
Lengstorf
PHP

Companion
eBook

Available

this print for content only—size & color not accurate

Books for professionals By professionals®

 Cyan
 MaGenTa

 yelloW
 BlaCk

PHP for Absolute Beginners
Dear Reader,

PHP for Absolute Beginners will take you from zero to full-speed with PHP pro-
gramming in an easy-to-understand, practical manner. Rather than building
applications with no real-world use, this book teaches you PHP by walking you
through the development of a blogging web site.

You’ll start by creating a simple web-ready blog, then you'll learn how to add
password-protected controls, support for multiple pages, the ability to upload
and resize images, a user comment system, and finally, how to integrate with
sites like Twitter.

Along the way, you'll also learn a few advanced tricks including creating
friendly URLs with .htaccess, using regular expressions, object-oriented pro-
gramming, and more.

I wrote this book to help you make the leap to PHP developer in hopes that
you can put your valuable skills to work for your company, your clients, or on
your own personal blog. The concepts in this book will leave you ready to take
on the challenges of the new online world, all while having fun!

Jason Lengstorf

THE APRESS ROADMAP

PHP Objects, Patterns,
and Practice

Practical Web 2.0
Applications with PHP

Beginning Ajax and PHP

Pro PHP:
Patterns, Frameworks,

 Testing, and More

PHP for
Absolute Beginners

Beginning PHP
and MySQL

US $34.99

Shelve in:
PHP

User level:
Beginner

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

trim = 7.5" x 9.25" spine = 0.75" 408 page count

The experT’s VoiCe® in open sourCe

PHP
for Absolute Beginners

Jason Lengstorf

Everything you need to know to
get started with PHP

for Absolute Beginners

Download at WoweBook.Com

i

PHP for Absolute
Beginners

 ■ ■ ■

Jason Lengstorf

Download at WoweBook.Com

ii

PHP for Absolute Beginners

Copyright © 2009 by Jason Lengstorf

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2473-0

ISBN-13 (electronic): 978-1-4302-2474-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Michelle Lowman
Technical Reviewer: Gordon Forsythe
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank
Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Debra Kelly
Copy Editor: Patrick Meader
Compositor: Lynn L’Heureux
Indexer: John Collin

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

Download at WoweBook.Com

iii

For my dad, who showed me that nothing stands between a bear and its honey.

Download at WoweBook.Com

iv

Contents at a Glance

■About the Author ... xiv

■About the Technical Reviewer.. xv

■Acknowledgments... xvi

■Introduction.. xvii

■Chapter 1: Setting Up the PHP Development Environment...3

■Chapter 2: Understanding PHP: Language Basics ..29

■Chapter 3: Passing Information with PHP..69

■Chapter 4: Working with Databases...97

■Chapter 5: Building the Entry Manager ..125

■Chapter 6: Adding Support for Multiple Pages...157

■Chapter 7: Updating and Deleting Entries ..187

■Chapter 8: Adding the Ability to Upload Images ..207

■Chapter 9: Syndicating the Blog...263

■Chapter 10: Adding a Commenting System to Your Blog ..283

■Chapter 11: Adding Password Protection to Administrative Links311

■Chapter 12: Finishing Touches...341

■Index ...369

Download at WoweBook.Com

v

Contents

■About the Author ... xiv
■About the Technical Reviewer.. xv
■Acknowledgments... xvi
■Introduction.. xvii

■Chapter 1: Setting Up the PHP Development Environment...3
Why You Need Apache, MySQL, and PHP..3

Drilling Down on PHP..3
Stable/Production vs. Development Releases ..4
How PHP Works ..4
Server-Side vs. Client-Side Scripting ...4
What Apache Does..5

Store Info with MySQL ..5
Installing PHP, Apache, and MySQL (the Hard Way)..6

Installation Made Easy..6
Installing XAMPP...6

Step 1: Download XAMPP ...7
Step 2: Open the Installer and Follow the Instructions...7
Step 3: Test XAMPP to Ensure Proper Installation ..11

Choosing a Development Kit ...15
Benefiting from SDKs and IDEs...15
Choosing the Right SDK..18

The Eclipse Foundation and PDT ..18
Installing and Using the Eclipse PDT...18

Step 1: Downloading the PDT ...19
Step 2: Unpacking the PDT Archive ..19
Step 3: Choosing Your Project Workspace ...20
Step 4: Creating Your First Project ...23

Download at WoweBook.Com

■ CONTENTS

vi

Step 5: Creating a File ..26
Step 6: Writing Your First Script ...27

Summary...28

■Chapter 2: Understanding PHP: Language Basics ..29
Embedding PHP Scripts...29

Alternative Delimiters ...30
Short Tags ..31
HTML <script> Tags and ASP-Style Delimiters..31

Variables and Datatypes..32
What Is a Variable? ...32
Storing Values in a Variable..32

Understanding Strings ..33
Understanding Integers ..37
Understanding Floating Point Numbers ..37
Understanding Boolean Values ...37
Understanding Arrays ...38

Sending Data to the Browser as Output ..41
The Different Output Commands ..41

The print() Statement..41
The echo() Statement ...42
The printf() Statement...43
The sprintf() Statement...45

Commenting Your Code...46
Inline vs. Block Comments ...46
Other Comment Styles..47

Operators...47
Arithmetic Operators ..48
Arithmetic Assignment Operators...48
Comparison Operators..50
Error Control Operators...51
Incrementing/Decrementing Operators ..52
Logical Operators..52
String Operators ...54

Control Structures ...54

Download at WoweBook.Com

■ CONTENTS

vii

if, else, and else if ..55
while and do-while ...56
for 58
foreach..59
break...60
switch ...61
continue..62
return..63
include, include_once, require, and require_once ...63
goto...65

User-Defined ...66
Returning Values from Functions ...67

Summary...68

■Chapter 3: Passing Information with PHP..69
Superglobal Arrays..69

Variable Scope..70
$GLOBALS...73
$_SERVER...74
$_GET ...77

URL Encoding..78
Accessing URL Variables ..78

$_POST ...82
$_REQUEST...84
$_FILES...85
$_SESSION ...89

Using session_destroy()..92
$_COOKIE..93

Summary...95

■Chapter 4: Working with Databases...97
The Basics of MySQL Data Storage...97
Manipulating Data in MySQL Tables..98

Creating and Deleting Databases ...99
Deleting Databases Using DROP...99
Creating Databases Using CREATE ...100

Download at WoweBook.Com

■ CONTENTS

viii

The CREATE TABLE Statement..100
Data Types in MySQL..102
Understanding PRIMARY KEY..102
Understanding AUTO_INCREMENT..102
Indexes in MySQL ...103

The INSERT Statement..103
The SELECT Statement ...105
The UPDATE Statement...107
The JOIN Statement..108
The DELETE Statement ...109

Opening a Connection ...109
PHP’s MySQL Extension..109
The MySQLi Extension ..111

Using Prepared Statements ..111
Using MySQLi..112
Using Prepared Statements with MySQLi ...113

PHP Data Objects (PDO) ..116
Rewriting Your Example in PDO..116

Table Structure and a Crash Course in Planning...118
Planning Database Tables ..118
The Shortcut Selector (*) ...122

Summary...122
Recommended Reading..122

■Chapter 5: Building the Entry Manager ..125
Planning the Entry Database Table ...125
Creating the Entry Input Form ...128
Create a Script to Process the Form Input ..132

Performing the Initial Verification ...133
Connect to the Database ..134

Keeping Database Credentials Separate ..134
Connecting to the Database in update.inc.php...135

Save the Entry to the Database ..135
Retrieve the Entry’s Unique ID and Display the Entry to the User.................................136

Displaying the Saved Entries...138

Download at WoweBook.Com

■ CONTENTS

ix

Planning Our Scripts ...139
Separation of Logic in Programming ..139
Mapping Your Functions to Output Saved Entries ..140
Writing the Database Functions..141
Writing the Business Function ..148
Writing the Presentation Code ..149

Fix the Redirect ...155
Summary...156

■Chapter 6: Adding Support for Multiple Pages...157
Add a page Column to the entries Table ...157
Modify Your Functions to Accept Page Parameters ..158

Accepting Page Information in the URL ..158
Using the Page Information to Filter Entries ...159

Modifying admin.php to Save Page Associations..165
Saving Page Associations ...168
Using .htaccess to Create Friendly URLs...170

What .htaccess Does ..170
Using Regular Expressions ...171
Creating Your .htaccess File ...171

Step 1: Turn on URL Rewriting..171
Step 2: Declare the Base-Level Folder for Rewriting..172
Step 3: Set Up a Rule to Stop Rewriting for Certain File Types172
Step 4: Set Up a Rule for Admin Page Access ..173
Step 5: Set Up a Rule for Page-Only URLs ..174
Step 6: Set Up a Rule for Page-and-Entry URLs ...174
Trying It Out ..175

Creating Friendly URLs Automatically...175
Step 1: Add a url Column to the entries Table ..176
Step 2: Modify functions.inc.php to Handle URLs...176
Step 3: Modify index.php to Handle URLs...178
Step 4: Write a Function to Create Friendly URLs Automatically180
Step 5. Modify update.inc.php to Save URLs in the Database................................182

Adding a Menu ..184
Creating Different Viewing Styles for the Pages ...185
Summary...186

Download at WoweBook.Com

■ CONTENTS

x

■Chapter 7: Updating and Deleting Entries ..187
Creating Administrative Links ...187
Displaying Administrative Links ..188
Passing URL Values to admin.php with .htaccess...190

Modifying the Original Admin Rule ...190
The New Admin Rule ..191

Populating Your Form with the Entry to Be Edited ..191
Updating Entries in the Database..194
Handling Entry Deletion...197
Confirming Your Choice to Delete an Entry ...200

Handling Your Submitted Confirmation Form ...201
Removing Deleted Entries from the Database ..203
Summary...205

■Chapter 8: Adding the Ability to Upload Images ..207
Adding a File Input to the Admin Form..207
Accessing the Uploaded File ...208

A Quick Refresher on the $_FILES Superglobal Array ..208
Object-Oriented Programming..211

Drill Down on Objects ...211
Why Objects Are Useful ..212

Writing the Image Handling Class ...218
Saving the Image..219

Checking for Errors Using Exceptions...221
Saving the File ..223

Modifying update.inc.php to Save Images..225
Using try...catch with Exceptions ...226

Creating a New Folder ..228
Renaming the Image...236

Determining the File Extension...237
Storing and Retrieving Images from the Database ...240

Modifying the entries Table ..241
Modifying update.inc.php to Save Images..241
Modifying retrieveEntries() to Retrieve Images ..244
Modifying index.php to Display Images..246

Download at WoweBook.Com

■ CONTENTS

xi

Adding a Function to Format Images for Output...246
Resizing Images ..248

Determining the New Image Dimensions ...249
Adding a Property for Maximum Dimensions ...249
Creating the Method to Determine New Width and Height.....................................250

Determining Which Image Functions to Use...252
Resampling the Image at the Proper Size ..254

Adding Your New Method to processUploadedImage() ..258
Summary...260

■Chapter 9: Syndicating the Blog...263
What Is RSS?...263

What Is XML?..264
Creating an RSS Feed ...264

Describing Your Feed..265
Creating Feed Items..266

Using Existing Functions to Minimize Effort ...266
What Is a GUID? ..271
What Is a Publishing Date? ...272

Publishing Your Feed ..278
Adding the Feed to the Blog ...278

Using the <link> Tag to Signify an RSS Feed...278
Adding an RSS Link ..279

Summary...281

■Chapter 10: Adding a Commenting System to Your Blog ..283
Creating a comments Table in the Database ..283
Building a Comments Class...285
Building the Comment Entry Form ..286

Modifying index.php to Display the Comment Form...287
Storing New Comments in the Database ..289

Modifying update.inc.php to Handle New Comments...291
Retrieving All Comments for a Given Entry ...293
Displaying Comments for a Given Entry ..296

Modifying index.php to Display Entry Comments ...302

Download at WoweBook.Com

■ CONTENTS

xii

Deleting Comments...304
Creating a Confirmation Form ..305
Removing the Comment from the Database...306
Modifying update.inc.php to Handle Comment Deletion ..307

Summary...310

■Chapter 11: Adding Password Protection to Administrative Links311
Adding an admin Table to the Database ...311
Adding Administrators in the Database...312

Building an HTML Form ..312
Saving New Administrators in the Database ..315

Dealing with Passwords ...316
Saving the Admin..316

Hiding Controls from Unauthorized Users ...318
Modifying index.php ...318
Modifying comments.inc.php ...323
Modifying admin.php ..325

Creating a Login Form...328
Displaying Controls to Authorized Users ...330
Logging Users Out ...337

Adding a Log Out Link...337
Modifying update.inc.php to Log Out Users..339

Summary...340

■Chapter 12: Finishing Touches...341
Email Validation...341

Adding a Method to Validate Email...342
Validating Email Addresses ..343
Saving Comments in Sessions ...344

Displaying the Stored Comment Information..345
Adding Error Messages...348

Identifying Errors in saveComment() ..348
Modifying update.inc.php ...349
Matching Error Codes in showCommentForm()..350

Basic Spam Prevention ...353
Creating a Basic Logic Question ...354

Download at WoweBook.Com

■ CONTENTS

xiii

Generating Random Numbers...354
Obfuscating the Values...354
Adding the Math Question to the Form...355

Adding the Challenge Question to the Form ...356
Verifying the Correct Answer..358

Adding the Verification into saveComment()...359
“Post to Twitter” Link..362

Creating a Shortened Link with http://bit.ly..363
Generating an Automatic Status Update for Twitter ...365

Displaying the Link on Entries ..366
Summary...368

■Index ..369

Download at WoweBook.Com

■ CONTENTS

xiv

About the Author

■Jason Lengstorf is a software designer and developer based in Missoula, MT. He
runs a web design/development effort called Ennui Design that specializes in
custom web applications ranging from simple informational web sites to full-on
content-management systems.

When not glued to his keyboard, he’s likely to be found standing in line
for coffee, brewing his own beer, lifting heavy things, or pretending to know
something about wine.

Download at WoweBook.Com

■ CONTENTS

xv

About the Technical Reviewer

■Gordon Forsythe has been developing web applications using PHP since 2000.
He has worked on many open source applications and has developed programs for
various fields, including education, health care, real estate, and
telecommunications. He currently resides in Phoenix, AZ, with his wife, three cats,
two dogs, and five fish.

Download at WoweBook.Com

■ CONTENTS

xvi

Acknowledgments

I owe the most thanks to my parents, Wendy and Wally Lengstorf, and to my brother and sister, Kyle and
Carly. If you guys hadn't been so forgiving during my many years of troublemaking, I'd probably still be
living out of a bag in a van somewhere. I’m especially thankful to my dad, who taught me that software
isn’t about degrees or certifications, but determination.

To Nate Green, my oldest friend and biggest inspiration – this had better move me up to Friday
or Saturday! Thanks for showing me that there’s no such thing as too young, too bold, or too ambitious.

To my friends Kyle Hibler, Mike Scialabba, and Taylor Selig: keep at it. Someday you’ll write
books, too, and then you’ll be as cool as Nate and I. Thanks for putting up with my geekiness and letting
me be on Team Cobra.

I also can't forget to thank Chris Coyier. My clumsy article on his web site was my springboard
into this project, and I am sincerely grateful that he took a chance on some punk kid from Montana.

Michelle Lowman, thanks for reading that article and giving me a shot. And for putting up with
my incessant questions. And dealing with my utter lack of experience. I really appreciate it, and it's
probably the only thing that got me through this project alive.

Gordon Forsythe, thanks for keeping my code clean. Without you, my code might have ended
up held together by duct tape. And Patrick Meader, thank you for all your time spent poring over my bad
English. This book would have been a grammatical disaster without your help.

Debra Kelly, you came into this project halfway through and managed to somehow put us
ahead of schedule. I don't know how you did it, but thanks!

And finally, to all my geeky friends: Rob MacKay, Mike Conaty, Robert Banh, Brenley Dueck,
Drew Douglass, Andy Sowards, Tomo Kawai, Chad Engle, and the whole #DCTH crew – thanks for
asking questions, providing answers, and reminding me why I do what I do.

Download at WoweBook.Com

■ CONTENTS

xvii

Introduction

On February 18, 2009, I received this email:

Hello Jason,
I’m looking for someone to write PHP for Absolute Beginners, and I was wondering if you would be
interested. I like your Simple CMS tutorials; they look like just the thing for this type of book. Please let
me know if you are interested.

Thanks!
Michelle Lowman

I, of course, assumed it was some kind of joke. I replied with something like, “Yeah, okay, sure.
I'll write a book.” And then a contract showed up in the mail.

Now, not even six months later, the book is almost ready to go to press, and I'm happy to say
that I’m proud of the result.

This book is the book I wish I’d had when I first started programming. It assumes no knowledge
of PHP, but it doesn’t spend hundreds of pages on programming theory or the history of the language.
Sure, it covers that, but what I really wanted to do was jump right in and teach you how to build
something that you could use. I chose a blogging application because it feels like everybody has a blog
these days, and why shouldn't you know how to build one?

In this book, I've tried to write exactly the way I’d teach you one-on-one: you should feel
comfortable with what’s being discussed, but not bored. The material should move quickly, but remain
easy-to-follow. I also want you to feel like you're learning, not memorizing. And most importantly, when
you’ve finished this project, I want you to turn around and build another one – this time without any
help.

PHP is a great language, and it provides developers with the ability to build pretty much
anything they can imagine when paired with a database and some good ol’ HTML. However, it can also
seem intimidating. It’s not visual like front-end design, there’s all this theory involved, and it’s just, you
know, harder.

But that doesn’t have to be the case, and it’s my sincere hope that this book will allow you to get
your hands dirty with PHP without ever feeling intimidated, lost, or hopeless. It wasn't long ago that I
was struggling through complex, boring how-tos on PHP, so I know how it is to feel completely
overwhelmed by the massive amounts of information about the language. It's my sincere hope that I've
written a book that will allow you to learn everything you need to know in a far less stressful manner.

So take a deep breath and turn the page. Let's do this!

Download at WoweBook.Com

Download at WoweBook.Com

P A R T 1

Getting Started

Before you can get your hands dirty, you’ll need to get a development environment set up

and familiarize yourself with the basics of PHP. These first few chapters assume no

knowledge of PHP and will walk you through the steps required to build a local

development environment on your computer.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 1

3

Sett ing Up the PHP
Development Envi ronment

Getting a working development environment put together can be intimidating, especially for the
absolute beginner.

To follow along with the project in this book, you’ll need to have access to a working installation
of Apache, PHP, and MySQL, preferably on your local machine. It’s always desirable to test locally, both
for speed and security. Doing this both shelters your work-in-progress from the open Internet and
decreases the amount of time spent uploading files to an FTP server and waiting for pages to reload.

Why You Need Apache, MySQL, and PHP
PHP is a powerful scripting language that can be run by itself in the command line of any computer with
PHP installed. However, PHP alone isn't enough in order to build dynamic web sites.

To use PHP on a web site, you need a server that can process PHP scripts. Apache is a free web
server that, once installed on a computer, allows developers to test PHP scripts locally; this makes it an
invaluable piece of your local development environment.

Additionally, dynamic websites are dependent on stored information that can be modified
quickly and easily; this is the main difference between a dynamic site and a static HTML site. However,
PHP doesn’t provide a simple, efficient way to store data. This is where a relational database
management system like MySQL comes into play. This book’s examples rely on MySQL; I chose this
database because PHP provides native support for it and the database is free, open-source project.

Note An open-source project is available for free to end users and ships with the code required to create that
software. Users are free to inspect, modify, and improve the code, albeit with certain conditions attached. The
Open Source Initiative lists 10 key provisions that define open-source software; you can view this list at
www.opensource.org/docs/osd.

Drilling Down on PHP
PHP is a general-purpose scripting language that was originally conceived by Rasmus Lerdorf in 1995.
Lerdorf created it to satisfy the need for an easy way to process data when creating pages for the World
Wide Web.

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

4

Note PHP was born out of Rasmus Lerdorf’s desire to create a script that would keep track of how many visits
his online resume received. Due to the wild popularity of the script he created, Lerdorf continued developing the
language. Over time other developers joined him in creating the software; today, PHP is one of the most popular
scripting languages in use on the Internet.

PHP originally stood for “Personal Home Page” and was released as a free, open source project.
Over time, the language was reworked to meet the needs of its users. In 1997, PHP was renamed to the
current “PHP: Hypertext Preprocessor.”

At the time I write this, PHP 5.2.9 is the latest stable release available, but versions 5.3 and 6 are
both scheduled for release in the near future. PHP 4 is still in use on a number of servers, but support has
been discontinued. Many hosting companies let developer use either PHP 4 or PHP 5 on their sites.

Stable/Production vs. Development Releases
Many software products will have a development release available, alongside the current, stable release.
This is a way for the development community to test an upcoming version of a product; this helps the
product’s creators work bugs out of the system.

After a proposed release has been tested to a satisfactory level, its creators mark it as the current
production release. Users reasonably expect the production software they use to be free of major defects
or bugs; calling a version a stable/production release is a way for the product’s creators to let potential
users know that, in the opinion of the product’s creators, all major issues have been worked out, and that
it is safe to use this software for mission-critical applications.

How PHP Works
PHP is generally used as a server-side scripting language; it is especially well-suited for creating dynamic
web pages. The scripting language features integrated support for interfacing with databases such as
MySQL, which makes it a prime candidate for building all manner of web applications, from simple
personal web sites to complex enterprise-level applications.

Unlike HTML, which is parsed by a browser when a page loads, PHP is preprocessed by the
machine that serves the document (this machine is referred to as a server). All PHP code contained with
the document is processed by the server before the document is sent to the visitor’s browser.

PHP is a scripted language, which is another great advantage for PHP programmers. Many
programming languages require that you compile files into machine code before they can be run, which
is a time-consuming process. Bypassing the need to compile means you’re able to edit and test code
much more quickly.

Because PHP is a server-side language, running PHP scripts on your local machine requires
installing a server on your local machine, as well. The examples in this book rely on the Apache web
server to deliver your web pages.

Server-Side vs. Client-Side Scripting
The Internet features two main kinds of scripting: server-side and client-side. Client-side scripting is
comprised mainly of JavaScript, which is responsible for many of the web features that you can actually
see happening, such as pop-up windows, some animations, and other site features like drop-down
menus. The reason this is called “client-side” scripting because the code is executed on the user’s
machine, after the page has been loaded.

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

5

Using client-side scripts enables you to make changes to a page without requiring a page
refresh; it also facilitates initial form validation and simplifies making improvements to the user
interface.

However, using client-side scripts requires that the users have JavaScript turned on or that their
browsers support the script you have written. This means you should not use client-side scripts for user
authentication or the handling of anything sensitive, due to the user’s ability to modify and/or disable
your client-side scripts.

Server-side scripting is performed on the site’s hosting server before the page is delivered to the
user. This means that any changes that must be made by the script require a page refresh.

Using server-side scripting is great for user authentication, saving changes to database
information, retrieving entries for display, and many other tasks.

The downside of server-side scripts lies mainly in the required page refresh. Because the script
is processed before it is delivered to the browser, the user doesn’t have access to the inner workings of
the code. This makes server-side scripts the best choice for handling any sensitive information.

Caution Server-side scripting is better suited to handling sensitive information than client-side scripts, but you
still must take care to protect sensitive data. We’ll spend more time on basic security later in the book.

Serving web pages with Apache HTTP Server is the most popular web server on the web; it hosts
nearly half of all web sites that exist today. Apache is an open-source project that runs on virtually all
available operating systems.1 Apache server is a community-driven project, with many developers
contributing to its progress. Apache’s open-source roots also means that the software is available free of
charge, which probably contributes heavily to Apache’s overwhelming popularity relative to its
competitors, including Microsoft’s IIS and Google’s GWS, among others.

On the Apache web site (www.apache.org), Apache HTTP Server is described as “an effort to
develop and maintain an open-source HTTP server for modern operating systems including UNIX and
Windows NT. The goal of this project is to provide a secure, efficient, and extensible server that provides
HTTP services in sync with the current HTTP standards.”

What Apache Does
Like all web servers, Apache accepts an HTTP request and serves an HTTP response. The World Wide
Web is founded on web servers, and every website you visit demonstrates the functionality of web
servers.

I’ve already mentioned that, while HTML can be processed by a web browser, programming
languages such as PHP need to be handled by a web server. Due to its overwhelming popularity, Apache
is used for testing purposes throughout this book.

Store Info with MySQL
MySQL is a relational database management system (DBMS). Essentially, this means that MySQL allows
users to store information in a table-based structure, using rows and columns to organize different
pieces of data. This structure is similar to that of Microsoft’s Access database.

The examples in this book rely on MySQL to store the information you’ll use in your PHP scripts,
from blog entries to administrator information; it is that approach that allows your site to be dynamic.

1 Wikipedia, “Apache HTTP Server,” http://en.wikipedia.org/wiki/Apache_(HTTP_server)

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

6

Note Blog is short for weblog, which is an online journal for an individual or business.

Installing PHP, Apache, and MySQL (the Hard Way)
One of the biggest hurdles for new programmers is starting. Before you can write your first line of PHP, you
must first download Apache and PHP, and usually MySQL, and then fight through installation instructions
that are full of technical jargon you might not understand yet. This experience can leave many developers
feeling unsure of themselves, doubting whether they’ve installed the required software correctly.

In my own case, this hurdle kept me from learning programming for months, even though I
desperately wanted to move beyond plain ol’ HTML. I unsuccessfully attempted to install PHP on my
local machine not once, but three different times before I was able to run my first PHP command
successfully.

Installation Made Easy
Fortunately, the development community has responded to the frustration of beginning developers with
several options that take all the pain out of setting up your development environment, whether you
create applications for Windows, Mac, or Linux machines. These options include all-in-one solutions for
setting up Apache, MySQL, and PHP installations.

The most common all-in-one solution is a program called “XAMPP” (www.apachefriends.org/
en/xampp.html), which rolls Apache, MySQL, PHP, and a few other useful tools together into one easy
installer.

XAMPP is free and available for Windows, Mac, and Linux, so this book assumes you will use it
as your development environment.

Note Most Linux distributions ship with one flavor or another of the LAMP stack (Linux-specific software that
functions similarly to XAMPP) bundled in by default. Certain versions of Mac OS X also have PHP and Apache
installed by default.

Installing XAMPP
Enough background: You’re now ready to install XAMPP on your development machine. This process
should take about five minutes and is completely painless.

Note A good habit to get into is to create separate development and production environments. A development
environment is for testing projects for bugs and is generally sheltered from the world at large. A production
environment is reserved for fully functional, publicly available projects.

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

7

Step 1: Download XAMPP
Your first task is to obtain a copy of the XAMPP software. Head over to the XAMPP site
(www.apachefriends.org/en/xampp.html) and download the latest version (0.7.4 for Mac, 1.7.1 for
Windows, and 1.7 for Linux at the time I write this).

Step 2: Open the Installer and Follow the Instructions
After downloading XAMPP, find the newly downloaded installer and run it. You should be greeted with a
screen similar to the one shown in Figure 1-1.

Note All screenshots used in this book were taken on a computer running Mac OS X 10.4.11. Your installation
might differ slightly if you use a different operating system. XAMPP for Windows offers additional options, such as the
ability to install Apache, MySQL, and Filezilla (an FTP server) as services. This is unnecessary and will consume
computer resources even when they are not being used, so it's probably best to leave these services off. Additionally,
Windows users should keep the c:\xampp install directory for the sake of following this book’s examples more easily.

Figure 1-1. The introductory screen for the XAMPP installer on Mac OS X

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

8

Click the Continue button to move to the next screen (see Figure 1-2), where you can choose
the destination drive you want to install XAMPP on.

Figure 1-2. Select a destination drive on which to install XAMPP

The installation wizard’s next screen (see Figure 1-3) asks what type of installation you prefer.
This is your first time installing XAMPP, so the only available option is a basic installation of XAMPP.

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

9

Figure 1-3. XAMPP gives you only one option the first time you install it

Clicking “Upgrade” brings up a screen that shows the progress of XAMPP as it installs on the
selected drive (see Figure 1-4).

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

10

Figure 1-4. Watch the installer’s progress for XAMPP for Mac OS X

Installation requires a minute or two to complete, whereupon the installer displays the final
screen (see Figure 1-5), which confirms that the installation was successful.

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

11

Figure 1-5. Successful installation of XAMPP brings up this screen

Step 3: Test XAMPP to Ensure Proper Installation
So far you’ve used the XAMPP wizard to install Apache, PHP, and MySQL. The next step is to activate the
trio of applications.

Open the XAMPP Control Panel
You can activate the just-installed applications by navigating to the newly installed xampp folder and
opening the XAMPP Control Panel (see Figure 1-6).

Note When opening the XAMPP Control Panel you may be prompted for your password. This has no effect on
the services themselves and should not affect the projects covered in this book.

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

12

Figure 1-6. Inside the XAMPP control panel

Activating Apache, PHP, and MySQL on your development machine is as simple as clicking the
“Start” button next to both Apache and MySQL on the XAMPP Control Panel. You might be prompted to
confirm that the server is allowed to run on your computer, and you might be required to enter your
system password. After you do this, the “Output” panel should start displaying a series of messages (see
Figure 1-7); the final message displayed should say, “XAMPP for (operating system here) started.”

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

13

Figure 1-7. Starting XAMPP services

Note There is also an FTP (file transfer protocol) option available in XAMPP. FTP provides a method for moving
files between networks. The examples in this book don’t require this option, so there is no need to activate it in the
XAMPP control panel.

Verify That Apache and PHP Are Running
It’s a simple matter to check whether all the services are running properly on your development
machine. Simply open a browser and go to this address: http://localhost. If everything has gone
correctly, you’ll be redirected to http://localhost/xampp/index.php (see Figure 1-8).

If this screen loads, you’ve installed Apache and PHP on your development machine
successfully!

If you do not see this screen, the XAMPP online community is extremely helpful and most
installation issues have been addressed in the Apache Friends forum at http://www.apachefriends.org/
f/viewforum.php?f=34.

The address, http://localhost, is an alias for the current computer you’re working on. When
using XAMPP, navigating to http://localhost in a browser tells the server to open the root web
directory; this is the htdocs folder contained in the XAMPP install directory.

Another way to use your server to access the root web directory on your local machine is to
navigate to the IP address—a numerical identifier assigned to any device connected to a computer
network—that serves as the “home” address for all HTTP servers: http://127.0.0.1.

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

14

Figure 1-8. Visit the XAMPP homepage at http://localhost

Verify That MySQL Is Running
You can verify that MySQL is also running by going to the Tools menu and choosing “phpMyAdmin.”
This should bring up the screen shown in Figure 1-9.

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

15

Figure 1-9. MySQL is running if phpMyAdmin loads without error

Now that have MySQL running on your development machine, you’re ready to start running
PHP scripts. Note that if you’re a Windows user, you might need to navigate to C:\xampp\php\php.ini
and locate the following lines to verify that magic_quotes_gpc is set to Off:

; Magic quotes for incoming GET/POST/Cookie data

magic_quotes_gpc = Off

Choosing a Development Kit
Your development machine is now running all the necessary programs for programming with PHP. The
next step is to decide how you’re going to write your scripts. PHP scripts are text-based, so you have
myriad options, ranging from the simple Notepad.exe and text-edit programs to highly specialized
software development kits (SDKs) and integrated development environments (IDEs).

Benefiting from SDKs and IDEs
There’s nothing wrong with coding in a plain text editor, but using an SDK and/or IDE for development
can bring you many benefits, including:

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

16

• Syntax highlighting: This is the ability to recognize certain words in a programming language,
such as variables, control structures, and various other special text. This special text is
highlighted or otherwise differentiated to make scanning your code much easier. For example,
the color coding on the left makes this code less daunting to look at (see Figure 1-10).

• Built-in function references: When you enter the name of a function, this feature displays
available parameters, as well as the file that declares the function, a short description of what
the function does, and a more in-depth breakdown of parameters and return values (see Figure
1-11). This feature proves invaluable when dealing with large libraries, and it can save you trips
to the PHP manual to check the order of parameters or acceptable arguments for a function.

• Auto-complete features: Common to most SDKs and IDEs, this feature adds available variables to
a drop-down list, allowing you to select the intended variable from the list quickly and easily,
saving you the effort of typing it out every time (see Figure 1-12). When it comes to productivity,
every second counts, and this feature is a great way to contribute to saved time.

• Code Folding: This feature lets you collapse snippets of code (see the plus and minus toggles on
the left-hand side of Figure 1-13), reducing workspace clutter-free and making it easy to
navigate your code. This feature proves especially helpful for reducing the confusing clutter that
springs up as your scripts become increasingly complicated.

Figure 1-10. The left-hand side shows code with syntax highlighting; the right-hand side shows the same
code with no syntax highlighting

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

17

Figure 1-11. Viewing a function reference in the Eclipse PDT

Figure 1-12. Taking advantage of autocomplete in the Eclipse PDT

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

18

Figure 1-13. Code folding in the Eclipse PDT

Choosing the Right SDK
You have many choices when it comes to choosing development tools, and it should be noted that
there’s no wrong answer when selecting yours. If the tool feels right, and makes sense to you, that’s
really all that matters.

The Eclipse Foundation and PDT
The exercises in this book rely on the popular open source Eclipse SDK and more specifically on the
PHP-specific PDT IDE. PDT stands for PHP Development Tools, and this IDE provides a free IDE option
for beginning developers.

The team responsible for overseeing Eclipse notes, “Eclipse is an open source community,
whose projects are focused on building an open development platform comprised of extensible
frameworks, tools and runtimes for building, deploying and managing software across the lifecycle.”

Essentially, this means that Eclipse is a group of people working together to create the best
available tools for developers—at no cost to the developer.

Installing and Using the Eclipse PDT
Installing and setting up the Eclipse PDT requires six steps.

Step 1: Downloading the PDT
Get started by navigating to the PDT download page (http://www.eclipse.org/pdt/downloads/) and
scrolling down to the All-In-One downloads section. Select your operating system, then choose a mirror
for downloading (generally, the default mirror will be highlighted and will work just fine).

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

19

Step 2: Unpacking the PDT Archive
After the file finishes downloading, unzip the file. A folder called “eclipse” should appear in the same
directory as the downloaded archive.

Drag this folder into your Programs or Applications folder (or wherever you want to keep it) and
open it up. There will be a purple icon that says “Eclipse”; double-clicking the icon launches the IDE and
brings up the loading screen (see Figure 1-14).

Figure 1-14. Loading the Eclipse PDT screen

Step 3: Choosing Your Project Workspace
After a moment, a dialog box will pop up (see Figure 1-15) that asks you to select your workspace. You’ll
be working with XAMPP, so set the path to the XAMPP htdocs folder (see Figure 1-16). You can find this
in the xampp folder you installed previously.

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

20

Figure 1-15. Selecting your workspace in the Eclipse PDT

Figure 1-16. Selecting the htdocs folder from the XAMPP installation

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

21

Selecting this folder and checking the “Use this as the default and do not ask me again” box
enables you to tell Eclipse to create new projects in the htdocs folder automatically, which simplifies
testing your code.

After clicking “Choose,” close the welcome screen that shows up by clicking the “X” in the tab at
the top, next to “Welcome” (see Figure 1-17), which takes you to the editor.

Figure 1-17. Clicking the “X” next to “Welcome” closes the welcome screen

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

22

Step 4: Creating Your First Project
You’re almost to the point where you can code a simple blog. The next step is to create a project. Do this
by clicking the New Project icon, which is at the top left of the Eclipse toolbar (see Figure 1-18).

Figure 1-18. Creating a new project in Eclipse

Select “New Project...” from the drop-down menu that pops up. This brings up a new dialog
(see Figure 1-19); select “PHP Project” from the list of project types and click “Next.”

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

23

Figure 1-19. Creating a PHP project

The next dialog presented asks you to name your project and provides some customization
options for the project (see Figure 1-20). Name the project “simple_blog” and leave all the settings at
their default values.

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

24

Figure 1-20. Creating the simple_blog project

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

25

Clicking “Finish” will bring you back to the editor; your newly created project will be listed in
the left-hand panel. At this point, Eclipse lets you know that this project type is associated with the PHP
perspective, and it asks whether you’d like to switch to the PHP perspective. It makes sense to do this
because you’re working with PHP, so select, "Yes."

Step 5: Creating a File
The final step is to create a file that you can start coding in. At first you’ll be doing basic exercises to get a
feel for the language, so call your first file test.php.

To create the file, right click the simple_blog project, hover over New, and then click PHP File
from the resulting drop-down menu (see Figure 1-21).

Figure 1-21. Creating a PHP file in Eclipse

This brings up a new dialog where you can name your file (see Figure 1-22).

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

26

Figure 1-22. Create test.php and click “Finish”

Clicking Finish creates your first file and means you can now start coding.

Step 6: Writing Your First Script
The final step is to make sure that everything is set up correctly and ready for you to start developing
your blog. You can do this by writing a short script to ensure that PHP is working in your test.php file.
Add this code to the test.php file and save:

<?php
 echo “Hello world!”;
?>

Download at WoweBook.Com

CHAPTER 1 SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

27

Now open any browser and navigate to http://localhost/simple_blog/test.php; what you see
should look like Figure 1-23).

Figure 1-23. test.php loaded in a browser, displaying your first script!

If the above text is visible, you have installed XAMPP and Eclipse successfully, and you’re ready
to start building your blog.

Summary
In this chapter, you learned what PHP, MySQL, and Apache are, and what role they play in the
development of dynamic web sites. You also learned a quick and easy way to install a fully functional
development environment on your local computer by installing XAMPP and Eclipse PDT.

In the next chapter, you’ll learn the basics of PHP, including variables, control structures, and
functions. Nearly everything you learn will be tested in your new development environment, so keep
test.php open and ready to edit.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 2

29

Understanding PHP:
Language Basics

So far you’ve bypassed the old, cumbersome method of creating a development environment, and
you’re now ready to start writing code.

But where do you start? In this chapter, I’ll cover the steps you need to follow to start using PHP
in the creation of powerful, dynamic web applications; you’ll also begin to develop the basic skills you
need to create your blog.

In this chapter, you’ll learn how to accomplish several tasks:

• Embed PHP in web pages

• Send data as output to the browser

• Add comments in your code

• Use variables and understand the datatypes they support

• Use operators to manipulate data

• Use control structures to add power to your scripts

By the end of this chapter, you should be comfortable writing basic PHP that will allow you to
create, store, manipulate, and output data.

Note This chapter discusses basic aspects of the PHP language, but you should keep in mind that some
functions won’t be covered completely. For clarification, more examples, or for concept reinforcement, visit the
PHP manual at http://www.php.net/manual/en/ and search the function in the field where it says, “search for
_______ in the function list.” Alternatively, you can access information about many PHP functions by navigating to
http://php.net/function_name. Don’t forget to read the comments because many of your fellow programmers
offer insight, tips, and even additional functions in their commentary.

Embedding PHP Scripts
In Chapter 1, when I talked about Apache and web servers in general, I mentioned how a server will
process PHP in a file before sending that file to the browser. But you might be curious how the server
knows where to look for PHP.

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

30

 By default, servers look for PHP only in files that end with the .php extension. But a .php file can
contain elements that aren’t part of your PHP script, and searching the entire file for potential scripts is
confusing and resource-intensive. To solve this issue, all PHP scripts need to be contained with PHP
delimiters. To begin a PHP script, you include the opening delimiter <?php and start coding. To finish,
you simply add ?> to the end of the script. Anything outside of these delimiters will be treated as HTML
or plain text.

You can see this in action by opening Eclipse and editing the test.php file by double-clicking
the file in the project folder you created in the last chapter (full path:
/xampp/htdocs/simple_blog/test.php) so it contains the following code:

<p>Static Text</p>
<?php
 echo '<p>This text was generated by PHP!</p>';
?>
<p>This text was not.</p>

Save the file, navigate to http://localhost/simple_blog/test.php in your browser, and you

should see the following:

Static Text
This text was generated by PHP!
This text was not.

As you can see, the text inside the PHP delimiters was handled as a script, but the text outside
was rendered as regular HTML. There is no limit to how many blocks of PHP you can include in a page,
so the following snippet is completely valid:

<?php
 echo '<p>This is some text.</p>';
?>
<p>Some of this text is static, <?php echo 'but this sure isn't!'; ?></p>
<?php echo '<p>'; ?>
This text is enclosed in paragraph tags that were generated by PHP.
<?php echo '</p>'; ?>

The preceding code snippet outputs the following to the browser:

This is some text.
Some of this text is static, but this sure isn't!
This text is enclosed in paragraph tags that were generated by PHP.

Alternative Delimiters
There are a few alternative methods for delimiting your PHP scripts that you might come across from
time to time, so you should be aware of them. However, it’s important to note that the use of these
alternative delimiters is discouraged, so you should avoid using them.

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

31

Short Tags
PHP offers a shortcut syntax known as short tags; these allow your scripts to be delimited with <? and ?>,
which is easier to type. However, the use of short tags requires that the short_open_tag directive be
enabled, which means that scripts using short tags can create compatibility problems for applications
that need to run on multiple servers that might not have the same configuration.

Caution The use of short tags conflicts with XML syntax (XML declarations use the syntax <?xml
version="1.0" encoding="ISO-8859-1"?>), so you should not use them.

There is also a shortcut syntax for outputting data quickly, which you use like this:

<?='Some text to output.'?>

The previous snippet functions identically to this longer-winded syntax:

<?php
 echo 'Some text to output.';
?>

Again, keep in mind that you should avoid using this syntax because of its incompatibility, both

with various server configurations and XML syntax.

HTML <script> Tags and ASP-Style Delimiters
For the sake of compatibility with editing software such as Microsoft Front Page, PHP also supports the
use of HTML <script> tags:

<script language="php">
 echo 'This is some text';
</script>

Another option provided to Front Page users was Microsoft’s ASP-style delimiters:

<%
 echo 'This is some text';
%>

Caution Use of the <script> tag is discouraged because it can cause confusion with JavaScript in files. As of
PHP 6, ASP-style tags are no longer supported.

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

32

Variables and Datatypes
So far, you’ve learned how to output data, as well as how to use variables to a certain extent. Before going
any further, let’s take a moment to drill down on variables and how they work.

What Is a Variable?
A variable is a keyword or phrase that acts as an identifier for a value stored in a system’s memory. This
is useful because it allows us to write programs that will perform a set of actions on a variable value,
which means you can change the output of the program simply by changing the variable, rather than
changing the program itself.

Storing Values in a Variable
PHP lets you store nearly anything in a variable using one of the following datatypes:

String: Alphanumeric characters, such as sentences or names

Integer: A numeric value, expressed in whole numbers

Float: A numeric value, expressed in real numbers (decimals)

Boolean: Evaluates to TRUE or FALSE (sometimes evaluates to 1 for TRUE and 0 for FALSE)

Array: An indexed collection of data (see the “Understanding Arrays” section later in this chapter
for more information on this subject)

Object: A collection of data and methods (see Chapter 4 and its section on PHP Data Objects for
more information on this subject)

PHP is a loosely typed language, which means it determines the type of data being handled
based on a “best guess” principle, as opposed to a strictly typed language such as C, which requires you
name datatypes for every variable and function. Consider this code snippet:

$foo = "5"; // This is considered a string
$bar = $foo + 2; // This converts $foo to an integer (outputs 7)

This might seem confusing at first, but it’s actually intuitive and eliminates debugging if you

enclose a number in quotes accidentally.

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

33

Understanding Strings
A string is any series of characters enclosed in single (') or double (") quotes, or that you create using
special heredoc or nowdoc syntax, which I’ll cover in a moment.

Strings have a few characters that will cause problems if you do not escape them with a
backslash (\). Escaping allows you to use characters in strings that might otherwise cause problems,
such as an apostrophe in a string enclosed in single quotes:

$string = 'It\\'s cold outside today!';

If you don’t escape the apostrophe in it’s, the script has no way of knowing that the apostrophe

is part of the string and not the end of it—and your script would fail.

Single-Quote Syntax
Enclosing a string in single quotes is the simplest way to create a string in PHP. It doesn’t expand special
characters or variables, but instead delivers them as plain text to the browser.

Let’s look at some examples to see how single quotes behave. Add the following into test.php to
see how different data is handled:

<?php

 // The
 adds a line break in the browser for readability
 echo 'This is a string.
';

 echo 'This is a string
 with line breaks.
';

 // Special characters, such as the newline (\n) character,
 // won't be expanded when in single quotes.
 echo 'This is a string \n with a newline character.
';

 echo 'This string\'s got an apostrophe.
';

 // A backslash doesn't need to be escaped if not escaping a
 // special character.
 echo 'This string has a backslash (\) in it.
';

 echo 'This string has an escaped backslash (\\) in it.
';

 // Variables will not be expanded in single quotes
 echo 'This $variable will not be expanded.
';

?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

34

The output of this code in a browser looks like this:

This is a string.
This is a string with line breaks.
This is a string \n with a newline character.
This string's got an apostrophe.
This string has a backslash (\) in it.
This string has an escaped backslash (\) in it.
This $variable will not be expanded.

Note Newline characters (\n) don’t render in browsers. However, they are visible in the source code of the
rendered page, which you can view by choosing View Source from the View menu of your browser.

Double-Quote Syntax
Strings encased in double quotes behave similarly to strings encased in single quotes but they interpret
more special characters, including expanding variables.

Tip Special characters like the new line character (\n) won’t affect browser output, but do affect command-line
and source-code displays. Use an HTML break tag (
) to create a new line in the browser.

You can see the difference achieved by placing strings in double quotes by placing the following
code in test.php:

<?php

 echo "This is a string.
";

 echo "This is a string
 that spans
 multiple lines.
";

 // Apostrophes don't need to be escaped in double quotes
 echo "This string's got an apostrophe.
";

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

35

 // Double quotes will need to be escaped
 echo "This string says, \"I need escaping!\"
";

 // New line characters will be interpreted
 echo "This string has \n newline \n characters.
";

 // A backslash will be printed if a special character doesn't
 // directly follow it
 echo "This string contains a backslash (\).
";

 // Variables will be expanded if not escaped
 $variable = "word";
 echo "This string uses a $variable.
";

 // A variable can be interpreted as plain text by escaping the
 // dollar sign with a backslash
 echo "This string escapes the \$variable.
";

?>

The output of this code in a browser looks like this:

This is a string.
This is a string that spans multiple lines.
This string's got an apostrophe.
This string says, "I need escaping!"
This string has newline characters.
This string contains a backslash (\).
This string uses a word.
This string escapes the $variable.

Str ing Concatenat ion

It’s often necessary to join two strings together in a script. You accomplish this using the string
concatenation operator, a period (.).

You join two strings together by placing a period between them:

<?php
 $foo = "This is a " . "string.";
 echo $foo;
?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

36

This code creates the following output:

This is a string.

You can concatenate variables as well, as long as they’re not of the array or object type:

<?php
 $foo = "This is a ";
 $bar = "string.";
 echo $foo . $bar;
?>

This produces output identical to your previous script:

This is a string.

Heredoc Syntax
Another option available for handling strings is heredoc syntax, which begins with <<< and an identifier
that can be any combination of alphanumeric characters or underscores that don’t begin with a digit.
You end the string by repeating the identifier on a new line, followed by a semicolon.

You can get a good idea of how heredoc syntax works by examining this example:

$foo = <<<EOD
This is a string created using heredoc syntax.
It can span multiple lines, use "quotes" without
escaping, and it'll allow $variables too.

Special characters are still supported \n as well.
EOD;

EOD (short for “end of data”) is your identifier in this case, but the text you use isn’t important.

The most important thing to note is that the closing identifier (EOD) is on its own line with no whitespace
(any space, tab, or newline characters) before or after it. If this isn’t the case, a parse error occurs when
you try to run the script.

Functionally, heredoc syntax behaves almost identically to strings encased in double quotes,
except that there is no need to escape quotes in the string itself.

Nowdoc Syntax
Nowdoc syntax is functionally similar to quotes you encase in single quoted strings, and you call it in
much the same way that you call heredoc syntax. The difference is that you enclose the identifier in
single quotes when you open the string:

$foo = <<<'EOD'

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

37

Using nowdoc syntax tells PHP not to parse $variables or newline (\n) characters. According to

the PHP manual: Nowdocs are to single-quoted strings what heredocs are to double-quoted strings.1
No variables or special characters within a nowdoc will be expanded; this makes nowdoc syntax

ideal for outputting large blocks of PHP code.

Note Nowdoc syntax support was added in PHP 5.3.0—this means that nowdoc syntax won’t work in XAMPP
out-of-the-box because PHP 5.2 is installed by default.

Understanding Integers
An integer is any positive or negative whole number (a number without a decimal value). For example,
the numbers 1, -27, and 4985067 are integers, but 1.2 is not.

Because PHP is a loosely typed language, it’s not necessary to declare a variable as an integer;
however, if you find it necessary, you can explicitly cast, or force, a value as an integer using the
following syntax:

$foo = 27; // No quotes around a whole number always means integer
$bar = (int) "3-peat"; // Evaluates to 3
$baz = (int) "seven"; // Evaluates to 0
$bat = (int) "ten 4"; // Evaluates to 0

Note A string value will always evaluate to 0 unless it starts with a numeric value (such as “10 years”).

Understanding Floating Point Numbers
Floating point numbers (also known as floats or doubles) are numbers with decimal values, or real
numbers. This includes numbers such as 3.14, 5.33333, and 1.1.

Note that floating point numbers can produce unexpected results due to the fact that it’s
impossible to represent all values with a finite number of digits. A good example of this is 1/3, which
evaluates to a repeating decimal (0.33333...). You should not use floating point numbers to compare
equality for this reason.

Understanding Boolean Values
A Boolean value is the simplest type of data; it represents truth, and can contain only one of two values:
TRUE or FALSE. It’s important to note that the FALSE (not in quotes) Boolean value is different from the
"FALSE" string value, and the same goes for TRUE. Boolean values are not case sensitive.

1 Quoted from the PHP Manual, “Strings,” http://us.php.net/manual/en/language.types.string.php#language.
types.string.syntax.nowdoc

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

38

Booleans are very useful when determining if a condition exists. For example, you can use an
if-else statement (which I’ll cover in a moment) to perform different actions if a condition is TRUE:

if($condition===true)
{
 echo 'The condition is true!';
}
else
{
 echo 'The condition is false!';
}

Note This example uses the comparison operator === to verify that the $condition is TRUE. I’ll go over why this
is important in the “Operators” section later in this chapter.

Understanding Arrays
Arrays are among the most powerful datatypes available in PHP, due to their ability to map information
using a key to value pairing. This means that an array can store multiple pieces of information in a single
variable, all indexed by key. For instance, if you have a blog entry to store in variables, you would need to
do the following if you didn’t use arrays:

<?php
 $entryTitle = "Sample Title";
 $entryDate = "April 13, 2009";
 $entryAuthor = "Jason";
 $entryBody = "Today, I wrote a blog entry.";
?>

This can become confusing, especially if the entry needs to be passed to a function for

processing. You can use an array to simplify the entry:

<?php
 $entry = array(
 'title' => 'Sample Title',
 'date' => 'April 13, 2009',
 'author' => 'Jason',
 'body' => 'Today, I wrote a blog entry.'
);
?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

39

The power of this approach resides in the fact that you now have all of that information stored
in one variable, $entry. To access any part of that information, you add the key to the end of the variable
in square brackets ([]).

<?php
 echo $entry['title']; // Outputs "Sample Title"
 echo $entry['date']; // Outputs "April 13, 2009"
 echo $entry['author']; // Outputs "Jason"
 echo $entry['body']; // Outputs "Today, I wrote a blog entry."
?>

Arrays can also index information automatically using a numerical index that starts at 0. You

access array values that have been indexed automatically using the numeric index as the key, without
quotes (e.g., $entry[0]). You can create an automatically indexed array by omitting the keys when you
declare the array:

<?php
 $entry = array('Sample Title', 'April 13, 2009', 'Jason',
 'Today, I wrote a blog entry.');

 echo $entry[0], ' by ', $entry[2];
?>

This snippet produces the following output in a browser:

Sample Title by Jason

Note In programming, counts generally start at 0. This means that the first character in a string is at position 0,
not position 1 as you might expect.

When using arrays in strings, you must take an additional step to avoid errors. In order to avoid
an error, you must wrap the array variable and key in curly braces ({}). This is known as complex syntax,
but not because it’s complicated to use; rather, it’s called complex because it allows PHP to parse
complex statements within a quoted string:

<?php
 $person = array('name' => 'Jason', 'age' => 23);

 echo "This person's name is {$person['name']}
 and he is {$person['age']}.";
?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

40

Another option when using arrays in double-quoted strings is to leave the single quotes off the
array index:

<?php
 $person = array('name' => 'Jason', 'age' => 23);

 echo "This person's name is $person[name]
 and he is $person[age].";
?>

Caution When working with multidimensional arrays (see below), curly braces must be used. Leaving the
single quotes off the array indices will behave unexpectedly.

Multidimensional Arrays
Another cool feature of arrays is their ability to nest within themselves. This creates an array within an
array, or a multidimensional array.

Multidimensional arrays are exceptionally powerful because they allow even more information
to be stored in one variable, making immense data sets conveniently portable, as you’ll see when you
start working with databases.

A multidimensional array of people might look something like this:

<?php
 $people = array(
 array('name' => 'Jason', 'age' => 23), // $people[0]
 array('name' => 'Carly', 'age' => 18) // $people[1]
);

 echo "{$people[0]['name']} has a sister who is
 {$people[1]['age']} years old.";
?>

This script produces the following output:

Jason has a sister who is 18 years old.

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

41

Multidimensional arrays can also feature multiple string literal keys:

<?php
 $colors = array(
 'fruits' => array('apple' => 'red', 'plum' => 'purple'),
 'flowers' => array('rose' => 'red', 'violet' => 'blue')
);

 // Output: An apple is red, and a violet is blue.
 echo "An apple is {$colors['fruits']['apple']}, and a
 violet is {$colors['flowers']['violet']}.";
?>

Sending Data to the Browser as Output
To see the data that you’re processing, you need a way to send it as output. This enables you to display
the contents of a variable in the browser to your users.

There are several ways to send output, but the most common methods are the commands
echo(), print(), printf(), and sprintf(). There are differences in how you use each of these, but the
result is the same: something is output for display in the browser.

The Different Output Commands
It’s important to have a solid understanding of your options when sending output to the browser, so I’ll
go over the different statements available, how they work, and what special properties are associated
with each.

Note Whenever I introduce a language construct or function in the course of this book, I’ll begin by walking you
through the prototype, or breakdown, of the function’s name, accepted arguments, and a return value defined by
its datatype. Don’t worry if you’re not sure what that means yet because I’ll cover all this information fully in the
course of this chapter.

The print() Statement
The print() statement is the most straightforward method of generating output. Its prototype looks like
this:

int pprint (string $arg)

This means that print() accepts one argument, which is a string to be output to the browser,

and returns an integer—print() always returns 1.
You can use print() by placing this code in test.php:

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

42

<?php
 print("Some text.");
?>

This code produces the following output if you reload test.php.

Some text.

The echo() Statement
The most common method of generating output is probably the echo() statement. It differs slightly from
print() in that it can accept multiple arguments. Consider this prototype:

void eecho (string $arg1 [, string $...])

The echo() statement accepts one or more arguments, separated by commas, and outputs all of

the arguments to the browser in succession. Unlike print(), echo() does not return a value—the void
keyword in the prototype tells it not to.

Because echo() is also a language construct, the parentheses are optional and generally
omitted. Add the following code to test.php:

<?php echo "Hello ", "world!"; ?>

The preceding snippet produces this output:

Hello world!

Your two strings are added together as arguments to the echo() statement, producing one string
that ends up being passed to the browser. The same approach works for variables:

<?php
 $foo = "Hello ";
 $bar = "world!";
 echo $foo, $bar;
?>

This produces the same output as above:

Hello world!

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

43

Note Because print() is a language construct and not a function, you can use it without parentheses (i.e.,
<?php echo 'Some text'; ?>); the clarity achieved with this syntax makes it the preferred approach for many
developers. Benchmarks using echo() with arguments have generally proved slightly faster than any other method
of outputting data to the browser, so I’ll use this approach throughout the rest of this book.

The printf() Statement
The next statement, printf(), gives you more fine-grained control over your output, allowing you to
define the format of data that will be sent to the browser. You can think of this statement as meaning
“print formatted.” This is especially useful when you’re dealing with numbers, which I’ll cover in a
moment. First, take a look at the prototype for printf():

int pprintf (string $format [, mixed $args [, mixed $...]])

Note When a function accepts a mixed type, it means that the function can accept several argument types.
Generally, all datatypes except arrays and objects are acceptable. Also, arguments in square brackets in a function
prototype are optional.

At this point, you can pass a formatting string to printf() along with other arguments that will
fit into the format. This is a great way to verify that the data you are passing is of the proper type for the
task at hand. Try the following code in test.php:

<?php
 printf("PHP is %s!", "awesome");
?>

This snippet produces the following output:

PHP is awesome!

In the preceding code snippet, you created a formatting string ("PHP is %s!") with a conversion
specification, which starts with a percentage sign (%) and is followed by a series of specifiers. In this
example, you assigned a type specifier string, which tells the function what datatype the argument to
expect.

The most practical use of printf() is with floating point numbers, such as dollar amounts.
Consider the following code using echo():

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

44

<?php
 $amt1 = 2.55;
 $amt2 = 3.55;
 $total = $amt1 + $amt2;

 echo 'The total cost is $', $total;
?>

You might expect to see this sentence when you run your code:

The total cost is $6.10.

However, what you see when you run the code is this:

The total cost is $6.1

For obvious reasons, this isn’t what you want to happen if you’re trying to display a price.
Fortunately, this is a case where printf() comes in handy; simply add the following code to test.php:

<?php
 $amt1 = 2.55;
 $amt2 = 3.55;
 $total = $amt1 + $amt2;

 printf('The total cost is $%%.2f', $total);
?>

Saving and reloading produces the desired result:

The total cost is $6.10

The reason you get the properly formatted number in the latter case is that you’ve specified the
type as a floating point number and told the printf() statement to return a decimal out to two places
using your formatting string (%.2f). No matter what you pass as the argument, the output will be a
floating point value with a decimal out to two places.

For example, you might try to placing a string into your printf() statement to see what
happens. In test.php, try running the following code:

<?php printf('The total cost is $%.2f', 'string'); ?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

45

When you save and reload, you see the following output:

The total cost is $0.00

This happens because PHP tries to parse, or process, the string called string for a value of some
sort; when it doesn’t find one, it evaluates to zero, and the value is taken out to two decimal places by the
formatting requirements.

Some of the more common datatype specifiers supported by printf() include:

• %s: Treats the argument as and outputs a string

• %d: Treats the argument as an integer and outputs a signed decimal

• %f: Treats the argument as an integer and outputs a floating point number

Note printf() supports a wide variety of datatypes, such as scientific notation, ASCII values, and octal
numbers. You can learn more about this by visiting the PHP manual at http://www.php.net/manual/en/ and
search for sprintf(). (printf() and sprintf() are very similar, so the manual only goes over type specifiers in
the sprintf() entry).

The sprintf() Statement
The sprintf() statement works in the same way as the printf() statement: you provide a format with
type specifiers and a set of arguments to be inserted into your formatting string. The only difference is
that while printf() outputs directly to the browser, sprintf() returns a string.

Now is a good point to look at the prototype:

string ssprintf (string $format [, mixed $args [, mixed $...]])

The only difference you see between sprintf() and printf() is the “string” preceding the

statement. The word preceding a function tells you what type of value a function will return.
The benefit of using sprintf() in our scripts is that you’re able to format only select sections of

data, which saves you from having to format the entire output.
For example, try placing the following code in your test.php file:

<?php
 $gpa1 = sprintf("%.1f", 4);
 $gpa2 = sprintf("%.1f", 3.7);
 echo 'Kelly had a ', $gpa1, ' GPA, and Tom had a ', $gpa2;
?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

46

When you save and reload, the output reads like this:

Kelly had a 4.0 GPA, and Tom had a 3.7

You were able to force the numbers to conform to a format necessary for them to make sense,
but you weren’t required to pass the entire string as a formatting string. However, if you want to format
multiple variables in one call to sprintf() or printf(), you can do so easily with the following bit of
code:

<?php
 printf('Kelly got a %.1f GPA, and Tom got a $.1f.', 4, 3.7);
?>

Commenting Your Code
There are several ways to write comments in PHP, but only two are encouraged. For inline comments,
you can use two forward slashes (//); for block comments, you can start with a forward slash followed by
an asterisk (/*), then close with an asterisk followed by a forward slash (*/).

$foo = 'some value'; // This is an inline C++ comment

/*
 This is a block comment in C style. It allows the developer to
 go into more detail about the code.

 */
function bar() {
 return true;
}

Inline vs. Block Comments
There’s not really a right or wrong way to comment code, but accepted practice is to use inline
comments for quick descriptions, such as the purpose of a variable:

<?php
 $foo = time()+7*24*60*60; // One week from now
?>

A block-level comment is typically used when more detail is necessary. For example, this

comment might be used to describe an entire section of code:

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

47

<?php
 /*
 * Determines the UNIX timestamp for one week from the current
 * timestamp. Value is stored in $one_week_from_now
 */

 $days = 7;
 $one_day = 24*60*60;
 $now = time();
 $one_week_from_now = $days*$one_day+$now;
?>

Other Comment Styles
PHP also supports shell-style comments, which are single line comments that start with a hash mark (#).
These comments are derived from command-line interfaces known as shells, which are common on
UNIX operating systems. A shell-style comment looks like this:

<?php
 echo 'This is some text.'; ## This is a shell-style comment
?>

Caution The use of shell-style comments is strongly discouraged because such comments don’t conform to
PEAR coding standards. Find more information on this topic at
http://pear.php.net/manual/en/standards.comments.php.

Operators
PHP, like many other programming languages, provides a number of operators that allow you to
manipulate data. These operators fall into several categories; this book walks you through taking
advantage of the following operators:

• Arithmetic Operators: These perform basic mathematical functions

• Arithmetic Assignment Operators: These set expression values

• Comparison Operators: These determine the similarity of two values

• Error Control Operators: These special operators to suppress errors

• Incrementing/Decrementing Operators: These increase or decrease a value

• Logical Operators: These denote logical operations; examples include AND and OR

• String Operators: These manipulate strings

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

48

Arithmetic Operators
The arithmetic operators in PHP function just like the ones you used in school.

The addition operator (+) returns the sum of two values:

echo 2 + 2; // Outputs 4

The subtraction operator (-) returns the difference between two values:

echo 4 – 2; // Outputs 2

The multiplication operator (*) returns the product of two values:

echo 4 * 2; // Outputs 8

The division operator (/) returns the quotient of two values:

echo 8 / 2; // Outputs 4

Note The division operator (/) returns a float value unless the two operands are integers (or strings that get
converted to integers) and the numbers are evenly divisible, in which case an integer value is returned. 2

The modulus operator (%) returns the remainder of one value divided by another:

echo 7 % 2; // Outputs 1
echo 8 % 2; // Outputs 0

Arithmetic Assignment Operators
PHP provides several assignment operators that enable you to set the value of an operand to the value of
an expression. You do this with an equals sign (=), but it’s important to be aware that this sign does not
mean “equals” as it is commonly understood; instead, this symbol means “gets set to.” For example,
consider this code snippet:

$a = 5,

Read aloud, the snippet actually says, “The value of $a gets set to five.”
There are also a few combined operators that allow you to declare an expression and assign its

value to an operand in one quick step. These operators combine an arithmetic operator with the
assignment operator:

<?php

2 Quoted from the PHP Manual, “Arithmetic Operators,” www.php.net/manual/en/language.operators.
arithmetic.php

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

49

 $foo = 2;

 $foo += 2; // New value is 4

 $foo -= 1; // New value is 3

 $foo *= 4; // New value is 12

 $foo /= 2; // New value is 6

 $foo %= 4; // New value is 2

?>

Note that PHP assigns by value. Thus, a variable assigned with a value copies the entire value

into memory, rather than a reference to the original location of the value. In other words, assigning the
value of a variable to the value of a second variable, and then changing the value of the second variable,
does not affect the value of the initial variable:

<?php

 $foo = 2;
 $bar = $foo;

 echo $bar; // Output: 2

 $foo += 4; // New value is 6

 echo $bar; // Output: 2

?>

If you require the value of $foo to affect $bar after its declaration, or vice versa, then you need to

assign by reference using an equals sign followed by an ampersand (=&). This is potentially useful for
allowing a variable to be altered indirectly by a script. For instance, if you have an array that contains a
person’s basic information, you might assign the person’s age by reference to account for a birthday.

You’ll be using another output function that is extremely useful for debugging, called
print_r(). This outputs a “human readable” display of the contents of variables. It is especially useful in
debugging arrays:

<?php

 $person = array(
 'name' => 'Jason',
 'age' => 23
);

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

50

 $age =& $person['age'];

 // Output the array before doing anything
 print_r($person);

 // Birthday! Add a year!
 ++$age;

 // Output the array again to see the changes
 print_r($person);

?>

Running this script produces the following output:

Array
(
 [name] => Jason
 [age] => 23
)
Array
(
 [name] => Jason
 [age] => 24
)

Comparison Operators
You use comparison operators to determine the similarity between values. These are especially useful in
control structures, which I’ll cover in just a moment.

The available comparison operators allow you to determine whether the following conditions
are present between two values:

• (==): Values are equal

• (===): Values are identical

• (!= or <>): Values are not equal

• (!==): Values are not identical

• (<): Value 1 is less than value 2

• (>): Value 1 is greater than value 2

• (<=): Value 1 is less than or equal to value 2

• (>=): Value 1 is greater than or equal to value 2

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

51

Note Equal and identical are not the same thing. Identical matches both a variable’s value and datatype,
whereas equal matches only value. Boolean values are commonly checked with the identical comparison operator
because FALSE==0 evaluates to TRUE, while FALSE===0 evaluates to FALSE. You’ll use this technique several times
throughout the book, so don’t worry if it doesn’t make perfect sense right now.

Error Control Operators
PHP offers one error control operator: the at symbol (@). This symbol temporarily sets the error reporting
level of your script to 0; this prevents errors from displaying if they occur.

For example, trying to reference a nonexistent file with include_once (e.g., include_once
'fake_file';) would cause an error along these lines:

Warning: include_once(fake_file) [function.include-once]: failed to open stream: No such file
or directory in //Applications/xampp/xamppfiles/htdocs/simple_blog/test.php on line 44

Warning: include_once() [function.include]: Failed opening 'fake_file' for inclusion
(include_path='.:/Applications/xampp/xamppfiles/lib/php') in
/Applications/xampp/xamppfiles/htdocs/simple_blog/test.php on line 4

That’s a fairly verbose error, and you probably don’t want our users to see something like that
displayed on their screen. You can avoid this error by prepending the code with an at symbol:

<?php

 @include_once 'fake_file';

 echo 'Text to follow the include.';

?>

Note Placing an operator sign before a variable is called prepending; this technique enables you to perform an
operation on a variable before it is instantiated. Placing an operator after the variable is called postpending; this
technique instantiates a variable first, and then performs an operation on it.

The file doesn’t exist, and an error is generated, but the at symbol prevents the error from
displaying and produces the following result:

Text to follow the include.

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

52

Caution You should avoid using an error suppression operator whenever possible because it can adversely
affect performance in your scripts. Alternative methods for catching errors exist, and I’ll go into more details about
those later on in the book.

Incrementing/Decrementing Operators
In some scripts, it becomes necessary to add or subtract one from a value quickly. PHP provides an easy
way to do this with its incrementing and decrementing operators.

To add one to a value, add two plus signs (++) before or after the variable. To subtract one, add
two minus signs (--)—remember that placing the (++) or (--) operators before a variable increments or
decrements the variable before it is instantiated, while placing these operators after a variable
increments or decrements the variable after it is instantiated. Adding signs in front of the variable is
called prepending, which means the variable is incremented or decremented before it is instantiated:

<?php

 $foo = 5;
 ++$foo; // New value is 6
 $foo++; // New value is 7

 --$foo; // New value is 6
 $foo--; // New value is 5

 $bar = 4;

 // Echo a prepended value
 echo ++$bar; // Output is 5, new value is 5

 // Echo a postpended value
 echo $bar++; // Output is 5, new value is 6

?>

Logical Operators
It is difficult to cover the logical operators available in PHP without using control structures to illustrate
how they work, so let’s jump a little ahead and use the if statement to demonstrate how to use them.

Logical operators allow you to determine whether two conditions are true or not. This is very
useful when using conditional statements to dictate what happens in a program. PHP’s available
operators include:

• AND or &&: Returns true if both expressions are true

• OR or ||: Returns true if at least one expression is true

• XOR: Returns true if one expression is true, but not the other

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

53

• !: Returns true if the expression is not true

You can place the following code in test.php for a practical demonstration of how these
operators work:

<?php

 $foo = true;
 $bar = false;

 // Print the statement if $foo AND $bar are true
 if($foo && $bar) {
 echo 'Both $foo and $bar are true.
';
 }

 // Print the statement if $foo OR $bar is true
 if($foo || $bar) {
 echo 'At least one of the variables is true.
';
 }

 // Print the statement if $foo OR $bar is true, but not both
 if($foo xor $bar) {
 echo 'One variable is true, and one is false.
';
 }

 // Print the statement if $bar is NOT true
 if(!$bar) {
 echo '$bar is false.
';
 }

?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

54

Loading http://localhost/simple_blog/test.php should produce the following output:

At least one of the variables is true.
One variable is true, and one is false.
$bar is false.

Now, set $bar = true and reload. The output should now read:

Both $foo and $bar are true.
At least one of the variables is true.

Note For an explanation of how the if statement works, see the section on Control Structures later in this
chapter.

String Operators
There are two string operators available in PHP: the concatenation operator (.) and the concatenating
assignment operator (.=). The concatenation operator combines two strings into one by joining the end
of the string to the left of the operator to the beginning of the string on the right of the operator. The
concatenating assignment operator adds a string to the end of an existing variable:

<?php

 $foo = "Hello";

 $bar = $foo . " world!
";

 echo $bar; // Output: Hello world!

 $bar .= " And again!";

 echo $bar; // Output: Hello world! And again!

?>

Control Structures
To add power and convenience to your scripts, PHP supports a number of conditional statements,
loops, and other control structures that allow us to manipulate data easily throughout your code.

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

55

The control structures supported by PHP are:

• if

• else

• elseif/else if

• while

• do-while

• for

• foreach

• break

• continue

• switch

• return

• require

• include

• require_once

• include_once

• goto

if, else, and else if
The most basic control structure is the if statement. It defines a block of code between curly braces ({})
that is to be executed only if a condition is met:

<?php

 $foo = 5;

 if($foo < 10) {
 echo "The condition was met.
";
 }

?>

In this program, nothing is output if $foo doesn’t meet your condition. In some cases, this is an

unacceptable result, so you would need to use an else statement to provide an alternative value to
output if the condition isn’t met:

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

56

<?php

 $foo = 15;

 if($foo < 10) {
 echo "The condition was met.
";
 } else {
 echo "The condition was not met.
";
 }

?>

If you have a value that failed the if condition, but you aren’t ready to pass it to the else

statement yet, you can add an elseif statement to be evaluated. You place this new statement between
the if and else blocks; it executes only if the first condition isn’t met, but the second is:

<?php

if($age < 18) {
 echo "Not old enough to vote or drink!
";
} else if ($age < 21) {
 echo "Old enough to vote, but not to drink.
";
} else { // If we get here, $age is >= 21
 echo "Old enough to vote and drink!
";
}

?>

while and do-while
The while loop allows you to repeat a block of code continuously for as long as a condition is TRUE. This
allows you to cycle through data sets without needing to know how many exist; all that matters is the
number of datasets you want to use at a maximum.

In this example, you use a counter variable ($i) that stores the count, incrementing this at the
end of each loop cycle. When the counter reaches three, the condition is no longer true, so the loop
ends. Place this code in test.php:

<?php
 $i = 0;
 while($i<3) {
 echo "Count is at $i.
";
 ++$i;
 }
?>

Loading this script in a browser produces the following output:

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

57

Count is at 0.
Count is at 1.
Count is at 2.

Note Keep in mind that the loop will not execute if the condition isn’t met. In the previous example, no output
would be generated if $i were set to 4.

A more practical example is looping through an array to generate output based on the stored
values. You can add the following code to test.php to output a list of bands:

<?php

 $bands = array("Minus the Bear", "The Decemberists",
 "Neko Case", "Bon Iver", "Now It's Overhead");

 $i = 0;
 $n = count($bands); // Stores the number of values in the array
 while($i < $n) {
 echo $bands[$i], "
";
 ++$i;
 }

?>

This loop produces the following output when loaded in a browser:

Minus the Bear
The Decemberists
Neko Case
Bon Iver
Now It's Overhead

You need to use a do-while loop if you want to set up a loop that executes at least once, then
continues if the condition is met:

<?php
 $i = 10;

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

58

 do {
 echo "The count is at $i.\n";
 ++$i;
 } while($i<5);

 // Outputs "The count is at 10."
 // even though $i doesn't meet the condition.
?>

for
One of the most versatile statements in PHP programming is the for loop, which accepts three
expressions: expression one is evaluated once at the beginning of the loop, unconditionally; expression
two is evaluated at the beginning of each iteration of the loop, and the loop continues only if the
expression evaluates to true; expression three is evaluated at the end of each iteration.

Each expression can have more than one part, with each part separated by a comma. You
separate the three main expressions using semicolons:

<?php
 for($i=0; $i<3; ++$i) {
 echo "The count is at $i.\n";
 }

 // Output:
 // The count is at 0.
 // The count is at 1.
 // The count is at 2.
?>

At this point, you might find it helpful to revisit the previous code example where you created a

list of bands. This code produces output identical to the while loop you used previously, while also
cleaning up the code a bit:

<?php

 $bands = array("Minus the Bear", "The Decemberists",
 "Neko Case", "Bon Iver", "Now It's Overhead");

 for($i=0, $n=count($bands); $i<$n; ++$i) {
 echo $bands[$i], "
";
 }

?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

59

foreach
The foreach loop provides a powerful option for cases where you deal with arrays. Continuing with the
code example that outputs a list of bands, you can use foreach to cycle quickly through the array
elements:

<?php

 $bands = array("Minus the Bear", "The Decemberists",
 "Neko Case", "Bon Iver", "Now It's Overhead");

 foreach($bands as $band) {
 echo $band, "
";
 }

?>

The foreach loop lets you iterate through an array and treat each array element as an individual

variable; this makes for very readable code.
If the array is associative, you also have the option to separate the array key as a variable. This

proves useful in some cases. For example, add the following code in test.php:

<?php

 $person = array(
 'name' => 'Jason',
 'age' => 23,
 'passion' => 'craft beer'
);

 foreach($person as $key => $value) {
 echo "His $key is $value.
";
 }

?>

The preceding snippet produces the following output when you load it into a browser:

His name is Jason.
His age is 23.
His passion is craft beer.

If you’re dealing with multidimensional arrays, you can nest your foreach statements to access
the different keys and values. Simply add the following code to test.php:

<?php

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

60

 $people = array(
 'Jason' => array(
 'gender' => 'male',
 'hair' => 'brown'
),
 'Carly' => array(
 'gender' => 'female',
 'hair' => 'blonde'
)
);

 foreach($people as $name => $person) {
 foreach($person as $key => $value) {
 echo "$name's $key is $value.
";
 }
 }

?>

This code produces the following output:

Jason's gender is male.
Jason's hair is brown.
Carly's gender is female.
Carly's hair is blonde.

break
In any loop, the break statement causes the loop to end. In the case of nested loops, a numeric argument
can be passed to tell the break statement how many loops to run before breaking out of the loop:

<?php

 while($i<10) {
 if($i == 7) {
 break; // Exit the while loop
 }
 }

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

61

 foreach($values as $val) {
 switch($val) {
 case 'bad_value':
 break 2; // Exit the switch and the foreach
 case 'good_value':
 // Do something...
 }
 }

?>

switch
If a multitude of conditions exist, you can use the switch control structure to create different responses
for different conditions—much as you can for an if statement. However, switch works much better in
situations where you have more than one or two conditions.

A switch accepts an expression, then sets up cases. Each case is functionally equivalent to an if
statement; this means that if the expression passed to the switch matches the case, then the code within
the case is executed. You must separate each case with a break statement or else your code will continue
to execute, producing unexpected results.

To see switch in action, you can write a quick script that determines what day it is and outputs a
different response based on the result. This script uses a function called date() that allows you to format
the current date (or any date, using the optional second parameter for a timestamp, which I’ll cover in
the next chapter).

Insert the following code into test.php:

<?php

$day = date('w');

switch($day)
{
 case '0':
 echo "It's Sunday!";
 break;
 case '1':
 echo "It's Monday!";
 break;
 case '2':
 echo "It's Tuesday!";
 break;
 case '3':
 echo "It's Wednesday!";
 break;

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

62

 case '4':
 echo "It's Thursday!";
 break;
 case '5':
 echo "Woohoo! It's Friday!";
 break;
 case '6':
 echo "It's Saturday!";
 break;
 default:
 echo "That's no day I recognize...";
 break;
}

?>

Depending on the day you run this script, you get output that follows this example when you

load test.php in a browser:

It's Wednesday!

continue
The continue statement works similarly to break, with one essential difference: it ends only the current
iteration. After a continue statement, the loop starts over at the condition evaluation.

This is useful in instances where you want to perform actions only on data in a loop that meets
a certain criteria, such producing only even values:

<?php

 for($i=0; $i<=10; ++$i) {
 /*
 * If the modulus of $i and 2 is not zero (which evaluates
 * to false), we continue
 */
 if($i%2) {
 continue;
 }
 echo $i, " ";
 }

?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

63

Running this loop creates the following output:

0 2 4 6 8 10

return
The return statement in PHP is most useful in functions. When reached within a function, return
immediately stops the execution of the function and passes its argument as the value of the function
call. I’ll cover the return statement in the section of this chapter named, “User-Defined Functions.”

If you use the return statement outside of a function, the statement ends the execution of the
script. Like echo and print, return is a construct of the PHP language, so no parentheses are required
when you use it.

include, include_once, require, and require_once
A great feature provided by PHP is the ability to load a script from an external file; this makes it much
easier to organize your code in larger projects.

PHP provides four constructs you can use to load an external script: include, include_once,
require, and require_once.

The PHP manual recommends that developers use include_once and require_once because
these constructs first check whether the file has already been loaded before either will load a given
script. This saves resources and can increase the performance of your applications.

Now let’s take a look at an exercise that illustrates the power of loading external scripts. Fire up
Eclipse and press Ctrl+click or right-click your simple_blog project folder, hover over “New...” and select
“File...” from the drop-down menu. Name the new file extras.php and add the following code to the
blank document that opens:

<?php
 $foo = "green";
 $bar = "red";
?>

Save the file, then go back to our test.php file and write the following code:

<?php
 include_once 'extras.php';

 echo 'Variable $foo has a value of ', $foo, "
\n";
 echo 'Variable $bar has a value of ', $bar, "
\n";
?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

64

Save, then navigate to http://localhost/simple_blog/test.php in a browser to see the results:

Variable $foo has a value of green
Variable $bar has a value of red

By including the extras.php file you created using include_once, you are able to access the
information stored in the file. This proves especially useful when you’re working with a large set of
functions, which allows common functions to be stored in a file that is included in other areas of your
site, rather than requiring that you copy-and-paste those functions into each file. Adopting this
approach reduces the size of your applications and can play a part in optimizing your application’s
performance.

This next short example illustrates how using include_once can reduce the load on your server;
begin by adding this code toe extras.php:

<?php

$var += 1;

?>

Next, add this code to test.php:

<?php

$var = 0;

include 'extras.php';

echo $var, "
";

include 'extras.php';

echo $var, "
";

?>

This code produces the following output when loaded into a browser:

1
2

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

65

Now, change test.php so it uses include_once instead of include:

<?php

$var = 0;

include_once 'extras.php';

echo $var, "
";

include_once 'extras.php';

echo $var, "
";

?>

Next, load test.php in a browser to see the result:

1
1

The file is loaded only once, the script executes only once. This reduces the load on the server,
which in turn reduces the execution time of your scripts.

goto
PHP 5.3.0 introduced the goto statement, which enables you to skip ahead to a new section of code:

<?php

 if ($i==7) {
 goto foo;
 }

 echo "This will be jumped if \$i is equal to 7.";

 foo:
 echo "This should be printed.";

?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

66

Note goto is a controversial addition to the language, not least because many developers feel it will have
negative effects on code legibility. Also be aware that XAMPP is running PHP 5.2 by default, so goto will not work
in the default testing environment.

User-Defined
Perhaps the most powerful feature of PHP is the ability to define and execute functions from within your
code. A function is a named block of code that you declare within your scripts that you can call at a later
time. Functions can accept any number of arguments and can return a value using the return statement.

The basic format of a function requires that you first identify the function using the function
reserved word in front of a string that serves as the function’s name. This string can contain any
alphanumeric characters and underscores, but it must not start with a number. You enclose any
arguments you want in parentheses after the function name. Note that you still must include the
parentheses even if the function doesn’t require that you pass any arguments.

Note Reserved words are special terms that cannot be used for function names. These include the word
function, control structure names, and several other terms which will be noted as they come up. You can find a
full list of reserved words at http://us2.php.net/manual/en/reserved.php.

Begin by declaring your first function in test.php:

<?php

 function sayHello()
 {
 echo "Hello world!";
 }

 // Execute the function
 sayHello();

?>

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

67

The function produces the following output when you call it:

Hello world!

To add arguments, you place variables inside the function declaration’s parentheses, separated
by commas. You can use these arguments within the function to determine the function’s return value:

<?php

 function meet($name)
 {
 echo "Hello, my name is $name. Nice to meet you!
";
 }

 meet("Jason");

?>

For example, calling meet("Jason") produces the following output:

Hello, my name is Jason. Nice to meet you!

Returning Values from Functions
Most of the time, you won’t want to immediately the result of a function call immediately. To store the
result in a variable, you use the return statement discussed earlier. Add the following code to test.php:

<?php

/*
 * Based on the time passed to the function in military (24 hour)
 * time, returns a greeting
 */
function greet($time)
{
 if($time<12)
 {
 return "Good morning!";
 }
 elseif($time<18)
 {
 return "Good afternoon!";
 }

Download at WoweBook.Com

CHAPTER 2 UNDERSTANDING PHP: LANGUAGE BASICS

68

 else
 {
 return "Good evening!";
 }
}

$greeting = greet(14);

echo "$greeting How are you?";

?>

PHP stores the result of greet()in the $greeting variable, which you can use later to display a

time-sensitive greeting to the user. When you set 14 (2 PM) as your parameter and run this script in your
browser, you get the following output:

Good afternoon! How are you?

Summary
At this point, you should be comfortable placing PHP scripts into our web pages, adding comments
them to help clarify their purpose, using variables to manipulate data, and using operators and control
structures to traverse and manipulate data. You should also know how to write a function and call it
from within our scripts.

In the next chapter, you’ll learn how to send data from one page to another in your web
applications, and you’ll start building the basics of your blog!

Download at WoweBook.Com

C H A P T E R 3

69

Passing Informat ion wi th PHP

Now that you’re comfortable with the basics of PHP, you’re ready to go over how information is moved
from page to page. You’ll need this for nearly every aspect of the blog, from writing new posts to allowing
users to comment.

In this chapter, you’ll learn the following:

• What superglobal arrays are in PHP and how to use them

• How to send data using HTML forms using the POST method

• How to send data in the URL using the GET method

• How to store data in SESSIONS for use across multiple pages

• How to create and store COOKIES for returning users

Passing data is what separates dynamic web pages from static ones; by customizing an
experience based on the user’s choices, you’re able to add an entirely new level of value to a web site.

Superglobal Arrays
PHP offers several types of superglobal arrays to developers, each with a different useful purpose. A
superglobal array (refer back to Chapter 2 for more information on arrays) is a special variable that are
always available in scripts, regardless of the current scope of the script (see the Variable Scope section
later in this chapter). PHP includes several superglobals:

• $GLOBALS: Variables available in the global scope

• $_SERVER: Information about the server

• $_GET: Data passed using the HTTP GET method

• $_POST: Data passed using the HTTP POST method

• $_REQUEST: Data passed via an HTTP request

• $_FILES: Data passed by an HTML file input

• $_SESSION: Current session data specific to the user

• $_COOKIE: Data stored on the user’s browser as a cookie

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

70

Variable Scope
In programming, scope refers to the context you declare a variable in. Most variables in PHP have a
single scope: global. Using this scope means that a variable is available in the script that declares it, as
well as in any script that is included after the variable is declared or in any script that includes the file in
which the variable is declared.

For example, try opening test.php again and experimenting with variable scope:

<?php

 $foo = "some value";

 include_once 'extras.php'; // $foo is available in extras.php

 $bar = "another value"; // $bar is not available in extras.php

 echo "test.php: Foo is $foo, and bar is $bar.
";

?>

Now open up extras.php and insert the following code:

<?php

 echo "extras.php: Foo is $foo, and bar is $bar.
";

?>

When you load http://localhost/simple_blog/test.php in your browser, you get the following

output:

extras.php: Foo is some value, and bar is .
test.php: Foo is some value, and bar is another value.

Note When error_reporting(E_ALL) is active, a notice will display, letting you know that $bar is an
undefined variable. Error reporting is a great way to make sure all the bases are covered in your scripts. When
developing an application, best practice dictates that you should use error_reporting(E_ALL), which means all
errors and notices are displayed. You don’t want our users to see nasty error codes in your production scripts,
however, so you should use error_reporting(0) to turn off errors in your finished application.

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

71

Scope changes a bit when you start using functions, because variables declared within a
function have local scope, meaning they’re only available within the function that declares them.
Additionally, variables declared in the global scope are only available if they are explicitly declared as
global inside the function.

You’re now ready to see how error_reporting(E_ALL) affects your scripts. In test.php, write the
following code:

<?php

 error_reporting(E_ALL);

 $foo = "I'm outside the function!";

 function test()
 {
 return $foo;
 }

 echo test(); // A notice is issued that $foo is undefined

?>

$foo is undefined if you run your test() function, which issues a notice. You can clear this up

by declaring $foo as global within your test() function; this means that $foo in local scope will now refer
to the variable $foo in global scope:

<?php

 $foo = "I'm outside the function!";

 function test()
 {
 global $foo; // Declare $foo as a global variable
 return $foo;
 }

 echo test();

?>

Visiting test.php executes test(), you can see the result in this output:

I'm outside the function!

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

72

A variable declared within a function is not available outside that function unless it is specified
as the function’s return value. For instance, consider the following code:

<?php
 error_reporting(E_ALL);

 function test()
 {
 $foo = "Declared inside the function.
";
 $bar = "Also declared inside the function.
";

 return $bar;
 }

 $baz = test();

 /*
 * Notices are issued that $foo and $bar are undefined
 */
 echo $foo, $bar, $baz;

?>

This code gives the following results:

Notice: Undefined variable: foo in /Applications/xampp/xamppfiles/htdocs/simple_blog/

test.php on line 19

Notice: Undefined variable: bar in //Applications/xampp/xamppfiles/htdocs/simple_blog/

test.php on line 19
Also declared inside the function.

You need to declare two variables within a function and return both; next, you use an array and
the list() function to access the values easily.

<?php

 function test()
 {
 $foo = "Value One";
 $bar = "Value Two";

 return array($foo, $bar);
 }

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

73

 /*
 * The list() function allows us to assign a variable
 * to each array index as a comma-separated list
 */
 list($one, $two) = test();

 echo $one, "
", $two, "
";

?>

Running this code produces the desired output:

Value One
Value Two

Using list() is a way to declare multiple variables in one line; for example this line declares the
variables $one and $two:

list($one, $two) = test();

The following handful of lines accomplishes the same thing:

 $array = test();

 $one = $array[0];
 $two = $array[1];

Note Only numerically indexed arrays will work when using list(). Using an array with text-based keys issues
a notice that indicates you have undefined array indexes.

$GLOBALS
PHP provides another option for accessing variables in the global scope: the $GLOBALS superglobal array.
All variables in the global scope are loaded into the $GLOBALS array, enabling you to access them using
the variable name as the array key.

You can try out this array in test.php:

<?php

 $foo = "Some value.";

 function test()

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

74

 {
 echo $GLOBALS['foo'];
 }

 test();

?>

This code produces the following output:

Some value.

Tip It is generally a good practice to avoid using globals wherever possible. The preferred method of accessing
global variables inside functions is to pass them as arguments. This makes your scripts more readable, which
simplifies maintenance over the long term.

$_SERVER
The $_SERVER superglobal stores information about the server and the current script. It also has features
that allow you to access the IP address of a site visitor, what site referred the visitor to this script, and
many other useful pieces of information. I won’t cover all of the capabilities of $_SERVER here, so be sure
to check the PHP manual to learn more about this feature.

One of the most useful pieces of information available in the $_SERVER superglobal is the name
of the host site, which is stored in HTTP_HOST. The host site’s name is useful because it allows you to
create a simple template that you can use across different projects without requiring that you change
any of your code.

For instance, you can use the following code snippet to welcome a visitor to your site:

<?php

 echo "<h1> Welcome to $_SERVER[HTTP_HOST]! </h1>";

?>

Running this code in test.php produces this output:

Welcome to localhost!

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

75

Loading the exact same snippet on a live web site produces this output:

Welcome to yoursite.com!

As you continue forward with creating your simple blog, you’ll discover a few uses for HTTP_HOST
in your scripts.

Other useful pieces of information are available as well, shown below (see comments for a
description of what each piece means).

Note the use of print_r() at the bottom of the script. This is a great way to debug code,
especially arrays, because it outputs a “human-readable” display of a variable’s contents. You can see
this at work when you load your test script in test.php:

<?php

 /*
 * Note that <pre> tags and newline characters (\n) are used
 * for the sake of legibility
 */

 // Path to the current file (i.e. '/simple_blog/test.php')
 echo $_SERVER['PHP_SELF'], "\n\n";

 // Information about the user's browser
 echo $_SERVER['HTTP_USER_AGENT'], "\n\n";

 // Address of the page that referred the user (if any)
 echo $_SERVER['HTTP_REFERER'], "\n\n";

 // IP address from which the user is viewing the script
 echo $_SERVER['REMOTE_ADDR'], "\n\n";

 // Human-readable export of the contents of $_SERVER
 print_r($_SERVER);

?>

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

76

Loading test.php in your browser displays output something like the following:

/simple_blog/test.php

Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US; rv:1.9.0.10) Gecko/2009042315
Firefox/3.0.10

Notice: Undefined index: HTTP_REFERER in
/Applications/XAMPP/xamppfiles/htdocs/simple_blog/test.php on line 119

::1

Array
(
 [UNIQUE_ID] => ShwUrQoAAQYAAAE4T@0AAAAA
 [HTTP_HOST] => localhost
 [HTTP_USER_AGENT] => Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US;

 rv:1.9.0.10) Gecko/2009042315 Firefox/3.0.10
 [HTTP_ACCEPT] => text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
 [HTTP_ACCEPT_LANGUAGE] => en-us,en;q=0.5
 [HTTP_ACCEPT_ENCODING] => gzip,deflate
 [HTTP_ACCEPT_CHARSET] => ISO-8859-1,utf-8;q=0.7,*;q=0.7
 [HTTP_KEEP_ALIVE] => 300
 [HTTP_CONNECTION] => keep-alive
 [HTTP_COOKIE] =>

 [HTTP_CACHE_CONTROL] => max-age=0
 [PATH] => /usr/bin:/bin:/usr/sbin:/sbin
 [SERVER_SIGNATURE] =>

 [SERVER_SOFTWARE] => Apache/2.2.11 (Unix) DAV/2 mod_ssl/2.2.11 OpenSSL/0.9.7l

PHP/5.2.9 mod_perl/2.0.4 Perl/v5.10.0
 [SERVER_NAME] => localhost
 [SERVER_ADDR] => ::1
 [SERVER_PORT] => 80
 [REMOTE_ADDR] => ::1
 [DOCUMENT_ROOT] => /Applications/XAMPP/xamppfiles/htdocs
 [SERVER_ADMIN] => you@example.com
 [SCRIPT_FILENAME] => /Applications/XAMPP/xamppfiles/htdocs/simple_blog/test.php
 [REMOTE_PORT] => 49310

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

77

 [GATEWAY_INTERFACE] => CGI/1.1
 [SERVER_PROTOCOL] => HTTP/1.1
 [REQUEST_METHOD] => GET
 [QUERY_STRING] =>
 [REQUEST_URI] => /simple_blog/test.php
 [SCRIPT_NAME] => /simple_blog/test.php
 [PHP_SELF] => /simple_blog/test.php
 [REQUEST_TIME] => 1243354285
 [argv] => Array
 (
)

 [argc] => 0

)

Be sure to check whether HTTP_REFERER, is set before you use it. Otherwise, HTTP_REFERER is
undefined if the visitor was not referred by another site a notice will be issued that. This code provides
an easy way to tell whether it is set:

if(isset($_SERVER['HTTP_REFERER']))
{
 echo $_SERVER['HTTP_REFERER'];
}
else
{
 echo "No referer set!";
}

$_GET
One of the two most common methods of passing data between pages is the GET method. GET data is
passed through a query string in the URL, which looks something like this:

http://example.com?var1=somevalue&var2=othervalue

The query string begins with a question mark (?) and then names a variable (var1 in the

preceding example). The next part of the query string is an equals sign (=), followed by a value. You can
add more variables by appending an ampersand (&) to the end of the first value, then declaring another
variable name (var2 in the preceding example), followed by an equals sign and a value. Note that you do
not enclose the values in the query string in quotes; this can cause problems when you use values that
have spaces and/or special characters.

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

78

URL Encoding
Fortunately, PHP includes the urlencode() function, which you can use to get values ready to be passed
in a URL. You use this function in tandem with urldecode(); together, the two functions enable you to
pass complex values through the URL. Add this code to test.php to learn how URL encoding works:

<?php

 error_reporting(E_ALL);

 $foo = "This is a complex value & it needs to be URL-encoded.";

 // Output the original string
 echo $foo, "

";

 // URL encode the string
 $bar = urlencode($foo)

 // Output the URL-encoded string
 echo $bar, "

";

 // Decode the string and output
 echo urldecode($bar);

?>

Loading test.php in a browser produces the following result:

This is a complex value & it needs to be URL-encoded.
This+is+a+complex+value+%26+it+needs+to+be+URL-encoded.
This is a complex value & it needs to be URL-encoded.

Accessing URL Variables
You use the $_GET superglobal array to access the variables in the query string. You can access the
variables in this array with the variable name as the array key. For instance, you can use this code to
access your variables from the URL example at the beginning of this section:

<?php

 echo "var1: ", $_GET['var1'], "
";
 echo "var2: ", $_GET['var2'], "
";

?>

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

79

To test this snippet of code, navigate to this URL: http://localhost/simple_blog/
test.php?var1=somevalue&var2=anothervalue. Running this code produces the following output:

var1: somevalue
var2: anothervalue

The $_GET superglobal allows you to determine what information displays on a page, depending
on the values you pass in the URL. For example, you can use this code if you want to allow a user to view
either a brief description of your site or your contact information:

<ul id="menu">
 Home
 About Us
 Contact Us

<?php

 /*
 * Very basic security measure to ensure that
 * the page variable has been passed, enabling you to
 * ward off very basic mischief using htmlentities()
 */
 if(isset($_GET['page'])) {
 $page = htmlentities($_GET['page']);
 } else {
 $page = NULL;
 }

 switch($page) {

 case 'about':
 echo "
 <h1> About Us </h1>
 <p> We are rockin' web developers! </p>";
 break;

 case 'contact':
 echo "
 <h1> Contact Us </h1>
 <p> Email us at

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

80

 info@example.com

 </p>";
 break;

 /*
 * Create a default page in case no variable is passed
 */
 default:
 echo "
 <h1> Select a Page! </h1>
 <p>
 Choose a page from above

 to learn more about us!
 </p>";
 break;
 }

?>

Loading the page displays a screen similar to what you see in Figure 3-1.

Figure 3-1. The default page if no $_GET variable is supplied

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

81

After clicking the “About Us” link at the top, the page will reload (see Figure 3-2).

Figure 3-2. The About Us page is loaded when the page=about query string is passed in the URL

Click the Contact Us link to bring up a page similar to what you see in Figure 3-3.

Figure 3-3. The Contact Us page is loaded when page=contact

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

82

Caution $_GET variables are useful, but they also allow malicious users to pass information directly into your
script. Because of this, you should always sanitize the input. You should also avoid sending sensitive information
via a GET request. Basic security precautions will be covered later in this book.

$_POST
PHP provides a second method for sending data: POST. Submitting most web forms (such as a contact
form or site registration) requires using the POST method to submit the form information for processing.

Structurally, POST requests are very similar to GET requests, and you access their values in the
same way: you use the $_POST superglobal and append the variable name as the array key.

In most cases, a POST value is passed by a web form that you build in HTML. For example, take a
look at this registration form:

<form action="test.php" method="post">
 <input type="text" name="username" />
 <input type="text" name="email" />
 <input type="submit" value="Register!" />
</form>

The name attribute tells you the array key to use to access the information submitted with the

form. For example, you use the $_POST['username'] variable in your script to access the “username”
field.

Open test.php to build a simple form-handling script:

<?php

 /*
 * Checks if the form was submitted
 */
 if($_SERVER['REQUEST_METHOD'] == 'POST') {
 // Displays the submitted information
 echo "Thanks for registering!
",
 "Username: ", htmlentities($_POST['username']), "
",
 "Email: ", htmlentities($_POST['email']), "
";
 } else {
 // If the form was not submitted, displays the form

?>

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

83

<form action="test.php" method="post">
 <label for="username">Username:</label>
 <input type="text" name="username" />
 <label for="email">Email:</label>
 <input type="text" name="email" />
 <input type="submit" value="Register!" />
</form>

<?php } // End else statement ?>

When you load http://localhost/simple_blog/test.php, the script checks whether any data

has been submitted via the POST method. If so, the script thanks the user for registering and the displays
the selected username and supplied email address. If nothing is submitted via POST, the script displays
the registration form (see Figure 3-4).

Figure 3-4. Your registration form

Set the action attribute set to test.php; doing so prompts the form to send the request to the
script when the form is submitted. This enables you to both accept user input and process it within the
same script.

Use the $_SERVER superglobal to check the REQUEST_METHOD value for information on whether a
POST request has been made. If so, you perform basic escaping of the input (using htmlentities()) to
filter the input.

Entering a name and email address causes your confirmation message to display (see Figure 3-5).

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

84

Figure 3-5. This confirmation message is displayed after you use your registration form

$_REQUEST
The $_REQUEST superglobal is an array that contains the contents of the $_GET, $_POST, and $_COOKIE
superglobals. If you modify your form in test.php to submit to test.php?submit=true with a username
and email text input, you can access all the submitted data using the following code:

<?php

 // Checks if the form was submitted
 if($_SERVER['REQUEST_METHOD'] == 'POST') {

 // Output the contents of $_REQUEST
 foreach($_REQUEST as $key => $val) {
 echo $key, " : ", $val, "
";
 }

 } else {
 // If the form was not submitted, displays the form HTML

?>

<form action="test.php?submit=true" method="post">
 <label for="username">Username:</label>
 <input type="text" name="username" />
 <label for="email">Email:</label>
 <input type="text" name="email" />
 <input type="submit" name="submit" value="Register!" />
</form>

<?php } // End else statement ?>

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

85

This script’s output looks something like this:

submit : true
username : Test
email : test@example.com

The precedence of values is important in this case. Declaring an index in $_COOKIE, $_POST, and
$_GET with the same name could cause confusion for new developers. $_REQUEST causes $_COOKIE to
override both $_POST and $_GET. If $_COOKIE does not contain the variable name, $_POST will override
$_GET. For example, if you set the action attribute to test.php?username=agetvariable, you won’t see any
change in the username value because $_POST will override $_GET, even if the username field is left blank.

$_FILES
Another feature of HTML forms is the ability to allow users to upload files. In an application such as the
blog, you need to be able to accept images to include with your entries. In order to access an uploaded
file, you need to use the $_FILES superglobal.

$_FILES works a little differently from $_POST and $_GET in that each file creates an array of
related elements that provide information about the uploaded file. The provided information includes:

• name: The file name

• type: The file type (e.g. image/jpeg)

• tmp_name: The temporary location of the uploaded file

• error: An error code corresponding to error type (0 if no errors found)

• size: The file size in bytes (e.g. 9347012)

You store each file uploaded as a multidimensional array in the $_FILES superglobal, which you
access using first the field name as the array key and then the name of the desired field value (i.e.,
$_FILES['upload1']['name']).

You can experiment with $_FILES by creating a file upload field in test.php. Remember to add
enctype="multipart/form-data" to the <form> tag to allow file uploads:

<?php

 // Checks if the form was submitted
 if($_SERVER['REQUEST_METHOD'] == 'POST') {

 // Checks if a file was uploaded without errors
 if(isset($_FILES['photo'])
 && is_uploaded_file($_FILES['photo']['tmp_name'])

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

86

 && $_FILES['photo']['error']==UPLOAD_ERR_OK) {

 // Outputs the contents of $_FILES
 foreach($_FILES['photo'] as $key => $value) {
 echo "$key : $value
";
 }
 } else {
 echo "No file uploaded!";
 }
 } else {
 // If the form was not submitted, displays the form HTML

?>

<form action="test.php" method="post"
 enctype="multipart/form-data">
 <label for="photo">User Photo:</label>
 <input type="file" name="photo" />
 <input type="submit" value="Upload a Photo" />
</form>

<?php } // End else statement ?>

Running this script in test.php displays the screen shown in Figure 3-6.

Figure 3-6. Creating a file upload form

Uploading a file creates output similar to the following:

name : sample_image.jpg
type : image/jpeg
tmp_name : /private/var/tmp/phpU6q76q
error : 0
size : 226452

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

87

Using an uploaded file is a little trickier—Chapter 8 explains how you do this in significantly
more detail. However, you can add this script to test.php to see a very basic example of using an
uploaded file:

<?php

 // Checks if the form was submitted
 if($_SERVER['REQUEST_METHOD'] == 'POST') {

 // Checks if a file was uploaded without errors
 if(isset($_FILES['photo'])
 && is_uploaded_file($_FILES['photo']['tmp_name'])

 && $_FILES['photo']['error']==UPLOAD_ERR_OK) {

 // Checks if the file is a JPG image
 if($_FILES['photo']['type']=='image/jpeg') {
 $tmp_img = $_FILES['photo']['tmp_name'];

 // Creates an image resource
 $image = imagecreatefromjpeg($tmp_img);

 // Tells the browser what type of file
 header('Content-Type: image/jpeg');

 // Outputs the file to the browser
 imagejpeg($image, '', 90);

 // Frees the memory used for the file
 imagedestroy($image);
 } else {
 echo "Uploaded file was not a JPG image.";
 }
 } else {
 echo "No photo uploaded!";
 }
 } else {
 // If the form was not submitted, displays the form HTML

?>

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

88

<form action="test.php" method="post"

 enctype="multipart/form-data">
 <label for="photo">User Photo:</label>
 <input type="file" name="photo" />
 <input type="submit" value="Upload a Photo" />
</form>

<?php } // End else statement ?>

Once a user selects a JPG file and clicks the “Upload a Photo” option, your script implements a

series of actions:

1. It verifies that the form was submitted using the POST method

a. If not, it displays the form and no further processing is performed

b. If so, it proceeds to Step 2

2. It checks whether a file was uploaded and that the file has no errors

a. If both conditions are not met, the script kicks out an error message

b. If both conditions are met, it proceeds to Step 3

3. It verifies that the uploaded file is a JPG image

a. If not, the script generates an error message

b. If so, it proceeds to Step 4

4. It uses imagecreatefromjpeg() to create an image resource from the temporary file

5. It sends a content-type header to the browser, so the image is handled properly

6. It generates the image using imagejpeg()

7. It uses imagedestroy() to free the memory consumed by the image resource

After the file is uploaded, the script displays the image in the browser (see Figure 3-7).

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

89

Figure 3-7. The image displayed by test.php after uploading and processing

Note You can find a more in-depth explanation of PHP’s image-handling functions in Chapter 8.

$_SESSION
In cases where you need to store a value for a user’s entire visit, the $_SESSION superglobal provides a
practical, easy solution. When a $_SESSION variable is declared, it remains in memory until it is explicitly
unset, the session times out (the default time-out value is 180 minutes), or the browser is closed.

One common use of $_SESSION variables is to store a user’s login status. You can build on your
simple registration form to create a session for a user that has already registered.

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

90

Your script will accomplish the following tasks:

1. Display a registration form

2. Thank user for registering after she does so

3. Tell the user she has already registered on consequent page loads

You must initiate session data before you can use session variables; you do this by calling
session_start() at the top of your script.

Note If you call session_start() more than once, PHP generates a notice and additional session_start()
calls will be ignored. Also, you should call session_start() at the very beginning of any script you use it in,
before you send any output to the browser. Failure to do so will also generate a notice and prevents the session
from starting. Finally, the script that starts the session must be the first thing in the file, so make sure you place
the opening <?php on line 1 of the file.

You can implement a $_SESSION variable by inserting the following code in test.php:

<?php

 // Initialize session data
 session_start();

 /*
 * If the user is already registered, display a
 * message letting them know.
 */
 if(isset($_SESSION['username'])) {
 echo "You're already registered as $_SESSION[username].";
 }

 // Checks if the form was submitted
 else if($_SERVER['REQUEST_METHOD'] == 'POST') {

 /*
 * If both the username and email fields were filled
 * out, save the username in a session variable and
 * output a thank you message to the browser. To
 * eliminate leading and trailing whitespace, we use the
 * trim() function.
 */
 if(!empty(trim($_POST['username']))
 && !empty(trim($_POST['email']))) {

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

91

 // Store escaped $_POST values in variables
 $uname = htmlentities($_POST['username']);
 $email = htmlentities($_POST['email']);

 $_SESSION['username'] = $uname;

 echo "Thanks for registering!
",
 "Username: $uname
",
 "Email: $email
";
 }

 /*
 * If the user did not fill out both fields, display
 * a message letting them know that both fields are
 * required for registration.
 */
 else {
 echo "Please fill out both fields!
";
 }
 }

 // If the form was not submitted, displays the form HTML
 else {

?>

<form action="test.php?username=overwritten" method="post">
 <label for="username">Username:</label>
 <input type="text" name="username" />
 <label for="email">Email:</label>
 <input type="text" name="email" />
 <input type="submit" value="Register!" />
</form>

<?php } // End else statement ?>

You should see your registration form after you load test.php in your browser, and your script

will display the following message after you fill in the fields:

Thanks for registering!
Username: Test User
Email: test@example.com

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

92

Reloading the page should display this message:

You're already registered as Test User.

You use unset() to destroy a $_SESSION variable. Removing the username session variable and
showing the registration form again is as simple as inserting the following code:

unset($_SESSION['username']);

Using session_destroy()
PHP provides a function called session_destroy(), the name of which can be somewhat misleading.
When you call this function, a session will be destroyed the next time the page loads. However, the
session variables remain available with the same script. Insert this code in test.php to see this behavior
in action:

<?php

error_reporting(E_ALL);

session_start();

// Create a session variable
$_SESSION['test'] = "A value.";

// Destroy the session
session_destroy();

// Attempt to output the session variable (output: A value.)
echo $_SESSION['test'];

// Unset the variable specifically
unset($_SESSION['test']);

// Attempt to output the session variable (generates a notice)
echo $_SESSION['test'];

?>

Loading this script in a browser generates the following output:

A value.
Notice: Undefined index: test in /Applications/XAMPP/xamppfiles/htdocs/simple_blog/test.php on
line 20

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

93

This behavior can be confusing, so you should specifically unset() session variables that need
you want destroyed before the end of the script to avoid unexpected behavior.

$_COOKIE
Cookies behave similarly to sessions, but they allow you to store information on a user’s machine for a
longer period of time. Information stored in cookies remains available even after the user closes her
browser, assuming that the expiration date on the cookie is set far enough in the future.

You can use cookies to make a user’s repeat visits more pleasant by retaining pertinent, non-
sensitive data. This can include settings that customize the user’s experience on your site, perform
repetitive tasks automatically, or allow a user to stay logged in and avoid the extra step of logging in each
time she visits.

In PHP, you use the $_COOKIE superglobal to access cookie values. However, setting a cookie
requires that you use the setcookie() function. Open test.php again and set a cookie that contains your
username and greet you whenever you load the page.

Note This snippet uses the time() function. The returned value from time() is the number of seconds since
the Unix Epoch1, which is commonly used in programming to determine dates and intervals.

<?php

 /*
 * If the user is returning to this page
 * after previously registering, use the
 * cookie to welcome them back.
 */
 if(isset($_COOKIE['username'])) {
 echo "Welcome back, ",
 htmlentities($_COOKIE['username']),
 "!
";
 }

 /*
 * If the user is new and submits the
 * registration form, set a cookie with
 * their username and display a thank
 * you message.
 */

1. The Unix Epoch was midnight Coordinated Universal Time (UTC) of January 1, 1970. It serves as a measuring stick
for determining time when dealing with UNIX systems.

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

94

 else if($_SERVER['REQUEST_METHOD']=='POST'
 && !empty($_POST['username'])) {

 // Sanitize the input and store in a variable
 $uname = htmlentities($_POST['username']);

 // Set a cookie that expires in one week
 $expires = time()+7*24*60*60;
 setcookie('username', $uname, $expires, '/');

 // Output a thank you message
 echo "Thanks for registering, $uname!
";
 }

 /*
 * If the user has neither previously registered
 * or filled out the registration form, show the
 * registration form.
 */
 else {

?>

<form method="post">
 <label for="username">Username:</label>
 <input type="text" name="username" />
 <input type="submit" value="Register" />
</form>

<?php } // End else statement ?>

As in this book’s earlier examples, a user will see the registration form the first time he navigates

to test.php. After filling out and submitting the form, he will see the following message, assuming he
entered the username, “Jason”:

Thanks for registering, Jason!

Subsequent visits will load the $_COOKIE variable and display this message to the user:

Welcome back, Jason!

Download at WoweBook.Com

CHAPTER 3 PASSING INFORMATION WITH PHP

95

Note Browsers allow users to refuse cookies, so it’s a good idea not to use them for vital parts of your
application. When testing a new application that uses cookies, you should turn cookies off in your browser and
make sure that a user can still get the benefit of your application without them.

Summary
At the end of this chapter, you should feel comfortable using superglobal arrays to access data sent from
one page to the next. You should also know the difference between sessions and cookies, as well as how
to use superglobal arrays to access the values stored in them.

In the next chapter, I’ll introduce you to MySQL and explain how to interact with database
tables to store, retrieve, modify, and delete data, which form a core part of the blog’s functionality.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 4

97

Working with Databases

Modern web sites are incredibly powerful, and much of this power derives from their ability to store
information. Storing information allows developers to create highly customizable interactions between
their software and its users, ranging from entry-based blogs and commenting systems to high-powered
banking applications that handle sensitive transactions securely.

In this chapter, I’ll cover the basics of MySQL, a powerful, open-source database. Subjects I’ll
cover include:

• The basics of MySQL data storage

• Manipulating data in MySQL tables

• Your options in PHP for interacting with MySQL databases

• Table structure, usage, and a crash-course in planning

This is the last chapter that covers the theory of building PHP applications; in Chapter 5, I’ll
begin covering the practical aspects of building a blog!

The Basics of MySQL Data Storage
MySQL is a relational database management system, which lets you store data in multiple tables, where
each table contains a set of named columns and each row consists of a data entry into the table. Tables
will often contain information about other table entries, which allows developers to group relevant
information into smaller groups to ease a script’s load on the server, as well as simplifying data retrieval.

For example, take a look at how you might store information about musical artists (see Tables
4-1 and 4-2).

Table 4-1. The artists Table

ar t ist_i d ar t ist_name

1 Bon Iver

2 Feist

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

98

Table 4-2. The albums Table

album_id ar t ist_i d album_name

1 1 For Emma, Forever Ago

2 1 Blood Bank - EP3

3 2 Let It Die

4 2 The Reminder

The first table, artists, includes two fields. The first field, artist_id, stores a unique numerical
identifier for the artists. The second column, artist_name, stores the artist’s name.

The second table, albums, stores a unique identifier for each album in the album_id column and
the album name in the—you guessed it!—album_name column. The album table includes a third column,
artist_id, that relates the artists and albums tables. This column stores the unique artist identifier that
corresponds to the artist that recorded the album.

Manipulating Data in MySQL Tables
You can manipulate the data in a MySQL table via several types of MySQL statements. In this section,
you will learn the MySQL statements that perform the following actions:

• Create a database

• Create a table in the database

• Insert data into the table

• Retrieve the data from the table

• Modify the data in the table

• Delete the data from the table

You’ll test these commands using the phpMyAdmin control panel provided by XAMPP. Open a
browser and navigate to http://localhost/phpmyadmin to access the control panel (see Figure 4-1).

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

99

Figure 4-1. The home page of phpMyAdmin on XAMPP

Creating and Deleting Databases
The best way to get a feel for creating databases is to create one for testing. By default, XAMPP creates a
database called test. In the interests of learning, go ahead and delete this database, and then recreate it.

Deleting Databases Using DROP

MySQL uses the word DROP to indicate that a database or table should be removed. After you start the
DROP clause, you need to indicate whether you’re removing a database or a table, which you indicate by
name, then the name of the database or table (in this case, test).

Your complete command should look like this:

DROP DATABASE test

Click the SQL tab at the top of the screen and enter the preceding command, then click the Go

button beneath the SQL field to execute the command and remove the table. Because you’re deleting
information, an alert pops up asking you to confirm whether you really want to drop the table.

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

100

Creating Databases Using CREATE

Next, you need to recreate the test database. MySQL uses the word CREATE to indicate that a table or
database is being created. Then, as with the DROP command, you specify a DATABASE and the name of the
database: test. Enter this command in the SQL tab, then click the Go button to execute it:

CREATE DATABASE test

Next, access the test database by clicking its name in the left column of the control panel. Click

the SQL tab at the top of the screen, and you’re ready to create your first table (see Figure 4-2).

Figure 4-2. The SQL tab inside the test table on phpMyAdmin

The CREATE TABLE Statement
Of course, the first thing you need to do to start working with MySQL is to create your first table.

MySQL syntax is very simple because it generally mimics natural speech patterns. In the text
field, add the following statement:

CREATE TABLE IF NOT EXISTS artists
(
artist_id INT PRIMARY KEY AUTO_INCREMENT,
artist_name VARCHAR(150)
)

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

101

This code creates the artists table from the previous example about musicians. The created
tables will be empty, but all the columns will be in place.

The statement starts out with the words CREATE TABLE, which tells MySQL to do exactly that.
You append the optional IF NOT EXISTS to ensure you don’t overwrite a table if it has already been
created, then add the name of the table to be created (artists).

The tricky part is defining the columns within the table. To start, you enclose the column names
in parentheses after the name of the table, starting with the first column name:

(artist_id)

To identify the type of information you want to store in this column, you follow the column

name with a type identifier:

(INT [see Data Types in MySQL])

This snippet instructs MySQL to store only integer values in this column.
The PRIMARY KEY (see the “Understanding PRIMARY KEY” section later in this chapter) and

AUTO_INCREMENT (see the “Understanding AUTO_INCREMENT” section later in this chapter) keywords enable
you to make this field update automatically with a unique ID, or index (see the “Indexes in MySQL”
section later in this chapter).

You create the artist_name column with data type VARCHAR and specify a maximum length of
150 characters. VARCHAR is a variable-length string that can contain anywhere from 0 to 65,535 bytes. You
must specify a length with columns of the VARCHAR type, or you get an error.

Note MySQL supports both VARCHAR and CHAR type columns. The primary difference between the two is that
CHAR columns are right padded with spaces to fill the specified length, whereas VARCHAR columns are not. For
example, if the specified field length were 8, the word “data” would be stored as 'data' in a VARCHAR and as
'data ' in a CHAR column.

Clicking the Go button beneath the text field creates the artists table. You need to repeat the
process and create the albums table, which you accomplish using the following code:

CREATE TABLE IF NOT EXISTS albums
(
album_id INT PRIMARY KEY auto_increment,
artist_id INT,
album_name VARCHAR(150)
)

Again, click the Go button beneath the text field, then click the Structure tab at the top of the

field to verify that your tables have been created (see Figure 4-3).

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

102

Figure 4-3. The albums and artists tables created in phpMyAdmin

Data Types in MySQL
MySQL supports numerous data types. The types you will use most often include:

• INT: an integer value

• FLOAT: a floating point number

• VARCHAR: a short string value

• TEXT: a large string value that is treated as a character string (it’s best suited for blog entries)

• BLOB: a binary large object that is treated as a binary string (it can store images and similar
numbers)

• DATETIME: a date value (formatted YYYY-MM-DD HH:MM:SS)

Understanding PRIMARY KEY
A column assigned with the PRIMARY KEY identifier should contain a value that uniquely identifies each
value throughout the table. Because you’re using numerical IDs for each artist, you know that there
won’t be any overlap in the artist_id column.

The use of primary keys in MySQL tables is mandatory because the data isn’t really useful if you
can’t identify entries uniquely.

Understanding AUTO_INCREMENT

Using a unique numerical identifier for individual entries is incredibly useful, so MySQL includes an
easy way to create unique identifiers called AUTO_INCREMENT. A column flagged with AUTO_INCREMENT
generates identifiers in sequence automatically as entries are created, starting at 1.

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

103

Indexes in MySQL
When you look up data in a MySQL table, queries can start to back up, depending on the number of rows
contained within the table. Imagine a site like CNN.com, where hundreds of thousands of people might
be looking up one of the site’s articles at any given moment; if each query had to go through every piece
of data in every row of the table, sites like this would slow to a crawl under the stress of daily use.

Fortunately, MySQL provides a way to speed up queries by allowing you to create one or more
index columns, which are sorted snippets of a table’s data that enable much faster searching.

In the artists table, it makes a lot of sense to use the artist_id as an index. Declaring this
column as the PRIMARY KEY means you’ve already created an index on it. However, in the albums table,
the artist_id column is not an index, so searching for an artist’s recordings could take much longer
than you want it to if you had thousands of artists in your database.

To create an index, you’ll need to ALTER the albums table. Next, you add the index by using the
ADD INDEX clause with the column to index enclosed in parentheses. The complete command looks like
this:

ALTER TABLE albums ADD INDEX (artist_id)

The proper use of MySQL indexes can add a huge performance boost to SELECT queries. It

should be noted, however, that each index creates a separate column that must be updated every time
data is added. This means it can take longer to add data to an indexed column than for an unindexed
column.

The INSERT Statement
With your tables created, you’re ready to start storing data. The first step is to store artist information in
the artists table. Each entry must be entered separately, so you start with the first artist, Bon Iver:

INSERT INTO artists (artist_name) VALUES ('Bon Iver')

The INSERT INTO phrase tells MySQL that you’re adding information. The next steps are to

determine what table you want to add information into (artists) and then specify the column(s) you’re
adding values into (artist_name), which you enclose in parentheses.

With your table name and columns selected, you can insert data using the word VALUES,
followed by the data you wish to insert, enclosed in parentheses:

("Bon Iver")

You follow the same format to add the next artist:

INSERT INTO artists (artist_name) VALUES ('Feist')

If you select the artists table from the left-hand column of phpMyAdmin and click the Browse

tab, you see that even though you specified only the artist_name column, the artist_id column was
filled out for you automatically (see Figure 4-4).

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

104

Figure 4-4. The artists table populated with two entries

To populate the albums table, you specify two columns to enter data into, then execute four
statements simultaneously, separating them with a semicolon. Enter the following into the SQL text field
and click the Go button:

INSERT INTO albums (artist_id, album_name)
VALUES ('1', 'For Emma, Forever Ago'),
('1', 'Blood Bank – EP'),
('2', 'Let It Die'),
('2', 'The Reminder')

Instead of executing four different commands to insert the albums, as you did in the preceding

example, you can use what is called an extended insert to add all four albums at once. This works by
enclosing each entry in parentheses, separated by commas.

Now, if you select the albums table from the left column and browse its contents, you see the
four entries, as well as the automatically assigned album_id values (see Figure 4-5).

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

105

Figure 4-5. The albums table populated with four entries

The SELECT Statement
Now that you’re comfortable inserting data into your tables, you need to figure out how to retrieve it for
use with your scripts.

You do this using the SELECT statement, followed by the column name(s) you want to retrieve.
You specify the table you want to query using the format FROM table_name. For example, you can get all
album names from the albums table by clicking the SQL tab and inserting the following line of code:

SELECT album_name FROM albums

The result of this query when you execute it in the SQL tab of phpMyAdmin: the four album

names (see Figure 4-6).

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

106

Figure 4-6. The result of a query for all album_name column values

You’re also provided with options to modify the results, which enables you to make sure results
match certain conditions before they are returned. The WHERE clause is the most common query
modifier. For example, if you want to retrieve only album titles by Bon Iver, you can use a WHERE clause to
ensure that returned entries match Bon Iver’s artist_id of 1.

SELECT album_name FROM albums WHERE artist_id = 1

Telling your query to match only the artist_id of 1 displays only the albums by Bon Iver (see

Figure 4-7).

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

107

Figure 4-7. Album names returned from rows that contain the artist_id of 1

Note There are many other modifiers available you can use in SELECT statements. Refer to the MySQL manual
for more information on what they are and how they work. Any further modifiers used throughout this book will be
introduced in their appropriate contexts as they come up.

The UPDATE Statement
At some points in your scripts, you will need to change information in an entry. To do this, you use the
UPDATE statement. For example, if you were to decide to append the release year to Feist’s album, “Let It
Die,” you could do so with the following statement:

UPDATE albums
SET album_name = 'Let It Die (2005)'
WHERE album_name = 'Let It Die'

You begin by telling MySQL that you’re going to update a row using the UPDATE statement and

indicating which table name (albums) you want to update. Next, you identify the column(s) to update
using the word SET, followed by the column name (album_name) and the value you wish to update the
field with:

("Let It Die (2005)")

Finally, you add a WHERE clause to ensure that only entries that match conditions you set (in this

case, album_name = 'Let It Die') are updated.

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

108

Caution When updating rows, it’s important to use the WHERE clause to limit the rows being updated. Omitting
the WHERE clause in an update statement will result in all table rows being updated.

The JOIN Statement
Sometimes it’s necessary to select information from multiple tables. In the current example, you might
have only an artist’s ID but need to select both the artist’s name and the albums that artist has recorded.

That information is separated between two tables, so one approach is to perform two queries to
retrieve the information:

SELECT artist_name
FROM artists
WHERE artist_id = 1;
SELECT album_name
FROM albums
WHERE artist_id = 1;

Or you can use the JOIN statement to select from both tables at once. For example, look closely

at you do this first, then I’ll go over how it works:

SELECT artist_name, album_name
FROM artists
JOIN albums
USING (artist_id)
WHERE artist_id = 1

First, you specify that you want to retrieve both the artist_name and album_name columns,

which are stored in the artists and albums tables, respectively. This might seem wrong at first, because
you’re selecting from the artists table, which would throw an error if not for the JOIN clause.

The JOIN clause enables you to specify a second table to use in the query (albums in this case).
This means that the two tables will be combined into one table temporarily, which enables you to
retrieve both the artist_name and the album_name columns with a single query.

However, you must tell MySQL how the two tables are related before this will work. The
artist_id column exists in both tables, so you’re going to use it to tie the two tables together. You
accomplish this with the USING (artist_id) clause.

Finally, you add a WHERE clause, as when using a normal SELECT query. In plain English, this
preceding query reads, “Retrieve the artist_name and album_name columns where the artist_id field has
a value of 1 from the artists and albums tables.”

Executing this query in the SQL tab of http://localhost/phpmyadmin returns the following
results:

Artist_name album_name
Bon Iver For Emma, Forever Ago
Bon Iver Blood Bank - EP

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

109

The DELETE Statement
If it becomes necessary to remove an entry, you do so using the DELETE statement. For example, assume
you want to remove Feist’s “The Reminder” from your list altogether:

DELETE FROM albums
WHERE album_name = 'The Reminder'
LIMIT 1

You start the statement with the DELETE FROM statement, then identify the table you want to

remove an entry from (albums). Next, you create a WHERE clause to create the condition you want to
match before you delete an entry (album_name = 'The Reminder'). And, just to be sure you don’t
accidentally delete your entire table, you add LIMIT 1 to the query, which means that only one entry will
be deleted, even if more than one entry matches the conditions.

When you click the Go button, phpMyAdmin pops up a confirmation box and asks you if you’re
sure you want to complete the command. This is your last chance to verify that your command has no
errors, such as a missing WHERE clause. This confirmation box pops up only when deleting information.

Opening a Connection
You need a method through which your PHP scripts can connect to MySQL in order to interact with the
database. You can establish this connection in any of several approaches:

• PHP’s MySQL Extension

• PHP’s MySQLi Extension

• PHP Data Objects (PDO)

Caution Due to potential security weaknesses in the MySQL Extension, developers are strongly encouraged to
use PDO or MySQLi when using MySQL 4.1.3 or later.

PHP’s MySQL Extension
The MySQL Extension is the original extension provided by PHP that allows developers to create PHP
applications that interact with MySQL databases earlier than version 4.1.3.

The MySQL Extension uses a procedural interface, which means that each action is an individual
function (see the code sample that follows). You can use the artists table described earlier as a basis for
writing a PHP script that retrieve all the artists’ names. Open test.php in Eclipse and enter the following code:

<?php
 // Open a MySQL connection
 $link = mysql_connect('localhost', 'root', '');
 if(!$link) {
 die('Connection failed: ' . mysql_error());
 }

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

110

 // Select the database to work with
 $db = mysql_select_db('test');
 if(!$db) {
 die('Selected database unavailable: ' . mysql_error());
 }

 // Create and execute a MySQL query
 $sql = "SELECT artist_name FROM artists";
 $result = mysql_query($sql);

 // Loop through the returned data and output it
 while($row = mysql_fetch_array($result)) {
 printf("Artist: %s
", $row['artist_name']);
 }

 // Free the memory associated with the query
 mysql_free_result($result);

 // Close the connection
 mysql_close($link);
?>

Navigating to http://localhost/simple_blog/test.php in your browser yields the following

result:

Artist: Bon Iver
Artist: Feist

As the immediately preceding example illustrates, each step in the process has a function
assigned to it:

mysql_connect(): Accepts the host, username, and password for a MySQL connection. You must
call this function before any interaction with the database can take place.

die(): This is an alias for the exit() command. It stops execution of a script after displaying an
optional message (passed as the function argument).

mysql_error(): If an error occurs in the MySQL database, this function displays that error; this is
helpful for debugging.

mysql_select_db(): Selects the database that the script will interact with.

mysql_query(): Executes a query to the database. This query can create, modify, return, or delete
table rows, as well as perform many other tasks.

mysql_fetch_array(): Converts the MySQL resource returned by mysql_query() into an array.

mysql_free_result():Frees the memory used by mysql_query() to maximize script performance.

mysql_close(): Closes the connection opened by mysql_connect().

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

111

The MySQL extension doesn’t support prepared statements (see the “Using Prepared
Statements” section later in this chapter), so it is susceptible to SQL injection, a potentially devastating
security issue in web applications. Malicious users can use SQL injection to extract sensitive information
from a database, or even go so far as to erase all the information in a given database.

You can minimize this risk by sanitizing all information that you want to insert into the
database. The MySQL extension provides a function for escaping data called
mysql_real_escape_string(), which escapes (inserts a backslash before) special characters. Additional
functions for sanitizing data, such as htmlentities() and strip_tags(), are available. However, some
risks exist even if you implement these safeguards.

The MySQLi Extension
The MySQL manual recommends that developers using MySQL 4.1.3 or later use the MySQLi extension.
There are many benefits to using MySQLi over the original MySQL extension, including MySQLi’s:

• Support for both object-oriented and procedural programming methods

• Support for multiple statements

• Enhanced debugging capabilities

• Support for prepared statements

Using Prepared Statements
The MySQLi and PDO extensions provide an extremely useful feature in prepared statements.

In a nutshell, prepared statements enable you to separate the data used in a SQL command
from the command itself. If you fail to separate these, a malicious user could potentially tamper with
your commands. Using a prepared statement means that all submitted data is completely escaped,
which eliminates the possibility of SQL injection. You can read more about this subject in Harrison Fisk’s
article on prepared statements at http://dev.mysql.com/tech-resources/articles/4.1/prepared-
statements.html.

A prepared statement works similarly to a regular MySQL statement, except that it uses a
placeholder (a question mark [?]) to represent data. You can make the best use of prepared statements
when use your user input in a query.

For instance, if you have a form on your site that asks what a user’s favorite color is, you could
use that input in a MySQL query via the $_POST superglobal:

$sql = "SELECT info FROM colors WHERE color = '$_POST[fav_color]'";

However, you aren’t performing any sanitization of this input, so a malicious user could

potentially exploit your form or harm your site using SQL injection. To avoid this, you can rewrite the
preceding statement as a prepared statement:

$sql = "SELECT info FROM colors WHERE color = ?";

The question mark acts as a placeholder, and it signifies to MySQL that anything passed to this

query is to be used only as a parameter for the current statement. This prevents a malicious user from
tricking MySQL into giving away information or damaging the database.

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

112

Using MySQLi
To use MySQLi, you establish a connection using an object-oriented interface. I’ll cover how to take
advantage of object-oriented programming (OOP) in the next chapter, as well as discuss the pros and
cons of OOP versus procedural programming.

The primary difference between OOP and procedural code is that an object can store
information, freeing you from having to pass variables explicitly from function to function.

Note MySQLi also provides a procedural interface to developers. See the PHP manual entry on MySQLi for more
information.

To familiarize yourself with MySQLi, you can rewrite the preceding example using MySQLi.
Modify test.php so it contains the following:

<?php
 // Open a MySQL connection
 $link = new mysqli('localhost', 'root', '', 'test');
 if(!$link) {
 die('Connection failed: ' . $link->error());
 }

 // Create and execute a MySQL query
 $sql = "SELECT artist_name FROM artists";
 $result = $link->query($sql);

 // Loop through the returned data and output it
 while($row = $result->fetch_assoc()) {
 printf("Artist: %s
", $row['artist_name']);
 }

 // Free the memory associated with the query
 $result->close();

 // Close the connection
 $link->close();
?>

Navigating to http://localhost/simple_blog/test.php in your browser yields the following

result:

Artist: Bon Iver
Artist: Feist

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

113

MySQLi works similarly to the MySQL extension, with one key exception: instead of providing
individual functions, developers using MySQLi have access to methods, or functions contained within
the MySQLi object. In the preceding code snippet, you instantiate your MySQLi object in the variable
$link and establish a connection with your host, username, password, and a database name.

To execute a query, you call the query() method and pass the variable containing your MySQL
statement. You call a method in OOP using the variable that contains the object, followed by an arrow
(->) and the name of the method you want to call. For example, this line from the previous code example
illustrates how to call a method in OOP:

$result = $link->query($sql);

The query() method returns a mysqli_result object, which has methods that allow you to

access the information returned by the query.
To access each returned entry in order, you set up a loop that uses the result of calling this line:

$result->fetch_assoc();

Next, you kick out the returned data, then destroy the returned data set by calling the close()

method on the $result object. Also, you close the MySQLi connection by calling the close() method on
$link, as well.

Using Prepared Statements with MySQLi
What really sets MySQLi apart from the MySQL extension is its ability to use prepared statements. If you
want to allow a user to select an artist that she wants to see albums from, you can create a form that
looks something like this:

<form method="post">
 <label for="artist">Select an Artist:</label>
 <select name="artist">
 <option value="1">Bon Iver</option>
 <option value="2">Feist</option>
 </select>
 <input type="submit" />
</form>

When the user selects an artist, the artist’s unique ID is passed to the processing script in the

$_POST['artist'] variable (review Chapter 3 for a refresher on $_POST), which allows you to change your
query based on user input.

In test.php, you can build a quick script that displays album names based on user input:

<?php
 if($_SERVER['REQUEST_METHOD']=='POST')
 {
 // Open a MySQL connection
 $link = new mysqli('localhost', 'root', '', 'test');

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

114

 if(!$link) {
 die('Connection failed: ' . $mysqli->error());
 }

 // Create and execute a MySQL query
 $sql = "SELECT album_name FROM albums WHERE artist_id=?";
 if($stmt = $link->prepare($sql))
 {
 $stmt->bind_param('i', $_POST['artist']);
 $stmt->execute();
 $stmt->bind_result($album);
 while($stmt->fetch()) {
 printf("Album: %s
", $album);
 }
 $stmt->close();
 }

 // Close the connection
 $link->close();
 }
 else {
?>

<form method="post">
 <label for="artist">Select an Artist:</label>
 <select name="artist">
 <option value="1">Bon Iver</option>
 <option value="2">Feist</option>
 </select>
 <input type="submit" />
</form>

<?php } // End else ?>

When a user submits the form, a new MySQLi object is created, and a query is created with a

placeholder for the artist_id in the WHERE clause. You can then call the prepare() method on your
MySQLi object ($link->prepare($sql)) and pass the query as a parameter.

With your statement ($stmt) prepared, you need to tell MySQL how to handle the user input
and insert it into the query. This is called binding parameters to the query, and you accomplish this by
calling the bind_param() method on the newly created $stmt, which is a MySQLi_STMT object.

Binding parameters requires a couple steps: begin by passing the type of the parameter, then
pass the parameter value.

MySQLi supports four data types:

• i: Integer (any whole number value)

• s: String (any combination of characters)

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

115

• d: Double (any floating point number)

• b: Blob (data is sent in packets that is used for storing images or other binary data)

You’re passing the artist’s ID, so you set the parameter type to i, then pass the value of
$_POST['artist'].

With the parameters bound, you can execute the statement using the execute() method.
After the query is executed, you need to specify variables to contain the returned results, which

you accomplish using the bind_result() method. For each column you’ve requested, you need to
provide a variable to contain it. In this example, you need to store the album name, which you
accomplish by supplying the $album variable.

Your script now knows where to store returned values, so you can set up a loop to run while
results still exist (as returned by the fetch() method). Inside the loop, you output each album name.

Finally, you destroy your resultset and close the connection by calling the close() method on
both your MySQLi_STMT and MySQLi objects; this frees the memory used by the query.

If you load your script by navigating to http://localhost/simple_blog/test.php and select Bon
Iver from the list, you see the following output:

Album: For Emma, Forever Ago
Album: Blood Bank – EP

PHP Data Objects (PDO)
PHP Data Objects, or PDO, is similar to MySQLi in that it is an object-oriented approach to handling
queries that supports prepared statements.

The main difference between MySQLi and PDO is that PDO is a database-access abstraction
layer. This means that PDO supports multiple database languages and provides a uniform set of
methods for handling most database interactions.

This is a great advantage for applications that need to support multiple database types, such as
PostgreSQL, Firebird, or Oracle. Changing from one database type to another generally requires that you
rewrite only a small amount of code, which enables developers to change your existing drivers for PDO
and continue with business as usual.

The downside to PDO is that some of the advanced features of MySQL are unavailable, such as
support for multiple statements. Another potential issue when using PDO is that it relies on the OOP
features of PHP5, which means that servers running PHP4 won’t be able to run scripts using PDO. This is
becoming less of an issue over time because few servers lack access to PHP5; however, it’s still
something you need to take into consideration when choosing your database access method.

Rewriting Your Example in PDO
You can use PDO to rewrite your prepared statement. In test.php, modify the code as follows:

<?php
 if($_SERVER['REQUEST_METHOD']=='POST')
 {
 // Open a MySQL connection
 $dbinfo = 'mysql:host=localhost;dbname=test';

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

116

 $user = 'root';
 $pass = '';
 $link = new PDO($dbinfo, $user, $pass);

 // Create and execute a MySQL query
 $sql = "SELECT album_name
 FROM albums
 WHERE artist_id=?";
 $stmt = $link->prepare($sql);
 if($stmt->execute(array($_POST['artist'])))
 {
 while($row = $stmt->fetch()) {
 printf("Album: %s
", $row['album_name']);
 }
 $stmt->closeCursor();
 }
 }
 else {
?>

<form method="post">
 <label for="artist">Select an Artist:</label>
 <select name="artist">
 <option value="1">Bon Iver</option>
 <option value="2">Feist</option>
 </select>
 <input type="submit" />
</form>

<?php } // End else ?>

The first step, opening the database connection, is a little different from the other two methods

you’ve learned about so far. This difference stems from the fact that PDO can support multiple database
types, which means you need to specify a driver to create the right type of connection.

First, you create a variable called $dbinfo that tells PDO to initiate itself using the MySQL driver
for the host localhost host and the test database. Next, you create two more variables, $user and $pass,
to contain your database username and password.

After you pen your connection, you form your query with a placeholder, pass it to the prepare()
method, and then pass the query to be prepared. This returns a PDOStatement object that you save in the
$stmt variable.

Next, you call the execute() method with an array containing the user-supplied artist ID,
$_POST['artist']. This is equivalent to calling both bind_param() and execute() with the MySQLi
extension.

After the statement has executed, you set up a loop to run while results still exist. Each result is
sent to the browser, and you free the memory using the closeCursor() method.

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

117

Running this script by loading http://localhost/simple_blog/test.php produces the following:

Album: For Emma, Forever Ago
Album: Blood Bank – EP

Note PDO is highly versatile, so I rely on it for most of this book’s examples. Feel free to substitute another
method, but be advised that code that interacts with the database will look differently if you do.

Table Structure and a Crash Course in Planning
As your PHP applications become more complicated, your app’s performance will start to play a key role
in development. MySQL is a potential performance killer in applications, creating bottlenecks that
prevent scripts from executing as quickly as you want them to.

Part of your role as a developer is to know the risks involved with MySQL queries and eliminate
as many performance issues as possible. The most common risks I’ll show you how to address in this
chapter include:

• Poor planning of database tables

• Requests for unnecessary data (using the shortcut selector [*])

Note Database architecture and optimization is a huge task; it’s actually a career in and of itself. This book
covers only the basics of this subject; however, knowing about the potential performance problems associated
with your databases is important because you might not always have a database architect available to you.

Planning Database Tables
Database tables are fairly simple, but interconnected tables can be a hindrance to your scripts’
performance if you don’t plan them properly. For example, a list of blog entries (entries) and a list of a
web site’s pages (pages) might look something like this (see Tables 4-3 and 4-4).

Table 4-3. The entries Table

t i t le textSample

Entry This is some text.

Entry Title This is more text.

Example Title A third entry.

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

118

Table 4-4. The pages Table

page_name type

Blog Multi

About Static

Contact Form

You might use another table (entry_pages) to link the entries to the page you want to display
them on (see Table 4-5).

Table 4-5. The entry_pages Table

page entry

Blog Sample Entry

Blog Entry Title

About Example Title

Unfortunately, you’re storing redundant data in this case, which is both unnecessary and
potentially harmful to your application’s performance. If you know you’re on the blog page, you can use
two queries to retrieve the entry data:

<?php
 // Initiate the PDO object
 $dbinfo = 'mysql:dbname=test;host=localhost';
 $user = 'root';
 $pass = '';
 try {
 $db = new PDO($dbinfo, $user, $pass);
 } catch(PDOException $e) {
 echo 'Connection failed: ', $e->getMessage();
 }

 // Creates the first query
 $sql = "SELECT entry
 FROM entry_pages
 WHERE page='Blog'";

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

119

 // Initialize the $entries variable in case there's no saved data
 $entries = NULL;

 // Retrieves the entries from the table
 foreach($db->query($sql) as $row) {
 $sql2 = "SELECT text
 FROM entries
 WHERE title='$row[entry]'";
 foreach($db->query($sql) as $row2) {
 $entries[] = array($row['title'], $row2['entry']);
 }
 }

 // Display the output
 print_r($entries);
?>

This code returns the following:

Array
(
 [0] => Array
 (
 [0] => Sample Entry
 [1] => This is some text.
)

 [1] => Array
 (
 [0] => Entry Title
 [1] => This is more text.
)
)

Note For the preceding code to work, you need to create the entry_pages table and populate it with the data
described in Table 4-5.

However, this approach is extremely inefficient because you’re retrieving redundant data from
the entry_pages and entries tables.

One way to avoid this problem is to add an additional column to tables containing an ID for
each row that will automatically increment as rows are added. This allows for less redundancy in data
storage. For example, assume you want to revisit your pages and entries by adding an ID column (see
Tables 4-6 and 4-7).

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

120

Table 4-6. The Revised pages Table

id page_name type

1 Blog Multi

2 About Static

3 Contact Form

Table 4-7. The Revised entries Table

id page_id t i t le text

1 1 Sample Entry This is some text.

2 1 Entry Title This is more text.

3 2 Example Entry This is a third entry.

Adding an ID column enables you to eliminate entry_pages altogether, which leaves you with
an easy way to cross-reference your tables. This means you can rewrite your script to retrieve entries for
a particular page far more efficiently:

<?php
 $dbinfo = 'mysql:dbname=test;host=localhost';
 $user = 'root';
 $pass = '';

 try {
 $db = new PDO($dbinfo, $user, $pass);
 } catch(PDOException $e) {
 echo 'Connection failed: ', $e->getMessage();
 }

 $sql = "SELECT title, text
 FROM entries
 WHERE page_id=1";
 foreach($db->query($sql) as $row) {
 $entries[] = array($row['title'], $row['text']);
 }

 print_r($entries);
?>

Download at WoweBook.Com

CHAPTER 4 WORKING WITH DATABASES

121

This code returns an identical result to your previous example, but takes only half as long to
execute because it executes only one query instead of the original two.

Note Database design is a highly specialized area of programming. You can learn more this subject by picking
up a copy of Beginning Database Design: From Novice to Professional by Clare Churcher (Apress, 2007).

The Shortcut Selector (*)
MySQL provides a shortcut selector (SELECT *) that enables developers to select all data contained
within a table. At first glance, this seems like a convenient way to retrieve data from our tables easily.
However, the shortcut selector poses a threat to the performance of your scripts by requesting data that
isn’t needed, which consumes memory unnecessarily.

To avoid wasting resources, it’s considered best practice to request all information required by
your scripts explicitly. For example, you shouldn’t use this approach if you can help it:

SELECT * FROM entries

Instead, you should write code that goes something like this:

SELECT title, text, author FROM entries

This ensures that information you won’t need for a particular script isn’t loaded and thus saves

memory. This approach has the added benefit of simplifying your code maintenance because you won’t
have to remember which columns are returned from table if the code needs to be updated in the
future—that information is readily available.

Summary
In this chapter, you’ve learned the basics of MySQL statements, as well as how to interact with the
database from your PHP scripts.

In the next chapter, you’ll learn how to begin building your blog by creating a basic entry
manager that will allows you to create, modify, and delete entries, as well as display them on a public
page.

Recommended Reading
You might find the following links useful for drilling down in more detail on several of the topics covered
in this chapter.

• The MySQL Extension: http://us2.php.net/manual/en/book.mysql.php

• The MySQLi Extension: http://us3.php.net/mysqli

• PHP Data Objects (PDO): http://us.php.net/manual/en/book.pdo.php

Download at WoweBook.Com

Download at WoweBook.Com

P A R T 2

Building Your Blog

Now that you have a grasp of the basics of PHP development, including how it works and

interacts with a MySQL database, you're ready to create your blog. In this section, you will

learn how to create and process a form that saves blog entries to the database. You'll also

learn how to allow multiple pages with your entry manager, as well as how to edit entries

and add photos.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 5

125

Bui lding the Entry Manager

At this point, you know enough to start building your blog! In this chapter, I’ll walk you through how to
build the backbone of your blogging application. The pieces you’ll build include:

• A form to accept entry input

• A script to handle input from the form

• A script to save the entry in the database

• A script to retrieve the entry from the database

• An HTML document to display the retrieved information

By the end of this chapter, you will have a very basic, but fully functional blogging system.

Planning the Entry Database Table
One of the most important steps with any new application is the planning of the tables that will hold
data. This has a huge impact on the ease of scaling our application later. Scaling is the expansion of an
application to handle more information and/or users, and it can be a tremendous pain if we don’t look
ahead when starting a new project.

At first, your blog needs to store several types of entry information to function:

• Unique ID

• Entry title

• Entry text

• Date created

Using a unique ID for each entry in the entry table enables you to access the information
contained with just a number. This is extremely helpful for data access, especially if this dataset changes
in the future (if you add an “imageURL” column to the table, for example).

The first step is to determine the fields you will need for the entries table. Your table needs to
define what type of information is stored in each column, so let’s take a quick look at the information
each column needs to store:

• id: A unique number identifying the entry. This will be a positive integer, and it makes sense for
this number to increment automatically because that ensures the number is unique. You will
also use this as the primary method for accessing an entry, so it will double as the primary key for
the table.

• title: An alphanumeric string that should be relatively short. You’ll limit the string to 150
characters.

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

126

• entry: An alphanumeric string of indeterminate length. You won’t limit the length of this field
(within reason).

• created: The timestamp generated automatically at the original creation date of the entry. You’ll
use this to sort your entries chronologically, as well as for letting tour users know when an entry
was posted originally.

Now it’s time to create the database. Do this by navigating to http://localhost/phpmyadmin/
and creating a database called simple_blog using the “Create new database” field on the homepage (see
Figure 5-1).

Figure 5-1. Creating a new database in phpMyAdmin

The new database is created after you click “Create.” Next, you’re shown a confirmation
message and given options for interacting with your new database (see Figure 5-2).

Figure 5-2. The simple_blog database confirmation screen and options

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

127

The next step is to write the code that creates your entries table:

CREATE TABLE entries
(
 id INT PRIMARY KEY AUTO_INCREMENT,
 title VARCHAR(150),
 entry TEXT,
 created TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)

To create the entries table, click the SQL tab at the top of the page and enter the command that

creates your table (see Figure 5-3).

Figure 5-3. Creating the entries table in phpMyAdmin

After you click the Go button at the bottom right of the SQL text field, the entries table shows
up in the left-hand column of the screen. You can see a table’s structure by clicking the table you’re
interested in (see Figure 5-4).

Figure 5-4. The structure of the entries table in phpMyAdmin

At this point, you have created the entries table, and you’re ready to create your input form.

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

128

Creating the Entry Input Form
Storing entries in your database requires that you allow site administrators to enter data via a web form.
Before you can do this, you need to identify which fields the form must include.

Two of your fields are populated automatically when an entry is created: the id field will
generate an automatically incremented number to identify the entry, and the created field automatically
stores the timestamp for the entry’s creation date. All you need to include are fields to enter the title
and entry fields.

Your title field has a maximum length of 150 characters, so you use an input tag with a
maxlength attribute for this. The entry field can be as long as you want it to, so create a textarea tag.

In Eclipse, create a new file in the simple_blog project called admin.php; this file should end up
saved in the xampp folder at /xampp/htdocs/simple_blog/admin.php).

In the new file, add the following HTML:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <title> Simple Blog </title>
</head>

<body>
 <h1> Simple Blog Application </h1>

 <form method="post" action="inc/update.inc.php">
 <fieldset>
 <legend>New Entry Submission</legend>
 <label>Title
 <input type="text" name="title" maxlength="150" />
 </label>
 <label>Entry
 <textarea name="entry" cols="45" rows="10"></textarea>
 </label>
 <input type="submit" name="submit" value="Save Entry" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
 </form>
</body>

</html>

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

129

You can view the form you’ve created by navigating to http://localhost/simple_blog/
admin.php in your browser (see Figure 5-5).

Figure 5-5. The entry creation form

This is not a book about Cascading Style Sheets (CSS), a language used to describe the
presentation of HTML- and XML-based documents, but you’ll take advantage of CSS to make your form
easy-to-use. Begin by creating a new folder in the simple_blog project called css. Next, create a file
called default.css in the css folder (full path: /xampp/htdocs/simple_blog/css/default.css), then add
the following style information to your new file:

h1 {
 width:380px;
 margin:0 auto 20px;
 padding:0;
 font-family:helvetica, sans-serif;
}
ul#menu {
 width:350px;
 margin:0 auto;
 padding:0;
 list-style:none;
}
ul#menu > li {
 display:inline;
}
ul#menu > li > a {
 padding:6px;
 color:#FFF;
 background:#333;
 font-family:helvetica, sans-serif;
 text-decoration:none;
}

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

130

#control_panel, #entries, fieldset {
 width:350px;
 margin:0 auto;
 padding:10px;
 font-family:helvetica, sans-serif;
}
#control_panel {
 width:350px;
 margin:20px auto 0;
 padding:4px;
 font-size:80%;
 text-align:center;
 background:#DDD;
 border-top:1px dotted #000;
 border-bottom:1px dotted #000;
}
input, textarea {
 font-size:95%;
 font-family:helvetica, sans-serif;
 display:block;
 width:340px;
 margin:0 auto 10px;
 padding:4px;
 border:1px solid #333;
}
input[type=submit] {
 display:inline;
 width:auto;
}
input[type=hidden] {
 display:none;
}
.backlink {
 border:0;
 text-align:right;
}
#comment-form > fieldset {
 width:330px;
 border:1px solid #000;
}
#comment-form input[type=text],
#comment-form textarea {
 width:320px;
}

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

131

.error {
 color:#F00;
 text-align:center;
 font-weight:bold;
 margin:5px 0 15px;
}
.comment {
 padding:0 0 10px;
}
.comment > span,
.comment > .admin {
 display:block;
 font-size:80%;
 margin:0 0 10px;
 padding:4px;
 text-align:right;
 background:#DDD;
 border-bottom:1px dotted #000;
}
.comment > .admin {
 background:transparent;
 border:0;
}
.comment > span > strong {
 float:left;
}

I won't go into the specifics of how this works, but this code will provide styling information for

all the components I'll be building in this book. To apply these styles to your form, you need to link to
the CSS file in the head section of admin.php. Do this by adding the code highlighted in bold to admin.php:

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <link rel="stylesheet" href="/css/default.css" type="text/css" />
 <title> Simple Blog </title>
</head>

Once you save the linked stylesheet in admin.php, you can reload admin.php to see the cleaned

up form (see Figure 5-6).

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

132

Note You can learn more about CSS by checking out the book, Beginning CSS Web Development: From Novice
to Professional, by Simon Collison (Apress, 2006).

Figure 5-6. The input-manager form styled with CSS

Create a Script to Process the Form Input
Your entry form is set to submit entered values using the POST method to a file located at
inc/update.inc.php. The next step is to create the file that will accept the input from the form and save
entries to the database.

First, you need to create the inc folder. You create a folder for this script because it won’t be
accessed directly by a browser.

Tip To keep our project organized, you can separate scripts that process information from scripts that display it.
This makes maintenance a little easier because it groups similar files.

In your simple_blog project, create the inc folder, then create a file called update.inc.php. This
script will have logic that determines whether input should be saved; it will also have the ability to save
entries to the entries table.

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

133

Tip Be sure to save files that aren’t accessed directly by the browser with a different file extension, such as
.inc.php; this helps you identify files that should not be public easily.

It is critical that you plan your script that processes form input properly; a good way to do that
is to break the process into small, discrete steps:

1. Verify that information was submitted via the POST method

2. Verify that the Save Entry button was pressed

3. Verify that both the title and entry form fields were filled out

4. Connect to the database

5. Formulate a MySQL query to store the entry data

6. Sanitize the input and store it in the entries table

7. Obtain the unique ID for the newly created entry

8. Send the user to the newly created entry

Performing the Initial Verification
You can combine the first three steps into one conditional statement. All conditions are required, so you
can use the && operator to require that all conditions are true. The conditional statement looks like this:

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry'
 && !empty($_POST['title'])
 && !empty($_POST['entry']))
{
 // Continue processing information . . .
}

// If both conditions aren't met, sends the user back to the main page
else
{
 header('Location: ../admin.php');
 exit;
}

?>

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

134

You use the $_SERVER superglobal to determine whether the script was accessed using the POST
method. Making this check helps you ensure that the page wasn’t accessed by mistake. You use the
$_POST superglobal to access the value of the button pressed to submit the form. If the pressed button
wasn’t the “Save Entry” button, the form isn’t submitted. This makes it possible for the Cancel button to
send the user back to the main page without saving any of the input from the form. Finally, you use the
$_POST superglobal to verify that the user filled out the title and entry fields of the form; performing this
check helps you ensure that you don’t store any incomplete entries in the database.

If any of these conditions isn’t met, the user is sent back to the main page, and your script
performs no further processing. This means that any information submitted won’t be saved to the
database.

Connect to the Database
If all conditions were met, the script can proceed to Step 4, where you save the information to your
database. You need to open a connection to the database before you can save to it; you open the
connection using PHP Data Objects (PDO).

Keeping Database Credentials Separate
It’s a good habit to keep database credentials and other site-wide information separate from the rest of
your scripts. The reason: This allows you to change an entire project’s configuration quickly and easily
by altering a single file.

You might wonder why skipping this step could matter. Imagine that you build a project that
has dozens of scripts, all of which need to contact the database for some reason or another. Now
imagine that the database is moved to a new server, and the login credentials need to be updated. If you
did not keep site-wide information separate from the rest of your scripts in this scenario, you would be
required to open every single file in your project to swap in the new login information—this would be a
tedious and potentially time-consuming task.

If, however, you store all the login credentials and other scripts that access the database in one
file, you’re able to move the site to a new database by altering a single file.

You store your database credentials in a file you create and store in the inc folder called
db.inc.php (full path: /xampp/htdocs/simple_blog/inc/db.inc.php). You can define the credentials as
constants with the following code:

<?php

define('DB_INFO', 'mysql:host=localhost;dbname=simple_blog');
define('DB_USER', 'root');
define('DB_PASS', '');

?>

All that remains is to include db.inc.php in any file that needs database access, and you have

access to your credentials.

Connecting to the Database in update.inc.php
Next, add the bolded lines to update.inc.php to include your credentials and open a connection to the
database:

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

135

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry')
{
 // Include database credentials and connect to the database

 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Continue processing data...
}

// If both conditions aren't met, send the user back to the main page
else
{
 header('Location: ../admin.php');
 exit;
}

?>

Save the Entry to the Database
When you’re sure that all the necessary conditions have been met and a connection to the database is
open, you’re ready to proceed with Steps 5 and 6: formulating a MySQL query to store the entry data and
then sanitizing the input and storing it in the entries table. To accomplish these tasks, you need to
create a prepared statement. Begin by creating a query template, which you use to save the title and
entry fields entered to the title and entry columns in the entries table. The query looks like this:

INSERT INTO entries (title, entry) VALUES (?, ?)

You store this query in a variable that you pass to PDO’s prepare() method. With your query

prepared, you can execute the statement using the supplied form information, confident that the input
is being escaped properly.

Add the code in bold to update.inc.php:

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry')
{
 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

136

 // Save the entry into the database
 $sql = "INSERT INTO entries (title, entry) VALUES (?, ?)";
 $stmt = $db->prepare($sql);

 $stmt->execute(array($title, $entry));
 $stmt->closeCursor();

 // Continue processing data...
}

// If both conditions aren't met, sends the user back to the main page
else
{
 header('Location: ../admin.php');
 exit;
}

?>

The execute() method saves the information into the entries table. Finally, call the

closeCursor() method to end the query.

Retrieve the Entry’s Unique ID and Display the Entry to the User
You’ve saved your new entry successfully; the final pair of steps is to obtain the unique ID of the new
entry and enable the user to view his new entry.

To accomplish this, you need the ID generated for the entry you just saved. Fortunately, MySQL
provides a built-in function for tackling the first part of this; you can use the LAST_INSERT_ID() function
to structure a query that retrieves the unique ID of the new entry:

SELECT LAST_INSERT_ID()

When you access the results of the query using the fetch() method, you’re given an array in

which the first index (0) contains the ID of the last entry inserted into the database.
Once you have the ID, you want to send the user to the publicly displayed page that contains his

entry, which you call index.php. To do this, you need to insert the id of the entry you want to display in a
URL:

http://localhost/simple_blog/index.php?id=1

You can shorten the URL like this:

http://localhost/simple_blog/?id=1

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

137

Tip This script uses relative paths to access the publicly displayed site. This approach allows the scripts to exist
in any directory, as long as they remain in the same relationship to each other within the file structure. The relative
path ../ means, in plain English: “Go up one folder.” In this case, the relative path takes you out of the inc folder
and back into the simple_blog folder.

Now add the following code to update.inc.php to retrieve the entry’s ID and direct the user to
the entry’s public display:

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry')
{
 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Save the entry into the database
 $sql = "INSERT INTO entries (title, entry) VALUES (?, ?)";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($_POST['title'], $_POST['entry']));
 $stmt->closeCursor();

 // Get the ID of the entry we just saved
 $id_obj = $db->query("SELECT LAST_INSERT_ID()");
 $id = $id_obj->fetch();
 $id_obj->closeCursor();

 // Send the user to the new entry
 header('Location: ../admin.php?id='.$id[0]);
 exit;
}

// If both conditions aren't met, sends the user back to the main page
else
{
 header('Location: ../admin.php');
 exit;
}

?>

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

138

Note You haven’t created index.php yet, so this code redirects to admin.php. You’ll change this when you
create index.php in the next step.

No matter how the script is accessed, the user will receive a resolution: either the script
executes successfully and the user is shown her new entry, or the script takes her back out to the main
display and nothing is saved.

You can test the new system by adding three dummy entries to the system:

• Title: First Entry; Entry: This is some text.

• Title: Second Entry; Entry: More text and a link.

• Title: Third Entry; Entry: A third entry in the database.

These entries will give you some test data to work with when you move on to the next step,
which is to build the script that retrieves entries from the database and displays them.

Displaying the Saved Entries
As I stated earlier, you will call your script to display the entries index.php, and you will store it in the
root of the simple_blog project (full path: /xampp/htdocs/simple_blog/index.php). Your first step is to
put together the structure of the page that will display the information.
Add the following HTML to index.php:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <link rel="stylesheet" href="/css/default.css" type="text/css" />
 <title> Simple Blog </title>
</head>

<body>

 <h1> Simple Blog Application </h1>

 <div id="entries">

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

139

<?php

 // Format the entries from the database

?>
 <p class="backlink">
 Post a New Entry
 </p>

 </div>

</body>

</html>

This code creates a valid HTML page, complete with a link to the CSS file you created earlier this

chapter. It also creates a page heading (“Simple Blog Application”), a container for the entries, and a link
to admin.php, which you can use to create additional entries.

Planning Our Scripts
You want your script to scale to your future needs, so now is a good time to explore best practices,
organizational techniques, and other ways to eliminate unnecessary rewrites as you modify your code
going forward. This might seem like a bit of a departure from the simple blogging application, but taking
a moment to learn how to separate your code properly now can save you a lot of time in the future (as
you’ll see in upcoming chapters).

Separation of Logic in Programming
When you write scripts, it’s important to know what your script is doing and why. This helps you
separate different parts of your script into smaller chunks with specific purposes, which simplifies the
organization, maintenance, and readability of your applicatoin’s code.

To separate your code, you need to identify the different categories that scripts can fall into. In
general, there are three main types of coding logic:

• Database logic

• Business logic

• Presentation logic

Database Logic
Database logic refers to any code that connects to the database, whether that code creates, modifies, or
retrieves data.

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

140

Business Logic
Business logic is a much broader area of coding, and it includes any script that processes data. Business
logic typically exists between the database and presentation logic, and it serves to modify the data in
some capacity that doesn’t involve specific output properties. For example, you might use business logic
to replace words in some text, convert a timestamp to a date, and so on.

Business logic represents a large area of coding, so it can be tough to describe it precisely.
However, it’s generally safe to assume that if a given bit of code doesn’t access the database or generate
the presentation (such as HTML markup), it’s probably performing business logic.

Presentation Logic
Presentation logic is the part of a script that displays output to a user. This code can include generating
HTML markup, XML output, or any other format that allows a user to access the information a script is
working with.

Organizational Philosophies and Programming Patterns
There isn’t a hard and fast “right way” to separate logic in an application, and the methods a developer
chooses for a given project are determined largely by her preferences. However, there are several
popular programming patterns, or general philosophies, you can choose from when deciding how to
structure an application.

A couple of the more popular patterns are the Multitier Architecture pattern and the Model-
View-Controller (MVC) pattern—you can learn more about the MVC pattern at
http://en.wikipedia.org/wiki/Model-View-Controller. The simple blog application relies on the
Multitier Architecture pattern—you can more about the basics of this pattern in a great article on
Wikipedia at http://en.wikipedia.org/wiki/Multitier_architecture.

Mapping Your Functions to Output Saved Entries
Planning the necessary steps of your script can help you identify the different types of logic involved,
enabling you to group different steps into their respective functional categories.

Your script needs to allow users to see a list of entry titles if no entry is selected; it also needs to
let users see a full entry if an entry ID is supplied. To accomplish this, your script needs to accomplish
several tasks:

• Connect to the database

• Retrieve all entry titles and IDs if no entry ID was supplied

• Retrieve an entry title and entry if an ID was supplied

• Sanitize the data to prepare it for display

• Present a list of linked entry titles if no entry ID was supplied

• Present the entry title and entry if an ID was supplied

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

141

If you look at what each step is doing, you can assign each step to a database, business, or
presentation layer. For example, a simple breakdown of tasks might look like this:

Database layer

• Connect to the database

• Retrieve all entry titles and IDs if no entry ID was supplied

• Retrieve an entry title and entry if an ID was supplied

Business layer

• Sanitize the data to prepare it for display

Presentation layer

• Present a list of linked entry titles if no entry ID was supplied

• Present the entry title and entry if an ID was supplied

A good way to approach this problem is to separate your tasks into a database function called
retrieveEntries(), a business function called sanitizeData(), and the presentation logic, which you
will store in index.php.

You can reinforce these logical separations by defining your database and business functions in
a separate file, which you’ll call functions.inc.php and create in the inc folder. This makes your
functions accessible to other pages in your application, should that become necessary in the future.

Writing the Database Functions
Begin by creating the file that will contain your functions. In the inc folder, create a new file called
functions.inc.php (full path: /xampp/htdocs/simple_blog/inc/functions.inc.php).

In your new file, define tour database function, retrieveEntries(). This function accepts two
parameters: your database connection and an optional parameter for the entry ID. Your defined
function should look like this:

<?php

function retrieveEntries($db, $id=NULL)
{
 // Get entries from database
}

?>

You declare the default value for $id to be NULL; doing this means you can omit it without

causing an error. Before you design your database query, you must determine whether an entry ID was
passed; if so, you need to retrieve different information. The default value is NULL, so you simply need to
check whether $id is NULL. Do this by adding the code in bold to retrieveEntries():

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

142

<?php

function retrieveEntries($db, $id=NULL)
{
 /*

 * If an entry ID was supplied, load the associated entry
 */
 if(isset($id))
 {
 // Load specified entry
 }

 /*
 * If no entry ID was supplied, load all entry titles
 */
 else

 {
 // Load all entry titles
 }

 // Return loaded data
}

?>

Your next step is to write a script that executes if no entry ID is supplied. Your database query

needs to retrieve two pieces of information from the entries table: the id and title fields. You need to
store this information so it can be returned from the retrieve_entries() function and used by your
business and presentation layers. A function can only return one variable, so you need to store the entry
information in an array.

The query to retrieve the necessary information looks like this:

SELECT id, title
FROM entries
ORDER BY created DESC

There aren’t any user-supplied parameters in the query, so you don’t need to prepare the

statement. This means you can execute the query immediately and loop through the results, storing the
id and title in a multidimensional array.

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

143

Add the lines in bold to functions.inc.php:

<?php

function retrieveEntries($db, $id=NULL)
{
 /*
 * If an entry ID was supplied, load the associated entry
 */
 if(isset($id))
 {
 // Load specified entry
 }

 /*
 * If no entry ID was supplied, load all entry titles
 */
 else
 {
 $sql = "SELECT id, title
 FROM entries

 ORDER BY created DESC";
 // Loop through returned results and store as an array
 foreach($db->query($sql) as $row) {
 $e[] = array(
 'id' => $row['id'],

 'title' => $row['title']
);
 }

 // Set the fulldisp flag for multiple entries

 $fulldisp = 0;
 }

 // Return loaded data
}

?>

If no entry ID is supplied, your script now loads all entry titles and IDs into an array called $e;

your script also sets a flag called $fulldisp to 0, which tells your presentation layer that the supplied
information is not for full display.

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

144

As a safeguard, you should set some default values in the event that no entries come back from
the entries table. To do this, you check whether the $e variable is an array. If it isn’t, you know that no
entries were returned, and you can create a default entry in $e and set the $fulldisp flag to 1, which
signifies that your default entry should be displayed as a full entry.

Again, add the code highlighted in bold code to functions.inc.php:

<?php

function retrieveEntries($db, $id=NULL)
{
 /*
 * If an entry ID was supplied, load the associated entry
 */
 if(isset($id))
 {
 // Load specified entry
 }

 /*
 * If no entry ID was supplied, load all entry titles
 */
 else
 {
 $sql = "SELECT id, title
 FROM entries
 ORDER BY created DESC";

 // Loop through returned results and store as an array
 foreach($db->query($sql) as $row) {
 $e[] = array(
 'id' => $row['id'],
 'title' => $row['title']
);
 }

 // Set the fulldisp flag for multiple entries
 $fulldisp = 0;

 /*
 * If no entries were returned, display a default
 * message and set the fulldisp flag to display a
 * single entry
 */

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

145

 if(!is_array($e))
 {
 $fulldisp = 1;

 $e = array(
 'title' => 'No Entries Yet',
 'entry' => 'Post an entry!'
);
 }
 }

 // Return loaded data
}

?>

You can now run your function safely without an error, so long as no entry ID is supplied. Next,

you need to modify the script so it retrieves an entry if an ID is supplied.
This code needs to use the supplied ID in a query to retrieve the associated entry title and

entry fields. As before, you store the returned data in an array called $e.
Add the code in bold to functions.inc.php:

<?php

function retrieveEntries($db, $id=NULL)
{
 /*
 * If an entry ID was supplied, load the associated entry
 */
 if(isset($id))
 {
 $sql = "SELECT title, entry
 FROM entries

 WHERE id=?
 LIMIT 1";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($_GET['id']));

 // Save the returned entry array
 $e = $stmt->fetch();

 // Set the fulldisp flag for a single entry
 $fulldisp = 1;
 }

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

146

 /*
 * If no entry ID was supplied, load all entry titles
 */
 else
 {
 $sql = "SELECT id, title
 FROM entries
 ORDER BY created DESC";

 // Loop through returned results and store as an array
 foreach($db->query($sql) as $row) {
 $e[] = array(
 'id' => $row['id'],
 'title' => $row['title']
);
 }

 // Set the fulldisp flag for multiple entries
 $fulldisp = 0;

 /*
 * If no entries were returned, display a default
 * message and set the fulldisp flag to display a
 * single entry
 */
 if(!is_array($e))
 {
 $fulldisp = 1;
 $e = array(
 'title' => 'No Entries Yet',
 'entry' => 'Post an entry!'
);
 }
 }

 // Return loaded data
}

?>

At this point, your function has two variables: $e and $fulldisp. Both variables must be

returned from the function for further processing; however, a function can return only one value, so you
need to somehow combine these variables into a single variable.

You do this using a function called array_push(), which adds a value to the end of an array.
Using this function, you can add the value of $fulldisp to the end of $e and return $e.

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

147

You can accomplish this by adding the code in bold to functions.inc.php:

<?php

function retrieveEntries($db, $id=NULL)
{
 /*
 * If an entry ID was supplied, load the associated entry
 */
 if(isset($id))
 {
 $sql = "SELECT title, entry
 FROM entries
 WHERE id=?
 LIMIT 1";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($_GET['id']));

 // Save the returned entry array
 $e = $stmt->fetch();

 // Set the fulldisp flag for a single entry
 $fulldisp = 1;
 }

 /*
 * If no entry ID was supplied, load all entry titles
 */
 else
 {
 $sql = "SELECT id, title
 FROM entries
 ORDER BY created DESC";

 // Loop through returned results and store as an array
 foreach($db->query($sql) as $row) {
 $e[] = array(
 'id' => $row['id'],
 'title' => $row['title']
);
 }

 // Set the fulldisp flag for multiple entries
 $fulldisp = 0;

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

148

 /*
 * If no entries were returned, display a default
 * message and set the fulldisp flag to display a
 * single entry
 */
 if(!is_array($e))
 {
 $fulldisp = 1;
 $e = array(
 'title' => 'No Entries Yet',
 'entry' => 'Post an entry!'
);
 }
 }

 // Add the $fulldisp flag to the end of the array

 array_push($e, $fulldisp);

 return $e;
}

?>

Writing the Business Function
At this point in your application, the business layer is pretty simple. All you need to do at this point is
escape your output to avoid potential issues. You can accomplish this by writing a function called
sanitizeData(), which you declare right below retrieveEntries() in functions.inc.php.

This function accepts one parameter, $data, and performs basic sanitization using the
strip_tags() function. Sanitizing the function removes all HTML from a string unless a tag is specifically
whitelisted, or placed in a collection of allowed tags, in strip_tags() second parameter.

The data you pass to sanitizeData() is potentially a mixture of both array and string data, so
you need to check whether $data is an array before you process any data—doing this can help you avoid
any parsing errors.

If $data isn’t an array, you use strip_tags() to eliminate all HTML tags except the <a> tag; this
enables your entries to contain links.

If $data is an array, you use the array_map() function to call sanitizeData() recursively on each
element in the array.

Recursive Functions
In some cases, it becomes necessary to call a function from within itself. This technique is known as a
recursive function call, and it has a number of useful applications. In this instance, you use recursion to
ensure that every element in an array is sanitized, no matter how deep your array goes. In other words,
the first element contains an array where its first element is another array, and so on. Recursion allows
your function to be called repeatedly until you reach the bottom of the array.

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

149

Sanitizing the Data
The next step is to declare sanitizeData() and write the code to perform the recursive technique just
described. Add this code to functions.inc.php, just below retrieveEntries():

function sanitizeData($data)
{
 // If $data is not an array, run strip_tags()
 if(!is_array($data))
 {
 // Remove all tags except <a> tags
 return strip_tags($data, "<a>");
 }

 // If $data is an array, process each element
 else
 {
 // Call sanitizeData recursively for each array element
 return array_map('sanitizeData', $data);
 }
}

Writing the Presentation Code
Your last step in this phase of creating the blog is to use the information retrieved and formatted by your
database and business layers to generate HTML markup and display the entries.

You will write this code in index.php inline with the HTML markup. The reason for this
approach: This code is strictly for inserting your processed data into HTML markup.

Begin by including both db.inc.php and functions.inc.php in index.php. At the very top of
index.php, add the following code:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

?>

Next, you need to open a connection to the database. You also need to check whether an entry

ID was passed in the URL.

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

150

Note Passing entry IDs in the URL (i.e., http://localhost/simple_blog/??id=1 is a popular and
straightforward way of using one page to display different entries. You accomplish this in PHP using the $_GET
superglobal.

Now add the bold lines to index.php:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection

 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Determine if an entry ID was passed in the URL
 $id = (isset($_GET['id'])) ? (int) $_GET['id'] : NULL;

?>

So far, you’ve determined whether an ID is set using the ternary operator, which allows you to

compress an if statement into one line. Translated into plain English, the previous code snippet would
read like this: “if $_GET['id'] is set to some value, save its value as an integer in $id, or else set the value
of $id to NULL.”

Next, you need to load the entries from the database. Do this by calling your retrieveEntries()
function and passing it your database connection ($db) and the ID you collected ($id) as parameters.
Now add the lines in bold to index.php:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

151

 // Determine if an entry ID was passed in the URL
 $id = (isset($_GET['id'])) ? (int) $_GET['id'] : NULL;

 // Load the entries

 $e = retrieveEntries($db, $id);

?>

The appropriate entries for the page are stored in the $e array and are ready to be displayed.

You know that the last element of the array contains a flag telling you whether a full entry is stored, so
your next step is to pop the last element off the array and store it in a variable ($fulldisp) that you’ll use
in just a moment.

Also, you need to sanitize the entry data, which we do by calling sanitizeData() and passing $e
as the parameter. Next, add the lines in bold to index.php:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Determine if an entry ID was passed in the URL
 $id = (isset($_GET['id'])) ? (int) $_GET['id'] : NULL;

 // Load the entries
 $e = retrieveEntries($db, $id);

 // Get the fulldisp flag and remove it from the array

 $fulldisp = array_pop($e);

 // Sanitize the entry data
 $e = sanitizeData($e);

?>

At this point, you have a flag to let you know whether you’re displaying a full entry or a list of

entry titles ($fulldisp), as well as an array of information to insert into HTML markup ($e).
To create the output, you need to determine whether the flag is set to 1, which would signify a

full entry. If so, you insert the entry title into an <h2> tag and place the entry in a <p> tag.

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

152

In index.php, in the middle of the page below <div id="entries">, add the following lines of
bold code:

 <div id="entries">

<?php

// If the full display flag is set, show the entry
if($fulldisp==1)
{

?>

 <h2> <?php echo $e['title'] ?> </h2>
 <p> <?php echo $e['entry'] ?> </p>
 <p class="backlink">

 Back to Latest Entries
 </p>

<?php

} // End the if statement

?>

 <p class="backlink">
 Post a New Entry
 </p>

 </div>

Navigating to the http://localhost/simple_blog/?id=1 address enables you to see the first

entry (see Figure 5-7).

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

153

Figure 5-7. The first entry loaded using a variable passed in the URL

Next, you need to determine how you should display your list of entry titles. Ideally, you want to
show the title as a link that takes the user to view the full entry.

This list of links is displayed if the $fulldisp flag is set to 0, so add an else to the conditional
statement that checks whether $fulldisp is set to 1. Inside the else statement, you need to create a loop
to process each paired ID and title together.

Just after the if statement, add the bold lines of code to index.php:

<?php

} // End the if statement

// If the full display flag is 0, format linked entry titles
else
{
 // Loop through each entry

 foreach($e as $entry) {

?>

 <p>
 <a href="?id=<?php echo $entry['id'] ?>">
 <?php echo $entry['title'] ?>

 </p>

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

154

<?php

 } // End the foreach loop
} // End the else

?>

 <p class="backlink">
 Post a New Entry
 </p>

 </div>

Now, navigate to http://localhost/simple_blog/, and you should see the title of each entry

listed as a link(see Figure 5-8). Clicking any of the links takes you to the associated entry.

Figure 5-8. The title of each entry is listed as a link

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

155

Fix the Redirect
Now that index.php exists, you want to be taken to your new entries after they are submitted. To do this,
you need to change the address of the header() calls to take the user to index.php. Change the code in
bold in update.inc.php to make this happen:

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry')
{
 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Save the entry into the database
 $sql = "INSERT INTO entries (title, entry) VALUES (?, ?)";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($_POST['title'], $_POST['entry']));
 $stmt->closeCursor();

 // Get the ID of the entry we just saved
 $id_obj = $db->query("SELECT LAST_INSERT_ID()");
 $id = $id_obj->fetch();
 $id_obj->closeCursor();

 // Send the user to the new entry

 header('Location: ../?id='.$id[0]);
 exit;
}

// If both conditions aren't met, sends the user back to the main page
else
{

 header('Location: ../');
 exit;
}

?>

Download at WoweBook.Com

CHAPTER 5 BUILDING THE ENTRY MANAGER

156

Summary
You have now created a blog in the basic sense! Basic techniques you learned in this chapter included:

• How to use a web form to create and save entries in the database

• How to retrieve and display entries based on variables passed in the URL

As you continue on, you’ll add several cool features to the blog, including a formatted date,
authoring information, and images. In the next chapter, you’ll learn how to make your blog support
multiple pages, which in turn will enable you to build an “About the Author” page.

Download at WoweBook.Com

C H A P T E R 6

157

Adding Support for Mult ip le
Pages

So far you’ve created an extremely basic blog. But what good is a blog if a user can’t find out more about
its author?

In this chapter, you’ll learn how to modify your application to support multiple pages, so you
can add an “About the Author” page. To do this requires that you learn how to accomplish each of the
following steps:

• Add a page column to the entries table

• Modify functions to use a page as part of the WHERE clause in your MySQL query

• Add a hidden input to the form on admin.php to store the page

• Modify update.inc.php to save page associations in the database

• Use an .htaccess file to create friendly URLs

• Add a menu

• Modify display options for the “About the Author” and “Blog” pages

By the end of this chapter, your blog will have two pages: one will support multiple entries,
while the other will support only a single entry.

Add a page Column to the entries Table
Your first task is learning to identify what entries belong on what page. Essentially, you need to add a
page identifier. This could be a number or a string. Your application is pretty simple, so you can just use
the name of the page as your identifier.

To add this to your entries, you need to get back into your database controls, located at
http://localhost/phpmyadmin. Open the simple_blog database, then the entries table. You need to add
a column called page to the entries table, which will hold the name of the page to which each entry
belongs.

This column cannot be blank, or the entries will get lost. To avoid this, you can set the column
to NOT NULL and provide a default value. Most entries will end up on the blog page, so set the default to
“blog.” Finally, for organizational purposes, you want to put the column right after the id column; you
can accomplish this in your query by using AFTER id.

Additionally, you can speed up your queries by adding an index to the page column. This is as
simple as appending ADD INDEX (page) to the end of the query, separated by a comma. The full query
looks like this:

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

158

ALTER TABLE entries
ADD page VARCHAR(75) NOT NULL DEFAULT 'blog'
AFTER id,
ADD INDEX (page)

Now execute the preceding query in the SQL tab of http://localhost/phpmyadmin. When the

query finishes, click the Browse tab to verify that the page column has been created and that all the
pages have been identified as blogs.

Modify Your Functions to Accept Page Parameters
Now that your entries have a page associated with them, you can start using the page as a filter to
retrieve only the data that matches your current page. This is really similar to the way you used the id
column to filter your query to only return one entry. By using the page, you filter the query to only return
entries for one page.

Accepting Page Information in the URL
First—and this is very important—you need to somehow pass a page variable to your script. You do this
in the same way that you previously passed an entry ID to the script, using the URL and the $_GET
superglobal.

For example, you navigate to the following address to look at the blog page:

http://localhost/simple_blog/?page=blog

Navigating to an entry within the blog requires that you use a URL similar to the following:

http://localhost/simple_blog/?page=blog&id=2

To use the preceding URL format, you need to modify index.php to use the page variable passed

in the URL, then modify functions.inc.php to accept the page variable and use it in your database
query.

Begin by opening index.php (full path: /xampp/htdocs/simple_blog/index.php) and adding the
code in bold to the top of the script:

<?php
 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

159

 /*
 * Figure out what page is being requested (default is blog)
 * Perform basic sanitization on the variable as well

 */
 if(isset($_GET['page']))
 {
 $page = htmlentities(strip_tags($_GET['page']));
 }

 else
 {
 $page = 'blog';
 }

 // Determine if an entry ID was passed in the URL
 $id = (isset($_GET['id'])) ? (int) $_GET['id'] : NULL;

 // Load the entries

 $e = retrieveEntries($db, $page, $id);

 // Get the fulldisp flag and remove it from the array
 $fulldisp = array_pop($e);

 // Sanitize the entry data
 $e = sanitizeData($e);
?>

Here you add a line that collects the page variable from the $_GET superglobal array, then

assigns its value (or a default value, which you’ve set to “blog”) to a variable called $page.
Next, you add the $page variable as an argument in your call to retrieveEntries($db, $$page,

$id); so that you can use the information in retrieving entry data.
For now, you’re finished in index.php. Next, you need to modify your retrieveEntries()

function.

Using the Page Information to Filter Entries
The first thing you need to do is to alter retrieveEntries() to accept the $page parameter you’ve just
added. Open functions.inc.php and alter the function definition to read as follows:

function retrieveEntries($db, $page, $url=NULL)

{

The page is being sent to your entry retrieval function, so you can use the information to filter

your query and return only results relevant to the page being viewed. You accomplish this using a WHERE
clause.

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

160

Originally, your query for retrieving entries when no entry ID was supplied looked like this:

SELECT id, title, entry
FROM entries
ORDER BY created DESC

Adding the WHERE clause means you can no longer simply execute the query because you’re now

relying on user-supplied data, which is potentially dangerous. To keep your script secure, you need to
use a prepared statement. Your query uses a placeholder for the page variable and looks something like
this:

SELECT id, page, title, entry
FROM entries
WHERE page=?
ORDER BY created DESC

Now you can retrieve only the entries that correspond to the page being viewed. The next step is

to update your query in functions.inc.php (full path:
/xampp/htdocs/simple_blog/inc/functions.inc.php). This snippet starts at line 25 in the file; add the
changes highlighted in bold:

/*
 * If no entry ID was supplied, load all entry titles ffor the page
 */
else
{
 $sql = "SELECT id, page, title, entry
 FROM entries

 WHERE page=?
 ORDER BY created DESC";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($page));

 $e = NULL; // Declare the variable to avoid errors

In this snippet, you create a prepared statement out of the query you wrote previously, then

execute the statement using the $page variable you passed to retrieveEntries() from index.php.
This code also adds a line declaring the $e variable as NULL. This part serves as a precautionary

measure against empty result sets, which would otherwise result in an error notice if no entries exist for
the specified page.

Tip It’s a good habit to get into to always declare a variable as NULL if there’s the potential for a query or loop to
come back empty. This means any variable defined in a conditional statement or used to store the result of a
database query should contain a NULL value before the query or loop is executed.

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

161

You changed the method you use to execute the query, so now you need to modify the way you
store the result set. Add the following code in bold where indicated in functions.inc.php, immediately
beneath the script you just altered, starting at line 39:

 // Loop through returned results and store as an array

 while($row = $stmt->fetch()) {
 $e[] = $row;
 }

Once this code is in place, each result array is stored as an array element in $e; this means that

your script will now work. Save functions.inc.php and navigate to http://localhost/simple_blog/
?page=blog in a browser. At this point, you should see the previews of the blog entry (see Figure 6-1).

Figure 6-1. The blog previews page loaded with URL variables

The blog is the default page, so previews will also load without the page variable. To see the
power of what you’ve just built, navigate to a page that doesn’t exist yet: your “About the Author” page.
Navigate to http://localhost/simple_blog/?page=about in a browser, and you should see your default
“No Entries” message (see Figure 6-2).

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

162

Figure 6-2. The “About the Author” page with no entries supplied

Here you face with a slight problem: you have a “Back to Latest Entries” link on your “About the
Author” page. This could prove misleading because it might give your users the impression that there are
more entries about the author.

Additionally, the “Post a New Entry” link appears on this page. You want only one entry to
appear on the “About the Author” page, so you don’t want this link to appear here.

To correct this, you must modify index.php with a conditional statement that displays the “Back
to Latest Entries” and “Post a New Entry” links only on the “Blog” page. Accomplish this by opening
index.php and adding the code in bold to the body of the document:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <link rel="stylesheet" href="css/default.css" type="text/css" />
 <title> Simple Blog </title>
</head>

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

163

<body>

 <h1> Simple Blog Application </h1>

 <div id="entries">

<?php

// If the full display flag is set, show the entry
if($fulldisp==1)
{

?>

 <h2> <?php echo $e['title'] ?> </h2>
 <p> <?php echo $e['entry'] ?> </p>
 <?php if($page=='blog'): ?>
 <p class="backlink">
 Back to Latest Entries
 </p>
 <?php endif; ?>

<?php

} // End the if statement

// If the full display flag is 0, format linked entry titles
else
{
 // Loop through each entry
 foreach($e as $entry) {

?>

 <p>
 <a href="?id=<?php echo $entry['id'] ?>">
 <?php echo $entry['title'] ?>

 </p>

<?php

 } // End the foreach loop
} // End the else

?>

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

164

 <p class="backlink">
 <?php if($page=='blog'): ?>
 <a href="/simple_blog/admin/<?php echo $page ?>">

 Post a New Entry

 <?php endif; ?>
 </p>

 </div>

</body>

</html>

Now you don’t see the potentially misleading links when you load

http://localhost/simple_blog/?page=about (see Figure 6-3).

Figure 6-3. The “About the Author” page without potentially misleading links

The next step is to create an entry for the “About the Author” page. However, you need to
update your admin.php script before you can create this entry.

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

165

Modifying admin.php to Save Page Associations
Saving the page an entry is associated with is as easy as adding another input to your form. However,
there are a couple reasons you don’t want to require the user to fill out the page an entry belongs on.
First, it’s inconvenient for the user; second, it increases the risk of typos or confusion.

Fortunately, HTML forms allow you to insert hidden inputs, which contain a value that is
passed in the $_POST superglobal, but isn’t displayed to the user. In your admin.php script (full path:
/xampp/htdocs/simple_blog/admin.php), add a hidden input to your form by inserting the lines in bold:

<?php
if(isset($_GET['page']))
{

 $page = htmlentities(strip_tags($_GET['page']));
}
else
{
 $page = 'blog';

}
?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <link rel="stylesheet"
 href="/simple_blog/css/default.css" type="text/css" />
 <title> Simple Blog </title>
</head>

<body>
 <h1> Simple Blog Application </h1>

 <form method="post" action="/simple_blog/inc/update.inc.php">
 <fieldset>
 <legend>New Entry Submission</legend>
 <label>Title
 <input type="text" name="title" maxlength="150" />
 </label>
 <label>Entry
 <textarea name="entry" cols="45" rows="10"></textarea>
 </label>

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

166

 <input type="hidden" name="page"
 value="<?php echo $page ?>" />
 <input type="submit" name="submit" value="Save Entry" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
 </form>
</body>

</html>

In the first line of this script, you retrieve the page variable, which will be passed in the URL.

To make sure a variable was passed, you use the ternary operator (a shortcut syntax for the if else
statement) to check whether $_GET['page'] is set. If so, you perform basic sanitization by removing any
HTML tags from the string, then encoding any special characters that could cause problems in your
script. If not, you provide a default page, blog, to avoid any unexpected behavior.

Then, in the form itself, you insert a hidden input with the name of “page” and a value that
contains the sanitized value from the URL.

This means that creating an entry with an associated page requires that you access admin.php
using a path that includes a page variable:

http://localhost/simple_blog/admin.php?page=about

This means that you need to make some adjustments to index.php to ensure that a page

variable is passed when a user clicks the link to create a new entry.
In index.php, starting at line 100, modify the link to create a new entry as follows:

 <p class="backlink">
 <a href="/simple_blog/admin.php?page=<?php echo $page ?>">

 Post a New Entry

 </p>

This entry takes the $page variable you stored at the beginning of the script and uses it to make

a link for posting a new entry pass to the page. You can test this by navigating to
http://localhost/simple_blog/?page=about; this URL lets you use your browser to look at the page
value stored in the “Post a New Entry” link (see Figure 6-4).

Tip You can view the source code in a PHP project by select View from the browser menu, then (depending on
the browser being used) Source, Page Source, or View Source.

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

167

Figure 6-4. The source code of http://localhost/simple_blog/?page=about

Next, you need to make sure that you’re storing the page in the hidden input properly. Click the
“Post a New Entry” link on http://localhost/simple_blog/?page=about, which should direct you to
http://localhost/simple_blog/admin.php?page=about. There, you can see your form as usual, but
looking at the source code should reveal that the hidden input now contains the “about” value that was
passed in the URL (see Figure 6-5).

Figure 6-5. The source of http://localhost/simple_blog/admin.php?page=about

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

168

Now you know that the page will be passed to the form. This means that you have access, via
the $_POST superglobal, to whatever page the entry is associated with after the new entry is submitted.

However, bear in mind that the page association won’t be saved until you make some
adjustments to update.inc.php to handle this new information.

Saving Page Associations
Saving the page association in your database when new entries are created requires that you modify
your query in update.inc.php, as well as a couple more checks to ensure that errors don’t occur.

To save the entry information, you need to:

1. Make sure the page was specified before processing

2. Add the page to the query to be saved

3. Sanitize the data

4. Use the sanitized page information to send the user back to the created entry

In update.inc.php, modify the script to include the lines highlighted in bold:

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry'
 && !empty($_POST['page'])
 && !empty($_POST['title'])
 && !empty($_POST['entry']))
{

 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Save the entry into the database

 $sql = "INSERT INTO entries (page, title, entry)
 VALUES (?, ?, ?)";
 $stmt = $db->prepare($sql);

 $stmt->execute(
 array($_POST['page'],$_POST['title'],$_POST['entry'])
);
 $stmt->closeCursor();

 // Sanitize the page information for use in the success URL
 $page = htmlentities(strip_tags($_POST['page']));

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

169

 // Get the ID of the entry you just saved
 $id_obj = $db->query("SELECT LAST_INSERT_ID()");
 $id = $id_obj->fetch();
 $id_obj->closeCursor();

 // Send the user to the new entry

 header('Location: /simple_blog/?page='.$page.'&id='.$id[0]);
 exit;
}

else
{
 header('Location: ../');
 exit;
}

?>

Making these changes, effectively ensures that a page association is passed to the update script;

you can then insert the association using your prepared statement. Afterward, you sanitize the page
information and store it in the $page variable. Finally, you send the user to the new entry by passing the
page in the URL, along with the ID of the new entry.

Save update.inc.php and navigate to http://localhost/simple_blog/?page=about, then click
the “Post a New Entry” link. Now create an “About the Author” entry and click “Save Entry”; this should
take you to the entry saved with the “about” page association (see Figure 6-6).

Figure 6-6. The “About the Author” page with an entry created

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

170

Using .htaccess to Create Friendly URLs
When building applications for the web, it’s important to look at some of the marketing tricks involved
in getting a site noticed. There are full courses dedicated to web site marketing, but every developer
should know a little bit about how sites get noticed on the web.

One of the most widely discussed areas of web site marketing is search engine optimization, or
SEO. This is the practice of maximizing the value of a web site in the eyes of search engines like Google
and Yahoo! by placing key words in important areas of the site.

One of the most important areas of any site is the URL itself. For instance, a web site selling
t-shirts with rubber ducks on them would want locate its products page at an URL something like this:

http://rubberducktees.com/products/t-shirts

This is far more desirable than a URL with a bunch of confusing IDs, such as:

http://rubberducktees.com?page=4&category=5&product=67

Neither approach is wrong, but the former is far easier to read and to remember. It is also far

more likely to make sense to the average user. Also, you should be aware that search engines are much
more likely to index, or store as a search result, sites with key words in the URL.

Note Some search engines won’t index URLs beyond the first question mark they encounter, which means
non-optimized URLs won’t make it into search results at all.

Your URLs right now aren’t exactly optimal because you’re using variables such as
?page=blog&entry=2 to identify entries to the script. So a good next step is to figure out a way to allow
your users to get to a blog using a much easier URL, such as:

http://localhost/simple_blog/blog/first-entry

Doing this requires that you use a pair of advanced coding techniques: .htaccess and regular

expressions.

What .htaccess Does
One of the best parts about using Apache servers is the ability to use .htaccess files. These allow
developers to control a number of things, including file-access permissions, how certain file types are
handled. The files also serve as an especially useful tool for rewriting URLs.

You won’t need to know too much about how .htaccess works for the examples described in
this book. However, I teach you everything you need to know about rewriting a URL so it is much more
user-friendly.

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

171

Using Regular Expressions
Regular expressions are, in essence, patterns that enable complex matching in strings. They are tricky,
and they employ a syntax that can be very hard to understand; however, they are also one of the most
powerful tools available to developers, so it behooves you to learn about them.

Once you get the basics of regular expressions (or regex), you can use them in your .htaccess
files to match URL patterns and rewrite them so they are compatible with your scripts.

Creating Your .htaccess File
Begin by firing up Eclipse and creating a new file called .htaccess in the simple_blog project. You should
place this file in the top level of the project (full path: /xampp/htdocs/simple_blog/.htaccess).

Note .htaccess files start with a period, so your new file might not show up in your file list under the project in
Eclipse. If you close .htaccess and need to open it, use File > Open... to access it again. Alternatively, you can
set Eclipse to show resources starting with a period by selecting the upside-down triangle (third button from the
right) in the “Project Explorer” panel and clicking “Customize View...” In the Filters tab, uncheck .* resources,
and the .htaccess file should appear in your file list.

Caution If you choose to view .* resources in project folders, be sure that you do not edit or delete the
.project or .buildpath files. Doing so can cause Eclipse to lose its association with your projects, which means
you’ll have to recreate them before you can access any of your files for editing.

The file should bring up a blank file in the editor. In this file, you need to accomplish the
following:

• Turn on URL rewriting

• Declare the base-level folder for rewriting

• Set up a rule to stop the rewrite if certain file types are accessed directly

• Set up a special rule for admin.php

• Set up a rule for page-only URLs

• Set up a rule for page and entry URLs

Step 1: Turn on URL Rewriting
The first line of your .htaccess file lets the server know that URL rewriting is allowed in this directory. To
do this, add the following line to your currently blank .htaccess file:

RewriteEngine on

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

172

Step 2: Declare the Base-Level Folder for Rewriting
Next, you need to let the server know which folder to use as a base when rewriting. If you want the root
folder to be the base folder, you could use a single forward slash (/) to set the root folder (the htdocs
folder when using XAMPP) as the base folder. Your project is in the simple_blog folder in root, so you
need to specify it as the base. To do so, add the following to line 2 in .htaccess:

RewriteBase /simple_blog/

Step 3: Set Up a Rule to Stop Rewriting for Certain File Types
You must be able to access some files by their real path, not a rewritten one, so you need to set up a
rewrite rule that says certain file types, such as images and included scripts, will stop the rewrite engine
from doing anything and exit the .htaccess file.

Tip For a complete breakdown of URL rewriting, visit the mod_rewrite documentation on the Apache website at
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html.

This is a slightly more complicated area of the file, and it’s here you start using regex. Begin by
creating the rule; I’ll break down what it does and how it works afterward:

RewriteRule \.(gif|jpg|png|css|js|inc\.php)$ - [L]

In .htaccess files, rewrite rules follow this pattern:

RewriteRule pattern replacement [flags]

Adding a RewriteRule lets you signify to the server that the rest of the line contains commands

for URL rewriting.

Patterns
The pattern, which is what you want to match, goes next. In your rule just described, the pattern section
of the rule is \.(gif|jpg|png|css|js|inc\.php)$. In plain English, this means that any URL that calls a
file ending with the extension .gif, .jpg, .png, .css, .js, or .inc.php will match your pattern.

The first part, a backslash followed by a period, signifies the “dot” that precedes the file
extension (as in, “dot jpg”). Next, you have your file extensions wrapped in parentheses and separated
with a vertical bar (|). The parentheses enclose a group of characters to match, and the vertical bar acts
as an “or” command. Finally, the dollar sign means that the match must fall at the end of the URL, so a
URL ending in image.jpg would trigger the command, but a URL ending in image.jpg?mischief would
not.

Note To learn more about regular expressions, check out http://regular-expressions.info.

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

173

Replacements
The replacement is a new format for the data matched in the rule’s pattern. Each group can be accessed
to create a different URL structure that scripts can use instead of the one navigated to by the user.

In the case of your rule, the replacement is a hyphen (-). This signifies that nothing is to be
done. You’ll near more about replacements momentarily, when I cover the next rule.

Flags
The flags for rewrite rules are a set of controls that allow users to determine what to do after a rule
matches. In the preceding example, the flag for your rule is [L], which means that this is the last rule
checked if this rule is matched. This means that no more rewriting will occur. Some of the other
available rules include:

• nocase/NC (no case): Makes the rule case-insensitive

• forbidden/F (forbidden); Force a resource to return a 403 (FORBIDDEN) response

• skip/S=num (skip the next rule): If current rule is matched, the next num rules are skipped

Note There are many other flags that you can in .htaccess rewrite rules. For a full list, visit the RewriteRule
Directive section of the mod_rewrite documentation on the Apache web site at
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html#rewriterule.

Step 4: Set Up a Rule for Admin Page Access
Your admin page is a little different from the rest of your site because it relies on a different file
(admin.php). This means your URL rewrites need to take this into account and behave accordingly.

You want your administrative page to be accessed with the following URL structure:

http://localhost/simple_blog/admin/blog

However, your scripts need the URL to be structured like this:

http://localhost/simple_blog/admin.php?page=blog

To do this, you need to catch any URL that begins with “admin/” and take the rest of the string

and pass it as the page variable. In your .htaccess file, add the following rule:

RewriteRule ^admin/(\w+) admin.php?page=$1 [NC,L]

In this rewrite rule, you require that the URL path start with admin/ using the carat (^), then use

the shorthand \w+ to store one or more word characters (a-z, 0-9, and _ [underscore]) as a backreference,
which is functionally equivalent to a variable in PHP. When working with rewrite rules, you access
backreferences using a dollar sign and the number corresponding to the group (i.e., the first backreference
is $1, the second is $2, and so on). You can create only nine backreferences for each rule.

The replacement URL is a link to admin.php, with the page variable set to the value of your
backreference. So, if the URL path supplied to the rule is admin/blog, it is rewritten to
admin.php?page=blog.

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

174

Finally, you set the flags to NC, which means the rule isn’t case-sensitive (ADMIN/ is equivalent to
admin/ for purposes of matching), and L, which means more rewriting will occur if this rule is matched.

You don’t want the site to throw an error if the user accesses http://localhost/simple_blog/
admin, so you need to add an additional rule. This rule will go immediately above the previous rewrite
rule, and handle administrative URLs that don’t specify the page.

Add the following rule to .htaccess:

RewriteRule ^admin/?$ admin.php [NC,L]

This rule makes sure that the user has used either http://localhost/simple_blog/admin or

http://localhost/simple_blog/admin/ to access the site. If this rule is matched, the user is directed to
admin.php.

Step 5: Set Up a Rule for Page-Only URLs
You can access your publicly displayed pages in one of two ways: either page-only (i.e., http://
localhost/simple_blog/blog/) or page-and-entry (i.e., http://localhost/simple_blog/blog/
first-entry). Your next rewrite rule catches the page-only URLs and directs the user to the proper place.

In .htaccess, add the following rule:

RewriteRule ^(\w+)/?$ index.php?page=$1

This rule captures the beginning of the URL path, stopping at the first forward slash. The dollar

sign after the forward slash means that you can’t use any additional characters after the first forward
slash, or the rule won’t match. You can then use the captured characters as the page variable in the
rewritten URL.

Also, note the use of a question mark following the slash. This makes the expression lazy, which
means it doesn’t need to match the last slash. This covers you if the user enters a URL without a trailing
slash, like this one: http://localhost/simple_blog/blog. You don’t need any flags for this rule, so you
simply leave them out altogether.

Step 6: Set Up a Rule for Page-and-Entry URLs
Finally, you need a rule that passes the page and entry information to your script in a format it can
understand. This is similar to the previous rule, except you’re going to be using two backreferences, as
well as a new concept known as character classes.

In .htaccess, add the following rule:

RewriteRule ^(\w+)/([\w-]+) index.php?page=$1&url=$2

The first part of the rule, ^(\w+)/, is the same as the last rule. It matches any word character that

starts the URL path until the first forward slash.
The second part of the URL, ([\w-]+), creates a second backreference to a character class,

which is a group of characters enclosed in square brackets that you can use for a valid match. You can
match any word character in this character class, as well as the hyphen (-). The plus sign (+) means that
one or more characters will be matched.

You add a hyphen in this case because you’re going to use hyphens to replace spaces in your
URLs (you can learn more about this in the next section, “Creating Friendly URLs Automatically”).

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

175

The replacement URL generated passes the first backreference as the page variable, and it
passes the second backreference as a variable called url, which you use in place of an entry ID from here
on out.

Trying It Out
At this point, your blog should accept friendly URLs. You can test whether this is true by navigating to
http://localhost/simple_blog/blog/ in a browser to see the results (see Figure 6-7).

Figure 6-7. Previewing your blog entries with a friendly URL

In the next section, you’ll modify your application to use friendly entry URLs to access
individual entries.

Creating Friendly URLs Automatically
Now that your site can rewrite friendly URLs for your site to process correctly, you need to modify your
application to use the new format. You must implement the following steps to make your application
run properly:

1. Add a url column to the entries table

2. Modify functions.inc.php to search by and return the url value

3. Modify index.php to use the url value

4. Write a function to create friendly URLs automatically

5. Modify update.inc.php to save the new URL

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

176

Step 1: Add a url Column to the entries Table
There are a few ways you can make your application use custom URLs. Perhaps the easiest method is to
create a custom friendly URL and store it in the database, which is the approach you’ll take in this
project.

Begin by creating a new column in the entries table, which you call url. To do this, navigate to
http://localhost/phpmyadmin, then select the simple_blog database, and, finally, the entries table. Click
the SQL tab and enter the following command:

ALTER TABLE entries
ADD url VARCHAR(250)
AFTER entry

This creates a new column in the entries table that accepts 250 characters. This field stores

your entry URLs.
You can populate this column for pre-existing entries quickly by hand. Click the Browse tab,

then scroll to the bottom of the entry listings and click “Check All.” To the right of the “Check All” option,
click the pencil to edit all the entries at once.

The format you’ll be using for entry URLs is to take the title of the entry, remove all special
characters (such as apostrophes, punctuation, and so on), and replace spaces with hyphens. For
example, “First Entry” would become “first-entry” after processing.

Enter a URL for each entry in the url field of each entry, then click the Go button to save.

Step 2: Modify functions.inc.php to Handle URLs
Next, open functions.inc.php in Eclipse. You need to change your queries to use the url column rather
than the id column to look up entries, as well as making sure the URL is returned by your page-only
query.

First, you modify the parameters of retrieveEntries() to accept the URL in place of the ID.
Next, you check whether the URL was provided. If so, you retrieve the entry that matches the provided
URL. If not, you retrieve entry information for all the entries that correspond to the provided page.

To accomplish this, you need to make the following modifications (shown in bold) to
retrieveEntries():

function retrieveEntries($db, $page, $url=NULL)
{
 /*

 * If an entry URL was supplied, load the associated entry
 */
 if(isset($url))
 {
 $sql = "SELECT id, page, title, entry
 FROM entries

 WHERE url=?
 LIMIT 1";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($url));

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

177

 // Save the returned entry array
 $e = $stmt->fetch();

 // Set the fulldisp flag for a single entry
 $fulldisp = 1;
 }

 /*

 * If no entry URL provided, load all entry info for the page
 */
 else
 {

 $sql = "SELECT id, page, title, entry, url
 FROM entries
 WHERE page=?
 ORDER BY created DESC";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($page));

 $e = NULL; // Declare the variable to avoid errors

 // Loop through returned results and store as an array
 while($row = $stmt->fetch()) {
 $e[] = $row;
 $fulldisp = 0;
 }

 /*
 * If no entries were returned, display a default
 * message and set the fulldisp flag to display a
 * single entry
 */
 if(!is_array($e))
 {
 $fulldisp = 1;
 $e = array(
 'title' => 'No Entries Yet',
 'entry' => 'This page does not have an entry yet!'
);
 }
 }

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

178

 // Add the $fulldisp flag to the end of the array
 array_push($e, $fulldisp);

 return $e;
}

Now your function can search by URL, as well as return the URL information for use in link

creation.

Step 3: Modify index.php to Handle URLs
Next, you need to open index.php in Eclipse and make some changes. First, you need to swap out your
check for an ID in the $_GET superglobal and check instead for a url variable. Then you need to pass the
stored URL information to retrieveEntries() for processing.

In index.php, make the following modifications to the script at the top (shown in bold
highlight):

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Figure out what page is being requested (default is blog)
 if(isset($_GET['page']))
 {
 $page = htmlentities(strip_tags($_GET['page']));
 }
 else
 {
 $page = 'blog';
 }

 // Determine if an entry URL was passed

 $url = (isset($_GET['url'])) ? $_GET['url'] : NULL;

 // Load the entries
 $e = retrieveEntries($db, $page, $url);

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

179

 // Get the fulldisp flag and remove it from the array
 $fulldisp = array_pop($e);

 // Sanitize the entry data
 $e = sanitizeData($e);

?>

Your “About the Author” page is displayed as a full entry, so you need to an extra line to your

full entry display to ensure that administrative links are built properly, even though the entry isn’t
accessed with a URL beyond this page. Add the code in bold to index.php in the code block starting on
line 59:

<?php

// If the full display flag is set, show the entry
if($fulldisp==1)
{

 // Get the URL if one wasn't passed
 $url = (isset($url)) ? $url : $e['url'];

?>

You also need to change how entry previews are formatted, changing the links to reflect your

new URL format. Finally, you need to switch your “Post a New Entry” link so it uses the new URL format.
Make the following code modifications in the bottom half of index.php, starting at line 78, as

marked in bold:

// If the full display flag is 0, format linked entry titles
else
{
 // Loop through each entry
 foreach($e as $entry) {

?>

 <p>

 <a href="/simple_blog/<?php echo $entry['page'] ?>/<?php echo $entry['url'] ?>">
 <?php echo $entry['title'] ?>

 </p>

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

180

<?php

 } // End the foreach loop
} // End the else

?>

 <p class="backlink">

 <a href="/simple_blog/admin/<?php echo $page ?>">
 Post a New Entry

 </p>

 </div>

Now navigate to http://localhost/simple_blog/blog/ in a browser to see your code in action.

Click one of the entries for a full view and note that the URL is now easy to read (see Figure 6-8).

Figure 6-8. A full entry loaded with a custom URL

Step 4: Write a Function to Create Friendly URLs Automatically
You don’t want to create a URL manually for every entry created, so you need to write a function that
generates a URL following your format automatically. To do this, you need to use regular expressions
again, but with the twist that this time you combine it with a PHP function called preg_replace():

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

181

mixed ppreg_replace (mixed $pattern , mixed $replacement ,
 mixed $subject [, int $limit= -1 [, int &$count]])

Essentially, preg_replace() works similarly to the rewrite rules you’re already created. It accepts

patterns to match ($pattern), replacements for those matches ($replacement), a string in which to search
($subject), and two optional parameters: the maximum number of replacements to be performed
($limit), which defaults to -1 (no limit), and the number of replacements made ($count).

One of the most convenient features of preg_replace() is its ability to accept arrays as both the
$pattern and $replacement parameters, which allows you to perform multiple pattern matches and
replacements with a single function call.

To create your URLs, you can accept the title of an entry as a string, which you run through
preg_replace(). You want to match two patterns: first, you want to replace all spaces with a hyphen;
second, you want to remove all non-word characters (excluding hyphens) by replacing them with an
empty string.

You place your function, called makeUrl(), in functions.inc.php. Open the file in Eclipse and
insert the following code at the bottom of the file:

function makeUrl($title)
{
 $patterns = array(
 '/\s+/',
 '/(?!-)\W+/'
);
 $replacements = array('-', '');
 return preg_replace($patterns, $replacements, strtolower($title));
}

In this function, you begin by defining your array of patterns. The first pattern, /\s+/, matches

any one or more whitespace characters, such as spaces and tabs. The special character shorthand, \s,
denotes any whitespace, and the plus sign means “one or more,” as explained previously.

The second pattern, /(?!-)\W+/, matches one or more non-word characters, excluding the
hyphen. The first bit after the delimiter (see the note on using regex, which I’ll introduce momentarily),
(?!-), is a complicated bit of syntax called a negative lookahead. Essentially, it means, “if the following
match can be made without using the character noted, consider it valid.” The syntax for this is
(?!character), where character is the character or characters that will render a match invalid.

The \W is shorthand for the opposite of word characters. This means punctuation, whitespace,
and other special characters that aren’t alphanumeric or the underscore character.

Next, you declare your replacement array. This follows the order of the patterns, which means
that you replace the first element of the pattern array with the first element in the replacement array.
Your first replacement is for whitespace characters, which you want to replace with a hyphen. You use
the second replacement to get rid of other special characters, which you accomplish simply by supplying
an empty string.

With your patterns and replacements stored and ready, you return the result of preg_replace()
when passed your entry title (which you convert to lowercase using the function strtolower()). This
return value is your custom URL.

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

182

Note When using regex in PHP, or any Perl-compatible language, you need to enclose patterns in delimiters,
which are forward slashes. This means that if your pattern is \w+, you must enclose it in forward slashes (/\w+/)
to delimit it as a pattern.

Step 5. Modify update.inc.php to Save URLs in the Database
You now need a way to store the results of makeUrl() in the database. To do this, you need to modify
your query in update.inc.php. Open this file in Eclipse and make the modifications shown in bold:

<?php

// Include the functions so you can create a URL
include_once 'functions.inc.php';

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry'
 && !empty($_POST['page'])
 && !empty($_POST['title'])
 && !empty($_POST['entry']))
{

 // Create a URL to save in the database
 $url = makeUrl($_POST['title']);

 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Save the entry into the database
 $sql = "INSERT INTO entries (page, title, entry, url)

 VALUES (?, ?, ?, ?)";
 $stmt = $db->prepare($sql);
 $stmt->execute(
 array($_POST['page'], $_POST['title'], $_POST['entry'], $url)

);
 $stmt->closeCursor();

 // Sanitize the page information for use in the success URL
 $page = htmlentities(strip_tags($_POST['page']));

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

183

// Send the user to the new entry
 header('Location: /simple_blog/'.$page.'/'.$url);
 exit;
}

else
{
 header('Location: ../');
 exit;
}

?>

When a new entry is created now, functions.inc.php is loaded and makeUrl() is called on the

new title. The result is stored in the url column of the entries table, which leaves you with a dynamically
generated, custom URL for your new entry. You can then use this custom URL to direct the user to the
new entry.

Navigate to http://localhost/simple_blog/admin/blog and create a new entry with the title
(“Another Entry”) and the text (“This is another entry.”). Clicking the Save Entry button takes you to your
new entry at the URL, http://localhost/simple_blog/blog/another-entry (see Figure 6-9).

Figure 6-9. An entry with a dynamically created custom URL

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

184

Adding a Menu
Your blog should include a menu item that enables your users to get between the “Blog” and “About the
Author” pages. Accomplishing this is a simple matter of adding a snippet of HTML to index.php below
the main heading.

Open index.php in Eclipse and insert the HTML code in bold into the body of the page as
indicated, just below the <h1> tag:

<body>

 <h1> Simple Blog Application </h1>
 <ul id="menu">
 Blog
 About the Author

 <div id="entries">

Next, navigate to http://localhost/simple_blog/ to see the menu (see Figure 6-10).

Figure 6-10. Your blog application with a menu in place

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

185

Creating Different Viewing Styles for the Pages
You’re nearly finished with this stage of your blog’s development. However, if you navigate to the “About
the Author” page, you’ll see that it shows an entry preview. This is undesirable because there should be
only one entry on this page.

To fix this, you need to modify your retrieveEntries() function to force the “About the Author”
entry to be a full-display entry, even without a URL being supplied.

Open functions.inc.php and modify retrieveEntries() by inserting the following code in bold
into the while loop starting at line 38:

 // Loop through returned results and store as an array
 while($row = $stmt->fetch()) {

 if($page=='blog')
 {
 $e[] = $row;
 $fulldisp = 0;

 }
 else
 {
 $e = $row;
 $fulldisp = 1;

 }
 }

You also need to remove the original line that defaults $fulldisp to 0. Remove this line from

functions.inc.php:

 // Set the fulldisp flag for multiple entries
 $fulldisp = 0;

Now you can view the full “About the Author” entry by navigating to http://localhost/

simple_blog/about/ in your browser (see Figure 6-11).

Download at WoweBook.Com

CHAPTER 6 ADDING SUPPORT FOR MULTIPLE PAGES

186

Figure 6-11. The full “About the Author” entry display

Summary
In this chapter, you’ve learned a ton of information. Some of it was pretty advanced, so congratulate
yourself! You can now:

• Support multiple pages in your application

• Create custom URLs using regular expressions and .htaccess

• Differentiate between multi-entry and single-entry pages

In the next chapter, you’ll learn how to update entries that have already been created, bringing
you one step closer to having a fully customizable blogging application.

Download at WoweBook.Com

C H A P T E R 7

187

Updat ing and Delet ing Entr ies

In this chapter, you’ll learn how to modify and delete an existing entry. To accomplish this, you need to
do the following in your application:

• Create administrative links (edit and delete)

• Display the administrative links in index.php

• Populate the admin form with entry information if you’re editing

• Modify .htaccess to pass a URL to admin.php

• Check whether submitted form values are edits or new entries

• Update entries in the entries table

• Check whether an entry is marked for deletion

• Remove deleted entries from the entries table

Creating Administrative Links
Your first task is to create links that will allow you to edit and delete entries. You’ll eventually want this to
be available to administrators only (see Chapter 11 for more information on this topic), so you’re going
to build these links inside a function, rather than inline in index.php.

Name your function adminLinks() and have it accept two arguments: the current page ($page)
and the URL of the entry you’re working with ($url).

To start, open up functions.inc.php and declare your new function just below
retrieveEntries():

function adminLinks($page, $url)
{

 // Build admin links here
}

The first step in your function is to build the addresses for your links. For your editing link, this

address simply appends the entry’s URL to the end, which you’ll use later to identify the entry being
edited. The path for the link follows this format:

/simple_blog/admin/page/url

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

188

The delete link works a little differently; rather than using the page, you use the word “delete”
in the address, signifying that the entry is to be deleted. The delete link follows this format:

/simple_blog/admin/delete/url

Now it’s time to add these paths to adminLinks() in functions.inc.php. Do so by inserting the

lines in bold, as shown:

function adminLinks($page, $url)
{
 // Format the link to be followed for each option
 $editURL = "/simple_blog/admin/$page/$url";

 $deleteURL = "/simple_blog/admin/delete/$url";

 // Finish the admin links here
}

Finally you need to create the hyperlinks from your URLs and return them so they can be used

in index.php. You need to place your links in an array, so that both the edit and delete links can be
returned by your function. Add the bold lines to functions.inc.php:

function adminLinks($page, $url)
{
 // Format the link to be followed for each option
 $editURL = "/simple_blog/admin/$page/$url";
 $deleteURL = "/simple_blog/admin/delete/$url";

 // Make a hyperlink and add it to an array
 $admin['edit'] = "edit";
 $admin['delete'] = "delete";

 return $admin;
}

Now you can generate custom edit and delete links quickly for any entry with a URL (which, in

your application, is all of them). Next, you need to display those links, as well as their corresponding
entries, in index.php.

Displaying Administrative Links
Your application can generate administrative links at this point; next you need to load those links into
index.php. You place your administrative links only on the full display of an entry, so you must place the
call to load information from adminLinks() within a conditional statement that fires only if $fulldisp == 1.

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

189

In index.php, at line 69, insert the code shown in bold:

<?php

// If the full display flag is set, show the entry
if($fulldisp==1)
{

 // Get the URL if one wasn't passed
 $url = (isset($url)) ? $url : $e['url'];

 // Build the admin links
 $admin = adminLinks($page, $url);

?>

Now you have an array with your edit and delete links as individual array elements. This

means you can insert the links in your layout by adding the code shown in bold:

 // Build the admin links
 $admin = adminLinks($page, $url);

?>

 <h2> <?php echo $e['title'] ?> </h2>
 <p> <?php echo $e['entry'] ?> </p>
 <p>
 <?php echo $admin['edit'] ?>
 <?php if($page=='blog') echo $admin['delete'] ?>

 </p>
 <?php if($page=='blog'): ?>
 <p class="backlink">
 Back to Latest Entries
 </p>
 <?php endif; ?>

Note You’re checking whether $page=='blog' before you display the delete link. This is because you don’t
want to delete your “About the Author” entry; doing that would leave you without any entry for that page. Instead,
you want your users to edit the existing entry.

Now loading index.php in a browser and selecting an entry displays your administrative links
(see Figure 7-1).

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

190

Figure 7-1. Your administrative links for a blog entry

Passing URL Values to admin.php with .htaccess
As your application stands right now, the URLs in your administrative links won’t mean anything to
admin.php. To remedy this, you need to modify .htaccess with an additional rule that handles URLs
passed in a link to admin.php.

Modifying the Original Admin Rule
When you write this rule, you need to keep in mind that new entries are passed to admin.php without a
URL, so you need to allow for scenarios where a URL is passed to admin.php, as well as for scenarios
where it isn’t. To do this, you’ll modify your original admin rule to ensure that the path ends with the
page name, followed by either a forward slash or nothing at all. With these modifications, your rule in
.htaccess should look like this:

RewriteRule ^admin/(\w+)((|/)$ admin.php?page=$1 [NC,L]

You modify this rule in your addition of (|/)$, which tells the server to ensure that the end of

the path must be encountered after one or more word characters, whether that occurs at the end of the
word characters or after one occurrence of a forward slash.

The (|/) tells the server to match either nothing or a forward slash. The vertical pipe character
(|) is the regular expression equivalent of “or”.

Adding a dollar sign ($) to the end of the rule lets you signify the end of the string, so nothing
can come after the pattern you define.

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

191

Thus, both of the following examples match your new rule:

http://localhost/simple_blog/admin/blog
http://localhost/simple_blog/admin/blog/

However, this example does not match your rule:

http://localhost/simple_blog/admin/blog/entry

The New Admin Rule
The next step is to set up a rule that catches information in the URL after the page and passes it to
admin.php as a URL variable; this enables you to signify which entry is being edited. Accomplishing this
requires that you add an additional backreference for the URL of the entry you want to edit. This
backreference needs to catch the entire URL, so the word character shorthand (\w) won’t be enough,
since your URLs contain hyphens. To add hyphens as a matchable character, you’ll have to create a
character class using square brackets.

Note Backreferences are named matches that you can use in the replacement. For a refresher on
backreferences, see the section on .htaccess in Chapter 6.

You pass the first backreference in the URL query string as a page, just like your original rule.
You pass the second backreference as a URL, to let admin.php know which entry is being edited.

To implement this rule in .htaccess, add the bold line to your .htaccess file:

RewriteEngine on
RewriteBase /simple_blog/

RewriteRule \.(gif|jpg|png|css|ico|swf|js|inc\.php)$ - [L]
RewriteRule ^admin/(\w+)(|/)$ admin.php?page=$1 [NC,L]
RewriteRule ^admin/(\w+)/([\w-]+) admin.php?page=$1&url=$2 [NC,L]
RewriteRule ^(\w+)(|/)$ index.php?page=$1
RewriteRule ^(\w+)/([\w-]+) index.php?page=$1&url=$2

Your second backreference, ([\w-]+), will match one or more word characters and/or

hyphens—which is what your custom entry URLs consist of—and pass their value to admin.php. Now
you’re ready to modify admin.php to load entries for editing.

Populating Your Form with the Entry to Be Edited
admin.php is receiving entry URLs when a user clicks the edit link is clicked; next you need to write a
script that identifies that URL and loads the appropriate entry. You also need to add the entry’s values to
the administrative form to enable editing.

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

192

Your first step is to check whether $_GET['url'] is set, which determines whether you’re editing
an entry or creating a new one. If an entry is being edited, you need to load the existing entry data and
save each piece in a variable. Fortunately, you’ve already written the function to load an entry using the
URL—retreiveEntries()—so you can use that to load the entry to be edited.

To use retrieveEntries() in your script, you must include the necessary files and open a
database connection.

You want to avoid the possibility of having undefined variables, so you should also add an else
to your conditional that will declare your entry data variables as NULL if no entry is passed.

Also, you can enhance your form’s friendliness by changing the legend to indicate whether
you’re editing an existing entry or creating a new one. You can store this information in a variable
($legend).

To do this, open admin.php and add the lines of code in bold:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';

 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 $page = isset($_GET['page']) ? htmlentities(strip_tags($_GET['page'])) : 'blog';

 if(isset($_GET['url']))
 {
 // Do basic sanitization of the url variable

 $url = htmlentities(strip_tags($_GET['url']));

 // Set the legend of the form
 $legend = "Edit This Entry";

 // Load the entry to be edited

 $e = retrieveEntries($db, $page, $url);

 // Save each entry field as individual variables
 $id = $e['id'];
 $title = $e['title'];

 $entry = $e['entry'];
 }

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

193

 else
 {
 // Set the legend

 $legend = "New Entry Submission";

 // Set variables to NULL if not editing
 $id = NULL;
 $title = NULL;

 $entry = NULL;
 }
?>

To add these values into your form, you need to set the value attribute in your inputs and place

the $entry variable between the opening and closing <textarea> tags. Also, you need to add a new
hidden input named id to contain the entry ID, which will help you in your next step, when you save
your changes.

You can add the values into your form by modifying admin.php with the lines of code in bold, as
shown:

 <form method="post" action="/simple_blog/inc/update.inc.php">
 <fieldset>

 <legend><?php echo $legend ?></legend>
 <label>Title
 <input type="text" name="title" maxlength="150"
 value="<?php echo htmlentities($title) ?>" />
 </label>
 <label>Entry

 <textarea name="entry" cols="45"
 rows="10"><?php echo sanitizeData($entry) ?></textarea>
 </label>

 <input type="hidden" name="id"
 value="<?php echo $id ?>" />
 <input type="hidden" name="page"
 value="<?php echo $page ?>" />
 <input type="submit" name="submit" value="Save Entry" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
 </form>

Clicking the edit link on one of your entries now loads and displays the contents of that entry

into the form (see Figure 7-2).

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

194

Figure 7-2. Clicking a link loads that entry into the form for editing

Next you need to modify update.inc.php so it recognizes that an entry is being edited and
updates the proper entry, as opposed to creating a new entry in the database.

Updating Entries in the Database
In your form, you added a hidden input to store the entry’s ID. This hidden input is what you use to
determine whether a form submission is an edit or a new entry.

To make this distinction, you need to check whether $_GET['id'] is empty. If so, the entry is
new, and you can proceed as usual. If $_GET['id'] has a value, however, you’re editing an entry, and you
must use a different query.

You update an entry in the entries table by specifying which fields are being set to which value.
Your ID won’t change, but the title, url, and entry fields all might, so your query needs to look like this:

UPDATE entries
SET title=?, entry=?, url=?
WHERE id=?
LIMIT 1

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

195

This query updates a maximum of one entry in the entries table by matching the supplied ID
with the submitted title, entry, and url values.

You can check whether $_GET['id'] contains a value and update an entry by inserting the code
highlighted in bold in update.inc.php:

<?php

// Include the functions so you can create a URL
include_once 'functions.inc.php';

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry'
 && !empty($_POST['page'])
 && !empty($_POST['title'])
 && !empty($_POST['entry']))
{
 // Create a URL to save in the database
 $url = makeUrl($_POST['title']);

 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Edit an existing entry
 if(!empty($_POST['id']))

 {
 $sql = "UPDATE entries
 SET title=?, entry=?, url=?
 WHERE id=?
 LIMIT 1";

 $stmt = $db->prepare($sql);
 $stmt->execute(
 array(
 $_POST['title'],
 $_POST['entry'],

 $url,
 $_POST['id']
)
);
 $stmt->closeCursor();

 }

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

196

 // Create a new entry
 else
 {
 // Save the entry into the database
 $sql = "INSERT INTO entries (page, title, entry, url)
 VALUES (?, ?, ?, ?)";
 $stmt = $db->prepare($sql);
 $stmt->execute(
 array(
 $_POST['page'],
 $_POST['title'],
 $_POST['entry'],
 $url
)
);
 $stmt->closeCursor();
 }

 // Sanitize the page information for use in the success URL
 $page = htmlentities(strip_tags($_POST['page']));

 // Send the user to the new entry
 header('Location: /simple_blog/'.$page.'/'.$url);
 exit;
}

else
{
 header('Location: ../');
 exit;
}

?>

Note Make sure you add the closing curly brace for the else statement (just after $stmt->closeCursor();) to
avoid a parsing error.

Now you can update entries in your database. To test this ability, open your application in a
browser and click the edit link on one of your entries and add some new text. Click the Save Entry button
to see the edited entry (see Figure 7-3).

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

197

Figure 7-3. An edited entry

Handling Entry Deletion
You’ve almost completed your administrative controls. All that’s left is to add the ability to delete entries.
This is fairly straightforward, due to the way that you’ve constructed the delete link.

The link passes delete as $_GET['page'], so it’s easy to identify entries marked for deletion. In
admin.php, you check whether $_GET['page'] == 'delete', then pass the entry URL to be deleted to a
function called confirmDelete()—you’ll write this function in the next section. This function asks the
user to confirm that she does in fact wish to delete the entry.

Do this by adding the following code in bold to admin.php:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

198

 $page = htmlentities(strip_tags($_GET['page']));

 if(isset($_GET['url']))
 {
 $url = htmlentities(strip_tags($_GET['url']));

 // Check if the entry should be deleted
 if($page == 'delete')
 {

 $confirm = confirmDelete($db, $url);
 }

 // Set the legend of the form
 $legend = "Edit This Entry";

 $e = retrieveEntries($db, $page, $url);
 $id = $e['id'];
 $title = $e['title'];
 $entry = $e['entry'];
 }
 else
 {
 // Set the legend
 $legend = "New Entry Submission";

 // Set the variables to null if not editing
 $id = NULL;
 $title = NULL;
 $entry = NULL;
 }

?>

confirmDelete() is called when the user clicks the delete link, and its return value is stored in

the $confirm variable. This function returns an HTML form asking the user to confirm that she wishes to
delete the entry in question. To display this form, you need to add a conditional statement in the body of
admin.php that displays the confirmation form if the value of $page is delete.

Add the code in bold to admin.php to display your confirmation page:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

199

<head>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 <link rel="stylesheet" href="/simple_blog/css/default.css" type="text/css" />
 <title> Simple Blog </title>
</head>

<body>
 <h1> Simple Blog Application </h1>

<?php

 if($page == 'delete'):
 {
 echo $confirm;
 }
 else:

?>
 <form method="post"
 action="/simple_blog/inc/update.inc.php"
 enctype="multipart/form-data">
 <fieldset>
 <legend><?php echo $legend ?></legend>
 <label>Title
 <input type="text" name="title" maxlength="150"
 value="<?php echo $title ?>" />
 </label>
 <label>Image
 <input type="file" name="image" />
 </label>
 <label>Entry
 <textarea name="entry" cols="45"
 rows="10"><?php echo $entry ?></textarea>
 </label>
 <input type="hidden" name="id"
 value="<?php echo $id ?>" />
 <input type="hidden" name="page"
 value="<?php echo $page ?>" />
 <input type="submit" name="submit" value="Save Entry" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
 </form>
<?php endif; ?>
</body>

</html>

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

200

Note Don’t forget to close the else statement by inserting <?php endif; ?> just above the closing </body>
tag.

Confirming Your Choice to Delete an Entry
Clicking the delete link now causes the return value of confirmDelete() to be displayed; your next step is
to define confirmDelete(). This function accepts two arguments: a database object and the URL of the
entry to be deleted.

The function uses the entry’s URL to load the entry’s information, which pops up and displays a
form to the user that asks whether a given entry should be deleted. This form contains hidden inputs
that store the action you want carried out by the form (delete), and the URL of the entry that will be
deleted if the user confirms that he wants to delete the entry.

Add the following code to functions.inc.php to declare the function confirmDelete():

function confirmDelete($db, $url)
{

 $e = retrieveEntries($db, '', $url);

 return <<<FORM
<form action="/simple_blog/admin.php" method="post">
 <fieldset>

 <legend>Are You Sure?</legend>
 <p>Are you sure you want to delete the entry "$e[title]"?</p>
 <input type="submit" name="submit" value="Yes" />
 <input type="submit" name="submit" value="No" />
 <input type="hidden" name="action" value="delete" />

 <input type="hidden" name="url" value="$url" />
 </fieldset>
</form>
FORM;
}

You’re using the heredoc syntax to make passing formatted HTML containing PHP variables as

easy as possible.
Now if you click the delete link next to an entry, you’re taken to a confirmation screen to verify

that you really wish to delete the entry (see Figure 7-4).

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

201

Figure 7-4. The confirmation screen displays when the delete link is clicked

Your confirmation form submits your choice, via the POST method, to admin.php. To process
this, you need to add an additional block of code to the top of admin.php that determines what choices
you’ve made and act accordingly.

Handling Your Submitted Confirmation Form
In admin.php, you need to identify whether the user reached the page from the confirmation form; you
do this by checking whether the $_POST superglobal contains an action variable. You also need to check
whether the variable value is delete. If the Yes button was clicked, you submit the entry’s URL to the
deleteEntry()function (which you’ll write in a moment) for deletion.

If the No button was clicked, you return the user to the entry she was viewing when the delete
link was clicked originally.

You can accomplish this by adding the following code in bold to the top of admin.php:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

202

 $page = isset($_GET['page']) ? htmlentities(strip_tags($_GET['page'])) : 'blog';

 if(isset($_POST['action']) && $_POST['action'] == 'delete')
 {
 if($_POST['submit'] == 'Yes')

 {
 $url = htmlentities(strip_tags($_POST['url']));
 if(deleteEntry($db, $url))
 {
 header("Location: /simple_blog/");

 exit;
 }
 else
 {
 exit("Error deleting the entry!");

 }
 }
 else
 {
 header("Location: /simple_blog/blog/$url");

 exit; }
 }

 if(isset($_GET['url']))
 {
 $url = htmlentities(strip_tags($_GET['url']));

 // Check if the entry should be deleted
 if($page == 'delete')
 {
 $confirm = confirmDelete($db, $url);
 }

 // Set the legend of the form
 $legend = "Edit This Entry";

 $e = retrieveEntries($db, $page, $url);
 $id = $e['id'];
 $title = $e['title'];
 $entry = $e['entry'];
 }

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

203

 else
 {
 // Set the legend
 $legend = "New Entry Submission";

 // Set the variables to null if not editing
 $id = NULL;
 $title = NULL;
 $entry = NULL;
 }
?>

When a user confirms that he wishes to delete an entry, that entry’s URL is passed to the yet-to-

be-written deleteEntry() function, which removes the entry from the database. If the function is
successful, you send the user to the main page. If it fails, you stop execution of the script and display an
error, letting the user know that something went wrong.

You can complete this process by defining deleteEntry().

Removing Deleted Entries from the Database
You need to write your deleteEntry() function in functions.inc.php. This function needs to accept the
entry URL as an argument, then place that URL into a DELETE query that removes a maximum of one
entry from the entries table.

Your MySQL query should read like this:

DELETE FROM entries
WHERE url=?
LIMIT 1

After you prepare the statement for execution, you use your supplied URL to execute the

argument. You can make sure that the function executes successfully by returning the value of
$stmt->execute() as the return value of your function.

Add your deleteEntry() function below retrieveEntries() in functions.inc.php:

function deleteEntry($db, $url)

{
 $sql = "DELETE FROM entries
 WHERE url=?
 LIMIT 1";
 $stmt = $db->prepare($sql);

 return $stmt->execute(array($url));
}

You can now delete entries from the database. You can test this by creating a temporary entry

(see Figure 7-5), then deleting it to see whether it is removed from the database and, therefore, from your
entry list (see Figure 7-6).

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

204

Figure 7-5. A temporary entry created using the Post a New Entry link

Figure 7-6. The temporary entry has been deleted, so it is no longer available in the title summary

Download at WoweBook.Com

CHAPTER 7 UPDATING AND DELETING ENTRIES

205

Summary
This chapter was short, but it covered a lot of ground. In it, you learned how to create administrative
links, as well as how to use those links to edit and delete entries from the database.

In the next chapter, you’ll dive into new territory and learn how to upload and manipulate
images using PHP’s GD library. This section will be much longer and will present you with a great deal of
new material, so get ready!

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 8

207

Adding the Abi l i ty to
Upload Images

Up to this point, you’ve been dealing exclusively with text on your blog. However, you can make your
blog much more interesting by incorporating images.

I’ll cover a lot of information in this chapter. For example, I’ll explain how to use PHP’s GD
library (in the section on resizing images), as well as functions that manipulate the file system. I’ll even
begin to cover the relatively advanced topic of your object-oriented programming.

By the end of this chapter, your blog should be able to:

• Accept image uploads

• Save uploaded images in a folder of your choosing

• Save the uploaded image’s path in the database

• Display images to your blog’s users

• Resize images to fit into your layout

• Delete images when necessary

Adding a File Input to the Admin Form
Before you can start processing images with PHP, you must first add the ability to upload images to your
administrative form on admin.php. To do this, you’ need to add a file upload input to your administrative
form.

When using file inputs, you also have to change the enctype, or content type, of the form. By
default, HTML forms are set to application/x-www-form-urlencoded. However, this won’t work when
you’re uploading files; instead, you need to set the enctype of the form to multipart/form-data, which
can accept files and standard form values.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

208

Modify the form in admin.php to include the code in bold:

 <form method="post"
 action="/simple_blog/inc/update.inc.php"

 enctype="multipart/form-data">
 <fieldset>
 <legend><?php echo $legend ?></legend>
 <label>Title
 <input type="text" name="title" maxlength="150"
 value="<?php echo $title ?>" />
 </label>

 <label>Image
 <input type="file" name="image" />
 </label>
 <label>Entry
 <textarea name="entry" cols="45"
 rows="10"><?php echo $entry ?></textarea>
 </label>
 <input type="hidden" name="id"
 value="<?php echo $id ?>" />
 <input type="hidden" name="page"
 value="<?php echo $page ?>" />
 <input type="submit" name="submit" value="Save Entry" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
 </form>

Load admin.php in a browser to see the added file input.

Accessing the Uploaded File
File uploads work differently than standard inputs, which means you must handle them a little
differently. In this case, you must modify update.inc.php to deal with uploaded images.

You don’t want to force your users to upload an image to post a new entry, so you need to check
whether a file was uploaded after you verify that the rest of the entry form was filled out. To check whether
a file was uploaded, you look in the $_FILES superglobal array.

A Quick Refresher on the $_FILES Superglobal Array
You learned about the $_FILES superglobal in Chapter 3, but it might be helpful to review what it does
before moving on.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

209

Whenever a file is uploaded via an HTML form, that file is stored in temporary memory and
information about the file is passed in the $_FILES superglobal. You can see this in action by taking a
look at what’s being passed to your update.inc.php script. To do this, add the code in bold to the top of
the file:

<?php

// Include the functions so you can create a URL
include_once 'functions.inc.php';

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry'
 && !empty($_POST['page'])
 && !empty($_POST['title'])
 && !empty($_POST['entry']))
{
 // Create a URL to save in the database
 $url = makeUrl($_POST['title']);

 // Output the contents of $_FILES
 echo "<pre>"; // <pre> tags make the output easy to read
 print_r($_FILES);
 echo "</pre>";

 /*
 * You don't want to save this test, so you exit the script to
 * prevent further execution.
 */

 exit;

After you save this file, you can navigate to create a new entry and try uploading an image by

pointing your browser to http://localhost/simple_blog/admin/blog.
Click the Browse... button on the file input and select any image off your computer. You can fill

in the Title and Entry fields with any information you want because this information won’t be saved (see
Figure 8-1).

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

210

Figure 8-1. An image selected in the new file input in admin.php

Click the Save Entry buttonto send this information to update.inc.php, which will display the
contents of $_FILES and stop execution. The output will look similar to this:

Array
(
 [image] => Array
 (
 [name] => IMG001.jpg
 [type] => image/jpeg
 [tmp_name] => /Applications/XAMPP/xamppfiles/temp/phpHQLHjt
 [error] => 0
 [size] => 226452
)

)

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

211

Examining this output enables you to determine that your image is stored in the array located at
$_FILES['image'] (named for the name attribute of the file input) and that five pieces of information were
stored:

• $_FILES['image']['name'] : The name of the uploaded file

• $_FILES['image']['type'] : The MIME type of the uploaded file

• $_FILES['image']['tmp_name'] : The temporary location of the uploaded file

• $_FILES['image']['error'] : An error code for the upload (0 means no error)

• $_FILES['image']['size'] : The size of the uploaded file in bytes

You’re ready to start processing the uploaded image now that you know what information is
being sent from your form to update.inc.php.

Object-Oriented Programming
To handle your uploaded images, you need to leverage object-oriented programming (OOP) to write a
class that handles your image processing. Classes and objects are extremely useful in programming;
both have been well supported in PHP scripts since the release of PHP 5.

Drill Down on Objects
An object is a collection of information in a program. An object behaves similarly to an array, except that
the information in an object provides a little more flexibility in how the information can be accessed and
processed. To use objects in PHP, you must define a class to provide a structure for the object.

Classes vs. Objects
It’s not uncommon to hear the terms “class” and “object” used interchangeably when talking about
programming, but it’s important to recognize that classes and objects are not the same thing, albeit they
are bound tightly together.

A class is a blueprint for information. It provides a map of properties and methods that give a
collection of information meaning. However, a class by itself doesn’t really mean anything.

Objects contain a mass of information that conforms to the blueprint laid out by the class: an
object is to a class as a house is to a blueprint. Each object is an instantiation of a class—just as each
house built from a blueprint is an instantiation of the blueprint.

Here’s another example that might help you understand the difference between a class and an
object. Imagine that you have a toy robot that stores one property, or class-specific variable (its name)
and one method, or class-specific function (the ability to write its name). The methods and properties
that describe and define your robot are the class. However, before your toy robot can actually perform
any of its abilities, you must first supply it with its required information—its name, in this case. The
robot’s name represents an object.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

212

Why Objects Are Useful
One neat feature about objects: they enable you to have multiple instances of a given class that run
simultaneously, but use different information.

Let’s continue with the toy robot example. If you have two toy robots that are exactly the same,
you can store the name “Tom” in the first robot, and the name “Jim” in the second, and they will both
perform their duties in the same way, but with different information. If you set them loose at the same
time, they will both start writing their names—Tom and Jim, respectively.

The advantage of using classes and objects in programming over procedural code is that an
object can save its state. This means that you can set a property in an object once, then reference it for as
long as the object exists.

In procedural code, you would need to pass that same property to every function to take
advantage of it. This makes function calls cumbersome, and this process can prove confusing if the same
functions must handle two or more sets of data.

Imagining Your Robot as a PHP Class
Let’s explore the benefits of OOP by building your toy robots with PHP.

Begin by defining the class, which you should call ToyRobot. Do this using the reserved class
keyword, followed by the class name, and then a pair of curly braces to enclose the class’s properties and
methods.

Next, create a new test file called ToyRobot.php in your simple_blog project, then define the
class by adding the following code:

<?php

class ToyRobot
{

}

?>

Class Propert ies

A property in a PHP class behaves similarly to a regular variable. The difference is that a class property is
specific to the instance of your class and available to the methods without being passed as an argument.

In your ToyRobot class, you have only one property: the robot’s name. You want to control how
the robot’s name is accessed and manipulated, so set this property as private, which ensures that only
the ToyRobot class’s methods can access the property’s value.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

213

MEMBER VISIBILITY IN OOP

Depending on how you use your classes, you need to assign the appropriate visibility declarations to their
methods and properties. The available visibility declarations include:

• public: Public properties and methods can be accessed anywhere in a script after the object has
been instantiated

• protected: Protected properties and methods can be accessed only within the class that defines
them, parent classes, or inherited classes (you can learn more about inheritance in the PHP manual
at http://us.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.extends)

• private: Private properties and methods can only be accessed by the class that defines them

You must assign all properties with a visibility declaration. Methods declared without a declaration
default to public visibility. In PHP4, developers used the var keyword to define object properties because
visibility declarations weren’t supported yet. For the sake of backward compatibility, PHP5 recognizes var
as an alias for public, although it does raise an E_STRICT warning. For more information on visibility
declarations, read the entry on it in the PHP manual, which you can find at http://us.php.net/
manual/en/language.oop5.visibility.php.

To declare a private property in your ToyRobot class, you need to add the lines in bold to
test.php:

<?php

class ToyRobot
{

 // Stores the name of this instance of the robot
 private $_name;
}

?>

Note Using an underscore before a private property name ($_name) is a widely accepted way of denoting private
properties.

Each instance of the ToyRobot class will likely have a different name, so you don’t specify a value
for the $_name property; instead, you accomplish this using the object’s constructor.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

214

Class Cons truc to rs

PHP5 introduced magic methods, which are essentially methods that execute when a certain action
occurs in a script. There are several available, but this book won’t delve into them because they don’t
apply to your blogging application. You can learn more about magic methods in its PHP manual entry at
http://us.php.net/manual/en/language.oop5.magic.php.

Constructors are one of the most commonly used magic methods available in PHP5. A
constructor is called when an object is instantiated, or first created. This allows you to initialize certain
parameters or other settings for an object when you create the object. You can leverage a constructor in
your ToyRobot class by declaring it in the __construct() magic method. You use this constructor to
define the $_name property.

Test this by adding the following code in bold to test.php:

<?php

class ToyRobot
{
 // Stores the name of this instance of the robot
 private $_name;

 // Sets the name property upon class instantiation
 public function __construct($name)
 {
 $this->_name = $name;
 }
}

?>

Note the use of $this in your class. In object-oriented PHP, $this is a reserved variable that

refers to the current object.
$this enables an object to refer to itself without needing to know what it’s called. This enables

multiple instances of a class to exist without conflict.
Next, consider the use of an arrow (->) after the $this keyword. This arrow indicates that you’re

accessing a property or method contained within the object. Again, this enables you to have multiple
instances of a class without conflict.

Finally, the preceding script lets you add the name of the property or method you want to
access (the $_name property, in this case). When accessing properties, you leave off the dollar sign
because you already use it with $this.

Your declared constructor will now allow you to define the name of each ToyRobot instance
right as you create it. The next step is to create the method that enables your ToyRobot class to write its
name.

Class Methods

You define a method in your ToyRobot class much as you declare a function in a procedural script. The
only difference is the visibility declaration and the ability to access class properties without needing to
accept them as function arguments.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

215

You en able your ToyRobot to write its name by defining a public method called writeName().
Add the code in bold to test.php:

<?php

class ToyRobot
{
 // Stores the name of this instance of the robot
 private $_name;

 // Sets the name property upon class instantiation
 public function __construct($name)
 {
 $this->_name = $name;
 }

 // Writes the robot's name
 public function writeName()
 {

 echo 'My name is ', $this->_name, '.
';
 }
}

?>

This method is straightforward: when called, it causes the robot to introduce itself. All that’s left

is to learn how to use objects in your scripts.

Using C lasses i n Your Scr ipts

The toy robot example initially discussed two robots: Tom and Jim. You’re now ready to use your new
PHP skills to build this pair of robots.

You use the new keyword to create a new instance of an object, followed by the name of the
class. You use the name of the class like a function call, which allows you to pass arguments (assuming
any are necessary) to your constructor.

Begin building Tom by adding the lines in bold to test.php:

<?php

// Create an instance of ToyRobot with the name "Tom"
$tom = new ToyRobot("Tom");

class ToyRobot
{
 // Stores the name of this instance of the robot
 private $_name;

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

216

 // Sets the name property upon class instantiation
 public function __construct($name)
 {
 $this->_name = $name;
 }

 // Writes the robot's name
 public function writeName()
 {
 echo 'My name is ', $this->_name, '.
';
 }
}

?>

At this point, you have created and instantiated your first PHP class. Passing Tom as an argument

to the object enables you to set the private $_name property to Tom, effectively giving your robot its name.
Now you can have Tom write his name by calling his writeName() method. Add the lines in bold

to test.php:

<?php

// Create an instance of ToyRobot with the name "Tom"
$tom = new ToyRobot("Tom");

// Have Tom introduce himself
$tom->writeName();

class ToyRobot
{
 // Stores the name of this instance of the robot
 private $_name;

 // Sets the name property upon class instantiation
 public function __construct($name)
 {
 $this->_name = $name;
 }

 // Writes the robot's name
 public function writeName()
 {
 echo 'My name is ', $this->_name, '.
';
 }
}

?>

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

217

Now you have some actual output to look at. Load test.php in your browser to see what Tom

had to say:

My name is Tom.

You’re now ready to build Jim and have him introduce himself; add the bold to test.php:

<?php

// Create an instance of ToyRobot with the name "Tom"
$tom = new ToyRobot("Tom");

// Have Tom introduce himself
$tom->writeName();

// Build Jim and have him introduce himself

$jim = new ToyRobot("Jim");
$jim->writeName();

class ToyRobot
{
 // Stores the name of this instance of the robot
 private $_name;

 // Sets the name property upon class instantiation
 public function __construct($name)
 {
 $this->_name = $name;
 }

 // Writes the robot's name
 public function writeName()
 {
 echo 'My name is ', $this->_name, '.
';
 }
}

?>

You should see the following when you load test.php in a browser:

My name is Tom.
My name is Jim.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

218

Your ToyRobot class is admittedly simple, but it exemplifies the power of using objects with
PHP. You can have two instances in use at the same time without any conflicts and without needing to
keep track of a bunch of variables.

Even if your objects are mixed in together, you still get the proper result. For instance, you can
replace the class instantiations in test.php with the following:

<?php

$tom = new ToyRobot("Tom");
$jim = new ToyRobot("Jim");

$tom->writeName();
$jim->writeName();

?>

This still outputs the following:

My name is Tom.
My name is Jim.

Armed with your new understanding of OOP, you’re ready to take on a new task: writing a class
to handle images.

Writing the Image Handling Class
Your first step, of course, is to define the ImageHandler class. You want this class to be portable, so you
should create a separate file for it called images.inc.php. You save this file in the inc folder (full path:
/xampp/htdocs/simple_blog/inc/images.inc.php). After you create images.inc.php, insert the following
code to define the class:

<?php

class ImageHandler
{

}

?>

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

219

Saving the Image
So far you’ve defined your class is defined; next, you need to determine what methods and properties
you need to define.

You need a public method that saves the uploaded image in a folder and returns its path. You
also need a public property that stores the folder you want your images saved in. This property is vital, so
set it in your constructor.

To be as descriptive as possible, call your method for uploading an image processUploadedImage..
Call the property that holds the folder’s location $save_dir.

In images.inc.php, define your properties and constructor first by adding the lines in bold:

<?php

class ImageHandler
{
 // The folder in which to save images
 public $save_dir;

 // Sets the $save_dir on instantiation
 public function __construct($save_dir)
 {
 $this->save_dir = $save_dir;
 }
}

?>

At this point, instantiating the ImageHandler class gives you an object that sets a folder

where you can save your images. At last you’re ready to save an image. Do this by creating your public
processUploadedImage() method.

Next, define the method by adding the lines in bold to images.inc.php:

<?php

class ImageHandler
{
 // The folder in which to save images
 public $save_dir;

 // Sets the $save_dir on instantiation
 public function __construct($save_dir)
 {
 $this->save_dir = $save_dir;
 }

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

220

 /**
 * Resizes/resamples an image uploaded via a web form
 *

 * @param array $upload the array contained in $_FILES
 * @return string the path to the resized uploaded file
 */
 public function processUploadedImage($file)
 {

 // Process the image
 }
}

?>

Note The block comment immediately before processUploadedImage() is a special comment known as a PHP
DocBlock. This is a special comment that provides information about a class, property, or method. DocBlocks are
indicated by opening a comment using /**, then providing a short description of the class, method, or property.
This process also lists a method’s list of parameters and its return value. All classes you write from now on will
take advantage of DocBlocks to help you keep track of the code you’re writing. An additional point of interest:
Some IDEs and SDKs (including Eclipse) use DocBlocks to provide descriptions of methods as they’re used,
including a list of parameters (defined using @param [datatype] [var_name] [description]) and the return
value (defined using @return [datatype] [description]).

You accept the file as an argument, which is the array you find in $_FILES. To process this file,
you need to break the array apart into individual values. You do this using the list() function, which
allows you to create named variables for each array index as a comma-separated list.

What that means becomes clear if you look at how you previously defined an array:

$array = array(
 'First value',
 'Second value'
);

The array values are separated by list() as follows:

list($first, $second) = $array;
echo $first, "
", $second;

This produces the following output:

First value
Second value

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

221

In processUploadedImage(), you need to pull out the five pieces of information supplied about
your uploaded file. You can accomplish this by adding the following code in bold to images.inc.php:

<?php

class ImageHandler
{
 // The folder in which to save images
 public $save_dir;

 // Sets the $save_dir on instantiation
 public function __construct($save_dir)
 {
 $this->save_dir = $save_dir;
 }

 /**
 * Resizes/resamples an image uploaded via a web form
 *
 * @param array $upload the array contained in $_FILES
 * @return string the path to the resized uploaded file
 */
 public function processUploadedImage($file)
 {
 // Separate the uploaded file array
 list($name, $type, $tmp, $err, $size) = array_values($file);

 // Finish processing
 }
}

?>

Checking for Errors Using Exceptions
Next, you need to check whether there an error occurred during the upload. When you’re dealing with
files uploaded through an HTML form, you have access to a special constant called UPLOAD_ERR_OK that
tells you whether a file uploaded successfully.

Before you try to process the file, you need to make sure that your $err value is equivalent to
UPLOAD_ERR_OK. Add the following code in bold to images.inc.php:

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

222

<?php

class ImageHandler
{
 // The folder in which to save images
 public $save_dir;

 // Sets the $save_dir on instantiation
 public function __construct($save_dir)
 {
 $this->save_dir = $save_dir;
 }

 /**
 * Resizes/resamples an image uploaded via a web form
 *
 * @param array $upload the array contained in $_FILES
 * @return string the path to the resized uploaded file
 */
 public function processUploadedImage($file)
 {
 // Separate the uploaded file array
 list($name, $type, $tmp, $err, $size) = array_values($file);

 // If an error occurred, throw an exception
 if($err != UPLOAD_ERR_OK) {

 throw new Exception('An error occurred with the upload!');
 return;
 }

 // Finish processing
 }
}

?>

Note the use of the throw new Exception() line. This is a special form of error handling

available in object-oriented scripts. Exceptions give you the ability to catch errors in your scripts without
displaying ugly error messages to your end user.

In its simplest form, an exception can return a custom error message to your user in the event
of an error. The preceding script takes this approach. Passing a string as an argument to the exception
lets you define a custom error message; I’ll cover how you handle Exceptions in a moment.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

223

Saving the File
So far you can determine whether your file was uploaded without error; the next step is to save an
uploaded file to your file system. Begin by assigning a path and filename to save. For now, you can use
the original name of the file, which you can grab from $save_dir of the instantiated object. This is the
path that displays the image.

However, you still don’t have enough information to save your file. Specifically, your site isn’t
stored at the web root, so you need to get the root path of your site to generate an absolute path, which
you can use to save the file. Fortunately, the $_SERVER superglobal stores the document root path for you,
so all you need to do is include its value to save the image.

You can establish your paths by adding the code in bold to images.inc.php:

<?php

class ImageHandler
{
 // The folder in which to save images
 public $save_dir;

 // Sets the $save_dir on instantiation
 public function __construct($save_dir)
 {
 $this->save_dir = $save_dir;
 }

 /**
 * Resizes/resamples an image uploaded via a web form
 *
 * @param array $upload the array contained in $_FILES
 * @return string the path to the resized uploaded file
 */
 public function processUploadedImage($file)
 {
 // Separate the uploaded file array
 list($name, $type, $tmp, $err, $size) = array_values($file);

 // If an error occurred, throw an exception
 if($err != UPLOAD_ERR_OK) {
 throw new Exception('An error occurred with the upload!');
 exit;
 }

 // Create the full path to the image for saving
 $filepath = $this->save_dir . $name;

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

224

 // Store the absolute path to move the image
 $absolute = $_SERVER['DOCUMENT_ROOT'] . $filepath;

 // Finish processing
 }
}

?>

For example, if your $filepath is simple_blog/images/IMG001.jpg, your $absolute value might

be /Applications/XAMPP/xamppfiles/htdocs/simple_blog/images/IMG001.jpg.
Now that you have your paths on hand, you can save your image to the file system. Do this

using the move_uploaded file() function, which accepts two arguments: the temporary location of an
uploaded file and the location where that file should be saved permanently.

You can save your image by adding the following code in bold to images.inc.php:

<?php

class ImageHandler
{
 // The folder in which to save images
 public $save_dir;

 // Sets the $save_dir on instantiation
 public function __construct($save_dir)
 {
 $this->save_dir = $save_dir;
 }

 /**
 * Resizes/resamples an image uploaded via a web form
 *
 * @param array $upload the array contained in $_FILES
 * @return string the path to the resized uploaded file
 */
 public function processUploadedImage($file)
 {
 // Separate the uploaded file array
 list($name, $type, $tmp, $err, $size) = array_values($file);

 // If an error occurred, throw an exception
 if($err != UPLOAD_ERR_OK) {
 throw new Exception('An error occurred with the upload!');
 exit;
 }

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

225

 // Create the full path to the image for saving
 $filepath = $this->save_dir . '/' . $name;

 // Store the absolute path to move the image
 $absolute = $_SERVER['DOCUMENT_ROOT'] . $filepath;

 // Save the image

 if(!move_uploaded_file($tmp, $absolute))
 {
 throw new Exception("Couldn't save the uploaded file!");
 }

 return $filepath;
 }
}

?>

At this point, you’re ready to try out your class!

Modifying update.inc.php to Save Images
You’ve put your class together; next, you need to instantiate it in update.inc.php and feed it your
uploaded image.

You can do this by opening update.inc.php and modifying it so it contains the lines in bold:

<?php

// Include the functions so you can create a URL
include_once 'functions.inc.php';

// Include the image handling class
include_once 'images.inc.php';

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry'
 && !empty($_POST['page'])
 && !empty($_POST['title'])
 && !empty($_POST['entry']))
{
 // Create a URL to save in the database
 $url = makeUrl($_POST['title']);

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

226

 if(isset($_FILES['image']['tmp_name']))
 {
 try

 {
 // Instantiate the class and set a save path
 $img = new ImageHandler("/simple_blog");

 // Process the file and store the returned path

 $img_path = $img->processUploadedImage($_FILES['image']);

 // Output the uploaded image as it was saved
 echo '
';
 }

 catch(Exception $e)
 {
 // If an error occurred, output your custom error message
 die($e->getMessage());
 }

 }
 else
 {
 // Avoids a notice if no image was uploaded
 $img_path = NULL;

 }

 // Outputs the saved image path
 echo "Image Path: ", $img_path, "
";
 exit; // Stops execution before saving the entry

 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

The most important task this code accomplishes is to make your ImageHandler class available by

including images.inc.php. Next, you need to check whether an image was uploaded, which you
accomplish by making sure the temporary file exists.

Using try...catch with Exceptions
Your next task introduces a new construct: the try...catch statement. You use this construct with
exceptions to handle errors gracefully. Essentially it says: “Run this snippet of code. If an exception is
thrown, catch it and perform the following snippet.”

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

227

In your image handling snippet, you place your object instantiation and processing within a try
block. Doing so ensures that you can output the custom error message by grabbing the message within
the catch block if any of the custom errors you define within the class are thrown.

Inside your try block, you instantiate the ImageHandler object and pass “/simple_blog” as its
argument, which sets the $save_dir property. Next, you call processUploadedImage() and pass the
uploaded file as its argument. processUploadedImage() returns the file’s path, so you store that in a
variable called $img_path, which you use (for now) to output the image for viewing via an HTML
tag.

Finally, you output the image path as plain text and exit the script to prevent your test entries
from being saved to the database.

You can test your class by uploading an image. Navigate to your admin form in a browser and
fill out the form with test data (you don’t save this), then select a file to upload. When you press the Save
Entry button, you should see your image displayed, along with its path (see Figure 8-2).

Figure 8-2. An image uploaded by your ImageHandler class

If you look at your simple_blog folder in the file system, you’ll see that the image has been saved
(see Figure 8-3).

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

228

Figure 8-3. The uploaded image saved in the simple_blog folder

This isn’t necessarily bad, but it does cause clutter in your folder. You can clear this up by
creating a new folder to store images in.

Creating a New Folder
You could simply create the folder manually, but it’s better to use PHP to check whether a folder exists,
then create it if it doesn’t. This way, you have to change only the path if the folder you wish to save
images in changes in the future; the alternative is to go in and manipulate the file system directly.

You can make a new folder by creating a new method in your ImageHandler class called
checkSaveDir() that creates a directory if it doesn’t exist already.

Begin by declaring your method in ImageHandler. This method is private, so you want to make
sure you control its use. In images.inc.php, after processUploadedImage(), define your new method by
adding the code in bold:

<?php

class ImageHandler
{
 public $save_dir;

 public function __construct($save_dir)
 {
 $this->save_dir = $save_dir;
 }

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

229

 /**
 * Resizes/resamples an image uploaded via a web form
 *
 * @param array $upload the array contained in $_FILES
 * @return string the path to the resized uploaded file
 */
 public function processUploadedImage($file, $rename=TRUE)
 {
 // Separate the uploaded file array
 list($name, $type, $tmp, $err, $size) = array_values($file);

 // If an error occurred, throw an exception
 if($err != UPLOAD_ERR_OK) {
 throw new Exception('An error occurred with the upload!');
 exit;
 }

 // Create the full path to the image for saving
 $filepath = $this->save_dir . $name;

 // Store the absolute path to move the image
 $absolute = $_SERVER['DOCUMENT_ROOT'] . $filepath;

 // Save the image
 if(!move_uploaded_file($tmp, $absolute))
 {
 throw new Exception("Couldn't save the uploaded file!");
 }

 return $filepath;
 }

 /**
 * Ensures that the save directory exists
 *
 * Checks for the existence of the supplied save directory,

 * and creates the directory if it doesn't exist. Creation is
 * recursive.
 *
 * @param void
 * @return void

 */

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

230

 private function checkSaveDir()
 {
 // Check for the dir

 }

}

?>

You’ve declared your method. Next you need to figure out which path to check. As with

processUploadedImage(), you use the $_SERVER superglobal and your $save_dir property to create your
path to check. The only difference is that you don’t attach a file name this time.

Add the lines in bold to checkSaveDir() to store your path to check:

 /**
 * Ensures that the save directory exists
 *
 * Checks for the existence of the supplied save directory,
 * and creates the directory if it doesn't exist. Creation is
 * recursive.
 *
 * @param void
 * @return void
 */
 private function checkSaveDir()
 {
 // Determines the path to check
 $path = $_SERVER['DOCUMENT_ROOT'] . $this->save_dir;

 // Check for the dir
 }

Next, you need to see whether the $path you’ve stored exists. PHP provides a function to do

exactly this in is_dir(). If the path exists, is_dir() returns TRUE; otherwise, it returns FALSE. You want to
continue processing only if the directory doesn’t exist, so add a check to see whether is_dir() returns
FALSE before continuing. Insert the lines in bold into checkSaveDir():

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

231

 /**
 * Ensures that the save directory exists
 *
 * Checks for the existence of the supplied save directory,
 * and creates the directory if it doesn't exist. Creation is
 * recursive.
 *
 * @param void
 * @return void
 */
 private function checkSaveDir()
 {
 // Determines the path to check
 $path = $_SERVER['DOCUMENT_ROOT'] . $this->save_dir;

 // Checks if the directory exists
 if(!is_dir($path))
 {
 // Create the directory

 }
 }

If the directory doesn’t exist, you need to create it. You accomplished in PHP with the mkdir()

function, which translates in plain English to make directory. You need to pass three arguments to
mkdir() for it to work properly: the path, the mode, and a value that indicates whether directories should
be created recursively.

The first argument, the path, is what you just created and stored in the $path variable.
The second argument, the mode, describes how to set the folder permissions. The default mode

is 0777, which provides the widest possible access. Your image files are not sensitive, so you display them
to any user viewing your page.

Note For more information on file permissions, check the PHP manual entry on chmod()at http://php.net/
chmod. Basically, you set folder permissions using an octal number, where each number represents who can
access the file (owner, owner’s group, and everyone else). Each number represents a level of permission, with 7
being the highest (read, write, and execute).

Your third argument is a boolean value that tells the function whether directories should be
created recursively. Only one directory at a time can be created when set to FALSE (the default). This
means you need to call mkdir() twice if you want to add two subdirectories to the simple_blog folder
with the path, simple_blog/images/uploads/. If you set the third argument to TRUE, however, you can
create both directories with a single function call.

You need to control access to this method, so you allow the function to create directories
recursively.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

232

You can create the directory in the simple_blog folder by adding the lines in bold to
checkSaveDir():

 /**
 * Ensures that the save directory exists
 *
 * Checks for the existence of the supplied save directory,
 * and creates the directory if it doesn't exist. Creation is
 * recursive.
 *
 * @param void
 * @return void
 */
 private function checkSaveDir()
 {
 // Determines the path to check
 $path = $_SERVER['DOCUMENT_ROOT'] . $this->save_dir;

 // Checks if the directory exists
 if(!is_dir($path))
 {

 // Creates the directory
 if(!mkdir($path, 0777, TRUE))
 {
 // On failure, throws an error
 throw new Exception("Can't create the directory!");

 }
 }
 }

This code includes a provision to throw an exception if mkdir() returns FALSE, which means it

failed. Your method is finally ready. You want to call it from the processUploadedImage() method before
you attempt to move the uploaded file. Implement this by adding the lines in bold lines to
processUploadedImage():

 /**
 * Resizes/resamples an image uploaded via a web form
 *
 * @param array $upload the array contained in $_FILES
 * @return string the path to the resized uploaded file
 */
 public function processUploadedImage($file)
 {
 // Separate the uploaded file array
 list($name, $type, $tmp, $err, $size) = array_values($file);

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

233

 // If an error occurred, throw an exception
 if($err != UPLOAD_ERR_OK) {
 throw new Exception('An error occurred with the upload!');
 exit;
 }

 // Check that the directory exists

 $this->checkSaveDir();

 // Create the full path to the image for saving
 $filepath = $this->save_dir . $name;

 // Store the absolute path to move the image
 $absolute = $_SERVER['DOCUMENT_ROOT'] . $filepath;

 // Save the image
 if(!move_uploaded_file($tmp, $absolute))
 {
 throw new Exception("Couldn't save the uploaded file!");
 }

 return $filepath;
 }

It’s time to test your new function. In update.inc.php, modify your object instantiation to use

this path as the $save_dir: /simple_blog/images/.
Your code should look like this:

<?php

// Include the functions so you can create a URL
include_once 'functions.inc.php';

// Include the image handling class
include_once 'images.inc.php';

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry'
 && !empty($_POST['page'])
 && !empty($_POST['title'])
 && !empty($_POST['entry']))
{
 // Create a URL to save in the database
 $url = makeUrl($_POST['title']);

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

234

 if(isset($_FILES['image']['tmp_name']))
 {
 try
 {
 // Instantiate the class and set a save path

 $img = new ImageHandler("/simple_blog/images/");

 // Process the file and store the returned path
 $img_path = $img->processUploadedImage($_FILES['image']);

 // Output the uploaded image as it was saved
 echo '
';
 }
 catch(Exception $e)
 {
 // If an error occurred, output your custom error message
 die($e->getMessage());
 }
 }
 else
 {
 // Avoids a notice if no image was uploaded
 $img_path = NULL;
 }

 // Outputs the saved image path
 echo "Image Path: ", $img_path, "
";
 exit; // Stops execution before saving the entry

 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

Save update.inc.php and navigate to your admin form in a browser, then fill out the form and

submit an image. After you click the Save Entry button, you should see the image you uploaded
previously, as well as its path; your script places the image in the newly created images folder (see
Figure 8-4).

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

235

Figure 8-4. The image uploaded shows that it’s been stored in the new images folder.

You can check the file system manually to see your new folder and the saved, uploaded image
(see Figure 8-5).

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

236

Figure 8-5. The images folder has been created, and the image has been saved in it.

You’re almost ready to start working with the database. First, however, you need to make sure
that your images have unique names, so you don’t accidentally overwrite older uploads with new ones.

Renaming the Image
You can’t trust that every file uploaded to your blog will be uniquely named, so you need to rename any
image that is uploaded to your blog. Otherwise, it’s possible for a user who uploads an image named to
overwrite that image later if he submits a future image with the same name. In this case, the new image
would suddenly appear for the older entry, as well as the new one, and you would lose the old image.

You can avoid this by creating a new private method in ImageHandler that generates a new,
unique name for any uploaded image. You can make sure this name is unique by using the current
timestamp and a random four-digit number between 1000 and 9999. This way, even images uploaded
during the same second will receive unique names.

Note This method is not 100% effective, but the likelihood of two images being uploaded at the exact same
second and generating the exact same random number is so slim that it will most likely never be a problem.

This method is a one-liner that accepts one argument: the file extension you want to use (we’ll
get to how you know what file extension to send in just a moment). The method returns the current
timestamp, an underscore, a random number, and a file extension.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

237

It’s time to add your method to ImageHandler by inserting the code in boldafter
processUploadedImage() in images.inc.php:

 /**

 * Generates a unique name for a file
 *
 * Uses the current timestamp and a randomly generated number
 * to create a unique name to be used for an uploaded file.

 * This helps prevent a new file upload from overwriting an
 * existing file with the same name.
 *
 * @param string $ext the file extension for the upload
 * @return string the new filename

 */
 private function renameFile($ext)
 {
 /*
 * Returns the current timestamp and a random number

 * to avoid duplicate filenames
 */
 return time() . '_' . mt_rand(1000,9999) . $ext;
 }

Determining the File Extension
Before renameFile() can work, you need to figure out the uploaded image’s extension. Do this by
accessing the image’s type with the value stored in $type in processUploadedImage().

All uploaded files have a content type, which you can use to determine the proper file extension
to use. You need to make sure you’re processing only images, so you use a switch and match the known
content types you want to accept, then set a default action to throw an error if an unexpected content
type is passed.

The content types you want to accept are:

• image/gif: A GIF image (.gif)

• image/jpeg: A JPEG image (.jpg)

• image/pjpeg: A JPEG image as it is recognized by certain browsers, which uses the same file
extension as a “normal” JPEG (.jpg)

• image/png: A PNG image (.png)

To check for content types, you create a new private method called getImageExtension(). This
method contains the switch just discussed and returns the proper file extension. Add the following code
in bold to images.inc.php just after renameFile():

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

238

 /**

 * Determines the filetype and extension of an image
 *
 * @param string $type the MIME type of the image
 * @return string the extension to be used with the file
 */

 private function getImageExtension($type)
 {
 switch($type) {
 case 'image/gif':
 return '.gif';

 case 'image/jpeg':
 case 'image/pjpeg':
 return '.jpg';

 case 'image/png':

 return '.png';

 default:
 throw new Exception('File type is not recognized!');
 }

 }

Now you can retrieve the file extension to pass to renameFile(), which means you’re ready to

implement the methods in processUploadedImage().
There might be a point at which you no longer wish to rename files, so you should add an

argument to processUploadedImage() that holds a boolean value. If set to TRUE (the default), the image is
renamed; if set to FALSE, the original filename is used.

You can add file renaming to your method by adding the following code in bold to
processUploadedImage():

 /**
 * Resizes/resamples an image uploaded via a web form
 *
 * @param array $upload the array contained in $_FILES

 * @param bool $rename whether or not the image should be renamed
 * @return string the path to the resized uploaded file
 */

 public function processUploadedImage($file, $rename=TRUE)
 {
 // Separate the uploaded file array
 list($name, $type, $tmp, $err, $size) = array_values($file);

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

239

 // If an error occurred, throw an exception
 if($err != UPLOAD_ERR_OK) {
 throw new Exception('An error occurred with the upload!');
 exit;
 }

 // Check that the directory exists
 $this->checkSaveDir();

 // Rename the file if the flag is set to TRUE

 if($rename===TRUE) {
 // Retrieve information about the image
 $img_ext = $this->getImageExtension($type);

 $name = $this->renameFile($img_ext);

 }

 // Create the full path to the image for saving
 $filepath = $this->save_dir . $name;

 // Store the absolute path to move the image
 $absolute = $_SERVER['DOCUMENT_ROOT'] . $filepath;

 // Save the image
 if(!move_uploaded_file($tmp, $absolute))
 {
 throw new Exception("Couldn't save the uploaded file!");
 }

 return $filepath;
 }

Save images.inc.php and try uploading another image through the admin form. You should see

a renamed file stored in the file system, as well as on your screen (see Figure 8-6).

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

240

Figure 8-6. An image renamed by your script

Your ImageHandler class now accepts, renames, and stores images in your file system, which
means you’re ready to start working with the database.

Storing and Retrieving Images from the Database
If you need to, you can store the image itself in the database as a BLOB column. However, it’s much
more efficient to save the path to the image in the database instead. This means you need to do three
things to save an image:

• Add an image column to the entries table

• Modify update.inc.php to save the image path along with the rest of the entry

• Modify retrieveEntries() to select the new image column

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

241

Modifying the entries Table
Your next step is to add the image column to your entries table. You do this the same way that you
added all the other columns to your table.

Navigate to http://localhost/phpmyadmin, open the simple_blog database, select the entries
table, and open the SQL tab. Insert the following command to add the image column:

ALTER TABLE entries
ADD image VARCHAR(150) DEFAULT NULL
AFTER title

This creates an image column after the title column, which stores a 150-character string and

defaults to NULL if no value is supplied.

Modifying update.inc.php to Save Images
Now that your entries table can store the image path, it’s time to modify update.inc.php to save the
image path.

You’ve already done everything necessary to make the image path available. All you need to do
is remove the sections of code that output the image and exit the script.

After the code no longer outputs image data, you need to modify your queries to include the
image path. You do this for both new entries and updated entries.

You can save the image path in the database by modifying update.inc.php to reflect the
changes shown in bold:

<?php

// Include the functions so you can create a URL
include_once 'functions.inc.php';

// Include the image handling class
include_once 'images.inc.php';

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry'
 && !empty($_POST['page'])
 && !empty($_POST['title'])
 && !empty($_POST['entry']))

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

242

{
 // Create a URL to save in the database
 $url = makeUrl($_POST['title']);

 if(isset($_FILES['image']['tmp_name']))
 {
 try

 {
 // Instantiate the class and set a save dir
 $img = new ImageHandler("/simple_blog/images/");

 // Process the uploaded image and save the returned path

 $img_path = $img->processUploadedImage($_FILES['image']);
 }
 catch(Exception $e)
 {
 // If an error occurred, output your custom error message

 die($e->getMessage());
 }
 }
 else
 {

 // Avoids a notice if no image was uploaded
 $img_path = NULL;
 }

 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Edit an existing entry
 if(!empty($_POST['id']))
 {
 $sql = "UPDATE entries
 SET title=?, image=?, entry=?, url=?
 WHERE id=?

 LIMIT 1";

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

243

 $stmt = $db->prepare($sql);
 $stmt->execute(

 array(
 $_POST['title'],
 $img_path,
 $_POST['entry'],
 $url,

 $_POST['id']
)
);
 $stmt->closeCursor();
 }

 // Create a new entry
 else
 {
 // Save the entry into the database

 $sql = "INSERT INTO entries (page, title, image, entry, url)
 VALUES (?, ?, ?, ?, ?)";
 $stmt = $db->prepare($sql);

 $stmt->execute(
 array(
 $_POST['page'],
 $_POST['title'],
 $img_path,

 $_POST['entry'],
 $url
)
);
 $stmt->closeCursor();
 }

 // Sanitize the page information for use in the success URL
 $page = htmlentities(strip_tags($_POST['page']));

 // Send the user to the new entry
 header('Location: /simple_blog/'.$page.'/'.$url);
 exit;
}

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

244

else
{
 header('Location: ../');
 exit;
}

?>

At this point, you’re ready to create a new entry with an image. Navigate to your admin form in

a browser and create an entry with the following information:

• Title: Entry with an image

• Body: This entry is created with an accompanying image

Add an image, then click Save Entry. If you look in the database, you should see that an image
path has been saved in the image column.

Now you need to retrieve the path from the database to display uploaded images with the entry.

Modifying retrieveEntries() to Retrieve Images
Your first step in displaying saved images is to add the image column to the array returned from
retrieveEntries(). This is easy to do; it requires only that you add the column name to the SQL query.

Modify retrieveEntries() in functions.inc.php to reflect the changes shown in bold:

function retrieveEntries($db, $page, $url=NULL)
{
 /*
 * If an entry URL was supplied, load the associated entry
 */
 if(isset($url))
 {
 $sql = "SELECT id, page, title, image, entry

 FROM entries
 WHERE url=?
 LIMIT 1";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($url));

 // Save the returned entry array
 $e = $stmt->fetch();

 // Set the fulldisp flag for a single entry
 $fulldisp = 1;
 }

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

245

 /*
 * If no entry ID was supplied, load all entry titles for the page
 */
 else
 {
 $sql = "SELECT id, page, title, image, entry, url

 FROM entries
 WHERE page=?
 ORDER BY created DESC";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($page));

 $e = NULL; // Declare the variable to avoid errors

 // Loop through returned results and store as an array
 while($row = $stmt->fetch()) {
 if($page=='blog')
 {
 $e[] = $row;
 $fulldisp = 0;
 }
 else
 {
 $e = $row;
 $fulldisp = 1;
 }
 }

 /*
 * If no entries were returned, display a default
 * message and set the fulldisp flag to display a
 * single entry
 */
 if(!is_array($e))
 {
 $fulldisp = 1;
 $e = array(
 'title' => 'No Entries Yet',
 'entry' => 'This page does not have an entry yet!'
);
 }
 }

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

246

 // Add the $fulldisp flag to the end of the array
 array_push($e, $fulldisp);

 return $e;
}

Now you can access the value stored in the image column, just as you access all the other

information in an entry. Next, you need to use this information to display the image for the world to see.

Modifying index.php to Display Images
Unlike text entries, images require a little bit of special treatment when you retrieve them from the
database. You can’t simply check whether the value is set, then output it; instead, you need to create
some extra HTML markup to display images properly.

For the sake of keeping your code clean, you need to write a function that checks whether an
image exists and return the appropriate HTML markup if it does.

Adding a Function to Format Images for Output
You add this function to functions.inc.php. The function accepts two arguments: the path to the image
and the title of the entry (you use this as an alt attribute).

Its functionality is simple: if an image path is supplied, return valid HTML markup; if not,
return NULL.

Open functions.inc.php and add the new function after the existing functions:

function formatImage($img=NULL, $alt=NULL)
 {

 if(isset($img))
 {
 return '';
 }
 else

 {
 return NULL;
 }
}

With your new function in place, you can add your image to the displayed entry. For the sake of

organization, you display images only with a fully displayed entry.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

247

Your image handling is taken care of in an external function, so you can add your image to the
display with just two lines of code. In index.php, where the block of code that handles full display is
located, modify the script to contain the lines in bold:

<?php

// If the full display flag is set, show the entry
if($fulldisp==1)
{

 // Get the URL if one wasn't passed
 $url = (isset($url)) ? $url : $e['url'];

 // Build the admin links
 $admin = adminLinks($page, $url);

 // Format the image if one exists
 $img = formatImage($e['image'], $e['title']);

?>

 <h2> <?php echo $e['title'] ?> </h2>
 <p> <?php echo $img, $e['entry'] ?> </p>
 <p>
 <?php echo $admin['edit'] ?>
 <?php if($page=='blog') echo $admin['delete'] ?>
 </p>
 <?php if($page=='blog'): ?>
 <p class="backlink">
 Back to Latest Entries
 </p>
 <?php endif; ?>

If you navigate to http://localhost/simple_blog/ and select your new entry, “Entry with an

Image”; you should see the image displayed with your text (see Figure 8-7).
Unfortunately, the layout doesn’t look very good if a large image is displayed (as shown in

Figure 8-7). You don’t want to resize every image uploaded manually, so you need to add new
functionality to your ImageHandler class that resizes large images automatically.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

248

Figure 8-7. Your image displayed with the accompanying text

Resizing Images
Resizing images is a little tricky, but you can break the process down into small sections. Resizing an
image requires several steps:

• Determine new dimensions based on the defined maximum dimensions

• Determine which image handling functions are necessary for resampling

• Resample the image at the proper size

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

249

Determining the New Image Dimensions
Begin the process of resizing an image by determining what size the image should actually be.
Unfortunately, you can’t simply tell your script that all images should be 350 pixels by 240 pixels because
forcing an image to match dimensions that aren’t proportional to an image’s original dimensions causes
distortion, which doesn’t look good.

Instead, you need to determine the proportional size of the image that will fit within the
maximum dimensions you set. You can accomplish this following several math steps:

• Determine which side of the image is the longer

• Divide the maximum dimension that corresponds to the long side by the long side’s size

• Use the resulting decimal point to multiply both sides of the image

• Round the product to keep an integer value

• Use the product of this multiplication as the new width and height of the image

Adding a Property for Maximum Dimensions
Before you can start performing any resizing, you need to define maximum dimensions for uploaded
images. This might need to change at some future point, so you define a new property in the
ImageHandler class, called $max_dims. This property stores an array of the maximum width and height
allowed for uploaded images.

You set this property in the constructor, but be aware that you need to use a default value so
that it doesn’t need to be set for the class to work.

At the top of the ImageHandler class, modify the property declarations and constructor as shown
by the code in bold:

class ImageHandler
{
 public $save_dir;
 public $max_dims;

 public function __construct($save_dir, $max_dims=array(350, 240))
 {
 $this->save_dir = $save_dir;
 $this->max_dims = $max_dims;
 }

The maximum dimensions of 350 pixels by 240 pixels are acceptable for the layout of your

current site. These are the default values, so don’t worry about adding maximum dimensions to the class
instantiation. However, if you needed to change the size of your images, you can change the dimensions
using the following instantiation of ImageHandler:

$obj = new ImageHandler('/images/', array(400, 300));

This snippet sets the maximum dimensions allowed to 400 pixels wide by 300 pixels high.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

250

Creating the Method to Determine New Width and Height
You have your maximum dimensions prepared; next, you need to define a new private method in the
ImageHandler class. Place this method at the bottom of the class and accept one argument: the image for
which you need new dimensions.

In images.inc.php, add the following method declaration:

 /**

 * Determines new dimensions for an image
 *
 * @param string $img the path to the upload
 * @return array the new and original image dimensions

 */
 private function getNewDims($img)
 {
 // Get new image dimensions
 }

You can determine the original dimensions of your image with a function called getimagesize().This

function returns the width and height of the image supplied as an argument (as well as other information I’ll
address in a moment).

You use the list() function to define the first two array elements as the $src_w (source width)
and $src_h (source height) variables.

Next, you use the maximum dimensions that you just added to the class. Again, use the list()
function to separate their values into $max_w (maximum width) and $max_h (maximum height), then add
the following code in bold to getNewDims():

 /**
 * Determines new dimensions for an image
 *
 * @param string $img the path to the upload
 * @return array the new and original image dimensions
 */
 private function getNewDims($img)
 {
 // Assemble the necessary variables for processing

 list($src_w, $src_h) = getimagesize($img);
 list($max_w, $max_h) = $this->max_dims;

 // Finish processing
 }

Before you start resizing your image, you need to check that it is, in fact, larger than your

maximum dimensions. Otherwise, small images will be blown up, which can make them look bad. You
accomplish this by checking whether either the original image’s width or height is greater than the
maximum corresponding dimension.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

251

If so, you need to determine the scale to which you should resize the image. You can determine
this by dividing the maximum length of both sides by the original length and returning the smaller of the
two values using the min() function, which compares two or more expressions and returns the lowest
value.

After you know what side is longer, you use the corresponding maximum dimension to
determine the scale. You determine the scale by dividing the smaller maximum dimension by the
original dimension, which gives you a decimal value (for instance, if your maximum size is 60 pixels, and
the original size is 100 pixels, the scale is .6).

In the event that your image is smaller than the maximum allowed dimensions, you want to
keep it the same size. Do this by setting the scale to 1.

Add the code in bold to getNewDims() to determine the scale:

 /**
 * Determines new dimensions for an image
 *
 * @param string $img the path to the upload
 * @return array the new and original image dimensions
 */
 private function getNewDims($img)
 {
 // Assemble the necessary variables for processing
 list($src_w, $src_h) = getimagesize($img);
 list($max_w, $max_h) = $this->max_dims;

 // Check that the image is bigger than the maximum dimensions
 if($src_w > $max_w || $src_h > $max_h)
 {

 // Determine the scale to which the image will be resized
 $s = min($max_w/$src_w,$max_h/$src_h);
 }
 else
 {

 /*
 * If the image is smaller than the max dimensions, keep
 * its dimensions by multiplying by 1
 */
 $s = 1;

 }

 // Finish processing
 }

Finally, you need to multiply the original dimensions by the scale you’ve just determined, then

return the new dimensions (as well as the old dimensions for reasons I’ll cover momentarily) as an array.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

252

To accomplish this, insert the lines bold into getNewDims():

 /**
 * Determines new dimensions for an image
 *
 * @param string $img the path to the upload
 * @return array the new and original image dimensions
 */
 private function getNewDims($img)
 {
 // Assemble the necessary variables for processing
 list($src_w, $src_h) = getimagesize($img);
 list($max_w, $max_h) = $this->max_dims;

 // Check that the image is bigger than the maximum dimensions
 if($src_w > $max_w || $src_h > $src_h)
 {
 // Determine the scale to which the image will be resized
 $s = min($max_w/$src_w,$max_h/$src_h);
 }
 else
 {
 /*
 * If the image is smaller than the max dimensions, keep
 * its dimensions by multiplying by 1
 */
 $s = 1;
 }

 // Get the new dimensions
 $new_w = round($src_w * $s);

 $new_h = round($src_h * $s);

 // Return the new dimensions
 return array($new_w, $new_h, $src_w, $src_h);
 }

Determining Which Image Functions to Use
You use two functions when resampling your images: one to create an image resource and one to save
your resampled image in a format of your choosing.

Your blog accepts three types of image files (JPEG, GIF, and PNG),, and each of these image
types requires an individual set of functions to create and save images. Specifically, you use
imagecreatefromjpeg(), imagecreatefromgif(), or imagecreatefrompng() to create the images,
depending on the named file type.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

253

Similarly, you save the images using imagejpeg(), imagegif(), or imagepng()—again, depending
on the appropriate file type.

You want to eliminate redundant code, so you need to write a method that checks what type of
image you’re using and returns the names of the functions you should use with the uploaded image.

Call this private method getImageFunctions(); you will use it to return an array containing the
names of the functions for creating and saving your images, which you determine with a switch statement.

Your original $type variable is out of the scope for this method, so use the getimagesize()
function again. However, this time you need to access the array element that holds the image’s MIME
type, which you access using the mime array key.

In images.inc.php, declare the getImageFunctions() method and store the output of
getimagesize(). Next, pass the MIME type to a switch statement that returns the proper array of function
names. You accomplish all of this by adding the following method at the bottom of the ImageHandler class:

 /**

 * Determines how to process images
 *
 * Uses the MIME type of the provided image to determine
 * what image handling functions should be used. This
 * increases the perfomance of the script versus using

 * imagecreatefromstring().
 *
 * @param string $img the path to the upload
 * @return array the image type-specific functions
 */
 private function getImageFunctions($img)

 {
 $info = getimagesize($img);

 switch($info['mime'])
 {

 case 'image/jpeg':
 case 'image/pjpeg':
 return array('imagecreatefromjpeg', 'imagejpeg');
 break;
 case 'image/gif':

 return array('imagecreatefromgif', 'imagegif');
 break;
 case 'image/png':
 return array('imagecreatefrompng', 'imagepng');
 break;

 default:
 return FALSE;
 break;
 }
 }

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

254

Now you’re able to get functions specific to the image type quickly; I’ll cover how you use these

in a moment.

Resampling the Image at the Proper Size
Finally, you’re ready to resample the image. You do this inside a new private method called
doImageResize(), which accepts one argument: the image to be resampled.

This method performs its magic in five steps:

• It determines the new dimensions for the image

• It determines the functions needed to resample the image

• It creates image resources to use in the resampling

• It resamples the image at the proper size

• It saves the resampled image

The first two steps are already done; you simply need to call the getNewDims() and
getImageFunctions() methods you defined previously.

Begin by defining your method in ImageHandler and calling your methods. Add the following to
images.inc.php in the ImageHandler class:

 /**
 * Generates a resampled and resized image
 *

 * Creates and saves a new image based on the new dimensions
 * and image type-specific functions determined by other
 * class methods.
 *
 * @param array $img the path to the upload

 * @return void
 */
 private function doImageResize($img)
 {
 // Determine the new dimensions

 $d = $this->getNewDims($img);

 // Determine what functions to use
 $funcs = $this->getImageFunctions($img);

 // Finish resampling
 }

Next you need to create the image resources that PHP uses to deal with images. For your

resampling, you need to create two resources. The first is the original image, which you save as a

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

255

resource using the first of your two functions specific to the image type. The second is a new, blank
image resource, which you copy the resampled image into. You create the second image resource with a
different function called imagecreatetruecolor(); this function accepts two arguments: the width and
height of the new image resource you want to create.

To create your image resources, add the lines in bold to doImageResize():

 /**
 * Generates a resampled and resized image
 *
 * Creates and saves a new image based on the new dimensions
 * and image type-specific functions determined by other
 * class methods.
 *
 * @param array $img the path to the upload
 * @return void
 */
 private function doImageResize($img)
 {
 // Determine the new dimensions
 $d = $this->getNewDims($tmp);

 // Determine what functions to use
 $funcs = $this->getImageFunctions($img);

 // Create the image resources for resampling

 $src_img = $funcs[0]($img);
 $new_img = imagecreatetruecolor($d[0], $d[1]);

 // Finish resampling
 }

Note that you’re calling your image type-specific function with the snippet, $funcs[0]($img).

This is a trick available to developers for instances just like this one, where the function you want to call
varies based on the current data being handled.

So far you have your image resources; next, you can copy the original image into the new image
resource using the complicated-looking imagecopyresampled() function, which accepts a whopping ten
arguments:

• $dst_image: This is the destination image that serves as your new image resource ($new_img).

• $src_image: This is the source image that you copy your new image from ($src_img).

• $dst_x: This is the offset from the new image’s left-hand side; you use this to start inserting the
source image. This value is usually 0, but if you overlay something like a watermark, you might
need to insert the source image in the bottom-right corner, which would require a different
value.

• $dst_y: The is the offset from the new image’s top; you use this to start inserting the source
image.

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

256

• $src_x: This is the offset from the source image’s left-hand side; you use this to start copying
image data. This value is usually 0, but this value can vary if you’re cropping an image.

• $src_y: This is the offset from the top of the source image; you use this to start copying the
source image.

• $dst_w : This argument specifies thewidth at which you should insert the copied image. You use
the new width value stored at $d[0].

• $dst_h: This argument specifies the height at which you insert the copied image. You use the
new height value stored at $d[1].

• $src_w: This argument describes the distance from the starting point to copy horizontally.
Usually, this value matches the original size of the image, but this value can shorter than the
original width if your image is cropped. You use the original width value stored at $d[2].

• $src_h: This argument describes the distance from the starting point to copy vertically. You use
the original height value stored at $d[3].

You need to check whether the imagecopyresampled() call is successful, then destroy the source
image ($src_img) to free system resources because you won’t need it again. If the function fails for some
reason, you throw a new exception to create a custom error message. To do this, add the following code
in bold to doImageResize():

 /**
 * Generates a resampled and resized image
 *
 * Creates and saves a new image based on the new dimensions
 * and image type-specific functions determined by other
 * class methods.
 *
 * @param array $img the path to the upload
 * @return void
 */
 private function doImageResize($img)
 {

 // Determine the new dimensions
 $d = $this->getNewDims($tmp);

 // Determine what functions to use
 $funcs = $this->getImageFunctions($img);

 // Create the image resources for resampling
 $src_img = $funcs[0]($img);
 $new_img = imagecreatetruecolor($d[0], $d[1]);

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

257

 if(imagecopyresampled(
 $new_img, $src_img, 0, 0, 0, 0, $d[0], $d[1], $d[2], $d[3]
))

 {
 imagedestroy($src_img);

 // Finish resampling

 }
 else
 {

 throw new Exception('Could not resample the image!');
 }
 }

Now $new_img contains the resized and resampled image. All that’s left to do at this point is to

save the image. You can accomplish this by using the second image type-specific function that saves the
image resource to a location of your choosing. You can save it over the top of the original image because
you no longer need it at its original size in your blog application.

You need to make sure that the image type-specific function fires successfully, then destroy the
new image resource ($new_img) to free the memory it consumes. If the function fails, you throw an error.
Add the following code in bold to doImageResize() to complete your function:

 /**
 * Generates a resampled and resized image
 *
 * Creates and saves a new image based on the new dimensions
 * and image type-specific functions determined by other
 * class methods.
 *
 * @param array $img the path to the upload
 * @return void
 */
 private function doImageResize($img)
 {

 // Determine the new dimensions
 $d = $this->getNewDims($tmp);

 // Determine what functions to use
 $funcs = $this->getImageFunctions($img);

 // Create the image resources for resampling
 $src_img = $funcs[0]($img);
 $new_img = imagecreatetruecolor($d[0], $d[1]);

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

258

 if(imagecopyresampled(
 $new_img, $src_img, 0, 0, 0, 0, $d[0], $d[1], $d[2], $d[3]
))
 {
 imagedestroy($src_img);
 if($new_img && $funcs[1]($new_img, $img))

 {
 imagedestroy($new_img);
 }
 else
 {

 throw new Exception('Failed to save the new image!');
 }
 }
 else
 {
 throw new Exception('Could not resample the image!');
 }
 }

You can now resize any JPEG, GIF, or PNG image to fit within your maximum dimensions. Next,

add a call to your new method to processUploadedImage() and try it out!

Adding Your New Method to processUploadedImage()
You need to add only one line of code to the function to resample images processed with
processUploadedImage(). In images.inc.php, add the lines in bold to processUploadedImage():

 /**
 * Resizes/resamples an image uploaded via a web form
 *
 * @param array $upload the array contained in $_FILES
 * @param bool $rename whether or not the image should be renamed
 * @return string the path to the resized uploaded file
 */
 public function processUploadedImage($file, $rename=TRUE)
 {
 // Separate the uploaded file array
 list($name, $type, $tmp, $err, $size) = array_values($file);

 // If an error occurred, throw an exception
 if($err != UPLOAD_ERR_OK) {
 throw new Exception('An error occurred with the upload!');
 exit;
 }

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

259

 // Generate a resized image

 $this->doImageResize($tmp);

 // Rename the file if the flag is set to TRUE
 if($rename===TRUE) {
 // Retrieve information about the image
 $img_ext = $this->getImageExtension($type);

 $name = $this->renameFile($img_ext);
 }

 // Check that the directory exists
 $this->checkSaveDir();

 // Create the full path to the image for saving
 $filepath = $this->save_dir . $name;

 // Store the absolute path to move the image
 $absolute = $_SERVER['DOCUMENT_ROOT'] . $filepath;

 // Save the image
 if(!move_uploaded_file($tmp, $absolute))
 {
 throw new Exception("Couldn't save the uploaded file!");
 }

 return $filepath;
 }

You can test this by re-uploading your original image to the “Entry with an Image” entry.

Navigate to the entry in a browser at http://localhost/simple_blog/entry-with-an-image and click the
edit link to bring up the admin form. Select the image you uploaded previously and click the Save Entry
button. You should now see that the resampled, properly-sized image (see Figure 8-8).

Download at WoweBook.Com

CHAPTER 8 ADDING THE ABILITY TO UPLOAD IMAGES

260

Figure 8-8. A resized image that is displayed with an entry

Summary
This chapter has been intense. You’ve covered several advanced topics, including object-oriented
programming and image handling. The next chapter is a little less complex, but the still important: you’ll
learn how to create an RSS feed for your blog, which is a great feature to add to your blog’s functionality.

Download at WoweBook.Com

P A R T 3

Reaching Out
to Site Visitors

Now that you have a functional blog, you need to consider how you can interact with your

users. In this section, you’ll learn some of the different methods available to you to make

your site more interactive.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 9

263

Syndicat ing the Blog

One of the easiest ways to reach out to your users is to create an RSS feed for your blog. This is fairly
simple to do, and it allows your readers to subscribe to your posts, which means they’ll receive
notifications whenever you post a new entry.

This is a mutually beneficial system because you, as a content provider, have the comfort of
knowing that people who subscribe will likely come back to your site when you publish new content,
and your readers are saved the trouble of coming to your site to find that nothing has changed.

In the course of this chapter, you’ll learn several skills that will enable you to create an RSS feed
for your blog:

• What RSS is, and how it works

• What XML is, and how RSS uses it

• How to create a new file to generate an RSS feed for your blog

• How to repurpose your existing functions to minimize effort

• How to use some of the methods available to publish your feed

What Is RSS?
RSS is a format used by content providers to publish content. Originally, RSS stood for Rich Site
Summary, but with the release of the RSS 2.0 spec in 2002, the name was changed to Really Simple
Syndication.

RSS simplifies publishing by providing a standardized, no-frills approach to releasing content.
No formatting is included with an RSS entry; only the content is sent. This allows for RSS aggregators,
commonly referred to as feed readers, to accept and display RSS feeds from any number of sites in a
uniform, easy-to-read manner.

The RSS format is built in XML, which learn more about in the next section.

Note For a history of RSS, visit this article: http://en.wikipedia.org/wiki/RSS.

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

264

What Is XML?
XML stands for Extensible Markup Language. In the context of programming, extensible means that the
developer can define the markup elements. This might sound odd, but it’s actually incredibly useful.

XML is, on a basic level, extremely simple. In a parallel with HTML, XML information is
enclosed in tags; however, you can name the tags anything you want, and these tags are basically labels
for the enclosed information.

For example, assume you want to send personal information about someone via XML. The
markup might read as follows:

<person>
 <name>Jason</name>
 <age>24</age>
 <gender>male</gender>
</person>

The benefit of XML is that it’s easy to read. Take another look at the information in the

preceding example—you don’t need to be an XML expert to understand what the markup means. In the
next section, you’ll learn how RSS uses XML to syndicate content.

Creating an RSS Feed
RSS feeds follow a general format that allows for large-scale, easy compatibility with any feed reader in
use right now. The basic format for an RSS consists of a channel that includes a title, description, link,
and language setting.

Within the channel, you declare each entry as an item. Each item contains a title, description,
link, the date it was published, and a unique identifier.

To create your feed, you need to create a new folder and file in the simple_blog project. Next,
add a new folder called feeds, and then create a new file called rss.php and in that folder (the full path:
http://localhost/simple_blog/feeds/rss.php).

Before you can run your file, you need to modify .htaccess. This is as simple as adding an
additional file extension to the first RewriteRule that prevents any rewrite from occurring if a file ending
in .php is accessed. To accomplish this, add the following line in bold to your .htaccess file:

RewriteEngine on
RewriteBase /simple_blog/

RewriteRule \.(gif|jpg|png|css|ico|swf|js|inc\.php|php)$ - [L]
RewriteRule ^admin/?$ admin.php [NC,L]
RewriteRule ^admin/(\w+)/?$ admin.php?page=$1 [NC,L]
RewriteRule ^admin/(\w+)/([\w-]+) admin.php?page=$1&url=$2 [NC,L]
RewriteRule ^(\w+)/?$ index.php?page=$1
RewriteRule ^(\w+)/([\w-]+) index.php?page=$1&url=$2

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

265

Describing Your Feed
Now that your file is created and being handled properly, you can start to mark up your feed.

Begin by adding a Content-Type header to the document (using the aptly named header()
function). This header tells the browser to serve the file as XML.

Next, you need to output an XML declaration. However, this causes issues because XML
declarations conflict with PHP short tags. You can get around this by using the echo command to output
the declaration in double quotes, which eliminates the conflict.

Now you need to state what you are doing, which you accomplish by adding an <rss> tag with a
version attribute. This tells any feed reader what it’s receiving and ensures the information received is
handled properly.

Next, you add the channel declaration and your feed’s basic information. As mentioned
previously, the basic information consists of the title, description, link, and language of your feed.

Add the following code to rss.php to create your feed:

<?php

// Add a content type header to ensure proper execution
header('Content-Type: application/rss+xml');

// Output the XML declaration
echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";

?>
<rss version="2.0">

<channel>

 <title>My Simple Blog</title>
 <link>http://localhost/simple_blog/</link>
 <description>This blog is awesome.</description>

 <language>en-us</language>

</channel>
</rss>

At this point, you can load your RSS feed in a browser to see what it looks like without any

items; you can load the information at http://localhost/simple_blog/feeds/rss.php (see Figure 9-1).

Note You don’t want to do anything further with the feed as it appears in your browser. The blog is not available
publicly, so subscribing to the feed won’t work in a feed reader at this time.

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

266

Figure 9-1. Your feed as it appears in Firefox 3 on a Mac

Creating Feed Items
Now that your feed is working properly, you need to add your blog entries as feed items. This process is
similar to the way you display your entries in index.php, except that you simplify the process by
displaying only the latest blog entries (your feed will send data to the browser in only one way, unlike
index.php, which has view options for multiple pages, entry previews, and full entries).

Using Existing Functions to Minimize Effort
You’ve already written a function to retrieve your entries from the database, so you don’t need to write a
new one. Including functions.inc.php in rss.php enables you to access retrieveEntries(), which you
use to return all of your blog entries as an array. Next, you can loop through the entries to generate your
feed items.

For retrieveEntries() to work, you also need a database connection to exist. For this, you
include db.inc.php in rss.php as well. After you include the necessary files in rss.php, you open a
database connection by inserting the code in bold at the very top of the file:

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

267

<?php

// Include necessary files

include_once '../inc/functions.inc.php';
include_once '../inc/db.inc.php';

// Open a database connection
$db = new PDO(DB_INFO, DB_USER, DB_PASS);

// Add a content type header to ensure proper execution
header('Content-Type: application/rss+xml');

// Output the XML declaration
echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";

?>
<rss version="2.0">
<channel>

 <title>My Simple Blog</title>
 <link>http://localhost/simple_blog/</link>
 <description>This blog is awesome.</description>
 <language>en-us</language>

</channel>
</rss>

Next, you need to load the entries from the database. You do this by storing the return value of

retrieveEntries() in a variable called $e. Also, retrieveEntries() attaches a $fulldisp flag to the end of
the returned array, so you want to pop the last element off $e to remove the flag. You can accomplish
this using array_pop(). Finally, you need to do some basic data sanitization before you try to output
anything, just to be on the safe side.

Do this by adding the code in bold to rss.php:

<?php

// Include necessary files
include_once '../inc/functions.inc.php';
include_once '../inc/db.inc.php';

// Open a database connection
$db = new PDO(DB_INFO, DB_USER, DB_PASS);

// Load all blog entries
$e = retrieveEntries($db, 'blog');

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

268

// Remove the fulldisp flag
array_pop($e);

// Perform basic data sanitization
$e = sanitizeData($e);

// Add a content type header to ensure proper execution
header('Content-Type: application/rss+xml');

// Output the XML declaration
echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";

?>
<rss version="2.0">
<channel>

 <title>My Simple Blog</title>
 <link>http://localhost/simple_blog/</link>
 <description>This blog is awesome.</description>
 <language>en-us</language>

</channel>
</rss>

At this point, you have an array that contains your entries ready for output. You use a foreach

loop to display each entry.
Begin by generating an item with a title, a description, and a link. The only extra step is to

escape all HTML entities in your description—you need to convert special characters to their HTML
entity equivalents, such as < to <. This is necessary because unescaped HTML will cause an error for
RSS readers. You accomplish this by calling htmlentities() on the contents of the entry column.

Add the following code in bold to rss.php:

<?php

// Include necessary files
include_once '../inc/functions.inc.php';
include_once '../inc/db.inc.php';

// Open a database connection
$db = new PDO(DB_INFO, DB_USER, DB_PASS);

// Load all blog entries
$e = retrieveEntries($db, 'blog');

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

269

// Remove the fulldisp flag
array_pop($e);

// Perform basic data sanitization
$e = sanitizeData($e);

// Add a content type header to ensure proper execution
header('Content-Type: application/rss+xml');

// Output the XML declaration
echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";

?>
<rss version="2.0">
<channel>

 <title>My Simple Blog</title>
 <link>http://localhost/simple_blog/</link>
 <description>This blog is awesome.</description>
 <language>en-us</language>

<?php

// Loop through the entries and generate RSS items

foreach($e as $e):
 // Escape HTML to avoid errors
 $entry = htmlentities($e['entry']);

 // Build the full URL to the entry

 $url = 'http://localhost/simple_blog/blog/' . $e['url'];

?>
 <item>
 <title><?php echo $e['title']; ?></title>

 <description><?php echo $entry; ?></description>
 <link><?php echo $url; ?></link>
 </item>

<?php endforeach; ?>

</channel>
</rss>

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

270

To keep your script as legible as possible, you need to use the alternative syntax for your
foreach loop, using a colon to start the loop and endforeach to close the loop.

You can see your feed items displayed if you load http://localhost/simple_blog/
feeds/rss.php into your browser at this point (see Figure 9-2).

Figure 9-2. Your feed with items, as displayed in Firefox 3

On the most basic level, your RSS feed is now running. However, you still need to add a couple
things to feed items to ensure widespread compatibility with feed readers: a GUID and a publishing
date.

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

271

What Is a GUID?
In RSS, publishers are encouraged to include a Globally Unique Identifier (GUID) . There is no hard-and-
fast rule for what to use as an item’s GUID, but the most common GUID tends to be the permanent URL
of the item because this is generally a unique path that won’t be duplicated.

In your feed, you use each item’s URL as a GUID, which means that adding it is as simple as
including a second element that displays the link value. It’s not uncommon for RSS feed items to have
identical link and GUID values.

You can insert a GUID by adding the code in bold to rss.php:

<?php

// Include necessary files
include_once '../inc/functions.inc.php';
include_once '../inc/db.inc.php';

// Open a database connection
$db = new PDO(DB_INFO, DB_USER, DB_PASS);

// Load all blog entries
$e = retrieveEntries($db, 'blog');

// Remove the fulldisp flag
array_pop($e);

// Perform basic data sanitization
$e = sanitizeData($e);

// Add a content type header to ensure proper execution
header('Content-Type: application/rss+xml');

// Output the XML declaration
echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";

?>
<rss version="2.0">
<channel>

 <title>My Simple Blog</title>
 <link>http://localhost/simple_blog/</link>
 <description>This blog is awesome.</description>
 <language>en-us</language>

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

272

<?php

// Loop through the entries and generate RSS items
foreach($e as $e):
 // Escape HTML to avoid errors
 $entry = htmlentities($e['entry']);

 // Build the full URL to the entry
 $url = 'http://localhost/simple_blog/blog/' . $e['url'];

?>
 <item>
 <title><?php echo $e['title']; ?></title>
 <description><?php echo $entry; ?></description>
 <link><?php echo $url; ?></link>
 <guid><?php echo $url; ?></guid>
 </item>

<?php endforeach; ?>

</channel>
</rss>

What Is a Publishing Date?
The publishing date of a feed item is the date it was created on. RSS requires that this date conform to
the RFC-822 guidelines, which means the date must be formatted as follows:

Sat, 23 May 2009 18:54:16 -0600

You might remember that, when you created your entries table, you included a column called
created that stores the date automatically when an entry is created. However, as things stand now, the
created column isn’t returned from retrieveEntries(). Before you can generate a publishing date for
your feed items, you need to add the created column to the array of values returned from
retrieveEntries().

Modifying retrieveEntries() to Return the created Column
Your first task is to add the created column to the array returned from retrieveEntries(). To do this,
you simply need to add the created column to your SQL query. Do this by opening functions.inc.php
and modifying the lines in bold in retrieveEntries():

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

273

function retrieveEntries($db, $page, $url=NULL)
{
 /*
 * If an entry URL was supplied, load the associated entry
 */
 if(isset($url))
 {

 $sql = "SELECT id, page, title, image, entry, created
 FROM entries
 WHERE url=?
 LIMIT 1";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($url));

 // Save the returned entry array
 $e = $stmt->fetch();

 // Set the fulldisp flag for a single entry
 $fulldisp = 1;
 }

 /*
 * If no entry ID was supplied, load all entry titles for the page
 */
 else
 {
 $sql = "SELECT id, page, title, image, entry, url, created
 FROM entries
 WHERE page=?

 ORDER BY created DESC";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($page));

 $e = NULL; // Declare the variable to avoid errors

 // Loop through returned results and store as an array
 while($row = $stmt->fetch()) {
 if($page=='blog')
 {
 $e[] = $row;
 $fulldisp = 0;
 }

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

274

 else
 {
 $e = $row;
 $fulldisp = 1;
 }
 }

 /*
 * If no entries were returned, display a default
 * message and set the fulldisp flag to display a
 * single entry
 */
 if(!is_array($e))
 {
 $fulldisp = 1;
 $e = array(
 'title' => 'No Entries Yet',
 'entry' => 'This page does not have an entry yet!'
);
 }
 }

 // Add the $fulldisp flag to the end of the array
 array_push($e, $fulldisp);

 return $e;
}

Creating a pubDate from the MySQL Timestamp
Now your entry array contains the MySQL timestamp that was generated when each entry was created.
However, the MySQL timestamp is formatted like this:

2009-05-23 18:54:16

Using the MySQL timestamp renders your RSS feed invalid, so you need to somehow convert it
to the proper RFC-822 format. Fortunately, PHP provides two functions that allow you to do exactly that:
strtotime() and date().

This means that string to timestamp—strtotime()—can convert a variety of date strings,
including your MySQL timestamp, to a UNIX timestamp. You can then use the UNIX timestamp in the
date() function, which accepts a format and a timestamp and outputs a formatted date string.

RSS is widely used, so PHP provides a constant for use with date() that returns a properly
formatted RFC-822 date string, called DATE_RSS.

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

275

The next step is to add the code in bold to rss.php to reformat your date and add a publishing
date to each item:

<?php

// Include necessary files
include_once '../inc/functions.inc.php';
include_once '../inc/db.inc.php';

// Open a database connection
$db = new PDO(DB_INFO, DB_USER, DB_PASS);

// Load all blog entries
$e = retrieveEntries($db, 'blog');

// Remove the fulldisp flag
array_pop($e);

// Perform basic data sanitization
$e = sanitizeData($e);

// Add a content type header to ensure proper execution
header('Content-Type: application/rss+xml');

// Output the XML declaration
echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";

?>
<rss version="2.0">
<channel>

 <title>My Simple Blog</title>
 <link>http://localhost/simple_blog/</link>
 <description>This blog is awesome.</description>
 <language>en-us</language>

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

276

<?php

// Loop through the entries and generate RSS items
foreach($e as $e):
 // Escape HTML to avoid errors
 $entry = htmlentities($e['entry']);

 // Build the full URL to the entry
 $url = 'http://localhost/simple_blog/blog/' . $e['url'];

 // Format the date correctly for RSS pubDate
 $date = date(DATE_RSS, strtotime($e['created']));

?>
 <item>
 <title><?php echo $e['title']; ?></title>
 <description><?php echo $entry; ?></description>
 <link><?php echo $url; ?></link>
 <guid><?php echo $url; ?></guid>

 <pubDate><?php echo $date; ?></pubDate>
 </item>

<?php endforeach; ?>

</channel>
</rss>

Your feed now contains all the elements it needs to be compatible with nearly all feed readers.

When you load http://localhost/simple_blog/feeds/rss.php in a browser, you see your items
displayed with the date they were published (see Figure 9-3).

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

277

Figure 9-3. Your feed as it appears in Firefox 3, complete with the publishing date

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

278

Publishing Your Feed
Now that you have a functional RSS feed for your blog, you need to make it available to your users, so
they can take advantage of your syndicated content.

Adding the Feed to the Blog
To make your feed available to users, add it to your blog by including it within index.php. You can do this
in either of two ways (I’ll show you how to use both approaches). First, you can add a <link> tag in the
head of your HTML. Alternatively, you can place a direct link to the feed within the body of your
document.

Using the <link> Tag to Signify an RSS Feed
Most modern browsers have RSS readers built in, so they recognize when a site has an available RSS
feed. To make your feed recognizable, you need to add a <link> tag to the head section of index.php.

You’ve already used the <link> tag in this project to include an external CSS style sheet. To
include the RSS feed, you use a similar process to you provide attributes that describe the document’s
title, location, type, and relationship of the feed. The relationship you provide is called alternate
because the feed is an alternative method to view your content.

To mark this link as a feed, you set its type to application/rss+xml, which is the accepted
content type for RSS feeds. The title and href attributes identify your feed.

To insert your feed, add the code in bold to the head section of index.php:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <link rel="stylesheet"
 href="/simple_blog/css/default.css" type="text/css" />

 <link rel="alternate" type="application/rss+xml"
 title="My Simple Blog - RSS 2.0"
 href="/simple_blog/feeds/rss.php" />
 <title> Simple Blog </title>
</head>

Once you add your feed, you can load http://localhost/simple_blog/ and see a new RSS icon

in the address bar of some browsers (see Figure 9-4).

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

279

Figure 9-4. An RSS icon (circled in red) appears in the address bar after you include a link to your feed

Adding an RSS Link
Next, you need to provide a direct link to the feed for users who have a feed reader other than a browser.
This is as simple as adding an anchor element to the bottom of the page, just before the closing </div>
and </body> tags.

Add the lines in bold to the bottom of index.php to link to your feed:

 <p class="backlink">
 <?php if($page=='blog'): ?>
 <a href="/simple_blog/admin/<?php echo $page ?>">
 Post a New Entry

 <?php endif; ?>
 </p>

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

280

 <p>

 Subscribe via RSS!

 </p>

 </div>

</body>

</html>

This link enables users to point their feed readers at your feed. When you reload http://

localhost/simple_blog/ in your browser, you see the new link at the bottom of the blog entry previews
(see Figure 9-5).

Figure 9-5. A link to your feed is added to the bottom of the page

Download at WoweBook.Com

CHAPTER 9 SYNDICATING THE BLOG

281

Summary
In this chapter, you learned how to add an RSS feed to your blog. Syndicating content is one of the
easiest and best ways to extend your blog to as many eyes as possible.

In the next chapter, you dive into some more complex programming as you add a commenting
system to your blog in an effort to connect with your users further.

Download at WoweBook.Com

Download at WoweBook.Com

C H A P T E R 10

283

Adding a Comment ing System
to Your Blog

One of the most important features of modern web applications is the ability to allow users to interact
via a commenting system. Nearly every blog in existence allows its readers to comment on entries. This
adds to the experience of the users and the blog author by enabling everyone to continue the
conversations the author initiates with his posts.

In this chapter, I’ll show you now to add a commenting system to the blog. To get the system up
and running, you need to do the following:

• Create a comments table in the database to store comment entries

• Build a Comments class to perform all comment-related actions

• Build a method for displaying a form to enter new comments

• Modify index.php to display the comment form

• Build a method to store comments in the comments table

• Modify update.inc.php to handle new comments

• Build a method to retrieve comments for an entry

• Modify index.php to display entry comments

• Build a method to delete unwanted comments

• Modify update.inc.php to handle comment deletion

We’ll be using object-oriented programming in this chapter again, so if you need to, refer to
Chapter 8 for a quick refresher on the basics.

Creating a comments Table in the Database
Before you can begin working with comments, you need to have a place to store them. Create a table
called comments in the simple_blog database; you’ll use this to store all of your comment information.

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

284

You need to store several different kinds of information in this table:

• Id: A unique identifier for the comment. This is the table’s primary key. You can use the
AUTO_INCREMENT property to simplify adding new comments.

• blog_id: The identifier of the blog entry to which the comment corresponds. This column is an
INT value. To speed up your queries, you can also create an index on this column.

• name: The name of the commenter. This column accepts a maximum of 75 characters and is of
the VARCHAR type.

• email: The email address of the commenter. This column accepts a maximum of 150 characters
and is of the VARCHAR type.

• comment: The actual comment. This column is of the TEXT type.

• date: The date the comment was posted. You set this column to store the CURRENT_TIMESTAMP
when a user adds a comment i to the table, which means it is of the TIMESTAMP type.

To create this table, navigate to http://localhost/phpmyadmin in a browser and open the SQL
tab. Executing the following command creates the comments table and prepares it for use:

CREATE TABLE simple_blog.comments

(
id INT PRIMARY KEY AUTO_INCREMENT,
blog_id INT,

name VARCHAR(75),
email VARCHAR(150),
comment TEXT,
date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
INDEX(blog_id)

)

Once you click the Go button, you can click the comments table in the simple_blog database to

see the structure of your table (see Figure 10-1).

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

285

Figure 10-1. The comments table as viewed in phpMyAdmin

Building a Comments Class
Separating your commenting system separate from the rest of your blog makes it easier to maintain and
extend in the future; you’ll leverage the object-oriented approach you learned about in Chapter 8 to
implement this feature.

Begin by creating a new file that will contain the class. Call this file comments.inc.php, and store it
in the inc folder in the simple_blog project (full path: /xampp/htdocs/simple_blog/inc/comments.inc.php).

Once you create the file, you need to declare the class and a constructor for it. This class must
be able to read and write from the database, so you need to include the database information stored in
db.inc.php.

Your class needs a property to hold the database variable. Your class also needs to open a
database connection in the constructor that you store in the aforementioned property, which you will
call $db.

Next, include the database info, create the class, and define a property and constructor for
Comments by adding the code in bold to your newly created comments.inc.php:

<?php

include_once 'db.inc.php';

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

286

class Comments
{
 // Our database connection

 public $db;

 // Upon class instantiation, open a database connection
 public function __construct()
 {

 // Open a database connection and store it
 $this->db = new PDO(DB_INFO, DB_USER, DB_PASS);
 }
}

?>

Building the Comment Entry Form
You enable users to add new comments to your blog entries by providing them with a form to fill out.

This form needs to contain fields for the commenter’s name, email address, and comment.
Also, you need to store the blog entry’s identifier to associate the comment with the blog.

To display this form, you create a new method called showCommentForm(), which accepts one
argument, $blog_id, and outputs a form in HTML.

You can create this method by adding the code in bold to your Comments class in
comments.inc.php:

<?php

include_once 'db.inc.php';

class Comments
{
 // Our database connection
 public $db;

 // Upon class instantiation, open a database connection
 public function __construct()
 {
 // Open a database connection and store it
 $this->db = new PDO(DB_INFO, DB_USER, DB_PASS);
 }

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

287

 // Display a form for users to enter new comments with
 public function showCommentForm($blog_id)
 {

 return <<<FORM
<form action="/simple_blog/inc/update.inc.php"
 method="post" id="comment-form">
 <fieldset>
 <legend>Post a Comment</legend>

 <label>Name
 <input type="text" name="name" maxlength="75" />
 </label>
 <label>Email
 <input type="text" name="email" maxlength="150" />

 </label>
 <label>Comment
 <textarea rows="10" cols="45" name="comment"></textarea>
 </label>
 <input type="hidden" name="blog_id" value="$blog_id" />

 <input type="submit" name="submit" value="Post Comment" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
</form>
FORM;

 }
}

?>

Note that you’re using the heredoc syntax; this allows you to return HTML and PHP values

easily, without requiring that you use escape quotes.

Modifying index.php to Display the Comment Form
You have a method to display a comment form; your next step is to show it to your users.

You want this form to be visible only on blog entries that are being fully displayed, so you want
to work inside the conditional statement that checks whether $fulldisp is set to 1. Then you need to set
up a second conditional to make sure you’re on the blog and not any other page.

After you’re sure the user is in the right place to see the form, you need to include your
comment class, instantiate it, and load the form into a variable, which you can call $comment_form.

Finally, you add the comment form to the output, just after the Back to Latest Entries link.

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

288

To do this, add the code in bold to index.php, starting at line 78:

// If the full display flag is set, show the entry
if($fulldisp==1)
{

 // Get the URL if one wasn't passed
 $url = (isset($url)) ? $url : $e['url'];

 // Build the admin links
 $admin = adminLinks($page, $url);

 // Format the image if one exists
 $img = formatImage($e['image'], $e['title']);

 if($page=='blog')
 {

 // Load the comment object
 include_once 'inc/comments.inc.php';
 $comments = new Comments();
 $comment_form = $comments->showCommentForm($e['id']);
 }

 else
 {
 $comment_form = NULL;
 }

?>

 <h2> <?php echo $e['title'] ?> </h2>
 <p> <?php echo $img, $e['entry'] ?> </p>
 <p>
 <?php echo $admin['edit'] ?>
 <?php if($page=='blog') echo $admin['delete'] ?>
 </p>
 <?php if($page=='blog'): ?>
 <p class="backlink">
 Back to Latest Entries
 </p>

 <?php echo $comment_form; endif; ?>

<?php

} // End the if statement

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

289

Viewing a full entry in a browser reveals your new comment form beneath the entry (see

Figure 10-2).

Figure 10-2. Your comment form

Storing New Comments in the Database
When the user fills out your form and clicks the Post Comment box, the data from the form is submitted
to update.inc.php. But before you do anything with update.inc.php, you need to determine how you be
handle information from the form by creating a new method, called saveComment(), that cleans posted
data and stores it in the database.

This method accepts the posted data as an argument, then cleans the data using strip_tags()
and htmlentities(). You store the clean data in variables, which you pass to a prepared SQL statement
and save in the comments table.

If nothing goes wrong, the method returns TRUE. Otherwise, it returns FALSE.
You can build this method by adding the code in bold to comments.inc.php:

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

290

<?php

include_once 'db.inc.php';

class Comments
{
 // Our database connection
 public $db;

 // Upon class instantiation, open a database connection
 public function __construct()
 {
 // Open a database connection and store it
 $this->db = new PDO(DB_INFO, DB_USER, DB_PASS);
 }

 // Display a form for users to enter new comments with
 public function showCommentForm($blog_id)
 {
 return <<<FORM
<form action="/simple_blog/inc/update.inc.php"
 method="post" id="comment-form">
 <fieldset>
 <legend>Post a Comment</legend>
 <label>Name
 <input type="text" name="name" maxlength="75" />
 </label>
 <label>Email
 <input type="text" name="email" maxlength="150" />
 </label>
 <label>Comment
 <textarea rows="10" cols="45" name="comment"></textarea>
 </label>
 <input type="hidden" name="blog_id" value="$blog_id" />
 <input type="submit" name="submit" value="Post Comment" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
</form>
FORM;
 }

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

291

 // Save comments to the database
 public function saveComment($p)
 {

 // Sanitize the data and store in variables
 $blog_id = htmlentities(strip_tags($p['blog_id']),ENT_QUOTES);
 $name = htmlentities(strip_tags($p['name']),ENT_QUOTES);
 $email = htmlentities(strip_tags($p['email']),ENT_QUOTES);
 $comment = htmlentities(strip_tags($p['comment']),ENT_QUOTES);

 // Keep formatting of comments and remove extra whitespace
 $comment = nl2br(trim($comments));

 // Generate and prepare the SQL command
 $sql = "INSERT INTO comments (blog_id, name, email, comment)

 VALUES (?, ?, ?, ?)";
 if($stmt = $this->db->prepare($sql))
 {
 // Execute the command, free used memory, and return true
 $stmt->execute(array($blog_id, $name, $email, $comment));

 $stmt->closeCursor();
 return TRUE;
 }
 else
 {

 // If something went wrong, return false
 return FALSE;
 }
 }
}

?>

 NNote You’ll learn how to add email validation in the next chapter, as well as implement some basic spam-
prevention measures.

Modifying update.inc.php to Handle New Comments
Your script knows how to handle data from the comment form, so you’re ready to modify
update.inc.php to call saveComment() when the comment form is submitted.

You can do this by adding a check to see whether the user clicked the Post Comment button.
You add this check after your check for the admin form in update.inc.php. If the comment form was
submitted, you need to include and instantiate the Comments class, then call your new saveComment()
method and pass the $_POST superglobal array as an argument.

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

292

If the call to saveComment() returns TRUE, you try to use the value of $_SERVER['HTTP_REFERER'] to
send the user back to the entry where she posted the comment. If that value isn’t available, you send
user back to the default entry listings.

You should also add a check that outputs an error message if the saveComment() call returns
FALSE. To accomplish this, add the code in bold to the bottom of update.inc.php, just before the last
else block:

// If a comment is being posted, handle it here

else if($_SERVER['REQUEST_METHOD'] == 'POST'
 && $_POST['submit'] == 'Post Comment')
{
 // Include and instantiate the Comments class

 include_once 'comments.inc.php';
 $comments = new Comments();

 // Save the comment
 if($comments->saveComment($_POST))
 {

 // If available, store the entry the user came from
 if(isset($_SERVER['HTTP_REFERER']))
 {
 $loc = $_SERVER['HTTP_REFERER'];
 }

 else
 {
 $loc = '../';
 }

 // Send the user back to the entry
 header('Location: '.$loc);
 exit;
 }

 // If saving fails, output an error message
 else
 {
 exit('Something went wrong while saving the comment.');
 }

}

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

293

else
{
 header('Location: ../');
 exit;
}

?>

You’re now ready to test your system. Navigate to an entry in a browser and fill out the form

with test information. Press the Post Comment button, and you should be redirected to the entry.
If you navigate to http://localhost/phpmyadmin and open the comments table in the simple_blog

database, you can see your entry in the database (see Figure 10-3).

Figure 10-3: A comment stored in the comments table

Retrieving All Comments for a Given Entry
You can now that store comments in the database; your next task is to write a method that retrieves
them.

This method, called retrieveComments(), accepts one argument: the ID of the blog that you
need to retrieve comments for ($blog_id).

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

294

This new method works similarly to your retrieveEntries() function, except that you store the
entries as an array in a property of the Comments class itself, for use with other methods.

Begin by declaring a new $comments property in the class; you use this property to store the
loaded comments in memory.

Next, you need to write a SQL query that pulls all the entries from the comments table that match
the given blog ID. Be sure to retrieve every column from the table with your query.

The next step is to prepare your SQL statement and execute it using the value of $blog_id that
was passed as an argument to your method.

Now loop through the returned entries and store each row in the $comments property as an array
element.

Finally, check to see whether any comments exist for the given blog entry. If not, place some
default text in the array to let users know that no comments have been posted yet.

You can create this method by adding the code in bold to comments.inc.php:

<?php

include_once 'db.inc.php';

class Comments
{
 // Our database connection
 public $db;

 // An array for containing the entries
 public $comments;

 // Upon class instantiation, open a database connection
 public function __construct()
 {
 // Open a database connection and store it
 $this->db = new PDO(DB_INFO, DB_USER, DB_PASS);
 }

 // Display a form for users to enter new comments with
 public function showCommentForm($blog_id)
 {
 return <<<FORM
<form action="/simple_blog/inc/update.inc.php"
 method="post" id="comment-form">
 <fieldset>
 <legend>Post a Comment</legend>
 <label>Name
 <input type="text" name="name" maxlength="75" />
 </label>

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

295

 <label>Email
 <input type="text" name="email" maxlength="150" />
 </label>
 <label>Comment
 <textarea rows="10" cols="45" name="comment"></textarea>
 </label>
 <input type="hidden" name="blog_id" value="$blog_id" />
 <input type="submit" name="submit" value="Post Comment" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
</form>
FORM;
 }

 // Save comments to the database
 public function saveComment($p)
 {
 // Sanitize the data and store in variables
 $blog_id = htmlentities(strip_tags($p['blog_id']),ENT_QUOTES);
 $name = htmlentities(strip_tags($p['name']),ENT_QUOTES);
 $email = htmlentities(strip_tags($p['email']),ENT_QUOTES);
 $comment = htmlentities(strip_tags($p['comment']),ENT_QUOTES);

 // Generate and prepare the SQL command
 $sql = "INSERT INTO comments (blog_id, name, email, comment)
 VALUES (?, ?, ?, ?)";
 if($stmt = $this->db->prepare($sql))
 {
 // Execute the command, free used memory, and return true
 $stmt->execute(array($blog_id, $name, $email, $comment));
 $stmt->closeCursor();
 return TRUE;
 }
 else
 {
 // If something went wrong, return false
 return FALSE;
 }
 }

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

296

 // Load all comments for a blog entry into memory
 public function retrieveComments($blog_id)
 {

 // Get all the comments for the entry
 $sql = "SELECT id, name, email, comment, date
 FROM comments
 WHERE blog_id=?
 ORDER BY date DESC";

 $stmt = $this->db->prepare($sql);
 $stmt->execute(array($blog_id));

 // Loop through returned rows
 while($comment = $stmt->fetch())

 {
 // Store in memory for later use
 $this->comments[] = $comment;
 }

 // Set up a default response if no comments exist
 if(empty($this->comments))
 {
 $this->comments[] = array(
 'id' => NULL,

 'name' => NULL,
 'email' => NULL,
 'comment' => "There are no comments on this entry.",
 'date' => NULL
);
 }

 }
}

?>

Displaying Comments for a Given Entry
With retrieveComments() functional, you can now display the entries loaded when a user views an entry
on the blog.

You can do this by creating a new showComments() method that accepts the blog ID as an
argument ($blog_id). This method begins by initializing an empty variable ($display) to contain the
formatted comments, then calls the retrieveComments() method to get the entry’s comments loaded
into memory.

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

297

With the comments loaded into $display, you can loop through each comment and create
HTML markup to display them. Inside the loop, you want to check whether retrieveComments() has
returned the default value, which means no comments exist for the entry. To do this, you set up a
conditional statement that verifies that both the date and name values aren’t empty before you create a
byline.

Begin by setting up the method, loading the entry comments, and starting the loop. Next, add
the showComments() method to comments.inc.php by adding the code in bold to the Comments class:

 // Generates HTML markup for displaying comments
 public function showComments($blog_id)

 {
 // Initialize the variable in case no comments exist
 $display = NULL;

 // Load the comments for the entry

 $this->retrieveComments($blog_id);

 // Loop through the stored comments
 foreach($this->comments as $c)
 {
 // Prevent empty fields if no comments exist

 if(!empty($c['date']) && !empty($c['name']))
 {
 // Generate a byline and delete link for each comment
 }
 else

 {
 // If we get here, no comments exist
 }

 // Assemble the pieces into a formatted comment

 }

 // Return all the formatted comments as a string
 }

Your next step is to create a byline for each comment, as well as an administrative link that lets

you delete unwanted comments. You accomplish this with an if-else statement.
You need to format a byline if the date and name values aren’t empty. You want this byline to

display the name of the commenter, as well as the date and time the comment was posted. The format
looks like this:

John Doe [Posted on July 10, 2009 at 6:54PM]

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

298

Think back to how you handled dates in previous chapter. You take a similar approach here,
changing the format of the MySQL timestamp stored in the database to fit your needs. You use the
strtotime() and date() methods again, but this time you need to create a custom date formatting string.

FORMATTING DATES IN PHP USING THE DATE() FUNCTION

PHP provides you with many options for formatting dates when you use the date() function. You can format each
part of a date (day, month, year, and so on) using one of several available formatting characters, which you can
combine as necessary to create custom dates.

For example, you would use the formatting string “M d, Y” to create the date format, “Jan 01, 2009”. Any
character used that is not a formatting character—like the comman in the previous example—is output as-is.

If you wish to output text that features a formatting character, you must escape it using a backslash (\). For
example, this format “m/d/y \a\\t g:IA” outputs a date similar to “01/01/09 at 4:10PM”.

Commonly Used Formatting Characters Recognized by the Date() Function

For mat

Character

Descr ipt i on Example R etur n Value

Day

d Day of the month, two digits with leading zeros 01 to 31

D A textual representation of a day, three letters Mon through Sun

j Day of the month without leading zeros 1 to 31

l Full textual representation of the day of the week Sunday through Saturday

S English ordinal suffix for the day of the month st, nd, rd or th; this works well
with j

Month

F A full textual representation of a month January through December

m Numeric representation with leading zeros 01 through 12

M A short textual representation of a month Jan through Dec

n Numeric representation without leading zeros 1 through 12

t Number of days in the given month 28 through 31

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

299

Year

Y A full numeric representation of a year, four digits Examples: 1999 or 2003

y A two digit representation of a year Examples: 99 or 03

Time

a Lowercase ante meridiem and post meridiem am or pm

A Uppercase ante meridiem and post meridiem AM or PM

g 12-hour format of an hour without leading zeros 1 through 12

G 24-hour format of an hour without leading zeros 0 through 23

h 12-hour format of an hour with leading zeros 01 through 12

H 24-hour format of an hour with leading zeros 00 through 23

I Minutes with leading zeros 00 to 59

s Seconds, with leading zeros 00 through 59

Time zone

T Time zone abbreviation Examples: EST, MDT, and so
on

Note that this table doesn’t list all of the available formatting characters. For a full reference of such
characters, look up the date() entry in the PHP manual at http://php.net/date.

You store your formatting string in a variable called $format, which makes it easy to identify
and change in the future, if necessary. Use this formatting string for your comment byline: F j,
Y \a\\t g:iA.

Note In the “F j, Y \a\\t g:iA” formatting string, the “t” is escaped twice. You need to do it this way
because \t is a whitespace character in PHP, which means that it would result in unexpected output if you don’t
double-escape it. The same goes for other whitespace characters, including \n and \r.

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

300

With our format stored, you’re ready to convert the MySQL timestamp to a Unix timestamp
using strtotime(), then use date() to produce the desired date format, which you store in a variable
called $date.

Next, place the commenter’s name and the formatted date into HTML tags to create the desired
output; store this output in a variable called $byline.

Finally, you create the markup for a link to delete the comment, which you store in a variable
called $admin.

In the else block, which you get to only if no comments exist for the blog entry, you set $byline
and $admin to NULL because they are unnecessary if no comments exist.

Add the code in bold to showComments() in comments.inc.php:

 // Generates HTML markup for displaying comments
 public function showComments($blog_id)
 {
 // Initialize the variable in case no comments exist
 $display = NULL;

 // Load the comments for the entry
 $this->retrieveComments($blog_id);

 // Loop through the stored comments
 foreach($this->comments as $c)
 {
 // Prevent empty fields if no comments exist
 if(!empty($c['date']) && !empty($c['name']))
 {
 // Outputs similar to: July 8, 2009 at 4:39PM
 $format = "F j, Y \a\\t g:iA";

 // Convert $c['date'] to a timestamp, then format
 $date = date($format, strtotime($c['date']));

 // Generate a byline for the comment
 $byline = "$c[name]

 [Posted on $date]";

 // Generate delete link for the comment display
 $admin = "<a href=\"/simple_blog/inc/update.inc.php"
 . "?action=comment_delete&id=$c[id]\""

 . "class=\"admin\">delete";
 }

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

301

 else
 {

 // If no comments exist, set $byline & $admin to NULL
 $byline = NULL;
 $admin = NULL;
 }

 // Assemble the pieces into a formatted comment
 }

 // Return all the formatted comments as a string
 }

 NNote You’ll learn about the delete link and how it works in the “Deleting Comments” section.

You’ve stored your byline and administrative links; now place them into HTML markup with
the comment itself. You append each comment to the $display variable, which is returned from the
function after the loop is finished.

To finish the showComments()method, add the code in bold to your method in comments.inc.php:

 // Generates HTML markup for displaying comments
 public function showComments($blog_id)
 {
 // Initialize the variable in case no comments exist
 $display = NULL;

 // Load the comments for the entry
 $this->retrieveComments($blog_id);

 // Loop through the stored comments
 foreach($this->comments as $c)
 {
 // Prevent empty fields if no comments exist
 if(!empty($c['date']) && !empty($c['name']))
 {
 // Outputs similar to: July 8, 2009 at 4:39PM
 $format = "F j, Y \a\\t g:iA";

 // Convert $c['date'] to a timestamp, then format
 $date = date($format, strtotime($c['date']));

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

302

 // Generate a byline for the comment
 $byline = "$c[name]
 [Posted on $date]";

 // Generate delete link for the comment display
 $admin = "<a href=\"/simple_blog/inc/update.inc.php
?action=comment_delete&id=$c[id]\" class=\"admin\">delete";
 }
 else
 {
 // If no comments exist, set $byline & $admin to NULL
 $byline = NULL;
 $admin = NULL;
 }

 // Assemble the pieces into a formatted comment

 $display .= "
<p class=\"comment\">$byline$c[comment]$admin</p>";
 }

 // Return all the formatted comments as a string
 return $display;
 }

Modifying index.php to Display Entry Comments
You have your methods for loading and formatting comments in place. Now you’re ready to open
index.php and insert the comment display into your blog entries.

You’ve already done most of the work necessary by adding the comment form. All that remains
is to create new variable called $comment_disp and store the output of showComments(). Place this new
variable (in bold) just before the value of $comment_form in the index.php file, starting at line 83:

// If the full display flag is set, show the entry
if($fulldisp==1)
{

 // Get the URL if one wasn't passed
 $url = (isset($url)) ? $url : $e['url'];

 // Build the admin links
 $admin = adminLinks($page, $url);

 // Format the image if one exists
 $img = formatImage($e['image'], $e['title']);

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

303

 if($page=='blog')
 {
 // Load the comment object
 include_once 'inc/comments.inc.php';
 $comments = new Comments();
 $comment_disp = $comments->showComments($e['id']);
 $comment_form = $comments->showCommentForm($e['id']);
 }
 else
 {
 $comment_form = NULL;
 }

?>

 <h2> <?php echo $e['title'] ?> </h2>
 <p> <?php echo $img, $e['entry'] ?> </p>
 <p>
 <?php echo $admin['edit'] ?>
 <?php if($page=='blog') echo $admin['delete'] ?>
 </p>
 <?php if($page=='blog'): ?>
 <p class="backlink">
 Back to Latest Entries
 </p>
 <h3> Comments for This Entry </h3>
 <?php echo $comment_disp, $comment_form; endif; ?>

<?php

} // End the if statement

Once you save the file, you can navigate to the blog entry you’ve created a test comment for,

and you should see the comment displayed with a byline and an administrative link in place (see
Figure 10-4).

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

304

Figure 10-4. Comments displayed for an entry

Deleting Comments
Your last step is to provide site administrators with the ability to remove comments from entries. You’ve
already created the link to delete comments; now you need to tell your application what to do when the
link is clicked.

The link you’ve built directs you to update.inc.php. It also passes two values using the GET
method: an action, set to comment_delete; and an id, set to the value of the comment you created the
link for.

To avoid accidental comment deletion, you can use a two-step process to delete comments.
After clicking the link, the user receives a confirmation form generated by the confirmDelete() method
(which you’ll write in a moment). The form asks the user to confirm his decision to delete the comment.
If he clicks “Yes,”, you call the yet-to-be-written deleteComment() method, which removes the comment
from the database.

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

305

Creating a Confirmation Form
When building the confirmation form, begin by writing a method in the Comments class that displays a
confirmation form to a user when a delete link is clicked. This method, named confirmDelete(), accepts
one argument: the ID of the comment the user wants to delete ($id). When this method is called:, your
first step is to attempt to retrieve the URL of the user’s entry form. You want to have this available so you
can send the user back to the entry she was viewing when she clicked the delete link. You can do this by
checking whether the value of $_SERVER['HTTP_REFERER'] has been set, then storing that value in a
variable called $url (again, assuming the value has been set). If it hasn’t been set, you use the “../” value
to send the user to the default entry preview page.

After you store the URL of the previous entry in $url, use the heredoc syntax to construct an
HTML form using the $id and $url variables; this form asks the user if she really wants to delete the
comment. You provide the user with “Yes” and “No” buttons to answer.

Do this by adding the confirmDelete() method to the Comments class in comments.inc.php:

 // Ensure the user really wants to delete the comment
 public function confirmDelete($id)

 {
 // Store the entry url if available
 if(isset($_SERVER['HTTP_REFERER']))
 {
 $url = $_SERVER['HTTP_REFERER'];

 }

 // Otherwise use the default view
 else
 {

 $url = '../';
 }

 return <<<FORM
<html>

<head>
<title>Please Confirm Your Decision</title>
<link rel="stylesheet" type="text/css"
 href="/simple_blog/css/default.css" />
</head>
<body>

<form action="/simple_blog/inc/update.inc.php" method="post">
 <fieldset>
 <legend>Are You Sure?</legend>
 <p>
 Are you sure you want to delete this comment?

 </p>

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

306

 <input type="hidden" name="id" value="$id" />
 <input type="hidden" name="action" value="comment_delete" />
 <input type="hidden" name="url" value="$url" />

 <input type="submit" name="confirm" value="Yes" />
 <input type="submit" name="confirm" value="No" />
 </fieldset>
</form>
</body>

</html>
FORM;
 }

Note You build this form with a page title and a link to your stylesheet because update.inc.php outputs this
form directly, which means that no output is generated before or after the markup returned by this function. For
this reason, you need to create a full HTML page with this method; this enables you to keep your form consistent
with the styling of your blog.

Removing the Comment from the Database
Your next step is to create the method that removes a comment from the database. This method, which
you call deleteComment(), accepts one argument: the ID of the comment you want to delete ($id).

This method is simple: you construct a SQL query, prepare it, and execute it using the value of
$id. If no errors occur, you return TRUE; otherwise, you return FALSE.

Add this code to the Comments class in comments.inc.php to create the deleteComment() method:

 // Removes the comment corresponding to $id from the database
 public function deleteComment($id)

 {
 $sql = "DELETE FROM comments
 WHERE id=?
 LIMIT 1";
 if($stmt = $this->db->prepare($sql))

 {
 // Execute the command, free used memory, and return true
 $stmt->execute(array($id));
 $stmt->closeCursor();
 return TRUE;

 }

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

307

 else
 {
 // If something went wrong, return false

 return FALSE;
 }
 }

Modifying update.inc.php to Handle Comment Deletion
You now have methods in place to confirm that a comment is to be deleted and to remove that comment
from the database. This means you’re ready to modify update.inc.php to handle the comment’s
deletion.

Begin by adding an else if block to update.inc.php. This block of code checks whether the
$_GET superglobal contains an index called “action” that you set to comment_delete. If so, you load and
instantiate the Comments class and output the return value of confirmDelete().

Add the code in bold to the bottom of update.inc.php, just before the last else block:

// If the delete link is clicked on a comment, confirm it here
else if($_GET['action'] == 'comment_delete')
{

 // Include and instantiate the Comments class
 include_once 'comments.inc.php';
 $comments = new Comments();
 echo $comments->confirmDelete($_GET['id']);
 exit;

}

else
{
 header('Location: ../');
 exit;
}

?>

To see the confirmation form, navigate to the blog entry with your test comment and click the

delete link just below the test comment. This takes you to your confirmation form (see Figure 10-5).

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

308

Figure 10-5. Your form that confirms comment deletion

Next, you need to add another elseif block to update.inc.php that checks whether the
comment deletion form was submitted via the POST method. You can make sure the confirmation form
was submitted by checking whether the $_POST superglobal contains an index called action with a value
of comment_delete,.

You need to store the URL you passed via your form in the $_POST['url'] variable. Just to be
safe, you check whether the variable was set and provide a default value it wasn’t, which you store in the
variable $url.

Next, you check whether the “Yes” button was clicked. If so, you include and instantiate the
Comments class, then pass the comment ID stored in $_POST['id'] to the deleteComment() method. If the
method returns TRUE, you send the user to the URL stored in $url.

If the user clicked No, you send her to the URL stored in $url, doing nothing with the comment.
To implement this, you add the code in bold to the bottom of update.inc.php, just above the

last else block:

// If the delete link is clicked on a comment, confirm it here
else if($_GET['action'] == 'comment_delete')
{
 // Include and instantiate the Comments class
 include_once 'comments.inc.php';
 $comments = new Comments();
 echo $comments->confirmDelete($_GET['id']);
 exit;
}

// If the confirmDelete() form was submitted, handle it here
else if($_SERVER['REQUEST_METHOD'] == 'POST'

 && $_POST['action'] == 'comment_delete')

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

309

{
 // If set, store the entry from which we came
 $loc = isset($_POST['url']) ? $_POST['url'] : '../';

 // If the user clicked "Yes", continue with deletion
 if($_POST['confirm'] == "Yes")
 {
 // Include and instantiate the Comments class

 include_once 'comments.inc.php';
 $comments = new Comments();

 // Delete the comment and return to the entry
 if($comments->deleteComment($_POST['id']))

 {
 header('Location: '.$loc);
 exit;
 }

 // If deleting fails, output an error message
 else
 {
 exit('Could not delete the comment.');
 }

 }

 // If the user clicked "No", do nothing and return to the entry
 else
 {
 header('Location: '.$loc);

 exit;
 }
}

else
{
 header('Location: ../');
 exit;
}

?>

Download at WoweBook.Com

CHAPTER 10 ADDING A COMMENTING SYSTEM TO YOUR BLOG

310

At this point, you can delete comments from the database, thus removing them from your entry
display. You can test this out by deleting your test comment. Navigate to the entry that you we entered
for the comment in a browser, then click the delete link. Next, click Yes to confirm that you want to
delete the comment. This takes you back to the entry, but the comment is no longer there. Instead, you
see the default message: “There are no comments for this entry” (see Figure 10-6).

Figure 10-6. After deleting your test comment, you see this default message

Summary
In this chapter, you learned how to add an interactive element to your blog by allowing users to
comment on your blog entries. In doing so, you also learned a little more about object-oriented
programming.

In the next chapter, you’ll learn how to build a login system that lets you hide administrative
controls from users who aren’t logged in, giving you better control over your blog.

Download at WoweBook.Com

C H A P T E R 11

311

Adding Password Protect ion
to Administrat ive Links

One of the last things you need to add before you can call your blog “web-ready” is to hide the
administrative links from users who aren’t authorized to view them. In this chapter, you’ll learn how to
build a system that lets you create administrators and require them to log in with a password before they
can create, edit, and delete entries on the blog.

Creating this system requires that you master the following tasks:

• Adding an admin table to the simple_blog database

• Building a function to place administrators in the admin table

• Using sessions to hide controls from unauthorized users

• Creating a login form that allows administrators to log in to the blog

• Writing code to check submitted form data and display its controls if valid

Adding an admin Table to the Database
Enabling administrators for your site requires that you create a table to store their information. This
simple table, admin, stores the following information:

• username: The administrator’s login name

• password: The administrator’s password

Your username needs to be unique, so make it the table’s primary key. Specify both fields as of
the VARCHAR type, limit the username to 75 characters, and limit the password to 40 characters.

To create the admin table, navigate to http://localhost/phpmyadmin in a browser and open the
SQL tab. Enter the following command to create your table:

CREATE TABLE simple_blog.admin

(
username VARCHAR(75) PRIMARY KEY,
password VARCHAR(40)

)

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

312

Adding Administrators in the Database
You have a place to store administrators; now you’re ready to start creating them. Your first step is to
create a form that allows you to enter a username and password in an HTML form. Once you accomplish
this, you need to store the information in the database for later use.

Building an HTML Form
To build your HTML form, you need to write a new function, named createUserForm(). When called, this
function returns a string of HTML that displays a form that asks for a username and password for the
new admin.

You can add the code in bold to functions.inc.php to make the createUserForm() function:

function createUserForm()

{
 return <<<FORM
<form action="/simple_blog/inc/update.inc.php" method="post">
 <fieldset>
 <legend>Create a New Administrator</legend>

 <label>Username
 <input type="text" name="username" maxlength="75" />
 </label>
 <label>Password
 <input type="password" name="password" />

 </label>
 <input type="submit" name="submit" value="Create" />
 <input type="submit" name="submit" value="Cancel" />
 <input type="hidden" name="action" value="createuser" />
 </fieldset>

</form>
FORM;
}

Next, you need to add code to call this function if the user chooses to create a new admin. Use

the http://localhost/simple_blog/admin/createuser URL as your call to create a new admin for your
blog.

To make this URL call the createUserForm() function, you need to add an if block to admin.php
that triggers when the $page variable you use to determine what page is being edited is set to createuser.

Next, modify admin.php with the code in bold to incorporate the new form into your blog:

<?php

 /*
 * Include the necessary files
 */

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

313

 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 if(isset($_GET['page']))
 {
 $page = htmlentities(strip_tags($_GET['page']));
 }
 else
 {
 $page = 'blog';
 }

 if(isset($_POST['action']) && $_POST['action'] == 'delete')
 {
 if($_POST['submit'] == 'Yes')
 {
 $url = htmlentities(strip_tags($_POST['url']));
 if(deleteEntry($db, $url))
 {
 header("Location: /simple_blog/");
 exit;
 }
 else
 {
 exit("Error deleting the entry!");
 }
 }
 else
 {
 header("Location: /simple_blog/blog/$_POST[url]");
 }
 }

 if(isset($_GET['url']))
 {
 $url = htmlentities(strip_tags($_GET['url']));

 // Check if the entry should be deleted
 if($page == 'delete')
 {
 $confirm = confirmDelete($db, $url);
 }

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

314

 // Set the legend of the form
 $legend = "Edit This Entry";

 $e = retrieveEntries($db, $page, $url);
 $id = $e['id'];
 $title = $e['title'];
 $img = $e['image'];
 $entry = $e['entry'];
 }
 else
 {

 // Check if we're creating a new user
 if($page == 'createuser')
 {

 $create = createUserForm();
 }

 // Set the legend
 $legend = "New Entry Submission";

 // Set the variables to null if not editing
 $id = NULL;
 $title = NULL;
 $img = NULL;
 $entry = NULL;
 }
?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 <link rel="stylesheet" href="/simple_blog/css/default.css" type="text/css" />
 <title> Simple Blog </title>
</head>

<body>
 <h1> Simple Blog Application </h1>

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

315

<?php

 if($page == 'delete'):
 {
 echo $confirm;
 }

 elseif($page == 'createuser'):
 {
 echo $create;

 }
 else:

?>

You are now able to navigate to http://localhost/simple_blog/admin/createuser and see your

form (see Figure 11-1).

Figure 11-1. The form you use to create site administrators

Saving New Administrators in the Database
You submit your form to update.inc.php with a hidden input named action that sends the value,
createuser. To store administrators created through your createUserForm() HTML form, you need to
modify update.inc.php to catch form information with an action of createuser.

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

316

You need to prepare an SQL statement that places the username and password into the admin
table. Do this after you ensure that the form was sent using the POST method, that the action is set to
createuser, and that the username and password inputs were not submitted with empty values.

Dealing with Passwords
You need to take extra precautions now that you’re dealing with passwords. Passwords are sensitive
information, and you do not want to store a password as plain text in the database. Fortunately, both
PHP and MySQL provide means for encrypting strings.

For the blog, you can use SHA1(), which is a basic encryption algorithm. Calling SHA1() on a
string returns a 40-character string that is difficult to decode.

Note For more information on encrypting passwords, look up the PHP manual entries on md5() and sha1().

Saving the Admin
To save the admin information, you need to include the database credentials and open a new
connection to your database.

The SQL statement you use for this is a standard insert, except that you need to use MySQL’s
built-in support for creating SHA1 hashes. After you insert the new entry into the table, you send the
user back to the default blog home page.

In update.inc.php, insert the following code in bold just before the last else block:

// If an admin is being created, save it here

else if($_SERVER['REQUEST_METHOD'] == 'POST'
 && $_POST['action'] == 'createuser'
 && !empty($_POST['username'])

 && !empty($_POST['password']))
{
 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 $sql = "INSERT INTO admin (username, password)
 VALUES(?, SHA1(?))";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($_POST['username'], $_POST['password']));
 header('Location: /simple_blog/');
 exit;

}

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

317

else
{
 header('Location: ../');
 exit;
}

?>

You can now save new administrators to your admin table. Navigate to http://localhost/

simple_blog/admin/createuser in a browser and create a new user with the username of admin and the
password of admin. Now click the Create button, navigate to http://localhost/phpmyadmin in a browser,
select the simple_blog database and the admin table, then click the Browse tab. Your administrator is
now saved in the table, and the password is saved as an encrypted hash (see Figure 11-2).

Figure 11-2. Your first administrator

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

318

Hiding Controls from Unauthorized Users
You can use sessions to keep track of which users are authorized to view administrative links on your
blog. A session allows the user to log in once, then navigate anywhere on the site without losing his
administrative privileges.

Note For a refresher on how sessions work, refer to the section on sessions in Chapter 3.

Your first task is to wrap all administrative links in an if block; this ensures that a session
variable is set for the current user. Call your session variable loggedin and store it in the
$_SESSION['loggedin'] string.

Modifying index.php

Your next task is to hide all the admin links in index.php from unauthorized users. You need to enable
sessions, which you can accomplish in a couple steps: call session_start(), then wrap all the admin
links in your check for the $_SESSION[‘loggedin’] variable. Now modify index.php with the code in bold
to make your changes:

<?php

 session_start();

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Figure out what page is being requested (default is blog)
 if(isset($_GET['page']))
 {
 $page = htmlentities(strip_tags($_GET['page']));
 }
 else
 {
 $page = 'blog';
 }

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

319

 // Determine if an entry URL was passed
 $url = (isset($_GET['url'])) ? $_GET['url'] : NULL;

 // Load the entries
 $e = retrieveEntries($db, $page, $url);

 // Get the fulldisp flag and remove it from the array
 $fulldisp = array_pop($e);

 // Sanitize the entry data
 $e = sanitizeData($e);

?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <link rel="stylesheet" href="/simple_blog/css/default.css"
 type="text/css" />
 <link rel="alternate" type="application/rss+xml"
 title="My Simple Blog - RSS 2.0"
 href="http://localhost/simple_blog/feeds/rss.xml" />
 <title> Simple Blog </title>
</head>

<body>

 <h1> Simple Blog Application </h1>
 <ul id="menu">
 Blog
 About the Author

 <div id="entries">

<?php

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

320

// If the full display flag is set, show the entry
if($fulldisp==1)
{

 // Get the URL if one wasn't passed
 $url = (isset($url)) ? $url : $e['url'];

 if(isset($_SESSION['loggedin']) && $_SESSION['loggedin'] == 1)

 {
 // Build the admin links
 $admin = adminLinks($page, $url);
 }
 else

 {
 $admin = array('edit'=>NULL, 'delete'=>NULL);
 }

 // Format the image if one exists
 $img = formatImage($e['image'], $e['title']);

 if($page=='blog')
 {
 // Load the comment object
 include_once 'inc/comments.inc.php';
 $comments = new Comments();
 $comment_disp = $comments->showComments($e['id']);
 $comment_form = $comments->showCommentForm($e['id']);
 }
 else
 {
 $comment_form = NULL;
 }

?>

 <h2> <?php echo $e['title'] ?> </h2>
 <p> <?php echo $img, $e['entry'] ?> </p>
 <p>
 <?php echo $admin['edit'] ?>
 <?php if($page=='blog') echo $admin['delete'] ?>
 </p>

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

321

 <?php if($page=='blog'): ?>
 <p class="backlink">
 Back to Latest Entries
 </p>
 <h3> Comments for This Entry </h3>
 <?php echo $comment_disp, $comment_form; endif; ?>

<?php

} // End the if statement

// If the full display flag is 0, format linked entry titles
else
{
 // Loop through each entry
 foreach($e as $entry) {

?>

 <p>
 <a href="/simple_blog/<?php echo $entry['page'] ?>
/<?php echo $entry['url'] ?>">
 <?php echo $entry['title'] ?>

 </p>

<?php

 } // End the foreach loop
} // End the else

?>

 <p class="backlink">
<?php

if($page=='blog'
 && isset($_SESSION['loggedin'])
 && $_SESSION['loggedin'] == 1):

?>

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

322

 <a href="/simple_blog/admin/<?php echo $page ?>">
 Post a New Entry

<?php endif; ?>
 </p>

 <p>

 Subscribe via RSS!

 </p>

 </div>

</body>

</html>

When we navigate to http://localhost/simple_blog/ in your browser, the admin links no

longer appear (see Figure 11-3).

Figure 11-3. Your main page with the admin links hidden from view

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

323

Modifying comments.inc.php

Next, you want to hide the delete link from unauthorized users on any posted comments. You can do
this by modifying the Comments class in comments.inc.php.

The only method you need to modify in the Comments class is showComments(). Add your session
check by inserting the code in bold to showComments():

 // Generates HTML markup for displaying comments
 public function showComments($blog_id)
 {
 // Initialize the variable in case no comments exist
 $display = NULL;

 // Load the comments for the entry
 $this->retrieveComments($blog_id);

 // Loop through the stored comments
 foreach($this->comments as $c)
 {
 // Prevent empty fields if no comments exist
 if(!empty($c['date']) && !empty($c['name']))
 {
 // Outputs similar to: July 8, 2009 at 4:39PM
 $format = "F j, Y \a\\t g:iA";

 // Convert $c['date'] to a timestamp, then format
 $date = date($format, strtotime($c['date']));

 // Generate a byline for the comment
 $byline = "$c[name]
 [Posted on $date]";

 if(isset($_SESSION['loggedin'])
 && $_SESSION['loggedin'] == 1)
 {
 // Generate delete link for the comment display
 $admin = "<a href=\"/simple_blog/inc/update.inc.php"

 . "?action=comment_delete&id=$c[id]\""
 . " class=\"admin\">delete";
 }
 else
 {
 $admin = NULL;

 }
 }

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

324

 else
 {
 // If no comments exist, set $byline & $admin to NULL
 $byline = NULL;
 $admin = NULL;
 }

 // Assemble the pieces into a formatted comment
 $display .= "
<p class=\"comment\">$byline$c[comment]$admin</p>";
 }

 // Return all the formatted comments as a string
 return $display;
 }

Now you can navigate to an entry with a comment in your blog to see that the delete link is no

longer visible (see Figure 11-4).

Figure 11-4. The comment entry you display to unauthorized users

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

325

Modifying admin.php

None of the actions performed by this page should be available to unauthorized users, so you want to
require authorization before any of the functionality of admin.php can be accessed. Doing this is as
simple as wrapping the entire page in a conditional statement.

Modify admin.php by adding the code in bold:

<?php

session_start();

// If the user is logged in, we can continue
if(isset($_SESSION['loggedin']) && $_SESSION['loggedin']==1):

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 if(isset($_GET['page']))
 {
 $page = htmlentities(strip_tags($_GET['page']));
 }
 else
 {
 $page = 'blog';
 }

 if(isset($_POST['action']) && $_POST['action'] == 'delete')
 {
 if($_POST['submit'] == 'Yes')
 {
 $url = htmlentities(strip_tags($_POST['url']));
 if(deleteEntry($db, $url))
 {
 header("Location: /simple_blog/");
 exit;
 }

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

326

 else
 {
 exit("Error deleting the entry!");
 }
 }
 else
 {
 header("Location: /simple_blog/blog/$_POST[url]");
 }
 }

 if(isset($_GET['url']))
 {
 $url = htmlentities(strip_tags($_GET['url']));

 // Check if the entry should be deleted
 if($page == 'delete')
 {
 $confirm = confirmDelete($db, $url);
 }

 // Set the legend of the form
 $legend = "Edit This Entry";

 $e = retrieveEntries($db, $page, $url);
 $id = $e['id'];
 $title = $e['title'];
 $img = $e['image'];
 $entry = $e['entry'];
 }
 else
 {
 // Check if we're creating a new user
 if($page == 'createuser')
 {
 $create = createUserForm();
 }

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

327

 // Set the legend
 $legend = "New Entry Submission";

 // Set the variables to null if not editing
 $id = NULL;
 $title = NULL;
 $img = NULL;
 $entry = NULL;
 }
?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 <link rel="stylesheet" href="/simple_blog/css/default.css" type="text/css" />
 <title> Simple Blog </title>
</head>

<body>
 <h1> Simple Blog Application </h1>

<?php

 if($page == 'delete'):
 {
 echo $confirm;
 }
 elseif($page == 'createuser'):
 {
 echo $create;
 }
 else:

?>

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

328

 <form method="post"
 action="/simple_blog/inc/update.inc.php"
 enctype="multipart/form-data">
 <fieldset>
 <legend><?php echo $legend ?></legend>
 <label>Title
 <input type="text" name="title" maxlength="150"
 value="<?php echo $title ?>" />
 </label>
 <label>Image
 <input type="file" name="image" />
 </label>
 <label>Entry
 <textarea name="entry" cols="45"
 rows="10"><?php echo $entry ?></textarea>
 </label>
 <input type="hidden" name="id"
 value="<?php echo $id ?>" />
 <input type="hidden" name="page"
 value="<?php echo $page ?>" />
 <input type="submit" name="submit" value="Save Entry" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
 </form>
<?php endif; ?>
</body>

</html>

<?php endif; // Ends the section available to logged in users ?>

At this point, you’ve barred anyone who isn’t logged in from seeing administrative links and

performing administrative tasks such as creating, editing, and deleting entries.

Creating a Login Form
Now that you require authorization for a user to view administrative links, you need to build in the
functionality that allows your administrators to log in and gain access to those links.

To do this, you first need to create a login form where a user can enter her credentials to request
access to the administrative links.

A logical location to place your login form is at http://localhost/simple_blog/admin. For the
moment, admin.php shows a blank page if the user hasn’t logged in because authorization is required
before the page will do anything at all. You can fix that by placing the login form at the bottom of
admin.php, inside an else block. Doing so shows a login screen to anyone who isn’t logged in already.

Your login form requests a username and password and uses the POST method to send this
information to update.inc.php, along with a hidden input named action that passes the value, login.

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

329

At the bottom of admin.php, just after the closing </html> tag, modify the file with the code in
bold:

</html>

<?php

/*

 * If we get here, the user is not logged in. Display a form
 * and ask them to log in.
 */
else:

?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />

 <link rel="stylesheet"
 href="/simple_blog/css/default.css" type="text/css" />
 <title> Please Log In </title>
</head>

<body>

 <form method="post"
 action="/simple_blog/inc/update.inc.php"
 enctype="multipart/form-data">

 <fieldset>
 <legend>Please Log In To Continue</legend>
 <label>Username
 <input type="text" name="username" maxlength="75" />
 </label>

 <label>Password
 <input type="password" name="password"
 maxlength="150" />
 </label>

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

330

 <input type="hidden" name="action" value="login" />
 <input type="submit" name="submit" value="Log In" />
 </fieldset>

 </form>

</body>

</html>

<?php endif; ?>

Now you can navigate to http://localhost/simple_blog/admin to see your login form in action

(see Figure 11-5).

Figure 11-5. Users not logged in see a login screen.

Displaying Controls to Authorized Users
Your next steps are to modify update.inc.php to check whether the login credentials supplied via the
login form are valid; if they are, you set $_SESSION['loggedin'] to 1, which causes all administrative links
and actions to become available to the user.

In update.inc.php, you add an else if block that checks whether it was the POST method that
submitted the login form. You do this by checking whether the value of $_POST['action'] is set to login
and whether the values of the username and password fields were submitted with values.

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

331

If these criteria are met, you load the database credentials and open a connection. Next, you set
up a SQL query that gets the number of matches found by comparing the submitted username and the
SHA1() hash of the submitted password against the database.

Note You must check the SHA1() hash of the password because that’s what you saved in the database. There’s
no way to reverse a SHA1() hash, but the encryption algorithm always returns the same hash for a given string.

The user is authorized to view the blog if a match is returned, whereupon you can add
$_SESSION['loggedin'] to the session and set its value to 1.

To accomplish this, you use session_start() at the top of update.inc.php, then add the else if
block at the bottom, just above your block that checks whether you’re creating a user.

Modify update.inc.php by adding the code in bold:

<?php

// Start the session
session_start();

// Include the functions so we can create a URL
include_once 'functions.inc.php';

// Include the image handling class
include_once 'images.inc.php';

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry'
 && !empty($_POST['page'])
 && !empty($_POST['title'])
 && !empty($_POST['entry']))
{
 // Create a URL to save in the database
 $url = makeUrl($_POST['title']);

 if(strlen($_FILES['image']['tmp_name']) > 0)
 {
 try
 {
 // Instantiate the class and set a save dir
 $image = new ImageHandler("/simple_blog/images/");

 // Process the uploaded image and save the returned path
 $img_path = $image->processUploadedImage($_FILES['image']);
 }

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

332

 catch(Exception $e)
 {
 // If an error occurred, output our custom error message
 die($e->getMessage());
 }
 }
 else
 {
 // Avoids a notice if no image was uploaded
 $img_path = NULL;
 }

 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Edit an existing entry
 if(!empty($_POST['id']))
 {
 $sql = "UPDATE entries
 SET title=?, image=?, entry=?, url=?
 WHERE id=?
 LIMIT 1";
 $stmt = $db->prepare($sql);
 $stmt->execute(
 array(
 $_POST['title'],
 $img_path,
 $_POST['entry'],
 $url,
 $_POST['id']
)
);
 $stmt->closeCursor();
 }

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

333

 // Create a new entry
 else
 {
 // Save the entry into the database
 $sql = "INSERT INTO entries (page, title, image, entry, url)
 VALUES (?, ?, ?, ?, ?)";
 $stmt = $db->prepare($sql);
 $stmt->execute(
 array(
 $_POST['page'],
 $_POST['title'],
 $img_path,
 $_POST['entry'],
 $url
)
);
 $stmt->closeCursor();
 }

 // Sanitize the page information for use in the success URL
 $page = htmlentities(strip_tags($_POST['page']));

 // Send the user to the new entry
 header('Location: /simple_blog/'.$page.'/'.$url);
 exit;
}

// If a comment is being posted, handle it here
else if($_SERVER['REQUEST_METHOD'] == 'POST'
 && $_POST['submit'] == 'Post Comment')
{
 // Include and instantiate the Comments class
 include_once 'comments.inc.php';
 $comments = new Comments();

 // Save the comment
 if($comments->saveComment($_POST))
 {
 // If available, store the entry the user came from
 if(isset($_SERVER['HTTP_REFERER']))
 {
 $loc = $_SERVER['HTTP_REFERER'];
 }

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

334

 else
 {
 $loc = '../';
 }

 // Send the user back to the entry
 header('Location: '.$loc);
 exit;
 }

 // If saving fails, output an error message
 else
 {
 exit('Something went wrong while saving the comment.');
 }
}

// If the delete link is clicked on a comment, confirm it here
else if($_GET['action'] == 'comment_delete')
{
 // Include and instantiate the Comments class
 include_once 'comments.inc.php';
 $comments = new Comments();
 echo $comments->confirmDelete($_GET['id']);
 exit;
}

// If the confirmDelete() form was submitted, handle it here
else if($_SERVER['REQUEST_METHOD'] == 'POST'
 && $_POST['action'] == 'comment_delete')
{
 // If set, store the entry from which we came
 $loc = isset($_POST['url']) ? $_POST['url'] : '../';

 // If the user clicked "Yes", continue with deletion
 if($_POST['confirm'] == "Yes")
 {
 // Include and instantiate the Comments class
 include_once 'comments.inc.php';
 $comments = new Comments();

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

335

 // Delete the comment and return to the entry
 if($comments->deleteComment($_POST['id']))
 {
 header('Location: '.$loc);
 exit;
 }

 // If deleting fails, output an error message
 else
 {
 exit('Could not delete the comment.');
 }
 }

 // If the user didn't click "Yes", do nothing and return to the entry
 else
 {
 header('Location: '.$loc);
 exit;
 }
}

// If a user is trying to log in, check it here
else if($_SERVER['REQUEST_METHOD'] == 'POST'
 && $_POST['action'] == 'login'
 && !empty($_POST['username'])

 && !empty($_POST['password']))
{
 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 $sql = "SELECT COUNT(*) AS num_users
 FROM admin
 WHERE username=?
 AND password=SHA1(?)";
 $stmt = $db->prepare($sql);

 $stmt->execute(array($_POST['username'], $_POST['password']));
 $response = $stmt->fetch();
 if($response['num_users'] > 0)
 {
 $_SESSION['loggedin'] = 1;

 }

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

336

 else
 {
 $_SESSION['loggedin'] = NULL;

 }
 header('Location: /simple_blog/');
 exit;
}

// If an admin is being created, save it here
else if($_SERVER['REQUEST_METHOD'] == 'POST'
 && $_POST['action'] == 'createuser'
 && !empty($_POST['username'])
 && !empty($_POST['password']))
{
 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);
 $sql = "INSERT INTO admin (username, password)
 VALUES(?, SHA1(?))";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($_POST['username'], $_POST['password']));
 header('Location: /simple_blog/');
 exit;
}

else
{
 header('Location: ../');
 exit;
}

?>

You can test this code by navigating to http://localhost/simple_blog/admin and entering the

username and password you inserted into the database previously (both values were set to admin). This
redirects you to the main page and makes the Post a New Entry link visible again. If you open an entry,
you can see that all the administrative links are visible again (see Figure 11-6).

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

337

Figure 11-6. After logging in, you can see the administrative links again.

Logging Users Out
After an authorized user completes his administrative tasks, he needs to be able to log out from the site.
To enable this, all you need to do is unset $_SESSION['loggedin'], which hides the admin links and
prevents any administrative actions from being performed until the user logs in again.

Adding a Log Out Link
You can simplify this process by adding a Log out link to your blog pages. This is as simple as adding an
additional if block to index.php that displays a message notifying a user that she is logged in, as well as a
link that allows her to log out.

You can keep the link visible by placing it right under the menu. In index.php, add the code in
bold between the menu and the entries container:

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

338

<body>

 <h1> Simple Blog Application </h1>
 <ul id="menu">
 Blog
 About the Author

<?php if(isset($_SESSION['loggedin']) && $_SESSION['loggedin']==1): ?>
 <p id="control_panel">

 You are logged in!
 Log
 out.
 </p>
<?php endif; ?>

 <div id="entries">

Navigate to http://localhost/simple_blog/ while logged in to see the new notification and Log

out link (see Figure 11-7).

Figure 11-7. When logged in, you now see a notification and a link to log out.

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

339

Modifying update.inc.php to Log Out Users
The code you created in the last step means the Log out link will send your user to update.inc.php and
use the GET method to pass a variable called action that is set to logout.

At the bottom of update.inc.php, add one more else if block that checks whether
$_GET['action'] is set to logout; if so, use the session_destroy() function to destroy
$_SESSION['loggedin'] and any other session variables, which reverts the user back to an unauthorized
state and once again hides the administrative links and actions. From here, you simply send the user
back out to the default page.

Insert the following code in bold into update.inc.php, just above the last else block:

// If the user has chosen to log out, process it here
else if($_GET['action'] == 'logout')
{

 session_destroy();
 header('Location: ../');
 exit;
}

else
{
 header('Location: ../');
 exit;
}

?>

You can test this code by clicking the Log out link on any page. Doing so takes you back to the

main page and hides the administrative links (see Figure 11-8).

Download at WoweBook.Com

CHAPTER 11 ADDING PASSWORD PROTECTION TO ADMINISTRATIVE LINKS

340

Figure 11-8. Logging out hides the administrative links again.

Summary
In this chapter, you created a very simple login system that allows you to add password protection to the
administrative functions of your blog. This gives you better control over your blog by restricting access to
the administrative links and actions.

At this point, your blog is nearly finished. In the next chapter, you will learn how to integrate
spam-prevention, email validation, and some fun extras involving a few popular social media sites in an
effort to connect further with your blog’s readers.

Download at WoweBook.Com

C H A P T E R 12

341

Finishing Touches

The last few steps are optional, but they add that final touches to the blog that will make it feel
professional, inviting, and, most of all, useful.

In this chapter, you will learn how to add several fun features to the blog:

• An email validation script for posting comments

• Basic spam prevention measures for comment posting

• A “Post to Twitter” link, utilizing the http://bit.ly URL-shortening service

Email Validation
Validating a user’s email address helps you avoid basic spam attempts. Some spam bots simply add
garbage text into a form’s inputs. By ensuring that the email input is filled out with a properly formatted
email address, you can fend off the most primitive types of spam attacks.

However, you also want to keep in mind that people sometimes make typos, and if your
comment form can’t validate a user with a typo in her email address, you don’t want to erase her
comment completely and make her start over; this will frustrate your user and might prevent this person
from joining the discussion on your blog.

To avoid this problem, you can save the comment in a session that you destroy only if the
comment is posted successfully (or the session times out). This way, you won’t penalize a real user who
makes a simple mistake, giving her a chance to fix her mistake on the form before posting.

To validate email addresses before you save comments, you need to make the following
modifications to the Comments class:

• Add a method to validate email addresses using a regular expression

• Modify the saveComment() method to call the validation function

• Save the contents of a comment form in session variables after posting

• Generate an error message if errors occur, so the user knows what went wrong

• Fill out the comment form with session values if they exist

• Destroy the session after a successful comment post

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

342

Adding a Method to Validate Email
Your first task is to write a new method that verifies whether the email address provided is a valid email
format.

Note This method doesn’t verify that the email address is real; rather, it ensures that the format is valid. A user
can still provide a fake email address, such as fake@email.com, and post a comment successfully.

You should make this method, called validateEmail(), private because you call it only from the
Comments class. It’s short and sweet: when called, it accepts the user’s email address as an argument
($email) and matches the provided email address against a regular expression; the address is valid if the
expression returns TRUE, but FALSE otherwise.

Open comments.inc.php and add validateEmail() just below the saveComment() method:

 private function validateEmail($email)

 {
 // Matches valid email addresses
 $p = '/^[\w-]+(\.[\w-]+)*@[a-z0-9-]+'

 .'(\.[a-z0-9-]+)*(\.[a-z]{2,4})$/i';

 // If a match is found, return TRUE, otherwise return FALSE
 return (preg_match($p, $email)) ? TRUE : FALSE;
 }

The regular expression you use in this method looks incredibly complex, but you can break it

down into three relatively simple sections: the part of the email address before the at (@) symbol, the part
between the at (@) symbol and the period (.), and the top level domain (such as .com or .net).

The first section needs to match any hyphens (-) and word characters (symbolized by \w—this
matches the letters, numbers, and underscore [_]) from the beginning of the string to the at (@) symbol.
However, you should keep in mind that some email addresses use periods (.) as well, as in
john.doe@email.com. This means you need to accommodate this email construction in your pattern, but
not require it. Put this all together, and this section of the regular expression looks like this:

^[\w-]+(\.[\w-]+)*@

By placing the second part of the pattern in parentheses with the star (*) following, you can

make this section required zero or more times, which effectively makes it optional.

Caution Remember that the period (.) in regular expressions serves as a wildcard and matches nearly
anything. To match only a period, be sure to escape the period with a backslash (\.).

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

343

The third section must match a domain name. Domain names cannot contain the underscore
character (_), so this part of the pattern cannot use the word character shortcut (\w). Instead, you have to
set up a character set manually that allows for letters, numbers, and the hyphen (-), and then require
that one or more matches exist. As in the first section, your pattern must accommodate an optional set
that matches the period (.) in the event a user’s email address is from a subdomain, such as
johndoe@sales.example.com. The third section of the pattern looks like this:

[a-z0-9-]+(\.[a-z0-9-]+)*

Finally, the pattern must match a top-level domain, such as .com or .net. This is as simple as

creating a set of the letters a-z and requiring between two and four total characters that are at the end of
the string; you express this requirement like this:

(\.[a-z]{2,4})$

Next, wrap this pattern in the required forward slash (/) delimiter, then append the i flag to

make the pattern case-insensitive.

Validating Email Addresses
So far you’ve written a method to validate submitted email addresses. Next, you can modify
saveComment() to call validateEmail(); this ensures that you save only comments with valid email
addresses.

Inside saveComment(), add a conditional statement that performs an important check. If the
returned value of validateEmail() is FALSE when the value of $p['email'] is passed, it terminates the
function by returning FALSE.

Add these modifications by inserting the bold code into saveComment():

 // Save comments to the database
 public function saveComment($p)
 {

 // Make sure the email address is valid first
 if($this->validateEmail($p['email'])===FALSE)
 {
 return FALSE;

 }

 // Sanitize the data and store in variables
 $blog_id = htmlentities(strip_tags($p['blog_id']),
 ENT_QUOTES);
 $name = htmlentities(strip_tags($p['name']), ENT_QUOTES);
 $email = htmlentities(strip_tags($p['email']), ENT_QUOTES);
 $comment = htmlentities(strip_tags($p['comment']),
 ENT_QUOTES);

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

344

 // Generate an SQL command
 $sql = "INSERT INTO comments (blog_id, name, email, comment)
 VALUES (?, ?, ?, ?)";
 if($stmt = $this->db->prepare($sql))
 {
 // Execute the command, free used memory, and return true
 $stmt->execute(array($blog_id, $name, $email, $comment));
 $stmt->closeCursor();
 return TRUE;
 }
 else
 {
 // If something went wrong, return false
 return FALSE;
 }
 }

To test this, navigate to http://localhost/simple_blog/blog and select an entry. Now try to

post a comment with a bad email address (such as “notarealemail”) and click the Post Comment button.
The script in update.inc.php will fail and output an error message because saveComment() returns FALSE
when a valid email isn’t supplied:

Something went wrong while saving the comment.

Saving Comments in Sessions
Next, you need to save the user’s input in a session. As explained earlier, you do this so the user isn’t
forced to start from scratch if an error occurs when submitting the comment form.

In comments.inc.php, modify saveComment() by adding the following code in bold:

 // Save comments to the database
 public function saveComment($p)
 {
 // Save the comment information in a session

 $_SESSION['c_name'] = htmlentities($p['name'], ENT_QUOTES);
 $_SESSION['c_email'] = htmlentities($p['email'], ENT_QUOTES);
 $_SESSION['c_comment'] = htmlentities($p['cmnt'],
 ENT_QUOTES);

 // Make sure the email address is valid first
 if($this->validateEmail($p['email'])===FALSE)
 {
 return FALSE;
 }

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

345

 // Sanitize the data and store in variables
 $blog_id = htmlentities(strip_tags($p['blog_id']),
 ENT_QUOTES);
 $name = htmlentities(strip_tags($p['name']), ENT_QUOTES);
 $email = htmlentities(strip_tags($p['email']), ENT_QUOTES);
 $comment = htmlentities(strip_tags($p['comment']),
 ENT_QUOTES);

 // Generate an SQL command
 $sql = "INSERT INTO comments (blog_id, name, email, comment)
 VALUES (?, ?, ?, ?)";
 if($stmt = $this->db->prepare($sql))
 {
 // Execute the command, free used memory, and return true
 $stmt->execute(array($blog_id, $name, $email, $comment));
 $stmt->closeCursor();
 return TRUE;
 }
 else
 {
 // If something went wrong, return false
 return FALSE;
 }
 }

Displaying the Stored Comment Information
You’ve saved the comment information in a session; now you can use the session variables to keep the
comment form populated with the user’s information. You can do this by modifying showCommentForm()
to check whether the session variables are set, then store for output in the form.

You can add the code in bold to make showCommentForm() start showing stored comments:

 // Display a form for users to enter new comments with
 public function showCommentForm($blog_id)
 {
 // Check if session variables exist
 if(isset($_SESSION['c_name']))

 {
 $n = $_SESSION['c_name'];
 }
 else
 {

 $n = NULL;
 }

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

346

 if(isset($_SESSION['c_email']))
 {
 $e = $_SESSION['c_email'];

 }
 else
 {
 $e = NULL;
 }

 if(isset($_SESSION['c_comment']))
 {
 $c = $_SESSION['c_comment'];
 }
 else

 {
 $c = NULL;
 }

 return <<<FORM
<form action="/simple_blog/inc/update.inc.php"
 method="post" id="comment-form">
 <fieldset>
 <legend>Post a Comment</legend>
 <label>Name

 <input type="text" name="name" maxlength="75"
 value="$n" />
 </label>
 <label>Email

 <input type="text" name="email" maxlength="150"
 value="$e" />
 </label>
 <label>Comment
 <textarea rows="10" cols="45"

 name="comment">$c</textarea>
 </label>
 <input type="hidden" name="blog_id" value="$blog_id" />
 <input type="submit" name="submit" value="Post Comment" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
</form>
FORM;
 }

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

347

To test this, navigate to http://localhost/simple_blog/blog and select an entry. Enter a
comment with a valid email address (you want to avoid the error screen for now), then click the Post
Comment button to place a new comment on the blog entry.

After posting the comment, this script sends you back to the entry, where you can see the
comment displayed both in the comment view as well as in the comment form. Your users might be
confused if the form stays populated after a successful post, so you need to unset the session variables
after a comment is stored properly.

You can do this by modifying saveComment() with the code in bold:

// Save comments to the database
 public function saveComment($p)
 {
 // Save the comment information in a session
 $_SESSION['c_name'] = htmlentities($p['name'], ENT_QUOTES);
 $_SESSION['c_email'] = htmlentities($p['email'], ENT_QUOTES);
 $_SESSION['c_comment'] = htmlentities($p['cmnt'],
 ENT_QUOTES);

 // Make sure the email address is valid first
 if($this->validateEmail($p['email'])===FALSE)
 {
 return FALSE;
 }

 // Sanitize the data and store in variables
 $blog_id = htmlentities(strip_tags($p['blog_id']),
 ENT_QUOTES);
 $name = htmlentities(strip_tags($p['name']), ENT_QUOTES);
 $email = htmlentities(strip_tags($p['email']), ENT_QUOTES);
 $comment = htmlentities(strip_tags($p['comment']),
 ENT_QUOTES);

 // Generate an SQL command
 $sql = "INSERT INTO comments (blog_id, name, email, comment)
 VALUES (?, ?, ?, ?)";
 if($stmt = $this->db->prepare($sql))
 {
 // Execute the command, free used memory, and return true
 $stmt->execute(array($blog_id, $name, $email, $comment));
 $stmt->closeCursor();

 // Destroy the comment information to empty the form
 unset($_SESSION['c_name'], $_SESSION['c_email'],

 $_SESSION['c_comment']);
 return TRUE;
 }

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

348

 else
 {
 // If something went wrong, return false
 return FALSE;
 }
 }

You can test this script by posting a comment successfully. The comment should be displayed,

but the form should be empty. Now enter a comment with a bad email address, which should throw up
an error. From the error screen, navigate back to the entry you were testing with; you should see that no
comment was posted, but the information you entered remains in the form.

Adding Error Messages
If you don’t inform your users what went wrong, they might become confused and frustrated with your
comment form. To counter this, you need to generate and display error messages when applicable; this
will help the user fill out the form properly.

You’re already using sessions, so here you can store error messages in an additional session
variable, $_SESSION['error']. The saveComment() method lets you store any errors generated as an error
code; you can then use the showCommentForm() to match an error with the appropriate error message you
want to display on the form.

Identifying Errors in saveComment()
Begin by identifying the errors that might occur. The first error is an unexpected failure of the database
query. Give this error the error code, 1. The second error occurs when the script encounters an invalid
email, which you can identify with the error code 2. If necessary, you can add more error codes in the
future.

You don’t need to display an error if the user posts a comment successfully, so you don’t store
an error code when no errors occur. Also, you must unset the error session variable after a successful
post to prevent the user from seeing the same error again, after the problem has been corrected.

Your script now dealings with error codes, rather than successful or unsuccessful scripts, so
your script no longer needs to return TRUE or FALSE. Instead, you can make your script set a session
variable with an error code and return nothing.

Implement these changes by adding the code in bold to saveComment():

 // Save comments to the database
 public function saveComment($p)
 {
 // Save the comment information in a session
 $_SESSION['c_name'] = htmlentities($p['name'], ENT_QUOTES);
 $_SESSION['c_email'] = htmlentities($p['email'], ENT_QUOTES);
 $_SESSION['c_comment'] = htmlentities($p['cmnt'],
 ENT_QUOTES);

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

349

 // Make sure the email address is valid first
 if($this->validateEmail($p['email'])===FALSE)
 {
 $_SESSION['error'] = 2;

 return;
 }

 // Sanitize the data and store in variables
 $blog_id = htmlentities(strip_tags($p['blog_id']),
 ENT_QUOTES);
 $name = htmlentities(strip_tags($p['name']), ENT_QUOTES);
 $email = htmlentities(strip_tags($p['email']), ENT_QUOTES);
 $comment = htmlentities(strip_tags($p['comment']),
 ENT_QUOTES);

 // Generate an SQL command
 $sql = "INSERT INTO comments (blog_id, name, email, comment)
 VALUES (?, ?, ?, ?)";
 if($stmt = $this->db->prepare($sql))
 {
 // Execute the command, free used memory, and return true
 $stmt->execute(array($blog_id, $name, $email, $comment));
 $stmt->closeCursor();

 // Destroy the comment information to empty the form
 unset($_SESSION['c_name'], $_SESSION['c_email'],
 $_SESSION['c_comment'], $_SESSION['error']);
 return;
 }
 else
 {
 // If something went wrong

 $_SESSION['error'] = 1;
 return;
 }
 }

Modifying update.inc.php
saveComment() no longer returns TRUE or FALSE, so you must modify update.inc.php to execute
saveComment() rather than checking its output. Additionally, you need to account for the user pressing
the comment form’s Cancel button. When that happens, update.inc.php must unset the session
variables to avoid problems.

Your first task is to fix issues with saving comments; make the following modifications, shown
in bold and starting at line 94, to update.inc.php:

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

350

// If a comment is being posted, handle it here
else if($_SERVER['REQUEST_METHOD'] == 'POST'
 && $_POST['submit'] == 'Post Comment')
{
 // Include and instantiate the Comments class
 include_once 'comments.inc.php';
 $comments = new Comments();

 // Save the comment
 $comments->saveComment($_POST);

 // If available, store the entry the user came from

 if(isset($_SERVER['HTTP_REFERER']))
 {
 $loc = $_SERVER['HTTP_REFERER'];
 }
 else

 {
 $loc = '../';
 }

 // Send the user back to the entry

 header('Location: '.$loc);
 exit;
}

Next, you can unset the session variables if a user presses the Cancel button by adding the code

in bold to the last else block at the bottom of update.inc.php:

else
{

 unset($_SESSION['c_name'], $_SESSION['c_email'],
 $_SESSION['c_comment'], $_SESSION['error']);
 header('Location: ../');
 exit;
}

?>

Matching Error Codes in showCommentForm()
Your script now stores error codes; next, you need to modify showCommentForm() to identify an error code
and match it with a corresponding error message, which you then display on the comment form.

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

351

Begin by creating an array in which the error codes are the keys, and the messages are the
values. Next, verify whether an error code was stored, and, if so, store the correct error message from the
array in a variable ($error); otherwise, set the variable to NULL. Finally, insert the error message into the
output for display.

Add these changes by inserting the code in bold into showCommentForm():

 // Display a form for users to enter new comments with
 public function showCommentForm($blog_id)
 {

 $errors = array(
 1 => '<p class="error">Something went wrong while '
 . 'saving your comment. Please try again!</p>',

 2 => '<p class="error">Please provide a valid '
 . 'email address!</p>'
);
 if(isset($_SESSION['error']))
 {

 $error = $errors[$_SESSION['error']];
 }
 else
 {
 $error = NULL;
 }

 // Check if session variables exist
 if(isset($_SESSION['c_name']))
 {
 $n = $_SESSION['c_name'];
 }
 else
 {
 $n = NULL;
 }
 if(isset($_SESSION['c_email']))
 {
 $e = $_SESSION['c_email'];
 }

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

352

 else
 {
 $e = NULL;
 }
 if(isset($_SESSION['c_comment']))
 {
 $c = $_SESSION['c_comment'];
 }
 else
 {
 $c = NULL;
 }

 return <<<FORM
<form action="/simple_blog/inc/update.inc.php"
 method="post" id="comment-form">
 <fieldset>
 <legend>Post a Comment</legend>$error
 <label>Name
 <input type="text" name="name" maxlength="75"
 value="$n" />
 </label>
 <label>Email
 <input type="text" name="email" maxlength="150"
 value="$e" />
 </label>
 <label>Comment
 <textarea rows="10" cols="45"
 name="comment">$c</textarea>
 </label>
 <input type="hidden" name="blog_id" value="$blog_id" />
 <input type="submit" name="submit" value="Post Comment" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
</form>
FORM;
 }

Now your users receive an error message if they make a mistake or something goes wrong with

the submission. Try entering a bad email address to see your new error handling system in action (see
Figure 12-1).

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

353

Figure 12-1. The error message displayed when a bad email address is entered

Basic Spam Prevention
Unfortunately, any web form is a potential target for spammers, both human and automated. If left
unchecked, spammers can ruin a blog by flooding the comments with irrelevant links and other garbage.
The spam buries legitimate comments and makes it difficult to find anything meaningful in the
comment section, which can cause your users to give up on leaving or reading comments altogether.

To address this problem, you’ll need to take some anti-spam measures on your comment form.
There are myriad options available for spam prevention, ranging from user-dependent systems such as
CAPTCHA1 (the squiggly letters and numbers you’ve no doubt seen on some web forms), to server-side
technologies such as Akismet2 (which identifies spam pretty well without requiring the user to do
anything).

In the spirit of learning, let’s walk through how to build a custom form to curb spam,
sometimes referred to as challenge-response. In this case, you present your user with a simple math
question that must be answered to confirm that he isn’t a spam bot.

1 http://en.wikipedia.org/wiki/CAPTCHA
2 http://akismet.com/

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

354

Creating a Basic Logic Question
It’s not foolproof, but adding a basic logic question to your comment forms is a great way to trip up less
sophisticated spam bots, without asking much of your users—it doesn’t require too much effort to
answer the question: “What is 2 + 3?”

Unfortunately, some spam bots are wily enough to parse the logic question and determine the
answer. To confuse these bots, you can obfuscate the values by converting them to their HTML entities.
Again, this isn’t a perfect system, but it can prevent spam on a small site fairly well.

Generating Random Numbers
The first task is to generate a math question. To keep things simple, all answers to the math question
should be less than 10. Keeping the question simple ensures that your users won’t even have to think
before answering the question, which is an important consideration: you don’t want to make it any more
difficult to post a comment than is absolutely necessary.

To keep things random and simple, you can create an array of two numbers between 1 and 4
using PHP’s built-in mt_rand() function, which generates random numbers based on a low and high
limit, then passes these results as arguments. You store the sum of the two numbers in a new session
variable called $_SESSION['challenge'], and you use this variable to verify that the user supplied the
proper response. You place the logic to challenge your user in a new private method called
generateChallenge(), which you add to comments.inc.php:

 private function generateChallenge()

 {
 // Store two random numbers in an array
 $numbers = array(mt_rand(1,4), mt_rand(1,4));

 // Store the correct answer in a session
 $_SESSION['challenge'] = $numbers[0] + $numbers[1];
 }

Note PHP also has a function called rand() that works similarly to mt_rand(). It has been found that the
results from rand() in some cases aren’t actually very random, and that the results from mt_rand() tend to be
more reliable when randomness is important.

Obfuscating the Values
So far you have two random numbers in an array; next, you need to obfuscate the values. Obfuscation in
programming3 is the practice of making code difficult to interpret. This is generally done as a security
measure. You want to obfuscate the values on the current form to make it more difficult for a spam bot
to parse your form and answer the challenge question.

Converting the random numbers to their ASCII4 character code equivalents should help you
baffle spam bots. ASCII stands for American Standard Code for Information Interchange, and it bridges

3 http://en.wikipedia.org/wiki/Obfuscated_code
4 http://en.wikipedia.org/wiki/ASCII

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

355

the gap between humans and computers. Computers can understand only numbers—every symbol is
mapped to a numeric code. For example, the ASCII equivalent of a questions mark (?) is 63.

PHP provides a function to perform this conversion called ord(). To convert both numbers in
the array $numbers, you use the array_map() function, which enables you to apply a function to each
value in an array individually.

Obfuscate the numbers by adding the following code in bold to generateChallenge():

 private function generateChallenge()
 {
 // Store two random numbers in an array
 $numbers = array(mt_rand(1,4), mt_rand(1,4));

 // Store the correct answer in a session
 $_SESSION['challenge'] = $numbers[0] + $numbers[1];

 // Convert the numbers to their ASCII codes

 $converted = array_map('ord', $numbers);
 }

Adding the Math Question to the Form
Now that you have two obfuscated numbers, it’s time to generate the HTML markup that displays the
challenge question to the user.

The markup creates a text input field in which the user will type his answer to the challenge
question. You label the text input with an obfuscated string that (you hope) will confuse a spam bot
when it displays this question: “What is n + m?” n is the first random number, while m is the second.

Add the code in bold to generateChallenge() to return the markup for a challenge question:

 private function generateChallenge()
 {
 // Store two random numbers in an array
 $numbers = array(mt_rand(1,4), mt_rand(1,4));

 // Store the correct answer in a session
 $_SESSION['challenge'] = $numbers[0] + $numbers[1];

 // Convert the numbers to their ASCII codes
 $converted = array_map('ord', $numbers);

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

356

 // Generate a math question as HTML markup
 return "

 <label>What is
 &#$converted[0]; + &#$converted[1];?
 <input type=\"text\" name=\"s_q\" />
 </label>";
 }

Adding the Challenge Question to the Form
At this point, you’re ready to add the challenge question to the comment form. To do this, you need to
modify showCommentForm() by creating a new variable, $challenge, to store the output of
generateChallenge(), and then insert it into the form’s HTML markup.

You add the challenge question by incorporating the code in bold to showCommentForm():

 // Display a form for users to enter new comments with
 public function showCommentForm($blog_id)
 {
 $errors = array(
 1 => '<p class="error">Something went wrong while '
 . 'saving your comment. Please try again!</p>',
 2 => '<p class="error">Please provide a valid '
 . 'email address!</p>'
);
 if(isset($_SESSION['error']))
 {
 $error = $errors[$_SESSION['error']];
 }
 else
 {
 $error = NULL;
 }

 // Check if session variables exist
 $n = isset($_SESSION['n']) ? $_SESSION['n'] : NULL;
 $e = isset($_SESSION['e']) ? $_SESSION['e'] : NULL;
 $c = isset($_SESSION['c']) ? $_SESSION['c'] : NULL;

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

357

 // Generate a challenge question
 $challenge = $this->generateChallenge();

 return <<<FORM
<form action="/simple_blog/inc/update.inc.php"
 method="post" id="comment-form">
 <fieldset>
 <legend>Post a Comment</legend>$error
 <label>Name
 <input type="text" name="name" maxlength="75"
 value="$n" />
 </label>
 <label>Email
 <input type="text" name="email" maxlength="150"
 value="$e" />
 </label>
 <label>Comment
 <textarea rows="10" cols="45"
 name="comment">$c</textarea>

 </label>$challenge
 <input type="hidden" name="blog_id" value="$blog_id" />
 <input type="submit" name="submit" value="Post Comment" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
</form>
FORM;
 }

You can test this code by loading an entry in your browser. Just below the comment text area,

you can see a new input labeled with the challenge question (see Figure 12-2).

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

358

Figure 12-2. The challenge question displayed on the contact form

Verifying the Correct Answer
You’ve presented the user is being presented with a challenge question. The next step is to add a private
method that compares the user’s response to the challenge with the correct answer.

Call this method verifyResponse(). This method accepts the user’s response to the challenge
question generated in generateChallenge(), then it compares the value stored in
$_SESSION['challenge'] with the supplied response. If they match, the method returns TRUE; otherwise,
it returns FALSE.

To avoid potential double-posting or other unexpected behavior, you should store the value of
$_SESSION['challenge'] in a new variable ($val), then destroy it using unset().

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

359

Add the following method to comments.inc.php:

 private function verifyResponse($resp)

 {
 // Grab the session value and destroy it
 $val = $_SESSION['challenge'];

 unset($_SESSION['challenge']);

 // Returns TRUE if equal, FALSE otherwise
 return $resp==$val;
 }

Adding the Verification into saveComment()
Next, you need to modify saveComment() so it calls verifyResponse() before saving the comment. This
requires passing the proper information from the posted form, checking the method’s return value, and
storing an error code if the response doesn’t match.

This error code doesn’t fall within the existing two error codes, so you must define a new error
code. For the sake of simplicity, make 3 your new error code for an incorrect response to the challenge
question.

You can make these changes by adding the code in bold to saveComment():

 // Save comments to the database
 public function saveComment($p)
 {
 // Save the comment information in a session
 $_SESSION['n'] = $p['name'];
 $_SESSION['e'] = $p['email'];
 $_SESSION['c'] = $p['comment'];

 // Make sure the email address is valid first
 if($this->validateEmail($p['email'])===FALSE)
 {
 $_SESSION['error'] = 2;
 return;
 }

 // Make sure the challenge question was properly answered

 if(!$this->verifyResponse($p['s_q'], $p['s_1'], $p['s_2']))
 {
 $_SESSION['error'] = 3;
 return;
 }

 // Sanitize the data and store in variables

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

360

 $blog_id = htmlentities(strip_tags($p['blog_id']),
 ENT_QUOTES);
 $name = htmlentities(strip_tags($p['name']), ENT_QUOTES);
 $email = htmlentities(strip_tags($p['email']), ENT_QUOTES);
 $comment = htmlentities(strip_tags($p['comment']),
 ENT_QUOTES);

 // Generate an SQL command
 $sql = "INSERT INTO comments (blog_id, name, email, comment)
 VALUES (?, ?, ?, ?)";
 if($stmt = $this->db->prepare($sql))
 {
 // Execute the command, free used memory, and return true
 $stmt->execute(array($blog_id, $name, $email, $comment));
 $stmt->closeCursor();

 // Destroy the comment information to empty the form
 unset($_SESSION['n'], $_SESSION['e'], $_SESSION['c'],
 $_SESSION['error']);
 return;
 }
 else
 {
 // If something went wrong
 $_SESSION['error'] = 1;
 return;
 }
 }

Now the comment form will save a comment only if the user answers the challenge question

correctly. The only thing left to do is to add an error message to correspond with error code 3, which you
add in showCommentForm() by inserting the code in bold:

 // Display a form for users to enter new comments with
 public function showCommentForm($blog_id)
 {
 $errors = array(
 1 => '<p class="error">Something went wrong while '
 . 'saving your comment. Please try again!</p>',
 2 => '<p class="error">Please provide a valid '
 . 'email address!</p>'
 ,

 3 => '<p class="error">Please answer the anti-spam '
 . 'question correctly!</p>'
);
 if(isset($_SESSION['error']))

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

361

 {
 $error = $errors[$_SESSION['error']];
 }
 else
 {
 $error = NULL;
 }

 // Check if session variables exist
 $n = isset($_SESSION['n']) ? $_SESSION['n'] : NULL;
 $e = isset($_SESSION['e']) ? $_SESSION['e'] : NULL;
 $c = isset($_SESSION['c']) ? $_SESSION['c'] : NULL;

 // Generate a challenge question
 $challenge = $this->generateChallenge();

 return <<<FORM
<form action="/simple_blog/inc/update.inc.php"
 method="post" id="comment-form">
 <fieldset>
 <legend>Post a Comment</legend>$error
 <label>Name
 <input type="text" name="name" maxlength="75"
 value="$n" />
 </label>
 <label>Email
 <input type="text" name="email" maxlength="150"
 value="$e" />
 </label>
 <label>Comment
 <textarea rows="10" cols="45"
 name="comment">$c</textarea>
 </label>$challenge
 <input type="hidden" name="blog_id" value="$blog_id" />
 <input type="submit" name="submit" value="Post Comment" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
</form>
FORM;
 }

Try the form out by navigating to a blog entry in your browser and posting a comment. If you

answer the challenge question incorrectly, the form displays an error message that explains what went
wrong (see Figure 12-3).

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

362

Figure 12-3. An error is displayed if the challenge question is answered incorrectly

“Post to Twitter” Link
Your next task is just for fun: it adds a “Post to Twitter” link to the bottom of each blog entry. When
clicked, this link takes a user to her Twitter5 home page and fills out her status field automatically with
the title of the blog and a URL.

You use a shortened URL here because Twitter has a 140 character limit for status updates, and
blog URLs have a tendency to be fairly long. To shorten your blog’s URLs, you use the shortening service,
http://bit.ly.

5 http://twitter.com

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

363

Note Twitter is a social networking site that pioneered the concept of “micro-blogging,” or status updates
limited to 140 characters. As I write this, Twitter is one of the most popular and fastest-growing services on the
web.

Creating a Shortened Link with http://bit.ly

The first step for creating a “Post to Twitter” link is to take advantage of the bit.ly API.6 An API, or
application programming interface, gives programmers a way to access a software tool or library.

In the case of bit.ly, the API defines a request string format that returns a response. The request
string is the URL you want to shorten, as well as other information including the bit.ly version, log-in
name, API key (an authorization code), and a response format.

You access the bit.ly API by creating a new function in functions.inc.php that you call
shortenUrl(). This function accepts the URL you want to shorten as an argument.

When you create shortenUrl(), begin by building the request you want to send to the bit.ly API.
Send your requests for URL shortening to http://api.bit.ly/shorten, along with a query string that
contains all the information discussed so far—a log-in name, API key, and so on.

In functions.inc.php, create the function shortenUrl() and build the API request by inserting
the cold in bold:

function shortenUrl($url)
{
 // Format a call to the bit.ly API

 $api = 'http://api.bit.ly/shorten';
 $param = 'version=2.0.1&longUrl='.urlencode($url).'&login=phpfab'
 . '&apiKey=R_7473a7c43c68a73ae08b68ef8e16388e&format=xml';
}

Caution The values passed for login and apiKey should be swapped out for your own bit.ly account credentials.
You can obtain these for free by setting up an account at http://bit.ly.

Your next step is to send the request to bit.ly and load the response into memory. To do this,
your script needs to connect to bit.ly remotely, which you can accomplish using the
file_get_contents() function, which opens, reads, and returns the content of a file. By supplying the
bit.ly API command to the function, you end up loading the response from the API into a variable.

6 http://en.wikipedia.org/wiki/API

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

364

Next, add the following code in bold to shortenUrl() to open a connection to the bit.ly API and
load the response:

function shortenUrl($url)
{
 // Format a call to the bit.ly API
 $api = 'http://api.bit.ly/shorten';
 $param = 'version=2.0.1&longUrl='.urlencode($url).'&login=phpfab'
 . '&apiKey=R_7473a7c43c68a73ae08b68ef8e16388e&format=xml';

 // Open a connection and load the response
 $uri = $api . "?" . $param;

 $response = file_get_contents($uri);
}

The last step: Separate the shortened URL from the response. The requested format was XML,

so the script needs a way to access the nodes within the XML response.
For example, you get this response you shorten the URL, http://google.com:

<bitly>
 <errorCode>0</errorCode>
 <errorMessage></errorMessage>
 <results>
 <nodeKeyVal>
 <userHash>11etr</userHash>
 <shortKeywordUrl></shortKeywordUrl>
 <hash>3j4ir4</hash>
 <nodeKey><![CDATA[http://google.com]]></nodeKey>
 <shortUrl>http://bit.ly/11etr</shortUrl>
 </nodeKeyVal>
 </results>
 <statusCode>OK</statusCode>
</bitly>

Each nested level of XML is essentially a container. This means that the whole response is in a
container called bitly. You can find the results container inside the bitly container, which itself
contains the nodeKeyVal container. nodeKeyVal contains shortUrl, which contains the shortened URL.
This means that accessing the shortened URL from outside the XML requires that you access bitly,
results, nodeKeyVal, and finally shortUrl.

Since PHP 5, developers have been able to use a library called SimpleXML, which makes it easy
to traverse XML nodes. To extract the shortened URL from the XML response, you need to create an XML
object using simplexml_load_string() and store it in the $bitly variable. Once you do this, you can drill
down within the XML easily.

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

365

Add the code in bold to shortenUrl() to extract and return the shortened URL from the loaded
response:

function shortenUrl($url)
{
 // Format a call to the bit.ly API
 $api = 'http://api.bit.ly/shorten';
 $param = 'version=2.0.1&longUrl='.urlencode($url).'&login=phpfab'
 . '&apiKey=R_7473a7c43c68a73ae08b68ef8e16388e&format=xml';

 // Open a connection and load the response
 $uri = $api . "?" . $param;
 $response = file_get_contents($uri);

 // Parse the output and return the shortened URL
 $bitly = simplexml_load_string($response);
 return $bitly->results->nodeKeyVal->shortUrl;
}

Now you can shorten any URL by passing it to this function, which returns the URL for use

elsewhere in your scripts.

Note bit.ly always returns the same short URL for a given web address, so it’s perfectly acceptable to save the
returned short URL in the database. Additionally, bit.ly provides a JavaScript API that lowers the impact on bit.ly’s
service and eliminates a server request from your script.

Generating an Automatic Status Update for Twitter
With shortened URLs just a function call away, you’re ready to generate the “Post to Twitter” link at the
bottom of each blog. You generate this link from another function, which you name postToTwitter().
This function accepts the title of the entry as its only argument.

This function uses values from the $_SERVER superglobal to determine the current entry’s URL,
then shortens it. It then appends the shortened URL to the entry title, URL encodes the whole string
using urlencode(), and adds a link to Twitter as the value of the status variable.

The Twitter link points to http://twitter.com/?status=, which takes any logged in Twitter user
to his homepage and fills his status box with the contents of the status variable in the query string.

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

366

In functions.inc.php, write the postToTwitter() function by adding the code in bold:

function postToTwitter($title)

{
 $full = 'http://'.$_SERVER['HTTP_HOST'].$_SERVER['REQUEST_URI'];
 $short = shortenUrl($full);

 $status = $title . ' ' . $short;
 return 'http://twitter.com/?status='.urlencode($status);
}

Displaying the Link on Entries
The last thing you need to do is insert the generated link into the entry display. Do this by modifying
index.php. Only fully displayed blog entries should have “Post to Twitter” links, so add a call to
postToTwitter() only inside the conditional block that checks whether $fulldisp is set to 1.

Inside the block, add a call to postToTwitter() if the current page is the blog and store the
return value in $twitter. If the user is on the about page, set the $twitter variable to NULL.

Then, simply insert the $twitter variable into the HTML output to add the link:

// If the full display flag is set, show the entry
if($fulldisp==1)
{

 // Get the URL if one wasn't passed
 $url = (isset($url)) ? $url : $e['url'];

 if(isset($_SESSION['loggedin']) && $_SESSION['loggedin'] == 1)
 {
 // Build the admin links
 $admin = adminLinks($page, $url);
 }
 else
 {
 $admin = array('edit'=>NULL, 'delete'=>NULL);
 }

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

367

 // Format the image if one exists
 $img = formatImage($e['image'], $e['title']);

 if($page=='blog')
 {
 // Load the comment object
 include_once 'inc/comments.inc.php';
 $comments = new Comments();
 $comment_disp = $comments->showComments($e['id']);
 $comment_form = $comments->showCommentForm($e['id']);

 // Generate a Post to Twitter link
 $twitter = postToTwitter($e['title']);
 }
 else
 {
 $comment_form = NULL;
 $twitter = NULL;
 }

?>

 <h2> <?php echo $e['title'] ?> </h2>
 <p> <?php echo $img, $e['entry'] ?> </p>
 <p>
 <?php echo $admin['edit'] ?>
 <?php if($page=='blog') echo $admin['delete'] ?>
 </p>
 <?php if($page=='blog'): ?>
 <p class="backlink">
 <a href="<?php echo $twitter ?>">Post to Twitter

 Back to Latest Entries
 </p>
 <h3> Comments for This Entry </h3>
 <?php echo $comment_disp, $comment_form; endif; ?>

<?php

} // End the if statement

Download at WoweBook.Com

CHAPTER 12 FINISHING TOUCHES

368

To see this in action, load an entry in your browser (see Figure 12-4).

Figure 12-4. The “Post to Twitter” link on fully displayed blog entries

Summary
Congratulations! You’ve just built your first dynamic blog, complete with administrative controls, image
handling, a commenting system, and social media integration.

By now, you should feel comfortable with the basics of PHP, as well as some of the more
advanced features, such as regular expressions and image processing. You’ve officially added a new tool
to your web development skill set.

All that’s left to do now: start using your new blog!

Download at WoweBook.Com

■ ■ ■

369

Index

■Special Characters
! operator, 53
-> (arrow) notation

object-oriented PHP, 214
s
_ (underscore) character

denoting private properties, 213
domain names, 343

<<< (heredoc) syntax, 36

■A
a (anchor) element/tag

making RSS feed available to non-browsers,
279—280

About the Author page, 162, 164, 179, 185
absolute property, ImageHandler class, 224
abstraction

database-access abstraction layer, 116
action variable

deleting entries in database, 201
ADD INDEX clause, 103, 157
addition operator, 48
admin page see admin.php file
admin table, 311, 316
admin.php file

adding file input to admin form, 207
building HTML form to add administrators,

312
creating, 128
deleting entries in database, 197, 198, 201
displaying entries saved in database, 139
hiding controls from unauthorized users,

325
login form restricting administrative access,

328
modifying access rule, 190—191

modifying to save page asssociations, 165—

168
passing URL values to, 190—191
populating form with entry to edit, 191—194
retrieving unique ID for new entry, 138
setting up access rule, 173
uploading images, 207

administrative access, restricting, 311—340
adding administrators, 312—317
creating admin table, 311
creating login form, 328—330
displaying controls to authorized users,

330—337
hiding controls from unauthorized users,

318—328
logging users out, 337—340

administrative links
creating, 187—188
displaying, 188—190
displaying controls to authorized users, 330
hiding from users, 311, 318

administrators

adding administrators, 312—317
creating login form, 328—330
displaying controls to authorized users,

330—337
hiding controls from unauthorized users,

318—328
logging users out, 337—340
navigating site without losing privileges, 318
saving new administrators in database, 315—

317
adminLinks() function, 187—188
Akismet, 353
algorithms, encryption, 316, 331

Download at WoweBook.Com

■ INDEX

370

ALTER TABLE statement, MySQL, 103
ADD INDEX clause, 103, 157

anchor element/tag
making RSS feed available to non-browsers,

279—280
AND (&&) operator, 52
Apache, 3, 5

installing, 6
verifying installation, 13

arguments, function prototypes, 43
arithmetic assignment operators, 47, 48
arithmetic operators, 47, 48
array_map() function, 148, 355
array_pop() function, 267
array_push() function, 146
arrays, 38—41

$_COOKIE, 84, 93—95
$_FILES, 85—89, 208—211
$_GET, 77—82, 84
$_POST, 82—84
$_REQUEST, 84—85
$_SERVER, 74—77
$_SESSION, 89—93
$GLOBALS, 73
associative arrays, 59
debugging arrays, 75
multidimensional arrays, 40, 59
superglobal arrays, 69—95

arrow (->) notation
object-oriented PHP, 214

ASP-style delimiters, 31
assignment operators

arithmetic assignment operators, 47, 48
assignment by reference, 49
concatenating, 54

associative arrays, 59
AUTO_INCREMENT, MySQL, 102
auto-complete, 16

■B
backreferences, rewrite rules

accessing, 173
passing URL values to admin.php with

.htaccess, 191
setting up rule for page-and-entry URLs,

174
bind_param() method, MySQLi, 115
bind_result() method, MySQLi, 116
binding parameters, 115

bit.ly API
creating shortened link, 363—365

BLOB type, MySQL, 102
block comments, 46

DocBlocks, 220
blog, 6
blog project see simple_blog project
blog_id column, comments table, 284
Boolean values, 37
break statement, 60
break tag, HTML, 34
browsers

making RSS feed available to, 278—279
outputting data to, 41—46
storing information on user’s machine, 93,

95
built-in function references, 16
business layer

mapping functions to output saved entries,
141

writing business functions, 148—149
business logic, 140

■C
CAPTCHA, 353
Cascading Style Sheets see CSS
case (switch) statement, 61
channel tag, RSS feeds, 265
CHAR type, MySQL, 101
character classes, 174, 191
characters

matching non-word characters, 181
matching word characters, 173

checkSaveDir() method, ImageHandler class,
228—236

class keyword, OOP, 212
classes

character classes, 174
Comments class, 285
ImageHandler class, 218—240

classes, OOP, 211, 212
class constructors, 214
using classes/objects in scripts, 215—218
visibility declarations, 213

client-side scripting, 4—5
close() method, MySQLi, 113, 116
closeCursor() method, PDO, 117, 136
code folding, 16
coding logic

Download at WoweBook.Com

■ INDEX

371

separation in programming, 139—140
commands

echo() statement, 42
print() statement, 41
print_r() function, 49
printf() statement, 43
sprintf() statement, 45

comment column, comments table, 284
comments, 46—47

adding error messages to comments form,
348—353

block comments, 46
building comment entry form, 286—287

modifying index.php to display, 287—289
deleting comments, 304—310

creating confirmation form, 305—306
modifying update.inc.php to handle,

307—310
removing comments from database, 306

displaying comments for entries, 296—298,
300—302

modifying index.php for, 302—304
displaying stored comment information,

345
DocBlocks, 220
email address validation for posting, 341—

353
inline comments, 46
retrieving comments for entries, 293—296
saving in sessions, 344
shell-style comments, 47
spam prevention, 353—362
storing new comments, 289—291

modifying update.inc.php for, 291—293
Comments class

building, 285
confirmDelete() method, 304, 305, 307
deleteComment() method, 304, 306, 308
generateChallenge() method, 354, 355
retrieveComments() method, 293
saveComment() method, 289, 343, 347, 348,

359
showCommentForm() method, 286, 345,

350, 356, 360
showComments() method, 296, 300, 301,

323
validateEmail() method, 342
verifyResponse() method, 358

comments table, 283—285
storing new comments in, 289

comments.inc.php file

adding method code to file
confirmDelete(), 305
deleteComment(), 306
generateChallenge(), 354, 355
retrieveComments(), 294
saveComment(), 289, 344, 347, 348, 359
showCommentForm(), 286, 345, 350,

356, 360
showComments(), 297, 300, 301
validateEmail(), 342
verifyResponse(), 359

creating, 285
hiding delete link from unauthorized users,

323
comparison operators, 47, 50
concatenating assignment operator, 54
concatenation, 35
concatenation operator, 54
confirmation form

deleting comments from, 305—306
confirmDelete() function, 197, 198, 200
confirmDelete() method, Comments class, 304,

305, 307
connecting PHP scripts to MySQL, 109—118

index.php file, 149
script to process entry form input, 134—135

connections, database logic, 139
constructors, OOP, 214
content type, 237
content type header, 88, 265
content, syndicating, 264—281
continue statement, 62
control structures, 54—66

break statement, 60
continue statement, 62
do-while loop, 57
else/else if statements, 55
for loop, 58
foreach loop, 59
goto statement, 65
if statement, 55
include/include_once constructs, 63
require/require_once constructs, 63
return statement, 63
switch statement, 61
while loop, 56

controls

displaying to authorized users, 330—337

Download at WoweBook.Com

■ INDEX

372

hiding from unauthorized users, 318—328
conversion specifications, 43
$_COOKIE superglobal array, 93—95

array containing the contents of, 84
CREATE DATABASE statement, MySQL, 100
CREATE TABLE statement, MySQL, 100—102

IF NOT EXISTS clause, 101
created column, entries table, 126, 128, 272
createUserForm() function, 312, 315
credentials

storing database credentials, 134
CSS (Cascading Style Sheets), 129, 132

displaying entries saved in database, 139
curly braces {}

checking braces used in pairs, 196
custom URLs

creating friendly URLs using .htaccess, 170—
175

creating friendly URLs automatically, 175—
183

■D
data types

MySQL, 102
MySQLi, 115

database connections
creating blog entries, 266

database credentials
checking if login credentials valid, 331
storing, 134

database layer
writing database functions, 141—148

database logic, 139
database-access abstraction layer, 116
databases

see also MySQL
adding administrators, 312—317
adding columns to tables, 157, 176
adding commenting system to blog, 283
avoiding storage of redundant data, 118—121
CREATE DATABASE statement, 100
creating admin table, 311
creating comments table, 283—285
creating in phpMyAdmin, 126
deleting entries, 197—204
displaying entries, 138—139
DROP DATABASE statement, 99
mapping functions to output saved entries,

140

modifying update.inc.php to save URLs in,
182

MySQL, 109—111
MySQLi, 111—116
PDO (PHP Data Objects), 116—118
planning database tables, 118—122
removing comments, 306
storing comments, 289—291
storing/retrieving images, 240—247
supporting multiple database types, 116
updating entries in, 194—197
using page to filter database records, 159—

164
datatype specifiers, 45
datatypes, 32

arrays, 38—41
Boolean values, 37
floating point numbers, 37
integers, 37
strings, 33—37

date column, comments table, 284
date() function, 274, 298—299
DATE_RSS constant, 274
dates

creating custom date formatting string, 298—
299

DATETIME type, MySQL, 102
day formatting characters, 298
db.inc.php file, 134, 149, 266
debugging, arrays, 75
decrementing operators, 47, 52
DEFAULT keyword, 157
delete link, 188, 189

deleting entries in database, 197, 198, 200
hiding from unauthorized users, 323

DELETE statement, MySQL, 109
deleteComment() method, 304, 306, 308
deleteEntry() function, 201, 203
deleting comments, 304—310
deleting database entries, 197—204
delimiters, 30, 31
delimiters, regex, 182
design patterns, 140
development environment, setting up, 3—28
die() function, 110
directives

RewriteBase, 172
RewriteEngine, 171
RewriteRule, 172, 173, 174, 190, 264
short_open_tag, 31

Download at WoweBook.Com

■ INDEX

373

displaying output, 140, 149—154
division operator, 48
DocBlocks, 220
doImageResize() method, 254, 255, 256, 258
domain names

use of _ (underscore) character, 343
double-quote syntax, 34
doubles, 37
do-while loop, 57
DROP DATABASE statement, MySQL, 99
dst_ arguments, imagecopyresampled(), 255,

256
dynamic web pages, 4
dynamic websites, 3

■E
echo() statement, 42
Eclipse, 18

choosing project workspace, 20
creating project, 23—26
DocBlocks, 220
downloading, 19
installing, 18—21
showing resources starting with period, 171
unpacking PDT archive, 19

edit link
creating administrative links, 188
displaying administrative links, 189

else/else if statements, 55
email

validateEmail() method, 342—343
email column, comments table, 284
embedding PHP scripts, 29—31
encoding

URL encoding, 78
encryption algorithm, 316, 331
enctype, 207
entries table

automatically populated fields, 128
created column, 126, 128, 272
creating in phpMyAdmin, 127
creating input form for, 128—132
deleting entries in database, 197—204
displaying records saved in database, 138—

139
entry column, 126, 128
id column, 125, 128
image column, adding, 241

modifying functions to accept page
parameters, 158—164

page column, adding, 157
planning for blogging application, 125—127
saving entries to, 132
script to process entry form input, 132—138

connecting to database, 134—135
retrieving unique ID, 136
saving values in entries table, 135
verification of input, 133

structure in phpMyAdmin, 127
title column, 125, 128
updating entries in database, 194—197
url column, adding, 176

entries, simple_blog project
deleting related comments, 304—310
displaying comments for, 296—298, 300—304
retrieving comments for, 293—296
storing new comments, 289—291

entry column, entries table, 126, 128
saving values in entries table, 135
verification of entry form input, 133, 134

EOD identifier, 36
equal comparison operator, 50
error control operators, 47, 51
error handling, OOP

throw keyword, 222
error suppression operators, 52
error value, $_FILES, 85
error_reporting() function, 70, 71
errors

adding error messages to comments form,
348—353

checking for error during file upload, 221—
222

handling errors with try...catch, 226—228
turning off errors, 70

escaping characters in strings, 33
exceptions

try...catch statement, 226—228
execute() method

MySQLi, 116
PDO, 117

saving values in entries table, 136
exit() command

alias for, 110
Extensible Markup Language (XML), 264
extensions

determining file extensions, 237

Download at WoweBook.Com

■ INDEX

374

■F
F (forbidden) flag, URL rewriting, 173
feed readers see RSS aggregators
feeds see RSS feeds
feeds folder, 264
fetch() method, MySQLi, 116

retrieving unique ID for new entry, 136
file extensions, determining, 237
file permissions, 231
file uploads see uploading files
file_get_contents() function, 363
filepath property, ImageHandler class, 224
files

see also admin.php file; comments.inc.php
file; db.inc.php file; functions.inc.php
file; images.inc.php file; index.php file;
rss.php file; update.inc.php file

accessing uploaded file, 208—211
checking file uploaded and without errors,

88
checking file uploaded is JPG image, 88
creating PHP file, 26—27
saving uploaded file to file system, 223—225
setting up rules for URL rewriting, 172

$_FILES superglobal array, 85—89, 208—211
checking whether file was uploaded, 208,

209—211
methods using DocBlocks, 220

filters
using page as filter, 158, 159—164

flags, URL rewriting, 173, 174
FLOAT type, MySQL, 102
floating point numbers, 37
folder permissions, 231
folders

checking if folder already exists, 228—231
creating directory in, 232
creating to store images, 228—236

for loop, 58
forbidden (F) flag, URL rewriting, 173
foreach loop, 59

creating blog entries, 268, 270
form tag

changing enctype to accept file uploads, 207
formatImage() function, 246—247
formatting dates, 298—299
forms

creating input form for entries table, 128—
132

populating form with entry to edit, 191—194
script to process entry form input, 132—138

friendly URLs
creating custom URLs using .htaccess, 170—

175
creating custom URLs automatically, 175—

183
previewing blog entries with, 175

FTP option, XAMPP, 13
function prototypes, 43
function references, 16
functions, 66

accessing information about, 29
mapping to output saved entries, 140
modifying to accept page parameters, 158—

164
recursive functions, 148
return statement, 63, 66
returning values from, 67
scope of variables declared within, 71
user-defineds, 66—67
writing business functions, 148—149
writing database functions, 141—148

functions, custom
see also methods
adminLinks(), 187—188
confirmDelete(), 197, 198, 200
createUserForm(), 312
deleteEntry(), 201, 203
formatImage(), 246—247
makeUrl(), 181
postToTwitter(), 365, 366
retrieveEntries(), 141—148
sanitizeData(), 141, 148—149
shortenUrl(), 363, 364, 365

functions, list of PHP
array_map(), 148, 355
array_pop(), 267
array_push(), 146
date(), 274
die(), 110
file_get_contents(), 363
getimagesize(), 250
header(), 155
htmlentities(), 111
imagecopyresampled(), 255
imagecreatefromjpeg(), 88
imagecreatefromxyz() functions, 252
imagecreatetruecolor(), 255
imagedestroy(), 88

Download at WoweBook.Com

■ INDEX

375

imagejpeg(), 88
imagexyz() functions, 253
is_dir(), 230
list(), 72
md5(), 316
min(), 251
mkdir(), 231
move_uploaded(), 224
mt_rand(), 354
mysql_close(), 111
mysql_connect(), 110
mysql_error(), 110
mysql_fetch_array(), 111
mysql_free_result(), 111
mysql_query(), 111
mysql_real_escape_string(), 111
mysql_select_db(), 110
ord(), 355
preg_replace(), 180
rand(), 354
session_destroy(), 92
session_start(), 90
setcookie(), 93
sha1(), 316
simplexml_load_string(), 364
strip_tags(), 111, 148
strtolower(), 181
strtotime(), 274
time(), 93
unset(), 92, 358
urldecode(), 78
urlencode(), 78

functions.inc.php file
accepting page info. in URL, 158
adminLinks() function, 187, 188
confirmDelete() function, 200
createUserForm() function, 312
creating blog entries, 266
creating different viewing styles for pages,

185
deleteEntry() function, 203
formatImage() function, 246
including in index.php, 149
modifying to handle URLs, 176—178
postToTwitter() function, 366
reinforcing logical separations, 141
retrieveEntries() function, 143, 144, 145,

147, 244, 272
sanitizeData() function, 149
shortenUrl() function, 363, 364, 365

using page to filter database records, 159,
160, 161

writing database functions, 141

■G
generateChallenge() method, Comments class,

354, 355
GET method, 77
$_GET superglobal array, 77—82

accepting page info. in URL, 159
array containing the contents of, 84
checking if set using ternary operator, 166,

192, 194
deleting comments in database, 307
deleting entries in database, 197
logging users out, 339
modifying index.php to check for url not id,

178
passing entry IDs in URL, 150

getImageExtension() method, 237
getImageFunctions() method, 253, 254
getimagesize() function, 250, 253
getNewDims() method, 250, 251, 252, 254
GIF images

determining file extension of uploads, 237
global scope, 70, 71
$GLOBALS superglobal array, 73
goto statement, 65
greater than comparison operators, 50
GUID (Globally Unique Identifier), 271

■H
header() function

describing RSS feeds, 265
redirects, 155

heredoc syntax, 36, 200
hidden inputs, 165, 166

deleting entries in database, 200
inserting, 193
storing page in, 167

highlighting
syntax highlighting, 16

hour formatting characters, 299
.htaccess file

creating, 171—175
creating friendly URLs using, 170—175
declaring base-level folder for URL

rewriting, 172
description, 170

Download at WoweBook.Com

■ INDEX

376

passing URL values to admin.php with, 190—
191

setting up rules
for admin.php access, 173
for page-and-entry URLs, 174
for page-only URLs, 174
for URL rewriting, 172

turning on URL rewriting, 171
htdocs folder

choosing Eclipse PDT project workspace, 20
creating new projects automatically in, 21

HTML
break tag, 34
script tags, 31

HTML forms
adding administrators, 312—315
enctype, 207
inserting hidden inputs, 165, 166
UPLOAD_ERR_OK constant, 221

htmlentities() function, 111
creating blog entries, 268
storing new comments, 289

HTTP_HOST value, $_SERVER, 74
HTTP_REFERER value, $_SERVER, 75, 77, 292,

305
HTTP_USER_AGENT value, $_SERVER, 75

■I
id column, comments table, 284
id column, entries table, 125, 128
identical comparison operator, 50, 51
IDEs, 15

PDT IDE, 18
if else statement, 166
IF NOT EXISTS clause

CREATE TABLE statement, 101
if statement, 55

compressing into one line, 150
image column, entries table, 241
image uploads see uploading images
imagecopyresampled() function, 255, 256
imagecreatefromjpeg() function, 88
imagecreatefromxyz() functions, 252
imagecreatetruecolor() function, 255
imagedestroy() function, 88
ImageHandler class, 218—240

checking for error during file upload, 221—
222

checkSaveDir() method, 228—231, 232

doImageResize() method, 254
getImageExtension() method, 237
getImageFunctions() method, 253
max_dims property, 249
processUploadedImage() method, 219
renameFile() method, 237
save_dir property, 219
saving uploaded file to file system, 223—225

imagejpeg() function, 88
images

creating folder to store, 228—236
determining file extensions, 237
ensuring image name is unique, 237
formatImage() function, 246—247
modifying update.inc.php to save images,

225—226
renaming, 236—240
resizing, 248—259

adding property for maximum
dimensions, 249

choosing image function to use, 252—254
determining new image dimensions,

249—252
resampling image at proper size, 254—

258
saving uploaded images, 219
storing and retrieving from database, 240—

247
modifying index.php to display images,

246—247
modifying retrieveEntries() to retrieve

images, 244—246
modifying update.inc.php to save path

to images, 241—244
uploading, 207
writing class to handle, 218

images.inc.php file
calling formatImage() function, 247
checking for error during file upload, 221
creating, 218
declaring getImageFunctions(), 253
defining ImageHandler properties, 219
modifying update.inc.php to save images,

226
saving uploaded file to file system, 223, 224

imagexyz() functions
choosing image functions to use, 253

inc folder
creating, 132
db.inc.php file, 134

Download at WoweBook.Com

■ INDEX

377

functions.inc.php file, 141
storing database credentials, 134
update.inc.php file, 132, 135

include construct, 63
including database credentials, 135

include_once construct, 63
creating blog entries, 266
trying to reference nonexistent file with, 51
writing presentation code, 149

incrementing operators, 47, 52
index.php file

accepting page info. in URL, 158—159
calling postToTwitter(), 366
calling retrieveEntries(), 150
calling sanitizeData(), 151
displaying administrative links, 188
displaying entries saved in database, 138
ensuring page variable is passed, 166
hiding administrative links from users, 318
logging users out, 337
making RSS feed available to browsers, 278—

279
making RSS feed available to non-browsers,

279—280
modifying links between pages, 162
modifying to display comment form, 287—

289
modifying to display entry comments, 302—

304
modifying to display images, 246—247
modifying to handle URLs, 178—180
opening connection to database, 149
redirects, 155
retrieving unique ID for new entry, 136, 138
writing presentation code, 149, 152, 153

indexing columns, MySQL, 103
ADD INDEX command, 157

inheritance, OOP, 213
inline comments, 46
input tag

maxlength attribute, 128
INSERT statement, MySQL, 103—105

VALUES keyword, 103
installations

Eclipse PDT, 18—21
PHP, Apache, and MySQL, 6
XAMPP, 6—15

instantiation of objects, OOP, 214
INT type, MySQL, 102
integers, 37

integrated development environments see IDEs
interfaces

procedural interface, 109
IP address, 13

accessing IP address of site visitors, 74
is_dir() function, 230

■J
JavaScript

client-side scripting, 4
JOIN clause, MySQL, 108
JPEG images

determining file extension of uploads, 237
JPG files, 88

■K
key to value pairing, 38
keywords, OOP see OOP keywords

■L
L (last rule) flag, URL rewriting, 173, 174
LAST_INSERT_ID() function, 136
Lerdorf, Rasmus, 3
less than comparison operators, 50
LIMIT clause, DELETE statement, MySQL, 109
link tag

making RSS feed available to browsers, 278—
279

links
creating administrative links, 187—188
creating shortened link with http://bit.ly,

363—365
displaying administrative links, 188—190
modifying links between pages, 162
Post to Twitter link, 362—368

list() function, 72, 73
descriptions of methods using DocBlocks,

220
determining image dimensions, 250
retrieving information supplied about

uploaded file, 221
local scope, 71
localhost

verifying Apache/PHP running, 13
logging users out, 337—340
logic

business logic, 140

Download at WoweBook.Com

■ INDEX

378

database logic, 139
presentation logic, 140
reinforcing logical separations, 141
separation of coding logic, 139—140

logical operators, 47, 52
login form, 328—330
looping

break statement, 60
continue statement, 62
do-while loop, 57
for loop, 58
foreach loop, 59
while loop, 56

■M
magic methods, 214
magic_quotes_gpc setting, 15
makeUrl() function, 181, 182
manual, PHP, 29
max_dims property, ImageHandler class, 249
maxlength attribute, input tag, 128
md5() function, 316
menus

adding menu to web pages, 184
methods

see also functions, custom
descriptions of methods using DocBlocks,

220
doImageResize(), 254
getImageExtension(), 237
getImageFunctions(), 253
getNewDims(), 250, 251, 252
magic methods, 214
processUploadedImage(), 219
renameFile(), 237

methods, Comments class
confirmDelete(), 304, 305, 307
deleteComment(), 304, 306, 308
generateChallenge(), 354, 355
retrieveComments(), 293
saveComment(), 289, 343, 347, 348, 359
showCommentForm(), 286, 345, 350, 356,

360
showComments(), 296, 300, 301
validateEmail(), 342—343
verifyResponse(), 358

methods, OOP
accessing, object-oriented PHP, 214
defining class methods, 214

min() function, 251
mkdir() function, 231
mod_rewrite documentation, 172
Model-View-Controller (MVC) pattern, 140
modulus operator, 48
month formatting characters, 298
move_uploaded file() function, 224
mt_rand() function, 354
multidimensional arrays, 40

nesting foreach statements, 59
multiplication operator, 48
Multitier Architecture pattern, 140
MySQL

see also databases
adding columns to tables, 157, 176
AUTO_INCREMENT keyword, 102
binding parameters, 115
connecting PHP scripts to, 109—118
data storage, 97
data types, 102
description, 5
eliminating performance issues, 118
indexing columns, 103
installing, 6

verifying installation, 14—15
introduction, 98
manipulating data in MySQL tables, 98—109
planning database tables, 118—122
PRIMARY KEY keywords, 102

MySQL extension, 109—111
die() function, 110
htmlentities() function, 111
mysql_xyz() functions, 110, 111
recommended further reading, 122
security weaknesses, 109
SQL injection, 111
strip_tags() function, 111

MySQL statements
ALTER TABLE, 103
CREATE DATABASE, 100
CREATE TABLE, 100—102
DELETE, 109
DROP DATABASE, 99
INSERT, 103—105
JOIN clause, 108
SELECT, 105—107

avoiding shortcut selector (SELECT *),
122

UPDATE, 107
USING clause, 108

Download at WoweBook.Com

■ INDEX

379

MySQL timestamp
creating pubDate from, 274

mysql_close() function, 111
mysql_connect() function, 110
mysql_error() function, 110
mysql_fetch_array() function, 111
mysql_free_result() function, 111
mysql_query() function, 111
mysql_real_escape_string() function, 111
mysql_select_db() function, 110
MySQLi, 111—116

bind_param() method, 115
bind_result() method, 116
close() method, 113, 116
data types, 115
execute() method, 116
fetch() method, 116
PDO compared, 116
prepare() method, 115
query() method, 113
recommended further reading, 122
using methods, 113
using prepared statements with, 113—116

■N
name column, comments table, 284
name value, $_FILES, 85
NC (nocase) flag, URL rewriting, 173, 174
negative lookahead, regex, 181
new keyword, OOP, 215
new line character (\n), 34
New PHP File dialog, 26
New Project window, 23
nocase (NC) flag, URL rewriting, 173, 174
NOT NULL constraint, 157
nowdoc syntax, 36
NULL, declaring variables as, 160

■O
obfuscation, 354
OOP (object-oriented programming), 211—218

accessing property or method, 214
calling a method in, 113
class constructors, 214
classes and objects, 211, 212
compared to procedural code, 112
defining class methods, 214
enabling reference to self without knowing

name, 214

error handling, 222
object instantiation, 214
use of arrow (->) notation, 214
using classes/objects in scripts, 215—218
visibility declarations for class members,

213
writing class to handle images, 218

OOP keywords
class keyword, 212
new keyword, 215
private keyword, 212, 213
protected keyword, 213
public keyword, 213
this keyword, 214
throw keyword, 222
var keyword, 213

open-source software, 3
operators, 47—54

! operator, 53
addition operator, 48
AND (&&) operator, 52
arithmetic assignment operators, 47, 48
arithmetic operators, 47, 48
comparison operators, 47, 50
concatenating assignment operator, 54
concatenation operator, 54
decrementing operators, 47, 52
division operator, 48
equal comparison operator, 50
error control operators, 47, 51
error suppression operators, 52
greater than comparison operators, 50
identical comparison operator, 50, 51
incrementing operators, 47, 52
less than comparison operators, 50
logical operators, 47, 52
modulus operator, 48
multiplication operator, 48
OR (||) operator, 52
string operators, 47, 54
subtraction operator, 48
XOR operator, 53

OR (||) operator, 52
ord() function, 355
output commands, 41—46

echo(), 42
print(), 41
print_r(), 49
printf(), 43
sprintf(), 45

Download at WoweBook.Com

■ INDEX

380

■P
page column, entries table, 157
page-and-entry access, 174
page-only access, 174
pages see web pages
parameters

binding parameters, 115
descriptions of methods using DocBlocks,

220
parsing errors

checking {} used in pairs, 196
password column, admin table, 311

passwords

adding administrators, 316
SHA1() hash of, 331

paths
relative paths, 137

patterns, programming, 140
patterns, regular expressions

see also regex
enclosing patterns in delimiters, 182
makeUrl() function, 181
matching non-word characters, 181
preg_replace() function, 181
URL rewriting, 172

PDO (PHP Data Objects), 116—118
closeCursor() method, 117
connecting to database, 149
database-access abstraction layer, 116
execute() method, 117
MySQLi compared, 116
potential issues when using, 116
prepare() method, 117
recommended further reading, 122

PDT IDE, 18
installing Eclipse PDT, 18—21

performance, MySQL
avoiding shortcut selector (SELECT *), 122
eliminating performance issues, 118

permissions, file/folder, 231
photos, uploading, 88
PHP, 3—4

comments, 46—47
control structures, 54—66
creating PHP file, 26—27
creating PHP script, 27—28
datatypes, 32
DocBlocks, 220

file/folder permissions, 231
installing, 6

verifying installation, 13
magic methods, 214
operators, 47—54
PDO (PHP Data Objects), 116—118
reserved words, 66
setting up development environment, 3—28
superglobal arrays, 69—95
user-defineds, 66—67
viewing source code in PHP project, 166

PHP delimiters, 30
PHP files see files
PHP functions see functions
PHP functions, list of see functions, list of PHP
PHP manual, 29
PHP Project window, 24
PHP scripts see scripts
PHP_SELF value, $_SERVER, 75
phpMyAdmin

creating entries table in, 127
creating new database in, 126

PNG images
determining file extension of uploads, 237

POST method, 82
deleting entries in database, 201
verification of entry form input, 133, 134
verifying form was submitted using, 88

$_POST superglobal array, 82—84
array containing the contents of, 84
checking if login credentials valid, 330
deleting comments in database, 308
deleting entries in database, 201
inserting hidden inputs in HTML forms,

165, 168
using prepared statements with MySQLi,

113, 116
verification of entry form input, 134

Post to Twitter link, 362—368
creating shortened link with http://bit.ly,

363—365
postpending variables, 51
postToTwitter() function, 365, 366
preg_replace() function, 180
prepare() method, MySQLi, 115
prepare() method, PDO, 117, 135
prepared statements, 111, 116

using page to filter database records, 160
using with MySQLi, 113—116

prepending variables, 51, 52

Download at WoweBook.Com

■ INDEX

381

preprocessing, 4
presentation layer

mapping functions to output saved entries,
141

writing presentation code, 149—154
presentation logic, 140
PRIMARY KEY keywords, MySQL, 102
print() statement, 41
print_r() function, 49

debugging arrays, 75
printf() statement, 43
private keyword, OOP, 212, 213
procedural interface, 109

compared to OOP, 112, 212
processing data

business logic, 140
processUploadedImage() method,

ImageHandler class, 219, 221

calling checkSaveDir(), 232
calling doImageResize(), 258
calling getImageExtension(), 238
calling renameFile(), 238
determining file extensions, 237

programming
OOP, 211—218
planning scripts, 139—154
separation of logic in, 139—140

programming patterns
Model-View-Controller (MVC) pattern, 140
Multitier Architecture pattern, 140

projects
choosing Eclipse PDT project workspace, 20
creating Eclipse project, 23—26
creating PHP project, 23
PHP Project window, 24
viewing source code in PHP project, 166

promoting web sites, 170
properties, OOP

accessing, 214
class properties, 212
private keyword, 212
visibility declarations for, 213

protected keyword, OOP, 213
pubDate

creating from MySQL timestamp, 274
public keyword, OOP, 213
publishing date, RSS feeds, 272

■Q
query() method, MySQLi, 113
quotes

double-quote syntax, 34
single-quote syntax, 33

■R
rand() function, 354
random numbers, 354
real numbers, 37
Really Simple Syndication see RSS
recursive functions, 148
redirects, 155
redundant data

avoiding storage of, 118—121
reference

assignment by reference, 49
regex (regular expressions), 171

creating character classes, 191
enclosing patterns in delimiters, 182
further information on, 172
making expressions lazy, 174
matching either nothing or something, 190
matching non-word characters, 181
matching word characters, 173
negative lookahead, 181
optionally matching period (.) in, 342
patterns, 172
setting up rules for URL rewriting, 172
signifying end of string, 190
use of symbols in regex

$, 172, 173, 174, 190
*, 342
+, 173, 181
?, 174
?!, 181
\, 172
\s, 181
\w, 173, 181
(), 172
[], 174, 191
^, 173
|, 172, 190

using in validateEmail() method, 342
wildcards in, 342

relational database management systems, 97
relative paths, 137
releases, production vs. development, 4
REMOTE_ADDR value, $_SERVER, 75

Download at WoweBook.Com

■ INDEX

382

renameFile() method, ImageHandler class, 237
replacements, URL rewriting, 173

makeUrl() function, 181
preg_replace() function, 181

$_REQUEST superglobal array, 84—85
REQUEST_METHOD value, 83
require/require_once constructs, 63
reserved words, 66
resizing images, 248—259

determining dimensions, 249—252
determining functions to use, 252—254
resampling image at proper size, 254—258

retrieveComments() method, 293, 296
retrieveEntries() function, 141—148, 150

adding $page variable as argument in
index.php, 159

creating blog entries, 266, 267
creating different viewing styles for pages,

185
modifying index.php to check for url not id,

178
modifying to accept URL not id, 176
modifying to retrieve images, 244—246
modifying to return created column, 272
populating form with entry to edit, 192
using page to filter database records, 159

return statement, 63, 67
return values

descriptions of methods using DocBlocks,
220

RewriteBase directive, 172
RewriteEngine directive, 171
RewriteRule directive

creating RSS feeds, 264
modifying rule for admin.php access, 190
setting up rule for admin.php access, 173,

174
setting up rule for page-only URLs, 174
setting up rules for URL rewriting, 172

rewriting URLs see URL rewriting
RFC-822 format, 272, 274
RSS (Really Simple Syndication), 263

creating RSS feeds, 264—277
format for, 264
publishing RSS feeds, 278—280

RSS aggregators, 263
making RSS feed available to non-browsers,

279—280
RSS feeds

creating, 264—277

creating feed items, 266—277
describing feeds, 265—266
making available to browsers, 278—279
making available to non-browsers, 279—280
publishing, 278—280
publishing date, 272
using URL as GUID, 271

rss tag, version attribute, 265
rss.php file

creating blog entries, 266, 267, 268
creating RSS feeds, 264
describing RSS feeds, 265
inserting GUID, 271
reformatting and adding date, 275

rules
accessing backreferences, rewrite rules, 173
flags, 173
modifying rule for admin.php access, 190—

191
patterns, 172
replacements, 173
setting up rule for admin.php access, 173
setting up rule for page-and-entry URLs,

174
setting up rule for page-only URLs, 174
setting up rules for URL rewriting, 172

■S
S (skip) flag, URL rewriting, 173
sanitizeData() function, 141, 148—149, 151
Save Entry button, 133, 134
save_dir property, ImageHandler class, 219

creating folder to store images, 230
saving uploaded file to file system, 223

saveComment() method, 289
email address validation for posting

comments, 343, 347, 348
modifying update.inc.php to call, 291
spam prevention using simple math

question, 359
scaling, 125

planning scripts, 139
scope

global scope, 70
local scope, 71
variable scope, 70—73

script tags, HTML, 31
scripted languages, 4
scripting

Download at WoweBook.Com

■ INDEX

383

client-side scripting, 4—5
server-side scripting, 4—5

scripts
choosing SDK/IDE, 15
connecting PHP scripts to MySQL, 109—118
creating PHP script, 27—28
email address validation for posting

comments, 341—353
embedding PHP scripts, 29—31
planning scripts, 139—154

mapping functions to output saved
entries, 140

redirects, 155
separation of logic in programming,

139—140
writing business functions, 148—149
writing database functions, 141—148
writing presentation code, 149—154

script to process entry form input, 132—138
using classes/objects in scripts, 215—218

SDKs (software development kits)
benefits of, 15
choosing SDK, 15, 18
Eclipse SDK, 18

search engine optimization (SEO), 170
search engines

indexing URLs, 170
SELECT statement, MySQL, 105—107

avoiding shortcut selector (SELECT *), 122
JOIN clause, 108
USING clause, 108
WHERE clause, 106

Select Workspace Directory window, 21
SEO (search engine optimization), 170
$_SERVER superglobal array, 74—77

checking REQUEST_METHOD value, 83
creating folder to store images, 230
saving uploaded file to file system, 223
verification of entry form input, 134

server-side scripting, 4—5

$_SESSION superglobal array, 89—93
adding error messages to comments form,

348
displaying controls to authorized users, 330,

331
displaying stored comment information,

345
hiding administrative links from users, 318
logging users out, 337
saving comments in sessions, 344

spam prevention using simple math
question, 354, 358

session_destroy() function, 92
logging users out, 339

session_start() function, 90
displaying controls to authorized users, 331
hiding administrative links from users, 318

sessions, 89—93, 318
SET keyword, UPDATE statement, MySQL, 107
setcookie() function, 93
sha1() function, 316

SHA1() hash, passwords, 331
shell-style comments, 47
short tags, 31

XML declarations conflict with, 265
short_open_tag directive, 31
shortenUrl() function, 363, 364, 365
showCommentForm() method, 286

email address validation for posting
comments, 345, 350

spam prevention using simple math
question, 356, 360

showComments() method, 296, 300, 301
hiding delete link from unauthorized users,

323
storing output of, 302

simple_blog database
admin table, 311
comments table, 283—285
creating in phpMyAdmin, 126
deleting entries, 197—204
displaying entries, 138—139
entries table, 125—132

adding image column, 241
adding page column, 157
adding url column, 176
creating input form for, 128—132

simple_blog project
About the Author page, 162, 164
admin.php file, 128

adding file input to, 207
modifying to save page asssociations,

165—168
modifying access rule, 190—191

administration
creating administrative links, 187—188
displaying administrative links, 188—190
restricting administrative access, 311—

340
blog entries

Download at WoweBook.Com

■ INDEX

384

creating, 266—277
previewing with friendly URL, 175

commenting system, 283—310
email address validation for posting

comments, 341—353
creating directory to store images, 232
creating friendly URLs automatically, 175—

183
functions.inc.php file, 141, 143, 144, 145,

147
modifying to handle URLs, 176—178

.htaccess file
creating, 171—175
creating friendly URLs using, 170—175
passing URL values to admin.php with,

190—191
inc folder, 132
index.php file, 138

modifying to handle URLs, 178—180
populating form with entry to edit, 191—194
Post to Twitter link, 362—368
previews page loaded with URL variables,

161
programming pattern, 140
redirects, 155
RSS feeds, 264, 265—266

making available to browsers, 278—279
making available to non-browsers, 279—

280
script to process entry form input, 132—138

connecting to database, 134—135
retrieving unique ID, 136
saving values in entries table, 135
verification of input, 133

spam prevention, 353—362
syndicating content, 264—281
update.inc.php file, 132, 135

modifying to save URLs in database, 182
updating entries in database, 194—197
web pages

adding menu to, 184
creating different viewing styles for, 185—

186
modifying functions to accept page

parameters, 158—164
saving page asssociations, 168—169

simplexml_load_string() function, 364
single-quote syntax, 33
size value, $_FILES, 85
skip (S) flag, URL rewriting, 173

software development kits see SDKs
source code

viewing in PHP project, 166
spam prevention

Akismet, 353
CAPTCHA, 353
email address validation for posting

comments, 341—353
using simple math question, 354—362

sprintf() statement, 45
SQL injection, 111
src_ arguments, imagecopyresampled(), 255,

256
string operators, 47, 54
strings, 33—37

double-quote syntax, 34
escaping characters in, 33
heredoc syntax, 36
nowdoc syntax, 36
single-quote syntax, 33
string concatenation, 35

strip_tags() function, 111, 148, 289
strtolower() function, 181
strtotime() function, 274, 300
subtraction operator, 48
superglobal arrays, 69—95

$_COOKIE, 93—95
$_FILES, 85—89
$_GET, 77—82
$_POST, 82—84
$_REQUEST, 84—85
$_SERVER, 74—77
$_SESSION, 89—93
$GLOBALS, 73

switch statement, 61
syndicating content, 264—281
syntax highlighting, 16

■T
tables, MySQL

adding columns, 157, 176
admin table, 311
ALTER TABLE statement, 103
automatically populated fields, 128
comments table, 283—285
CREATE TABLE statement, 100—102
data storage, 97
DELETE statement, 109
entries table, 125—127

Download at WoweBook.Com

■ INDEX

385

indexing columns, 103
INSERT INTO phrase, 103—105
JOIN clause, 108
manipulating data in, 98—109
modifying data in, 107
planning database tables, 118—122
retrieving data, 105

from multiple tables, 108
SELECT statement, 105—107
UPDATE statement, 107

tags
strip_tags() function, 148

ternary operator, 150, 166
TEXT type, MySQL, 102
textarea tag, 128, 193
this ($this) variable, 214
throw keyword, OOP, 222
time formatting characters, 299
time() function, 93
title column, entries table, 125, 128

saving values in entries table, 135
verification of entry form input, 133, 134

tmp_name value, $_FILES, 85
ToyRobot class, 212

declaring private property in, 213
writeName() method, 215, 216

ToyRobot.php file, 212
try...catch statement, 226—228
Twitter, 363

generating automatic status update for,
365—368

Post to Twitter link, 362—368
postToTwitter() function, 365, 366

type value, $_FILES, 85

■U
underscore (_) character

denoting private properties, 213
unique ID

retrieving for new entry, 136
unset() function, 92, 93, 358
UPDATE statement, MySQL, 107

importance of WHERE clause, 108
update.inc.php file, 132

accessing uploaded files, 208—211
adding error messages to comments form,

349
checking if login credentials valid, 330, 331
handling comment deletion, 307—310

handling new comments, 291—293
including database credentials, 135
logging users out, 339
redirects, 155
retrieving unique ID for new entry, 137
saving images, 225—226
saving new administrators in database, 315,

316
saving page asssociations, 168—169
saving path to images, 241—244
saving URLs in database, 182
saving values in entries table, 135
testing checkSaveDir() method, 233—236
updating entries in database, 195

UPLOAD_ERR_OK constant, 221
uploading files, 85

accessing uploaded file, 208—211
adding file input to admin.php, 207
changing enctype to accept file uploads, 207
checking file uploaded and without errors,

88
checking file uploaded is JPG image, 88
checking for error during upload, 221—222
checking whether file was uploaded, 208
move_uploaded() function, 224
retrieving file information, 221
saving uploaded file to file system, 223—225
saving uploaded images, 219

uploading images
creating folder to store images, 228—236
determining file extensions, 237
ensuring image name is unique, 236
handling errors with try...catch, 226—228
saving uploaded images, 219

uploading photos, 88
url column, entries table, 176
URL encoding, 78
URL rewriting

accessing backreferences, 173
declaring base-level folder, 172
flags, 173
further information on, 172
patterns, 172
replacements, 173
setting up rule for admin.php access, 173
setting up rule for page-only URLs, 174
setting up rules for rewriting, 172
turning on, 171
using .htaccess file, 170

urldecode() function, 78

Download at WoweBook.Com

■ INDEX

386

urlencode() function, 78
URLs

accepting page info. in URL, 158—159
accessing URL variables, 78—82
blog previews page loaded with URL

variables, 161
creating friendly URLs using .htaccess, 170—

175
creating friendly URLs automatically, 175—

183
ensuring variable passed when link clicked,

166
entering URL without trailing slash, 174
modifying functions.inc.php to handle,

176—178
modifying index.php to handle, 178—180
modifying update.inc.php to save, 182
passing entry IDs in, 150
passing URL values to admin.php with

.htaccess, 190—191
previewing blog entries with friendly URL,

175
search engine indexing of, 170
search engine optimization, 170
setting up rule for page-and-entry URLs,

174
shortenUrl() function, 363, 364
using as GUID for blog entries, 271

user-defineds, 66—67
username column, admin table, 311

users, restricting administrative access

adding administrators in database, 312—317
creating login form, 328—330
displaying controls to authorized users,

330—337
hiding administrative links from users, 318
hiding controls from unauthorized users,

318—328
hiding delete link from unauthorized users,

323
logging users out, 337—340

USING clause, SELECT statement, MySQL, 108

■V
validateEmail() method, Comments class, 342—

343
validation

email address, for posting comments, 341—
353

VALUES keyword
INSERT INTO phrase, MySQL, 103

var keyword, OOP, 213
VARCHAR type, MySQL, 101, 102
variables, 32

accessing URL variables, 78—82
arrays, 38—41
Boolean values, 37
concatenating, 36
declaring as NULL, 160
ensuring passed when link clicked, 166
floating point numbers, 37
integers, 37
placing an operator sign before/after, 51
postpending, 51
prepending, 51, 52
scope, 70—73
storing values in, 32
strings, 33—37
superglobal arrays, 69

verifyResponse() method, Comments class, 358
version attribute, rss tag, 265
View option, browser menu, 166
views

creating different viewing styles for pages,
185—186

void keyword, 42

■W
web pages

accepting page info. in URL, 158—159
accessing publicly displayed pages, 174
adding menu, 184
checking page before displaying delete, 189
creating different viewing styles for, 185—186
differentiating between multi-and single-

entry pages, 185
modifying admin.php to save page

asssociations, 165—168
modifying functions to accept page

parameters, 158—164
modifying links between, 162
moving information from page to page, 69
passing data between pages using GET, 77
passing data between pages using POST, 82
saving page asssociations, 168—169
supporting multiple pages, 157

Download at WoweBook.Com

■ INDEX

387

using page to filter database records, 159—
164

web site marketing, 170
web sites

accessing IP address of site visitors, 74
adding menu to pages, 184
creating friendly URLs using .htaccess, 170—

175
creating friendly URLs automatically, 175—

183
dynamic websites, 3
identifying site referring visitor, 74, 77
modifying functions to accept page

parameters, 158—164
name of host site, 74
storing information on user’s machine, 93,

95
WHERE clause, MySQL

DELETE statement, 109
SELECT statement, 106
UPDATE statement, 108
using page to filter database records, 159

while loop, 56
whitespace, 36
Windows

setting magic_quotes_gpc Off, 15
word characters

matching non-word characters, 181
matching word characters, 173

Workspace Launcher window, 20
workspaces

choosing Eclipse PDT project workspace, 20
writeName() method, ToyRobot class, 215, 216

■XYZ
XAMPP, 6

downloading, 7
FTP option, 13
installing, 6—15

testing installation, 11—13
verifying Apache/PHP running, 13
verifying MySQL running, 14

XAMPP Control Panel, 11
xampp folder, 7, 11
XML (Extensible Markup Language), 264
XML declaration, 265
XOR operator, 53
year formatting characters, 299

Download at WoweBook.Com

Download at WoweBook.Com

Download at WoweBook.Com

Offer valid through 4/10.

233 Spring Street, New York, NY 10013

Download at WoweBook.Com

	Lengstorf 2473-0 FSB.pdf
	Lengstorf000.pdf
	Lengstorf_i-v.pdf
	Lengstorf_vi-xvii.pdf

	Lengstorf001.pdf
	Lengstorf002.pdf
	Lengstorf003.pdf
	Lengstorf004.pdf
	Lengstorf005.pdf
	Lengstorf006.pdf
	Lengstorf007.pdf
	Lengstorf008.pdf
	Lengstorf009.pdf
	Lengstorf010.pdf
	Lengstorf011.pdf
	Lengstorf012.pdf
	LengstorfIndex.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

