from the
MusicCollection application we build in Chapter 14.

Listing 7-1 A Complete Example of a web.xml File

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>

<web-app>

(continued)

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 168

168 Part II: Starting from the Core

Listing 7-1 (continued)

<!-- Action Servlet Configuration -->
<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

<!-- Action Servlet Mapping -->
<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

<!-- The Welcome File List -->
<welcome-file-list>
<welcome-file>home.jsp</welcome-file>

</welcome-file-list>

<!-- JSTL Tag Library Descriptor -->
<taglib>
<taglib-uri>jstl-c</taglib-uri>
<taglib-location>/WEB-INF/c.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>jstl-fmt</taglib-uri>
<taglib-location>/WEB-INF/fmt.tld</taglib-location>

</taglib>

<!-- Struts Tag Library Descriptors -->
<taglib>
<taglib-uri>/WEB-INF/struts-bean-el.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-bean-el.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>/WEB-INF/struts-html-el.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-html-el.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>/WEB-INF/struts-logic-el.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-logic-el.tld</taglib-location>

</taglib>

</web-app>

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 169

Chapter 7: Setting the Configuration 169

Modifying the Struts Configuration File

The Struts configuration file, struts-config.xml, is similar to the web.xml
configuration file for the Web container except that it informs the Struts
framework about the components the developer is adding to the framework
and how to use these components.

The struts-config.xml file, like web.xml, has a DTD file that defines the
acceptable grammar for laying out the configuration. Each struts-config.
xml file must begin with a DOCTYPE indicating the version of the DTD to use.
The following example specifies version 1.1 of the Struts Configuration DTD:

<!DOCTYPE struts-config PUBLIC “-//Apache Software
Foundation//DTD Struts Configuration 1.1//EN”

“http://jakarta.apache.org/struts/dtds/struts-
config_1_1.dtd”>

The root tag of the struts-config.xml file is <struts-config>. The
<struts-config> tag is always the first tag in the struts-config.xml file.
The following code defines the use of this tag and all the possible other tags
in it. The DTD syntax for the struts-config tag is shown here:

<!ELEMENT struts-config (data-sources?, form-beans?,
global-exceptions?, global-forwards?, action-mappings?,
controller?, message-resources*, plug-in*)>

We show a complete example of a struts-config file at the end of this
section.

DataSource configuration

The Struts framework can take direct advantage of implementations of the
javax.sql.DataSource interface to provide database connections and pool­
ing for Web applications. Some Web container providers or database vendors
may offer a pooling mechanism that implements the javax.sql.DataSource
interface. Such a mechanism might be your first choice. If not, take a look
at the Jakarta Commons DBCP package as a possibility. This package is a
DataSource implementation and offers connection pooling when you use it
with the Jakarta Commons Pool package. For more information about
DataSources, see Chapter 5.

If you must support more than one database, you can enter each database as
a datasource in the datasources configuration. The tag for inserting data-
sources is <data-sources>. The DTD syntax for the tag follows:

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 170

170 Part II: Starting from the Core

<!ELEMENT data-sources (data-source*)>
<!ELEMENT data-source (set-property*)>
<!ATTLIST data-source className %ClassName; #IMPLIED>
<!ATTLIST data-source key %AttributeName; #IMPLIED>
<!ATTLIST data-source type %ClassName; #IMPLIED>

<!ELEMENT set-property EMPTY>
<!ATTLIST set-property property %PropName; #REQUIRED>
<!ATTLIST set-property value CDATA #REQUIRED>

In this tag, you use the following two tags, each with a set of attributes that
follow:

� <data-source>: Defines the datasource implementation and the key

that references it.

• className: The configuration bean for this DataSource object. If
specified, the object must be a subclass of the default configura­
tion bean. The default is org.apache.struts.config.
DataSourceConfig.

• key: Servlet context attribute key that locates this datasource. The
default is org.apache.struts.action.DATA_SOURCE. In our
examples we use the application name, such as musiccollection.
The application module prefix (if any) is appended to the key
(${key}$prefix}).

The application module prefix includes the leading slash. For exam­
ple, the musiccollection datasource key for a module named
foo is musiccollection/foo.

• type: Fully qualified Java class name for this datasource object. The
class must implement DataSource [javax.sql.DataSource], and
the object must be configurable entirely from JavaBean properties.

� <set-property>: Provides a series of name-value pairs that you can use
to initialize the datasource.

• property: Name of the JavaBeans property whose setter method
will be called.

• value: String representation of the value to which this property
will be set, after suitable type conversion.

Your choice of parameters depends on the datasource implementation that you
choose to work with. If you’re using the Commons DBCP package, for example,
look at jakarta.apache.org/commons/dbcp/configuration.html for
details of the properties you can set.

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 171

Chapter 7: Setting the Configuration 171
Listing 7-2 shows an example of the tag’s use for the Commons DBCP taken
from the example application in Chapter 14.

Listing 7-2 Using the data-sources Tag for the Commons DBCP Package

<data-sources>
1 <data-source key=”musiccollection”

type=”org.apache.commons.dbcp.BasicDataSource”>
2 <set-property property=”description”

value=”Music Collection Database”/>
3 <set-property property=”driverClassName”

value=”com.mysql.jdbc.Driver”/>
4 <set-property property=”username” value=”root”/>
5 <set-property property=”password” value=”bigmoma”/>
6 <set-property property=”url”

value=”jdbc:mysql://localhost/musiccollection” />
7 <set-property property=”maxCount” value=”8”/>
8 <set-property property=”minCount” value=”2”/>

</data-source>
</data-sources>

In Listing 7-2, note the following:

� Line 1: Defines org.apache.commons.dbcp.BasicDataSource as the
fully qualified class name of the implementation of the javax.sql.
DataSource interface. In addition, the example defines musiccollection
as the key to use to look up the datasource from the application scope.

� Lines 2-8: Defines the set of parameters to pass to the DataSource

implementation.

Formbean configuration

You need to define the formbean in the struts-config file. We also discussed
formbeans extensively in Chapters 3 and 6.

The tag for inserting formbeans is <form-beans>. The DTD syntax for the tag
follows:

<!ELEMENT form-beans (form-bean*)>
<!ATTLIST form-beans type %ClassName; #IMPLIED>

<!ELEMENT form-bean (icon?, display-name?, description?,
set-property*, form-property*)>

<!ATTLIST form-bean className %ClassName; #IMPLIED>
<!ATTLIST form-bean dynamic %Boolean; #IMPLIED>
<!ATTLIST form-bean name %BeanName; #REQUIRED>
<!ATTLIST form-bean type %ClassName; #REQUIRED>

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 172

172 Part II: Starting from the Core

<!ELEMENT icon (small-icon?, large-icon?)>
<!ELEMENT large-icon (%Location;)>
<!ELEMENT small-icon (%Location;)>
<!ELEMENT display-name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT set-property EMPTY>
<!ATTLIST set-property property %PropName; #REQUIRED>
<!ATTLIST set-property value CDATA #REQUIRED>
<!ELEMENT form-property (set-property*)>
<!ATTLIST form-property className %ClassName; #IMPLIED>
<!ATTLIST form-property initial CDATA #IMPLIED>
<!ATTLIST form-property name %PropName; #REQUIRED>
<!ATTLIST form-property size %Integer; #IMPLIED>
<!ATTLIST form-property type %ClassName; #REQUIRED>

You use the following notation in the DTD file:

� <form-beans>: Starts the section where all the formbeans are defined.

� <form-bean>: Defines a formbean to be used in the application. The tag
has the following attributes:

• className: The configuration bean for this formbean object. If
specified, the object must be a subclass of the default configuration
bean. The default is org.apache.struts.config.FormBeanConfig.

• dynamic: This attribute is deprecated. This information is now
determined dynamically based on the specified implementation
class.

• name: The unique identifier for this form bean. Referenced by the
<action> element to specify which formbean to use with its
request.

• type: Fully qualified Java class name of the ActionForm subclass
to use with this formbean.

� <icon>: Defines a large-icon or a small-icon or both that you can
use to represent this formbean in a GUI tool.

� <display-name>: Defines a name to be associated with this formbean in
a GUI tool.

� <description>: Contains descriptive text about the formbean for dis­
play in GUI tools.

� <set-property>: Allows you to pass parameters to the formbean. See
the “DataSource configuration” section earlier in this chapter for more
details on <set-property>.

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 173

Chapter 7: Setting the Configuration 173
� <form-property>: Used when the formbean is a class or subclass of

DynaActionForm. The tag has the following attributes:

• className: The configuration bean for this form property object.
If specified, the object must be a subclass of the default configura­
tion bean. The default is org.apache.struts.config.
FormPropertyConfig.

• initial: String representation of the initial value for this property.
If you don’t specify a value, primitives are initialized to zero and
objects are initialized to the zero-argument instantiation of that
object class. For example, Strings are initialized to “”.

• name: The name of the JavaBean property described by this
element.

• size: The number of array elements to create if the value of the
type attribute specifies an array but does not specify a value for
the initial attribute.

• type: Fully qualified Java class name of the field underlying this
property, optionally followed by [] to indicate that the field is
indexed.

Listing 7-3 shows an example of a formbean definition.

Listing 7-3 A Formbean Definition

<form-beans>
1 <form-bean name=”loginForm”
2 type=”org.apache.struts.validator.DynaValidatorForm”>
3 <form-property name=”email”
4 type=”java.lang.String”
5 initial=””/>
6 <form-property name=”password”
7 type=”java.lang.String”
8 initial=””/>
9 </form-bean>
... other form beans can be defined here
</form-beans>

Note the following sections of Listing 7-3:

� Lines 1–9: Define a DynaValidatorForm bean.

� Line 1: Defines the name of the form to be loginForm.

� Line 2: Indicates that the form is based on the DynaValidatorForm class.

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 174

174 Part II: Starting from the Core

� Lines 3–5: Specify that one property of the form is named email, of type
String, with an initial value of “”.

� Lines 6–8: Specify that one property of the form should be named

password, of type String, with an initial value of “”.

Global exceptions

You need to declare any global exceptions in the struts-config file. In this
section, we discuss how to set up the configuration for global exceptions. For
a full discussion of the ins and outs of declarative exception handling, see
Chapter 8.

The tag for inserting global exceptions is <global-exceptions>. The DTD
syntax for the tag is

<!ELEMENT global-exceptions (exception*)>
<!ATTLIST global-exceptions id ID #IMPLIED>

<!ELEMENT exception (icon?, display-name?, description?,
set-property*)>

<!ATTLIST exception bundle %AttributeName; #IMPLIED>
<!ATTLIST exception className %ClassName; #IMPLIED>
<!ATTLIST exception handler %ClassName; #IMPLIED>
<!ATTLIST exception key CDATA #REQUIRED>
<!ATTLIST exception path %RequestPath; #IMPLIED>
<!ATTLIST exception scope CDATA #IMPLIED>
<!ATTLIST exception type %ClassName; #REQUIRED>

You use the following items for the global-exceptions tag:

� <global-exceptions>: Marks the beginning of all global exception
definitions.

� <exception>: Starts the definition of one exception. The attributes of
the tag follow:

• bundle: Servlet context attribute for the message resources
bundle associated with this handler. The default attribute is the
value specified by the string constant declared at Globals.
MESSAGES_KEY. The default is org.apache.struts.Globals.
MESSAGES_KEY.

• className: The configuration bean for this ExceptionHandler
object. If specified, className must be a subclass of the default
configuration bean. The default is org.apache.struts.config.
ExceptionConfig.

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 175

Chapter 7: Setting the Configuration 175
• handler: Fully qualified Java class name for this exception handler.

The default is org.apache.struts.action.ExceptionHandler.

• key: The key to use with this handler’s message resource bundle
that will retrieve the error message template for this exception.

• path: The module-relative URI to the resource that completes the
request and response if this exception occurs.

• scope: The context (request or session) that accesses the
ActionError object for this exception. The default is request.

• type: Fully qualified Java class name of the exception type to
register with this handler.

Here is an example of the tag’s use:

<global-exceptions>
<exception bundle=”ApplicationResources”

key=”error.RuntimeException”
path=”/baderror.jsp”
handler=”dummies.struts.music.CustomExceptionHandler”
type=”java.lang.RuntimeException” />

</global-exceptions >

The example describes one global exception of type RuntimeException
that supplies a message based in the error.RuntimeException resource
bundle key. The error is handled by a specialized exception handler class,
CustomExceptionHandler. The destination is a custom error page named
baderror.jsp.

Global forwards

Global forwards define a set of ActionForward objects available to all Action
objects as a return value. Any ActionForward of the same name that is defined
in an <action> tag overrides the global ActionForward.

The tag for inserting global forwards is <global-forwards>. The DTD
syntax for the tag is

<!ELEMENT global-forwards (forward*)>
<!ELEMENT forward (icon?, display-name?, description?,

set-property*)>
<!ATTLIST forward className %ClassName; #IMPLIED>
<!ATTLIST forward contextRelative %Boolean; #IMPLIED>
<!ATTLIST forward name CDATA #REQUIRED>
<!ATTLIST forward path %RequestPath; #REQUIRED>
<!ATTLIST forward redirect %Boolean; #IMPLIED>

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 176

176 Part II: Starting from the Core

The DTD syntax for the <global-forwards> tag has the following properties:

� <global-forwards>: Begins the definitions of one or more global

forwards.

� <forward>: Defines ActionForward. The attributes of the tag follow:

• className: Fully qualified Java class name of ActionForward
subclass to use for this object. The default is org.apache.struts.
action.ActionForward.

• contextRelative: Set this to true if, in a modular application, the
path attribute starts with a slash (/) and should be considered rel­
ative to the entire Web application rather than the module. The
default is false.

• name: The unique identifier for this forward. Referenced by the
Action object at runtime to select — by its logical name — the
resource that should complete the request/response.

• path: The module-relative or context-relative path to the resources
that this ActionForward encapsulates. If the path is context-relative
when used in a modular application, set the contextRelative
attribute to true. This value should begin with a slash (/) character.

• redirect: Set to true if a redirect instruction should be issued to
the user-agent so that a new request is issued for this forward’s
resource. If true, the sendRedirect method of HttpServlet
Response is called. If false, the forward method of Request
Dispatcher is called instead. The default is false.

An example of the tag’s use is

<global-forwards>
<forward name=”logon”

path=”/logon.jsp”/>
</global-forwards>

This simple example sets up a global forward of the name “logon” that for­
wards control to the resource on the path “/logon.jsp”.

Action mapping

Action mappings describe a set of ActionMapping objects. Each Action
Mapping object associates an Action object with a path and various other
attributes. Exactly one ActionMapping is represented by an action tag.

11 559575 Ch07.qxd 3/2/04 3:59 PM Page 177

Chapter 7: Setting the Configuration 177
The tag for inserting actions is <action-mappings>. The DTD syntax for the
tag is shown here:

<!ELEMENT action-mappings (action*)>
<!ATTLIST action-mappings type %ClassName; #IMPLIED>

<!ELEMENT action (icon?, display-name?, description?,
set-property*, exception*, forward*)>

<!ATTLIST action attribute %BeanName; #IMPLIED>
<!ATTLIST action className %ClassName; #IMPLIED>
<!ATTLIST action forward %RequestPath; #IMPLIED>
<!ATTLIST action include %RequestPath; #IMPLIED>
<!ATTLIST action input %RequestPath; #IMPLIED>
<!ATTLIST action name %BeanName; #IMPLIED>
<!ATTLIST action parameter CDATA #IMPLIED>
<!ATTLIST action path %RequestPath; #REQUIRED>
<!ATTLIST action prefix CDATA #IMPLIED>
<!ATTLIST action roles CDATA #IMPLIED>
<!ATTLIST action scope %RequestScope; #IMPLIED>
<!ATTLIST action suffix CDATA #IMPLIED>
<!ATTLIST action type %ClassName; #IMPLIED>
<!ATTLIST action unknown %Boolean; #IMPLIED>
<!ATTLIST action validate %Boolean; #IMPLIED>

The <action-mappings> tag uses the following attributes:

� <action-mappings>: Defines the beginning of a set of actions.

� <action>: Represents one ActionMapping object. The attributes of the
tag follow:

• attribute: Name of the request-scope or session-scope attribute
that accesses the ActionForm bean, if it’s other than the bean’s
specified name. This attribute is optional if name is specified but
otherwise is not valid.

• className: The fully qualified Java class name of the Action
Mapping subclass to use for this action mapping object. Defaults to
the type specified by the enclosing <action-mappings> element or
to org.apache.struts.action.ActionMapping if not specified.

• forward: Module-relative path of the servlet or other resource that
processes this request, instead of the Action class specified by
type. You can specify one of the following: forward, include, or
type.

• include: Module-relative path of the servlet or other resource that
processes this request, instead of the Action class specified by type.
You must specify one of the following: forward, include, or type.

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 178

178 Part II: Starting from the Core

• input: Module-relative path of the action or other resource that
gets control if a validation error occurs. Valid only if you specify
the name attribute. If you specify the name attribute and the input
bean returns validation errors, you must specify this attribute. On
the other hand, if you specify the name attribute and the input
bean does not return validation errors, this attribute is optional.

• name: Name of the formbean, if any, associated with this action
mapping.

• path: The module-relative path of the submitted request, starting
with a slash (/) character and without the filename extension if
you are using extension mapping.

Never include a period in your path name. ActionServlet consid­
ers a period the beginning of a filename extension and will not be
able to locate your Action.

• parameter: General-purpose configuration parameter that you can
use to pass extra information to the Action object selected by this
action mapping.

• prefix: Prefix used to match request parameter names to
ActionForm property names, if any. Optional if you have specified
the name attribute; otherwise, the prefix attribute is not allowed.

• roles: Comma-delimited list of security role names that are
allowed access to this ActionMapping object.

• scope: The context (“request” or “session”) used to access
the ActionForm bean, if any. This attribute is optional if you spec­
ify the “name” attribute; otherwise, it’s not valid.

• suffix: Suffix used to match request parameter names to
ActionForm bean property names, if any. This attribute is optional
if you specify the name attribute; otherwise it’s not valid.

• type: Fully qualified Java class name of the Action subclass [org.
apache.struts.action.Action] that will process requests for
this action mapping. This attribute is not valid if you have specified
the forward or include attribute. You must specify forward,
include, or type.

• unknown: Set to true if this object should be configured as the
default action mapping for this module. If a request does not match
another object, it will be passed to the ActionMapping object with
unknown set to true. You can mark only one ActionMapping as
unknown in a module. The default is false.

• validate: Set to true if you want to call the validate method of
the ActionForm bean before calling the Action object for this
action mapping. Set to false if you don’t want to call the validate
method. The default is true.

Listing 7-4 shows an example of the <action-mapping> tag’s use.

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 179

Chapter 7: Setting the Configuration 179
Listing 7-4

<action-mappings>
1 <action path=”/home”
2 type=”dummies.struts.music.LoginAction”
3 name=”loginForm”
4 scope=”request”
5 input=”/home.jsp”
6 validate=”true”>
7 <forward name=”failure” path=”/home.jsp”/>
8 <forward name=”success” path=”/musiclist.do”/>
9 <forward name=”join” path=”/join.jsp”/>

</action>
</action-mappings>

An Example of the <action-mapping> Tag

Here’s an explanation of Listing 7-4:

� Line 1: Defines the path for this ActionMapping as “/home”. The actual
URI used to invoke this action is /home.do because *.do was defined as
the URL pattern in web.xml.

� Line 2: Specifies that the Action class is POAction and will be called for
each request.

� Line 3: Associates “loginForm” as the formbean to be used with
requests.

� Line 4: Specifies that the formbean be stored in the request object.

� Line 5: Indicates that control should be returned to home.jsp in the
event of a validation error.

� Line 6: Calls the validation method of the formbean.

� Lines 7–9: Define forwards to be used by the Action class.

Controller configuration

You can make changes in the configuration of the ActionServlet through
the use of the controller tag. You can configure quite a few qualities of the
ActionServlet through this tag. Most applications can skip configuring the
controller and simply use the default values.

The tag for inserting a new controller is <controller>. The DTD syntax for
the tag is shown here:

<!ELEMENT controller (set-property*)>
<!ATTLIST controller bufferSize %Integer; #IMPLIED>
<!ATTLIST controller className %ClassName; #IMPLIED>
<!ATTLIST controller contentType CDATA #IMPLIED>
<!ATTLIST controller debug %Integer; #IMPLIED>

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 180

180 Part II: Starting from the Core

<!ATTLIST controller forwardPattern CDATA #IMPLIED>
<!ATTLIST controller inputForward %Boolean; #IMPLIED>
<!ATTLIST controller locale %Boolean; #IMPLIED>
<!ATTLIST controller maxFileSize CDATA #IMPLIED>
<!ATTLIST controller memFileSize CDATA #IMPLIED>
<!ATTLIST controller multipartClass %ClassName; #IMPLIED>
<!ATTLIST controller nocache %Boolean; #IMPLIED>
<!ATTLIST controller pagePattern CDATA #IMPLIED>
<!ATTLIST controller processorClass %ClassName; #IMPLIED>
<!ATTLIST controller tempDir CDATA #IMPLIED>

The <controller> tag defines any changes to ActionServlet. The list of
possible attributes is as follows:

� bufferSize: The size of the input buffer used when processing file
uploads. The default is 4096.

� className: Fully qualified Java class name of the ControllerConfig
subclass for this controller object. If you specify this attribute, the object
must be a subclass of the default class. The default is org.apache.
struts.config.ControllerConfig.

� contentType: Default content type (and optional character encoding)
for each response. The Action, JSP, or other resource that receives the
request may override this attribute. The default is text/html.

� debug: Debugging detail level for this module. The default is 0. This
attribute is deprecated. Instead, you should configure the logging detail
level in your underlying logging implementation. For more information
on logging, see Chapter 13.

� forwardPattern: Replacement pattern defining how the path attribute
of a <forward> element is mapped to a context-relative URL when it
starts with a slash (and when the contextRelative property is false).
This value may consist of any combination of the following:

• $M: Replaced by the prefix of this module.

• $P: Replaced by the path attribute of the selected forward element.

• $$: Displays a literal dollar sign.

• $x: x is any character not defined previously in this list. Currently
disregarded, but reserved for future use.

The default forwardPattern is MP.

� inputForward: Set to true if you want the input attribute of <action>
elements to be the name of a local or global ActionForward, which will
then be used to calculate the ultimate URL. Set to false to treat the
input parameter of <action> elements as a module-relative path to the
resource to be used as the input form. The default is false.

� locale: Set to true if you want to store a Locale object in the user’s
session if not already present. The default is true.

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 181

Chapter 7: Setting the Configuration 181
� maxFileSize: The maximum size (in bytes) of a file that the application

accepts as a file upload. You can express this attribute as a number fol­
lowed by a K, M, or G, for kilobytes, megabytes, or gigabytes, respec­
tively. The default is 250M.

� memFileSize: The maximum size (in bytes) of a file whose contents are
retained in memory after uploading. Files larger than this threshold are
written to some alternative storage medium, typically a hard disk. Can
be expressed as a number followed by a K, M, or G, for kilobytes, mega­
bytes, or gigabytes, respectively. The default is 256K.

� multipartClass: The fully qualified Java class name of the multipart
request handler class that you want to use with this module. The default
is org.apache.struts.upload.CommonsMultipartRequestHandler.

� nocache: Set to true if you want the controller to add HTTP headers for
tell the Web server not to cache responses from this module. The default
is false.

� pagePattern: Replacement pattern defining the mapping of the page
attribute of custom tags to a context-relative URL of the corresponding
resource. This value may consist of any combination of the following:

• $M: Replaced by the prefix of this module.

• $P: Replaced by the value of the page attribute.

• $$: Displays a literal dollar sign.

• $x: x is any character not defined previously in this list. This value
is currently disregarded, but reserved for future use.

The default pagePattern is MP.

� processorClass: The fully qualified Java class name of the Request
Processor subclass to be used with this module. The default is org.
apache.struts.action.RequestProcessor.

� tempDir: Temporary working directory to use when processing file

uploads. The default is {Directory provided by servlet container}.

An example of the tag’s use is shown here:

<controller processorClass =
“com.othenos.purchasing.common.CustomRequestProcessor”/>

This example shows the installation of a new RequestProcessor subclass.
This replaces the original RequestProcessor reference in ActionServlet.

Message resource configuration

To insert message resources, use the <message-resources> tag. For more
information on message resources, their use and configuration, see Chapters
3 and 6.

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 182

182 Part II: Starting from the Core

The DTD syntax for the tag is as follows:

<!ELEMENT message-resources (set-property*)>
<!ATTLIST message-resources className %ClassName; #IMPLIED>
<!ATTLIST message-resources factory %ClassName; #IMPLIED>
<!ATTLIST message-resources key %AttributeName; #IMPLIED>
<!ATTLIST message-resources null %Boolean; #IMPLIED>
<!ATTLIST message-resources parameter CDATA #REQUIRED>

The <message-resources> tag defines a message resource bundle to be
made available to the Web application. The parameter attribute is required
and refers to the file name of the resource bundle. The following are attrib­
utes of the tag:

� className: The configuration bean for this message resources object. If
you specify this attribute, the object must be a subclass of the default con­
figuration bean. The default is org.apache.struts.config.Message
ResourcesConfig.

� factory: Fully qualified Java class name of the MessageResources
Factory subclass to use for this message resources object. The default
is org.apache.struts.util.PropertyMessageResourcesFactory.

� key: Servlet context attribute key that locates the message resources
bundle. The default attribute is the value that the string constant
Globals.MESSAGES_KEY specifies, which happens to be org.apache.
struts.action.ACTION_MESSAGE. The application module prefix (if
any) is appended to the key (${key}${prefix}).

The application module prefix includes the leading slash. For example,
org.apache.struts.action.MESSAGE/foo references the default mes­
sage resource bundle for a module named foo.

� null: Set to true if you want your message resources to return a null
string for unknown message keys. Set to false to return a message with
the bad key value in the form of ???key???.

� parameter: Configuration parameter to be passed to the create
Resources method of the PropertyMessageResourcesFactory object
or its subclass.

Here is an example of the tag’s use:

<message-resources null=”false”
parameter=”ApplicationResources”/>

In this example, we specify a message resource bundle named “Application
Resources”. In addition, we specify that if a particular resource key can’t be
found, the application should display the “???key???” message, as shown in
Figure 7-1.

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 183

Chapter 7: Setting the Configuration 183

Figure 7-1:
A message
resource is

missing,
so the

application
displays lots

of question
marks.

Plug-in configuration

You can extend the functionality of Struts through the use of plug-ins, such as
the Validator plug-in. We discuss the use of plug-ins fully in Chapter 9. To use
plug-ins, the Struts framework must learn about them through the plug-in tag
that you place in the struts-config file.

The tag for inserting plug-ins is <plug-in>. The DTD syntax for the tag is

<!ELEMENT plug-in (set-property*)>
<!ATTLIST plug-in className %ClassName; #REQUIRED>

The DTD syntax for the <plug-in> tag has one attribute — <plug-in> —
that defines the plug-in that you want to include by requiring the className
attribute. The className attribute specifies the fully qualified Java class
name of the plug-in class and must implement [org.apache.struts.
action.PlugIn]. Some plug-ins require parameters; others don’t. If you
need parameters, specify them by using the set-property tag.

Here is an example of the tag’s use:

<plug-in
className=”org.apache.struts.validator.ValidatorPlugIn”>
<set-property property=”pathnames”

value=”/WEB-INF/validator-rules.xml,
/WEB-INF/validation.xml”/>

</plug-in>

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 184

184 Part II: Starting from the Core

In this example, we define the Validator plug-in. This plug-in requires one
parameter, “pathnames”. This parameter specifies the paths to find its con­
figuration files: validator-rules.xml and validation.xml.

Complete example of a

struts-config.xml file

In this chapter, we’ve broken the struts-config.xml file into itty-bitty
pieces to provide you with all the details you need. Now is the time to put
Humpty Dumpty back together again. Listing 7-5 is a complete example of a
working struts-config.xml file taken from the example application we
create in Chapter 14. The comments in the file help to delineate all the sec­
tions that we’ve discussed.

Listing 7-5 A Complete Example of the struts-config.xml File

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<!DOCTYPE struts-config PUBLIC
“-//Apache Software Foundation//DTD Struts Configuration 1.1//EN”
“http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd”>

<!-- This is the Struts configuration file for MusicCollection application -->

<struts-config>
<!-- ========== DataSource Definitions ================================= -->
<data-sources>
<data-source key=”musiccollection”

type=”org.apache.commons.dbcp.BasicDataSource”>
<set-property property=”description” value=”Music Collection Database”/>
<set-property property=”driverClassName” value=”com.mysql.jdbc.Driver”/>
<set-property property=”username” value=”root”/>
<set-property property=”password” value=”bigmoma”/>
<set-property property=”url”

value=”jdbc:mysql://localhost/musiccollection” />
<set-property property=”maxCount” value=”8”/>
<set-property property=”minCount” value=”2”/>

</data-source>
</data-sources>

<!-- ========== Form Bean Definitions ================================= -->
<form-beans>
<form-bean name=”loginForm”

type=”org.apache.struts.validator.DynaValidatorForm”>
<form-property name=”email”

type=”java.lang.String”
initial=””/>

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 185

Chapter 7: Setting the Configuration 185

<form-property name=”password”
type=”java.lang.String”
initial=””/>

</form-bean>

<form-bean name=”joinForm”
type=”org.apache.struts.validator.DynaValidatorForm”>

<form-property name=”email”
type=”java.lang.String”
initial=””/>

<form-property name=”password”
type=”java.lang.String”
initial=””/>

<form-property name=”password2”
type=”java.lang.String”
initial=””/>

<form-property name=”fname”
type=”java.lang.String”
initial=””/>

<form-property name=”lname”
type=”java.lang.String”
initial=””/>

</form-bean>

<form-bean name=”musiclistForm”
type=”org.apache.struts.action.DynaActionForm”>

<form-property name=”action”
type=”java.lang.String”
initial=””/>

</form-bean>

<form-bean name=”albumForm”
type=”org.apache.struts.validator.DynaValidatorForm”>

<form-property name=”album”
type=”java.lang.String”
initial=””/>

<form-property name=”artist”
type=”java.lang.String”
initial=””/>

<form-property name=”year”
type=”java.lang.String”
initial=””/>

<form-property name=”type”
type=”java.lang.String”
initial=””/>

<form-property name=”category”
type=”java.lang.String”
initial=””/>

<form-property name=”description”
type=”java.lang.String”
initial=””/>

(continued)

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 186

186 Part II: Starting from the Core

Listing 7-5 (continued)

<form-property name=”userid”
type=”java.lang.String”
initial=””/>

<form-property name=”id”
type=”java.lang.String”
initial=””/>

<form-property name=”action1”
type=”java.lang.String”
initial=””/>

<form-property name=”years”
type=”java.util.ArrayList” />

<form-property name=”types”
type=”java.util.ArrayList” />

<form-property name=”categories”
type=”java.util.ArrayList” />

</form-bean>
</form-beans>

<!-- ========== Global Exception Definitions ============================= -->
<!-- key value will be taken from the ModuleException instance -->
<global-exceptions>
<exception bundle=”ApplicationResources”

key=””
path=”/error.jsp”
handler=”dummies.struts.music.CustomExceptionHandler”
type=”org.apache.struts.util.ModuleException” />

<exception bundle=”ApplicationResources”
key=”error.RuntimeException”
path=”/baderror.jsp”
handler=”dummies.struts.music.CustomExceptionHandler”
type=”java.lang.RuntimeException” />

</global-exceptions>

<!-- ========== Action Mapping Definitions ============================== -->
<action-mappings>
<action path=”/home”

type=”dummies.struts.music.LoginAction”
name=”loginForm”
scope=”request”
input=”/home.jsp”
validate=”true”>

<forward name=”failure” path=”/home.jsp”/>
<forward name=”success” path=”/musiclist.do”/>
<forward name=”join” path=”/join.jsp”/>

</action>
<action path=”/join”

type=”dummies.struts.music.JoinAction”
name=”joinForm”
scope=”request”
input=”/join.jsp”
validate=”true”>

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 187

Chapter 7: Setting the Configuration 187
<forward name=”cancel” path=”/home.jsp”/>
<forward name=”failure” path=”/join.jsp”/>
<forward name=”success” path=”/welcome.jsp”/>

</action>
<action path=”/musiclist”

type=”dummies.struts.music.MusicListAction”
name=”musiclistForm”
scope=”request”
input=”/musiclist.jsp”
validate=”false”>

<forward name=”logoff” path=”/logoff.do”/>
<forward name=”newalbum” path=”/album.do”/>
<forward name=”success” path=”/musiclist.jsp”/>

</action>
<action path=”/album”

type=”dummies.struts.music.AlbumAction”
name=”albumForm”
scope=”request”
nput=”/album.jsp”
validate=”false”>

<forward name=”cancel” path=”/musiclist.do”/>
<forward name=”success” path=”/musiclist.do”/>
<forward name=”new” path=”/album.jsp”/>
<forward name=”failure” path=”/album.jsp”/>

</action>
<action path=”/logoff”

type=”dummies.struts.music.LogoffAction”
scope=”request”
validate=”false”>

<forward name=”success” path=”/home.jsp”/>
</action>

</action-mappings>

<!-- ========== Controller Definition ============================== -->
<controller processorClass=”dummies.struts.music.CustomRequestProcessor” />

<!-- ========== Message Resources Definitions =========================== -->
<message-resources null=”false”

parameter=”ApplicationResources”/>

<!-- ========== Plugin Definitions =========================== -->
<plug-in className=”org.apache.struts.validator.ValidatorPlugIn”>
<set-property property=”pathnames”

value=”/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml”/>
</plug-in>
<plug-in className=”dummies.struts.music.StartupManager” />

</struts-config>

11 559575 Ch07.qxd 3/2/04 4:00 PM Page 188

188 Part II: Starting from the Core

12 559575 PP03.qxd 3/2/04 4:00 PM Page 189

Development
Options

Part III
Expanding Your

12 559575 PP03.qxd 3/2/04 4:00 PM Page 190

In this part . . .

P
Chapter 8 deals with exception handling. Chapter 9 covers

Chapter 10 explains the Struts tag libraries and how to
use them. Chapter 11 is all about page composition tech­
niques. Last but not least is Chapter 12, which explains
the tools in Struts for securing your application.

art III provides you with all the pieces that you need
to complete your Struts-enabled Web application.

a number of useful plug-ins that can streamline your work.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 191

Chapter 8

Exceptions to the Rule
In This Chapter
� Understanding the Java exception mechanism

� Choosing an exception strategy

� Writing Exception classes

� Using chained exceptions

� Asserting yourself

� Handling exceptions on your own

� Using Struts declarative exception handling

� Extending the Struts default exception handler

� Handling RuntimeExceptions

You may be the eternal optimist, but sooner or later all applications have
problems (generally both sooner and later). These problems could be

the result of actions outside your responsibility (for example, a network fail­
ure), or they may be the result of coding errors. Regardless of the degree of
effort made to eliminate errors, they do appear — even in the best software
products. Therefore, you need to have a plan in place to react to errors as
they occur so that the application can recover and continue to function prop­
erly or, at the very least, shut down in a graceful way.

You can find interesting statistics on how many programming errors occur
per 1000 lines of code (KLOC). In a recent article in Software Development,
Watts Humphry, the father of the Capability Maturity Model (CMM) (see
www.sei.cmu.edu/tsp/watts-bio.html) described the average number of
bugs found in various organizations that are certified at one of the five CMM
levels (see www.sei.cmu.edu/cmm/cmm.sum.html). The lowest-ranking
CMM organizations (level 1) have no formal development process in place.
The highest ranking CMM organizations (level 5) have the most mature and
organized development process in place. Level 1 organizations averaged 7.5
defects per KLOC, whereas level 5 averaged 1.05 per KLOC.

Fortunately, you’re programming in Java, which has an excellent problem
notification and handling mechanism built in.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 192

192 Part III: Expanding Your Development Options

Java Errors and Exceptions

Problems that can occur in Java are defined in a class hierarchy with the
Throwable class as the king. The Throwable class has two subclasses: the
Error class and the Exception class. See Figure 8-1 for an abbreviated class
hierarchy.

Throwable

Error Exception

IOException RuntimeException

Figure 8-1:
Java

Throwable
class

hierarchy.

The Error class and its descendents (at least 25 subclasses) represent seri­
ous errors from which recovery is not an option. The application should not
try to handle these types of errors because they’re usually outside the scope
of the application and typically indicate a problem in the Java Virtual
Machine (JVM).

The Exception class and its descendents (at least 55 subclasses) represent
errors that the application should make an attempt to handle. The Exception
class has two lineages: the IOException and the RuntimeException classes.

The Exception class, the IOException class, and its descendents make up
the checked exceptions. With a checked exception, the application programmer
must catch the exception in a try/catch block or throw (cause) a similar
exception. The compiler insists upon it! Every other descendent of the
Throwable class falls into the category of an unchecked exception.

Try/catch block

In a try/catch block, the try block contains the code that may throw a
checked exception. The catch block contains the reference to the exception
that could be thrown. The catch block contains also the code that reacts to
the exception. Here is an example of a simple try/catch block:

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 193

Chapter 8: Exceptions to the Rule 193
try
{

some code that could throw the ExceptionType
}
catch(ExceptionType e)
{

handle the exception here
}

If your code in the try block performs some action that causes an exception
to be thrown, control moves immediately to the code in the catch block.

You’re not required to catch unchecked exceptions. However, if they’re not
caught, your application terminates. The unchecked exceptions descended
from the Error class should not be caught, because they’re not recoverable
anyway. However, the RuntimeException class and its descendents should
be caught. Later in this chapter, we show a mechanism uses Struts to catch
the infamous RuntimeException and it descendents.

Throwing exceptions
Methods throw checked exceptions when

� An error condition occurs in the code and the method can not or will
not recover from it.

� An exception is thrown by a called method and the calling method can
not or does not want to handle it.

To let the compiler know that the method may throw an exception, the
method specifies in the throws clause the type of exception(s) it might
throw. For example, the following code illustrates a method that might throw
an IOException:

public void getTransfers(String token) throws IOException
{

some code ...
}

If certain conditions arise, the method may throw an IOException in the
code by creating an instance of the exception and then use the throw key­
word to actually throw it. Here’s the preceding example illustrating how this
might be accomplished:

public void getTransfers(String token) throws IOException
{

some code ...

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 194

194 Part III: Expanding Your Development Options

// oops. some condition occurred which makes
// us want to throw an exception
if(some condition)

throw new IOException();

some further code ...
}

The method can also call another method that throws an IOException.
Rather than catching the exception, this method simply passes the exception
up the call chain to the next method.

Wrapping it up in finally

What happens if you absolutely, positively have to do something regardless
of whether or not an exception is thrown? You can use a third block for that
purpose called the finally block, which can be used only in the try/catch
block. The finally block is guaranteed to always execute regardless of
whether or not an exception was thrown.

To see how you might use the finally block, suppose that you’re perform­
ing some database operation in the try block that throws a SQLException.
Before making the database call, you get a database connection. You want to
release the connection under all circumstances; otherwise it is a nonrecover­
able resource. Listing 8-1 shows some code that doesn’t guarantee that the
connection will always be released.

Listing 8-1 A try/catch Block in Need of a finally Block

1 public Map getCompanies() throws ModuleException
2 {
3 HashMap companies = null;
4 Connection conn = null;
5 try
6 {
7 conn = dbConnMgr.getConnection();
8 DBFactory dbf = DBFactory.getDBFactory();
9 DBUtility dbu = dbf.getDBUtility();
10 companies = dbu.getCompanies(conn); // retrieve companies from database
11 conn.close();
12 }
13 catch (SQLException se)
14 {
15 ModuleException me = new ModuleException(“error.company.select”);
16 throw me;
17 }
18 return companies;
19 }

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 195

Chapter 8: Exceptions to the Rule 195
You do not have to understand the details of this code, just the fact that in
the try block (lines 5–12), we are getting a database connection and then
performing some operations that could throw a SQLException. Here’s the
problem — if the code in lines 7–10 throws the exception, the release of the
connection in line 11 would not take place. The connection would be left in
limbo, so to speak.

To circumvent this situation, you can add a finally block to the code,
which is guaranteed to always execute no matter what happens (unless the
program exits). The code in Listing 8-2 has the finally block added.

Listing 8-2 A try/catch Block Using a finally Block

1 public Map getCompanies() throws ModuleException
2 {
3 HashMap companies = null;
4 Connection conn = null;
5 try
6 {
7 conn = dbConnMgr.getConnection();
8 DBFactory dbf = DBFactory.getDBFactory();
9 DBUtility dbu = dbf.getDBUtility();
10 companies = dbu.getCompanies(conn); // retrieve companies from database

11 }
12 catch (SQLException se)
13 {
14 ModuleException me = new ModuleException(“error.company.select”);
15 throw me;
16 }
17 finally
18 {
19 try
20 {
21 conn.close();
22 }
23 catch(SQLException se)
24 {
25 log.error(“Could not close the connection. “ + se.getMessage());
26 }
27 }
28 return companies;
29 }

We moved the line of code that releases the connection from the try block to
the finally block (line 21). This example is a more complex than usual
because executing line 21 (conn.close) could also result in a SQLException
being thrown. Therefore, we have to wrap the line in a try/catch block also.
Generally, statements in the finally block do not cause exceptions.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 196

196 Part III: Expanding Your Development Options

This review is not intended to be a comprehensive look at how to deal with
exceptions in Java. For more detail information on Java Exceptions visit the
Java Tutorial at

java.sun.com/docs/books/tutorial/essential/exceptions/index.html

Another good article on exceptions is at

www.developer.com/java/article.php/10922_1455891_1

Exception Strategies
Dealing with exceptions is an important part of creating robust applications
(Web or otherwise). So you need to have a good strategy in place for those
times when things don’t go according to plan. In this section, we talk about
ways of handling those “oops” situations.

Catching exceptions

Don’t just have an empty catch block to satisfy the compiler. Do something
useful. Exceptions are your friends. They’re messengers that bring you valu­
able information about the cause of trouble. It’s a good idea is to extract the
information out of the exception and save it somewhere, such as to the system
console or a log file. We talk in more detail about logging in Chapter 13.

Here are some useful possibilities for the catch block:

� Extract and save the relevant information from the exception

� Throw a new exception more relevant to your application

� Throw a new exception, chaining the original exception to the new one
(see “Using Chained Exceptions”)

Exception information

Every exception contains at least two pieces of valuable information that you
can extract. The first is the detailed message describing the exception. You
can get this by the method call getMessage:

String theMessage = exception.getMessage();

The second piece of information in every exception is the stack trace, which
provides you with the calling history from the current method to the method
that started the process. You can retrieve this information in a couple of ways.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 197

Chapter 8: Exceptions to the Rule 197
The easiest way is just to use the printStackTrace method, which outputs
the trace to the standard error device (usually the Java console).

exception.printStackTrace();

Following is a typical stack trace output:

java.lang.IllegalArgumentException: Invalid context path: webpurchasing
at org.apache.catalina.core.StandardHostDeployer.remove

(StandardHostDeployer.java:458)
at org.apache.catalina.core.StandardHost.remove(StandardHost.java:852)
at org.apache.catalina.startup.HostConfig.undeployApps(HostConfig.java:758)
at org.apache.catalina.startup.HostConfig.stop(HostConfig.java:738)
at org.apache.catalina.startup.HostConfig.lifecycleEvent

(HostConfig.java:360)
at org.apache.catalina.util.LifecycleSupport.fireLifecycleEvent

(LifecycleSupport.java:166)
at org.apache.catalina.core.ContainerBase.stop(ContainerBase.java:1221)
at org.apache.catalina.core.ContainerBase.stop(ContainerBase.java:1233)
at org.apache.catalina.core.StandardService.stop(StandardService.java:554)
at org.apache.catalina.core.StandardServer.stop(StandardServer.java:2225)
at org.apache.catalina.startup.Catalina.start(Catalina.java:543)
at org.apache.catalina.startup.Catalina.execute(Catalina.java:400)
at org.apache.catalina.startup.Catalina.process(Catalina.java:180)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke

(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke

(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:324)
at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:203)

If you’re not using the printStackTrace method (maybe because you’re
using a log file), you can still output the stack trace information programmati­
cally. See the logExceptionChain method defined in Listing 8-3 for an exam­
ple of how to do this.

Some exceptions may have additional pieces of information available (such
as. SQLException), so be sure to check the exception’s API. You can find this
in the Java API documentation under the java.lang.Exception class.

Writing Your Own Exception Classes

Sometimes the members of the Throwable class hierarchy may not adequately
describe the type of exception that your code needs to throw. For example,
you may be expecting a list to be of a particular length. When you find that
it’s not the proper length, what exception do you throw? IOException?
NoSuchFieldException? In looking through the 55 or so possibilities, you
may find that none of them describe your particular error. In this instance, it

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 198

198 Part III: Expanding Your Development Options

makes more sense to create your own exception class by extending Exception
rather than use an exception that inadequately describes the situation.

Some programmers think it’s better to create an exception class by extending
RuntimeException, because it’s unchecked and would, therefore, not require
a try/catch block or a throws clause in the method signature. However, this
technique is frowned upon because the compiler will not complain if you do
not try to catch the exception (and possibly recover). A better idea is to
extend one of the checked exceptions: Exception, IOException, or one of
its descendents.

Struts provides one specialized exception class, ModuleException. This
exception creates and stores an ActionError instance using the key that
you pass to the constructor. ActionError comes into play when Exception
Handler recognizes that the exception is an instance of ModuleException.
ExceptionHandler retrieves ActionError directly from ModuleException.
If the exception is not an instance of ModuleException, ExceptionHandler
creates an ActionError instance based on the key in the exception declara­
tion and the message found in the exception. (We discuss ExceptionHandler,
a Struts class for exception handling, in the “Declarative Exception Handling”
section later in this chapter.)

Using Chained Exceptions
The chained exception mechanism is a new feature starting with Java version
1.4. You can think of it as exception piggy-backing. One exception may contain
another exception. Why would you want to use chained exceptions? It may
be that your code has caught an exception of one type (say SQLException),
but doesn’t handle the exception other than to log it. Instead, it throws a new
exception (say Exception). Normally, this means that all the information
included in SQLException (for example, the stack trace) is lost when the
new Exception is thrown. However, starting with Java version 1.4, you have
the option of chaining the original exception with the new one.

In the following example, when constructing the Exception, we can add
SQLException to it, thereby chaining SQLException to Exception. Here is a
code snippet showing how to do this:

catch (SQLException se)
{

Exception e = new Exception(“A database error
occurred”,se);

throw e;
}

In the Exception constructor, the “A database error occurred” string is
the message associated with Exception and se is the cause.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 199

Chapter 8: Exceptions to the Rule 199
That’s nice, but what can you do with it? You don’t have to do anything.
However, when handling an exception, you now have the option of finding out
whether it contains any additional chained exceptions. A new method in the
Throwable hierarchy is getCause, which returns the Throwable that caused
the current Throwable. This means you can programmatically retrieve the
entire history of the exception and output the information to a log or system
console. See the logExceptionChain method in Listing 8-3 for an example of
how to retrieve chained exception information.

A helpful article on the chained exceptions feature of Java version 1.4 can be
found at

javaboutique.internet.com/tutorials/Chained_Exceptions

Asserting Yourself
Another form of defensive programming is the use of assertions. Assertions can
be characterized as lazy exceptions, in the sense that an assertion behaves
somewhat like an exception yet takes a lot less code on the part of the pro­
grammer. The following example clarifies this technique. Suppose that you’ve
written a method that gets a reference to a poList object and then uses the
reference to update information in the list:

public void updateList()
{

... do something here to get a reference to a poList
object

// assert that we actually got the reference to poList
assert poList != null;

... continue on with processing the poList
}

Under almost all conditions, you will get the reference (in this example, to a
poList object) successfully. To cover the unlikely possibility that you can’t
get the reference, you assert that poList should not be null at this point. If it
turns out to be null, an AssertionError is thrown.

The assert statement has two forms. The first form is as follows:

assert expression1;

where expression1 evaluates to a boolean. The second form is

assert expression1 : expression2;

where expression2 evaluates to a value.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 200

200 Part III: Expanding Your Development Options

The main difference between these two forms is that the first form throws
AssertError without any message, but the second form uses expression2
as the message in AssertError.

When compiling code with assertions, you must have JDK 1.4 or greater.
Otherwise, the compiler will not allow the use of the assert statement.

If you’re using the Eclipse IDE, you need only version 1.4 JRE or better installed
and 1.4 selected as the compiler compliance level. To make sure that the
compiler compliance level is set correctly, do the following:

1. Choose Window➪Preferences.

The Preferences dialog box appears.

2. On the left side of the screen, choose Java. Click the plus sign (+) next
to Java to see the other options.

3. Click Compiler.

The Complier dialog box appears.

4. Choose the Compliance and Classfiles tab. Make sure that the

Compiler compliance level is set to 1.4 (see Figure 8-2).

Figure 8-2:
The

compiler
compliance

setting.

If you’re using the command line to invoke the compiler, use the source 1.4
command-line option to ensure that the compiler will accept assert
statements.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 201

Chapter 8: Exceptions to the Rule 201
The assert statements are interesting because you can turn them on and off
at runtime. Assertions are turned off by default. To turn assertions on, use
the –ea or –enableassertions command-line switch when starting the pro­
gram. For example:

java –ea myProgram

turns on (enables) assertion checking in myProgram.

When developing and testing, assertions are valuable debugging tools for shak­
ing out error conditions. But in production code, these conditions should no
longer exist. If some doubt exists about whether to use an assertion or throw
an exception, consider whether the condition could arise in a production
state or not. If it could, throw the exception.

To find out more about assertions and their use, look at the following Web site:

java.sun.com/j2se/1.4.1/docs/guide/lang/assert.html#intro

Handling Exceptions Yourself
You have two choices for exception handling in Struts: use declarative excep­
tion handling (explained in the next section) or handle the exceptions yourself.

In Struts, the Action classes are the most likely candidates for handling
exceptions because they’re generally the root class of other classes that you
might have written for your application. Therefore, the Action class should
probably catch all checked exceptions.

The handling of all exceptions in the Action class should be pretty much the
same:

1. Save information about the exception.

2. Recover from the error condition, if possible.

3. If necessary, provide the user with a clear and concise message that
explains what has happened and what the user should do (if anything)
to correct the problem.

4. When it is not possible to recover from the error, fail in a graceful way.

These four steps are discussed in this section.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 202

202 Part III: Expanding Your Development Options

Saving information

As mentioned, exceptions contain valuable information. The first step in han­
dling exceptions is to extract and save the information. What you extract will
depend on the type of error you’re handling. For example, the error is an
SQLException, you might want to get the SQL string and save it. You can
save the information by printing to the console through the use of System.
out.println or exception.printStackTrace (or both). The other possi­
bility is to save the information to a log file. We discuss logging in Chapter 13.

Recovering from errors

When an error occurs, you have to determine whether or not you can recover
from the condition and continue processing. The recovery is application spe­
cific. Sometimes recovery may be as simple as reinitializing a variable and
trying again. Other times, it may mean undoing a series of steps and then
informing the users of the failure and asking them to try again.

Inform the user

To continue processing, the user may need to be notified of the situation.
This notification might be by means of messages that appear on the normal
presentation page that the user would normally receive. In particular, if the
user has submitted unacceptable data, you should provide a message indicat­
ing what needs to be corrected.

Another possibility is to forward the user to a specialized presentation page
that details more general errors. For example, the page could let the user
know that the data just submitted could not be saved due to an error in the
network and ask the user to try again.

Fail gracefully

If recovery from the exception is not possible, failure should occur as grace­
fully as possible. Perhaps the situation affects the state of only one user. For
example, data stored in the user’s session may have become corrupted or
suspect, and recovery of the data may not be practical. In that case, one
choice is to log the user off the system and invalidate the user’s session. In
effect, this choice makes the user start over.

More serious scenarios might mean accepting no further connections until
the responsible party can assess the situation.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 203

Chapter 8: Exceptions to the Rule 203

Declarative Exception Handling

Struts offers some help with exception handling through the exception declar­
ative tags of the struts-config.xml file. In the “Global exceptions” section
in Chapter 7, we explain that the <global-exceptions> and <exception>
tags in the struts-config.xml file are useful for exception handling.

The execute method of the Action class can throw an exception of type
Exception. Doing so allows exceptions to be handled by RequestProcessor,
which determines whether the exception has been declared in the configura­
tion file through the <exception> tag. If so, the exception handler class that
was defined is called. org.apache.struts.action.ExceptionHandler is
used by default. However, you can also create your own subclass of Exception
Handler — for details, see the “Extending the ExceptionHandler” section

ExceptionHandler is then responsible for preparing information to be for­
warded to the presentation layer. Specifically, ExceptionHandler gets or
creates ActionError with the exception information and puts it into an
ActionErrors object. ExceptionHandler then determines where to pass
control by using ActionForward. Figure 8-3 shows this process graphically.

RequestProcessor determines
whether an exception handler is
defined for this exception
(meaning an exception tag was
defined in struts-config.xml). If
so, RequestProcessor calls the
execute method, passing all
information. Otherwise, it

ExceptionHandler creates or gets
ActionForward for this exception
and creates and stores the
appropriate ActionErrors. It then
returns the ActionForward.

Figure 8-3:
The flow of
declarative

exception
processing.

ExceptionHandler

Error.jsp

RequestProcessor

Your Action doesn't handle

Your Action the exception, so it's

passed up the hierarchy

throws another exception.

Error.jsp displays error
messages from
ActionErrors.

Any Class

An error condition is

encountered and a

ModuleException is thrown.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 204

204 Part III: Expanding Your Development Options

Declaring the exception

To see how the declaration is defined, let’s first take a look at the <excep-
tion> tag. (See Chapter 7 for the complete definition of the <exception>
tag’s attributes.) The <exception> tag allows you to specify a particular
exception type that will be handled by Struts. The <exception> tag has two
required attributes: key and type. The key attribute defines the message
resource key that will be put into the ActionError object for the exception.
The type attribute refers to the fully qualified class name of the particular
exception type to be handled. An example of an exception definition follows:

<exception key=”error.db.general”
type=”com.othenos.purchasing.common.DBException” />

If the path attribute is not defined, ExceptionHandler uses the input
attribute of the action definition where the exception was thrown.

Global or local exception handling

Exceptions can be defined globally for the entire application or locally for a
particular Action. In this respect, exceptions are similar to forwards. If you
choose to define an exception globally and that exception type occurs in any
Action in your application, it’s handled in the manner defined in the global
definition. One caveat: if the exception type is also defined locally for a par­
ticular Action, the local definition takes precedence.

To define an exception globally, simply place the exception definition in the
<global-exceptions> tags. For example, you could specify the preceding
exception example as global in this manner:

<global-exceptions>
<exception key=”error.db.general”

type=”com.othenos.purchasing.DBException” />
</global-exceptions>

And you could also define the same exception in an Action definition to
make it local to the Action, as shown here:

<action path=”/home”
type=”com.othenos.purchasing.struts.HomeAction”
scope=”request”
validate=”false”>

<forward name=”success” path=”/index.jsp”/>
<exception key=”error.db.myaction”

type=”com.othenos.purchasing.DBException” />
</action>

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 205

Chapter 8: Exceptions to the Rule 205
If DBException occurs, ExceptionHandler determines whether the excep­
tion occurred in HomeAction. If the exception occurred in HomeAction, the
error.db.myaction key is used to create ActionError. Otherwise, the
error.db.general key defined for the global exception is used. Of course,
you can differentiate the two exceptions much further by using additional
attributes, such as defining different ExceptionHandlers or destination paths.

Extending ExceptionHandler

Struts provides a plain-vanilla ExceptionHandler class that is useful as it is.
However, if you’re interested in additional capabilities, you need to extend
the ExceptionHandler class. Some of the more commonly desired features
might be to

� Log error information before passing control to the presentation layer

� Send an e-mail to one or more people responsible for the application

� Handle chained exceptions

Your subclass of ExceptionHandler needs to override the execute method
and potentially the storeException method. The execute method is where
you need to put your customized functionality, as shown in Listing 8-3.

Listing 8-3 Extending the ExceptionHandler Class

public class CustomExceptionHandler extends ExceptionHandler
{

Log log = LogFactory.getLog(CustomExceptionHandler.class);
// commons logging reference

/**
* Handle the exception. Standard execute method with addition of
* logging the stacktrace.
*/
public ActionForward execute(

Exception ex,
ExceptionConfig ae,
ActionMapping mapping,
ActionForm formInstance,
HttpServletRequest request,
HttpServletResponse response)
throws ServletException

{
// write the exception information to the log file
logExceptionChain(ex);
// process the exception as normal
return super.execute(ex, ae, mapping, formInstance, request, response);

(continued)

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 206

206 Part III: Expanding Your Development Options

Listing 8-3 (continued)

}
/**
* logging exception stack trace, including chained exceptions
* modified from version by Keld H. Hansen
* http://javaboutique.internet.com/tutorials/Chained_Exceptions/
*
* @param thr
*/
private void logExceptionChain(Throwable thr)
{

StackTraceElement[] s;
Throwable t = thr;
StringBuffer errorMsg = new StringBuffer(“\nException chain (top to

bottom):\n”);
while (t != null)
{

errorMsg.append(“-------------------------------\n”);
s = t.getStackTrace();
StackTraceElement s0 = s[0];
errorMsg.append(t.toString());
errorMsg.append(“ at “ + s0.toString() + “\n”);
if (t.getCause() == null)
{

errorMsg.append(“-------------------------------\n”);
errorMsg.append(“Complete traceback (bottom to top):\n”);
for (int i = 0; i < s.length; i++)
errorMsg.append(“ at “ + s[i].toString() + “\n”);

}
t = t.getCause();

}
log.error(errorMsg.toString());

}
}

To let Struts know about the new CustomExceptionHandler, you need to
add it to one or more of the <exception> tag definitions. In our previous
example, you would just need to add the handler attribute with the fully
qualified class name of the custom handler, as shown here (taken from the
example application in Chapter 14):

<exception
key=””
path=”/error.jsp”
handler=”dummies.struts.music.CustomExceptionHandler”
type=”org.apache.struts.util.ModuleException” />

Now whenever ModuleException occurs, CustomExceptionHandler
processes the exception. Note that the key defined for ModuleExeception is
empty. This is because the message key is placed in ModuleException when
it is created. We do not omit the key attribute because it is required.

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 207

Chapter 8: Exceptions to the Rule 207
If you want all exceptions to be handled by CustomExceptionHandler, just
change the type attribute to the root class of all exceptions, java.lang.
Throwable.

Handling RuntimeExceptions in Struts

RuntimeExceptions and its descendents are unchecked exceptions. There­
fore, you don’t have try/catch blocks that try to trap and recover from the
exceptions. However, it’s bad form to let the exception propagate back to the
user so that the user sees the raw stack trace information in the browser.

You can use the declarative exception mechanism to catch Runtime
Exceptions and display a more reasonable page when exceptions occur. The
first step is to create the global exception definition for RuntimeException
in the struts-config.xml file, as shown here (the example is from the
MusicCollection application in Chapter 14):

<global-exceptions>
<exception bundle=”ApplicationResources”

key=”error.RuntimeException”
path=”/baderror.jsp”
handler=”dummies.struts.music.CustomExceptionHandler”
type=”java.lang.RuntimeException” />

</global-exceptions>

The error.RuntimeException key is used to retrieve the error message to
display on the presentation page. The path attribute specifies the path to
baderror.jsp to display if the RuntimeException occurs.

The second step is to define the JSP page that will display the error message
to the user. Listing 8-4 is an example of the content of such a page. (The entire
page is defined in Chapter 14.)

Listing 8-4 Snippets from the baderror.jsp Page

1 <%@ include file=”taglibs.jsp” %>
2 <fmt:setBundle basename=”ApplicationResources” />
3 <table>
4 <tr>
5 <td align=”center” colspan=”2” style=”font-family: ‘MS Reference Sans

Serif’, ‘Verdana Ref’, sans-serif;font-size: 18px;color:red;”>
6 <fmt:message key=”error.RuntimeException”/>
7 </td>
8 </tr>
9 <tr>
10 <td width=”55” align=”left”>

(continued)

13 559575 Ch08.qxd 3/2/04 4:01 PM Page 208

208 Part III: Expanding Your Development Options

Listing 8-4 (continued)

11 <img src=”images/annoy.gif” name=”annoy” width=”54” height=”54”
border=”0”>

12 </td>
13 <td>
14 <html:link page=”/logoff.do”>
15 <fmt:message key=”goto.logoff”/>
16 </html:link>
17 </td>
18</tr>
19</table>

Figure 8-4 shows the baderror.jsp page as it would appear to the user.

Figure 8-4:
The

baderror

page.

The key parts of the JSP snippet are lines 6 and 14–16:

� Line 6: Defines the error message to be displayed to the user.

� Lines 14–16: Define a link that the user can click to log off the applica­
tion. In practice, you may have already logged the user off the system.
Programmatically logging the user off the system would be easy to do if
you were using a customized version of the ExceptionHandler class.

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 209

Chapter 9

Getting Friendly with Plug-ins
In This Chapter
� Understanding the PlugIn interface

� Creating and configuring a plug-in

� Using the Validator plug-in

An application often needs to initialize certain resources when starting
up and release resources when shutting down. If you’re writing a stan­

dard application, initializing and releasing resources are not much of an issue
because you have complete control over the code that’s responsible for
startup and shutdown. However, these functions are not as simple with a
Struts Web application because ActionServlet gets startup and shutdown
notifications from the Web container.

You could extend ActionServlet to add custom startup and shutdown
actions, but that’s messy — the number of actions could be large and unre­
lated. Fortunately, the Struts developers have anticipated the need to control
startup and shutdown by including a plug-in architecture with the Struts
framework. In this chapter, we explain how to use and implement plug-ins.

Using the PlugIn Interface

If you need custom startup or shutdown actions, you can simply create your
own plug-in class by implementing the org.apache.struts.action.PlugIn
interface rather than extend the ActionServlet. The PlugIn interface speci­
fies two methods that you need to define: destroy and init. The interface is
shown in Listing 9-1.

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 210

210 Part III: Expanding Your Development Options

Listing 9-1 PlugIn Interface

public interface PlugIn
{

public void destroy();
public void init(ActionServlet servlet,

ModuleConfig config)
throws ServletException;

}

At startup, the ActionServlet checks to see whether any plug-in classes
need to be called. If there are any plug-in classes, the init method of each
plug-in is called. Similarly, when the Web container notifies the ActionServlet
of an impending shutdown, the ActionServlet calls the destroy method of
all plug-in classes in its list.

Implementing and Configuring
Your Own Plug-in

You can create your own plug-in simply by implementing the destroy and
init methods of the PlugIn interface. Listing 9-2 shows an example of how to
implement a plug-in for the MusicCollection Web application in Chapter 14.
Don’t worry if you don’t understand what’s happening in the two methods,
because they’re specific to this particular application. What is important to
know is that init is called at startup and destroy is called at shutdown.

Listing 9-2 Plug-in for a Purchase Order Web Application

1 public class StartupManager implements PlugIn
{

2 Log log = LogFactory.getLog(StartupManager.class);
3 ServletContext sc; // reference to servlet context for destroy()

/**
* initializes resources at application startup
* @param arg0
* @param arg1
* @throws ServletException
*/

4 public void init(ActionServlet arg0, ModuleConfig arg1)
5 throws ServletException

{
// save the servlet context for shutdown needs

6 sc = arg0.getServletContext();

// define the lists and place in the application context
// set up the years

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 211

Chapter 9: Getting Friendly with Plug-ins 211

7 log.info(“Initializing years.”);
8 ArrayList years = new ArrayList();
9 int year = Calendar.getInstance().get(Calendar.YEAR);
10 for(int i=0; i < 50; i++)

{
11 years.add(String.valueOf(year-i));

}
12 sc.setAttribute(“years”,years);

// set up the album types
// better solution would be to retrieve these values from a database.

13 log.info(“Initializing types.”);
14 ArrayList types = new ArrayList();
15 types.add(“CD”);
16 types.add(“LP”);
17 types.add(“MP3”);
18 types.add(“Tape”);
19 sc.setAttribute(“types”,types);

// set up the album catagories
20 log.info(“Initializing categories.”);
21 ArrayList categories = new ArrayList();
22 categories.add(“Classical”);
23 categories.add(“Country”);
24 categories.add(“Easy Listening”);
25 categories.add(“Heavy Metal”);
26 categories.add(“Jazz”);
27 categories.add(“New Age”);
28 categories.add(“Pop/Rock”);
29 categories.add(“R & B”);
30 categories.add(“World”);
31 sc.setAttribute(“categories”,categories);

}

/**
* releases resources at application shutdown
*/

32 public void destroy()
{

// shut down the dbcp
33 log.info(“Shutting down the DataSource connection pool.”);
34 DataSource dbConnMgr = (DataSource)sc.getAttribute(“musiccollection”);
35 dbConnMgr = null;
36 sc.removeAttribute(“musiccollection”);

// final message
37 log.info(“Music.com has shutdown.”);

}
}

You need to be aware of a couple of things when implementing a plug-in. The
init method can take two parameters: a reference to ActionServlet and
ModuleConfig. You can use ActionServlet to get any resources that it

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 212

212 Part III: Expanding Your Development Options

might help you control or get information for your initialization process. In
line 6, we use ActionServlet to get a reference to ServletContent, which
is the application scope, to get and set resources in that scope. We also save
the reference to ServletContext to make use of it in the destroy method.

The ModuleConfig parameter can contain a reference to the module currently
being initialized. Referencing the module is useful if your Web application has
multiple modules, because you may want to perform different initialization
actions depending on the module. If you are using only the default module,
you can safely ignore this parameter.

The destroy method takes no parameters. If destroy needs a resource that
you gathered in the init method, be sure to save the resource as an instance
variable. In lines 34–36, the destroy method accesses ServletContent to ref­
erence DataSource and gracefully shut it down.

After you create a plug-in, the next step is to notify Struts that the plug-in is
ready for use, which you do in the struts-config.xml file. Configuring plug-
ins in struts-config.xml is simple and straightforward. In the “Plug-in
Configuration” section of Chapter 7, we describe the use of the <plug-in>
tag in the configuration file. This simple tag has only one required attribute,
className. You must specify the fully qualified class name of the plug-in that
you want to use.

The only other tag that you may include in the <plug-in> tag is the <set-
property> tag. Use this tag to pass initialization parameters to the plug-in, if
needed. Here is an example of configuring the plug-in described in Listing 9-1:

<plug-in className=”dummies.struts.music.StartupManager” />

Be sure to remember that the sequence of elements in the struts-config.
xml file is important. The plug-in element is the last element defined.

Working with the Validator Plug-in

The Validator plug-in comes with the Struts framework. You use this plug-in
to validate form data in a declarative manner instead of using the standard
validate method in ActionForm. (See Chapter 6 for information on using
the validate method.)

The Validator plug-in has the following advantages over using the validate
method:

� You can add, modify, or remove validation rules for form fields without
changing the source code.

� One text file centrally contains validation rules for all form fields.

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 213

Chapter 9: Getting Friendly with Plug-ins 213
� The plug-in provides many common validation rules.

� You can use the plug-in with DynaActionForms.

Configuring the Validator plug-in

The Validator requires two xml configuration files: validation.xml and
validator-rules.xml. You might think that the validation.xml file is
more interesting because that is where you define the forms and fields to vali­
date as well as the rules to use when validating those fields. The actual rules
that perform the validation are defined in validator-rules.xml.

The validation.xml and validator-rules.xml files share the same DTD.
(For details on DTD, see “Editing the Web Container Configuration File” in
Chapter 7.) In practice, however, each .xml file uses a different subset of the
DTD syntax.

The Validator configuration files have a DTD file that defines the grammar
acceptable in the configuration. Each file should begin with a DOCTYPE indi­
cating the version of the DTD that you’re using. The following example speci­
fies version 1.0.1 of the Validator DTD:

<!DOCTYPE form-validation PUBLIC
“-//Apache Software Foundation//DTD Commons Validator Rules Configuration

1.0.1//EN”
“http://jakarta.apache.org/commons/dtds/validator_1_0_1.dtd”>

The root tag — and therefore the first tag — in Validator configuration files is
<form-validation>. The DTD syntax for the <form-validation> tag follows:

<!ELEMENT form-validation (global*, formset*)>

We show examples of using the DTD throughout this section.

Using the Validator plug-in
To use the Validator plug-in, you need to do the following:

1. Create your form class by extending org.apache.struts.validator.
ValidatorActionForm instead of the normal org.apache.struts.
action.ActionForm.

2. Configure the Validator plug-in in the struts-config.xml file.

3. Define the validation rules to apply to your form fields by configuring
the validation.xml file.

4. Tweak the struts-config.xml file and message resources.

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 214

214 Part III: Expanding Your Development Options

We explain each of these steps in detail by modifying the Login example from
Chapter 3.

Extending the ValidatorForm class

Rather than creating LoginForm by extending the ActionForm class, you
should extend the ValidatorForm class. What does this accomplish?
Essentially, you’d have a prebuilt validate method that takes advantage of
the validation rules that you defined in the validation.xml file. Therefore,
you would not need a validate method in LoginForm. Listing 9-3 shows how
LoginForm should look when you extend the ValidatorForm class.

Listing 9-3 LoginForm for Use with the Validator Plug-in

public class LoginForm extends ValidatorForm
{

private String userName;
private String password;

public void reset(ActionMapping mapping, HttpServletRequest request)
{

password = “”;
userName = “”;

}

public String getPassword() {
return password;

}

public String getUserName() {
return userName;

}

public void setPassword(String string) {
password = string;

}

public void setUserName(String string) {
userName = string;

}
}

Compare this code to Listing 3-4 in Chapter 3. Notice the lack of a validate
method. This method is no longer needed because the ValidatorForm we
are extending already has one. The validate method in the ValidatorForm
class knows how to perform validation based on the validation.xml and
validator-rules.xml files. These files are described in the next section.

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 215

Chapter 9: Getting Friendly with Plug-ins 215

Configuring the Validator plug-in
in the config file
The next step in setting up the Validator plug-in is to configure the plug-in in
the struts-config.xml file. The configuration is just like the previous plug-
in definition (see the “Configuring Plug-ins” section) with one addition — you
need to add one parameter to pass to the plug-in. The Validator needs to
know the context-relative paths so it can find the validation.xml and
validator-rules.xml configuration files. You typically place these files in
the WEB-INF folder. Here is the configuration information that you would add
to the struts-config.xml file in the Login project example:

<!-- ========== Plug-in Definitions
=========================== -->

<plug-in
className=”org.apache.struts.validator.ValidatorPlugIn”>
<set-property property=”pathnames”

value=”/WEB-INF/validator-rules.xml,
/WEB-INF/validation.xml”/>

</plug-in>

Defining the fields to validate

The original Login project example (in Chapter 3) did not use the Validation
plug-in and therefore did not include the Validation configuration files,
validation.xml and validator-rules.xml. However, when you use the
Validator plug-in, you must place the two configuration files in the WEB-INF
folder because that is the location that the plug-in configuration specifies.

The third step for using the Validator is to define the forms, fields, and rules
to apply to the fields in the validation.xml file. To find out how to do this,
note the DTD for the configuration files:

<!ELEMENT form-validation (global*, formset*)>

The form-validation element is the root element for both of the configura­
tion files; it can contain one or more global elements and one or more
formset elements. We discuss the formset element here and cover the
global element later in this chapter, in the “Looking more closely at valida-
tion.xml” section.

The syntax for defining formset follows:

<!ELEMENT formset (constant*, form+)>
<!ATTLIST formset language CDATA #IMPLIED

country CDATA #IMPLIED
variant CDATA #IMPLIED >

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 216

216 Part III: Expanding Your Development Options

The formset element defines at least one or more forms to be validated for a
particular Locale. If you don’t use any of the attributes, formset represents
the default Locale. Otherwise, you can specify different formsets for a dif­
ferent Locale language, country, variant, or any combination. The formset
element can also contain constant definitions, which we explain in the
“Looking more closely at validation.xml” section.

The syntax used to define a form follows:

<!ELEMENT form (field+)>
<!ATTLIST form name CDATA #REQUIRED>

The form element is used to define the fields of a form to be validated. The
name attribute is required and corresponds to the name of the form as
defined in the struts-config.xml file.

A field is defined using the following syntax:

<!ELEMENT field (msg|arg0|arg1|arg2|arg3|var)*>
<!ATTLIST field property CDATA #REQUIRED

depends CDATA #IMPLIED
page CDATA #IMPLIED
indexedListProperty CDATA #IMPLIED >

The field element defines the properties to be validated. In a Web applica­
tion, a field could also correspond to a control on an HTML form. To validate
the properties, the Validator works through a JavaBean representation, the
specified ActionForm. The field element can accept up to four attributes:

� property: The property in the JavaBean corresponding to this field
element. This attribute is required.

� depends: The comma-delimited list of validators to apply against this
field. For the field to succeed, all validators must succeed. Validators
represent the rules against which the value of the field will be tested.

� page: The JavaBean corresponding to this form may include a page
property. Only fields with a page attribute value that is equal to or less
than the page property on the formbean are processed. This attribute is
useful when using a wizard approach to completing a large form, to
ensure that a page is not skipped. The default value is 0.

� indexedListProperty: The method name that returns an array or a
Collection that retrieves the list of indexed properties and then loops
through the list performing the validations for this field.

The msg element is defined using this syntax:

<!ELEMENT msg EMPTY>
<!ATTLIST msg name CDATA #IMPLIED

key CDATA #IMPLIED
resource CDATA #IMPLIED >

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 217

Chapter 9: Getting Friendly with Plug-ins 217
The msg element defines a custom message key to use when one of the val­
idators for this field fails. Each validator has a default message property
(which we explain in the next section) that is used when a corresponding
field msg is not specified. Each validator applied to a field may have its own
msg element. The msg element accepts up to three attributes:

� name: The name of the validator corresponding to this msg.

� key: The key that returns the message template from a resource bundle.

� resource: Determines whether the key is a literal value or a message
resource bundle key. If you set this attribute to false, the key is a literal
value rather than a message resource bundle key. The default value is
true.

You can specify up to four args for a field. The following is the syntax to
define each of them:

<!ELEMENT arg0-3 EMPTY>
<!ATTLIST arg0-3 name CDATA #IMPLIED

key CDATA #IMPLIED
resource CDATA #IMPLIED >

The arg0-3 (arg0, arg1, arg2, arg3) elements define the first through
fourth replacement value to use with the message template for this validator
or this field. Each of the arg0-3 elements accepts up to three attributes:

� name: The name of the validator corresponding to this msg.

� key: The key that will return the message template from a resource

bundle.

� resource: Determines whether the key is a literal value or a bundle key.
If you set this attribute to false, the key is a literal value rather than a
bundle key. The default is true.

The last element that can be included in a field definition is var. The follow­
ing is the syntax for defining it:

<!ELEMENT var (var-name, var-value)>

The var element can set parameters that a field may need to pass to one of
its validators, such as the minimum and maximum values in a range valida­
tion. These parameters may also be referenced by one of the arg0-3 elements
using a shell syntax: ${var:var-name}.

The var-name element is the name of the var parameter to provide to a field’s
validators. This element has the following syntax:

<!ELEMENT var-name (#PCDATA)>

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 218

218 Part III: Expanding Your Development Options

Regular expressions
A regular expression is a concise way to
describe and search for complex string pat­
terns. The term originated in the UNIX environ­
ment, but regular expressions are now available

regardless of the language, you use the same
syntax to create a regular expression. If you’ve
never used regular expressions, we suggest
that you take some time to find out about them.

www.regular-expressions.info/
tutorial.html

java.sun.com/docs/books/
tutorial/extra/regex

History buffs might be interested in knowing
that the origins of regular expressions came
from physiology and mathematics, not computer

ated neuron-level models of how the nervous
system operated. Mathematician Stephen
Kleene later described these models using
mathematical notation that he called regular
expressions. Ken Thompson incorporated that
system of notation into qed (the grandfather of
the UNIX ed). Since then, regular expressions
have appeared in UNIX and UNIX-like utilities.

in many languages, including Java. Fortunately,

The following Web sites offer tutorials:

science. According to Jeffrey E. F. Friedl, in the
forties Warren McCulluch and Walter Pitts cre­

The var-value element is the value of the var parameter to provide to a
field’s validators. This element has the following syntax:

<!ELEMENT var-value (#PCDATA)>

Now that you know the grammar for the validation.xml file, it’s time to
look at its sister file, validator-rule.xml.

The validator-rules.xml file has a number of predefined validators that
you can use in the validation.xml file to perform various checks on the
value of specified fields. The following is a current list of each of the valida­
tors and their function. Note that var refers to the var element defined in the
field element. You can get the validator-rules.xml file from the Struts
distribution lib directory.

� required: Checks that the field isn’t null and that length of the field is
greater than zero, not including white space.

� validWhen: Checks to see that certain conditions exist for the field to be
validated. You must specify var as test with the value consisting of an
expression that evaluates to a boolean value. The expression must eval­
uate to true for the validation to succeed.

� minlength: Checks whether the field’s length is greater than or equal to
the minimum value. Specify var as minlength with the minimum value
allowed. The value should be an integer.

� maxlength: Checks whether the field’s length is less than or equal to the
maximum value. Specify var as maxlength with the maximum value
allowed. The value should be an integer.

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 219

Chapter 9: Getting Friendly with Plug-ins 219
� mask: Checks whether the field matches the regular expression in the

mask attribute of the field. Specify the var as mask as a regular expres­
sion. For more information on regular expressions, see the “Regular
expressions” sidebar.

� byte: Checks whether the field can safely be converted to a byte
primitive.

� short: Checks whether the field can safely be converted to a short
primitive.

� integer: Checks whether the field can safely be converted to an integer
primitive.

� long: Checks whether the field can safely be converted to a long
primitive.

� float: Checks whether the field can safely be converted to a float
primitive.

� double: Checks whether the field can safely be converted to a double
primitive.

� date: Checks whether the field is a valid date.

� intRange: Checks whether a field’s value is within a range. Specify vars
as min and max with the beginning and ending values allowed. The
values should be integers.

� floatRange: Checks whether a field’s value is within a range. Specify
vars as min and max with the beginning and ending values allowed. The
values should be of the type float.

� creditCard: Checks whether the field is a valid credit card number.
Confirms a credit card number as a valid American Express, Visa, Master
Card, or Discover credit card.

� email: Checks whether a field has a valid e-mail address.

Now that you know about validators and the syntax of the validation.
xml file, you can create your own validation.xml to validate LoginForm.
The LoginForm example has two fields to validate: userName and password.
Listing 9-4 shows the entire validation.xml file.

Listing 9-4 validation.xml File for the Login Application

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!DOCTYPE form-validation PUBLIC

“-//Apache Software Foundation//DTD Commons Validator Rules Configuration
1.0.1//EN”

“http://jakarta.apache.org/commons/dtds/validator_1_0_1.dtd”>
1 <form-validation>
2 <!-- ========== Form Definitions ===================== -->
3 <formset>

(continued)

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 220

220 Part III: Expanding Your Development Options

Listing 9-4 (continued)

4 <form name=”loginForm”>
5 <field property=”userName”
6 depends=”required”>
7 <arg0 key=”error.username.required”/>
8 </field>

9 <field property=”password”
10 depends=”required,minlength”>
11 <arg0 key=”error.password.required”/>
12 <arg1 key=”${var:minlength}” name=”minlength”

resource=”false”/>
13 <var>
14 <var-name>minlength</var-name>
15 <var-value>5</var-value>
16 </var>
17 </field>

18 <field property=”password”
19 depends=”maxlength”>
20 <arg0 key=”error.password.required”/>
21 <arg1 key=”${var:maxlength}” name=”maxlength”

resource=”false”/>
22 <var>
23 <var-name>maxlength</var-name>
24 <var-value>8</var-value>
25 </var>
26 </field>
27 </form>
28 </formset>
29</form-validation>

Note the following lines in Listing 9-4:

� Line 4: You must define each form that the Validator needs to validate with
a <form> tag. This line specifies that the loginForm is to be validated.

� Lines 5–8: You need to define each field in the form that needs validating
with a <field> tag. These lines accomplish this definition for the
userName field.

� Line 6: The userName field is defined as a required field, nothing more.
The depends attribute on this line is equal to required, the name of the
rule to invoke when validating the field. The required validator checks
to make sure that the value of the field is neither null nor an empty string.

� Line 7: Specifies argument one to be passed to the default message
resource. The default message resource is

errors.required={0} is required.

Therefore, the arg0 value functions as a key to look up a message in the
default message resource bundle. Instead of {0}, the user sees that mes­
sage in the default error message.

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 221

Chapter 9: Getting Friendly with Plug-ins 221
� Line 9: Defines the password field i as the next field to validate. This

field has two validators, required and minlength. Both tests have to
pass before the field is validated. The required validator does the same
function as for the previous username field. The minlength validator
checks to make sure that the length of the string is greater than or equal
to some minimum length. The minimum length is specified with a <var>
tag. var-name has to be minlength. var-value must be an integer value
indicating the minimum length to check against. The default error mes­
sage for minlength is

errors.minlength={0} can not be less than {1} characters.

� Lines 11 and 12: The default message takes two parameters, a field name
and a minimum length. These lines define these two parameters. The
interesting point here is the dual use of the arg0 value. Because the code
specifies two validators, the arg values must apply to them both. As luck
would have it, arg0 can fit for the default error message for either the
required validator or the minlength validator.

� Lines 13–16: Define the minimum length of the password to be 5

characters.

� Lines 18–26: Define the maximum length of the password field to be 8
characters. We defined the password field twice because we also wanted
to use the maxlength validator. However, the default messages for
minlength and maxlength both specify {1} as the length value. The
dilemma is that arg1 can take only one value. To get around this thorny
problem, we chose to define the password field twice. The second time
we applied only the maxlength validator and gave the maximum allowed
value for the arg1 value.

The validation.xml file is now complete and ready to use with the updated
Login application.

Tweaking other files

You must check a couple of other files to make sure that they’re ready for
the Validator. The action definition in the struts-config.xml file that’s
using the form to be validated must not have the validate attribute set to
false (true is the default value). Otherwise, the validate method of the
ValidateAction superclass will not get called.

In the message resources file, you need to include the error message defini­
tions that the Validator uses. The ApplicationResources file used for the
Login project in Chapter 3 did not have these messages. You can find the list
of error messages at the beginning of the validator-rules.xml file. The
error messages are as follows:

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 222

222 Part III: Expanding Your Development Options

Struts Validator Error Messages
errors.required={0} is required.
errors.minlength={0} can not be less than {1} characters.
errors.maxlength={0} can not be greater than {1} characters.
errors.invalid={0} is invalid.

errors.byte={0} must be a byte.
errors.short={0} must be a short.
errors.integer={0} must be an integer.
errors.long={0} must be a long.
errors.float={0} must be a float.
errors.double={0} must be a double.

errors.date={0} is not a date.
errors.range={0} is not in the range {1} through {2}.
errors.creditcard={0} is not a valid credit card number.
errors.email={0} is an invalid e-mail address.

You need to add these messages to the ApplicationResources file.

Try out the modified Login application

To try out the modified Login application, replace the three original files in
your IDE with the newly modified ones: LoginForm, struts-config.xml,
and ApplicationResources.properties. Then add the two validation
configuration files, validation.xml and validator-rules.xml, to the
WEB-INF folder. Copy the entire Login folder to the webapps folder of
Tomcat, replacing the existing Login folder (if it exists).

When you run the application, you can test that the new validation is working
by entering any username and then a password of less than five characters.
You should see an error message indicating that the password field cannot
be less than five characters, as shown in Figure 9-1. This shows that the
minlength validator caught the error.

Looking more closely at validation.xml

We skipped over some of the important features of configuring the validation.
xml file to keep the Login example as simple as possible. In this section, we
cover all the additional parts of the grammar we missed earlier.

You can use the constant element in either the formset element or the
global element. The grammar is as follows:

<!ELEMENT constant (constant-name, constant-value)>
<!ELEMENT constant-name (#PCDATA)>
<!ELEMENT constant-value (#PCDATA)>

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 223

Chapter 9: Getting Friendly with Plug-ins 223

Figure 9-1:
Login page

with a
password

error
message.

The constant element defines a static value that you can use as replacement
parameters in field elements. The constant-name and constant-value ele­
ments define the constant’s reference ID and replacement value, respectively.

An example might help clarify the use of constant. Suppose you want to vali­
date a telephone field using the mask validator. The mask validator takes a reg­
ular expression and applies it to the field to be validated. Here is an example of
verifying that the phone field has the form nnn-nnn-nnnn, where n is a digit:

<field property=”vendorPhone”
depends=”required,mask”>

<arg0 key=”vendor.phone.label”/>
<var>

<var-name>mask</var-name>
<var-value>^\d{3}-\d{3}-\d{4}$</var-value>

</var>
</field>

Rather than using the regular expression in the var-value tag, you could
define a constant with that value and then reference the constant in the var-
value tag. Listing 9-5 shows an example of using the constant element.

Listing 9-5 Example Using the constant Element

1 <constant>
2 <constant-name>phone</constant-name>
3 <constant-value>^\d{3}-\d{3}-\d{4}$</constant-value>
4 </constant>

(continued)

14 559575 Ch09.qxd 3/2/04 4:01 PM Page 224

224 Part III: Expanding Your Development Options

Listing 9-5 (continued)

5 <field property=”vendorPhone”
6 depends=”required,mask”>
7 <arg0 key=”vendor.phone.label”/>
8 <var>
9 <var-name>mask</var-name>
10 <var-value>${phone}</var-value>
11 </var>
12 </field>

Lines 1-4 define the constant with a reference ID of phone, and the constant’s
value is the regular expression that you want phone numbers to conform to.
Now when defining the value for the mask var, you can simply reference the
phone constant instead of entering the regular expression itself, as shown in
Line 10.

The use of constants is valuable when you need to use the same value many
times. For example, you may have many phone numbers to validate, such as
mainPhone, nightPhone, personalPhone, faxPhone, cellularPhone, and
alternatePhone. All would be expected to be the same format; therefore the
phone constant could be used as shown in Line 10. Then, if the format
changed (such as changing the dash to a blank between the area code and
the remaining numbers), all you’d need to do is change the regular expres­
sion in the phone constant.

Now that you know how to use the constant element, where can you use it?
There are two acceptable places: the formset element and the global ele­
ment. Here is the grammar for both the formset and global elements:

<!ELEMENT form-validation (global*, formset*)>
<!ELEMENT global (validator*, constant*)>
<!ELEMENT formset (constant*, form+)>

If you use constant in the formset element, all fields defined in that
formset can reference it. To make it available in all formsets, define
constant in the global element.

Using the Validator with DynaActionForms

If you’re using DynaActionForms instead of ActionForms, you can still use
the Validator. However, you need to make the following changes:

1. When you define DynaActionForm in the struts-config.xml file,
the type attribute should be org.apache.struts.validator.
DynaValidatorForm instead of the standard org.apache.struts.
action.DynaActionForm.

2. Make sure that the form fields referenced in the validation.xml file
match the form-property names defined for the form in question.

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 225

Chapter 10

Getting a Helping Hand

with Tag Libraries

In This Chapter
� Finding out how to use tag libraries

� Understanding Expression language

� Working with the Struts-EL tag library

� Using the JSTL tag library

� Discovering other Struts tag libraries

� Creating user interfaces with Java Server Faces

When creating JavaServer Pages, one of the prime considerations is to
eliminate or at least minimize the use of scriptlets in the pages. When

scriptlets clutter up the page with Java code, making sense of the page is
much more difficult. In addition, in larger projects, JSP pages belong more
to the realm of user-interface designers and graphic artists. The use of Java
logic in your pages mixes programming and design — a definite no-no.

Custom tags were invented to alleviate this problem. They encapsulate higher
level functionality in the form of a JSP tag. Usually a tag library consists of a
family of tags that are all related to one area, such as formatting or using
JavaBeans.

The following two components make up the JSP Tag library architecture:

� Tag support classes: These Java classes are responsible for implement­
ing the functionality of the tags in the library. Essentially, these classes
represent the functionality of the scriptlet but don’t need to appear
themselves in the JSP page. Tag support classes are generally packaged
in a JAR file.

� Tag Library Descriptor (TLD) XML file: An XML file describes all the tags
that go to make up the tag library — names, attributes, and support
classes. The JSP engine uses this file to determine how to process the tags.

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 226

226 Part III: Expanding Your Development Options

Using Tag Libraries

You need to follow several generic steps to take to make use of any tag
library. These steps are as follows:

1. Move the TLD file for the library into the WEB-INF folder.

You could place the TLD file into any folder in the Web application’s
folder. However, most users place it in the WEB-INF folder.

2. Move the library’s JAR file into the WEB-INF/lib folder.

3. Define the tag library in the web.xml file.

To define the tag library, use the JSP directive tag:

<taglib>
<taglib-uri>could be any distinct text</taglib-uri>
<taglib-location>content relative path to the TLD</taglib-location>

</taglib>

As with all web.xml tags, the <taglib>

<taglib>
<taglib-uri>jstl-c</taglib-uri>
<taglib-location>/WEB-INF/c.tld</taglib-location>

</taglib>

tag is position dependent. Here
is an example that defines the JSTL Core library:

The URI to reference the Core library is jstl-c. You could have just as
easily used bugaboo. However, it is good practice to keep the URI rele­
vant to the library’s name. The content-relative path to the TLD is /WEB-
INF/c.tld. Whenever you want to reference the library in the JSP file,
you use the URI, as explained in the next step.

4. Reference the TLD of the tag library in each JSP page that uses the
library’s tags.

To reference the TLD, use the following JSP directive tag:

<%@ taglib prefix=”some prefix” uri=”uri defined in the web.xml file” %>

Here’s an example of referencing the JSTL Core library defined in Step 2:

<%@ taglib prefix=”c” uri=”jstl-c” %>

Use the prefix when you use a particular tag from the tag library. For
example, the JSTL Core library has a set tag. When using that tag, you
must add the prefix you have defined for this library. In this case, you
would use c, as in:

<c:set ... \>

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 227

Chapter 10: Getting a Helping Hand with Tag Libraries 227
A common practice is to place all taglib directives in a single JSP file
and include this file in the other JSP pages. In this way, you have only
one file to edit when you want to add or remove additional tag library
references.

5. Add the desired tags to the JSP page.

You can now successfully use the tags defined in the tag library.

Expressing with the Expression Language

The developers of Struts have recommended that you no longer use the stan­
dard Struts tag library, which was based on the older runtime expressions to
evaluate attribute values of tags. Instead, they have created a new library
called Struts-EL which uses expression language (EL) for evaluating attribute
values. Struts-EL uses the expression evaluation engine provided by the JSP
Standard Tag Library (JSTL) 1.0.

Runtime expressions are of the form <%= expression %>. The expression
represents some Java language expression. This is the standard way of evalu­
ating expressions in JSP 1.2 and below. Beginning with JSP 2.0, the EL syntax
is the preferred expression language because the EL syntax is simpler to
learn than Java syntax. EL provides the users of the libraries a more flexible,
intuitive, and powerful way to create expressions.

The basic form for an EL expression is

<some tag value=’${expression}’ \>

Here is an example of an EL expression. This tag outputs the value of the
userName attribute that is stored in the session scope:

<c:out value=’${sessionScope.userName}’ />

EL evaluates and coerces the expression into the type expected by the value
attribute. You can use either single or double quotation marks to delimit the
EL expression.

You can also intersperse text with expressions when the resulting type that
the attribute expects is text:

<a tag value=’${expression1} any text ${expression2} more
text’ \>

Here is an example of the preceding syntax. Assume the now variable con­
tains the current date and time:

<c:out value=’${sessionScope.userName} logged on at ${now}’ />

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 228

228 Part III: Expanding Your Development Options

This example results in the String result of expression1 concatenated with
any text concatenated with the String result of expression2 concatenated
with more text.

Expressions can contain any of the following items:

� Identifiers

� Literals

� Operators

� Implicit objects

These items are discussed in the next few sections.

Identifiers
If a named variable exists in one of the four scopes (page, request, session, or
application), the EL expression can retrieve the value of the variable. All iden­
tifiers function as a key that can return a value. So the expression

<some tag value=’${product}’ \>

produces a lookup like this:

pageContext.get(“product”);

The EL engine searches each of the four scopes in turn (starting with the
page scope) until it finds the value. If the search doesn’t find the value, it
returns a null.

Literals
Literals can be one of four types or be null. The four types are

� String: Any text enclosed in single or double quotes

� Boolean: The unquoted text, true or false

� Integer: Any digit from 0 through 9, optionally prefixed with the + (plus)
or – (minus) sign

� Floating point: Any normal decimal number

See the JSTL 1.0 specification for exact definitions of the form literals can take.
You can get the specification from java.sun.com/products/jsp/jstl.

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 229

Chapter 10: Getting a Helping Hand with Tag Libraries 229

Operators

The operators available are the standard arithmetic, relational, and logical
operators you would expect to find in a modern programming language.
However, EL also adds a few new operators.

The [] (square bracket) and . (period) operators
Two of the operators that EL adds are the [] (square bracket) and . (period)
operators. These two operators are similar but the [] operator has a wider
number of uses than the . operator.

You can use the . operator much like the Java . operator, except rather than
calling a method, the . operator accesses a property of a bean and is used
on a variable that references a bean. For example, suppose you have a bean
named PurchaseOrder that has a property named vendorName. Furthermore,
the bean is referenced by a variable named po. You could use an EL expres­
sion like the following to access vendorName. (We are using JSTL tags in our
examples, although we do not explain the JSTL tags until the “Core library”
section later in this chapter.)

<c:out value=’${po.vendorName}’ />

You could also use the [] operator to access vendorName by using this type
of expression:

<c:out value=’${po[“vendorName”]}’ />

However, the . operator is limited to properties of beans, but the [] operator
can also access values stored in arrays, Lists, and Maps.

The empty operator
The empty operator solves the problem of an identifier being non-null yet
essentially empty, such as a zero-length string. Using the unary empty opera­
tor on an identifier returns true if the identifier is either null or has an empty
value. This applies to Strings, arrays, Maps, and Lists. Here is an example of
its use:

<c:if test=’${empty po.vendorName}’ />

Implicit Objects
The EL engine has numerous objects available that you can use in expres­
sions to retrieve values. You reference the implicit objects by name. Here are
their names and descriptions:

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 230

230 Part III: Expanding Your Development Options

� pageContext: The PageContext object

� pageScope: A Map object that maps page-scoped attributes to their
values

� requestScope: A Map object that maps request-scoped attributes to
their values

� sessionScope: A Map object that maps session-scoped attributes to
their values

� applicationScope: A Map object that maps application-scoped attrib­
utes to their values

� param: A Map object that maps parameter names to a single String value

� paramValues: A Map object that maps parameter names to a String
array of all values

� header: A Map object that maps header names to a single String value

� headerValues: A Map object that maps header names to a String array
of all values

� cookie: A Map object that maps cookie names to a single Cookie object

� initParam: A Map object that maps context-initialization parameter
names to their String parameter value

For example, to retrieve a value from a session attribute called userName,
you would use the following:

< c:out value=”${sessionScope.userName}” \>

To retrieve the value of a request parameter named action, you would use

< c:out value=”${param.action}” \>

Using the Struts-EL Tag Library
The Struts-EL library is designed to work with the Struts framework. The
implementations of the tags “know” about the configuration of your Struts
application and make reference to various Struts components when generat­
ing the page content. You can find the complete syntax for all the Struts-EL
tags in Appendix A.

Getting the Struts-EL tag library

To use the Struts-EL library, you must include the standard Struts tag library,
because the Struts-EL library classes are inherited from the Struts library

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 231

Chapter 10: Getting a Helping Hand with Tag Libraries 231
classes. You also need to include the JSTL tag libraries because Struts-El uses
the expression engine from the JSTL libraries. The libraries struts.jar,
struts-el.jar, jstl.jar, and standard.jar come with the Struts 1.1
distribution in the contrib\struts-el\lib folder.

If you intend to use the tags in any of the JSTL libraries — and you should —
you need to include also the libraries that JSTL needs. You need to download
these additional libraries separately by retrieving the JSTL implementation
from the Jakarta Taglibs Web site at

jakarta.apache.org/taglibs/doc/standard-1.0-doc/intro.html

An implementation of JSTL version 1.1 is available, but we have chosen to
use version 1.0 because version 1.1 requires a Web container that supports
the JSP 2.0 specification. Tomcat 5.0 supports JSP 2.0, but it is still in beta
testing at the time of this writing.

To summarize, to use Struts-EL and JSTL, be sure that you include the follow­
ing twelve JAR files in your WEB-INF/lib folder.

� struts.jar: The standard Struts tag library, as well as the Struts frame­
work class files

� struts-el.jar: The EL version of the standard tag library

� jstl.jar: The JSTL API classes

� standard.jar: The JSTL standard taglib implementation

� dom.jar: Library needed by JSTL

� jaxen-full.jar: Library needed by JSTL

� jaxp-api.jar: Library needed by JSTL

� jdbc2_0-stext.jar: Library needed by JSTL

� sax.jar: Library needed by JSTL

� saxpath.jar: Library needed by JSTL

� xalan.jar: Library needed by JSTL

� xercesImpl.jar: Library needed by JSTL

The Struts-EL library consists of three separate tag libraries. Each library
encompasses a particular set of functionality. The Beans-EL tag library is for
handling JavaBeans. The largest library is HTML-EL, which contains Struts-
related HTML tags. Finally, Logic-EL provides functionality for performing cer­
tain logical operations.

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 232

232 Part III: Expanding Your Development Options

Beans-EL library

The Beans-EL library contains five tags. The common convention is to refer­
ence them with the prefix bean, as follows:

� <bean:>: Renders an internationalized message string to the response.
The JSTL fmt:message tag offers the same functionality, so we recom­
mend you use it instead of bean:message.

� <bean:page>: Exposes a specified item from the page context as a bean.
The JSTL c:set tag offers the same functionality plus a whole lot more
and therefore should be used instead.

� <bean:resource>: Loads a Web application resource and makes it avail­
able as a bean. The JSTL c:import tag performs the same functionality,
so we recommend its use instead of bean:resource.

� <bean:size>: Defines a bean containing the number of elements in an
array, Collection, or Map. The size tag is useful because EL doesn’t sup­
port calling a bean’s method directly. For example, you can find the
number of elements in a Collection by calling the size method of the
Collection. Because size is not a standard getter method (otherwise it
would be called getSize), you can’t get the number of elements in the
Collection directly through an EL expression. Therefore, the Beans-EL
size tag offers functionality that JSTL does not.

� <bean:struts>: Exposes a named Struts internal configuration object
as a bean. The struts tag has no equivalent in JSTL because it doesn’t
directly know about Struts components. By using the struts tag, you
may copy a formbean, forward, or mapping object into the page scope
and reference it through an id variable.

HTML-EL library

A reasonable question might be why you use a special tag to insert standard
HTML tags. Why not just write the HTML tags directly? The answer is that the
HTML-EL tags know about the Struts application configuration and can there­
fore fill out the HTML tag attributes at runtime. The HTML-EL tags are com­
monly referenced with the prefix html.

You might specify an HTML form, for example, by using the html:form tag
from the HTML-EL library. It might look like this:

<html:form action=”polist.do” >

Notice that we listed only the one required attribute, action. Yet when the
page is generated, the resulting HTML tag is

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 233

Chapter 10: Getting a Helping Hand with Tag Libraries 233
<form name=”poListForm”

method=”post”
action=”/webpurchasing/polist.do”>

The name attribute is looked up in the action-mappings in the struts-config.
xml file. The method attribute uses “post” as the default. And the action
attribute URI has the Web application context prefixed to be relative to the
Web container context. The other HTML-EL tags also cooperate in this fashion
with the Struts framework.

The HTML-EL library is by far the largest of the Struts-EL collection, with 28
tags. All HTML-EL tags and their syntax are listed in Appendix A.

Logic-EL library

The Logic-EL library adds commonly used logic to the JSP page without
requiring scriptlets of Java code. The common convention is to prefix Logic-
EL tags with logic. The tags that make up the Logic-EL library are

� <logic:forward>: Forwards control to the page specified by the speci­
fied ActionForward entry.

� <logic iterate>: Repeats the nested body content of this tag over a
specified collection.

� <logic match>: Evaluates the nested body content of this tag if the
specified value is an appropriate substring of the requested variable.

� <logic messagesNotPresent>: Generate the nested body content of
this tag if the specified message is not present in this request.

� <logic messagesPresent>: Generates the nested body content of this
tag if the specified message is present in this request.

� <logic notMatch>: Evaluates the nested body content of this tag if the
specified value is not an appropriate substring of the requested variable.

� <logic notPresent>: Generates the nested body content of this tag if
the specified value is not present in this request.

� <logic present>: Generates the nested body content of this tag if the
specified value is present in this request.

� <logic redirect>: Renders an HTTP redirect.

All the logic tags are unique with the exception of iterate, present, and
notPresent. The iterate tag has an equivalent JSTL tag in c:forEach. You
can render the present and notPresent tags using the c:if tags.

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 234

234 Part III: Expanding Your Development Options

Working with the JSP Standard
Tag Library

The JavaServer Pages Standard Tag Library (JSTL) simplifies the life of a page
author by encapsulating the most commonly used functionality into a set of
JSP tags. The addition of a simplified Expression Language makes it easier to
retrieve or set values in application data.

JSTL offers a lot to the page author. In this section, we review all the tags that
make up JSTL, offering a synopsis of each tag and an example of how the tag
might be used. In Appendix A, we provide the syntax for each tag in the
library.

JSTL 1.0 has two versions of JSTL: the EL version, which uses the EL expres­
sion language, and the RT version, which uses the older runtime expression
language. All our examples use only the EL version.

JSTL is considered one library, but the implementation divides JSTL into four
separate libraries: Core, Formatting, SQL, and XML. Each library encompasses
a particular set of functionality.

Core library

The Core tag library provides general functionality that page developers
commonly need most. The convention is to reference all tags in the Core
library with the prefix c.

General-purpose tags
The general-purpose tags consists of four tags that you use to manipulate
scoped variables (variables that exist in one of the four scopes — page,
request, session, or application). They are

� <c:out>: The out tag evaluates an expression and outputs the result to
the current JSPWriter (responsible for writing out the page contents).
The following example outputs the value of the vendorName property
found in the po object stored in the session:

The vendor is <c:out value=”${sessionScope.po.vendorName}”/>.

� <c:set>: The set tag sets the value of a scoped variable or a property
of a target object. For example, use the following to set a scoped vari­
able named “currentResident”:

<c:set var=”currentResident” value=”${sessionScope.customer.name}”/>

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 235

Chapter 10: Getting a Helping Hand with Tag Libraries 235
To set the “city” property of the “customer.address” target object,
use the following:

<c:set target=”${customer.address}” property=”city” value=”${po.city}”/>

� <c:remove>: The remove tag removes a scoped variable from the scope.
To remove the “currentResident” variable from the page scope, use
the following:

<c:remove var=”currentResident”/>

� <c:catch>: The catch tag catches an exception (java.lang.
Throwable) in a nested block. For example, to catch an exception in a
set of tags, use the following:

<c:catch var=”theException”>
<c:out value=”${po.poNumber}” />
... other tags ...

</c:catch>
<c:if test=”${theException != null}”>

Oops! An error occurred.
</c:if>

The theException variable holds an Exception if one is thrown in the
c:catch body.

Conditional tags
Conditional tags support the conditional execution of various enclosed page
elements based on the evaluation of one or more expressions. Two basic tags
are available, a simple conditional tag and a mutually exclusive tag:

� <c:if>: The simple conditional is the if tag. If the expression evaluates
to true the body of the if tag is executed. For example:

<c:if test=”${customer.accesses == 1}”>
This is your first access. Welcome to the Blah-Blah Web site.

</c:if>

� <c:choose>, <c:when>, and <c:otherwise>: In the body of choose
you define the mutually exclusive conditions by using the when tag. If
none of the when conditions are true, the optional otherwise tag is
executed. For example:

<c:choose>
<c:when test=”${po.tag == ‘save’}”>

...
</c:when>
<c:when test=”${po.tag == ‘update’}”>

...
</c:when>
<c:when test=”${po.tag == ‘delete’}”>

...

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 236

236 Part III: Expanding Your Development Options

</c:when>
<c:otherwise>

...
</c:otherwise>

</c:choose>

Iterator tags
The iterator tags provides a looping mechanism to iterate over a wide variety
of collections of objects. Two very flexible tags are available to accomplish
this:

� <forEach>: The forEach tag repeats the body content once for each
element in the collection of objects it is iterating over. The collection of
objects can be any implementation of java.util.Collection, java.
util.Map, java.util.Iterator, java.util.Enumeration, an array,
and even a String of comma-separated values. Here is an example iter­
ating over a collection of purchase orders and writing out the purchase
order number of each purchase order:

<table>
<c:forEach var=”po” items=”${purchaseorders}”>

<tr><td><c:out value=”${po.poNumber}”/></td></tr>
</c:forEach>

</table>

Here is a similar iteration, but this time the collection of objects is of the
type java.util.Map. Each item from the map will be of type java.util.
Map.Entry and have two properties, key and value. The example out­
puts the value property:

<table>
<c:forEach var=”ponumber” items=”${ponumbers}”>

<tr><td><c:out value=”${ponumber.value}”/></td></tr>
</c:forEach>

</table>

You may also use the forEach tag to iterate over a particular range of
numbers, with a starting and ending number as well as a number to
increment by. Here is an example that iterates 11 times, from number
100 to 110.

<c:forEach var=”i” begin=”100” end=”110”>
<c:out value=”${i}”/>

</c:forEach>

Finally, you may need to know the particular iteration number you are
currently on. You may define the varStatus attribute and retrieve the
count property from that variable. Here is an example:

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 237

Chapter 10: Getting a Helping Hand with Tag Libraries 237
<table>

<c:forEach var=”purchaseorder” items=”${purchaseorders}”
varStatus=”status”>

<tr>
<td><c:out value=”${status.count}”/></td>
<td><c:out value=”${purchaseorder.poNumber}”/></td>

</tr>
</c:forEach>

</table>

� <c:forTokens>: The forTokens tag is similar to the forEach tag
except forTokens iterates over a set of tokens (user-defined entities)
that are separated by the delimiters supplied as an attribute. The set of
tokens are enclosed in a String. Here is an example of using forTokens
with a “;” delimiter:

<table>
<c:forTokens var=”alphavalue” items=”a;b;c;r,s;w;z” delims=”;”>

<tr><td><c:out value=”${alphavalue}”/></td></tr>
</c:forEach>

</table>

URL-related tags
Four URL tags support linking, importing, and redirecting:

� <c:import>: The import tag is designed to overcome some of the
memory-related inefficiencies of the <jsp:include> tag. Using the
import tag, you may import a context-relative URL, a page-relative URL,
a foreign-context URL (in a different Web application but in the same
Web container), or an absolute URL. The contents of the imported
resource are written out as text to the current JSPWriter. This example
imports a resource with a relative URL from the same context:

<c:import url=”/header.html” />

This example imports a resource with a relative URL from a different
context in the same Web container:

<c:import url=”/footer.jsp” context=”/sample” />

This example imports a resource with an absolute URL:

<c:import url=”http://www.othenos.com/polist?accept=true” />

� <c:url>: The url tag takes care of rewriting URLs, if necessary, and pre­
fixing the context to context-relative URLs.

Rewriting URLs is a technique used to a change a URL for various purposes.
The url tag rewrites the URL when a browser does not accept cookies because
you need to store session information about the user. The url tag embeds the
session information (specifically, the session ID) in the URL. In this way, when
the browser submits a request, the session information is sent also.

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 238

238 Part III: Expanding Your Development Options

Here is an example of using the url tag to process a URL and then using
that processed URL in an href tag:

<c:url value=”/polist” var=”theUrl” />
<a href=’<c:out value=”${theUrl}”/>’>Purchase Order

� <c:redirect>: The redirect tag sends an HTTP redirect request to
the browser for a new URL, as in this example:

<c:redirect url=”http://www.mum.edu/registrar” />

� <c:param>: The three previous tags (import, url, and redirect) can
accept parameters in the body content of the tag. You use the param tag
to specify those parameters. You must specify a name and value attribute
for each parameter. Here is an example of the param tag used with the
url tag:

<c:url value=”/polist” var=”theUrl” >
<c:param name=”user” value=”${user.userName}”/>
<c:param name=”country” value=”${user.country}”/>

</c:url>
<a href=’<c:out value=”${theUrl}”/>’>Register

The parameter attributes are also encoded as part of the processing.

URL encoding refers to the process of encoding special characters in a
string. For example, you must encode a space in a URL parameter string
as a ‘%20’, as in this example:

webpurchasing/polist?user=Tom%20Jones&country=United%20Kingdom

Most often you represent the offending character as %hh, where hh are
two hexadecimal digits representing the US ASCII value of the character
(assuming that you’re using the US ASCII character set). Only the follow­
ing characters may appear in URLs without encoding:

0 through 9, a through z, A through Z, and $ - _ . + ! * ‘ () ,

Formatting library
The tags available in the Formatting library, especially the internationalization
tags, provide the page author with a simple mechanism to internationalize
the page. The prefix used for the Formatting library is most commonly fmt.
(We discuss I18N issues in Chapters 3 and 6, so we won’t discuss them in
detail here.)

Internationalization tags
The six tags in the internationalization grouping deal explicitly with I18N
issues. These tags use Locales and Resource Bundles to do their work, as we
discuss in Chapter 6:

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 239

Chapter 10: Getting a Helping Hand with Tag Libraries 239
� <fmt:setLocale>: This tag sets the locale for subsequent international­

ization tags. If you use this tag, browser-based locale setting capabilities
are disabled. Here is an example of setting the locale:

<fmt:setLocale value=”en_US” />

The value can be either a 2 letter language code (and optionally an under­
score followed by a 2-letter country code) or a java.util.Locale object.
When using this tag, be sure to set it at the beginning of the page because
all the other internationalization tags depend on it.

� <fmt:bundle>: The bundle tag allows you to set a specific resource
bundle for use in a narrow context, the body of the bundle tag. For
example:

<fmt:bundle basename=”Labels”>
<fmt:message key=”polist.find.label”/>
<fmt:message key=”polist.find.all”/>

</fmt:bundle>

In the body of the bundle tag, the messages will look up their keys in the
resource bundle named “Labels”.

� <fmt:setBundle>: The setBundle tag specifies the resource bundle to
use globally in the page, request, session, or application scope. Once
set, all messages use that resource bundle to look up their keys and
retrieve the message text. The only exceptions are message tags
enclosed in a bundle tag. Here is an example of setting a resource
bundle:

<fmt:setBundle basename=”Errors” var=”errorBundle” />

In this example, the resource bundle named Errors is used to retrieve
messages. This particular localization context (the Locale and Resource
Bundle being used) can be referenced by the errorBundle variable. The
use of the var attribute is optional.

� <fmt:message>: You may output an I18N message using the message
tag. This tag retrieves the message content based on the supplied key
and the current resource bundle, as in the following example:

<fmt:message key=”errors.db.connection”/>

� <fmt:param>: You can add parameters to messages to provide specific
information to the user. You can pass these parameters to the message
by using the param tag in the message tag’s body. For example:

<fmt:message key=”errors.db.connection”>
<fmt:param value=”${user.userName}”/>

</fmt:message>

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 240

240 Part III: Expanding Your Development Options

The message associated with the “error.db.connection” key might be

errors.db.connection=A connection error occurred for {0}

� <fmt:requestEncoding>: When a browser encodes a response’s form
data using a character set other than the default character set, you will
likely have trouble with the form’s data. This is because most browsers
don’t handle the content type properly. Use of the requestEncoding tag
ensures that the encoding is correct. Use this tag when you’re expecting
nondefault character-set encoding:

<fmt:requestEncoding />

Formatting tags
The following six tags enable you to format dates, times, and numbers in a
locale-specific or customized manner:

� <fmt:timeZone>: This tag specifies the time zone to apply to the for­
matting tag that you place in the body of the timeZone tag. An example
of this tag is shown here:

<fmt:timeZone value=”GMT+1:00”>
<fmt:formatDate value=”${now}” type=”both” dateStyle=”full”

timeStyle=”full”/>
</fmt:timeZone>

The now variable is assumed to represent a Date object. The timeZone
value attribute can be a string with a time zone ID, a string with a custom
ID supported by the Java language, or a java.util.TimeZone object. See
the documentation on java.util.TimeZone for more information.

� <fmt:setTimeZone>: This tag sets the default time zone for the page,
request, session, or application scope. It replaces the previous default
time zone. The setTimeZone tag is similar to the timeZone tag except
there is no body and you can specify the scope, if desired. The following
example sets the time zone as U.S. Pacific Time in the session scope.
The default scope is page:

<fmt:setTimeZone value=”America/Los Angles” scope=”session”/>

� <fmt:formatNumber>: The fmtNumber tag can format a number, cur­
rency, or a percentage in a locale-specific or custom manner, as shown in
this example:

<fmt:formatNumber value=”9876543.21” type=”currency”/>

This example formats the number 9876543.21 in a currency format spe­
cific to the current locale for the page. If the locale were en_US, the
number would appear as

$9,876,543.21

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 241

Chapter 10: Getting a Helping Hand with Tag Libraries 241
However, if the locale were fr_CH (French, Switzerland), the number
would appear as

SFr. 9’876’543.21

The value attribute is the only required attribute if there’s no body to
the tag. Otherwise, value can appear in the body. Eleven other attrib­
utes offer you complete control over how the number is formatted.

� <fmt:parseNumber>: The parseNumber tag is the opposite of the format
Number tag. It takes a String as input and produces a Number. You would
want to use this tag when you have to perform calculations on a number
that exists as a String. The following is an example of its use:

<fmt:parseNumber value=”${cur}” type=”currency” var=”money”/>

This example parses the String representation in the cur variable and
stores the resulting number in the money variable. The type of format­
ting used is currency.

� <fmt:formatDate>: The formatDate tag formats dates and times into a
locale-specific or custom format. For example:

<jsp:useBean id=”now” class=”java.util.Date” />
<fmt:formatDate value=”${now}” timeStyle=”long” dateStyle=”long”/>

The example produces the following output for the U.S. locale:

October 31, 2003 11:00:03 AM CST

and this for the French locale:

31 octobre 2003 11:00:03 GMT-07:0

Many options for formatting are available, including specifying a pattern
as used in java.text.SimpleDateFormat.

� <fmt:parseDate>: The parseDate tag is the opposite of formatDate. It
expects a String value of a Date and creates a java.util.Date object
that’s stored in a variable or output with JSPWriter:

<jsp:useBean id=”now” class=”java.util.Date” />
<fmt:formatDate value=”${now}” dateStyle=”long” var=”rightNow”/>
<fmt:parseDate value=”${rightNow}” var=”realDate”/>

This example takes the rightNow Date String created by the formatDate
tag and stores it as java.util.Date in the realDate variable.

SQL library

The SQL Library provides the page author with a means to access an SQL data­
base directly from the JSP page. Of course, this technique breaks all the rules

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 242

242 Part III: Expanding Your Development Options

about separation of concerns, the encapsulation of database operations in the
Model layer, and many other good programming practices. Yet, in some circum­
stances you may find it useful to have direct SQL access, such as in very small
applications, prototyping, or just trying out a creative idea. Six tags make up
the SQL library. Together they provide the basic functionality to interact with
a SQL database, such as establishing a connection, querying, updating, deleting
and inserting data, and transactions. The SQL library most commonly uses sql
for its prefix.

You are required to establish a data source before you can use the tags in the
SQL library. You can establish a data source in a simple way by declaring the
JDBC parameters for your database in the tag you’re using. This means speci­
fying the URL, driver, username, and password when setting the data source
using the setDataSource tag.

If you’ve already configured a data source in Struts, another possibility is to
create a startup class (by extending the PlugIn interface — see “Implementing
Your Own Plug-in” in Chapter 9) that adds the data source to the JSTL configu­
ration file. The init method would have code like the following:

// assume we have a reference to the ServletContext in “sc”
// assume your data-source is named “mssql” in struts-config
// get a reference to the data source
DataSource dbConnMgr = (DataSource)sc.getAttribute(“mssql”);
// set the data source into the JSTL Config file
Config.set(sc, Config.SQL_DATA_SOURCE, dbConfigMgr);

This code has the advantage of not having to bother with specifying a data
source in any of the SQL tags.

The six tags of the SQL library are

� <sql:query>: The query tag allows you to specify an SQL query string
and return the results in a variable whose type is javax.servlet.jsp.
jstl.sql.Result. You can then iterate the results to extract the values.
Here is an example of a query tag and then extracting the results:

<sql:query var=”purchaseorders” >
SELECT * FROM purchaseorders
WHERE country = ‘France’
ORDER BY lastname

</sql:query>
<table>

<c:forEach var=”row” items=”${ purchaseorders.rows}”>
<tr>

<td><c:out value=”${ purchaseorders.vendorName}”/></td>
<td><c:out value=”${ purchaseorders.address}”/></td>
<td><c:out value=”${ purchaseorders.phone}”/></td>

</tr>
</c:forEach>

</table>

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 243

Chapter 10: Getting a Helping Hand with Tag Libraries 243
� <sql:update>: To insert, update, or delete data from the database, you

use the update tag. You may use ? in the SQL as a parameter place­
holder in the same manner as with the java.sql.PreparedStatement
class. See the Java API for more details. This example supplies two para­
meters to the SQL statement by using the param tag:

<sql:update>
UPDATE account
SET Balance = Balance - ?
WHERE accountNo = ?

<sql:param value=”${transferAmount}”/>
<sql:param value=”${accountFrom}”/>

</sql:update>

See the section on the param and dateParam tags for further explanation.

� <sql:transaction>: The transaction tag provides transaction capa­
bilities to query and update tags. The transaction tag encloses one or
more query tags, or update tags, or both. If no exception is detected,
the transaction is committed, or saved. Otherwise, the transaction is
rolled back (all actions are reversed). Here is an example:

<sql:transaction dataSource=”${dataSource}”>
<sql:update>

UPDATE account
SET Balance = Balance - ?
WHERE accountNo = ?

<sql:param value=”${transferAmount}”/>
<sql:param value=”${accountFrom}”/>

</sql:update>
<sql:update>

UPDATE account
SET Balance = Balance + ?
WHERE accountNo = ?

<sql:param value=”${transferAmount}”/>
<sql:param value=”${accountTo}”/>

</sql:update>
</sql:transaction>

� <sql:setDataSource>: This tag sets the data source for the page,
request, session, or application depending on the scope you choose.
Page scope is the default. You may specify the data source using JDBC
parameters, as in the following example, or you may use an instance of
javax.sql.DataSource:

<sql:setDataSource url=”jdbc:JTurbo://localhost/Purchasing”
driver=”com.ashna.jturbo.driver.Driver”
user=”webpurchaser”
password=”purcha$e” />

� <sql:param> and <sql:dateParam>: Both tags supply values to para­
meter markers (?) in an SQL statement used in the query and update

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 244

244 Part III: Expanding Your Development Options

tags. The param tag provides any value except a java.util.Date type;
that value is provided by the dataParam tag. The sequence of the param
and dateParam tags in the body of the query and update tags must
match the use of ? in the SQL string.

XML library

The XML library handles XML documents and is based on XPath, a W3C
(World Wide Web Consortium, the official standards body for the Web) rec­
ommendation for selecting and specifying the parts of an XML document.
The use of XPath for XML documents expands on the expression language
used by the other libraries of JSTL. The description of XPath is beyond the
scope of this book. For a nice tutorial on XPath, go to

www.w3schools.com/xpath/default.asp

The XML library provides many of the same functions for XML documents as
described previously in this section: core tags for commonly used functional­
ity, flow control tags for conditional and iterative functions, and transform
tags for transforming XML documents with XSLT. The prefix x is the conven­
tion for the XML Library tags.

XML core tags
The XML core tags follow:

� <x:parse>: Parses an XML document and stores the resulting object
into a scoped variable.

� <x:out>: Evaluates an XPath expression and outputs it to the current
JSPWriter.

� <x:set>: Evaluates an XPath expression and stores the result in a
scoped variable.

XML flow control tags
All tags in the XML flow control group are identical to the tag in the Core
library except that they take XPath expressions instead of EL expressions.
The tags are if, choose, when, otherwise, and forEach.

XML transform tags
The two XML transform tags follow:

� <x:transform>: Applies an XSLT stylesheet to an XML document and
outputs the resulting transformation.

� <x:param>: Used in the transform tag’s body to supply transformation
parameters.

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 245

Chapter 10: Getting a Helping Hand with Tag Libraries 245

Other Struts Tag Libraries

Several additional Struts-specific tag libraries are available. We offer a sam­
pling in this section.

Tiles library

The jsp:include tag allows the page developer to include or insert other
resources into a page at runtime. For example, rather than duplicate common
header and footer information on each page of a Web application, the devel­
oper can simply use jsp:include to insert the pages that contain the header
and footer definitions.

The general idea behind the Tiles library is to augment and expand on the
jsp:include tag by providing ways to

� Define the structure of pages by using a template

� Extend templates through inheritance

� Support internationalization

� Integrate with the Struts framework

In Chapter 11, we show you how to leverage the Tiles library to your advantage.

Struts-Layout library
The Struts-Layout tag library is a powerful, open-source, custom tag library
to aid the page author in the creation of user interface elements. It offers:

� Specialized input fields that offer controlled access and display. These
input fields are similar to the Struts HTML-EL library but offer additional
functionality, such as displaying error messages next to the field and
visually marking required fields.

� Powerful and flexible display of collections, including sorting and paging.

� Layout definitions to control the arrangement of elements on the page.

� Control over the page’s look-and-feel through skins (a way of specifying
color combinations and styles for an entire application).

� Custom formatting of text information.

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 246

246 Part III: Expanding Your Development Options

The JSTL and Struts-EL libraries provide some of the functionality found in
the Struts-Layout library. However, if you need to format and manage lists of
data, you should investigate the use of Struts-Layout.

The Struts-Layout home page is struts.application-servers.com.

Display library
Although not specifically made for Struts, the Display tag library focuses
exclusively on displaying collections in a table format. The Web site describes
the functionality succinctly as, “Give it a list of objects and it will handle
column display, sorting, paging, cropping, grouping, exporting, smart linking
and decoration of the table in a nice and customizable xhtml style.” Figure
10-1 is a sample of the output you could expect.

You can find more information at the Display tag Web site at

displaytag.sourceforge.net/index.html

Figure 10-1:
Sample

table display
using the

Display
library.

Looking at Java Server Faces

Java Server Faces (JSF) is touted as an evolutionary jump in the way J2EE
Web applications are created. By standardizing the way developers construct
user interfaces (UI) in J2EE Web applications, JSF can make the developer’s
task a lot easier, as well as make the resulting Web application more flexible.

JSF is a framework that offers the following benefits:

� Provides a rich palette of UI components that are device independent

� Offers a standardized, server-based event handling mechanism for UI
components

� Maintains page state automatically

� Includes a validation framework

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 247

Chapter 10: Getting a Helping Hand with Tag Libraries 247
David Geary, a member of the JSF specification team, likens JSF to a combina­
tion of Struts and Swing — the strong lifecycle management capability of the
Struts controller married to the rich UI components and event model of Swing.

This brings up the question of how JSF will affect the future of Struts. Will it
replace Struts? The answer seems to be a resounding no. As it turns out, one
of the two JSF specification lead members is Craig R. McClanahan, the principle
developer of Struts. In a recent mailing list posting, Craig stated that Struts will
have, “. . . a very clean integration with JSF, so that you can use JSF compo­
nents in your user interface, but continue to use the controller, Actions, and
associated business logic.”

To that end, Craig has been developing a library called struts-faces that
will accomplish the smooth integration between JSF and Struts. You can
download this library by downloading the source code for the latest Struts
nightly build at

archive.apache.org/dist/jakarta/struts/old/release/struts-faces

The bad news is that you have to build the JAR file yourself. The good news
is that the download provides an Ant build file. (We discussed the Ant devel­
opment tool in Chapter 2.) The source code and build.xml file are in the
contrib/struts-faces folder.

Currently, the specification for JSF (Java Specification Request 127) is still in
the review process. Therefore, the only implementations of the technology
are based on a moving target (the changing JSR). The latest reference imple­
mentation is labeled EA4. You can download it at

java.sun.com/j2ee/javaserverfaces

If you’re interested in experimenting with Struts and JSF, the Struts Web site
contains instructions for integrating the two technologies. See the following
for more information:

jakarta.apache.org/struts/proposals/struts-faces.html

Here are some additional JSF resources that you may find helpful:

� www.jsfcentral.com/index.html: A nice JSF portal that links to many
JSF resources.

� www.javaworld.com/javaworld/jw-11-2002/jw-1129-jsf.html:
David Geary has written three very readable articles on JSF. The first one
is at this URL. From there, you can find links to the other two articles.

� java.sun.com/j2ee/javaserverfaces: The home page for JSF.

� jcp.org/en/jsr/detail?id=127: The JSR-127 specification.

15 559575 Ch10.qxd 3/2/04 4:02 PM Page 248

248 Part III: Expanding Your Development Options

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 249

Chapter 11

Working with Page Composition

Techniques

In This Chapter
� Simplifying page layout

� Using includes

� Working with the Tiles Framework

When your Web application starts expanding beyond a few pages into
the realm of dozens or even hundreds of pages, maintenance becomes

an important issue. With so many pages to keep up to date, you’re thinking of
ways to do less and accomplish more. One easy way to save work is to isolate
content that is repeated on many pages, such as header and footer informa­
tion. If you can isolate this information into separate files and only reference
it on each page, life would be a lot easier, at least when you need to modify a
header or footer for the site.

Making Your Page Layout Life Easier

A sample JSP page that is full of opportunities for refactoring — rewriting por­
tions of code to make the resulting code simpler, more readable, and more
efficient — is shown in Listing 11-1. This page is similar to the loggedin.jsp
page we created in Chapter 3 except that we added logo and footer informa­
tion to make the page more representative of a production page. We will use
this page to show how you can use page composition techniques to maintain
pages more easily.

Listing 11-1 Sample JSP Page, refactor.jsp

1 <!-- begin the taglib definitions -->
2 <%@ taglib prefix=”c” uri=”/WEB-INF/c.tld” %>
3 <%@ taglib prefix=”fmt” uri=”/WEB-INF/fmt.tld” %>
4 <%@ taglib prefix=”html”

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 250

250 Part III: Expanding Your Development Options

uri=”/WEB-INF/struts-html-el.tld” %>
5 <!-- end the taglib definitions -->

6 <html:html locale=”true”/>
7 <head>
8 <fmt:setBundle basename=”ApplicationResources” />
9 <title><fmt:message key=”login.title”/></title>
10</head>

11<body>

12 <!-- begin the logo for the application -->
13 <table width=”100%”>
14 <tr valign=”top” align=”center”>
15 <td>
16 <img src=”images/webLogo.gif”

name=”webLogo”
width=”425” height=”50” border=”0”>

17 </td>
18 </tr>
19 </table>
20 <!-- end of logo -->

21 <h2>
22 <fmt:message key=”loggedin.msg”>
23 <fmt:param value=’${requestScope.userName}’ />
24 </fmt:message>
25 </h2>

26 <!-- begin the footer for the application -->
27 <div align=”center”>
28 <hr SIZE=”1” WIDTH=”100%”>

29 Comments or Questions?
30

Email Othenos Customer Support

31 ©2003 Othenos Consulting Group

32 </div>
33 <!-- end of footer -->

34</body>
35</html>

In examining the page makeup in Listing 11-1, three areas stand out as possi­
bilities for common content:

� The definitions of the taglibs between lines 1 and 5

� The inserted logo in lines 12-20

� The footer section in lines 26-33

You can assume that other pages in the Web application are similar in
structure — they include the same taglib definitions, logo graphics, and

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 251

Chapter 11: Working with Page Composition Techniques 251
footer information. Because these code snippets are common to so many
other pages, you could simplify the code a lot by removing these repeated
sections and putting them into their own separate files. Then the original
pages that contained the snippets could reference this content using the
include directive and jsp:include tag.

You can extract the common features and put them into three separate files,
as shown in Listings 11-2, 11-3, and 11-4.

Listing 11-2 taglibs.jsp

<%@ taglib prefix=”c” uri=”/WEB-INF/c.tld” %>
<%@ taglib prefix=”fmt” uri=”/WEB-INF/fmt.tld” %>
<%@ taglib prefix=”html” uri=”/WEB-INF/struts-html-el.tld” %>
<%@ taglib prefix=”tiles” uri=”/WEB-INF/struts-tiles.tld” %>

Listing 11-3 logo.jsp

<table width=”100%”>
<tr valign=”top” align=”center”>

<td>
<img src=”images/webLogo.gif” name=”webLogo”

width=”425” height=”50” border=”0”>
</td>

</tr>
</table>

Listing 11-4 footer.jsp

<div align=”center”>
<hr SIZE=”1” WIDTH=”100%”>

Comments or Questions?

Email Othenos Customer Support

©2003 Othenos Consulting Group

</div>

Simplifying with Includes

You can use three elements to insert outside content into a JSP page: the
include directive, the jsp:include tag, and the JSTL c:import tag.

The JSP include directive allows the insertion of static content into the JSP
page at the time the page is converted into a Java class by the JSP engine.
This directive has the following syntax:

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 252

252 Part III: Expanding Your Development Options

<%@ include file=”relativeURLspec”%>

Highlights of the tag follow:

� The tag can place only static content in a JSP file, such as an HTML or
JSP file.

� The tag is processed only when JSP is converted into a Java class, not at
request time.

� If the included file is updated, JSP containers are not required to change
the converted page to include new content.

Listing 11-2 shows the use of the include directive to insert the taglibs.jsp
segment into the loggedin.jsp page. You must include the taglibs.jsp
in the page before the page is converted to the Java class because the tags
that the page uses (html, c, fmt, tiles) require that you define the library
before the conversion can occur. The library definition is in the taglibs.jsp
file. Inserting taglibs.jsp at request time would be too late. Here is how you
would insert it before the page is converted:

<!-- begin the taglib definitions -->
<%@ include file=”taglibs.jsp” %>
<!-- end the taglib definitions -->

To include content at request time, you can use the jsp:include tag. This
tag can insert both static and dynamic content into the page when the page
is requested. The following is the syntax for jsp:include:

<jsp:include page=”relativeURLspec” flush=”true|false”/>

Highlights of the tag are as follows:

� The tag can include static (for example, HTML) or dynamic (for example,
JSP) content.

� Inclusions are processed at request time.

� You can pass parameters to the included content.

� The JSP container is aware when an included resource changes and gen­
erates new content based on the new file.

� The flush attribute defaults to false. If set to true, it indicates that the
page, if buffered, should be flushed (written out) before including the new
resource.

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 253

Chapter 11: Working with Page Composition Techniques 253
The logo.jsp and footer.jsp segments (Listings 11-3 and 11-4) are candi­
dates for including with the jsp:include tag. Here is how they would look if
you included them with jsp:include:

<!-- begin the logo for the application -->
<jsp:include page=”logo.jsp” flush=”true” />
<!-- end of logo -->

<!-- begin the footer for the application -->
<jsp:include page=”footer.jsp” flush=”true” />
<!-- end of footer -->

You may want to use the c:import tag from the JSTL library instead of jsp:
include. The c:import tag claims to reduce some of the buffering inefficien­
cies found in the jsp:include tag. Another feature of the tag is its ability to
retrieve resources from any URL. The jsp:include tag is limited to resources
in the same context as the current page. The simplest syntax for the c:import
tag is

<c:import url=”url” />

Here is how you might use the c:import tag instead of jsp:include in the
preceding example:

<!-- begin the logo for the application -->
<c:import url=”logo.jsp” />
<!-- end of logo -->

<!-- begin the footer for the application -->
<c:import url=”footer.jsp” />
<!-- end of footer -->

You can use c:import or jsp:include interchangeably, depending on the
tag libraries you prefer.

In Listing 11-5 we show how the original JSP in Listing 11-1 looks after refac­
toring and using includes to retrieve the common information. We use the
c:import tag for including, with the exception of including the taglibs.jsp
(line 2). Taglibs.jsp must be included when the page gets converted to a
Java class because other tags in the page depend on the tag library defini­
tions found in taglibs.jsp. Therefore the JSP include directive must be
used.

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 254

254 Part III: Expanding Your Development Options

Listing 11-5 Simplified JSP Using includes

1 <!-- begin the taglib definitions -->
2 <%@ include file=”taglibs.jsp” %>
3 <!-- end the taglib definitions -->
4 <html:html locale=”true”/>
5 <head>
6 <!-- begin the header for the application -->
7 <fmt:setBundle basename=”ApplicationResources” />
8 <title><fmt:message key=”login.title”/></title>
9 <!-- end of header -->
10</head>

11<body>

12 <!-- begin the logo for the application -->
13 <c:import url=”logo.jsp” />
14 <!-- end of logo -->

15 <H2>
16 <fmt:message key=”loggedin.msg”>
17 <fmt:param value=’${requestScope.userName}’ />
18 </fmt:message>
19 </H2>

20 <!-- begin the footer for the application -->
21 <c:import url=”footer.jsp” />
22 <!-- end of footer -->

23</body>
24</html>

You can use includes to refactor all the JSP pages in the application that
have a similar structure. By doing so, you dramatically reduce the amount of
effort necessary to make changes to the common parts of the pages because
you need to edit only one copy of each common segment. Any change to
common content automatically ripples through every page that includes
the segment. See Figure 11-1 for a graphical representation of the process.

Although refactoring and using includes offer many advantages to the alter­
native of all-in-one JSP pages, the resulting pages still have a maintenance
problem. The structure or layout of the page is defined in the page. In other
words, each JSP page must define how it will be laid out. If that layout changes
(and it will over time), all pages need to be reworked to accommodate the
new arrangement. Fortunately, a solution to that problem exists: the Tiles
framework.

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 255

Chapter 11: Working with Page Composition Techniques 255

Figure 11-1:
Diagram
showing

page
composition

using the
includes

mechanism.

home.jsp

join.jsp

album.jsp

logo.jsp

footer.jsp

homeContent.jsp

joinContent.jsp

albumContent.jsp

IncludesJSP Pages

(used in 3 pages)

(used in 3 pages)

(used in 1 page)

(used in 1 page)

(used in 1 page)

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 256

256 Part III: Expanding Your Development Options

Using the Tiles Framework

The Tiles framework expands on the use of includes by providing the devel­
oper a way to define a common look-and-feel in a template (sometimes called
a layout). The template defines how the page should look but not what con­
tent should go into it. The template includes the page markup that describes
the structure of the page, as well as names the additional segments that the
page should include as content. These additional segments are called tiles.

If you want a JSP page to take advantage of the Tiles framework, you reference
the template to use the template’s structure as the page’s own. You then choose
tiles that should be inserted into the structure as content. The resulting page
displays the structure as defined by the template along with the content as
defined by the tiles it uses.

An example will help clarify how the Tiles framework works. For this exam­
ple, we use the final JSP page from the preceding section (Listing 11-5) as the
starting point. This page contains the structure of how the page should be
presented and references most of the content required to fill the structure.
The only content that is part of the page is the body, which consists of lines
15-19. To make a general structure, you can remove lines 15-19 and create a
new page segment called loggedinBody.jsp as shown in Listing 11-6. Notice
the include directive on the first line to add tag library definitions. You need
the include directive because of the custom tags in the page. Each tile that
is a JSP page must be complete enough that the JSP engine can convert the
code in the tile to a Java class.

Listing 11-6 loggedinBody.jsp

<%@ include file=”taglibs.jsp” %>
<H2>

<fmt:message key=”loggedin.msg”>
<fmt:param value=’${requestScope.userName}’ />

</fmt:message>
</H2>

Now you can use the structure to create a template. To do so, you need to
understand a couple of the Tiles tags, in particular, the tiles:insert and
the tiles:getAsString tags. The tiles:insert tag is used specifically in
the template page. This tag tells the Tiles framework to insert a tile identified
by the name attribute into the structure at a specific point. Note that the name
attribute is not the name of a tile or page segment, but an ID that the JSP page
that references the template will use.

The tiles:getAsString tag allows you to pass a value to the structure and
substitute that value for the tag. In a sense, this tag is a parameter-passing
mechanism for templates. To understand the functionality of both of these
tags, look at the JSP page that uses the template, as shown in Listing 11-7.

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 257

Chapter 11: Working with Page Composition Techniques 257
Listing 11-7	 Simplified JSP Structure Defined as a Tiles Template,

mainTemplate.jsp

1 <!-- begin the taglib definitions -->
2 <%@ include file=”taglibs.jsp” %>
3 <!-- end the taglib definitions -->

4 <html:html locale=”true”/>
5 <head>
6 <!-- begin the header for the application -->
7 <fmt:setBundle basename=”ApplicationResources” />
8 <title><tiles:getAsString name=”title”/></title>
9
10</head>

11<body>

12 <!-- begin the logo for the application -->
13 <tiles:insert attribute=’logo’/>

14 <!-- begin the body -->
15 <tiles:insert attribute=’body’/>

16 <!-- begin the footer for the application -->
17 <tiles:insert attribute=’footer’/>

18</body>
19</html>

In examining this example, notice that it is a valid JSP page. The JSP page
defines a structure that all pages that reference the template will contain. In
addition:

� Line 8: Specifies a parameter with the name of title that should be con­
verted to a String (if necessary) and inserted at this point.

� Lines 13, 15, and 17: Tell the Tiles framework that these are named inser­
tion points for content that will be provided by a JSP page that uses the
template.

When you have defined the template, you can create JSP pages that will use
the template to flesh out the page. Continuing with the preceding example,
Listing 11-8 shows a loggedin.jsp page using Tiles and the template that
we defined in Listing 11-7. This page has the same look and feel, content, and
functionality as the page described in Listing 11-5, which uses includes. But
notice the difference in size between Listing 11-8 and 11-5.

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 258

258 Part III: Expanding Your Development Options

Listing 11-8

1 <%@ include file=”taglibs.jsp” %>
2
3 <tiles:insert page=’mainTemplate.jsp’ flush=’true’>
4 <tiles:put name=”title”>
5 <fmt:setBundle basename=”ApplicationResources” />
6 <fmt:message key=”loggedin.title”/>
7 </tiles:put>
8 <tiles:put name=’logo’ value=’logo.jsp’/>
9 <tiles:put name=’body’ value=’loggedinBody.jsp’/>
10 <tiles:put name=’footer’ value=’footer.jsp’/>
11</tiles:insert>

loggedin.jsp Page Using Tiles

This example uses the template (mainTemplate.jsp) that we defined in
Listing 11-7 to provide the structure for the page. Note the following items in
Listing 11-8:

� Line 3: The tiles:insert tag references the template with the page
attribute. Everything in the body of the tiles:insert tag is used to
flesh out the template with content.

� Lines 4–7: Define an attribute whose name is “title” and whose value
will be the result of evaluating the two tags (lines 5 and 6) in the
tiles:put body. As with other similar examples in this book, you will
end up with a message string.

� Lines 8–10: Define the content to associate with the “logo”, “body”,
and “footer” attributes, respectively. This content will replace the cor­
responding tiles:insert tags in the template. With the exception of
loggedinBody.jsp, the JSP files are the same ones (Listings 11-3 and
11-4) defined in the preceding section. The loggedinBody.jsp of
Listing 11-6 consists of the specific body content found in the example
in Listing 11-5.

In Figure 11-2 we represent graphically how this process might work when
considering multiple presentation pages using one template and sharing vari­
ous tiles.

The beauty of the Tiles approach is in the following benefits:

� Guaranteed consistency in the look-and-feel of the Web application:
Because all pages in the site get their structure from one template or
another, the page appearance is consistent with the appearance defined
in the template. Changing the look-and-feel is as simple as modifying the
underlying template file.

� Ease of maintenance: Changing the content is also easy. Modifying a tile
used everywhere (such as footer.jsp) pushes those changes to all
pages that reference the tile. Changing the content used by only one
page (for example loggedinBody.jsp) is also easier because that infor­
mation is isolated from other content.

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 259

Chapter 11: Working with Page Composition Techniques 259

Figure 11-2:
Diagram
showing

page
composition

using the
Tile

framework.

layout.jsp

pages)

TilesJSP Pages

Template

home.jsp

join.jsp

album.jsp

logo.jsp

footer.jsp

homeContent.jsp

joinContent.jsp

albumContent.jsp

(used by 3

(used in 3 pages)

(used in 3 pages)

(used in 1 page)

(used in 1 page)

(used in 1 page)

Configuring Tiles

You need to attend to a few configuration issues to use the Tiles framework
with Struts. The Tiles library is already included in the Struts framework, so
that is one less thing to worry about. But you do need to perform the follow­
ing steps:

1. Put the tiles TLD file (struts-tiles.tld) in with all the other TLD
files, usually in the WEB-INF folder.

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 260

260 Part III: Expanding Your Development Options

You can find this file in the tiles-documentation.war file that comes
with the Struts 1.1 distribution.

2. Update the web.xml file to include a reference to the struts-tiles.
tld file.

Here’s an example of what a reference might look like:

<taglib>
<taglib-uri>/WEB-INF/struts-tiles.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-tiles.tld</taglib-

location>
</taglib>

3. Include a tiles taglib reference in any page that uses Tiles tags.

One thing that you may have noticed is that this technique requires two pages
for each presentation page in the application. One page is the page definition
(such as loggedin.jsp) and the other is the unique content (such as logged
inBody.jsp). This can be an added maintenance issue with large sites. Fortu­
nately, the Tiles framework has a solution called definitions, which allow you to
specify all the attributes that go to make up a Tile in a reusable structure.

Tiles definitions

A Tile definition page is remarkably similar in structure to a root Tile page. The
principle difference is the use of the tiles:definition tag instead of the
tile:insert tag. Listing 11-9 shows an example of a definition in a JSP page.

Listing 11-9 Tile Definition Using JSP

1 <%@ include file=”taglibs.jsp” %>
2
3 <tiles:definition id=”loggedin” page=’mainTemplate.jsp’>
4 <tiles:put name=”title”>
5 <fmt:setBundle basename=”ApplicationResources” />
6 <fmt:message key=”loggedin.title”/>
7 </tiles:put>
8 <tiles:put name=’logo’ value=’logo.jsp’/>
9 <tiles:put name=’body’ value=’loggedinBody.jsp’/>
10 <tiles:put name=’footer’ value=’footer.jsp’/>
11</tiles:definition>

The definition is mostly the same as the Tile defined in Listing 11-8. The only
difference is in line 3. In Listing 11-9, line 3 contains the tiles:definition
tag along with one attribute named id. The id attribute enables you to refer­
ence the definition in other places. After the Tiles framework processes a def­
inition, the definition is placed into the page scope (different scopes can be
specified) as a JavaBean. From there, other pages can use the definition with
the tiles:insert tag.

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 261

Chapter 11: Working with Page Composition Techniques 261
Here is an example of using the bean for creating a Tile:

<tiles:insert beanName=”loggedin” flush=”true” />

The result is a page that’s identical to the page from Listing 11-8. That is well
and good if you want to create a loggedin page, but what if you want to use
different content for the title and body? No problem. You simply override the
default puts with new ones. For example:

<tiles:insert beanName=”loggedin” flush=”true” >
<tiles:put name=”title>

<fmt:setBundle basename=”ApplicationResources” />
<fmt:message key=”musiclist.title”/>

</tiles:put>
<tiles:put name=’body’ value=’musicListBody.jsp’/>

</tiles:insert>

This example replaces the definition’s puts for the title and body with ones
more appropriate for the desired page.

You can also create definitions that inherit from another definition. This
makes reuse of definitions a reality. Listing 11-10 is an example of creating a
root definition named “main” and a child definition named “loggedin”. The
“loggedin” definition inherits all the properties that belong to “main” and
extends it by adding two additional properties, “title” and “body”.

Listing 11-10 Tile Definition Using JSP with Example of Inheritance

1 <%@ include file=”taglibs.jsp” %>
2
3 <tiles:definition id=”main” page=’mainTemplate.jsp’>
4 <tiles:put name=’logo’ value=’logo.jsp’/>
5 <tiles:put name=’footer’ value=’footer.jsp’/>
6 </tiles:definition>

7 <tiles:definition name=”loggedin” extends=”main” >
8 <tiles:put name=”title”>
9 <fmt:setBundle basename=”ApplicationResources” />
10 <fmt:message key=”loggedin.title”/>
11 </tiles:put>
12 <tiles:put name=’body’ value=’loggedinBody.jsp’/>
13</tiles:definition>

Admittedly, using a JSP page to create definitions is a bit awkward, and it
doesn’t really address the issue of reuse very well. You could put all the Tile
definitions into a single JSP file (much like we did with tag library definitions)
and include the JSP file for each Tile that you want to create using definitions.
This works but is inefficient, because each time you load a page, the loading
mechanism recreates the definitions. A better method is to use an XML docu­
ment to create the definitions and then load and build them when the Web
application starts.

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 262

262 Part III: Expanding Your Development Options

Using XML for Tile definitions

The syntax for creating a definition in XML and in JSP is remarkably similar.
For example, Listing 11-11 duplicates the definitions shown in Listing 11-9
using JSP.

Listing 11-11	 Tile Definition Using an XML Configuration File Named
tileDefinitions.xml

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<!DOCTYPE tiles-definitions PUBLIC
“-//Apache Software Foundation//DTD Tiles Configuration

1.1//EN”
“http://jakarta.apache.org/struts/dtds/tiles-

config_1_1.dtd”>
<tiles-definitions>

<!-- main definition -->
<definition name=”main “ path=”/mainTemplate.jsp”>

<put name=”logo” value=”logo.jsp” />
<put name=”footer” value=”footer.jsp” />

</definition>

<!-- loggedin definition -->
<definition name=”loggedin” extends=”main”>

<put name=”title” value=”loggedinTitle.jsp” />
<put name=”body” value=”loggedinBody.jsp” />

</definition>

</tiles-definitions>

Besides the small syntax changes and the use of a slash (/) in front of the path,
we had to write another small JSP page to get the proper title information, as
shown in Listing 11-12. You can’t know what the proper title string should be
in the XML file because the string is Locale dependent.

Listing 11-12	 Defining the Title, loggedinTitle.jsp

<%@ include file=”taglibs.jsp” %>
<fmt:setBundle basename=”ApplicationResources” />
<fmt:message key=”loggedin.title”/>

To make use of the Tiles configuration file, you need to adjust the Struts con­
figuration a little bit by adding a new plug-in. The TilesPlugin processes
definitions in a centralized file. In its simplest form, the TilesPlugin takes
no parameters. The plug-in assumes that the Tiles configuration XML file is
named “tileDefinitions.xml”. Here is the line to add to the struts-
config.xml file:

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 263

Chapter 11: Working with Page Composition Techniques 263
<plug-in className=”org.apache.struts.tiles.TilesPlugin” />

After you decide to use XML Tiles definitions, you also commit to using the
special Tiles version of the RequestProcessor class, TilesRequest
Processor. You don’t have to do anything more — the plug-in takes care of
everything. However, if you’ve already replaced RequestProcessor with
your own custom class, your class needs to extend TilesRequestProcessor
instead of RequestProcessor.

The final step in this process that makes it all worthwhile is changing the
forwards in the actions in struts-config.xml. Normally, forwards refer to
a destination JSP file where control will be forwarded to when an action has
completed. However, now we can specify also a definition of where control
should be forwarded to. For example, instead of the normal success forward
in our Login action, you use this:

<forward name=”success” path=”loggedin”/>

The path is the name of the Tile definition where control should be forwarded.

To summarize, to use Tile definitions in an XML format, you should do the
following:

1. Create your definitions in tileDefinitions.xml.

This file should be in the WEB-INF folder. Other names for the file could
be used, but you must notify the system of those names when defining
TilesPlugin.

2. Add the TilesPlugin class as a plug-in to the struts-config.xml file.

Remember that if you’ve already defined a custom RequestProcessor,
the custom class must extend TilesRequestProcessor instead of
RequestProcessor.

3. For each forward element that you want to forward to a Tiles defini­
tion, modify the path to refer to the definition ID.

Using Tile definitions allow you to eliminate the need for a presentation JSP
page, such as loggedin.jsp. Instead you can use an XML Tile definition as a
replacement.

We’ve just covered the basics of the Tiles framework. This framework offers a
robust and comprehensive solution to enforcing consistency and reducing
maintenance for Struts applications. If you’re interested in further details,
look at the references found at the bottom of the Tiles documentation page
on the Struts Web site:

jakarta.apache.org/struts/userGuide/dev_tiles.html

16 559575 Ch11.qxd 3/2/04 4:03 PM Page 264

264 Part III: Expanding Your Development Options

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 265

Chapter 12

Securing Your Application
In This Chapter
� Making your application responsible for security

� Handing over security responsibility to the container

If you’re developing an application that has any pages or other resources
that need restricted access, you need to decide on how to approach the

issue of security. You can take one of two broad approaches to managing
security in a Web application. You can make the application responsible for
its own security issues or leave security issues to the Web container. As you
see in the following sections, both approaches have their advantages and
disadvantages.

In the issue of security, you need to be concerned with two matters:

� Limiting access to a certain subset of users: When users make a request
and are granted permission to see the page or perform the operation, we
say that they’re authorized.

� Making sure users are who they say they are: When users have been ver­
ified to be who they say they are, we say that they’ve been authenticated.

Therefore, the two issues of security are authorization and authentication.

Making the Application Responsible
When the application is responsible for its own security, it must ensure that
the user has been authenticated and is authorized to view the page or perform
the action before allowing access to that page or operation. The application
can respond in one of the following ways:

� If the user is authenticated but not authorized, the application denies
access to the user and forwards the user to a “You can’t do that” page.

� If the user has not yet been authenticated, the application forwards the
user to a login page.

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 266

266 Part III: Expanding Your Development Options

Logging in and authenticating a user

When a user requests or is referred to a login page, he or she enters the
appropriate username and password for the Web site. When the user submits
the form, the application uses the values in the username and password fields
to authenticate the user by testing the values against a list of valid username
and passwords. This list could be in memory, in an SQL database, in an LDAP
(Lightweight Directory Access Protocol) server, or just about anywhere else
on the network you could think of.

When the application has authenticated the user, the authentication informa­
tion is typically stored somewhere (usually in the session). Then the next time
the user requests a protected page, the security mechanism can first check to
see whether the user has already been authenticated. If so, the application
processes the requested page. Otherwise, the application forwards the user
to the login page.

Authorizing a user

After authentication, the next task is authorization. In many Web applications,
authentication and authorization may be the same — pages and operations
are open to all authenticated users. After authentication is complete, further
authorization is unnecessary.

However, if you have many levels or classes of users, each of whom can view
different pages or perform different operations, you need an authorization
procedure when those requests come up.

Authentication and authorization in Struts

You need to perform authentication and authorization checks, each time a
user requests a protected page or operation. What is an effective way to
manage these checks in a Struts application?

One approach is to insert an authentication check at the beginning of any
Action class that you need to protect. Here is a code segment that shows
how you can perform this check:

1 HttpSession session = request.getSession();
2 User user = (User) session.getAttribute(“user”);
// ensure that user has been authenticated

3 if (user == null)
{

4 return (mapping.findForward(“login”));
}

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 267

Chapter 12: Securing Your Application 267
When a user is authenticated, a User object representing the user is placed
in the user’s session with the key, “user”. In this way, whenever you need to
check a user’s authentication, you just need to get the User object out of the
session (Lines 1 & 2). If the User object is available (Line 3), you can assume
that the user was previously authenticated. If the User object is not available
(Line 3), you know that the user needs to be authenticated and can forward
him or her to the login page (Line 4).

Authorization, if necessary, requires that you consider the permissions that
have been granted to the user in relation to the requested page or operation.
This means that before performing an operation, the code must check to see
whether the current user is authorized to perform that operation.

One approach is to encapsulate the permissions granted to the user into
the User object created at login time. These could take the form of boolean
values for the possible permissions. For example, you could have a Web
application that has three levels of users, each of which is allowed to view
different pages in the application. Besides the standard user, suppose that
you have department head users and administrative users. Therefore, you
can have two boolean properties in the User object that indicate this,
departmentHead and administrator. You can reference them with the
methods isDepartmentHead and isAdministrator.

Now when you want to check the authorization level of the user before dis­
playing a page, you can do something like the following in the Action class:

1 HttpSession session = request.getSession();
2 User user = (User) session.getAttribute(“user”);
// authenticate the user
...

// ensure that user is an administrator authorized
// to perform this operation

3 if (!user.isAdministrator())
{

4 return (mapping.findForward(“unauthorized”));
}
// begin modification of logins
...

This is a reasonable approach if you have a small Web application that’s not
going to get much bigger. If the application does become much larger, how­
ever, the drawbacks are considerable because you have authorization code
interspersed throughout many Action classes.

Customizing the RequestProcessor Class

For larger Web applications, another approach is to centralize the authentica­
tion process in one class.

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 268

268 Part III: Expanding Your Development Options

The RequestProcessor class is one of the key classes in the Controller layer.
(For more information about the RequestProcessor class, see “Processing
Requests” in Chapter 4.) This class handles all requests for the Struts applica­
tion and is therefore an ideal location to place an authentication function.
The Struts developers must have had this use in mind when they added an
extension point (a dummy method made to be overridden in a subclass) to
the class.

The RequestProcessor class has a method named processPreprocess
that does nothing in the class (other than return true) and exists only to be
overridden by you. Here is the method signature:

protected boolean processPreprocess(HttpServletRequest request,
HttpServletResponse response)

Each time RequestProcessor processes a request, it calls the process
Preprocess method. Normally, nothing happens. However, here is an ideal
place to add any kind of preprocessing actions that you would like to occur
for each request — such as authentication.

Listing 12-1 shows how you might extend the RequestProcessor class and
override the processPreprocess method to include authentication. We sub­
class the RequestProcessor class to create CustomRequestProcessor.

Listing 12-1	 Overriding the processPreprocess Method of the
CustomRequestProcessor Class

1 protected boolean processPreprocess(HttpServletRequest request,
HttpServletResponse response)

2 {
3 boolean continueProcessing = true; // assume success
4 // Test if the request is a login request
5 try
6 {
7 HttpSession session = null;
8 // ensure that the user’s session has not timed out
9 if(request.isRequestedSessionIdValid())
10 session = request.getSession();
11 else // user’s session has timed out, make them login again
12 response.sendRedirect(“login.jsp”);
13 // get the current request’s path
14 String path = processPath(request, response);
15 // don’t do any testing if user is logging on
16 if (!path.equals((String) “/login”))
17 {
18 // get the user bean
19 User user = (User) session.getAttribute(“user”);
20 // ensure that user has logged on
21 if (user == null) // else make them login first
22 {

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 269

Chapter 12: Securing Your Application 269
23 try
24 {
25 response.sendRedirect(“login.jsp”);
26 }
27 catch(Exception ioe)
28 {
29 log.error(“problem redirecting in processPreprocess - “ +

ioe.getMessage());
30 }
31 continueProcessing = false;
32 }
33 }
34 }
35 catch(Exception ioe)
36 {
37 log.error(“problem processing path - “ + ioe.getMessage());
38 continueProcessing = false;
39 }
40 return continueProcessing;
41}

Here’s how this code works:

� Line 9: The overridden processPreprocess method first makes sure
that the user’s session has not timed out and is still valid.

� Line 12: If the session has timed out, the user is redirected to the

login.jsp page to log on again.

� Line 14: We get the current request path to determine whether the user
may be trying to log on right now. The processPath method is inherited
from the superclass RequestProcessor. If the user is trying to log on,
we skip all the authentication code in Lines 16-33 and just let the request
go through.

� Lines 19 and 21: If the request is anything other than the login page, we
ensure that we have a User object before continuing.

� Line 25: If we do not have a user object, the user has not yet logged on,
so we redirect the user to the login.jsp page.

Every request handled by Struts executes this code. The approach used in
Listing 12-1 may not be an appropriate solution if you have a mixture of pro­
tected and unprotected pages handled by Struts, because in that case you
need to disregard requests for unprotected pages. If you have HTML pages or
non-Struts JSP pages that need protection, this approach will not work because
it handles only requests that come through the Struts controller. Furthermore,
this approach does not address the issue of authorization specific to particular
lines of code in the Action class.

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 270

270 Part III: Expanding Your Development Options

The final step is to inform Struts of the new RequestProcessor by adding it
to the struts-config.xml file, as shown here.

<!-- ========== Controller Definition =========================== -->
<controller processorClass=”dummies.struts.CustomRequestProcessor” />

The controller definition comes right after the action-mappings definition in
the configuration file.

Declaring Security in

Your Web Container

The J2EE specification defines a declarative security mechanism in which
application security is expressed in a declarative syntax in the configuration
files. Using declarative security, Web containers can provide both authentica­
tion and authorization services for Web applications running in the Web con­
tainer. You can use these services with Struts applications.

Four basic steps need to happen for the container’s declarative security to
work. We discuss each of these steps in detail in this section.

Step 1 — Setting up the roles

The first step is to define the roles that your application will use. Roles are a
way of grouping users. A role represents a set of permissions that you want to
apply to a certain group of users. For example, a purchasing Web application
might have three categories of users: Regular users create purchase orders,
department heads approve purchase orders, and administrators add and
delete users from the system. Regular users and department heads should not
be able to add or remove users. Regular users and administrators should not
be able to approve purchase orders. To accommodate these three types of
users, you might define a role for each group of users — standard, depthead,
and admin.

Step 2 — Defining the realms

The second step is to define a realm in the Web container’s server.xml file.
A realm identifies a set of users, their passwords, and their associated roles.
Four types of realms are possible, depending on how you set up your user
information:

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 271

.

Chapter 12: Securing Your Application 271
� UserDatabaseRealm: The simplest but least flexible and secure choice.

In this scenario, usernames, passwords, and roles are kept in a static file
that is loaded into the Web container’s memory at startup. For Tomcat,
this file defaults to tomcat-users.xml.

� JDBCRealm: If you keep your username, passwords, and roles in an SQL
or other database, using JDBCRealm makes sense. You must have two
tables for user information: one for usernames and passwords and the
other for the associated roles given to users.

� JNDIRealm: Use this realm if you use an LDAP (Lightweight Directory
Access Protocol) server. JNDI (Java Naming and Directory Interface) is
the standard for Java access to LDAP servers. JNDIRealm gives you all the
options you need to look up usernames, passwords, and roles from the
LDAP server.

� JAASRealm: JAAS (Java Authentication and Authorization Service) pro­
vides an implementation of the PAM (Pluggable Authentication Module)
framework that allows applications to remain independent of the
authentication and authorization implementation. You can find this ser­
vice in J2EE SDK 1.4 and above.

Suppose that you have a database that contains all your users, their login
names, and their passwords. Because JDBCRealm covers this type of data­
base, you would choose JDBCRealm in the server.xml file. To accommodate
the roles, you need to create a new database table to hold the same login
names and their associated roles. If a user has more than one role, you need
one row containing the user name and role for each role. The table structures
would look like Figure 12-1.

users userRoles

user_name, varchar 25

user_role, varchar 15

user_name, varchar 25

user_pass, varchar 10

.

.

user_logons, int

Here are some example rows of data for each table:

Figure 12-1:
Table

structures
for users

and roles.

users table userRoles table

user_name user_pass user_name role_name

bjohnson indigo bjohnson admin

clrook lucy12$ clrook depthead

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 272

272 Part III: Expanding Your Development Options

After you defined and populated the tables, you need to define JDBCRealm
for the database you’re using in the server.xml file. The server.xml file
already has definitions (commented out) for several of the most common
databases — MySQL, Oracle, and the generic database connected with ODBC.
In Listing 12-2, we modify the sample JDBCRealm definition for MySQL and
put it into use.

Listing 12-2 JDBCRealm Definition for MySQL in server.xml

1 <Realm className=”org.apache.catalina.realm.JDBCRealm”
2 debug=”99”
3 driverName=”com.mysql.jdbc.Driver”
4 connectionURL=”jdbc:mysql://localhost/Purchasing”
5 connectionName=”webpurchasing”
6 connectionPassword=”bigmoma2”
7 userTable=”users”
8 userNameCol=”user_name”
9 userCredCol=”user_pass”
10 userRoleTable=”userRoles”
roleNameCol=”role_name” />

Note the following lines from Listing 12-2:

� Line 1: Specifies the fully qualified class name of the realm that we’re

defining — in this case, JDBCRealm.

� Line 2: Sets the debug level to the lowest possible setting.

� Lines 3 and 4: Specify the database driver and connection URL,

respectively.

� Lines 5 and 6: Specify the username and password used to connect to
the database.

� Line 7: Names the table that contains the username and password

information.

� Lines 8 and 9: Name the username and password column names.

� Line 10: Names the table that contains the user roles.

� Line 11: Names the column that contains the role. The column in this
table that contains the username must have the same name as the
column that contains the username in the user table. In this case, the
column in this table that contains the username is named “user_name”.

All of these definitions let the container know how to access the user and role
information for authentication and authorization. Because the container is
managing security and we are using the JDBCRealm, the database driver must
be available. Therefore, the driver should be placed somewhere on the con-
tainer’s classpath. For Tomcat, place the driver in the common/lib folder.

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 273

Chapter 12: Securing Your Application 273
You can define only one realm for the Web container. Every application that
uses container-based security must use that same realm.

Step 3 — Specifying authorization areas

The third step in the process is to declare the areas in the application that
you want to protect by modifying the application’s web.xml file. When using
Struts applications, you can make these declarations in two areas: in the
struts-config.xml file to protect Struts actions and in the web.xml file to
protect other resources, such as JSP, HTML, and image files.

Struts use of user roles for authorization
You can protect a Struts Action in the container-based security scheme
using the roles attribute in the action tag. RequestProcessor always
checks to see whether an Action is protected with a role. If it is protected,
RequestProcessor checks to make sure that the user’s role matches one of
the permitted roles before Action is called. Note that you do not have to
subclass RequestProcessor using this security approach.

Here is a code snippet from a struts-config.xml file:

<action path=”/acctlist”
type=”com.othenos.purchasing.struts.AcctListAction”
name=”acctListForm”
scope=”session”
input=”/acctlist.jsp”
roles=”admin,depthead”>

<forward name=”errors” path=”/acctlist.jsp”/>
<forward name=”success” path=”/acctlist.jsp”/>

</action>

Note the roles attribute in the action definition. This attribute specifies
that only users who have either admin or depthead roles may execute this
action.

General-purpose authorization
Use the web.xml file to protect all the other resources that you can’t protect
with struts-config. The purpose of the security-constraint tag is to
define an area in the Web application that should be protected from general
use. The syntax for the security-constraint tag follows:

<!ELEMENT security-constraint (display-name?, web-resource-collection+,
auth-constraint?, user-data-constraint?)>

<!ELEMENT display-name (#PCDATA)>
<!ELEMENT web-resource-collection (web-resource-name, description?, url-

pattern*,
http-method*)>

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 274

274 Part III: Expanding Your Development Options

<!ELEMENT web-resource-name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT url-pattern (#PCDATA)>
<!ELEMENT http-method (#PCDATA)>
<!ELEMENT auth-constraint (description?, role-name*)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT user-data-constraint (description?, transport-guarantee)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT transport-guarantee (#PCDATA)>

The syntax is not quite as complex as it might first appear. Many of the elements
are optional. For each area that you want to protect, you use a security-
constraint tag to define the area. For each security-constraint tag, you
need at least one web-resource-collection tag that describes the area to
be protected.

Suppose that you want to protect a folder (/admin) that contains some
JSP pages for use by users in only the admin role. It might look like this:

<security-constraint>
<web-resource-collection>

<web-resource-name>
Administrative Area

</web-resource-name>
<url-pattern>

/admin/*.jsp
</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>admin</role-name>
</auth-constraint>

</security-constraint>

The web-resource-name

The sequence of tags in configuration files in important. Refer to Chapter 7
for information on a particular tag.

tag is used only for identification for human read­
ers. The url-pattern tag defines the context-relative portion of the URL that
indicates a protected area. To protect all resources in the admin folder, don’t
include .jsp. The auth-constraint/role-name tag defines which user
roles may have access to these protected resources.

To find out more about the security-constraint tag, browse or download
the J2EE 1.4 Tutorial at java.sun.com/j2ee/1.4/docs.

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 275

Chapter 12: Securing Your Application 275

Step 4 — Defining authentication methods

The last step is defining the authentication mechanism to use. When a user
accesses a protected area, the container first determines whether the user
has been authenticated. If not, the container performs authentication based
on one of the four authentication methods selected. The four possible
authentication methods are:

� BASIC: If you choose BASIC authentication, the Web container uses the
standard HTTP basic authentication. This means the Web browser asks
the user for a username and a password. The password goes across the
network in base64-encoded text.

� DIGEST: The DIGEST form of authentication uses a more robust encryp­
tion method to send the passwords across the network. However, this
form of authentication is more complex to set up and prone to problems
with the current 4.x versions of Tomcat.

� FORM: In the FORM style of authentication, you provide both the login
form and the error form (in case the login has problems). Unless you’re
using SSL (Secure Sockets Layer, that is, HTTPS), passwords go across
the network unencrypted.

� CLIENT-CERT: This form of authentication requires the use of SSL.
During authentication, the browser is asked to present an X.509 client
certificate in lieu of the user typing a username and password combina­
tion. CLIENT-CERT is a complex topic, so we do not discuss it in detail.
To read more about this and other forms of authentication, look at the
J2EE tutorial at java.sun.com/j2ee/1.4/docs.

The web.xml file has a login-config tag that you use to define the authenti­
cation method. Here is the syntax of the tag:

<!ELEMENT login-config (auth-method?, realm-name?, form-login-config?)>
<!ELEMENT auth-method (#PCDATA)>
<!ELEMENT realm-name (#PCDATA)>
<!ELEMENT form-login-config (form-login-page, form-error-page)>
<!ELEMENT form-login-page (#PCDATA)>
<!ELEMENT form-error-page (#PCDATA)>

The auth-method tag refers to one of the four possible authentication meth­
ods: BASIC, DIGEST, FORM, or CLIENT-CERT. The realm-name tag is the name
that will be displayed on the browser-supplied login form in BASIC or DIGEST
forms of authentication.

If you choose the FORM type of authentication, you also need to supply the
forms to display using the form-login-config tag. Specify the login form to
use with the form-login-page tag. The error page should be defined in the
form-error-page tag. Both the login and error pages are required if you use
FORM based authentication.

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 276

276 Part III: Expanding Your Development Options

Examples of declaring authorization
and authentication
To integrate the information in this chapter, this section provides two exam­
ples of authorization and authentication.

Protecting the entire application with BASIC authentication
In the first example, we assume that every page of the application is protected
from all users, except those who have the role of admin. We use the BASIC
form of authentication, letting the browser display the login form. Here is the
code snippet from web.xml:

<security-constraint>
<web-resource-collection>

<web-resource-name>
All of Application

</web-resource-name>
<url-pattern>

/*
</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>admin</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Login Sample Application</realm-name>

</login-config>

The url-pattern tag specifies that all resources of the application should be
protected. The use of the role-name tag with the admin role specifies that
only users with that role can access the pages. Figure 12-2 shows an example
of a login form using BASIC authentication. Notice that the realm name is dis­
played in the login form.

Figure 12-2:
BASIC

authenti­
cation login

screen.

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 277

Chapter 12: Securing Your Application 277
Restricting access to two folders
In this example, we assume that a group of pages in the admin folder should
be protected from all except those with admin roles. In addition, a group of
accounting pages in the acct folder should be restricted to those users with
the depthead or admin role. Again, we use the BASIC form of authentication,
letting the browser display the login form. Here is the code snippet from
web.xml:

<!--Security for Administrative pages -->
<security-constraint>

<web-resource-collection>
<web-resource-name>

Administration
</web-resource-name>
<url-pattern>

/admin/*
</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>admin</role-name>
</auth-constraint>

</security-constraint>

<!--Security for Accounting pages -->
<security-constraint>

<web-resource-collection>
<web-resource-name>

Accounting
</web-resource-name>
<url-pattern>

/acct/*
</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>depthead</role-name>
<role-name>admin</role-name>

</auth-constraint>
</security-constraint>

<!-- Authorization BASIC -->
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>Login Sample Application</realm-name>

</login-config>

The two secure areas are constrained so that only users with the proper roles
can view them. One interesting thing to note is that we can switch realms in
the server.xml file without having to change any settings in the web.xml
file. So you could initially use UserDatabaseRealm and then change to
JDBCRealm with no side effects on the security configuration in web.xml.

17 559575 Ch12.qxd 3/2/04 4:03 PM Page 278

278 Part III: Expanding Your Development Options

The steps in setting up container-based, declarative security can be summa­
rized in these four steps:

1. Decide on the roles in which to group users based on the pages and

actions each group should be able to access or perform.

2. Determine the authentication method to use — define the realm in the
server.xml file. Make sure the appropriate user data is configured in
the data source you are using.

3. Define the authorization areas in the application by configuring the

struts-config.xml file. To define authorization on non-Struts

resources, such as HTML files, use the web.xml file.

4. Set up the authentication method for the application in the web.xml file.

18 559575 PP04.qxd 3/2/04 4:04 PM Page 279

Part IV
Putting It All

Together

18 559575 PP04.qxd 3/2/04 4:04 PM Page 280

In this part . . .

T

first time they visit the site and log on for subsequent

his is where we put together all the knowledge in the
book into an example Web application. In Chapter 13,

we explain the tools in Struts for creating a log that you
can use to troubleshoot problems. (Of course, you never
have any problems, right?) In Chapter 14, we explain the
code that you need to create MusicCollection.com, an
application that lets users create, store, and edit a list of
their favorite albums online. Users need to register the

visits. Then they retrieve their list of albums from the
database and add, edit, or delete entries. When they are
finished, they can log off. After completing this applica­
tion, you should be off and running, creating your own
Web applications.

19 559575 Ch13.qxd 3/2/04 4:04 PM Page 281

Chapter 13

Logging Your Actions
In This Chapter
� Advantages of logging

� Working with Commons logging

� Trying out Java 1.4 logging

� Getting familiar with Log4J

When an application is running, many events occur that would be valu­
able for you to know about. Some events might be in the area of secu­

rity, such as knowing when and how frequently users log on and off. You might
also want to know when error conditions occur. The benefits of logging are
limited only by the creativity and imagination of the developer.

One way to track all this information is to write messages about the events in
a place where you can look at them. Writing these messages on the system
console, on a file on disk, in an e-mail message, or just about any place you
can think of — is defined as logging the messages.

Logging for Everyone

Logging has been described as a low-tech debugging mechanism. That may
be true, but logging can also be much more. Using logging, the developer can
do the following, all without changing code:

� Provide useful information about the runtime state of the application

� Increase or decrease the amount of logging detail provided

� Vary the format of the logging information

� Send the logging information to a different destination

� Create multiple logs

� Turn logging on or off

19 559575 Ch13.qxd 3/2/04 4:04 PM Page 282

282 Part IV: Putting It All Together

Using Commons Logging

Fortunately, Struts provides the developer with a lot of flexibility when it
comes to logging through the inclusion of the Commons Logging library —
another of the many Jakarta projects — in the Struts library files.

Commons Logging is a lightweight framework that provides a common log­
ging interface to any one of the many actual logging packages, such as Log4J
and Java 1.4. This common interface enables you, the developer, to pick and
choose the logging package that you want to use without having to worry
about changing your code.

To use Commons Logging, make sure that the commons-logging.jar file is
in your WEB-INF/lib directory. Import the Log and LogFactory classes in
the source files that you want to include logging using the following:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

The two classes of interest in the Commons Logging package are the Log
class, which performs the logging function, and the LogFactory class, which
knows how to get an instance of the Log class. After you import the two log­
ging classes, you need to get an instance of a Log from the LogFactory by
passing the Class that is invoking the logger, using the following:

Log log = LogFactory.getLog(Login.class);

The LogFactory determines what type of logger to get based on the follow­
ing steps:

1. Look for an attribute named org.apache.commons.logging.Log in the
common-logging.properties file. If the attribute exists, use the associ­
ated value to choose the logger class. Otherwise, go to the next step. In
this way you can explicitly define which logger implementation to use. For
Log4J, use org.apache.commons.logging.impl.Log4JLogger. If you
want the Java 1.4 logger, use the org.apache.commons.logging.impl.
Jdk14Logger class.

2. Look for a system property named org.apache.commons.logging.Log.
If the property is found, use the associated value to choose the logging
implementation; the value should be one of the logger classes listed in
Step 1. Otherwise, go to the next step.

3. If the Log4J logging system is available in classpath, use the corre­
sponding Log4JLogger wrapper class. Otherwise, go to the next step.

4. If the application is running with JDK 1.4 or above, use the correspond­
ing Jdk14Logger wrapper class. Otherwise, go to the next step.

19 559575 Ch13.qxd 3/2/04 4:04 PM Page 283

Chapter 13: Logging Your Actions 283
5. Use the simple built-in logger called SimpleLog. SimpleLog sends all

messages to System.err. You can configure this logger by setting vari­
ous system properties. See the org.apache.commons.logging.impl.
SimpleLog API documentation for further details. You may find the API
documentation for the Commons Logging package at jakarta.apache.
org/commons/logging/api/index.html.

You use the log instance to write messages to the log file. The messages are
written based on the priority of the message. Following are the possible pri­
orities from most severe to least severe:

� Fatal: Severe errors that cause termination of the application

� Error: Other runtime errors or unexpected conditions

� Warn: Use of deprecated APIs, poor use of API, other errors or situa­

tions that are unexpected but not necessarily wrong

� Info: Interesting runtime events, such as initialization or shutdown actions

� Debug: Detailed information on the flow of events in the application

� Trace: More detailed information than the Debug level

Each priority has a method by the same name with two different method sig­
natures. For example, for the fatal priority, the methods are:

log.fatal(Object message);
log.fatal(Object message, Throwable t);

Each of the other priorities has method signatures like fatal. The determina­
tion whether or not to write the message to the log comes only when the
method is called. The logger configuration specifies the lowest level of sever­
ity to write out. For example, if you choose the WARN level, the log file will
contain only log messages with priorities of FATAL, ERROR, and WARN. In this
way, you have control over how much information you log.

The ability to control the quality of logging information in the configuration
file means that you can leave the logging code in the application without
much of a performance effect. Only when you need more detailed information
do you need to turn on the lower-level logging features.

The one disadvantage of leaving the log statements in the code is that a cer­
tain amount of overhead occurs when calling the methods even if the logging
does not take place. To reduce that overhead, code guard methods are avail­
able to test the logging level and skip the calling of logging methods if that
level is not enabled. The code guard methods are

logIsFatalEnabled()
logIsErrorEnabled()
logIsWarnEnabled()
logIsInfoEnabled()

19 559575 Ch13.qxd 3/2/04 4:04 PM Page 284

284 Part IV: Putting It All Together

logIsDebugEnabled()
logIsTraceEnabled()

Following is an example of using a code guard:

if (logIsInfoEnabled())
{

log.info(“Starting mail server.”);
}

Using Java 1.4 Logging
By default, the configuration file for Java 1.4 logging is logging.properties
in the JRE/lib directory. You can use an alternative means of reading the
configuration file by specifying the file location and name in the java.util.
logging.config.file system property. Look at the Java API documentation
for the java.util.logging.LogManager class for further information on
logging configuration.

You can set the following features in the configuration file:

� The priority level to log messages. INFO is the default.

� The handler to use when logging. The standard is to log to the console.
An optional handler is available to log to a file. Other handlers are avail­
able to write to memory, an output stream, or a network stream.

� A SimpleFormatter or XML formatter. Use a formatter to format the log
records.

The Java 1.4 logging offers more features than the SimpleLog implementa­
tion in Commons Logging but fewer features than Log4J.

Working with the Log4J Package

Log4J is a mature, industrial-strength logging package with a multitude of
options. Chances are that this package will do everything you need and then
some. Log4J is one of the many Jakarta open-source projects.

The configuration file for the Log4J logging package is log4j.properties.
You usually place this file in the WEB-INF/classes folder. In addition, the
Log4J library file, log4j.jar, needs to be present in the WEB-INF/lib folder.
You may download the library file as well as sample configuration files from
the Log4J Web site at

19 559575 Ch13.qxd 3/2/04 4:04 PM Page 285

Chapter 13: Logging Your Actions 285
jakarta.apache.org/log4j/docs/index.html

Documentation is also available at the site.

Log4J offers more logging options than the Java 1.4 logger, including where
you write the files and how you format them. Listing 13-1 shows a sample of a
Log4J configuration file that outputs to the console and to a rolling log file.

Listing 13-1 Sample Configuration File for Log4J

1 # The root category uses two appenders called stdout and R.
2 # The root category assumes the INFO priority for root.
3 # If the priority is not specified, it is DEBUG. The root
4 # category is the only category that has a default priority.

5 log4j.rootCategory=INFO, stdout, R

6 # stdout is set to be a ConsoleAppender which outputs to std out.

7 log4j.appender.stdout=org.apache.log4j.ConsoleAppender

8 # Configure stdout appender to use the PatternLayout
9 log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

10 # Pattern to output the caller’s filename and line number
11 log4j.appender.stdout.layout.conversionPattern =%d{DATE} %5p [%t] (%F:%L) -

%m%n

12 # R is the RollingFileAppender that outputs to a rolling log
file called rolling_log_file.log.

13 log4j.appender.R=org.apache.log4j.DailyRollingFileAppender
14 log4j.appender.R.File=${catalina.base}/logs/wp_log_file.log
15 log4j.appender.R.DatePattern=’.’yyyy-MM-dd’.txt’

16 # Define a pattern layout for the file.
17 # For more information on conversion characters (i.e. d,p,t,c,l,m,n)
18 # please see the PatternLayout class of the Log4j API.

19 log4j.appender.R.layout=org.apache.log4j.PatternLayout
20 log4j.appender.R.layout.conversionPattern =%d{DATE} %5p [%t] (%F:%L) - %m%n

In Listing 13-1, note the following lines:

� Line 5: Specifies the priority of INFO using two appenders, stdout and R,
which are defined later.

� Line 7: Specifies that ConsoleAppender be used with stdout. This
means all messages will be written to the system console.

� Lines 9 and 11: Specify the format to use when writing out messages to
stdout.

19 559575 Ch13.qxd 3/2/04 4:04 PM Page 286

286 Part IV: Putting It All Together

� Lines 13–15: Define the R appender as DailyRollingLogAppender. This
means that for each 24-hour period, a new file will be created and the
old one closed. You specify the file name and location, as well as the
suffix that you want to append to the file after it has been rolled over. In
this case, the suffix is the date followed by the .txt extension (such as
2003-11-27.txt).

� Lines 19–20: Specify that the format for the R appender will be identical
to the stdout appender.

The configuration of Log4J offers many options. For detailed information on
configuration issues, visit the Log4J Web site at jakarta.apache.org/log4j/
docs and review the documentation.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 287

Chapter 14

Creating the MusicCollection.com

Application

In This Chapter
� Introducing the MusicCollection application

� Creating the database schema

� Configuring the data source

� Creating the pages

� Logging on

� Creating a user account

� Displaying albums

� Creating, editing, and deleting albums

� Logging off the program

� Handling exceptions in different ways

� Running the program

This chapter shows you how to create a complete application using
Jakarta Struts. To create this demonstration application. you need to

apply most of the concepts and techniques we have explored throughout the
book. You don’t need to retype the code — you can find the complete code
for the MusicCollection.com application at the Jakarta Struts For Dummies
Web site at www.dummies.com/go/jakarta.

Description of the Application

The hypothetical MusicCollection.com application enables registered users
to create and maintain a list of their favorite music. In the application, we call
each listing an album.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 288

288 Part IV: Putting It All Together

The prospective user must join the Web site by entering a small amount
of personal information, such as name, e-mail address, and a password.
Subsequent visits to the site require users to log on using their e-mail
address and password.

After the user has logged on, the application retrieves a list of his or her
albums from the database and displays this list. The user may modify or
delete an album or create one. The application immediately updates all
changes or additions in the database and displays the resulting album list.

When finished, users may log off to remove their connection to the system. If
an error should occur during the processing of a request, the application dis­
plays an appropriate error page.

Figure 14-1 shows the various pages and relationships that go to make up the
application.

Figure 14-1:
High-level

view of the
application’s

Web site.

To maximize your exposure to the various capabilities and techniques dis­
cussed throughout the book, we have made several design decisions about
what should go into the application. These decisions are to

� Develop the pages with a common look-and-feel through the page com­
position technique of using includes (Chapters 6 and 11)

� Use I18N throughout the application (Chapter 6)

� Maximize the use of the JSTL and Struts-EL tag libraries (Chapter 10)

� Let Struts handle the creation of ActionForms by using its dynamic
form capability (Chapter 6)

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 289

Chapter 14: Creating the MusicCollection.com Application 289
� Use the Validator plug-in to perform validation on the forms that need it

(Chapter 9)

� Use a database to hold all application data (Chapter 5)

� Interact with the database using a DataSource managed by Struts
(Chapter 5)

� Handle exceptions through the Struts declarative mechanism (Chapter 8)

� Write a custom ExceptionHandler to provide better exception logging
(Chapter 8)

� Provide a common authorization mechanism implemented in a cus­
tomized RequestProcessor (Chapter 12)

� Perform initialization actions during application startup and cleanly
close the DataSource before application shutdown by creating a
custom plug-in (Chapter 9)

Creating the Database Schema

One of the first steps in creating the application is defining the database
scheme that you want to use. The primary purpose of the site is to manage
lists of albums for individual users, so you can use one table for that pur­
pose. We named the table albums. This table contains information about the
albums, such as name, artist, year of release, type of media, and category of
music. (You could add additional fields to the record structure if you want to
track other types of data.) In addition, each database record has a unique ID,
the user’s ID, and the date and time of the record’s creation. You see this
table in Figure 14-2.

Figure 14-2:
The album

table

structure.

Because this site is for only registered users, you need a table to keep track
of those who have registered. We called the table users. The primary infor­
mation consists of the first and last name of the user, e-mail address, and
password. In addition, we want to keep track of how often users log on, the
last time they logged on, when records were created, and the unique ID for
each the user. Figure 14-3 shows the structure of the users table.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 290

290 Part IV: Putting It All Together

Figure 14-3:
The users

table

structure.

Configuring DataSource

Because you’re using a database to store user and album information, it makes
sense to take advantage of the capability Struts has to manage DataSources,
as discussed in Chapter 5. You may need to make slight modifications to the
following configuration, depending on your database, driver, username, and
password. Here is the definition of DataSource in the struts-config file for
use with the MySQL database:

<!-- ========== DataSource Definitions =================================== -->
<data-sources>

<data-source key=”musiccollection”
type=”org.apache.commons.dbcp.BasicDataSource”>

<set-property property=”description” value=”Music Collection Database”/>
<set-property property=”driverClassName” value=”com.mysql.jdbc.Driver”/>
<set-property property=”username” value=”webuser”/>
<set-property property=”password” value=”bigmoma”/>
<set-property property=”url” value=”jdbc:mysql://localhost/musiccollection” />
<set-property property=”maxCount” value=”8”/>
<set-property property=”minCount” value=”2”/>
</data-source>

</data-sources>

Creating the Pages and Associated Files

The application overview in Figure 14-1 shows that at least three pages have
form data needing validation: Login, Join, and Album. As it turns out, the
MusicList page also needs a form, although validation is not necessary.

For those three pages using the form validation features of the Validator
plug-in, the dynamic forms will be of the DynaValidatorForm class. The
MusicList dynamic form will be a DynaActionForm class, because it doesn’t
need validation.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 291

Chapter 14: Creating the MusicCollection.com Application 291
The Web site should have a similar look-and-feel on every page. To achieve
that goal, you can use one of the page composition techniques that we dis­
cuss in Chapter 11. Instead of using the Tiles technology, we have elected to
use the includes technique to keep things simple. We will define common
header and footer JSP files for each page of the Web site.

We use an iterative development process to build the example application.
You could take many approaches to construct the various components.
However, we find it useful to start with one page and implement as many of
the related parts as reasonable (for example, ActionForms, Actions, beans,
and configurations). The general steps to do this follow:

1. Define and create the page.

Analyze the data needed for the page and create the JSP. All JSP pages
should use the JSTL and Struts-EL tag libraries when needed. I18N
should be included for every page.

2. Configure the dynamic form, if necessary.

If the page contains form fields, define the associated dynamic form in
the struts-config file. The dynamic form is either a DynaValidator
Form or a DynaActionForm class, depending on whether or not field
validation is needed.

3. Add the validation rules to validation.xml, if needed.

If a dynamic form needs a field or fields to be validated, define the field
validators in the validation.xml file.

4. Create the Action class, if needed.

All pages that need processing should have an Action class. Some
pages may have two or more possible actions (for example, “new” and
“update”) that need to be handled in the Action class.

5. Create the Bean class for the Action, if needed.

Pages that interact with the Model layer need to have a bean whose
responsibility is to encapsulate all the interactions with the database.
In most cases, you also need to create a Data Transfer Object (DTO).

6. Configure action mapping for the Action class, if needed.

If an Action class is created, you need to define the action-mapping con­
figuration in the struts-config file.

7. Repeat steps 1 through 6 for each page in the Web site.

Let’s begin by looking at each of the pages that make up the Web site, starting
with the Home page.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 292

292 Part IV: Putting It All Together

Logging On from the Home Page

The Home page serves an entry point for both registered and prospective
users. As such, this page provides a form for the user to log on as well as
a mechanism for prospective users to create a user account.

Because of the logon function, the Home page requires the following addi­
tional components:

� A dynamic form for the logon fields

� Validation of the fields using the Validator plug-in

� A LoginAction class to process the logon

� A LoginBean to interact with the database to authorize the user

� The use of a common authorization mechanism so that after the user is
authorized, each page request easily verifies the user’s status

Home page design

Let’s sketch the content of the Home page to see what fields you need to
include for user input. Clearly, you need to have fields available for the user
to enter an e-mail address and a password. Furthermore, you need a button
for the user to click to submit the information for logging on.

However, if the user has not yet registered for the MusicCollection.com
service, the user needs to fill out a registration form to get a user account.
Although a different page (the Join page) will gather this information, the
Home page needs a button for the user to click to indicate the desire to join
MusicCollection.com. Clicking the button should take the user to the Join
page.

That is about all we need on the Login page. However, for eye appeal, you
probably want to add some marketing text as well as images to the body of
the page.

Because this application uses the includes page composition technique,
the main page (home.jsp) defines the structure of the page and includes the
header, footer, and body information from other files. The header and footer
are common to all pages and reside in the logo.jsp and footer.jsp files,
respectively. The body of the page will go into a separate JSP page named
homeContent.jsp. We follow this convention in creating all JSP pages.

Figure 14-4 shows how the Home page looks.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 293

Chapter 14: Creating the MusicCollection.com Application 293

Figure 14-4:
The Home

page.

LoginForm

The next step is to define the dynamic form associated with the Login page.
You define the dynamic loginForm in the struts-config file, as we explain
in Chapters 6 and 9. The loginForm has only two fields associated with it:
the email and password fields. The following code segment is the definition
for loginForm:

<form-bean name=”loginForm”
type=”org.apache.struts.validator.DynaValidatorForm”>

<form-property name=”email”
type=”java.lang.String”
initial=””/>

<form-property name=”password”
type=”java.lang.String”
initial=””/>

</form-bean>

LoginValidation and validation.xml

You need to perform declarative validation on the two fields in loginForm.
The email field is required and should look like an e-mail address. The pass-
word field is also required. In the validation.xml file, you specify the val-
idators for the loginForm as follows:

<form name=”loginForm”>
<field property=”email”

depends=”required,email”>

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 294

294 Part IV: Putting It All Together

<arg0 key=”error.email.required”/>
</field>

<field property=”password”
depends=”required”>

<arg0 key=”error.password.required”/>
</field>

</form>

LoginAction

The basic idea behind LoginAction is to take the user’s email and password
values and give them to LoginBean for authorization. If authorization is suc­
cessful, LoginAction saves the user information in the session and forwards
control to the MusicList page. If authorization fails, LoginAction creates an
error message and returns control back to the Home page.

Because the user can also request to sign up for an account, you should add
another button for joining. This button is actually a Cancel button that, when
clicked, submits the login form and puts an attribute (org.apache.struts.
action.CANCEL) with a value of true into the request. LoginAction looks
for this attribute-value pair. If LoginAction finds this pair, it forwards control
to the join.jsp page.

You could put a link on the Home page instead of a Cancel button. However,
using a link exposes the URL of the join.jsp page to the public. Listing 14-1
shows the body of the execute method of LoginAction.

Listing 14-1 Body of the execute Method of LoginAction

// did the user click the Join button?
Boolean bCancel =

(Boolean)request.getAttribute(“org.apache.struts.action.CANCEL”);
if(bCancel != null)

if(bCancel.booleanValue())
return (mapping.findForward(“join”));

// create a new LoginBean passing the datasource
LoginBean lb = new LoginBean(getDataSource(request, “musiccollection”));

// check to see if this user/password combination are valid
// will return a non-null UserDTO if valid
UserDTO user = lb.validateUser((String)((DynaValidatorForm)form).get(“email”),

(String)((DynaValidatorForm)form).get(“password”));
if(user != null)
{

// save UserDTO in session
request.getSession().setAttribute(“user”,user);
return (mapping.findForward(“success”));

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 295

Chapter 14: Creating the MusicCollection.com Application 295
}
else // username/password not validated
{

// create ActionError and save in the request
ActionErrors errors = new ActionErrors();
ActionError error = new ActionError(“error.login.invalid”);
errors.add(“login”,error);
saveErrors(request,errors);
return (mapping.findForward(“failure”));

}

LoginBean, model layer, and
exception handling
The purpose of LoginBean is to authorize the user. Therefore, when
the LoginBean is instantiated, a reference to DataSource is passed to
LoginBean. That reference is saved in an instance variable for use by the
validateUsermethod.

To perform authorization, the validateUsermethod must query the data-
base’s user table for a record that matches the given e-mail and password
values. If the validateUsermethod finds a record, it validates the user and
returns a DTO for the user. The UserDTO is a class that holds user informa­
tion in an object form, specifically the user’s lname, fname, email, and id.
If the user is not found in the user table, a null value is returned, indicating
authorization failure.

Any exception that gets caught in the method is logged and, in turn, throws a
ModuleException that is propagated up the calling stack until it reaches the
ExceptionHandler for RequestProcessor.

Listing 14-2 shows the validateUser method of LoginBean.

Listing 14-2 validateUser Method of LoginBean

public UserDTO validateUser(String email, String password) throws
ModuleException

{
UserDTO user = null;
Connection con = null;
Statement stmt = null;
ResultSet rs = null;
String sQuery = “”;
try
{

con = dataSource.getConnection();
stmt = con.createStatement();

(continued)

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 296

296 Part IV: Putting It All Together

Listing 14-2 (continued)

sQuery = “SELECT * FROM Users “ + “WHERE email = ‘“
sQuery += email + “‘ “ + “AND password = ‘“ + password + “‘“;
rs = stmt.executeQuery(sQuery);
if (rs.next())
{

// Create new user transfer object
user = new UserDTO();
user.setFirstName(rs.getString(“fname”));
user.setLastName(rs.getString(“lname”));
user.setId(rs.getInt(“id”));
user.setEmail(rs.getString(“email”));

// update user login information
sQuery = “UPDATE Users SET lastlogin=now(),numlogins=numlogins+1

where id=”
sQuery += user.getId();
int result = stmt.executeUpdate(sQuery);

}
}
catch (SQLException se)
{

log.error(“Error in validating user.”);
log.error(“SQL statement = “ + sQuery);
se.printStackTrace();
ModuleException me = new ModuleException(“error.db.sql”);
throw me;

}

finally
{

.

. finally code omitted

.
}
return user;

}

Action mapping configuration

Configuring the struts-config file for the LoginAction is straightforward.
You have to make sure to turn on validation by setting the validation
attribute to true.

You can take three possible directions from LoginAction:

� If authorization fails, return to the home.jsp page.

� If authorization succeeds, go to the musiclist.do action.

� If the user asks to join MusicCollection.com, go to the join.jsp page.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 297

Chapter 14: Creating the MusicCollection.com Application 297
Here is the action mapping for LoginAction:

<action path=”/home”
type=”dummies.struts.music.LoginAction”
name=”loginForm”
scope=”request”
input=”/home.jsp”
validate=”true”>

<forward name=”failure” path=”/home.jsp”/>
<forward name=”success” path=”/musiclist.do”/>
<forward name=”join” path=”/join.jsp”/>

</action>

Continued User Authentication

Once the user has been authenticated, the application must continue to
check the user’s authorization for each protected page requested. As it turns
out, every page except the Home and Join pages are protected.

To accomplish this, we use our example of how to write a custom Request
Processor found in Chapter 12, “Customizing the RequestProcessor Class.”
You can use the processPreprocess method in that example as a place to
start. As a reminder, the processPreprocess method is called for each
request that comes through the Struts controller. If the request is not for the
Home or Join pages, then you need to verify that the user has been previously
authenticated by looking for a UserDTO object in the session. If the UserDTO
object is not there, the user has not yet been authenticated and you need to
redirect the request to the Home page so the user can log on.

Listing 14-3 shows the processPreprocess method.

Listing 14-3 processPreprocess Method of Custom RequestProcessor

protected boolean processPreprocess(HttpServletRequest request,
HttpServletResponse response)

{
boolean continueProcessing = true;

// Test if the request is a login request
try
{

HttpSession session = null;
// make sure session has not timed out
if(request.isRequestedSessionIdValid())

session = request.getSession();
else

response.sendRedirect(“home.jsp?invalid=yes”);

(continued)

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 298

298 Part IV: Putting It All Together

Listing 14-3 (continued)

// get the current request path
String path = processPath(request, response);

// if user is not trying to logon or join, make sure user has been authenticated
if ((!path.equals((String) “/home”))&&(!path.equals((String) “/join”)))
{

// get the user bean
UserDTO user = (UserDTO) session.getAttribute(“user”);

// insure user has logged on
if (user == null)// else make them logon first
{

try
{

response.sendRedirect(“home.jsp?invalid=yes”);
}
catch(Exception ioe)
{

log.error(“problem redirecting in processPreprocess - “ +
ioe.getMessage());

}
continueProcessing = false;

}
}

}
catch(Exception ioe)
{

log.error(“problem processing path - “ + ioe.getMessage());
continueProcessing = false;

}

return continueProcessing;
}

Struts is to be notified about the CustomRequestProcessor by adding it to
the struts-config file, as follows:

<!-- =================== Controller Definition ============================= -->
<controller processorClass=”dummies.struts.music.CustomRequestProcessor” />

Creating a User Account

In order to use the services of MusicCollection.com a prospective user must
create an account. The Join page contains a form that the user fills out to
create the account.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 299

Chapter 14: Creating the MusicCollection.com Application 299

Join page

From the Home page, a prospective user can create an account by clicking the
Join button and going to the Join page. The Join page provides a form for the
prospective user to enter the personal information necessary to create the
account. The necessary fields are first name, last name, e-mail, and password.
Since the password value is always hidden while typing, it is always a good
practice to have the user enter the password twice to reduce the possibility of
typing errors. Therefore, you can also include one additional password valida­
tion field.

After entering all the information, the user clicks on the Join button to submit
the form. If the account is successfully created, the Welcome page is dis­
played. If the user decides not to join, a Cancel button takes the user back to
the Home page. See Figure 14-5.

Figure 14-5:
The Join

page.

The Join form

The Join page requires a dynamically generated ActionForm and is vali­
dated using the Validator plug-in. Here you see the code segment that defines
the ActionForm in the struts-config file:

<form-bean name=”joinForm”
type=”org.apache.struts.validator.DynaValidatorForm”>

<form-property name=”email”
type=”java.lang.String”
initial=””/>

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 300

300 Part IV: Putting It All Together

<form-property name=”password”
type=”java.lang.String”
initial=””/>

<form-property name=”password2”
type=”java.lang.String”
initial=””/>

<form-property name=”fname”
type=”java.lang.String”
initial=””/>

<form-property name=”lname”
type=”java.lang.String”
initial=””/>

</form-bean>

Join validation

Declarative validation is necessary for all the fields in the joinForm. Each
field is required and the email field should look like an e-mail address.
The content of the password field should be between 5 and 8 characters in
length. Furthermore, the password2 field should match the contents of the
password field to reduce the chances of a typographical error.

We covered the creation of the necessary validators in the previous
“LoginValidation” section except the requirement that password should
match password2. With Struts 1.1, there is no out-of-the-box validator that
provides this capability. (The validWhen validator will do what you need but
will only be available in later versions of Struts.) So you have a choice of per­
forming that validation within the JoinAction class or writing your own
custom validator. While it is not too difficult to write a validator, we did not
cover it when discussing the Validator plug-in in Chapter 9. Therefore, we
have chosen to implement the password comparison test within the
JoinAction code.

In the validation.xml file you need to specify the validators for the
joinForm as follows:

<form name=”joinForm”>
<field property=”fname”

depends=”required”>
<arg0 key=”error.fname.required”/>
</field>
<field property=”lname”

depends=”required”>
<arg0 key=”error.lname.required”/>
</field>
<field property=”email”

depends=”required,email”>
<arg0 key=”error.email.required”/>
</field>

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 301

Chapter 14: Creating the MusicCollection.com Application 301

<field property=”password”
depends=”required,minlength”>

<arg0 key=”error.password.required”/>
<arg1 key=”${var:minlength}” name=”minlength”

resource=”false”/>
<var>

<var-name>minlength</var-name>
<var-value>5</var-value>

</var>
</field>

<field property=”password”
depends=”maxlength”>

<arg0 key=”error.password.required”/>
<arg1 key=”${var:maxlength}” name=”maxlength”

resource=”false”/>
<var>

<var-name>maxlength</var-name>
<var-value>8</var-value>

</var>
</field>

</form>

JoinAction
The JoinAction is straight-forward, performing the following steps:

1. Checks to see whether the user cancelled the action. If the user did

request to cancel, return directly to the Home page.

2. Compares the password and password2 fields to make sure they match.
If they do not, creates an ActionError and returns it to the Join page.

3. Creates a JoinBean, passing the DataSource reference.

4. Calls a method in JoinBean, passing all user information, to create the
user record in the database and return a populated UserDTO. The
JoinBean will create a UserDTO only after attempting to insert the
user’s information in the user table. The operation fails if there’s an
existing record with the same e-mail address.

5. Puts the userDTO object into the session, logging the user onto

MusicCollection.com.

6. Forwards control to the Welcome page.

Listing 14-4 shows the JoinAction execute method.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 302

302 Part IV: Putting It All Together

Listing 14-4 Body of the JoinAction execute Method

Boolean bCancel =
(Boolean)request.getAttribute(“org.apache.struts.action.CANCEL”);

if(bCancel != null)
if(bCancel.booleanValue())

return (mapping.findForward(“cancel”));
// compare password with password2
if(((String)((DynaValidatorForm)form).get(“password2”)).equals((String)((DynaVal

idatorForm)form).get(“password”)))
{

// create a new JoinBean passing the datasource
JoinBean jb = new JoinBean(getDataSource(request, “musiccollection”));
// create an account for the user
UserDTO user = jb.createUser((String)((DynaValidatorForm)form).get(“fname”),

(String)((DynaValidatorForm)form).get(“lname”),
(String)((DynaValidatorForm)form).get(“email”),
(String)((DynaValidatorForm)form).get(“password”));

if(user != null)
{

// save UserDTO in session
request.getSession().setAttribute(“user”,user);
return (mapping.findForward(“success”));

}
else// could not add the use. Must be because already exists.
{

// create ActionError and save in the request
ActionErrors errors = new ActionErrors();
ActionError error = new ActionError(“error.join.exists”);
errors.add(“join”,error);
saveErrors(request,errors);
return (mapping.findForward(“failure”));

}
}
else// passwords did not match
{

// create ActionError and save in the request
ActionErrors errors = new ActionErrors();
ResourceBundle bundle = ResourceBundle.getBundle(“ApplicationResources”);
ActionError error = new ActionError(“error.join.passmismatch”,

bundle.getString(“join.password2”),
bundle.getString(“join.password”));

errors.add(“password2”,error);
saveErrors(request,errors);
return (mapping.findForward(“failure”));

}

JoinBean
The JoinBean gives the JoinAction the means to create a new user account
by taking user information from the joinForm and inserting a new row in the
users table. The table has a unique index on the email column, thereby

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 303

Chapter 14: Creating the MusicCollection.com Application 303
throwing an error if an attempt is made to insert a new row with an email
value already in the table. The JoinBean tests for that possibility and returns
a null value for the UserDTO if the error occurs. If the insertion of the new
row is successful, then a fully populated UserDTO is returned. If any other
error occurs, the method throws a ModuleException.

Listing 14-5 shows the createUser method of the JoinBean.

Listing 14-5 createUser Method of JoinBean

public UserDTO createUser(String fname, String lname, String email, String
password) throws ModuleException

{
UserDTO user = null;
Connection con = null;
Statement stmt = null;
ResultSet rs = null;
String sQuery = “”;
try
{

con = dataSource.getConnection();
stmt = con.createStatement();
sQuery = “INSERT INTO Users (fname,lname,email,password,

lastlogin,numlogins,created)”;
sQuery += “ values(‘“ + fname + “‘,’” + lname + “‘,’” + email + “‘,’” +

password ;
sQuery += “‘,now(),1,now())”;
int result = stmt.executeUpdate(sQuery);
if(result == 1)// insertion went ok, retrieve record to get id
{

sQuery = “SELECT * FROM Users “ + “WHERE email = ‘“ + email + “‘ “;
sQuery += “AND password = ‘“ + password + “‘“;
rs = stmt.executeQuery(sQuery);
if (rs.next())
{

// Create new user transfer object
user = new UserDTO();
user.setFirstName(rs.getString(“fname”));
user.setLastName(rs.getString(“lname”));
user.setId(rs.getInt(“id”));
user.setEmail(rs.getString(“email”));

}
}

}
catch (SQLException se)
{

if(se.getLocalizedMessage().indexOf(“Duplicate”) == -1)
{

log.error(“Error in creating user.”);
log.error(“SQL statement = “ + sQuery);
se.printStackTrace();

(continued)

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 304

304 Part IV: Putting It All Together

Listing 14-5 (continued)

ModuleException me = new ModuleException(“error.db.sql”);
throw me;

}
}

finally
{
.
. finally code omitted
.
}
return user;

}

Configuring the action mapping
for JoinAction
When a user tries to join, three possibilities can occur. As a result, there are
three possible directions to take from the JoinAction.

� If a user account gets created, go to the welcome.jsp page.

� If a user account fails to be created, return to the join.jsp page.

� If the user cancels the registration process, go back to the home.jsp page.

Make sure to turn on validation by setting the validation attribute to true.
Here is the action mapping for JoinAction:

<action path=”/join”
type=”dummies.struts.music.JoinAction”
name=”joinForm”
scope=”request”
input=”/join.jsp”
validate=”true”>

<forward name=”cancel” path=”/home.jsp”/>
<forward name=”failure” path=”/join.jsp”/>
<forward name=”success” path=”/welcome.jsp”/>

</action>

The Welcome page

The Welcome page is displayed after the user successfully creates an
account. This page presents a personalized welcome message along with a
link to take the user to the main music display page. Figure 14-6 shows the
Welcome page.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 305

Chapter 14: Creating the MusicCollection.com Application 305

Figure 14-6:
The

Welcome

page.

Displaying the User’s Albums

When a user has logged on, the application retrieves the user’s album infor­
mation from the database and displays it in a list. From this page, the user
can create, edit, or delete an album. There is also a Logoff button for the user
to invalidate the user’s session.

The MusicList page

On the MusicList page, we’ll be displaying a collection of items, namely
albums. This means we need to dig a little deeper into the JSTL tag library to
discover some of the iterative tags.

For each album displayed, we will show the following information:

� A number representing the row number of the album in the current list

� The album name, which is also a link to the entire album record for edit­
ing and viewing

� The individual or group who recorded the album

� The year the album was released

� A delete link that enables the user to delete the album from the collection

In addition, the page has two buttons, as shown in Figure 14-7. The first
is used to add a new album to the list, and the second is used to log off
MusicCollection.com. Clicking the Add an Album button results in

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 306

306 Part IV: Putting It All Together

MusicListAction forwarding the request to AlbumAction. For the Logoff
button, the MusicListAction redirects the request to LogoffAction.

Figure 14-7:
The

MusicList

page.

The MusicList form

Because the MusicList page has no input fields, you might conclude that no
form is necessary. However, several functions can be used from the page,
namely creating a new album and logging off. (You can also edit and delete
an album, but these actions are handled directly by AlbumAction, not
MusicListAction). Therefore, you need to have a way of specifying the par­
ticular action to MusicListAction.

To do so, you can create a hidden field named action that specifies the
requested action. When the page is submitted, the value in the action field
determines what function needs to be performed.

The two actions are new, to create a new album, and logoff, to invalidate
the user’s session. Here is the form definition in the struts-config file:

<form-bean name=”musiclistForm”
type=”org.apache.struts.action.DynaActionForm”>

<form-property name=”action”
type=”java.lang.String”
initial=””/>

</form-bean>

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 307

Chapter 14: Creating the MusicCollection.com Application 307

MusicListAction

MusicListAction needs to handle three situations that can arise from a user’s
action. The first is displaying the user’s list of albums. When MusicListAction
is called, the action form variable determines what action should be per­
formed. If action is null or empty, the request displays all the user’s albums.
MusicListBean does all the work to retrieve the album list. MusicListAction
just needs to instantiate the bean and pass it the user object. The bean returns
the list of albums in a Collection, which MusicListAction puts into the ses­
sion for use by the MusicList page for display.

If the action form variable’s value is add, the user is requesting to create an
album. AlbumAction handles the creation of the new album. Therefore, con­
trol is forwarded to newalbum ActionForward.

The third possibility is when the action form variable equals logoff, which
indicates that the user wants to log off the MusicCollection.com Web site.
Control is forwarded to logoff ActionForward, which is the LogoffAction
class.

Listing 14-6 lists the code for MusicListAction.

Listing 14-6 MusicListAction Code

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception

{
// determine the action. choices should be null, add, logoff
String action = (String)((DynaActionForm)form).get(“action”);
if((action == null)|(action.equals(“”)))
{

// get the session object
HttpSession session = request.getSession();
// get the user object
UserDTO user = (UserDTO)session.getAttribute(“user”);
// create a new LoginBean passing the datasource
MusicListBean mlb = new MusicListBean(getDataSource(request,

“musiccollection”));
// get the music records for the user
Collection ml = mlb.getMusic(user);
// save MusicDTO collection in session
session.setAttribute(“musiclist”,ml);

}
else if (action.equalsIgnoreCase(“add”)) // add a new album
{

(continued)

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 308

308 Part IV: Putting It All Together

Listing 14-6 (continued)

return (mapping.findForward(“newalbum”));
}
else if (action.equalsIgnoreCase(“logoff”)) // logoff
{

return (mapping.findForward(“logoff”));
}
return (mapping.findForward(“success”));

}

MusicListBean

MusicListBean retrieves the albums that belong to a user and bundles them
into a Collection. To do so, a DTO class, AlbumDTO, is created to hold the
album information. However, because the MusicList page displays only the
album, artist, and year fields, only those fields load into the AlbumDTO.
The album id doesn’t display but is needed when a user requests to edit,
view, or delete an album.

Should an SQLException occur during processing, MusicListBean logs the
offending error and throws a new ModuleException. Listing 14-7 shows the
getMusic method of MusicListBean.

Listing 14-7 MusicListBean getMusic Method

public Collection getMusic(UserDTO user) throws ModuleException
{

Collection albums = new ArrayList();
Connection con = null;
Statement stmt = null;
ResultSet rs = null;
String sQuery = “”;
try
{

con = dataSource.getConnection();
stmt = con.createStatement();
sQuery = “SELECT * FROM albums WHERE userid=” + user.getId();
sQuery += “ ORDER BY album”;
rs = stmt.executeQuery(sQuery);
while (rs.next())
{

// Create new user transfer object
AlbumDTO album = new AlbumDTO();
album.setAlbum(rs.getString(“album”));
album.setArtist(rs.getString(“artist”));
album.setId(rs.getInt(“id”));
album.setYear(rs.getString(“year”));

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 309

Chapter 14: Creating the MusicCollection.com Application 309
// save the album in the collection
albums.add(album);

}
}
catch (SQLException se)
{

log.error(“Error in retrieving albums.”);
log.error(“SQL statement = “ + sQuery);
se.printStackTrace();
ModuleException me = new ModuleException(“error.db.sql”);
throw me;

}

finally
{
.
. finally code omitted
.
}
return albums;

}

Configuring action mapping
for MusicListAction
You don’t need to perform validation on MusicListForm, so you should turn
it off in the action mapping by setting the validation attribute to false.
Three possible directions can be taken from MusicListAction, so three for­
wards need to be defined in the action mapping:

� If the user requests to log off, go to the logoff.do action.

� If the user requests a new album, go to the album.do action.

� To display the list of albums, go to the musiclist.jsp.

Here is the action mapping for MusicListAction:

<action path=”/musiclist”
type=”dummies.struts.music.MusicListAction”
name=”musiclistForm”
scope=”request”
input=”/musiclist.jsp”
validate=”false”>

<forward name=”logoff” path=”/logoff.do”/>
<forward name=”newalbum” path=”/album.do”/>
<forward name=”success” path=”/musiclist.jsp”/>

</action>

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 310

310 Part IV: Putting It All Together

Creating, Editing, or Deleting an Album

On the Album page, users can view the details of any album, add an album, or
delete an album that they no longer want on their list. Therefore, you need a
section of the application to handle the following:

� Displaying the details of an album

� Ensuring that the data is acceptable

� Creating album database records

� Deleting album database records

The Album page

The Album page contains the complete set of information about the album. In
addition to the album name, artist, and year of release (displayed as a Select
list), the Album page also contains information not normally displayed in the
MusicList page, as follows:

� type: The album can be recorded on vinyl, tape, CD, or MP3. The type is
displayed as an HTML Select list.

� category: The category describes the genre or category of music that
the album belongs to. Choices are Classical, Country, Easy Listening,
Heavy Metal, Jazz, New Age, Pop/Rock, R & B, and World. The category
is displayed as an HTML Select list.

� description: This is a free-form comment field that enables the user
to add a comment about the album. The description is displayed as
TextArea.

The user can accept changes made to the page (Save button) or discard
changes (Cancel button) by clicking the appropriate button. Figure 14-8
shows the Album page.

AlbumForm

The AlbumForm form has the normal assortment of properties — one for each
field displayed on the Album page. Because we also have three Select lists
for years, types, and categories, we need additional properties to contain the
arrays that populate the Select tags.

To create these three arrays, you can use a custom plug-in designed to initialize
various application parameters at startup with the StartupManager plug-in.
(See the next section for details.)

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 311

Chapter 14: Creating the MusicCollection.com Application 311

Figure 14-8:
The Album

page.

Furthermore, you need to keep track of the id (album), userid, and what­
ever action needs to be performed. Therefore, these fields are also present
in the albumForm, as shown here:

<form-bean name=”albumForm”
type=”org.apache.struts.validator.DynaValidatorForm”>

<form-property name=”album”
type=”java.lang.String”
initial=””/>

<form-property name=”artist”
type=”java.lang.String”
initial=””/>

<form-property name=”year”
type=”java.lang.String”
initial=””/>

<form-property name=”type”
type=”java.lang.String”
initial=””/>

<form-property name=”category”
type=”java.lang.String”
initial=””/>

<form-property name=”description”
type=”java.lang.String”
initial=””/>

<form-property name=”userid”
type=”java.lang.String”
initial=””/>

<form-property name=”id”
type=”java.lang.String”
initial=””/>

<form-property name=”action1”
type=”java.lang.String”
initial=””/>

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 312

312 Part IV: Putting It All Together

<form-property name=”years”
type=”java.util.ArrayList”/>

<form-property name=”medias”
type=”java.util.ArrayList”/>

<form-property name=”categories”
type=”java.util.ArrayList”/>

</form-bean>

StartupManager

In Chapter 9 we provide an example of a custom plug-in called StartupManager
that initializes various application resources at startup and releases resources
in an orderly way at shutdown. You can use StartupManager in this applica­
tion to initialize the arrays needed by the Album page and to release the
DataSource resources when the application shuts down.

Be sure to add the plug-in to the struts-config file like this:

<plug-in className=”dummies.struts.music.StartupManager” />

AlbumValidation
Many of the fields do not need validation because they are HTML Select lists
that are guaranteed to have a valid value. Furthermore, the Description
field is optional and may contain anything. That leaves just the album and
artist fields that should be filled in before the page is accepted. Here is
validation.xml for albumForm:

<form name=”albumForm”>
<field property=”album”

depends=”required”>
<arg0 key=”error.album.required”/>

</field>

<field property=”artist”
depends=”required”>

<arg0 key=”error.artist.required”/>
</field>

</form>

AlbumAction

To allow users to manage their album list, AlbumAction has to be able to
handle six actions:

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 313

Chapter 14: Creating the MusicCollection.com Application 313
� Creating an album

� Editing an album

� Deleting an album

� Saving a new album

� Updating an album

� Canceling the editing or creation of an album

Because of the various tasks involved, AlbumAction is the most complex
class in the application. Consequently, we examine this class in sections.

Determining the requested action
The first thing to consider is how the execute method determines what action
needs to be performed. Requests can come from two sources — directly or
indirectly from the MusicList page (create, edit, and delete actions) and from
the Album page itself (save, update, or cancel). To handle these various sources,
AlbumAction needs to look at two action properties. One property comes as
a form property from the Album page. The other comes as a request parame­
ter when the AlbumAction is being called from the MusicList page directly:

// determine the action. values can be null, ‘save’, ‘update’, or ‘cancel’
String action = (String)((DynaValidatorForm)form).get(“action1”);
// action2 can be either null, empty or contain ‘view’ or ‘delete’
// comes directly from musiclist
String action2 = (String) request.getParameter(“action2”);
if(action2!=null)

if(!action2.equals(“”))
action = action2; // replace action with action2 if action2 is not empty

The preceding code segment, at the beginning of AlbumAction, determines
which action to take. Notice that action2 comes from the request parame­
ter. If action2 is not empty, you can assume that the request came directly
from the MusicList page and is either ‘view’ or ‘delete’. You replace the
current value of action with the value in action2. If action2 is empty, you
keep the value of the action1 parameter that was put in the action variable.

Creating an album
If action is null or empty, the request is to create an album. The following
code segment shows how this is accomplished:

if((action == null)|(action.equals(“”))) // request came from musiclist to
create an Album

{
ServletContext sc = this.getServlet().getServletContext();
((DynaValidatorForm)form).set(“years”,(ArrayList)sc.getAttribute(“years”));

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 314

314 Part IV: Putting It All Together

((DynaValidatorForm)form).set(“types”,(ArrayList)sc.getAttribute(“types”));
((DynaValidatorForm)form).set(“categories”,

(ArrayList)sc.getAttribute(“categories”));
return (mapping.findForward(“new”));

}

This code populates the years, types, and categories arrays of albumForm
from the application scope, where the arrays were stored by StartupManager
during the startup phase. Control then passes to the new ActionForward,
which points to the album.jsp page. Notice the use of the Map key-value pair
mechanism for getting and setting values in DynaValidatorForm (likewise
for DynaActionForm).

Editing or viewing an existing album
The next possibility that you need to check for is viewing an album. The fol­
lowing code segment performs that task:

else if(action.equalsIgnoreCase(“view”)) // request came from musiclist to edit
an Album

{
// get the id of the album
int id = convertID((String) request.getParameter(“id”));
if(id > 0)
{

// create a new AlbumBean passing the datasource
AlbumBean ab = new AlbumBean(getDataSource(request, “musiccollection”));
AlbumDTO album = ab.findAlbum(id);
ServletContext sc = this.getServlet().getServletContext();
xferToForm(album,form,sc);

}
return (mapping.findForward(“new”));

}

If the request is to view an album, the first thing to do is to retrieve the request
parameter id. The convertID method then converts it from a String to an
int. Here is the convertID code:

private int convertID(String id) throws ModuleException
{

int idNum = 0;
if(id != null)// id should contain the id of the album to delete

if(!id.equals(“”))// then user is request to delete an album
{

// convert the String id to int id
try
{

idNum = Integer.parseInt(id);
}

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 315

Chapter 14: Creating the MusicCollection.com Application 315
catch(NumberFormatException nfe)
{

log.error(“error in converting string to a number”);
log.error(nfe.getLocalizedMessage());
ModuleException me = new ModuleException(“error.nfe.message”);
throw me;

}
}

return idNum;
}

After a valid ID is returned, AlbumBean is created. The findAlbum method of
AlbumBean is passed the album id, returning the album in the form of a DTO
named AlbumDTO. The AlbumDTO data is inserted in albumForm through the
use of the private xferToForm method, as follows:

private void xferToForm(AlbumDTO album, ActionForm form, ServletContext sc)
{

((DynaValidatorForm)form).set(“album”,album.getAlbum());
((DynaValidatorForm)form).set(“artist”,album.getArtist());
((DynaValidatorForm)form).set(“description”,album.getDescription());
((DynaValidatorForm)form).set(“year”,album.getYear());
((DynaValidatorForm)form).set(“category”,album.getCategory());
((DynaValidatorForm)form).set(“type”,album.getType());
((DynaValidatorForm)form).set(“id”,String.valueOf(album.getId()));
((DynaValidatorForm)form).set(“userid”,String.valueOf(album.getUserid()));
((DynaValidatorForm)form).set(“years”,(ArrayList)sc.getAttribute(“years”));
((DynaValidatorForm)form).set(“types”,(ArrayList)sc.getAttribute(“types”));
((DynaValidatorForm)form).set(“categories”,

(ArrayList)sc.getAttribute(“categories”));
}

For the most part, this method just moves the properties from AlbumDTO into
albumForm. However, to populate the three array properties used for the HTML
Select lists, you need to retrieve the arrays from the application scope. Hence
you need to pass the ServletContext reference to the method.

Finally, the AlbumAction code returns the new ActionForward object, which
passes control to the album.jsp page.

Deleting an album
The final action that can come from the MusicList page is to delete an album.
The code is a little simpler than editing an album because there is no need to
transfer data to the form:

else if(action.equalsIgnoreCase(“delete”))// request from musiclist to delete an
Album

{
// get the id of the album
int id = convertID((String) request.getParameter(“id”));

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 316

316 Part IV: Putting It All Together

if(id > 0)
{

// create a new AlbumBean passing the datasource
AlbumBean ab = new AlbumBean(getDataSource(request, “musiccollection”));
ab.deleteAlbum(id);

}
}

As with editing an album, you use a request parameter to pass the album id
data. If the id is valid, a new AlbumBean is created and the deleteAlbum
method is called with the album id. ActionForward used is the general
success forward at the end of the execute method.

Canceling the creation or editing of an album
The next three requests are cancel, save, or update an album. These
requests come from the Album page itself. Here is the code when a cancel
action is detected:

else if (action.equalsIgnoreCase(“cancel”)) // abandon adding/modifying an album
{

return(mapping.findForward(“cancel”));
}

The cancel forward returns control to the MusicList page.

Saving or updating an album
The final two requests are handled in one section of code. The only difference
is whether album data is inserted new into the database (saving) or an exist­
ing record is updated. Here is the code:

else if ((action.equalsIgnoreCase(“save”))|(action.equalsIgnoreCase(“update”)))
{

ActionErrors errors = ((DynaValidatorForm)form).validate(mapping,request);
if(errors.isEmpty())
{

// get the session object
HttpSession session = request.getSession();
// get the user object
UserDTO user = (UserDTO)session.getAttribute(“user”);
// initialize a fresh AlbumDTO
AlbumDTO album = new AlbumDTO();
// move form info to album
xferToBean(form,album,action,user);
// create a new AlbumBean passing the datasource
AlbumBean ab = new AlbumBean(getDataSource(request, “musiccollection”));
// if action == save, insert the new album
if(action.equalsIgnoreCase(“save”))

ab.saveAlbum(album);

ab.updateAlbum(album);
else // must need to update existing album

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 317

Chapter 14: Creating the MusicCollection.com Application 317
}
else // there were validation errors
{

saveErrors(request, errors);
return (mapping.findForward(“failure”));

}
}

The first thing you might notice is that the code performs validation manu­
ally. We do this because we forward directly to album.do in the MusicList
page rather than forward to the album.jsp page, thus avoiding having a JSP
file show up in the URL. The downside is that you can’t have the validator
automatically perform validation because initially the form’s properties are
empty, an unacceptable state for the validation process. Therefore, we manu­
ally call the validate method only when we know that the properties of the
form are populated.

You could eliminate this nonstandard mechanism by removing the <A HREF>
tag and using JavaScript to process an onclick condition. The JavaScript
code could then perform a forward to the album.jsp page without changing
the current URL. (We didn’t use this technique because it would have added
more complexity than would have been suitable for this example application.)

If validation errors are detected, the errors are saved in the request and con­
trol returns to the Album page.

If no validation errors are returned, you get the UserDTO object from the ses­
sion to pass to the xferToBean method. You create an empty AlbumDTO
object to hold the form properties and call the private xferToBean method
to transfer all the form’s properties to AlbumDTO. Listing 14-8 shows the
xferToBean method.

Listing 14-8 xferToBean Method

private void xferToBean(ActionForm form, AlbumDTO album, String action, UserDTO
user) throws ModuleException

{
album.setAlbum((String)((DynaValidatorForm)form).get(“album”));
album.setArtist((String)((DynaValidatorForm)form).get(“artist”));
album.setDescription((String)((DynaValidatorForm)form).get(“description”));
album.setYear((String)((DynaValidatorForm)form).get(“year”));
album.setType((String)((DynaValidatorForm)form).get(“type”));
album.setCategory((String)((DynaValidatorForm)form).get(“category”));
if(action.equalsIgnoreCase(“update”))
{

try
{

album.setUserid(Integer.parseInt(
(String)((DynaValidatorForm)form).get(“userid”)));

(continued)

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 318

318 Part IV: Putting It All Together

Listing 14-8 (continued)

album.setId(Integer.parseInt((String)((DynaValidatorForm)form).
get(“id”)));

}
catch(NumberFormatException nfe)
{

log.error(“error in converting string to a number”);
log.error(nfe.getLocalizedMessage());
ModuleException me = new ModuleException(“error.nfe.message”);
throw me;

}
}
else// assume creating a new album, so no userID or ID available in form
{

album.setUserid(user.getId());
album.setId(0);

}
}

The xferToBean method simply transfers the form properties to the DTO. If
the action is update, the userid and album id already exist in the form and
can be transferred directly to the DTO. If the action is save, the userid and
album id values will not exist in the form. Therefore, it is necessary to get
the userid from the UserDTO and set the album id to 0.

When the AlbumDTO has been populated, an AlbumBean is created which,
depending on the action, calls either the saveAlbum or updateAlbum method,
passing the AlbumDTO object.

The ActionForward used is the general success forward at the end of the
execute method, which returns control to the MusicList page.

AlbumBean

AlbumBean performs all the database interactions involving single albums.
For this purpose, you can use four methods:

� findAlbum

� deleteAlbum

� updateAlbum

� saveAlbum

These methods are discussed in the following sections.

Finding an album
The findAlbum method receives an album id and uses that id to search for
the album. The method is shown in Listing 14-9.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 319

Chapter 14: Creating the MusicCollection.com Application 319
Listing 14-9 findAlbum Method

public AlbumDTO findAlbum(int id) throws ModuleException
{

Connection con = null;
Statement stmt = null;
ResultSet rs = null;
String sQuery = “”;
AlbumDTO album = null;
try
{

con = dataSource.getConnection();
stmt = con.createStatement();
sQuery = “SELECT * FROM albums WHERE id=” + id;
rs = stmt.executeQuery(sQuery);
if(rs.next())
{

album = new AlbumDTO();
album.setAlbum(rs.getString(“album”));
album.setArtist(rs.getString(“artist”));
album.setDescription(rs.getString(“description”));
album.setId(rs.getInt(“id”));
album.setUserid(rs.getInt(“userid”));
album.setYear(rs.getString(“year”));
album.setType(rs.getString(“type”));
album.setCategory(rs.getString(“category”));

}
}
catch (SQLException se)
{

log.error(“Error in finding album.”);
log.error(“SQL statement = “ + sQuery);
se.printStackTrace();
ModuleException me = new ModuleException(“error.db.sql”);
throw me;

}

finally
{

.

. finally code omitted

.
}
return album;

}

The query is for an album with the specified album id. If an album record is
found, AlbumDTO is populated with the album data and returned. The code
logs any SQLException and throws a ModuleException.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 320

320 Part IV: Putting It All Together

Deleting an album
An album id is passed to the deleteAlbum method, just like in findAlbum.
Other than not returning a value, the only difference between deleteAlbum
and findAlbum is in the try block:

try
{

con = dataSource.getConnection();
stmt = con.createStatement();
sQuery = “DELETE FROM albums WHERE id=” + id;
int result = stmt.executeUpdate(sQuery);

}

The SQL statement requests deletions of an album with the same id as the
passed album id.

Saving an album
The saveAlbum method, like the deleteAlbum method, does not return a
value. This method, however, receives an AlbumDTO instead of an album id.
The following try block sets it apart from the other methods of AlbumBean:

try
{

con = dataSource.getConnection();
stmt = con.createStatement();
sQuery = “INSERT INTO albums (album,artist,year,type,category,”;
sQuery += “description,userid,created)”;
sQuery += “ values(‘“ + filter(album.getAlbum()) + “‘,’”;
sQuery += filter(album.getArtist()) + “‘,’”;
sQuery += album.getYear() + “‘,’”;
sQuery += album.getType() + “‘,’”;
sQuery += album.getCategory() + “‘,’”;
sQuery += filter(album.getDescription()) + “‘,”;
sQuery += album.getUserid() +”,”;
sQuery += “now())”;
int result = stmt.executeUpdate(sQuery);

}

The SQL INSERT statement is created with the values of the AlbumDTO prop­
erties. For those String properties that a user may enter by hand, you use a
quick filter to replace any single quotes with a pair of single quotes. You need
the two single quotes to avoid causing errors in the SQL statement:

private String filter(String value)
{

return value.replaceAll(“‘“,”’’”); // replace 1 single quote with 2 single
quotes

}

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 321

Chapter 14: Creating the MusicCollection.com Application 321
Updating an album
Finally, the updateAlbum method also receives an AlbumDTO as a parameter
and returns nothing. Its try block looks like this:

try
{

con = dataSource.getConnection();
stmt = con.createStatement();
sQuery = “UPDATE albums “;
sQuery += “SET album=’” + filter(album.getAlbum()) + “‘,”;
sQuery += “artist=’” + filter(album.getArtist()) + “‘,”;
sQuery += “year=’” + album.getYear() + “‘,”;
sQuery += “type=’” + album.getType() + “‘,”;
sQuery += “category=’” + album.getCategory() + “‘,”;
sQuery += “description=’” + filter(album.getDescription()) + “‘,”;
sQuery += “userid=” + album.getUserid() ;
sQuery += “ WHERE id =” +album.getId();
int result = stmt.executeUpdate(sQuery);

}

The SQL statement updates an existing album record that has the album id
found in AlbumDTO. Again you can use the filter method on some properties
to escape (render harmless) single quotes.

Configuring action mapping for AlbumAction
AlbumAction performs validation manually for reasons explained in the
“AlbumAction” section earlier in this chapter. You turn automatic validation
off by setting the validation attribute to false.

There are four possible directions that AlbumAction can take:

� If the user cancels the edit or creation of an album, go to the musiclist.
do action.

� If the user updates the edit or saves the creation of an album, go to the
musiclist.do action.

� If the user wants to create a new album, go to the album.jsp page.

� If validation errors are detected when the user submits the albumForm,
return to the album.jsp page.

Here is the action mapping for AlbumAction:

<action path=”/album”
type=”dummies.struts.music.AlbumAction”
name=”albumForm”
scope=”request”

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 322

322 Part IV: Putting It All Together

input=”/album.jsp”
validate=”false”>

<forward name=”cancel” path=”/musiclist.do”/>
<forward name=”success” path=”/musiclist.do”/>
<forward name=”new” path=”/album.jsp”/>
<forward name=”failure” path=”/album.jsp”/>

</action>

Logging Off

Logging the user off the Web site is important for both security and resource
reasons. The MusicList page has a Logoff button that forwards control to
the execute method in LogoffAction.

LogoffAction

LogoffAction is primarily responsible for invalidating the user’s session,
but it also provides some useful information for the application log file. Here
is the body of the execute method for LogoffAction:

// retrieve the user object
HttpSession session = request.getSession();
UserDTO user = (UserDTO) session.getAttribute(“user”);
// write logoff info to application log
if (user != null)
{

log.info(“LogoffAction: User ‘“ + user.getFirstName() + “‘ logged off in
session “ + session.getId());

}
else
{

log.info(“LogoffActon: User logged off in session “ + session.getId());
}
// make the session invalid
session.invalidate();
// Forward control to the specified success URI
return (mapping.findForward(“success”));

When the UserDTO object is retrieved from the session, you can log a mes­
sage about the user. Invalidating the user’s session really performs the act of
logging the user off. Control then passes to the Home page.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 323

Chapter 14: Creating the MusicCollection.com Application 323

Configuring action mapping
for LogoffAction
The standard procedure after logging off is to return to the Home page. Here is
the action mapping for LogoffAction:

<action path=”/logoff”
type=”dummies.struts.music.LogoffAction”
scope=”request”
validate=”false”>

<forward name=”success” path=”/home.jsp”/>
</action>

Handling Exceptions

This application makes use of many of the error-handling features discussed
in Chapter 8. The exception choices require very little in the way of imple­
mentation because CustomExceptionHandler is written in Chapter 8.

Our own exception
We use ModuleException for the application exceptions, as we do in Chapter
8. ModuleException allows you to pass a resource key that will create an
ActionError object stored in ModuleException. In this way, you can pro­
vide I18N support in your exception error messages.

The custom ExceptionHandler

To provide more data on exceptions, the application uses CustomException
Handler, which is developed in Chapter 8. (To check it out, see the “Exception
Information” section in Chapter 8.) CustomExceptionHandler provides com­
plete logging of the exception stack trace, including chained exceptions. Struts
is notified of its existence by adding one or more exception tag definitions that
reference it (as detailed next).

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 324

324 Part IV: Putting It All Together

Declarative exception handling

We declare two exceptions to be global: ModuleException and Runtime
Exception. ModuleException is an application-thrown exception used for
errors that we detect during execution. The infamous RuntimeException is a
nonrecoverable error thrown by the runtime system. Rather than showing a
stack trace to the user, you can catch the error and display your own, more
friendly error page. Here’s the code:

<!--==========GlobalExceptionDefinitions==========================-->
<!---key value will be taken from the ModuleException instance------->
<global-exceptions>

<exception bundle=”ApplicationResources”
key=””
path=”/error.jsp”
handler=”dummies.struts.music.CustomExceptionHandler”
type=”org.apache.struts.util.ModuleException”/>

<exception bundle=”ApplicationResources”
key=”error.RuntimeException”
path=”/baderror.jsp”
handler=”dummies.struts.music.CustomExceptionHandler”
type=”java.lang.RuntimeException”/>

</global-exceptions>

Both exceptions use CustomExceptionHandler, which we created for better
error logging. ModuleException uses the error.jsp page to display its
error messages; RuntimeException uses the baderror.jsp page.

Error pages

Because you are handling two types of exceptions (ModuleException and
RuntimeException), you need to display two error pages.

For ModuleException, the error.jsp page contains the error message that
the application stores in ModuleException. This message should be as clear
and nontechnical as possible, because it needs to tell the user what hap­
pened and how to proceed. A link on the page enables the user to return to
the page containing the list of albums, which is not too helpful if this is the
page causing the exception. A second link allows the user to log off the
MusicCollection.com Web site if the first link causes another exception.
Figure 14-9 show how the page looks.

If a more serious error occurs (that is, RuntimeException), the user should
just log off immediately. A standard error message appears, indicating the
seriousness of the situation. Figure 14-10 shows the baderror.jsp page.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 325

Chapter 14: Creating the MusicCollection.com Application 325

Figure 14-9:
The error.jsp

page.

Figure 14-10:
The

page.
baderror.jsp

Running the Application

At the Web site for this book (www.dummies.com/go/jakarta), you can
download this application as a compressed or uncompressed archive. The
archive includes all files necessary to run the application, including all the
library files. It also contains the SQL script for creating the database and
tables in a MySQL database.

20 559575 Ch14.qxd 3/2/04 4:05 PM Page 326

326 Part IV: Putting It All Together

To run the example, you should need to do only the following:

1. Set up your database schema as described in the beginning of this
chapter.

2. Modify DataSource in the struts-config file to accommodate the
particulars of your database connection.

3. If you use a different database driver than the one we provide,

replace our driver with yours in the WEB-INF/lib folder.

You will also need to modify the DataSource definition in the struts-
config.xml file to specify your database driver.

The intention of the MusicCollection.com application is to give you exposure
to the various features and extensibility of the Struts framework. By working
through the example, you should gain familiarity with the power and flexibil­
ity Struts can offer you. To see a running version of the MusicCollection.com
application, go to

www.othenos.com/musiccollection/

Be sure to include the last slash. Good luck!

21 559575 PP05.qxd 3/2/04 4:05 PM Page 327

Part V
The Part of Tens

21 559575 PP05.qxd 3/2/04 4:05 PM Page 328

In this part . . .

PFor Dummies
art V is the famous Part of Tens contained in every

book. In Chapter 15 we offer ten helpful
extensions to Struts to make your programming go more
smoothly. In Chapter 16 we list ten ways to find more
information on Struts, including the Struts Web site, dis­
cussion groups, articles, resource Web sites, and sample
applications. You’ll find lots of helpful material here.

22 559575 Ch15.qxd 3/2/04 4:05 PM Page 329

Chapter 15

Ten Helpful Extensions to Struts

In This Chapter
� ImageButtonBeanManager

� Struts Spring plug-in

� Hibernate

� Expresso

� SSLExt

� Struts Action Scripting

� StrutsDoc

� StrutsTestCase for JUnit

� Struts workflow extension

� Easy Struts plug-in

After a product gains a following, improvements and additions are sure
to follow. Struts has been downloaded hundreds of thousands of times

over the past several years, so that qualifies as popular! As developers create
diverse applications with Struts, they also develop solutions to common (and
not so common) problems. Sometimes these solutions are general enough to
be of use to other people. And sometimes the developers see fit to generously
make these solutions available to others through the open-source process.

In this chapter, we describe a sampling of these open-source solutions that
you can use. Not all of these packages were developed specifically for Struts,
but they’re all useful nevertheless.

ImageButtonBeanManager

ImageButtonBeanManager is a niche package, but if you have the need, it fills
the bill quite nicely. ImageButtonBeanManager is a Struts extension that sup­
ports the Image tag in the Struts HTML tag library and the org.apache.
struts.util.ImageButtonBean class. This support is like the support pro­
vided by the LookupDispatchAction class for multiple Submit buttons (as

22 559575 Ch15.qxd 3/2/04 4:05 PM Page 330

330 Part V: The Part of Tens

discussed in Chapter 4). With this extension, the LookupDispatchAction
class can recognize when the user has selected one of many images and pass
control to the appropriate handler method.

The documentation for this package is complete and useful. To download
ImageButtonBeanManager, visit

sourceforge.net/projects/imagebuttonbean

Struts Spring Plug-in
Computer scientists are always trying to find ways to reduce dependencies
in code. In other words, they attempt to have the loosest coupling possible.
Loose coupling creates code that exhibits a high degree of flexibility and is
resilient to changes elsewhere in the application. The Struts Spring plug-in
allows developers to take greater advantage of this principle by integrating
the Inversion of Control (IoC) mechanism from Spring’s J2EE framework into
Struts. IoC is also known as The Hollywood Principle — don’t call us, we’ll
call you — and effectively reduces dependencies in classes. With this plug-
in, a Struts application can take advantage of IoC with little or no references
to Spring.

Documentation for Spring’s J2EE framework is extensive. You can read more
about Spring’s J2EE framework at their Web site at

www.springframework.org

To download the Struts Spring plug-in, go to

struts.sourceforge.net/struts-spring

The plug-in documentation is sparse, but the downloaded package includes
an example application using the plug-in.

Hibernate

Hibernate is an open-source project designed to take the work out of getting
Java objects to and from a relational database. Hibernate provides a transpar­
ent persistence mechanism for Java objects as well as a flexible ORM (Object
Relational Mapping) tool for use with a large selection of open-source and com­
mercial databases. In addition, Hibernate implements it own Hibernate Query
Language as an object-orientated extension to Standard Query Language (SQL).
Hibernate developers claim that the Hibernate plug-in is the most widely-used
ORM tool in the Java marketplace.

22 559575 Ch15.qxd 3/2/04 4:05 PM Page 331

Chapter 15: Ten Helpful Extensions to Struts 331
Because Hibernate concerns only the persistence of Java objects, it integrates
easily with Struts. To see some examples of Struts applications that use
Hibernate, look at the hibernate link at

sourceforge.net/projects/struts

To read more about Hibernate or to download the code, visit

www.hibernate.org

Expresso
Expresso, like Struts, is a large, open-source, Java-based application frame­
work. In fact, Expresso contains Struts.

Expresso focuses on providing an implementation of the Model layer of the
MVC pattern. This plug-in comes already integrated with Struts and adds
many new capabilities to the Struts framework. The Expresso framework
includes 16 separate but integrated components. You may choose to use one
or all of them, as you see fit. Expresso adds to or supplements Struts capabili­
ties in the following areas:

� Security

� Robust object-relational mapping

� Background job handling and scheduling

� Self-tests

� Logging integration

� Automated table manipulation

� Database connection pooling

� E-mail connectivity

� Event notification

� Error handling

� Caching

� Internationalization

� XML automation

� Testing

� Registration objects

22 559575 Ch15.qxd 3/2/04 4:05 PM Page 332

332 Part V: The Part of Tens

� Configuration management

� Workflow

� Automatic database maintenance

For further information on Expresso, visit

www.jcorporate.com/index.html

SSLExt
If you’d like to use the https protocol (http protocol with the Secure Socket
Layer protocol underneath) to secure some but not all pages in your Struts
application, consider using the SSLExt plug-in. SSLExt allows developers to
configure Struts applications to automatically switch between the http and
https protocols. You define this configuration in the struts-config.xml file.

You can find succinct documentation at sslext.sourceforge.net. To
download the plug-in, go to

sourceforge.net/projects/sslext

Struts Action Scripting

If you’re proficient in any of the myriad of scripting languages, you may be
wishing you could use that skill for writing Struts Action classes. Wish no
longer — IBM’s Alphaworks provides a solution that they call Struts Action
Scripting.

Struts Action Scripting is a Struts plug-in that allows you to develop Struts
actions with almost any scripting language. The plug-in provides a Struts
Action class called ScriptedAction. The ScriptedAction class uses the
BSF (Bean Scripting Framework) to enable Struts developers to create a
Struts Action in the language of their choice, including JavaScript, Python,
TCL, ActiveScript, and PerlScript.

The Bean Scripting Framework is an open-source project supported by IBM.
BDF can be used not only by the Struts Action Scripting plug-in, but with any
Java application or applet to incorporate scripting. You can find it at

www-124.ibm.com/developerworks/projects/bsf

22 559575 Ch15.qxd 3/2/04 4:05 PM Page 333

Chapter 15: Ten Helpful Extensions to Struts 333
Take a look at

secure.alphaworks.ibm.com/tech/strutsscripting

to find out more about Struts Action Scripting.

StrutsDoc
Would you like to see your Struts application configuration represented as a
JavaDoc-like document? Then the StrutsDoc package is what you’re looking
for. StrutsDoc is an Ant task that generates the documentation from reading
the struts-config.xml file. (See ant.apache.org for further information
on Ant.) StrutsDoc currently supports only the 1.1 version of Struts.

See Figure 15-1 for a sample of the document. The sample is taken from the
MusicCollection application created in Chapter 14. This package can create
a useful form of documentation, especially for larger projects. We briefly
explain Ant in the “Choosing Your Development Environment” section of
Chapter 2. For more information, visit the Web site at

struts.sourceforge.net/strutsdoc

Figure 15-1:
StrutsDoc

view of the
home

Action.

22 559575 Ch15.qxd 3/2/04 4:05 PM Page 334

334 Part V: The Part of Tens

Here is the Ant build.xml file we used to generate the document shown in
Figure 15-1.

<project name=”musiccollection” default=”run-strutsdoc”
basedir=”.”>

<taskdef name=”strutsdoc” classname=”strutsdoc.Main”
classpath=”WEB-INF/lib/strutsdoc-0.4.jar”/>

<target name=”run-strutsdoc”>
<strutsdoc destdir=”api/struts” configdir=”WEB-INF”

webxml=”WEB-INF/web.xml”/>
</target>

</project>

StrutsTestCase for JUnit

If you already use JUnit, StrutsTestCase for JUnit will be of immediate interest
to you. If you don’t currently use JUnit or have never heard of it, a little expla­
nation is needed. JUnit is a popular testing framework for developing unit
tests for Java code. It was developed by Erich Gamma and Kent Beck and
is available as open-source software. JUnit is closely associated with the pro­
gramming methodology called eXtreme Programming (XP). The underlying
philosophy — eXtremely simplified! — is that you should write the tests for a
class before you write the class itself. You can find more about JUnit and XP at

www.junit.org/index.htm

StrutsTestCase for JUnit is an extension of the standard JUnit TestCase class,
which provides facilities for testing code based on the Struts framework.
StrutsTestCase provides two approaches to running ActionServlet: a mock
approach and an in-container approach. The mock approach runs the Struts
ActionServlet without requiring a Web container. With the in-container
approach, tests are run while running the Web container. Because StrutsTest
Case uses the ActionServlet controller to test your code, you can test not
only the implementation of your Action objects, but also your mappings, form-
beans, and forwards declarations. And because StrutsTestCase already provides
validation methods, it’s quick and easy to write unit test cases.

For further information on StrutsTestCase for JUnit, visit their Web site at

strutstestcase.sourceforge.net

Struts Workflow Extension
The problem with Web applications is the ability of the user to do unusual
actions that tend to screw up the natural flow of things. For example, suppose

22 559575 Ch15.qxd 3/2/04 4:05 PM Page 335

Chapter 15: Ten Helpful Extensions to Struts 335
a user has just pressed the Reload button after he or she has submitted a
form, which results in the form being submitted again. Another example might
be performing actions out of sequence through the creative use of the Back
button. These are real problems that Web application developers have to face.
The Struts Workflow Extension deals these problems.

The Struts Workflow Extension addresses these issues by doing the following:

� Disallows the user to accidentally do double submits, such as by press­
ing the browser’s reload button.

� Makes the user follow a prescribed sequence of steps when required.

� Supports the implementation of reusable action sequences. For exam­
ple, you can display a confirmation dialog box when the user is about to
delete something.

� Cleans up session attributes such as by removing session scope forms,
when the user finishes or breaks out of a sequence of actions.

� Prevents the user from deviating from a sequence of actions. For exam­
ple, you may want the user to answer a dialog box with only yes or no,
not allowing any other option.

The Struts Workflow Extension does not require the modification of any appli­
cation classes, just the action definitions in the struts-config.xml file.
The Extension provides the workflow services by extending the Struts
ActionMapping and RequestProcessor classes.

The providers of this open-source solution did a great job providing thorough
documentation to go with their product. To find out more, visit LivingLogic’s
Web site at

www.livinglogic.de/Struts

Easy Struts Plug-in

Easy Struts is a plug-in for your development environment that promises to
aid in the development process by providing a specialized editor for modify­
ing the struts-config.xml file and various wizards to help you construct
entries for the config file. Easy Struts is available as a plug-in for the Eclipse
and JBuilder IDEs (Integrated Development Environments).

The editor for the struts-config.xml is extensive, as shown in Figure 15-2.

To download the plug-in, visit the Easy Struts Web site at

easystruts.sourceforge.net

22 559575 Ch15.qxd 3/2/04 4:05 PM Page 336

336 Part V: The Part of Tens

Figure 15-2:
The Easy

Struts plug-
in editor for
the Eclipse

IDE.

23 559575 Ch16.qxd 3/2/04 4:06 PM Page 337

Chapter 16

Ten Ways to Find

More Information

In This Chapter
� The Struts Web site

� The Struts mailing lists

� Articles

� Tutorials

� Consultants

� Classes

� Training resources

� Sample applications

� The documentation

� Friends and colleagues

When you’re informed, you have a better chance of success in any pro­
ject that you undertake. In this chapter, we provide some pointers to

help you achieve success. Most of these resources are available on the Web,
although some may be hard to find. The key to finding good information is
in sifting the wheat from the chaff, so to speak. Luckily, we did the hard work
for you.

Struts Web Site

You should consider jakarta.apache.org/struts/ as the definitive source
of information for Struts — the Struts portal. Here you can find the latest
binary and source code for Struts, documentation, history, planned enhance­
ments, bug reports, as well as many other resources. Be sure to click the
Resources link under the Community heading for a long list of helpful article,
tutorials and examples.

23 559575 Ch16.qxd 3/2/04 4:06 PM Page 338

338 Part V: The Part of Tens

Struts Mailing Lists

If you run into problems that you can’t resolve by reading this book or by read­
ing the documentation, the next place to go is to the Struts mailing lists. Mailing
lists provide a forum for Struts users (developers who use Struts to build Web
applications) to ask and answer development questions. Experienced Struts
developers monitor the list and try to provide help and guidance.

You can take advantages of the Struts Users mailing list in several ways. The
first way is to search the mailing list archives at

nagoya.apache.org/eyebrowse/SummarizeList?listId=42

to see whether your problem or question has already been answered. More
than likely, it has. The second way is to join the Struts User mailing list (or
the shorter mailing list digest that comes out once a day). To join the mailing
list, go to

jakarta.apache.org/site/mail2.html#Struts

When you become a member of the mailing list, you can post your question
directly to the list.

One disadvantage of joining the mailing list is the number of e-mails you
receive. If you want to post messages without joining the mailing list, use the
Struts newsgroup at

www.beanbase.com

An alternate site for examining mailing list archives is

www.mail-archive.com

You may find this site useful if the Apache Web site is too slow or cumber­
some. You can also search other mailing lists here.

If you get to the point where you would like to contribute to the development
of Struts by adding to the code base, documentation, or test cases, join the
developers mailing list. You can join at

jakarta.apache.org/site/mail2.html#Struts

The mailing list includes notifications each time source code is checked in.

Do not use the developer’s mailing list for questions or problems related to
using Struts unless you want to incur the wrath of the developers on the list.

23 559575 Ch16.qxd 3/2/04 4:06 PM Page 339

Chapter 16: Ten Ways to Find More Information 339

Articles

A wide range of articles are available for your edification and enjoyment.
Many of these articles are written by the same people who helped develop
the Struts framework. In this section, we list a few that we think are particu­
larly interesting and useful.

An interview by ServerSide.com with the Struts creator, Craig McClanahan, is
particularly enlightening. You can select questions that were asked of Mr.
McClanahan during the interview and see his responses in full-motion video.
To see the interview, go to the following:

www.theserverside.com/events/videos/CraigMcClanahan/dsl/
interview.html

You should have a high-speed connection to take advantage of the video.

Another good article is “Jakarta Struts: Seven Lessons from the Trenches” by
Chuck Cavaness. In this article, Mr. Cavaness shares the best practices that
he gleaned from developing Struts applications for his company. These valu­
able lessons can save you a lot of development time and make your applica­
tion more robust. You can read the article at

www.onjava.com/pub/a/onjava/2002/10/30/jakarta.html

You can find a long list of articles and presentations by visiting the Struts
Web site at

jakarta.apache.org/struts/resources/articles.html

Tutorials
Several tutorials offer a step-by-step walkthrough of the process involved in
building a Struts application. A fairly complete tutorial is offered by Stephen
Weisner. This tutorial is in PDF format and has a well-organized table of con­
tents. Go to

rzserv2.fhnon.de/~lg002556/struts/Struts_Tutorial.pdf

If you would like to try your hand at creating a Struts application that uses
the iBATIS persistence mechanism, try the tutorial by Rick Reumann at

www.reumann.net/do/struts/main

23 559575 Ch16.qxd 3/2/04 4:06 PM Page 340

340 Part V: The Part of Tens

The application that you create in this tutorial is a little more real-world
than most — you build the structure to input and retrieve information from
a database.

When you consider yourself to be well-versed in Struts programming and
lore, you can take a short quiz (just for fun) to test how detailed your knowl­
edge is. You can find the quiz at

developer.java.sun.com/developer/Quizzes/misc/struts.html

You can find a fairly diverse list of tutorials and examples at the Struts Web
site, at

jakarta.apache.org/struts/resources/tutorials.html

Consultants
You can conduct an Internet search for “Struts Consultants” to find a list
of consultants who have their shingles out on the Web. For another useful
resource, look at StrutsProjectPages on the Apache Wiki Web site. (If you
want to know what a Wiki is, see the “What’s a Wiki?” sidebar.) You can find
the Apache Wiki at

nagoya.apache.org/wiki/apachewiki.cgi?HomePage

When you get to StrutsProjectPages, you can choose the StrutsConsultants
link to get a list of Struts consultants by geographical location.

Anyone can create a Web page claiming to be a Struts expert. If you’re consid­
ering hiring a consultant for help in developing a Web application, be sure to
ask for references and examples of completed work.

According to the original wiki site at c2.com/
cgi/wiki

tion.” It was originally called WikiWiki (Hawai­
ian for quick). The first wiki site was established

site at

wiki.org/wiki.cgi?WelcomeVisitors

Go there to read about their book, The Wiki
download the software, and find out more

about wiki.

What’s a wiki?

, “Wiki is a composition system, it’s
a discussion medium, it’s a repository, it’s a mail
system, it’s a chat room, it’s a tool for collabora­

in 1995 at the link just mentioned. The creators

of the open-source wiki software have a Web

Way,

23 559575 Ch16.qxd 3/2/04 4:06 PM Page 341

Chapter 16: Ten Ways to Find More Information 341

Classes

Many companies and individuals offer various levels of training in Struts
development. A casual search on Google found 43,600 hits for the words
“Struts training.” You can choose from the various offering of companies in
your geographical area. You might also find online training classes.

Here are a couple of listings of companies that offer Struts training courses in
the United States:

� Accelebrate at www.accelebrate.com/struts/

� Themis, Inc. at www.themisinc.com/courses/index.asp?
categoryid=34

For a training company in Europe, you can go to

www.sharedskills.com/softwaredev/strutscourse.html

You can download a Struts training video for free at

www.middleware-company.com/offer/6may-thanks.shtml

The Struts Web site lists several potential sources for training at

jakarta.apache.org/struts/resources/seminars.html

Struts Resources Web Sites
Because of the popularity of Struts, lots of developers are busy creating
tools, add-ons, and other software to complement the Struts framework. We
covered some of these packages in Chapter 15, but you can find many more.
For a comprehensive list, go to

jakarta.apache.org/struts/resources/extensions.html

Many tools are also available to help the developer create Struts applica­
tions. One such commercial tool is called Struts Studio from Exadel. Struts
Studio is a plug-in that you use with the Eclipse development environment.
Struts Studio offers a visual development environment for Struts applica­
tions. Exadel offers several editions, including a free community version that
runs as a stand-alone Java application. Although we have never used this
tool, we are impressed with its potential time-saving features. The plug-in
versions aren’t free, but you should not let that be a deciding factor. If you

23 559575 Ch16.qxd 3/2/04 4:06 PM Page 342

342 Part V: The Part of Tens

develop with Struts a lot, the time that you save with these tools could easily
save your company a tidy sum of money in your salary alone. At least, that’s
the argument you can use with your boss. You can look at the product
description or download it at

www.exadel.com/products_strutsstudio.htm

We discussed the Sysdeo Tomcat Launcher plug-in Chapter 2. Nevertheless,
we remind you that this Eclipse plug-in is extremely useful. You can find it at
www.sysdeo.com/eclipse/tomcatPlugin.html.

The following page has a comprehensive list of plug-ins and standalone tools
to use with Struts:

jakarta.apache.org/struts/resources/tools.html

If you’re using the Eclipse development environment, several plug-ins, while
not directly related to Struts, make Struts development easier. For example,
having an XML plug-in makes it easier to edit web.xml and struts-config.
xml files. In addition, many external frameworks that can be used with Struts
have Eclipse plug-ins for easier use. The primary site that we recommend to
search for Eclipse plug-ins is

eclipse-plugins.2y.net/eclipse/

The site has organized the plug-ins into various categories that make it easy
to find the ones that are of interest.

Sample Applications

What better way to understand Struts that to look at example applications
built on Struts? You get a chance to look through the code and see how other
programmers have used the Struts features. Most example applications are
simple enough that you won’t have to invest a long time trying to understand
what they’re trying to do.

The Struts binary download comes complete with the struts-example
application. To run this application, just drag the struts-example.war file
from the jakarta-struts-1.1/webapps folder into the Tomcat/webapps
folder. You can access the application through the following URL:

http://localhost/struts-example

You can read the description of the application by clicking the A Walking
Tour of the Example Application link. This example application is based on
Struts 1.0. You can find an interesting cross-referenced listing of files used in
the example application at

23 559575 Ch16.qxd 3/2/04 4:06 PM Page 343

Chapter 16: Ten Ways to Find More Information 343
www.projectrefinery.com/StrutsCrossReference.pdf

To see a wide range of sample and example Struts applications, look at

sourceforge.net/project/showfiles.php?group_id=49385

Many of the applications provide examples of how to integrate other frame­
works (such as Velocity, Cocoon, or Hibernate) into a Struts application. You
won’t find a lot a lot of documentation explaining the application. However,
if you download the project, additional documentation may be included with
the download. Another sourceforge site that has a variety of sample Struts
applications is

struts.sourceforge.net

Finally, the Struts Web site offers its own list of sample applications. You can
find the sample application list at

jakarta.apache.org/struts/resources/examples.html

Struts Documentation
The Struts documentation is better than most open-source documentation. This
material is essentially a local copy of the Struts Web site. The documentation is
provided as a Struts application called struts-documentation.war. To install
struts-documentation.war, simply copy it from the jakarta-struts-1.1/
webapps folder to the Tomcat/webapps folder. Almost everything that you
find at the live Web site can be found also in the struts-documentation
application. You can access the application through the following URL:

http://localhost/struts-documentation

The User and Developer Guides link on the home page provides an overview
of the architecture of Struts with some insights into the historical back­
ground of the project. Some readers might find Chapter 6, “Getting Started,”
of particular interest. You can also find useful information on installing Struts
on a variety of Web containers. In addition, the section on “Release Notes”
can provide insight into the evolution of the product.

The FAQs and HowTos link on the Struts home page provides additional help
on getting started with Struts, as well as instructions on several Struts usage
topics not covered in the main documentation.

23 559575 Ch16.qxd 3/2/04 4:06 PM Page 344

344 Part V: The Part of Tens

Friends and Colleagues

Possibly the best resource you can find is closer than you think. Friends who
are in the programming business as well as the other programmers you work
with may already have experience with Struts. Nothing is better than being
able to talk face-to-face with someone who knows more than you do (at least
about Struts). For that matter, even if someone is less experienced with Struts
than you are, discussing issues and questions with a like-mined person can
stimulate the creative and problem solving processes. Who knows what solu­
tions you can create?

24 559575 PP06.qxd 3/2/04 4:07 PM Page 345

Appendixes
Part VI

24 559575 PP06.qxd 3/2/04 4:07 PM Page 346

In this part . . .

Appendix A lists all the Struts and JSTL tag libraries,
what they do, and their syntax. This appendix is a

great reference to help you find the tag that you need,
when you need it. Appendix B is a glossary to help you
with some of the more obscure terms that Struts and Java
programmers use.

25 559575 AppA.qxd 3/2/04 4:11 PM Page 347

Appendix A

Struts-EL and JSTL Tag

Library Syntax

Tags from the Struts-EL and JSTL tag libraries are used throughout this
book during discussing the creation of JSP pages. This appendix provides

the complete syntax for each of the tags in the libraries. This material appears
courtesy of and is copyrighted by Sun Microsystems, Inc.

Struts-EL and JSTL libraries actually consist of numerous separate libraries,
each organized according to function. Struts-EL has the Beans-EL, HTML-EL,
and Logic-EL libraries. JSTL consists of the Core, Formatting, SQL, and XML
libraries.

Beans-EL Library Syntax

The Beans-EL library provides tags for defining and using beans available to
the JSP page.

<bean:message> Renders an internationalized message string to the response.

<bean:message [arg0=”message argument 0”]
[arg1=”message argument 1”]
[arg2=”message argument 2”]
[arg3=”message argument 3”]
[bundle=”resourceBundle”]
[key=”messageKey”]
[locale=”localeBean”]
[name=”beanName”]
[property=”propertyName”]
[scope=”{page|request|session|application}”]/>

<bean:page> Exposes a specified item from the page context as a bean.

<bean:page id=”variableName”
property=”{config|response|request|session|application}”/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 348

348 Part VI: Appendixes

<bean:resource> Loads a Web application resource and makes it available as
a bean.

<bean:resource id=”variableName”
name=”resourceName”
[input=”anyValue”]/>

<bean:size> Defines a bean containing the number of elements in a Collection
or Map.

<bean:size id=”variableName”
[collection=”theCollection”]
[name=”beanName”]
[property=”propertyName”]
[scope=”{page|request|session|application}”]/>

<bean:struts> Exposes a named Struts internal configuration object as a bean.

<bean:struts id=”variableName”
[formBean=”actionForm”]
[forward=”actionForward”]
[mapping=”actionMapping”]/>

HTML-EL Library Syntax
The HTML-EL library can create Struts forms as well as most of the HTML
tags used in generating a user interface.

<html:base> Renders (generates) an HTML <base> element.

<html:base [target=”windowTarget”]
[server=”serverName”]/>

<html:button > Renders a Button Input field.

<html:button property=”requestParamName”
[accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[indexed=”{true|false}”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 349

Appendix A: Struts-EL and JSTL Tag Library Syntax 349

[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”label”]/>

<html:cancel> Renders a Cancel button.

<html:cancel [accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[property=”requestParamName”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”label”]/>

<html:checkbox> Renders a Checkbox input field.

<html:checkbox property=”requestParamName”
[accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[indexed=”{true|false}”]
[name=”beanName”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 350

350 Part VI: Appendixes

[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”valueTransmitted”]/>

<html:errors> Conditionally displays a set of accumulated error messages.

<html:errors [bundle=”messageResource”]
[locale=”localeKey”]
[name=”actionErrorsKey”]
[property=”actionErrorsProperty”]/>

<html:file> Renders a File Select input field.

<html:file property=”requestParamName”
[accessKey=”keyboardChar”]
[accept=”contentTypes”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[indexed=”{true|false}”]
[maxlength=”maxCharsToAccept”]
[name=”beanName”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[size=”sizeOfFileSelectionBox”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 351

Appendix A: Struts-EL and JSTL Tag Library Syntax 351
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”fieldValue”]/>

<html:form> Defines an Input Form element.

<html:form action=”URL”
[enctype=”encoding”]
[focus=”fieldName”]
[focusIndex=”indexInGroup”]
[method=”httpMethod”]
[name=”actionForm”]
[onreset=”JavaScript function”]
[onsubmit=”JavaScript function”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[target=”windowTarget”]/>

<html:frame> Renders an HTML frame element.

<html:frame [action=”actionName”]
[anchor=”anchorTag”]
[forward=”forwardName”]
[frameborder=”{0|1}”]
[frameName=”frameName”]
[href=”URL”]
[longdesc=”longDescriptionURI”]
[marginheight=”marginHeightPixels”]
[marginwidth=”marginWidthPixels”]
[name=”beanName”]
[noresize=”{true|false}”]
[page=”transferPath”]
[paramId=”requestParam”]
[paramName=”beanName”]
[paramProperty=”beanProperty”]
[paramScope=”page|request|session|application”]
[property=”beanProperty”]
[scope=”page|request|session|application”]
[scrolling=”{yes|no|auto}”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[transaction=”{true|false}”]/>

<html:hidden> Renders a Hidden field.

<html:hidden property=”inputFieldName”
[accessKey=”keyboardChar”]
[alt=”altTextString”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 352

352 Part VI: Appendixes

[altKey=”altResourceKey”]
[indexed=”{true|false}”]
[name=”beanName”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”fieldValue”]
[write=”{true|false}”]/>

<html:html> Renders an HTML <html> element.

<html:html [xhtml=”{true|false}”]/>

<html:image> Renders an input tag of type image.

<html:image [accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[border=”borderWidth”]
[bundle=”resourceBundle”]
[disabled=”{true|false}”]
[indexed=”{true|false}”]
[locale=”locale”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[page=”imagePath”]
[pageKey=”imagePathKey”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 353

Appendix A: Struts-EL and JSTL Tag Library Syntax 353

[property=”propertyName”]
[src=”imageURL”]
[srcKey=”imageURLKey”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”valueSubmitted”]/>

<html:img> Renders an HTML img tag.

<html:img [align=”{left|right|top|middle|bottom|texttop|absmiddle|absbottom}”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[border=”borderWidth”]
[bundle=”resourceBundle”]
[height=”imageHeight”]
[hspace=”horizontalSpace”]
[imageName=”localName”]
[ismap=”serverSideMap”]
[locale=”locale”]
[name=”beanName”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[paramId=”requestParam”]
[page=”imagePath”]
[pageKey=”imagePathKey”]
[paramName=”beanName”]
[paramProperty=”beanProperty”]
[paramScope=”page|request|session|application”]
[property=”propertyName”]
[scope=”page|request|session|application”]
[src=”imageURL”]
[srcKey=”imageURLKey”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[useMap=”mapName”]
[vspace=”verticalSpace”]
[width=”imageWidth”]/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 354

354 Part VI: Appendixes

<html:javascript> Renders JavaScript validation based on the validation rules
loaded by the Validator plug-in.

<html:javascript [cdata=”{true|false}”]
[dynamicJavascript=”{true|false}”]
[formName=”formName”]
[method=”altJavaScriptMethod”]
[page=”currentPage”]
[src=”value”]
[staticJavascript=”{true|false}”]
[htmlComment=”{true|false}”]/>

<html:link> Renders an HTML anchor or hyperlink.

<html:link [accessKey=”keyboardChar”]
[action=”actionName”]
[anchor=”anchorTag”]
[forward=”forwardName”]
[href=”URL”]
[indexed=”{true|false}”]
[indexId=”indexName”]
[linkName=”anchorName”]
[name=”beanName”]
[onblur=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[page=”transferPath”]
[paramId=”requestParamName”]
[paramName=”beanName”]
[paramProperty=”beanProperty”]
[paramScope=”{page|request|session|application}”]
[property=”propertyName”]
[scope=”{page|request|session|application}”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[target=”windowTarget”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[transaction=”{true|false}”]/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 355

Appendix A: Struts-EL and JSTL Tag Library Syntax 355
<html:messages> Conditionally displays a set of accumulated messages.

<html:messages id=”beanName”
[bundle=”resourceBundle”]
[locale=”localeBean”]
[name=”messagesBeanName”]
[property=”propertyName”]
[header=”headerKey”]
[footer=”footerKey”]
[message=”{true|false}”]/>

<html:multibox> Renders a Checkbox input field.

<html:multibox property=”requestParamName”
[accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[name=”beanName”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”valueTransmitted”]/>

<html:option > Renders a Select Option.

<html:option value=”valueSubmitted”
[bundle=”resourceBundle”]
[disabled=”{true|false}”]
[key=”messageKey”]
[locale=”localeBean”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 356

356 Part VI: Appendixes

<html:options> Renders a Collection of Select Options.

<html:options [collection=”beanName”]
[filter=”{true|false}”]
[labelName=”labelBean”]
[labelProperty=”labelProperty”]
[name=”beanName”]
[property=”beanProperty”]
[style=”cssStyle”]
[styleClass=”cssClass”]/>

<html:optionsCollection> Renders a Collection of Select Options (more con­
sistently than the <html:options> tag).

<html:optionsCollection [filter=”{true|false}”]
[label=”beanProperty”]
[name=”beanName”]
[property=”formBeanProperty”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[value=”beanProperty”]/>

<html:password> Renders a Password input field.

<html:password property=”requestParamName”
[accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[indexed=”{true|false}”]
[maxlength=”maxInputChars”]
[name=”beanName”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[readonly=”{true|false}”]
[redisplay=”{true|false}”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[size=”allocatedInputChars”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 357

Appendix A: Struts-EL and JSTL Tag Library Syntax 357

[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”label”]/>

<html:radio> Renders a Radio button input field.

<html:radio value=”tagValue”
[accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[idName=”beanName”]
[indexed=”{true|false}”]
[name=”beanName”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]/>

<html:reset> Renders a Reset button input field.

<html:reset [accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 358

358 Part VI: Appendixes

[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[property=”inputFieldName”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”label”]/>

<html:rewrite> Renders a URI.

<html:rewrite [action=”actionName”]
[anchor=”anchorTag”]
[forward=”forwardName”]
[href=”URL”]
[name=”beanName”]
[page=”transferPath”]
[paramId=”requestParamName”]
[paramName=”beanName”]
[paramProperty=”beanProperty”]
[paramScope=”{page|request|session|application}”]
[property=”propertyName”]
[scope=”{page|request|session|application}”]
[transaction=”{true|false}”]/>

<html:select> Renders a Select element.

<html:select property=”requestParamName”
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[indexed=”{true|false}”]
[multiple=”anyValue”]
[name=”beanName”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[style=”cssStyle”]
[styleClass=”cssClass”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 359

Appendix A: Struts-EL and JSTL Tag Library Syntax 359

[styleId=”identifier”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”tagValue”]/>

<html:submit> Renders a Submit button.

<html:submit [accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[indexed=”true|false}”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[property=”requestParamName”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”label”]/>

<html:text> Renders an input field of type Text.

<html:text property=”inputFieldName”
[accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[disabled=”{true|false}”]
[indexed=”{true|false}”]
[maxlength=”maxInputChars”]
[name=”beanName”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 360

360 Part VI: Appendixes

[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[readonly=”{true|false}”]
[size=”allocatedInputChars”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”initValue”]/>

<html:textarea> Renders a Textarea element.

<html:textarea property=”inputFieldName”
[accessKey=”keyboardChar”]
[alt=”altTextString”]
[altKey=”altResourceKey”]
[cols=”numColsDisplayed”]
[disabled=”{true|false}”]
[indexed=”{true|false}”]
[maxlength=”maxInputChars”]
[name=”beanName”]
[onblur=”JavaScript function”]
[onchange=”JavaScript function”]
[onclick=”JavaScript function”]
[ondblclick=”JavaScript function”]
[onfocus=”JavaScript function”]
[onkeydown=”JavaScript function”]
[onkeypress=”JavaScript function”]
[onkeyup=”JavaScript function”]
[onmousedown=”JavaScript function”]
[onmousemove=”JavaScript function”]
[onmouseout=”JavaScript function”]
[onmouseover=”JavaScript function”]
[onmouseup=”JavaScript function”]
[readonly=”{true|false}”]
[rows=”numRowsDisplayed”]
[style=”cssStyle”]
[styleClass=”cssClass”]
[styleId=”identifier”]
[tabindex=”taborder”]
[title=”advisoryTitle”]
[titleKey=”advisoryTitleKey”]
[value=”initValue”]/>

<html:xhtml > Renders HTML tags as XHTML.

<html:xhtml/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 361

Appendix A: Struts-EL and JSTL Tag Library Syntax 361

Logic-EL Library Syntax

The Logic-EL library consists of tags useful for conditionally generating the
output of page text.

<logic:forward> Forwards control to the page specified by the Action
Forward entry in the name attribute.

<logic:forward name=”forwardName”/>

<logic:iterate> Repeats the nested body content of this tag over a specified
collection.

<logic:iterate id=”beanName”
[collection=”Collection”]
[indexId=”beanName”]
[length=”maxNumEntries”]
[name=”beanName”]
[offset=”startingPoint”]
[property=”propertyName”]
[scope=”{page|request|session|application}”]
[type=”javaClassName”]/>

<logic:match> Evaluates the nested body content of this tag if the specified
value is an appropriate substring of the requested variable.

<logic:match [cookie=”cookieName”]
[header=”headerName”]
[location=”{start|end}”]
[name=”beanName”]
[parameter=”requestParam”]
[property=”propertyName”]
[scope=”{page|request|session|application}”]
[value=”constant”]/>

<logic:messagesNotPresent> Generates the nested body content of this tag if
the specified message is not present in this request.

<logic:messagesNotPresent [name=”messageKey”]
[property=”propertyName”]
[message=”{true|false}”]/>

<logic:messagesPresent> Generates the nested body content of this tag if the
specified message is present in this request.

<logic:messagesPresent [name=”messageKey”]
[property=”propertyName”]
[message=”{true|false}”]/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 362

362 Part VI: Appendixes

<logic:notMatch> Evaluates the nested body content of this tag if the speci­
fied value is not an appropriate substring of the requested variable.

<logic:notMatch [cookie=”cookieName”]
[header=”headerName”]
[location=”{start|end}”]
[name=”beanName”]
[parameter=”requestParam”]
[property=”propertyName”]
[scope=”{page|request|session|application}”]
[value=”constant”]/>

<logic:notPresent> Generates the nested body content of this tag if the speci­
fied value is not present in this request.

<logic:notPresent [cookie=”cookieName”]
[header=”headerName”]
[name=”beanName”]
[parameter=”requestParam”]
[property=”propertyName”]
[role=”securityRole”]
[scope=”{page|request|session|application}”]
[user=”userName”]/>

<logic:present> Generates the nested body content of this tag if the specified
value is present in this request.

<logic:present [cookie=”cookieName”]
[header=”headerName”]
[name=”beanName”]
[parameter=”requestParam”]
[property=”propertyName”]
[role=”securityRole”]
[scope=”{page|request|session|application}”]
[user=”userName”]/>

<logic:redirect> Renders an HTTP Redirect.

<logic:redirect [anchor=”anchorTag”]
[forward=”forwardName”]
[href=”URL”]
[name=”beanName”]
[page=”transferPath”]
[paramId=”requestParamName”]
[paramName=”beanName”]
[paramProperty=”beanProperty”]
[paramScope=”{page|request|session|application}”]
[property=”propertyName”]
[scope=”{page|request|session|application}”]
[transaction=”{true|false}”]/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 363

Appendix A: Struts-EL and JSTL Tag Library Syntax 363

JSTL Core Library Syntax

The Core library provides the basic functionality needed to handle common
tasks in a JSP page: outputting text, manipulating beans, logical operations,
flow control, and managing URL resources.The syntax for all the JSTL libraries
was taken from Sun Microsystems JSTL specification document, version 1.0
dated June 2002.

<c:out> Evaluates an expression and outputs the result to the current
JspWriter object.

Syntax 1: Without a body.

<c:out value=”value”
[escapeXml=”{true|false}”]
[default=”defaultValue”] />

Syntax 2: With a body.

<c:out value=”value” [escapeXml=”{true|false}”]>
default value
</c:out>

<c:set> Sets the value of a scoped variable or the property of a target object.

Syntax 1: Set the value of a scoped variable using the attribute value.

<c:set value=”value” var=”varName”
[scope=”{page|request|session|application}”]/>

Syntax 2: Set the value of a scoped variable using body content.

<c:set var=”varName” [scope=”{page|request|session|application}”]>
body content
</c:set>

Syntax 3: Set the property of a target object using the attribute value.

<c:set value=”value” target=”target” property=”propertyName”/>

Syntax 4: Set a property of a target object using body content.

<c:set target=”target” property=”propertyName”>
body content
</c:set>

<c:remove> Removes a scoped variable.

<c:remove var=”varName” [scope=”{page|request|session|application}”]/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 364

364 Part VI: Appendixes

<c:catch> Catches a java.lang.Throwable thrown by any of its nested
actions.

<c:catch [var=”varName”]>
nested actions
</c:catch>

<c:if> Evaluates the body content if the expression specified with the test
attribute is true.

Syntax 1: Without body content.

<c:if test=”testCondition” var=”varName” [scope=”{page|request|session|
application}”]/>

Syntax 2: With body content.

<c:if test=”testCondition” [var=”varName”]
[scope=”{page|request|session|application}”]>

body content
</c:if>

<c:choose> Provides the context for mutually exclusive conditional execution.

<c:choose>
body content (<when> and <otherwise> subtags)
</c:choose>

<c:when> Represents an alternative within a <c:choose> action.

<c:when test=”testCondition”>
body content
</c:when>

<c:otherwise> Represents the last alternative within a <c:choose> action.

<c:otherwise>
conditional block
</c:otherwise>

<c:forEach> Repeats the nested body content over a collection of objects, or
repeats it a fixed number of times.

Syntax 1: Iterate over a collection of objects.

<c:forEach [var=”varName”]
items=”collection”
[varStatus=”varStatusName”]
[begin=”begin”]
[end=”end”]
[step=”step”]>
body content
</c:forEach>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 365

Appendix A: Struts-EL and JSTL Tag Library Syntax 365
Syntax 2: Iterate a fixed number of times.

<c:forEach [var=”varName”]
[varStatus=”varStatusName”]
begin=”begin”
end=”end”
[step=”step”]>
body content
</c:forEach>

<c:forTokens> Iterates over tokens, separated by the supplied delimiters.

<c:forTokens items=”stringOfTokens”
delims=”delimiters”
[var=”varName”]
[varStatus=”varStatusName”]
[begin=”begin”]
[end=”end”]
[step=”step”]>
body content
</c:forEach>

<c:import> Imports the content of a URL-based resource.

Syntax 1: Resource content inlined or exported as a String object.

<c:import url=”url”
[context=”context”]
[var=”varName”]
[scope=”{page|request|session|application}”]
[charEncoding=”charEncoding”]>
optional body content for <c:param> subtags
</c:import>

Syntax 2: Resource content exported as a Reader object.

<c:import url=”url”
[context=”context”]
varReader=”varReaderName”
[charEncoding=”charEncoding”]>
body content where varReader is consumed by another action
</c:import>

<c:url> Builds a URL with the proper rewriting rules applied.

Syntax 1: Without body content.

<c:url value=”value”
[context=”context”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 366

366 Part VI: Appendixes

Syntax 2: With body content to specify query string parameters.

<c:url value=”value”
[context=”context”]
[var=”varName”]
[scope=”{page|request|session|application}”]>
<c:param> subtags
</c:url>

<c:redirect> Sends an HTTP redirect to the client.

Syntax 1: Without body content.

<c:redirect url=”value” [context=”context”]/>

Syntax 2: With body content to specify query string parameters.

<c:redirect url=”value” [context=”context”]/>
<c:param> subtags
</c:redirect>

<c:param> Adds request parameters to a URL. Nested action of <c:import>,
<c:url>, <c:redirect>.

Syntax 1: Parameter value specified in attribute value.

<c:param name=”name” value=”value”/>

Syntax 2: Parameter value specified in the body content.

<c:param name=”name”>
parameter value
</c:param>

JSTL Formatting Library Syntax

The Formatting library provides tags to implement I18N support for both lan­
guage and customs.

<fmt:setLocale> Stores the specified locale in the
javax.servlet.jsp.jstl.fmt.locale configuration variable.

<fmt:setLocale value=”locale”
[variant=”variant”]
[scope=”{page|request|session|application}”]/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 367

Appendix A: Struts-EL and JSTL Tag Library Syntax 367
<fmt:bundle> Creates an i18n localization context to be used by its body
content.

<fmt:bundle basename=”basename” [prefix=”prefix”]>
body content
</fmt:bundle>

<fmt:setBundle> Creates an i18n localization context and stores it in the scoped
variable or the javax.servlet.jsp.jstl.fmt.localizationContext con­
figuration variable.

<fmt:setBundle basename=”basename”
[var=”varName”]
[scope=”{page|request|session|application}”]/>

<fmt:message> Looks up a localized message in a resource bundle.

Syntax 1: Without body content.

<fmt:message key=”messageKey”
[bundle=”resourceBundle”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

Syntax 2: With a body to specify message parameters.

<fmt:message key=”messageKey”
[bundle=”resourceBundle”]
[var=”varName”]
[scope=”{page|request|session|application}”]>
<fmt:param> subtags
</fmt:message>

Syntax 3: With a body to specify key and optional message parameters.

<fmt:message [bundle=”resourceBundle”]
[var=”varName”]
[scope=”{page|request|session|application}”]>
key
optional <fmt:param> subtags
</fmt:message>

<fmt:param> Supplies a single parameter for parametric replacement to a
containing <fmt:message> action.

Syntax 1: Value specified via attribute value.

<fmt:param value=”messageParameter”/>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 368

368 Part VI: Appendixes

Syntax 2: Value specified via body content.

<fmt:param>
body content
</fmt:param>

<fmt:requestEncoding> Sets the request’s character encoding.

<fmt:requestEncoding [value=”charsetName”]/>

<fmt:timeZone> Specifies the time zone in which time information is to be
formatted or parsed in its body content.

<fmt:timeZone value=”timeZone”>
body content
</fmt:timeZone>

<fmt:setTimeZone> Stores the specified time zone in a scoped variable or the
time zone configuration variable.

<fmt:setTimeZone value=”timeZone”
[var=”varName”]
[scope=”{page|request|session|application}”]/>

<fmt:formatNumber> Formats a numeric value in a locale-sensitive or cus­
tomized manner as a number, currency, or percentage.

Syntax 1: Without a body.

<fmt:formatNumber value=”numericValue”
[type=”{number|currency|percent}”]
[pattern=”customPattern”]
[currencyCode=”currencyCode”]
[currencySymbol=”currencySymbol”]
[groupingUsed=”{true|false}”]
[maxIntegerDigits=”maxIntegerDigits”]
[minIntegerDigits=”minIntegerDigits”]
[maxFractionDigits=”maxFractionDigits”]
[minFractionDigits=”minFractionDigits”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

Syntax 2: With a body to specify the numeric value to be formatted.

<fmt:formatNumber [type=”{number|currency|percent}”]
[pattern=”customPattern”]
[currencyCode=”currencyCode”]
[currencySymbol=”currencySymbol”]
[groupingUsed=”{true|false}”]
[maxIntegerDigits=”maxIntegerDigits”]
[minIntegerDigits=”minIntegerDigits”]
[maxFractionDigits=”maxFractionDigits”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 369

Appendix A: Struts-EL and JSTL Tag Library Syntax 369
[minFractionDigits=”minFractionDigits”]
[var=”varName”]
[scope=”{page|request|session|application}”]>
numeric value to be formatted
</fmt:formatNumber>

<fmt:parseNumber> Parses the string representation of numbers, currencies,
and percentages that were formatted in a locale-sensitive or customized
manner.

Syntax 1: Without a body.

<fmt:parseNumber value=”numericValue”
[type=”{number|currency|percent}”]
[pattern=”customPattern”]
[parseLocale=”parseLocale”]
[integerOnly=”{true|false}”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

Syntax 2: With a body to specify the numeric value to be parsed.

<fmt:parseNumber [type=”{number|currency|percent}”]
[pattern=”customPattern”]
[parseLocale=”parseLocale”]
[integerOnly=”{true|false}”]
[var=”varName”]
[scope=”{page|request|session|application}”]>
numeric value to be parsed
</fmt:parseNumber>

<fmt:formatDate> Allows the formatting of dates and times in a locale-sensi-
tive or customized manner.

<fmt:formatDate value=”date”
[type=”{time|date|both}”]
[dateStyle=”{default|short|medium|long|full}”]
[timeStyle=”{default|short|medium|long|full}”]
[pattern=”customPattern”]
[timeZone=”timeZone”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

<fmt:parseDate> Parses the string representation of dates and times that
were formatted in a locale-sensitive or customized manner.

Syntax 1: Without a body.

<fmt:parseDate value=”dateString”
[type=”{time|date|both}”]
[dateStyle=”{default|short|medium|long|full}”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 370

370 Part VI: Appendixes

[timeStyle=”{default|short|medium|long|full}”]
[pattern=”customPattern”]
[timeZone=”timeZone”]
[parseLocale=”parseLocale”]
[var=”varName”]
[scope=”{page|request|session|application}”]/>

Syntax 2: With a body to specify the date value to be parsed.

<fmt:parseDate [type=”{time|date|both}”]
[dateStyle=”{default|short|medium|long|full}”]
[timeStyle=”{default|short|medium|long|full}”]
[pattern=”customPattern”]
[timeZone=”timeZone”]
[parseLocale=”parseLocale”]
[var=”varName”]
[scope=”{page|request|session|application}”]>
date value to be parsed
</fmt:parseDate>

JSTL SQL Library Syntax
The SQL library allows the JSP author to directly access an SQL database

through the tags it provides.

<sql:query> Queries a database.

Syntax 1: Without body content.

<sql:query sql=”sqlQuery”
var=”varName” [scope=”{page|request|session|application}”]
[dataSource=”dataSource”]
[maxRows=”maxRows”]
[startRow=”startRow”]/>

Syntax 2: With a body to specify query arguments.

<sql:query sql=”sqlQuery”
var=”varName” [scope=”{page|request|session|application}”]
[dataSource=”dataSource”]
[maxRows=”maxRows”]
[startRow=”startRow”]>
<sql:param> actions
</sql:query>

Syntax 3: With a body to specify query and optional query parameters.

<sql:query var=”varName”
[scope=”{page|request|session|application}”]
[dataSource=”dataSource”]

25 559575 AppA.qxd 3/2/04 4:11 PM Page 371

Appendix A: Struts-EL and JSTL Tag Library Syntax 371
[maxRows=”maxRows”]
[startRow=”startRow”]>
query
optional <sql:param> actions
</sql:query>

<sql:update> Executes an SQL INSERT, UPDATE, or DELETE statement. In addi­
tion, SQL statements that return nothing, such as SQL DDL statements, can be
executed.

Syntax 1: Without body content.

<sql:update sql=”sqlUpdate”
[dataSource=”dataSource”]
[var=”varName”] [scope=”{page|request|session|application}”]/>

Syntax 2: With a body to specify update parameters.

<sql:update sql=”sqlUpdate”
[dataSource=”dataSource”]
[var=”varName”] [scope=”{page|request|session|application}”]>
<sql:param> actions
</sql:update>

Syntax 3: With a body to specify update statement and optional update
parameters.

<sql:update [dataSource=”dataSource”]
[var=”varName”] [scope=”{page|request|session|application}”]>
update statement
optional <sql:param> actions
</sql:update>

<sql:transaction> Establishes a transaction context for <sql:query> and
<sql:update> subtags.

<sql:transaction [dataSource=”dataSource”]
[isolation=isolationLevel]>
<sql:query> and <sql:update> statements
</sql:transaction>
isolationLevel ::= “read_committed”
| “read_uncommitted”
| “repeatable_read”
| “serializable”

<sql:setDataSource> Exports a data source either as a scoped variable or as
the data source configuration variable (javax.servlet.jsp.jstl.sql.
dataSource).

<sql:setDataSource
{dataSource=”dataSource” |
url=”jdbcUrl”

25 559575 AppA.qxd 3/2/04 4:11 PM Page 372

372 Part VI: Appendixes

[driver=”driverClassName”]
[user=”userName”]
[password=”password”]}
[var=”varName”]
[scope=”{page|request|session|application}”]/>

<sql:param> Sets the values of parameter markers (“?”) in an SQL state­
ment. Subtag of SQLExecutionTag actions such as <sql:query> and
<sql:update>.

Syntax 1: Parameter value specified in attribute value.

<sql:param value=”value”/>

Syntax 2: Parameter value specified in the body content.

<sql:param>
parameter value
</sql:param>

<sql:dateParam> Sets the values of parameter markers (“?”) in an SQL state­
ment for values of type java.util.Date. Subtag of SQLExecutionTag
actions, such as <sql:query> and <sql:update>.

<sql:dateParam value=”value” type=”[timestamp|time|date]”/>

JSTL XML Library Syntax
The XML library consists of a set of tags designed to make the processing of

XML documents easier for the page author.

<x:parse> Parses an XML document.

Syntax 1: XML document specified via a String or Reader object.

<x:parse xml=”XMLDocument”
{var=”var” [scope=”scope”]|varDom=”var” [scopeDom=”scope”]}
[systemId=”systemId”]
[filter=”filter”]/>

Syntax 2: XML document specified via the body content.

<x:parse
{var=”var” [scope=”scope”]|varDom=”var” [scopeDom=”scope”]}
[systemId=”systemId”]
[filter=”filter”]>
XML Document to parse
</x:parse>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 373

Appendix A: Struts-EL and JSTL Tag Library Syntax 373
<x:out> Evaluates an XPath expression and outputs the result of the evalua­
tion to the current JspWriter object.

<x:out select=”XPathExpression” [escapeXml=”{true|false}”]/>

<x:set> Evaluates an XPath expression and stores the result into a scoped
variable.

<x:set select=”XPathExpression”
var=”varName”
[scope=”{page|request|session|application}”]/>

<x:if> Evaluates the XPath expression specified in the select attribute and
renders its body content if the expression evaluates to true.

Syntax 1: Without body content.

<x:if select=”XPathExpression”
var=”varName”
[scope=”{page|request|session|application}”]/>

Syntax 2: With body content.

<x:if select=”XPathExpression”
[var=”varName”]
[scope=”{page|request|session|application}”]>
body content
</x:if>

<x:choose> Provides the context for mutually exclusive conditional execution.

<x:choose>
body content (<x:when> and <x:otherwise> subtags)
</x:choose>

<x:when> Represents an alternative within the <x:choose> action.

<x:when select=”XPathExpression”>
body content
</x:when>

<x:otherwise> Represents the last alternative within the <x:choose> action.

<x:otherwise>
conditional block
</x:otherwise>

25 559575 AppA.qxd 3/2/04 4:11 PM Page 374

374 Part VI: Appendixes

<x:forEach> Evaluates the given XPath expression and repeats its nested
body content over the result, setting the context node to each element in
the iteration.

<x:forEach[var=”varName”] select=”XPathExpression”>
body content
</x:forEach>

<x:transform> Applies an XSLT stylesheet transformation to an XML
document.

Syntax 1: Without body content.

<x:transform
xml=”XMLDocument” xslt=”XSLTStylesheet”
[xmlSystemId=”XMLSystemId”] [xsltSystemId=”XSLTSystemId”]
[{var=”varName” [scope=”scopeName”]|result=”resultObject”}]/>

Syntax 2: With a body to specify transformation parameters.

<x:transform
xml=”XMLDocument” xslt=”XSLTStylesheet”
[xmlSystemId=”XMLSystemId”] [xsltSystemId=”XSLTSystemId”]
[{var=”varName” [scope=”scopeName”]|result=”resultObject”}]
<x:param> actions
</x:transform>

Syntax 3: With a body to specify XML document and optional transformation
parameters.

<x:transform
xslt=”XSLTStylesheet”
xmlSystemId=”XMLSystemId” xsltSystemId=”XSLTSystemId”
[{var=”varName” [scope=”scopeName”]|result=”resultObject”}]
XML Document to parse
optional <x:param> actions
</x:parse>

where scopeName is {page|request|session|application}

<x:param> Set transformation parameters. Nested action of <x:transform>.

Syntax 1: Parameter value specified in attribute value.

<x:param name=”name” value=”value”/>

Syntax 2: Parameter value specified in the body content.

<x:param name=”name”>
parameter value
</x:param>

26 559575 AppB.qxd 3/2/04 4:11 PM Page 375

Appendix B

Glossary

Jakarta Struts uses lots of terms that may not be familiar to you. In this
glossary, we collect the terms that we have defined throughout the book

and then add some more.

abstract class: A class, such as the Action class, that has at least one
abstract method and must be subclassed before you can use it.

application context: A name that refers to a particular Web application,
including the data logic and resources.

assertion: A statement that evaluates an expression and throws an exception
if not true.

attribute: A property of a tag. See elements.

authentication: The process of making sure users are who they say they are.

authorization: The process of granting a user permission to see a page or
perform an operation.

chained exception: A mechanism in which one exception is caused by a dif­
ferent exception. You can think of it as exception piggy-backing.

checked exception: An error that the application programmer must catch in
a try/catch block or throw a similar exception.

collection: An interface and the root definition of a set of classes that hold
groups of data objects.

commit: To save a transaction.

component: A small, self-contained program that forms part of a larger
application.

custom tag library: Bundles of custom tags that people have created to
extend the functionality of JSP through the use of HTML-like tags. They are
accompanied by a descriptor file called a Tag Library Descriptor (tld). The
Struts and Struts-EL tag libraries are examples of this extended functionality.

Data Transfer Object (DTO): An object that carries data from one layer to
another in an application.

declarative security: A mechanism in which application security is expressed
in a declarative syntax in the Struts configuration files.

26 559575 AppB.qxd 3/2/04 4:11 PM Page 376

376 Part VI: Appendixes

definitions, Tile: A mechanism that allows you to specify all the attributes

that go to make up a Tile in a reusable structure.

design pattern: A paradigm that structures an application. The Struts design

pattern is called Model-View-Controller (MVC) and applies to Web applications.

Document Type Definition (DTD): A definition of the XML grammar used in

an XML document

dynamic: Web pages that adapt in response to a user’s request.

elements: The part of the grammar in a DTD that defines a tag.

entity: A shortcut to a commonly used value in a DTD. See Document Type

Definition.

exception: An event that occurs during the execution of a program that dis­

rupts the normal flow of instructions.

expression language: A scripting language used in JSTL and JSP 2.0 to create

expressions for evaluation.

extension point: A dummy method made to be overridden in a subclass.

See hook.

formbean: An extension of the ActionForm abstract class that provides a

consistent container to store the View’s form data for presentation to the

Controller.

forward: More exactly known as ActionForward, a mechanism that defines

the passing of control from one module to another.

framework: An application that provides foundational functionality that must

be extended for specific needs.

getter: A method that begins with get and returns a property’s value.

handler: Code that interprets what action to take based on a request.

helper classes: Generic classes that are created by the programmer to provide

additional logic or data structure or both for the application. Their purpose

is to improve the flexibility and structure of the programming code.

hook: A no-function method designed to be overridden when the class is

extended. See extension point.

I18n: A shortcut for internationalization.

implementation: The actual program that functions according to a

specification.

implicit objects: Objects already defined by the system and made available to

the programmer.

JavaBean: A special form of Java class that follows certain rules, including

the methods it uses and its naming conventions.

26 559575 AppB.qxd 3/2/04 4:11 PM Page 377

Appendix B: Glossary 377
JavaBeans component architecture: Defines how Beans are constructed and
how they interact with the program in which they are used.

JSP/Servlet container: See Web container.

layout: See template.

literal: A constant that is taken at face value and not interpreted, such as the
String literal “abcd”.

logging: Writing messages about events in an application so that you can look
at them later and see what your application actually executed. You might write
these message to the system console, a file on disk, or an e-mail message.

map: An interface and root definition of a group of classes that hold data ele­
ments against keys. Provide the key, and it will return the piece of data.

module: A set of components in a Web application that are accessed under a
different name.

persistence: A situation in which the lifetime of the data exceeds the lifetime
of the application. The data continues to exist after the application or even
the computer has been shut down. The next time the application starts, the
same data is still available.

perspective: In Eclipse, a feature that allows you to change the overall
arrangement of the work area to suit your current task.

pipeline: A processing mechanism that moves data and control along a par­
ticular path.

plug-in: A class that is added to the main application to provide additional
functionality.

public: A property of Java object methods that tell Java they are available to
anyone using the Bean or class.

realm: Identifies a set of users, their passwords and their associated roles.

refactoring: Rewriting portions of code to make the resulting code simpler,
more readable, and more efficient.

regular expression: A concise way to describe and search for complex string
patterns.

resource bundle: A file that contains all the text that the Struts application
will display to the user.

roles: A way of grouping users. A role represents a set of permissions that
you want to apply to a certain group of users.

rollback: To reverse a transaction.

runtime expression: A Java-based syntax for writing expressions. Used in
older tag libraries and JSP version 1.2 and below.

26 559575 AppB.qxd 3/2/04 4:11 PM Page 378

378 Part VI: Appendixes

scoped variable: A variable that exists in one of the four scopes — page,
request, session, or application.

scriptlets: Short Java code fragments embedded in a JSP page that are exe­
cuted on the server side to create the dynamic part of the presentation, so
that the page can modify its output to reflect the user’s request.

separation of concerns: A programming technique to keep from intermingling
different functional areas, such as separating the visual layout of a Web page
from data.

servlet: A part of a Web application that can take requests from a Web browser
and, after some processing, return an assembled Web page. This object is
defined by the Java Servlet Specification.

servlet container: A Web application server that adheres to the Java Servlet
Specification and can run Java Servlets.

setter: A method that begins with set and sets the value of a property.

skin: A color combination and style that control’s a page’s or application’s
look — and feel. Also what covers your entire body.

specification: A document that describes all the details of a technology.

tag: In an XML, JSP or HTML document, a definition of an element to appear
in the document.

template: A definition of how a page should look but not what content should
go into it. The template includes the page markup that describes the structure
of the page and names the additional segments that the page should include
as content. Sometimes called a layout.

template engine: The developer defines templates that describe the look and
feel of a page, and the engine merges the page data together with the template
to create the presented page. This methodology offers flexibility in site design,
easy design development for graphics people, and control of the consistency
of site appearance.

thread: A path of execution of the program’s code. A Java Web application has
multiple paths running simultaneously so that more than one user can use an
application at the same time.

thread-safe: Code that doesn’t allow conflicts when multiple clients run the
code simultaneously.

tiles: In a template, additional segments that the page should include as
content.

Web container: A program that manages the components of a Web application,
in particular JSP pages and Java Servlets. Sometimes called a JSP/Servlet
container.

27 559575 Index.qxd 3/2/04 4:13 PM Page 379

Index

• Symbols •

* (asterisk)

DTD element suffix, 161

SQL wildcard, 122–123

[] (brackets) EL operator, 229

(number sign) comment prefix, 67

. (period) EL operator, 229

+ (plus sign) DTD element suffix, 161

? (question mark)

DTD element suffix, 161

SQL parameter marker, 243, 372

“ ” (quotation marks) XML parameter

delimiters, 165

; (semicolon)

path prefix, 120

SQL command suffix, 121

/ (slash) module prefix, 178, 182

• A •

Accelebrate training course, 341

Action class

authentication using, 75–78, 101, 266–267

Controller role of Action subclass, 20, 92,

100–108

exception handling using, 201–202

execute method, 100, 101–103, 105

extending, 100–108

RequestProcessor class, interaction

with, 100

subclasses, predefined, 103–108

action mapping

ActionForm class, using in, 100

described, 82, 176

formbean, associating with, 151, 178

forward processing, 99, 177

include processing, 99, 177

path, determining from request URL, 98

path, module-relative, 177–178

RequestProcessor role in, 98, 99

security role, associating with, 178

servlet, mapping to URL pattern, 166

Struts-config.xml file configuration,

176–179, 296–297

validate method, invoking, 178

Action Scripting plug-in, 332–333

action tag, 14, 176–177, 273

action variable, 307

ActionConfig class, 93

ActionError class, 70–71, 153–155, 198

ActionErrors class, 77, 153–155

ActionForm class. See also form

action mapping, using in, 100

button, referencing in ActionForm

subclass, 69

DynaActionForm class compared, 157

extending, 70

formbean, ActionForm subclass relation

to, 69, 172

request handling role, 20, 99

RequestProcessor class, interaction

with, 99, 151

struts-config.xml file configuration,

299–300

validate method, 70, 71, 99, 153, 178

View, association with, 69

ActionFormBean class, 93

ActionForward class

Controller role, 93

exception handling using, 203

LoginAction class, retrieval of

ActionForward object by, 77

RequestProcessor class, interaction

with, 100, 101

sort method, 105

struts-config.xml file configuration, 77,

176–177

ActionMapping class

Controller role, 93, 100

forward attribute, 99

include attribute, 99

RequestProcessor class, interaction

with, 99

security, 178

action-mappings tag, 177–179

ActionMessage class, 155

ActionMessages class, 155

27 559575 Index.qxd 3/2/04 4:13 PM Page 380

380 Jakarta Struts For Dummies

ActionServlet class

Controller role, 20, 92, 93–98

debug level, setting using, 96

destroy method, 97–98

initializing, 94–97, 164–165

message resource setup using, 96–97

module, instantiating using, 96–97

plug-in initialization role, 210, 211–212

process method, 97

request handling by, 92, 93, 97

struts-config.xml file

configuration, 179

URL mapping, 63, 166

web.xml file configuration, 80, 94, 163–166

Add Language dialog box

Internet Explorer, 146

Netscape Navigator, 147

add method

ActionError class, 154–155

LookupDispatchAction class, 107

AlbumAction class, 306, 312–318, 321–322

AlbumBean class, 315, 318–322

AlbumDTO class, 308, 315, 317, 319

albumForm class, 310–312, 314, 315

AlbumValidation class, 312

Ant IDE, 33

Apache Cocoon project, 21, 138

Apache Software Foundation. See ASF

Apache Tomcat

downloading, 29

Eclipse, configuring for, 37

Eclipse, starting from, 38, 43

home page, default, 33, 43

installing, 29–31

Linux environment, 31

Mac OS X environment, 31

MySQL class library, adding, 115–117

password, 31

port setup, 31, 32

SDK considerations, 37

starting, 32, 38, 43

testing, 32, 38

Web container, as, 12

Apache Wiki Web site, 340

ApplicationResources file, 59, 67–68,

144–145, 221

archive.apache.org Web site, 247

ArrayList Java class library, 128

ASF (Apache Software Foundation), 10

assertion, 199–201

asterisk (*)

DTD element suffix, 161

SQL wildcard, 122–123

authentication. See also password; security

Action class, using, 75–78, 101, 266–267

BASIC style, 275, 276–278

CLIENT-CERT style, 275

described, 265–266

DIGEST style, 275

FORM style, 275

forwarding user upon failure, 265

JAAS, 271

JavaBean, using to store authentication

data, 74–75, 76

RequestProcessor class, using, 267–270

validation against database, 124–126

validation against HashMap construct, 75

validation, formbean role in, 82

validation, LoginBean role in, 76–77

validation using Validator plug-in, 214,

219–221

web.xml file, authentication method

definition in, 275, 277

authorization

database, against, 295

described, 265, 266

forwarding user upon failure, 265

JAAS, 271

LoginBean, using, 294

permission, checking, 267

security role, using, 273, 276

struts-config.xml file

configuration, 273

web.xml file configuration, 273–274

• B •

baderror.jsp file, 207–208, 324

BasicDataSource class, 132

bean: tags, 143, 232, 347–348

Borland JBuilder IDE, 34, 335

brackets, ([]) EL operator, 229

breakpoint, debugging using, 87–88

BSF (Bean Scripting Framework), 332

B2B (Business-to-Business) application, 110

build path, 56, 58

build.xml file, 334

business

logic, 10

object, 110–112

27 559575 Index.qxd 3/2/04 4:13 PM Page 381

Index 381
button, creating
ActionForm subclass, referencing button

in, 69

add record button, 107

cancel button, 349

image button, 329–330

input field button, 348–349

logoff button, 306, 322

message resource, generating label using, 149

radio button, 357

reset button, 357–358

submit button, 106, 294, 359

• C •

c: tags, 234–238, 253, 363–366

Capability Maturity Model (CMM), 191

Castor ORM, 128

catch block, 196, 235, 364

Cavaness, Chuck (“Jakarta Struts: Seven

Lessons from the Trenches”), 339

check box, creating, 349–350, 355

class. See specific class

classpath, 56

CMM (Capability Maturity Model), 191

Cocoon project, 21, 138

code guard method, 283–284

Collection, 152

commenting code, 14, 67

commit (transaction save), 243

commons libraries, 41–42, 98, 282

compiling, 56, 58, 72, 200

component, 14

concern, separation of, 242

concurrency, 12

conditional expression, 235, 364

connection pooling, 132–133

Connector/J driver, 113, 114–115

ConsoleAppender class, 285

constant element, 222–224

consultant, hiring, 340

context, 80, 141, 143, 162–163, 165

context-param tag, 143, 162–163

Controller. See MVC (Model-View-Controller)

controller tag, 179–181

convertID method, 314–315

Core tag library, 234–238, 363–366

Create JRE dialog box (Eclipse), 39

createUser method, 303–304

c.tld file, 56

cur variable, 241

CustomExceptionHandler class,
205–207, 323

Customize Perspective dialog box (Eclipse), 36

CustomRequestProcessor class, 268–269

• D •

DailyRollingLogAppender class, 286

Data Definition Language (DDL), 118

Data Manipulation Language (DML), 118

Data Transfer Object. See DTO

data type, converting, 149–150

database. See also MySQL database

management system

ArrayList, holding row data in, 128

authentication against, 124–126

authorization against, 295

connection, establishing, 125

connection, pooling, 114, 130–135, 169

creating, 120–121

data source, 132–135, 169–171, 243, 290, 371

deleting data, 107, 315–316, 320, 371

driver, 113

indexing, 152

inserting data, 107, 121–122, 243, 313, 320

JDBC, 113, 124–126

listing all databases, 121

LoginBean class, accessing from, 124–129,

132–133

Model, connecting to, 123–130

OODBMS, 128

ORM, 128, 330

query, 122–123, 125–129, 242, 318–319,

370–371

RDBMS, 113

schema, 289

SQL script, interacting with using, 122

table, creating, 121

transaction, 129, 243, 371

updating, 243, 316–317, 321, 371

View, passing query result to, 126

DataSource class, 133, 169, 290

data-source tag, 170

DataSourceConfig class, 93

data-sources tag, 169–170, 171

DBCP (Database Connection Pooling), 114,

131–132, 170–171

DBException class, 205

DDL (Data Definition Language), 118

debugging, 87–88, 96, 180

declaration tag, 14

27 559575 Index.qxd 3/2/04 4:13 PM Page 382

382 Jakarta Struts For Dummies

definition (Tiles framework mechanism),
260–261

delete method, 107

deleteAlbum method, 316, 320

description tag, 164, 172

design pattern, 10, 15, 18–23. See also MVC

(Model-View-Controller)
Design Patterns: Elements of Reusable Object-

Oriented Software (Gamma, Helm,

Johnson, and Vlissides), 18

destroy method, 97–98, 210, 212

Dev Shed Web site, 118

developer.com Web site, 196

directive tag, 14

DispatchAction class, 104–106

Display tag library, 246

display-name tag, 164, 172

DML (Data Manipulation Language), 118

.do files, 63, 92

Document Type Definition. See DTD

documentation, 43–44, 333–334, 343

dom.jar file, 231

downloading

Apache Tomcat, 29

Connector/J, 114–115

Eclipse, 34

Jakarta Struts, 40

Java, 26

Login example application, 59

MySQL, 114

Dreamweaver software, 14

DTD (Document Type Definition). See also

XML (eXtensible Markup Language)

attribute, 161, 162

element, 160–161

entity, 161

formbean DTD, 171–172

struts-config.xml file DTD, 169

syntax, 160–161

Validator plug-in DTD, 213, 215

web.xml file DTD, 160

DTO (Data Transfer Object), 17, 129

DynaActionForm class, 156–157, 173, 224, 291

DynaValidatorForm class, 173, 214, 291

• E •
Easy Struts plug-in, 335–336
Eclipse IDE

Apache Tomcat, configuring for, 37

Apache Tomcat, starting from, 38

compiling, 72, 200

Create JRE dialog box, 39

Customize Perspective dialog box, 36

Debug Perspective, 87–88

downloading, 34

Editor Selection dialog box, 60

file association, 60

filtering, 54–55

Folder Selection dialog box, 72

importing file, 54–58, 64

installing, 34–35

introduced, 14

JAR Selection dialog box, 58

Java Element Filters dialog box, 54–55, 71

JAVA perspective, 50

JRE, 37–39

library file, working with, 54, 56–58

MySQL, configuring for, 115–116

New File dialog box, 64

New File Type dialog box, 60

New Folder dialog box, 52

New Java Class dialog box, 73

New Project dialog box, 51

New Source Folder dialog box, 52

output folder, specifying default, 72

package, creating, 71

Package Explorer, 52–53

Perspectives feature, 50–51

plug-ins, 33–34, 35–39, 335–336, 342

Preferences dialog box, 36, 37, 60

project, creating, 51

Properties for Login dialog box, 57

starting, 43

struts-config.xml file, adding, 83

view, 51

Web site, 14

web.xml file, adding, 80–81

Edit File System Variable dialog box
(MySQL), 120

Edit System Variable dialog box (Windows), 28

Editor Selection dialog box (Eclipse), 60

EJB (Enterprise JavaBean), 164

EL (Expression Language), 227–229

element, DTD, 160–161

empty operator, 229

Enterprise JavaBeans For Dummies

(Rinehart), 111

entity, 161

Error class, 192

errorBundle variable, 239

error.jsp file, 324

Exadel Web site, 342

27 559575 Index.qxd 3/2/04 4:13 PM Page 383

Index 383
Exception class, 192, 197

exception handling

Action class, using, 201–202

ActionForward class, using, 203

assertion, using, 199–201

catch block, using, 196, 235, 364

chaining, 198–199

checked/unchecked exception, 193, 207

class, creating custom for, 197–198, 205–207

CMM level, 191

DBException, 205

declarative, 203–205, 207, 324

execute method, customizing for, 205–206

failure, controlling, 202

finally block, using, 194

global exception, 174–175, 203, 204–205, 207

information about exception, retrieving, 196

information about exception, saving, 202

IOException error, 192, 193–194

local exception, 204–205

logging exception, 197

message to user, displaying, 202, 207–208

method exception, 193–194

module exception, 198, 206, 295, 323, 324

recovery, 192, 202

RequestProcessor class, using, 203

runtime exception, 192, 193, 198,

207–208, 324

SQLException error, 195, 198, 202, 308

stack trace information, retrieving, 196–197

try/catch block, using, 192–193

exception tag, 203, 204, 206

ExceptionConfig class, 93

ExceptionHandler class, 198, 203, 204,

205–207, 295

execute method

Action class, 100, 101–103, 105

AlbumAction class, 313

exception handling, customizing for,

205–206

JoinAction class, 301–302

LoginAction class, 294–295

LogoffAction class, 322

LookupDispatchAction class, 107–108

executeQuery method, 125–126
expression

conditional, 235, 364

identifier item, 228

key, 228

literal item, 228

operator, 229

regular, 218

runtime, 227

tag element, 14

value, 228

Expression Language. See EL
Expresso plug-in, 128, 331–332
eXtensible Markup Language. See XML
eXtensible Stylesheet Language. See XSL
eXtensible Stylesheet Language

Transformation. See XSLT

extension point, 268

• F •

field tag, 220

file upload, configuring, 180, 181

filtering, 54–55

finally block, 194

findAlbum method, 315, 318–319

fmt: tags, 142, 143, 238–241, 366–370

fmt.tld file, 56, 62

folder access, restricting, 277–278

Folder Selection dialog box (Eclipse), 72

footer, 250, 251, 253, 258, 292

footer.jsp file, 251, 253, 292

form

authentication, FORM style, 275

dynamic, 156–157, 173, 224, 291, 299–301

focus, 63

HTML form, 232–233

resetting, 70, 152, 357–358

submitting, 63, 149, 294, 359

validating, ActionError object created

upon failure, 153–154

validating, declarative, 293, 300

validating dynamic form, 157, 291, 299–301

validating using validate method, 70–71,

151, 317

validating using Validator plug-in, 213–222,

290, 291, 293–294, 299–301

validating via overriding validate

method, 152–154

form tag, 220

Formatting tag library, 238–241, 366–370

formbean

action mapping, associating with, 151, 178

ActionForm subclass formbean, 69, 172

defining, 69–74, 171–174

described, 69, 149

DTD, 171–172

DynaActionForm subclass formbean, 156,

157, 173

27 559575 Index.qxd 3/2/04 4:13 PM Page 384

384 Jakarta Struts For Dummies

formbean (continued)

icon, assigning to, 172

indexing, defining in, 152

naming, 172

parameter, passing to, 172

scope, 151, 152

struts-config.xml file configuration,

150–151, 171–174

validate method of, 70–71, 82, 151, 153

View/Controller interaction using, 149–151

form-bean tag, 82, 151, 156, 172

FormBeanConfig class, 93

form-beans tag, 82, 171–172

form-error-page tag, 275

form-login-config tag, 275

form-login-page tag, 275

form-property tag, 173

form-validation tag, 213

forward mechanism, 138

ForwardAction class, 103

ForwardConfig class, 93

FreeMarker project, 138

• G •
Gamma, Erich (Design Patterns: Elements of

Reusable Object-Oriented Software), 18

GenericDataSource class, 132

getAllUsers method, 127, 128

getConnection method, 133

getDataSource method, 134

getInt method, 129

getKeyMethodMap method, 107

getMessage method, 196–197

getMusic method, 308–309

getString method, 129

getter methods, 16

global-exceptions tag, 174–175, 203,

204–205, 207

global-forwards tag, 175–176

• H •
handler. See exception handling; request

handling

HashMap construct, 75, 107

Helm, Richard (Design Patterns: Elements of

Reusable Object-Oriented Software), 18

helper class, 112

Hibernate plug-in, 330–331

homeContent.jsp file, 292

home.jsp file, 292

hook, 99

html:base tag, 348

html:button tag, 348–349

html:cancel tag, 349

html:checkbox tag, 349–350

html:errors tag, 68, 71, 155, 350

html:file tag, 350–351

html:form tag, 232, 351

html:frame tag, 351

html:hidden tag, 351–352

html:html tag, 352

html:image tag, 329, 352–353

html:img tag, 353

html:javascript tag, 354

html:link tag, 354

html:messages tag, 155, 355

html:multibox tag, 355

html:option tag, 355

html:options tag, 356

html:optionsCollection tag, 356

html:password tag, 356–357

html:radio tag, 357

html:reset tag, 357–358

html:rewrite tag, 358

html:select tag, 358–359

html:submit tag, 359

html:text tag, 359–360

html:textarea tag, 360

html:xhtml tag, 360

HTTP (Hypertext Transfer Protocol), Web

container support, 12

HTTPS (Hypertext Transfer Protocol,

Secure), 332

HttpServletResponse class, 176

• I •

I18N (internationalization), 62–63, 67,

139–148, 238–240, 366–367

IBM

BSF resources, 332, 333

WebSphere Studio IDE, 34

icon

ActionServlet, assigning to, 164

formbean, assigning to, 172

IDE (integrated development environment),
33–34, 43–45. See also specific IDE

IDEA IDE, 34

ImageButtonBean class, 329

27 559575 Index.qxd 3/2/04 4:13 PM Page 385

Index 385
ImageButtonBeanManager extension,

329–330

implicit object, 66, 229–230

Import dialog box (Eclipse), 54

Import from Directory dialog box (Eclipse), 54

include statement

action mapping include processing, 99, 177

directive, using, 251–252

jsp:include tag, using, 245, 252–253

IncludeAction class, 103–104

indexing, 152

init method, 94, 209–210, 211

init-param tag, 164, 165

input buffer, 180

INSTALL file, 41

installing

Apache Tomcat, 29–31

Eclipse, 34–35

Java, 26–27

MySQL, 114

integrated development environment. See IDE

IntelliJ IDEA IDE, 34

internationalization. See I18N

Internet Explorer language preference,

setting, 145–147

invalidateUser method, 126

IoC (Inversion of Control), 330

IOException class, 192, 193–194

isAdministrator method, 267

isDepartmentHead method, 267

IT.CappuccinoNet.com, 139

iteration, 236–237, 361, 363–364

• J •

JAAS (Java Authentication and Authorization

Service), 271

Jakarta Project, 10–11

Jakarta Struts For Dummies Web site, 287, 325

“Jakarta Struts: Seven Lessons from the

Trenches” (Cavaness), 339

jakarta-oro.jar file, 42

JAR Selection dialog box (Eclipse), 58

Java

downloading, 26

installing, 26–27

SDK, 26, 27, 37

Java Authentication and Authorization

Service. See JAAS

Java Boutique Web site, 199

Java Database Connectivity. See JDBC

Java Element Filters dialog box (Eclipse),

54–55, 71

Java Naming and Directory Interface.

See JNDI

Java Runtime Environment. See JRE

Java scriptlet, 13, 14

Java Server Faces. See JSF

Java Servlet class group, 58

Java 2 Enterprise Edition. See J2EE

Java 2 Platform, Standard Edition. See J2SE

Java Virtual Machine. See JVM

Java XML. See JXML

JavaBean. See also formbean

authentication data, storing in, 74–75, 76

class, 14, 16

component architecture, 14

described, 10

design pattern, 15

DTO, as, 17

EJB, 164

Model data repository, using as, 49, 74, 112

naming convention, 15–16

property, 15–16

variable, referencing in, 229

View data, representing using, 48, 69

JAVA_HOME environment variable, 28

JavaServer Pages. See JSP

java.sun.com Web site

exceptions tutorial, 196

Java Servlet specification, 13

JavaBean resources, 16

JDBC tutorial, 130

JSF resources, 247

JSP specification, 13

J2EE tutorial, 274

J2SE resources, 201

JXML reference, 40

JavaWorld Web site, 247

jaxen-full.jar file, 231

jaxp-api.jar file, 231

JBuilder IDE, 34, 335

JCP Web site, 247

JDBC (Java Database Connectivity), 113,

124–126, 130

jdbc2_0-stext.jar file, 231

Jdk14Logger class, 282

JNDI (Java Naming and Directory

Interface), 271

Johnson, Ralph (Design Patterns: Elements of

Reusable Object-Oriented Software), 18

JoinAction class, 300, 301–302, 304

JoinBean class, 301, 302–304

27 559575 Index.qxd 3/2/04 4:13 PM Page 386

386 Jakarta Struts For Dummies

joinForm class, 299–301

join.jsp file, 294

JRE (Java Runtime Environment), 27, 37–39

JSF (Java Server Faces), 21, 246–247

JSF Central Web site, 247

JSP (JavaServer Pages). See also specific

mechanism and functionality
creating, 13–14

described, 10

editor, 14, 60

specification, 12–13

tag element overview, 14

Tag library, 225

View architecture, using as, 49, 137–139

JSP container. See Web container

jsp-file tag, 164

jsp:include tag, 245, 252–253

JSP/Servlet container. See Web container

JSTL (JSP Standard Tag Library). See also

specific tag
Core library, 234–238, 363–366

EL version, 234

files associated with, 42, 231

Formatting library, 238–241, 366–370

introduced, 21

RT version, 234

SQL library, 241–244, 370–372

XML library, 244, 372–374

jstl.jar file, 42, 231

J2EE (Java 2 Enterprise Edition), 11, 12, 111,

201, 274

J2SE (Java 2 Platform, Standard Edition),

26–27

JUnit testing framework, 334

JVM (Java Virtual Machine), 192

JXML (Java XML), 40

• L •

Language Preference dialog box (Internet

Explorer), 146

language, working with in internationalized

application, 140, 144–148
layout. See template
LDAP (Lightweight Directory Access

Protocol) server, 271

LICENSE file, 41

life cycle management, 12

listener tag, 163

literal (expression item), 228

LivingLogic Web site, 335

load-on-startup tag, 164

Log class, 282

logExceptionChain method, 197

LogFactory class, 282

Log4J logging package, 284–286

loggedinBody.jsp file, 256

loggedin.jsp file, 59, 64–67, 252, 258

loggedinTitle.jsp file, 262

logging, 197, 281–286

logic: tags, 234–238, 253, 361–362

LoginAction class, 75–77, 294–295, 296–297

LoginAction.java file, 59, 75–78, 88, 133

LoginBean class

database access, 124–129, 132–133

executeQuery method, 125–126

getAllUsers method, 127, 128

invalidateUser method, 126

Login example application, 59, 74–75,

124–126, 132–133

validateUser method, 75, 76–77, 125, 126,

295–296

LoginBean.java file, 59, 74–75, 124–126,

132–133

login-config tag, 275

loginForm class, 73, 155, 293

LoginForm.java file, 59, 69–70, 71, 72–73

login.jsp file, 59, 61–64, 71, 155

LogManager class, 284

logoff mechanism, 306, 307, 309, 322–323

LogoffAction class, 307, 322–323

logo.jsp file, 251, 253, 292

LookupDispatchAction class, 106–108, 330

• M •

Macromedia Dreamweaver software, 14

Mail Archive Web site, 338

mailing list overview, 338

mainTemplate.jsp file, 257

map (interface and root definition of class

set), 152

mapping, action. See action mapping

McClanahan, Craig (Struts creator), 339

message resource, 96–97, 141–145, 149, 154,

181–183

message-resources tag, 141, 181–182

MessageResourcesConfig class, 93

Middleware Struts training video, 341

Model-View-Controller. See MVC

27 559575 Index.qxd 3/2/04 4:13 PM Page 387

Index 387
module

action mapping path, module-relative,

177–178

ActionServlet initialization, referencing

during, 165

debugging level default, 180

default, defining, 94

exception handling, 198, 206, 295, 323, 324

instantiating, 96–97

plug-in initialization, referencing during, 212

struts-config.xml file configuration, 94

switching to another, 104

ModuleConfig class, 93, 96, 97

ModuleException class, 198, 206,

295, 323, 324

money variable, 241

MusicCollection.com Web site, 326

MusicListAction class, 306–308, 309

MusicListBean class, 308–309

MVC (Model-View-Controller)

Action subclass Controller role, 20, 92,

100–108

ActionForward class Controller role, 93

ActionMapping class Controller role,

93, 100

ActionServlet class Controller role, 20,

92, 93–98

B2B application, Model implementation

in, 110

class association with View, 69–70

data management role of Model, 109–110

database, connecting Model to, 123–130

database connection of Model, pooling,

130–135

database query result, passing to View, 126

dependency between layers, 77

described, 17, 18–19

design pattern, as, 10, 18–19

Eclipse view versus MVC View, 51

enforcement, 19–23

error message generation by Controller, 63

flow control by Controller, 17, 101

formbean, View/Controller interaction

using, 149–151

helper class of Model, adding, 112

I18N of View, 139–148

JavaBean, representing View data using,

48, 69

JavaBean, using as Model data repository,

49, 74, 112

JSP, using in View, 49, 137–139

persistence, Model role in achieving, 113

presentation role of View, 18

request handling by Controller, 18

RequestProcessor class Controller role,

20, 92, 98–100

struts-config.xml file, Controller

configuration in, 179–181, 270

tab libraries involved in implementing

View, 21

template engine, using in View, 137–138

Views, using multiple, 49

XML, using with View, 139

MySQL database management system. See

also database

class library, 115–117

command line, 120–121, 123

Connector/J driver, 113, 114–115

downloading, 114

Eclipse, configuring for, 115–116

Edit File System Variable dialog box, 120

installing, 114

starting, 118–119

stopping, 119

Web site, 113

• N •

naming convention, 15–16

NetBeans IDE, 14, 34

Netscape Navigator language preference,

setting, 147–148

New➪Class (Eclipse), 73

New➪File (Eclipse), 64

New File dialog box (Eclipse), 64

New File Type dialog box (Eclipse), 60

New Folder dialog box (Eclipse), 52

New Java Class dialog box (Eclipse), 73

New➪Package (Eclipse), 71

New Project dialog box (Eclipse), 51

New Source Folder dialog box (Eclipse), 52

newsgroup, 338

now variable, 227, 240

number sign (#) comment prefix, 67

• O •

object, implicit, 66, 229–230

OJB (Object Relational Bridge), 128

OODBMS (Object Orientated Database

Management System), 128

27 559575 Index.qxd 3/2/04 4:13 PM Page 388

388 Jakarta Struts For Dummies

open-source movement, 10

operator, 229

Oracle database management system, 113

ORM (object-to-relational mapping), 128, 330

• P •

paradigm, 10

password. See also authentication; security

Apache Tomcat, 31

display attribute, 63

input field, creating, 59, 63, 70, 299, 356–357

validating, 75, 76–77, 82–83, 221, 300–301

Path system variable, 120

period (.) EL operator, 229

permission, checking during authorization, 267

persistence, 113

pipeline, 138

plug-in. See also specific plug-in

cost, 341–342

described, 33

Eclipse plug-ins, 33–34, 35–39, 335–336, 342

initializing, 97, 210, 211–212

list of available plug-ins, 329–336, 341, 342

shutting down, 210, 212

struts-config.xml file configuration,

183–184, 212, 215, 262–263

TilesPlugin class, 262–263

PlugIn interface, 209–210

plug-in tag, 183–184, 212

PluginConfig class, 93

plus sign (+) DTD element suffix, 161

poList object, 199

Preferences dialog box

Eclipse, 36, 37, 60

Netscape Navigator, 147

printStackTrace method, 197

process method

ActionServlet class, 97

RequestProcessor class, 97, 98

processPath method, 269

processPreprocess method, 99, 268, 269,

297–298

project, creating, 51, 84

Project Refinery Web site, 343

Properties for Login dialog box (Eclipse), 57

property, 15–16

public scope, 15

• Q •

question mark (?)

DTD element suffix, 161

SQL parameter marker, 243, 372

quotation marks (“ ”) XML parameter

delimiters, 165

• R •

RDBMS (relational database management

system), 113

realDate variable, 241

realm, 270–273, 277

redirection, 100, 176, 233, 238, 366

refactoring, 249, 254

regular expression, 218

request handling

ActionForm class role, 20, 99

ActionServlet class role, 92, 93, 97

caching, 99, 181

Controller role, 18

forwarding request, 103

process method, by, 97, 98

wrapper, 98

RequestProcessor class

Action class, interaction with, 100

action mapping role, 98, 99

ActionForm class, interaction with, 99, 151

ActionForward class, interaction with,

100, 101

authentication using, 267–270

caching, 99

Controller role, 20, 92, 98–100

exception handling using, 203

Locale attribute, 98

process method, 97, 98

processPreprocess method, 99, 268, 269,

297–298

security role checking by, 99

validate method, 153

reset method, 70, 152, 157

Resource Bundle, 140, 142–143, 175

ResultSet class, 126, 128–129

reusability, 111

Rinehart, Mac (Enterprise JavaBeans For

Dummies), 111

role

authorization, using in, 273, 276

declaring, 270

27 559575 Index.qxd 3/2/04 4:13 PM Page 389

Index 389
RequestProcessor class, checking by, 99

servlet, mapping to, 164

role-name tag, 276

rollback (transaction reversal), 243

run-as tag, 164

RuntimeException class, 192, 193, 198, 324

RuntimeExceptions class, 207–208

• S •

saveAlbum method, 320

sax.jar file, 231

saxpath.jar file, 231

scope, 15, 151, 152, 212

ScriptedAction class, 332

scriptlet, 13, 14

SDK (Software Development Kit), 26, 27, 37

security. See also authentication;

authorization

ActionMapping object access, 178

authorization, using security role in,

273, 276

declarative, 270, 278

folder access, restricting, 277–278

LDAP server, 271

realm, 270–273, 277

RequestProcessor class, security role

checking by, 99

role, declaring, 270

servlet, mapping security role to, 164

Web container, provided by, 12, 270–278

security-constraint tag, 273–274

security-role-ref tag, 164

SEI (Software Engineering Institute) Web

site, 191

semicolon (;)

path prefix, 120

SQL command suffix, 121

sendRedirect method, 176

separation of concern, 242

server.xml file, 32, 270–272, 277

servlet

action mapping, 166

described, 9

initializing, 164–165

JSP translation to, 13

naming, 164

specification, 12, 13, 160

startup, loading at, 164

Web container requirement, 12

web.xml file, configuring in, 94, 163–165

servlet container. See Web container

servlet tag, 143, 164

servlet-class tag, 164

ServletContext object, 162–163

servlet.jar file, 58

servlet-mapping tag, 166, 167

servlet-name tag, 164

SessionManager class, 163

set-property tag, 170, 172, 212

setter methods, 16

Shared Skills training course, 341

SimpleLog logger, 283

skin, 245

slash (/) module prefix, 178, 182

Software Development Kit. See SDK

Software Engineering Institute Web site.

See SEI Web site

sort method, 105

source code for Jakarta Struts,

downloading, 40

SourceForge.net Web site, 246, 343

specification

JSP, 12–13

servlet, 12, 13, 160

web.xml file, 160

Spring plug-in, 330

SQL (Structured Query Language), 117–118,

122. See also database; MySQL database

management system

SQL Server, 113

SQL tag library, 241–244, 370–372

SQLException error, 195, 198, 202, 308

sql.tld file, 56

SSLExt plug-in, 332

stack trace information, retrieving, 196–197

standard.jar file, 42, 231

StartupManager plug-in, 310, 312

state, maintaining, 111

Statement class, 125

storeException method, 205

Structured Query Language. See SQL

Struts Action Scripting plug-in, 332–333

Struts for Transforming XML with XSL.

See stxx

Struts newsgroup, 338

Struts Users mailing list, 338

Struts Web site (jakarta.apache.org)

article list, 339

Commons DBCP project, 131–132, 170–171

Commons Logging package, 283

Contributor Extensions resources, 341

27 559575 Index.qxd 3/2/04 4:13 PM Page 390

390 Jakarta Struts For Dummies

Struts Web site (continued)

data source resources, 135

download page, 40

JSF resources, 247

Log4J resources, 284–285

plug-in listing, 341, 342

sample application list, 343

Struts-EL library resources, 21

Tiles resources, 263

Tomcat download, 29

User mailing list, 338

Velocity resources, 21, 138

volunteer page, 11

Struts Workflow Extension plug-in, 334–335

struts-bean-el.tld file, 56

struts-blank.war file, 43

struts-config tag, 169

struts-config-purch.xml file, 94

struts-config.xml file

action mapping configuration, 176–179,

296–297

ActionForm class configuration, 299–300

ActionForward class configuration, 77,

176–177

ActionServlet class configuration, 179

authorization area configuration, 273

Controller configuration, 179–181, 270

data source configuration, 134–135,

169–171, 290

DOCTYPE declaration, 169

DTD, 169

Eclipse, adding to, 83

editor plug-in, 335–336

example, 184–187

exception, declaring global, 174–175

file upload configuration, 180, 181

formbean configuration, 150–151, 171–174

forward mapping, 77, 93, 175–176, 180

location, 80, 95

Login example struts-config.xml file,

downloading, 59

message resource configuration, 141,

181–183

module configuration, 94

plug-in configuration, 183–184, 212, 215,

262–263

StrutsCX framework, 139

StrutsDoc plug-in, 333–334

struts-documentation.war file, 43, 44, 343

Struts-EL tag library, 21, 41, 227, 230–233. See

also specific tag

struts-el.jar file, 231

struts-example.war file, 43, 44, 342

struts-exercise-taglib.war file, 43

struts-faces tag library, 247

struts-html-el.tld file, 56, 62

struts.jar file, 42, 231

Struts-Layout tag library, 245–246

struts-legacy.jar file, 42, 132

struts-logic-el.tld file, 56

StrutsTestCase for JUnit plug-in, 334

struts-tiles.tld file, 259, 260

struts-upload.war file, 43

struts-validator.war file, 43

stxx (Struts for Transforming XML

with XSL), 139

SwitchAction class, 94, 104

Sybase database management system, 113

synchronized keyword, 95

Sysdeo Eclipse Tomcat Launcher plug-in,

35–39, 342

System.err file, 283

• T •

tag library, 80, 166–167, 226–227. See also

specific library

Tag Library Descriptor file. See TLD file

tag support class, 225

taglib tag, 166–167, 226–227, 250

taglibs.jsp file, 251, 252, 253

template, 137–138, 256–259

Testing Installer Options dialog box (Apache

Tomcat), 31

Themis training course, 341

threading, 95

Throwable class, 192, 199

tileDefinitions.xml file, 262, 263

Tiles framework, 43, 245, 256–263

tiles-documentation.war file, 43

TilesPlugin class, 262–263

TilesRequestProcessor class, 263

TLD (Tag Library Descriptor) file, 21, 42,

225–226

token, 237, 365

Tomcat. See Apache Tomcat

Tomcat Launcher plug-in, 35–39, 342

training course overview, 341

transaction, 129, 243, 371

try/catch block, 192–193

tutorials, 130, 196, 274, 339–340

27 559575 Index.qxd 3/2/04 4:13 PM Page 391

Index 391

• U •

UML (Unified Modeling Language), 91

updateAlbum method, 321

URL (Uniform Resource Locator)

action mapping path, determining from

request URL, 98

action mapping to servlet, 166

encoding, 238

importing, 237

rewriting, 237

session information, embedding, 237

url-pattern tag, 274, 276

UserDTO class, 129–130, 295, 301, 303,

317–318

• V •

validate method

ActionForm class, 70, 71, 99, 153, 178

DynaActionForm class, 157

form validation using, 70–71, 151, 317

formbean, of, 70–71, 82, 151, 153

loginForm class, 155

overriding, 70, 152–154

RequestProcessor class, 153

Validator plug-in versus, 212–213, 214

validateUser method, 75, 76–77, 125, 126,

295–296

validation

action mapping, during, 178

database, against, 124–126

form validation, declarative, 293, 300

form validation, dynamic, 157, 291, 299–301

form validation failure, ActionError

object created upon, 153–154

form validation using validate method,

70–71, 151, 317

form validation using Validator plug-in,

213–222, 290, 291, 293–294, 299–301

form validation via overriding validate

method, 152–154

HashMap construct, against, 75

password, 75, 76–77, 82–83, 221, 300–301

XML, 165

validation.xml file

DTD, 213

form configuration, 219–221, 222–224, 291,

293–294, 300–301

location, 215

Validator plug-in

configuration files, 213

DTD, 213, 215

form, validating using, 213–222, 290, 291,

293–294, 299–301

struts-config.xml file configuration, 215

validate method versus, 212–213, 214

ValidatorActionForm class, 213

validator-rules.xml file, 213, 215, 218,

221–222

variable. See also specific variable

declaring, 14

environment variable, initializing, 28

JavaBean, referencing in, 229

read-only variable, 95, 100

scoped variable, 234, 235, 363

threading considerations, 95

value, retrieving, 228

var-value tag, 223

Velocity project, 21, 138

VelocityStruts extension, 138

View. See MVC (Model-View-Controller)

Vlissides, John (Design Patterns: Elements of

Reusable Object-Oriented Software), 18

• W •

Web container. See also web.xml file

Apache Tomcat as, 12

configuration file, 160

described, 11

HTTP support, 12

security provided by, 12, 270–278

servlet requirement, 12

web-app tag, 161–162

web-resource-collection tag, 274

web-resource-name tag, 274

WebSphere Studio IDE, 34

web.xml file

ActionServlet class configuration, 80, 94,

163–166

authentication method definition, 275, 277

27 559575 Index.qxd 3/2/04 4:13 PM Page 392

392 Jakarta Struts For Dummies

web.xml file (continued)

authorization area configuration, 273–274

context configuration, 80, 141, 162–163

DOCTYPE declaration, 161

DTD, 160

Eclipse, adding to, 80–81

listener configuration, 163

Resource Bundle configuration, 142–143

servlet configuration, 94, 163–165

specification, 160

tag library configuration, 80, 166–167,

226–227
Tiles framework configuration, 260

Wiki Web site, 340

Window➪Customize Perspective

(Eclipse), 36

Window➪Open Perspective➪Java

(Eclipse), 50

Window➪Preferences (Eclipse), 36

Workflow Extension plug-in, 334–335

• X •

x: tags, 244, 372–374

xalan.jar file, 231

xercesImpl.jar file, 231

xferToBean method, 317–318

xferToForm method, 315

XML (eXtensible Markup Language). See also

DTD (Document Type Definition)

DOCTYPE declaration, 161, 169, 213

flow control, 244

tag sequence, 167

Tile definition using, 262–263

validation, 165

View, using in, 139

XML tag library, 244, 372–374

XPath expression, working with, 244, 373–374

XSL (eXtensible Stylesheet Language), 138

XSLT (eXtensible Stylesheet Language

Transformation), 21, 139, 244, 374

x.tld file, 56

	Jakarta Struts for Dummies
	Cover

	About the Authors
	Dedication
	Authors’ Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	How to Use This Book
	Foolish Assumptions
	Conventions Used in This Book
	How This Book Is Organized
	Part I: Getting to Know Jakarta Struts
	Part II: Starting from the Core
	Part III: Expanding Your Development Options
	Part IV: Putting It All Together
	Part V: The Part of Tens
	Part VI: Appendixes

	Icons Used in This Book
	Where to Go from Here

	Part I Getting to Know Jakarta Struts
	Chapter 1 Starting with the Basics
	What Is Jakarta Struts?
	Structuring a Web Application
	Using Java Servlets
	Creating JavaServer Pages
	Using JavaBeans

	Understanding the Model-View-Controller Design Pattern
	How Struts enforces the MVC pattern
	The MVC design pattern
	What is a design pattern?

	Chapter 2 Laying the Groundwork
	Getting Java
	Downloading and installing Java
	Setting the Java Home

	Getting the Web Container
	Downloading Tomcat to Windows
	Installing Tomcat under Windows
	Installing Tomcat under Linux or Mac OS X
	Starting and testing Tomcat

	Choosing Your Development Environment
	Downloading and Installing Eclipse
	Getting the Tomcat Launcher Plug-in for Eclipse
	Configuring the Tomcat Launcher plug-in
	Downloading and installing the Tomcat Launcher plug-in

	Getting Struts
	Reviewing the components of Struts
	Downloading Struts

	Testing Your Web Application Development Environment

	Chapter 3: Creating a Simple Web Application with Struts
	Designing Your First Struts Application
	Application requirements
	Determining which components to use

	Putting Everything in Place
	Creating the project in Eclipse
	Setting up the application folders
	Importing the Struts files

	Creating the JavaServer Pages
	The login.jsp page
	The loggedin.jsp page
	Using message resources

	Making the Formbean
	Adding a JavaBean
	Creating an Action
	Configuring Struts
	Defining web.xml
	Configuring Struts with struts-config.xml

	Strutting Your Stuff: Running the Application
	Deploying the Login application
	Testing the application
	Debugging with Eclipse

	Part II: Starting from the Core
	Chapter 4: Controlling with the Controller
	Understanding the Struts Controller Classes
	Working with the Master Controller - the ActionServlet
	Starting the Servlet
	Processing requests
	Shutting down the Servlet

	Working with the Controller’s Helper - RequestProcessor
	Getting Down to Work: Extending ActionClass
	Using the execute method
	Predefined Action classes
	Action Forms

	Chapter 5: Creating the Model
	Understanding the Model
	Working with Business Objects
	Meeting requirements for business objects
	Adding helper classes
	Using JavaBeans

	Implementing the Model
	Achieving persistence

	Getting MySQL
	Downloading and installing MySQL
	Downloading MySQL Connector/J

	Setting Up Your IDE and Web Container
	Importing the class library into Eclipse
	Adding the class library to Tomcat

	Working with MySQL
	Starting and stopping MySQL
	Creating a database
	Creating a table in MySQL
	Inserting data in the users table
	Executing queries
	Exiting the MySQL command tool

	Connecting the Model to the Database
	Working with JDBC
	Retrieving multiple records

	Pooling Connections
	Jakarta Commons DBCP
	Using connection pooling
	Configuring the data source in Struts

	Chapter 6: Designing the View
	Choosing JSP or an Alternative
	Template engines
	XML tools

	Internationalization
	Creating multinational applications
	Using one source for String type constants

	Mediating between the View and the Controller
	Configuring the formbean
	Interactions with the formbean
	Preparing the form with the reset method
	Indexing data
	Validating data
	Declarative form validation

	Notifying Users of Problems
	Mediating Automatically
	Configuring the DynaActionForm class
	Differences between ActionForm and DynaActionForm

	Chapter 7: Setting the Configuration
	Stringing the Parts Together
	Editing the Web Container Configuration File
	The ServletContext configuration tag
	Listener configuration
	ActionServlet configuration
	ActionServlet mapping
	Adding in the tag libraries
	A complete example of a web.xml file

	Modifying the Struts Configuration File
	DataSource configuration
	Formbean configuration
	Global exceptions
	Global forwards
	Action mapping
	Controller configuration
	Message resource configuration
	Plug-in configuration
	Complete example of a struts-config.xml file

	Part III: Expanding Your Development Options
	Chapter 8: Exceptions to the Rule
	Java Errors and Exceptions
	Try/catch block
	Throwing exceptions
	Wrapping it up in finally

	Exception Strategies
	Catching exceptions
	Exception information

	Writing Your Own Exception Classes
	Using Chained Exceptions
	Asserting Yourself
	Handling Exceptions Yourself
	Saving information
	Recovering from errors
	Inform the user
	Fail gracefully

	Declarative Exception Handling
	Declaring the exception
	Global or local exception handling

	Extending ExceptionHandler
	Handling RuntimeExceptions in Struts

	Chapter 9: Getting Friendly with Plug-ins
	Using the PlugIn Interface
	Implementing and Configuring Your Own Plug-in
	Working with the Validator Plug-in
	Configuring the Validator plug-in
	Using the Validator plug-in
	Extending the ValidatorForm class
	Configuring the Validator plug-in in the config file
	Defining the fields to validate
	Tweaking other files
	Try out the modified Login application
	Looking more closely at validation.xml
	Using the Validator with DynaActionForms

	Chapter 10: Getting a Helping Hand with Tag Libraries
	Using Tag Libraries
	Expressing with the Expression Language
	Identifiers
	Literals
	Operators
	Implicit Objects

	Using the Struts-EL Tag Library
	Getting the Struts-EL tag library
	Beans-EL library
	HTML-EL library
	Logic-EL library

	Working with the JSP Standard Tag Library
	Core library
	Formatting library
	SQL library
	XML library

	Other Struts Tag Libraries
	Tiles library
	Struts-Layout library
	Display library

	Looking at Java Server Faces

	Chapter 11: Working with Page Composition Techniques
	Making Your Page Layout Life Easier
	Simplifying with Includes
	Using the Tiles Framework
	Configuring Tiles
	Tiles definitions
	Using XML for Tile definitions

	Chapter 12: Securing Your Application
	Making the Application Responsible
	Logging in and authenticating a user
	Authorizing a user
	Authentication and authorization in Struts
	Customizing the RequestProcessor Class

	Declaring Security in Your Web Container
	Step 1 — Setting up the roles
	Step 2 — Defining the realms
	Step 3 — Specifying authorization areas
	Step 4 — Defining authentication methods
	Examples of declaring authorization and authentication

	Part IV: Putting It All Together
	Chapter 13: Logging Your Actions
	Logging for Everyone
	Using Commons Logging
	Using Java 1.4 Logging
	Working with the Log4J Package

	Chapter 14: Creating the MusicCollection.com Application
	Description of the Application
	Creating the Database Schema
	Configuring DataSource
	Creating the Pages and Associated Files
	Logging On from the Home Page
	Home page design
	LoginForm
	LoginValidation and validation.xml
	LoginAction
	LoginBean, model layer, and exception handling
	Action mapping configuration
	Continued User Authentication

	Creating a User Account
	Join page
	The Join form
	Join validation
	JoinAction
	JoinBean
	Configuring the action mapping for JoinAction
	The Welcome page

	Displaying the User’s Albums
	The MusicList page
	The MusicList form
	MusicListAction
	MusicListBean
	Configuring action mapping for MusicListAction

	Creating, Editing, or Deleting an Album
	The Album page
	AlbumForm
	StartupManager
	AlbumValidation
	AlbumAction
	AlbumBean

	Logging Off
	LogoffAction
	Configuring action mapping for LogoffAction

	Handling Exceptions
	Our own exception
	The custom ExceptionHandler
	Declarative exception handling
	Error pages

	Running the Application

	Part V: The Part of Tens
	Chapter 15: Ten Helpful Extensions to Struts
	ImageButtonBeanManager
	Struts Spring Plug-in
	Hibernate
	Expresso
	SSLExt
	Struts Action Scripting
	StrutsDoc
	StrutsTestCase for JUnit
	Struts Workflow Extension
	Easy Struts Plug-in

	Chapter 16: Ten Ways to Find More Information
	Struts Web Site
	Struts Mailing Lists
	Articles
	Tutorials
	Consultants
	Classes
	Struts Resources Web Sites
	Sample Applications
	Struts Documentation
	Friends and Colleagues

	Part VI: Appendixes
	Appendix A: Struts-EL and JSTL Tag Library Syntax
	Beans-EL Library Syntax
	HTML-EL Library Syntax
	Logic-EL Library Syntax
	JSTL Core Library Syntax
	JSTL Formatting Library Syntax
	JSTL SQL Library Syntax
	JSTL XML Library Syntax

	Appendix B: Glossary
	Index
	Team DDU

